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Abstract

Falling is a significant problem for older adults. It can cause severe injury and even death. Furthermore, the
fear of falling has a significant influence on the life of the elderly, and therefore they reduce their physical
activity. Two new balance assistive devices are being developed to reduce the risk of falling. Both devices use
a control moment gyroscope (CMG) to generate a moment to counter the falling motion. One device con-
sists of a single CMG. The other device consists of two CMGs that are coupled such that the gimbals rotate in
opposite direction. This is called a scissored pair CMG (SPCMG). The purpose of this study was to examine
whether it is possible to design an (SP)CMG with a passive mechanism that exploits gyroscopic precession of
gimbal(s) to emulate different types of impedances for balance assistance.

To examine this, first, the equations of motion of a CMG and an SPCMG were derived. Next, the equations of
motion were used to derive the impedance of the system. The impedance was optimized such that it would
simulate the behaviour of a spring, a damper, a mass, a mass-spring-damper system, and a rotational PD
controller which is proportional to the XCoM (PDXCoM), a measure of stability. The optimization used a
gradient-based algorithm to find the minimum. Multiple optimizations with different random initial guesses
were performed to increase the chance to find the global minimum. Two sets of optimizations were per-
formed. One optimization with and one optimization without bounds on the optimization. The sets param-
eters that led to the best fit were used in a walking simulation to calculate the moments the device would
generate during normal walking.

It is shown that it is possible to simulate the dynamics of a spring, a damper, a mass, and a mass-spring-
damper system with a CMG and an SPCMG. However, it was not possible to replicate the dynamics of the
PDXCoM with a CMG and an SPCMG. A walking simulation showed that the generated moments of the
(SP)CMG were in the opposite direction of the angular velocity of the human. Therefore, using a passive
mechanism to control an (SP)CMG could be used as balance assistance.
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Nomenclature

Table 1: Nomenclature list

Symbol Meaning
R Vector R
R Matrix R
Q Angular velocity of the flywheel
Y Angular velocity of the gimbal
F Force vector
H Angular momentum vector
M Moment vector
R Vector R expressed in the Q frame
(QR)S Change of R with respect to the S frame, expressed in the Q frame
w Angular velocity of the (human) body
{és, 8,85} | Gimbal fixed frame
{éy,é,,é,} | Body fixed frame
Z Laplace transform
D Discriminant







Introduction

1.1. Motivation

Older adults are more likely to lose their balance and fall. This can cause serious injury, immobility, premature
nursing home placement, and even death [37]. In 2002, about 1000 people older than 50 years died because
of falling in Finland, a population of about 5 million people [20]. The fear of falling has a high impact on
the lives of the elderly. About a third of the elderly is afraid to fall [41]. Due to the fear of falling, the elderly
decrease their physical activity. This decrease in physical activity can cause deconditioning, reduced- health,
physical functioning and participation in society [38], which lead to an increased risk of falling. Risk factors
for falling can be classified into intrinsic and extrinsic. The most important intrinsic factors are fatigue, the
use of medication, muscle weakness, balance deficit, and mobility limitations[11, 18]. Extrinsic factors are
mainly interaction with the environment [18]. This can include unexpected steps or changes in grade, and
terrain that is slippery, or loose.

Humans have a variety of balance techniques. One such technique is to produce a moment around the ankle
to keep the body upright. To generate this moment, the plantar- and dorsiflexors around the ankle are used
to control the human body. This ankle strategy only works for perturbations with a frequency lower than 1 Hz
and with a small amplitude [1, 22]. For perturbations with a higher frequency, the hip strategy is used. With
this, the upper body is moved in the opposite direction of the lower body[1, 22]. These techniques are used
during stance. The task of balance is to keep the centre of gravity above the base support. During walking,
the base support is small since the human is only supported on one foot. Therefore, walking is a challenging
daily activity to maintain balance [43]. Keeping balance becomes even harder since, during walking, humans
have to initiate, and terminate gait, avoid objects and thereby altering the gait cycle, and might bump into
objects or other people. It is during walking that about 50% of all falls occur [2]. The primary way to prevent
a fall is a correct foot placement and body sway, such that the centre of gravity is above the foot. To do this,
response time is of great importance [40]. About a third of all falls occur because the response time was too
long [34]. With longer recovery time, the response time of the person can be slower.

Fall prevention programs are used to teach the elderly how to manoeuvre better and how to fall. Here,
robots like KineAssist [33] are already used to reduce the workload of physiotherapists and increase training
intensity. Additionally, technical solutions are being proposed to prevent falling. This includes a robotic cane
[7], which moves to a position where it is able to support the falling human. And a stroller-like robot with
actuated arms [12] that give support to the user. For these devices, the user has to use one or both arms to keep
balance. Additionally, it requires the user to actively provide a force to prevent falling. Therefore, a certain
strength is needed for the user to stay upright. An older person might not be able to provide the necessary
amount of force needed to do this. Another assistive device is a wearable robot with two legs that can move to
a posture to provide assistance [31]. This design is however very bulky which makes manoeuvring in compact
spaces, like in a living room, more difficult. Apart from these robotic devices, also exoskeletons like, Ekso(Ekso
Bionics, USA), XoR [16], and BALANCE (EU) are used for balance control. These are strong enough to move
limbs and are therefore bulky, and complicated to use. Moreover, the actuation that the exoskeletons provide
generates internal moments. Therefore, it does not directly change the angular momentum of the body.

Another creative, solution for fall prevention is proposed by Li and Vallery [25]. Here, control moment
gyroscopes (CMGs) are used to create a moment to counter the falling motion. If a flywheel has a high angular
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velocity and it is rotated about a second axis, a moment about a third axis is generated. This moment can be
used to prevent falling or reduce the falling speed to give the person extra time to recover.

This concept of using a gyroscope is minimalistic and allows the user to keep their hands free. Moreover,
many people with balance impairment are functionally capable of walking and thus do not need full muscle
support. They only need assistance for fall prevention, and therefore an exoskeleton is unnecessary. The
concept of using a CMG for balance assistance has gained some momentum over time. Scissored paired
CMGs have been used to steer the moment provided by the CMGs in the desired direction and prevent sway
[6, 36]. Furthermore, a prototype has been developed using an inverted pendulum to replace a human [24].
Here they were able to produce a CMG moment of 70 Nm. All of these concepts, however, use a motor to
control the gimbal. This motor adds weight due to the transmission, and the battery, which is undesirable.
Passive control also requires no sensors, is therefore very fast and reliable.

Currently CMGs are mainly used to steer satellites and other space crafts [23] or to stabilize ships [32].
Here, the angular velocity of the base structure is low and will, therefore, not induce a significant gyroscopic
effect. Furthermore, obects with a high angular velocity have been stabilized using a CMG such as bicycles
[3], robots [5], and a ropeway carrier [30].

Also in wearable applications, the angular velocities can be large enough to induce a significant gyro-
scopic effect. It might be possible to use this effect to control the CMG. If the CMG is controlled passively via
direct mechanical coupling, it will overcome some drawbacks that active control entails. A significant draw-
back that active control brings is time delay, which reduces the predictability of the device. Moreover, some
electronics might fail. With a mechanical coupling, there is no time delay and no electronics.

1.2. Background information

To understand the rest of the report, some backgournd information is needed about CMGs and bodeplots.
Reaction wheels and CMGs can both be used to generate a moment by changing the angular momentum of
the flywheel. A reaction wheel accelerates or decelerates its flywheel about the spin axis and thereby generates
a moment. CMGs also have a rotation flywheel, but they generate a moment by a rotation about a different
axis than the flywheel spin axis. This is typically done by rotating a gimbal. This produces moments that are
much larger than a reaction wheel could provide. This moment will be orthogonal to both the spin axis of the
flywheel and the gimbal.

To control the gyroscope, the dynamics of the gyroscope will be used. When the gimbal rotates about the
é; axis and the flywheel has an angular momentum in direction &, see Fig. 1.1, a torque will be generated
about an axis perpendicular to both &; and &;. To determine in which direction the torque is generated,
the right-hand rule is used. The thumb points in the direction of the angular velocity of the gimbal and
the index finger in the direction of the angular momentum. This shows that the torque is generated in the
positive &g direction. This moment will start to rotate the flywheel about this é axis and therefore a new
moment is generated perpendicular to & and &g, which will be in the &, direction. This is called the cascaded
gyroscopic effect. This means that a gyroscope has an output torque in the opposite direction of the input
angular velocity.
When the output of a system is in the opposite dirction of the input, a system has a phase of 180 deg or it is
non-minimum phase [10]. At least one zero exists in the right-half plane when a system is non-minimum
phase. In the result section, the frequency responses of the (SP)CMG are shown with different parameters.
Therefore it is imporant to be able to interpret bodeplots. When drawing the bode plot of a non-minimum
phase system, the normal "rule book" for drawing bode plots do not apply. For drawing a bode plot of a non-
minimum phase system, some rules have to added. These can be seen in Table 1.1. Non-minimum phase
system can have a "strange" behaviour. When an odd number of zeros exist in the RHP, the initial direction of
the step response will be in the opposite direction of the final value [13].

1.3. Project overview

The research question of this project is; "Is it possible to design a (SP)CMG with a passive mechanism, such
that (SP)CMG dynamics can be exploited in a way that it can generate effective moments for balance assis-
tance?"

The goal of this thesis is to investigate whether it is possible to passively exploit a (SP)CMG for balance
assistance. This will be done by making a theoretical model of an (SP)CMG with a passive mechanism, which
will be optimized such that it can replicate the impedance of arbitrary systems. The scope of this project will
be limited to theoretical analysis and using measured data to predict the moments the (SP)CMG will generate.



1.3. Project overview

Figure 1.1: Hand sketch of flywheel with gimbal. The body-fixed frame, {&,,, é,, é,,}is rotated with an angle y with respect to the gimbal-
fixed frame, {€s, &, &g}. The flywheel rotates with an angular velocity of Q. The spring and damper provide a moment along the &,,/&g

axis.

There will be no experiments on humans subjects.

In Chapter 2, the equations of motion of a CMG and SPCMG will be explained as well as how the transfer
function are obtained and the optimization method. In Chapter 3, a case study will be discussed. Herein,
specific impedances will be chosen, and the CMG impedance will be matched to this. In Chapter 4, the
results of the parameter optimization are shown. Furthermore, the time response of the CMG and SPCMG
are shown with one set of optimized parameters. In Chapter 5, the results and method will be discussed as
well as future directions. The conclusion will be given in Chapter 6. Additional graphs and formulas can be

found in the appendices, as well as the Matlab code that was used.

Table 1.1: Table with rules for drawing bode plots

Magnitude | Phase | Initial Phase
Zero 20dB/dec +90°
. Double Zero | 40dB/dec +180° o
Minimum Phase Pole —20dB/dec | —90° | °
Double Pole | —40dB/dec | —180°
. Zero 20dB/dec -90° o
Non Minimum Phase Pole ~50dB/dec | 390° —-180







Mechanism Design

In this chapter, the equations of motions of a single CMG and SPCMG are derived. These are then used to
obtain the impedances. The impedance is then optimized such that the (SP)CMG simulates the behaviour of
simple mechanical systems.

2.1. Equations of motion for a single CMG

In this section, the equations of motion are derived for the single CMG. A CMG system is composed of a
flywheel, with moment of inertia tensor I, with values I, Iyt and Iy; on the diagonal, spinning at a high
angular velocity (Q2). Moreover, a gimbal with a moment of inertia tensor I with values Iy, It and Igg on
the diagonal, can rotate with respect to the body with angular velocity y. We propose, a passive mechanism
between the human body and the gimbal, consisting of a spring with stiffness k and a damper with damping
coefficient b. This passive mechanism provides a moment to the gimbal. The equations of motion are in the
body-fixed frame with both the Newton-Euler methods and the Lagrange methods.

2.1.1. Definitions of angles and angular velocities

The equations of motion are generated for body fixed sensing. The term body refers to the human body.
The body-fixed frame () consists of unit vectors {&,, é,,é,}. Where ¢, is in the direction of the left-right
axis where the positive direction is right, é, is in the direction of the sagittal axis where the positive direction
is ventral, and é,, is in the longitudinal direction of the human where the positive direction is cranial. The
definitions can all be seen in Fig. 2.2. The gimbal-fixed frame (G) consists of the unit vectors {é;, &;, égl, see
Fig. 2.2. The projections of the body-fixed frame on the gimbal-fixed frame can be seen in Fig. 2.1 and are

defined as follows:
cos(—y) —sin(-y) 0
96,=| sin(-y) |, Y9é,=| cos(-y) |, Yén= , 2.0

0 0 1

o

The rotation matrix from the body-fixed frame to the gimbal-fixed frame is:
Rs =leu & &l 2.2)

The rotation matrix from the gimbal-fixed frame to the body-fixed frame is the transpose of Eq. (2.2). This
will results in, B R(y)g =9 R(y)lTs. The angular velocities between the wheel fixed frame (JV) and the gimbal
fixed frame (G), angular velocities between the G and the body fixed frame (53) are expressed as:

Q 0
wa/g= 01, gwg/3=( 0 (2.3)

0 Y
The angular velocity between B and the inertial frame (\) is expressed as:
Wy
B —
wpn=| oo (2.4
Wy

7
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Figure 2.1: Free body diagram of a flywheel with a gimbal. The body-fixed frame, {&,,, &,, é,,}is rotated with an angle y with respect to the
gimbal-fixed frame, {&s, &, ég}. The flywheel rotates with an angular velocity of Q. The moments My, and M, are the reaction moments
of the bearing in the &, é, respectively. The moments M. and M), are generated by a spring with spring stiffness k and a damper with
damping coefficient b respectively.

From this it follow that the angular velocity between G and N is gwg/N =9 wg/B +9 R(y)gwg/j\/.

2.1.2. Newton-Euler Approach for a Single CMG with body-fixed Rotations
The Newton-Euler method was used to generate the equations of motion. The angular momentum of fly-
wheel and gimbal in the gimbal-fixed frame are:

9H, =LyGwy,g +9 wgis+I R Gwp n)
9Hy =Ty wg 3+ R\ 5wp/A) (2.5)

YH=Y9 H,+Y9 Hy

To calculate the change of angular momentum with respect to the A/ frame, we will first derive the change of
angular momentum with respect to the G frame. Since we assume that Q is constant, the derivative of gww e
equals zero. Therefore, g (H)g can be calculated as follows.

9(Hy)g =T (wgB)g +I RYE (@p1A)g)
9(Hg)g =159 (@g/B)g +9 RY)E(@p/A)g) (2.6)
9(Hg =9 (Hy)g+9 (Hyg
To derive the derivative of Bwp, »r with respect to the G frame, we need to use the transport theorem.

Blapinig =P (@pin)s+5 wpig xB wpin 2.7

Now we can derive the change of angular momentum with respect to the N frame by using the transport
theorem again.

9 =9 (g +% wgin x5 H (2.8)
So B(H) N =B R(y)g(H) A+ The written out form of this equation can be seen in Eq. (A.1). The moments
generated by the spring, damper and the bearings are:

M,
Bp= M, (2.9)
+by + k(y —y0)
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Figure 2.2: Diagram of the body fixed frame, {é,, éy,é,} and the gimbal fixed frame {&s, &, &g}

Using Euler’s 2nd law of motion, we state:
5M=-B)y (2.10)

This can be solved for ¥ which leads to:

¥ ==[by —k(yo—7y) + @wgg + Iut) — Igs (W COSY + 0y Siny) (W, COSY — Wy Siny) + Ig; (W, COSY + wy sinYy)
(wycosy —wysiny) + Iyt (wy, cosy + wy, siny) (w, cosy —wy, siny) — Lys(w, cosy —w, siny)
(Q+wy cosy+wy,siny)l/ (Igg + Iwt)
(2.11)

2.2. Frequency response analysis of a single CMG

The goal of this subsection is to generate equations to describe the impedance, %, of the system. This
impedance denotes the change in moment due to a rotation disturbance. Generating the impedance is done
by using the moments due the change in angular momentum that act on the human body, Y M. The moment
is not solely dependent on wg; A but also on y,7y, and . Therefore, the dynamics of ¥ must be implicitly
included in the impedance to get a complete description of the impedance. Therefore, y has to be written
as a function of s and wg, s first. The equations of motion are linearized around an equilibrium point with
arbitrary w,, w,,w,,y and with y = 0.

Ay=Y
(2.12)

Lo o

Ay=3

Where x = [}'?,)'f,y,wu,w,,,ww,d)s,d)t,d)g]T and y = [)'/,y,wu,a),,,ww,d)s,d)t,d)g]T . The resulting state space
equations are:
M = Ay (x — xo)
Y =Aj(y—y0)
Next, Eq. (2.13) is transformed into frequency domain by taking the Laplace transform, . (M}, and ¥ {f?}.
Now we can solve f{ff} for y such that y = f(s,w,, w,,wy). The function f(s,w,,w,,®,) can be substituted
for y into £ {M} .
Now that BM is linearized, transformed into frequency domain, and y is substituted, it still equals the
moments. Hence, Z{M} = [My, M,, M,,]T. We are only interested in the impedances % of the transfer
function matrix. So the impedances that are derived are: l

(2.13)

My M, My

w w w

% % % (2.14)
u v MW

o Ow Ow
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This leads to the following transfer functions when linearized around y = y* and w, = 0}, w, = 0}, 0, =
w?,, which can have arbitrary values. Furthermore only the transfer functions % M and, M are shown
The rest can be found in appendix B. Herein, it is assumed that the gimbal is a sphere, S0 Igs = I gt To simplify
the equations the following simplification is used.

Is =st+1gs
Ji =Lvi+Ig (2.15)
]g = wt+Igg

Mu — (w},sin(27*) (s = Iw)) /2 = sUs + (g — Lys) sin(y*)?)

wy

_ (@} (Uws=Iwt) 0}, €08 (2y*) +(ws = Iw) @}, 8N (27 ) + s 2 €05 (Y *)) (It — Lws) @} €08 (27 ™) +Uws = Twd) 0}, sin(2y*) + Iws Qsin(y*)))
k+bs+]gsz+(1ws—lm)w§2 €08 (2y*) + (It — Lws) @352 €08 (2y* ) + Lys Q€08 (Y*) + Iys Qs sin (y*) +2(Lys — kyt) @ s’ sin (2y*)

(s(Uwt—Iws) @} 08 (2y*) +(Iws—Iw) w3 sin(27*) + Tys Qsin (Y*)) Ug w0} + Iws— Tn) @} €08 (27 ) + (Tt — Lws )}, sin(2y* ) —IwsQsin (y*)))
k+bs+Jgs?+(Tus—Iwt) w32 €08 (27 ) + (Iwt— Iws) 3> €08 (27 *) + Iws Qui, cos (Y% ) + InsQu sin (y*) +2(Iws — Iwp) w @} sin(2y*)
(2.16)

gl=

= — (@}, sin(2y*) Uws = Lw))/2 = U + (s — Iwg) sin(y*)?)

07, [(Iws— In) 0} €08 (27*) + (Iws — Iw) @} sIn(27*) + Ls Q cos (Y * )1 [ Twt — Iws) @} €08 (2y*) + (Iws — Iw) 0} sin (2y*) + Lys Qsin(y*)]
k+bs+Jgs?+ (Fws — Tw) 02 €08 (2 *) + (It — Ls) 52 €08 (27* ) + Lys Qv €08 (Y*) + Lys Qs sin (y*) +2(Iys — Lyt w0 sin (2y*)

S[(ws — Ty w}, €0 (2y*) + (ws— Iwd) ] sin(2y™ ) + Lys Q2 cos (Y * )1 [(Ugs — Igg) 0} + Tws — Iwt) w7 cos(y* )2+ (s —Tw) % sin(2y*)) 12+ LysQcos (1*)]
k+Dbs+Jg 2+ (Lws — Iw) w32 €08 (27 *) + (Iwt — Iws) w2 €08 (2Y* ) + Tws Qs cos (y*) + s Qs sin(y*) +2(Iws — Iw w0} sin(2y*)
(2.17)

My sJg(k+bs)

ww k+bs+]gs2+(1ws—lwt)w;2 €08 (27*) + (Lt — Lws) 052 €08 (2Y*) + Iws Qs cos (Y*) + s Qo3 sin (y*) +2(hys — wt) 0 s w7 sin (2y*)

(2.18)

To maximize the moment in é,, y has to be zero. This can be used to simplify the impedances.

My _ 03, (s —Twt) Uws Ot Tys 0, — L},
Wy T k+bs+Jgs2+(Iws— In) @52 + (Tt —Tws) w32 + Iws Qu,

(2.19)
(sw}? (Igg—Igs) Tws— Iwt))
 ktbst+Jg 2+ (s — ) 032 + (e Ls) 052+ Lys Qo

My, _
wr = STt

S(IWSQ+(IWS_IWI)(U;) (IWSQ_Iggw;]sw; _Iwiw;

T ktbs+ g%+ s — e 032+ (e L) 032+ Ins Qi

(2.20)

_ W} 0%, (Tys— Iwt) Ts Qt Iys 3 — Lyt
Kk+Dbs+Jgs2+Iws— Iw) w32 + (Tt — Lws) @52 + s Qs

My _ sJg(k+bs)
Wy k+bs+]g32+(1ws—lw1)w 2+ (It —Lws) 032 + Iys Qi

(2.21)

The poles of the simplified impedance are described by:

—B+\/B2 4AC
P12 =

A= ]g 2.22)
B=b

C=k+ILs(Qul + 0 -0} + Ly} —w?)
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2.3. Equations of motion of a scissored pair CMG

In this section, the equations of motion are derived for a scissored pair CMG (SPCMG). The equations of
motion are expressed in the body-fixed frame. The gimbals are coupled such that the angular rotations are
always opposite. Therefore, two rotation matrices are needed. The first, 91R is equal to Eq. (2.2). For the sec-
ond rotation matrix, %2R, the same rotation matrix is used but —y is substituted for y. The angular velocities
of the second CMG can be seen in Eq. (2.23). A schematic figure of the SPCMG can be seen in Fig. 2.3.

-Q 0
“owig,=| 0 |, %wgs=| 0 (2.23)
0 -y

Figure 2.3: Simplistic top view of scissored pair gyroscope. The blue disks rotate in opposite direction. The orange rectangles represent
the flywheel

The same method to generate the equations of motion is used for the first CMG as in Section 2.1.2 except
that the second gimbal applies a moment, M., on the first gimbal because they are coupled. So the moment
applied to the first gimbal is:

Mlu
M, = My, (2.24)
k(y —yo) + by + M.

For the second gyro, the method is very similar to the first. However, the second gimbal rotates in the opposite
direction compared to the first gimbal. Therefore, we fill in y for —y, Q rotates in the —é; direction, and 2R is
used. This also means that the angular velocity is in the opposite direction. The moment due to the coupling
also applies to the second gimbal.

May,
M, = My, (2.25)
—k(y —y0) = by + M,

Now we solve the equation B (H) v =B M, for M, and substitute this result in M;. So, M; consists of —I,y —
2by —2ky among other terms related to the gyroscopic effect. Now the total change of angular momentum
can be calculated with:

=B (i) =P () = My (2.26)

The written out version of this equation can be seen in Eq. (A.2). When solved for ¥, it results in:

7= =[2by = 2(yo — V) k + Igsw? sin(2y) — Ig;w% sin(2y) — Igsw? sin(2y)
+Ig,w? sin(2y) + Lysw? sin(2y) — Iyw? sin(2y) — Lysw?, sin(2y) (2.27)
+ Lyt 8in(2y) + 2 s Quy sin(y) / [2y*]

To check whether the equations of motion are correct, also the Lagrange method was used to generate the
equations of motion. The equations of motion found with the Lagrange method were equal to the equations
of motion found with the Newton-Euler method. Furthermore, H; + H, was numerically differentiated and
this was matched with B (Hy) N +B (H,) - Both validation checks can be seen in appendix A.
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2.4. Frequency response analysis of scissored pair CMG
The method of computing the impedance of the SPCMG is exactly the same as for a single CMG from Sec-
tion 2.2. This leads to the following transfer functions when linearized around y = y* and w, = 0}, 0, =
w},wy = ], which can have arbitrary values. Furthermore only the transfer functions f—:, w—u” and, w—;’ are
shown. The rest can be found in appendix Appendix B.

f—: = —scos(y*)2Js

_sw;sin(2y™) Uws —Iwd) [2Uws — Iwd @}y cos (v *) +2Iggwy; sin(y*) +2Lws @}, sin(y*)]
k+bs+Jgs?+(Iws— Iwp)w}? cos (2y* ) + (Iwi— It w3 cos (2y* ) + Ius Q) sin(y*)

(2.28)

205w} wh,sin(2y*) sin(y*) Ugg—Igs) Uws— Iwt)

_ uWy Wy
k+Dbs+Jgs?+(Iws— Iw) w2 cos (2y*) + Uwi— Iw) w2 €08 (2y*) + Lys Q) sin(y*)

My — _scos(y*)(2Jy)

Wy

_ S[(Iws—Iwt)w}y sin(2y™*) + Lys Q2.cos (Y *) 1 [2Iws Q+2 Iyt — Lys)w}, €08 (Y *) +2(Lws — Igg—2 Ly 0} sin (y*)]
k+bs+Jgs?+(Iws— Iwpw}? cos (2y* ) + wi— Iwp) w2 cos (27 * ) + Lys Qo sin(y*)

(2.29)

205w}, sin(Y*) [Lwsw} sin(2y*) - Lyw} sin(2y* )+ IwsQcos(y*)1Ug—Js)
k+bs+Jgs2+(Iws— w32 €08 (2y*) + (Iwt— Lwt) w2 €08 (27 * ) + Lws Qs sin(y*)

My

Wy

=3 (2.30)

The impedance f—;’ does not exist because the term w,, nor @,, does not appear in the equations of motion
found in Eq. (2.26).
If y =0, Eq. (2.28) and Eq. (2.29) simplify to:

M,
— =-25J; (2.31)
u
My _ _ QI2,0%s)
w0, ~ s@Jo) (k+bs+Jgs2+(Iws—Tw) @32 + (Lt —Iws) w3 ?) (2.32)
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2.5. Effect of changing parameters on frequency response

Multiple bode plots with changing parameters are shown in Fig. 2.4 to get an overview of how different pa-
rameters change the frequency response of a single CMG. The parameters can be seen in Table 2.1. The
chosen parameters are similar to the parameters of mini-GYRO’s that are being used in the bio-robotics lab.
In Fig. 2.4a the effect of y on the frequency response is shown. It shows that the frequency response with y
between Orad and n/3rad are very similar in both the magnitude and phase. Furthermore, when y = n/2rad,
the impedance is that of a pure mass.

In Fig. 2.4b the effect of stiffness on the frequency response is shown. It shows that with low stiffness, the sys-
tem behaves as a damper at low frequencies. With an increasing stiffness, the impedance will become more
similar to a mass.

In Fig. 2.4c, the effect of damping on the frequency response is shown. It shows that with a low damper, a
complex pole pair and a complex zero pair will exist. The pole pair exists at lower frequencies than the zero
pair. With an increase in damping, the impedance will behave as a damper at lower frequencies. It should be
noted, however, that the frequency response will depend on specific combinations of parameters. Therefore
the frequency response can not be determined with a linear superposition.

Table 2.1: Arbitrary values for the parameters for transfer function 2)/[—5

Parameter | Value unit
k 5 N/m/rad
b 1 Nm/s/rad
Ts 4.4e-04 kgm?
Lt 2.5e-04 kgm?
Igs 8.8e-04 | kgm?
Igg 5.0e-04 | kgm?
Y 0.00 rad
Q 2513 rad/s
wy 0 rad/s
wy 0 rad/s
Wy 0 rads
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Figure 2.4: Bode plots of a single CMG in the body-fixed frame when different parameters are changed.
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2.6. Optimization
We want to design an (SP)CMG that produces a specified impedance between the human body and the
(SP)CMG. A gradient optimization was used to find a set of parameters for which the (SP)CMG produces
this impedance. Gradient optimization is computationally efficient but has a chance to find local minima.
Therefor multiple optimizations with different random initial guesses were performed. Knowledge about the
system was used to determine the initial guess. Then some randomness was added to the initial guess to
reduce the change of finding a local minimum even further. The algorithm minimizes the difference between
the desired transfer function (TFdes) and the obtained transfer function (TF). Both the magnitude and phase
are important. If the magnitude of the two transfer functions is the same, the pole and zero location of the
transfer function are the same. However, this only holds when all poles and zeros are in the left half-plane.
If there exists one zero or pole in the right half-plane, the phase shifts by 180°, this is called non-minimum
phase. Therefore, the phase is considered more valuable. Furthermore, if the phase between the TFdes and
TF differs 180°, the moment will be applied in the opposite direction than intended, which is worse than a
moment with a different magnitude in the right direction. The algorithm used to solve the optimal parameter
problem is as follows:

i—100

x=up.-R~U(0,1])

minl|C(x)|15
Where the cost function is:

C=w(imag(TFyes—imag(TF)))+real(TFges— TF) (2.33)

Other cost functions are discussed in Section 5.6. The optimization was performed with the MATLAB
R2019b (MathWorks; Natick, USA) function, Isgnonlin. The algorithm minimizes the difference between the
desired transfer function, T Fgeg, and the transfer function that was computed earlier, TF. A w; of 100 was
chosen. This was because the phase was considered more important than the magnitude. The frequency vec-
tor consists of two hundred logarithmic spaced frequencies. These frequencies range from 0.1Hz to 10Hz.
Two sets of optimizations were performed. One in which was examined how good the fit can theoretically get,
and one with realistic bounds on the parameters. The parameters that were optimized are spring stiffness,
damping, moments of inertia of the flywheel, moments of inertia of the gimbal, and the orientation of the
flywheel. The angular momentum depends on both the moment of inertia and the angular velocity of the fly-
wheel. Hence, there is redundancy between those parameters. Therefore, the angular velocity of the flywheel
was fixed on 1500 rad/s for both types of optimizations. An angular velocity of 0 rad/s was used for all angular
velocities of the human body. The bounds for the optimizations can be seen in Table 2.2. The bound on the
inertia of the flywheel was based on the inertia of the flywheel of Lemus et al. [24], where the inertia I,y =
0.02 kg/m?. Twice this value was used to give the optimization more space to explore. Since the gimbal does
not provide gyroscopic torque, it has to be lightweight to reduce the mass of the overall system. Therefore,
an upper bound of 0.2 kg/m? was chosen. The spring stiffness was based on the maximum spring stiffness of
a torsion spring that was found in [14]. The damping coefficient was based on the rotary dampers found in
[26]. The optimization was performed 100 times to increase the change of finding a global minimum.

Table 2.2: The lower and upper bounds for the for the variable parameters for the (SP)CMG

Parameter | Lower Bound | Upper Bound on Random Guess | Upper Bound Unit
k 0 4500 4500 Nm/rad
b 0 3800 3800 Nm/s/rad

Is 0 0.3 0.04 kgm?
Tt 0 0.3 0.04 kgm?
Igs 0 0.3 0.02 kgm?
Igg 0 0.3 0.02 kgm?
Y -7 /4 b2 rad
Q 1500 1500 1500 rad/s
wy 0 0 0 rad/s
wy 0 0 0 rad/s
Wy 0 0 0 rad/s







Case Study

In the previous chapter, the impedance of the CMG and SPCMG were derived. Furthermore, the optimization
algortim was explained. This chapter wil explain to which impedances the (SP)CMG will be matched.

3.1. Desired transfer function

To investigate whether it is possible to match impedances, the impedance of the (SP)CMGs were optimized
for multiple impedances. The optimization was done for a spring, damper, mass, a mass-spring-damper
system and a PD controller inspired by the XCoM, a measure of stability. The values for these systems were
arbitrarily chosen. The desired transfer functions can be seen in Table 3.1.

Table 3.1: Table that shows the desired transfer functions that were used for the optimization.

Mechanism Spring | Damper | Mass | Mass-Spring-Damper System | PDXCoM
R . k bs Is? Js?+bs+k kp+kas
Symbolic Transfer Function -5 - - —— +==
Transfer Function _ % _ 5_Ss _ o.is _05s +55$+30 n 100-;—323
3.1.1. XCoM

The desired transfer function is modeled after a measure of dynamic stability, XCoM [15]. The assumptions
are that the human body can be modeled as an inverted pendulum, see Fig. 3.1. Furthermore, there are no
ankle moments applied and the moment of inertia of the human body is approximated as a point mass. The
sum of the moments around the ankle is:

Y M: Jif = mgLsin® 3.1)

Where m is the mass of the upper body, L is the length of the leg, 8 is the angle of the leg with respect to the
vertical, J; = J. + mL?, and g is the gravitational constant. To get the transfer function, this will be linearized
about 8 =0.

Ji0 ~ mgLo (3.2)

The natural frequency, wg = 1/ mTfl and the moment of inertia of the trunk is set to zero. When we substitude
this in Eq. (3.2) we get:
6-wi0=0 (3.3)

For the orbital energy, we have to multiply equation 3.3 by }19 and integrate over time [19].

Eop =1 [0(0 - wd)dt
) ) (3.4)
Eorb = 50— w08) (6 +wo0)

XCoM is then defined as the distance from the stable trajectory. The stable trajectory can be seen in the phase
plot of Fig. 3.2. The external moment that should be applied to make the system stable is:

17
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Figure 3.1: Figure of XCoM. The length of the leg is depicted by L. The angle of leg with respect to the vertical is depicted by 6. The
moment of inertia of the body is depicted by Jc. The gravity force is depicted by mg.

M= -kXCoM
M= —kl0+w,'0) (3.5)

M= —kplf—ky-log'6

However, this is the moment generated by the CMG, so the moment applied on the human is in the opposite
direction.

M=kplf +kq - lwg'0 (3.6)

If we can choose kj, and k4 independently, equation 3.5 can be interpreted as a PD controller. To make the
system equivalent to the equations of the gyro, the equations are put in frequency domain and the variables
are renamed.

0=

0= 3.7

wlg €

For the gains, arbitrary values are used, k;, = 100 and k4 = 32. For the leg length we choose 1 = 1 m. From this,
the desired transfer function is:

100+ 32s
TFges = — (3.8)

Since keeping balance around the sagittal axis is the most difficult for humans [35], it is decided that the
transfer function that will be optimized for is M,

w—y.
3.2. Relevant frequencies
In human balance control, it is common to use a cut-off frequency of about 10 Hz [4, 9]. This is because

human typically can track frequencies up to 6 Hz [27]. Therefore, the optimization will be performed for a
frequency range of 0.01 Hz to 10 Hz, which equals to 0.02zrad/s to 207 rad/s

Figure 3.2: Phase plot of the orbital energy. The lines converging to the origin are the stable trajectories. Figure from Kajita et al. [19].
With permission.
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3.3. Walking simulation

A feed-forward simulation of the (SP)CMG was made using human gait data. This means that the human
gait data does not respond to the moments exerted by the (SP)CMG. The angular velocity and angular accel-
eration of the trunk were used. Furthermore, the orientation of the trunk with respect to the lab was used
to determine the angular velocities and angular acceleration in the body-fixed frame. Two different walking
speeds of the same subject were used as gait data. The walking speeds are 0-0.4m/s, and a self-selected fast
speed. The gait data that was used is from the data set of [39]. The angular velocities of the gait data can be
seen in Fig. 3.3.

LFO LFS RFO RFS LFO LFS
1L T T T T T []
0.5 - | |
- '
-0.5 + H
0
g 1 | | | | | | | | [
£ 0.5 1 1.5 2 2.5 3 3.5 4
2
‘©
o©
(9]
>
® LFO RFS LFO LFS
87 I T
s 1 Vo e W

1
0.2 0.4 0.6 0.8 1 1.2
Timeins

Figure 3.3: Angular velocity of a subject with a walking speed between 0-0.4 m/s for the top graph, and a walking speed between 1.9-
2.2m/s for the bottom graph. LFO = left foot off, LFS = lef foot strike, RFO = right foot strike, RFS = right foot strike.






Results

This chapter will show the results of the optimization. The bodeplots show the impedance of the (SP)CMG
with the poles and zeros and the desired transferfunction. The parameters that were found with the optimiza-
tions are shown in a table. Furthermore, the walking simulation is shown when the (SP)CMG was optimized
to simulate a damper.

4.1. Results of a single CMG

In the following sections, only the bode plots of the optimized impedance without bounds is shown. The
bode plots of the impedance when the optimization was performed with realistic bounds can be seen in
Appendix C. The parameters of both sets of optimizations are shown in this section. Furthermore, the time
response of a CMG when optimized to simulate a damper with the realistic parameters is shown. The other
time responses are shown in Appendix D.

4.1.1. Optimization of spring

The optimization was performed one-hundred times. The upper bounds of the initial guess were changed
for the spring stiffness and the damping to 0.01 Nm/rad and 0.001 Nm/rad/s respectively. The squared norm
of the residual (resnorm) of the best optimization was 2.1. The optimized parameters can be seen in table
4.1. Figure 4.1 shown the bode plots of both a spring (red dotted) and of the optimized impedance of a single
CMG, ]l\f—: The resulting impedance function has two poles located at p;» = —2.6 x 107> + 1.6 x 10™%i and
three zeros located at z; = 0, and zp 3 = —2.6 x 107> + 7.01 x 10?i. The damping in the system is { = 0.16 and
the natural frequency w, = 0.16 x 10~3rad/s.

21
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Figure 4.1: Bode plot of both TFdes, a spring, (red) and the optimized impedance (blue). The area between the vertical lines are the
optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.2. Optimization to imitate a damper

The optimization was done one-hundred times for f—y“ The upper bound of the initial guess for the spring
was changed to 0.1 Nm/rad. The resnorm of the best optimization of the cost function was 1.6 x 10™°. The
optimized parameters are shown in Table 4.1. Figure 4.3 shows both the transfer function of a damper and
IX—:. The resulting transfer function has two poles and three zeros. The poles are located at p; = —2812.5, and
p2 = —7.97 x 10'5. The zeros are located at z; = 0 ,and z, 3 = —1406.3 + 2435.9i. The damping in the system is
¢ =1 and the natural frequency w,, = 2812.5rad/s, and w, = 7.97 x 10" rad/s.
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Figure 4.2: Bode plot of both TFdes, a damper, (red dotted) and the optimized impedance (blue). The area between the vertical lines are
the optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.3. Optimization to imitate a mass

The optimization was done one-hundred times for f—y“ The bounds on the initial guess were not changed for
the optimizations. The resnorm of the best optimization of the cost function was 1.88 x 10712, The optimized
parameters are shown in Table 4.1. Figure 4.3 shows both the transfer function of a mass and f—: The result-
ing transfer function has two poles and three zeros. The poles are located at p; = —2.27 x 10°, and p, = —2.15.
The zeros are located at z; = 0, zp = —2.27 x 10° and z3 = —2.15. The damping in the system is { = 1 and the
natural frequency w, = 2.27 x 10°rad/s and w,, = 2.15rad/s.
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Figure 4.3: Bode plot of both TFdes, a mass, (red) and the optimized impedance (blue). The area between the vertical lines are the
optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

4.1.4. Optimization to imitate a mass-spring-damper System

The optimization was done one-hundred times for f—: The resnorm of the best optimization of the cost
function was 1.7 x 103. The upper bound of the initial guess for the spring was changed to 0.1 Nm/rad. The
optimized parameters are shown in Table 4.1. Figure 4.4 shows both the transfer function of a mass-spring-
damper system and % The resulting transfer function has two poles and three zeros. The poles are located
at p1 o =-0.00+ 0.0012i . The zeros are located at z1 =0,and zp 3 = —0.00 + 7.73i. The damping in the system

is { =0.18 x 1077 and the natural frequency w, = 0.0012rad/s.
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4.1.5. Optimization of PDXCoM

The optimization was done one-hundred times for
function was 2.6 x 10%. The optimized parameters are shown in Table 4.1. Figure 4.5 shows both the transfer

My
Wy

10%

108

The area between the vertical lines are the

=t The resnorm of the best optimization of the cost

function of the PD controller and f—: The resulting transfer function has two poles located at p; = —176.0,
and p, = —0.022 and three zeros located at z; = 0, and z 3 = —88.0 £ 164.9i. The damping in the system is
¢ =1 and the natural frequency w, = 0.022rad/s, and w, = 176.0rad/s.
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Figure 4.5: Bode plot of both TFdes, PDXCoM, (red dotted) and the optimized impedance (blue). The area between the vertical lines are
the optimized frequencies. Zeros are indicated with a circle, poles are indicated with a cross.

Table 4.1: The optimized parameters of the CMG. Both the best possible parameters and the realistic parameters (RP) are shown.

Parameter Spring Damper Mass Mass-Spring-Damper | PDXCoM Unit
Resnorm 2.1 1.6x107° | 1.88x 10712 1.7x 103 2.63 x 109
Resnorm RP 112.1 2.2x107° 0.84 6.3 x 108 1.1x10"
k 27x10712 | 42x10714 5888.6 1.5x107° 169.0 Nm/rad
k RP 75%x107% | 4.0x1071 3633.3 3.1x107° 0.23 Nm/rad
b 5.3x 1079 5.21 2.74x10° 45x 10711 7756.7 Nm/rad/s
b RP 6.9x1076 5.36 7.31 9.2x107* 2.76 Nm/rad/s
Ts 3.69x107° 0.0034 1.51x107% 0.0037 3.99 kgm?
IysRP 1.0x 1074 0.0035 0.028 5.6x1074 0.040 kgm?
Lt 1.85x 107° 0.0017 7.55x107° 0.0018 1.99 kgm?
IwRP 0.5x107° 0.0017 0.014 2.8x107* 0.02 kgm?
Igs 4.14x107° | 7.6x107° 0.50 0.50 21.04 kgm?
IsRP 3.17x107* | 1.3x107™* | 65x107° 0.01 1.2x10714 kgm?
Igg 8.28x107° | 1.5x107* 1.00 1.00 42.07 kgm?
IggRP 6.34x107% | 2.7x107* | 1.3x107° 0.02 2.4x1071 kgm?
r* 0.01 71x107° 1.50 0.092 3.05 rad
Y*RP 0.30 3.86x107* 0.001 0.10 —25x107% rad
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4.1.6. Walk simulation

The moment that were applied on the human by the CMG are shown in this subsection. The parameters
used for the CMG are the parameters that were found when the CMG was optimized a damper. The walking
simulations with the other parameters can be seen in Appendix D. In Fig. 4.6 it can be seen that the maximum

moment of 1.99 Nm is applied before the first left foot off. Furthermore, the angle y stays between 0.05 rad
and —0.03 rad.
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Figure 4.6: Forward simulation of the moments exerted on the human by the optimized CMG. Also ¥, 7, and y are shown. The walking
speed was between 0-0.4 m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS = right foot strike.

In Fig. 4.7 it can be seen that the maximum moment of —6.66 Nm is applied between the left foot strike
and the right foot off. Furthermore, the angle y stays between —0.07 rad and 0.05 rad.
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Figure 4.7: Forward simulation of the moments exerted on the human by the optimized CMG. Also ¥, ¥, and y are shown. The walking
speed was a self selected fast speed which was between 1.9-2.2m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS
= right foot strike.
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4.2, Scissored pair CMG

For the single SPCMG, one-hundred optimizations were performed for each target. In the following sections,
only the bode plots of the optimized impedance without bounds is shown. The bode plots of the impedance
when there was optimized bounds, is shown in Appendix C. The parameters of both sets of optimizations
are shown in this section. Furthermore, the time response of the SPCMG is shown with the found optimized
parameters when the SPCMG was optimized to be simulate PDXCoM with realistic values.

4.2.1. Optimization to imitate a spring

The resnorm of the best optimization was 2.4. The upper bounds of the initial guess were changed for the
spring stiffness and the damping to 0.01 Nm/rad and 0.001 Nm/rad/s respectively. The optimized parameters
can be seen in table 4.2. The bode plot of the found impedance function can be seen in Fig. 4.8 together
with the desired transfer function. The resulting impedance function has two poles located at p; » = —0.027 +
0.16 x 10737 and three zeros located at z; = 0, Zp3=-2.6x% 1075+682.7i. The dampingin the system is { = 0.16
and the natural frequency ,, = 0.16 x 10~3rad/s.
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Figure 4.8: Impedance of a SPCMG when optimized to mimic a spring. The area between the vertical lines are the optimized frequencies.
Zeros are indicated with a circle, poles are indicated with a cross.

4.2.2. Optimization to imitate a damper

The resnorm of the best optimization was 4.4 x 107°. The optimized parameters can be seen in table 4.2. The
bode plot of the found impedance function can be seen in Fig. 4.9 together with the desired transfer function.
The found impedance function from has two poles located at p; = —2428.3, p» = —1.12e — 14 and three zeros
located at z; =0, and zp 3 = —1214.1 £2103.2i. The damping in the system is { = 1 and the natural frequency
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w, =2428.3rad/s and w, = 1.12 x 10~ rad/s.
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Figure 4.9: Impedance of a SPCMG when optimized to mimic a damper. The area between the vertical lines are the optimized frequen-
cies. Zeros are indicated with a circle, poles are indicated with a cross.

4.2.3. Optimization to imitate a mass

The resnorm of the best optimization was 1.5 x 107, The optimized parameters can be seen in table 4.2.
The bode plot of the found impedance function can be seen in Fig. 4.10 together with the desired transfer
function. The found impedance function has two poles located at p; = —5615.8, p» = —1.1 and three zeros
located at z; =0, zp = —5615.8, and z3 = —1.1. The damping in the system is { = 1 and the natural frequency
wp, =5615.8 and w, = 1.1rad/s.
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Figure 4.10: Impedance of a SPCMG when optimized to mimic a mass. The area between the vertical lines are the optimized frequencies.
Zeros are indicated with a circle, poles are indicated with a cross.

4.2.4. Optimization to imitate a mass-spring-damper system

The resnorm of the best optimization was 1.7 x 10%. The resnorm of the best optimization of the cost function
was 1.7 x 103, The upper bound of the initial guess for the spring was changed to 0.1 Nm/rad. The optimized
parameters can be seen in table 4.2. The bode plot of the found impedance function can be seen in Fig. 4.10
together with the desired transfer function. Two zeros and one pole are not shown because they exist at very
high frequencies. The found impedance function has two poles located at p; » = —0.000 £ 0.0012i and three
zeros located at z; =0, and zp 3 = —0.000 + 7.7i. The damping in the system is { = 0.32 x 10”7 and the natural
frequency w, = 0.0012rad/s.
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Figure 4.11: Impedance of a SPCMG when optimized to mimic a mass-spring-damper system. The area between the vertical lines are
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4.2.5. Optimization of PDXCoM

The resnorm of the cost function for the scissored pair gyros was 2.63 x 10°. The optimized parameters can
be seen in table 4.2. The bode plot of the found impedance function can be seen in Fig. 4.12 together with the
desired transfer function. One pole and one zero are not shown because they exist at very high frequencies.
The found impedance function has two poles located at p; = —176.00, p, = —0.02 and three zeros located at
z1 =0and, zp 3 = —0.88+1.65i. The damping in the system is { = +1 and the natural frequency w,, = 0.02rad/s
and w, = 176.00rad/s.
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Table 4.2: The optimized parameters of the SPCMG. Both the best possible parameters and the realistic parameters (RP) are shown.

Parameter Spring Damper Mass Mass-Spring-Damper | PDXCoM Unit
Resnorm 2.4 44x10™° | 15%x1079 1.7x10° 2.63 x 107
Resnorm RP 1.3 45x107° 0.71 1.7x10° 6.4 x 108
k 1.4x107% | 3.2x107 ™4 2858.0 7.6x1077 84.6 Nm/rad
kRP 6.7x10713 | 4.0x107 2243.6 3.1x107° 0.31 Nm/rad
b 2.8x1079 2.8 2609.3 3.9x107 11 3881.1 Nm/rad/s
b RP 1.4x107° 2.9 4.3 9.2x107* 4.33 Nm/rad/s
Tws 2.0x10°° 0.0018 0.024 0.0019 1.99 kgm?
IysRP 1.6x107° 0.0018 0.016 42x1074 0.040 kgm?
Tt 9.8x107% | 89x107* 0.012 9.4x107* 0.99 kgm?
IyRP 82x107% | 8.9x107* 0.0078 2.1x107* 0.020 kgm?
Igs 22x107° | L4x107* 0.23 0.25 10.53 kgm?
IgsRP 14%x107° | 1.5x107* | 1.2x107° 0.010 1.4x10714 kgm?
Igg 43x107 | 2.8x107* 0.45 0.5 21.05 kgm?
Iys RP 29x107° | 29x107* | 2.4x107° 0.02 2.8x107" | kgm?
r* -0.30 “1.6x107% 1.55 0.25 -0.05 rad
Y* RP 0.30 ~1.7x1074 0.073 1.88 -0.3 rad

4.2.6. Walking simulation

The moment that were applied on the human by the SPCMG are shown in this subsection. The parameters
used for the CMG are the parameters that were found when the CMG was optimized to simulate a damper.
The walking simulations with the other parameters can be seen in Appendix D. In Fig. 4.13 it can be seen that
the maximum moment of —0.97 Nm is applied between the second left foot off and the second left foot strike.
Furthermore, the angle y stays between —0.025rad and —0.01 rad.
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Figure 4.13: Forward simulation of the moments exerted on the human by the SPCMG. Also ¥, ¥, and y are shown. The walking speed

was between 0-0.4 m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS = right foot strike.

In Fig. 4.14it can be seen that the maximum moment of —3.88 Nm is applied between the first left foot

strike and the right foot off. Furthermore, the angle y stays between —0.07 rad and 0.05 rad.
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Figure 4.14: Forward simulation of the moments exerted on the human by the SPCMG. Also ¥, y, and y are shown. The walking speed
was a self selected fast speed between 1.9-2.2m/s. LFO = left foot off, LFS = left foot strike, RFO = right foot strike, RFS = right foot strike.



Discussion

Passively exploiting gyroscopic dynamics is a new concept as well as parameter optimization in frequency
domain for CMGs. In the next chapter, the most important findings are discussed.

5.1. Discussion of CMG and SPCMG optimization

Since the results of the CMG and SPCMG are very similar, this section applies to both the CMG and SPCMG. It
was possible to mimic the impedance of a spring, a damper, a mass, and a mass-spring-damper system with
an (SP)CMG. However it was not possible to simulate the dynamcis of the PDXCoM.

A complex pole pair was placed at low frequencies when the (SP)CMG was optimized to simulate a spring.
This, in combination with the zero at the origin, gives a magnitude slope of —20 dB/dec and a phase of 90°.
This is the same as the desired impedance. Furthermore, a complex zero pair is placed outside the opti-
mized frequency range. This initially gives a dip in the magnitude after which there is a magnitude slope
of 20dB/dec. It was possible to find a good fit for the damper when the (SP)CMG was optimized with and
without bounds on the parameters. One zero exists at the origin, and therefore there is a magnitude slope
of 20 dB/dec. One pole was placed at low frequencies to create a slope of 0 dB/dec. This also resulted into a
phase of 180°. At frequencies outside the optimized frequency range, a complex zero pair and one pole are
placed at the same frequency. This creates a small dip in the magnitude response and then creates a slope
of 20 dB/dec and a phase of —90°. The algorithm found a good result for when the (SP)CMG was optimized
to simulate a mass for both the optimization without bounds and with bounds. However, the strategy to
find this fit were very different. The optimization without bounds found a result were y = 1.50rad. Com-
bined with a flywheel with very small inertia, the gyroscopic effect is negligible. Furthermore, the inertia of
the gimbal in the &, direction is 0.5kgm?, which was the desired inertia. The optimization with bounds on
the parameters found a result where the gyroscopic effect had an effect on the impedance. The inertia of
the gimbal is now very small and the combination of y = Orad/ and large inertia for the flywheel create an
impedance which is similar to the desired impedance of a mass. It was possible to simulate the impedance
of a mass-spring-damper system with the (SP)CMG. One complex pole pair was placed at low frequencies to
give the impedance a —20 dB/dec magnitude slope and a phase of 90°. Right where the desired impedance
has two zeros, a complex zero pair is placed for the (SP)CMG impedance. Unlike for the desired impedance,
this causes a dip in magnitude. However, at frequencies higher than the dip, the (SP)CMG impedance follows
the desired impedance perfectly. It was not possible to get a good fit on the PDXCoM. One zero was placed at
the origin which results in a —90° phase and a magnitude slope of 20 dB/dec. One pole is placed at 0.02rad/s
which gives a phase of —180° and a magnitude slope of 0 dB/dec. However, the desired impedance has a zero
around 5 rad/s which gives a phase shift to 0°.

5.1.1. Explanation of the fit

For the impedance optimization, some assumptions were made. The angular velocity around which the
equations of motion were optimized was Orad/s. A y of Orad is used to simplify the equations even further.
This is done because, in this configuration, the flywheel generated the highest torque in the &, direction. This

37
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leads to the following impedance function for the CMG:

% S(_]t]gsz —]tbS—IfusQZ —Jik)

= 5.1
wy Ugs?+bs+k) 6.1
And the following impedance function for the SPCMG:
M, 2s(- s> —Jibs—I%2,.Q% - ]k
M, _25(-Jidgs"— i ws Jik) 5.2)

w, Jgs?+bs+k)

From this, it is clear that the impedance of an SPCMG is two times the impedance of a CMG. The equation to
solve squared equations is very well known. This equation can be used to compute the poles of the system.
This leads to the following equation for both the CMG and SPCMG.

—b+\/b*-4Jgk

P12= T (5.3)

From this, it can be derived that if two single poles are needed to fit the impedance, high damping is needed.
Furthermore, the poles are independent of the parameters, I,;5, Igs, and Q. There is also a general equation
to find the roots of cubic equations in the form of As3 + Bs? + Cs+ D [42]. In this case however, the equation
can be simplified to s(As? + Bs+ C). In this case, there is always one zero at the origin, and the other zeros
can be computed using the following equation for both the CMG and the SPCMG.

Jib [ (=] b = 41T ) (- 0% = ], )
Zz,3 = (5.4)
~2J ]

It can be seen that the equation to compute the zeros is very similar to the equation to compute the poles.
This equation is, however, dependant on all parameters. This means that the parameters I, Igs, and Q
can be used to change the zeros independently from the poles. However, it is only possible to change the
discriminant with these parameters. With this knowledge, we can try to explain why the algorithm was able
to find the found results.

A pure spring has a magnitude slope of —20 dB/dec and a phase of 90°. Since one zero always exists at
Orad/s, two poles have to be placed at low frequencies. The damping has to be very low to accomplish this.
However, if the damping is too low, the two poles become a complex pole pair. A complex pole pair has its
influence around the natural frequency of the system. The natural frequency of the system can be calculated

with: 2+ gs+r = §% + 2{w, s + »%. From this it follows that the natural frequency of the system is w;, = ﬁ
Hence, J; must be much larger than the spring stiffness k to place the poles at a low frequency. Therefore a
low value for the spring stiffness and the damping was used for the initial guess.

A pure damper has a magnitude slope of 0 dB/dec and a phase of 180°. Because of the zero at the origin,
one pole needs to be placed at frequencies lower than the optimized frequency range, and one pole needs
to be placed at higher frequencies than the optimized frequency range. This is achieved by a high damping
and low stiffness. Because of the low stiffness, the equation to compute the pole can be approximated with:

P12 = %i:’. From this, it is clear that with high damping, one pole is placed close to zero and one pole far

outside the frequency range.

A pure mass has a magnitude slope of 20 dB/dec and a phase of —90. One strategy to match this was to
have a y that is close to 7. This way, the system behaves like a mass. Furthermore, I, is very low to decrease
the gyroscopic effect further. This strategy, however, cannot work for the optimization with realistic bounds
on the parameters since, with this optimization, it is not possible to get the required inertia. Therefore, a
high damping and very small inertia /; were used to place the poles at frequencies higher than the optimized
frequencies.

The PDXCoM has a phase of —90° and a magnitude slope of —20 dB/dec. Two poles would have to placed
atlow frequencies to get the same magnitude slope. This would, however, give a phase of 90°. This difference
occurs because of the opposite sign for the PDXCoM and the impedance of the CMG. Since the optimized
parameters cannot be negative, it is not possible to get a good fit on the PDXCoM with the CMG impedance.
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5.1.2. Pole zero placement

The poles of both the CMG and SPCMG do not depend on the Iy, Igs and Q. However, the zeros do depend
on these parameters. This means that the zeros can be placed independently from the poles using these
parameters. Basically, by changing the angular momentum in é, direction, the location of the zeros can be
changed independently from the poles. In Fig. 5.1, it can be seen that the location of the zeros change when
Iys is changed. One zero always exist in the origin. The two other poles can be complex or real depending
on the value of I,,s. The zeros are always be mirrored around %. Another way to change the angular
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Figure 5.1: Plot which shows the effect of an changing Lys on the location of the poles and zeros.

momentum in é, direction is to change y. Changing y gives similar results as changing I,s. The effect of a
changing y on the zeros can be seen in Fig. 5.2. When y = 7, there is no angular momentum of the flywheel
in é, direction. Therefore, the system behaves like a mass. Hence, there exists only one zero.

5.2. Discussion of walking simulation
5.2.1. Walking simulation of the CMG

The set of parameters that was used was the set for when the CMG was optimized to simulate a damper.
The time response plots with different parameters can be found in Appendix D. Because of the damping, y
changed very little. This makes sure that the moments are mainly generated in the é, direction. The generated
moments are in the opposite direction, with respect to the angular velocity of the body. Therefore it would
reduce the angular velocity and therefore, the CMG could help to maintain balance.

5.2.2. Walking simulation of the SPCMG

The set of parameters that was used was the set for when the CMG was optimized to simulate a damper. The
time response plots with different parameters can be found in Appendix D. Because of the scissored pair-
ing, the moments were mainly generated in the é, direction. The moments were generated in the opposite
direction compared to the angular velocity. Therefore, the SPCMG could be used for balance assistance.

5.3. Virtual stiffness, damping, and mass

With a reaction wheel, it should also be possible to simulate the dynamic behaviour of a spring, a damper, and
a mass. Since in reaction wheels, there is no torque amplification, the impedance of a spring can just be sim-
ulated by adding that spring to the reaction wheel. This research shows that a CMG is capable of generating a
virtual spring, damper and mass. The (SP)CMG was optimized to simulate a spring with a spring stiffness of
30.0 Nm/rad. To match this impedance, the (SP)CMG had to use a very low spring stiffness and damping co-
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Figure 5.2: Plot which shows the effect of an changing y on the location of the poles and zeros.

efficient. The spring stiffness comes from the inertia of the system. To create a damping, however, a damper
was needed. A damper coefficient of 5.2 Nm/rad/s was needed to create the impedance of a damper with
damping coefficient of 5.0 Nm/rad/s. This damping, however, does have an effect about another axis than to
which the damper is applied. The angular momentum of the flywheel is needed to realize this coupling. It
was also possible to simulate the impedance of inertia that was higher than the inertia of the actual system.
Reaction wheel can also be used for balance assistance [44]. That the actual stiffness and mass are lower than
the virtual stiffness shows that it is possible to generate a high stiffness or mass with a CMG without a high
stiffness or mass.

5.4. Comparison between CMG and SPCMG

The impedance functions of the CMG and SPCMG are very similar when y = 0, and all the angular velocities
of the human are considered zero. The impedance for the SPCMG is two times the impedance for the CMG.
However, the general impedance, Eq. (2.32) and Eq. (2.20), are very different. Both the CMG and SPCMG
were able to simulate the desired damper between the optimized frequencies. The difference in dynamics
can be seen in the walking simulation plots Fig. 4.6, Fig. 4.7, Fig. 4.13, and Fig. 4.14. From these plots, it
can be seen that the moments generated by the CMG have about two times the magnitude of the moments
generated by the SPCMG. This discrepancy occurs because with a single CMG, w}, contributes much more to
the impedance than with the SPCMG. With the optimizations, w}; was considered zero, while with the walking
simulation it ranged from —1rad/s to 1rad/s. Therefore, during the walking simulation, there are generated
moments that were not accounted for with the optimization. Since w}; does not contribute as much to the
impedance for the SPCMG, the impedance used during the optimization is a much better representation of
the actual dynamics than the impedance for the CMG.

5.5. Optimization in frequency domain

The goal of the optimizations was to find a set of parameters with which a specific impedance could be
achieved. One of the parameters that was optimized was the initial orientation of the flywheel, y*. This
parameter might be redundant since the optimization was performed for one impedance, ZI—U” Therefore,
Y* only has an influence on the angular momentum in the é, direction. The angular momentum can also
be changed by altering the moment of inertia, I,,s. It would, however, be very useful to use y* when the
impedance in multiple directions was optimized. In that case, y* would influence how the angular momen-
tum is divided in each direction. It is also possible to optimize in time domain. In time domain, a specific
desired moment would be given. The parameters would be adjusted to fit the desired moment as closely as
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possible. This is done, for example, in [21].

5.6. Cost function design
The cost function that was used for the optimization was:

C=w(imag(TFyes—imag(TF)))+real(TFges— TF) (5.5)

This cost function was able to perform twenty optimizations in 197.7s. The best resnorm was 2.5 x 107>, It
would have been possible to use a different cost function for the optimization. Another cost function that was
tried can be seen in Eq. (5.6). A potential benefit of this cost function is that the punishment for de distance
above the desired impedance and below the desired impedance is the same.

C= w1 (£LTFges — £LTF) + (In|(T Fges) — (TF)) (5.6)

Performing twenty optimizations with realistic bounds took 790s, which is over 13 minutes. Furthermore,
the resnorm of the best optimization of the cost function from Eq. (5.6) was 1.01 x 10%.

5.7. Parameter Design

When the optimization was successful in finding a set of parameters to simulate the desired impedance, the
parameters are applicable. For example, when the CMG was optimized to simulate a damper, a damper with a
damping coefficient of 5.2 Nm/rad/s is needed. A damper with this damping coefficient can be found and has
amass of 0.522 kg [26]. Furthermore, the flywheel has an inertia of 0.0034 kgm?. Assuming the flywheel has a
mass of 1kg, the flywheel must have a radius of 0.082 m. The inertia of the damper would add to the inertia of
the gimbal. When it is assumed that the damper with the right damping coefficient can be approximated as a
solid cylinder, the approximate moments of inertia are Igs = 2.35 x 10~*kgm? and Igg = 1.66 x 10~*kgm?. This
is only slightly more than the inertia of the gimbal that was found with the optimization. The same damper
can be used to simulate a mass. The main difference is that now also a spring is needed. Springs with a spring
stiffness of 3633.3 Nm/rad are commercially available [14].

5.8. Future Directions

It would be useful to focus more on performing the optimization for multiple impedances to improve on cur-
rent results. This way, a desired behaviour in multiple directions could be obtained. It can also be tried to fit
the (SP)CMG impedance to new impedances. The impedances that were used in this study were arbitrarily
chosen. Other measures of stability could be used. One popular measure of stability is "the maximum Lya-
punov exponent”, see 22, firstly used by Dingwell et al. [8] in the context of gait stability. Other measures of
stability that could be used are, "Foot Placement Estimator” by Millard et al. [28], a measure of stability in
the sagittal plane. Or a similar measure in 3D, by Millard et al. [29]. Also, more complicated design features
could be explored like end stops, which prevent the gimbal from rotating beyond a specific angle. Secondly,
a passive mechanism with magnets could be explored. Magnets can be used to create an anti-spring. These
have already been used to tune the natural frequency in passive-vibration isolators [17]. Anti-springs can also
be used to create a bistable system [17]. The two stable equilibrium points could be used to rotate the gimbal
between the two equilibrium points quickly. Lastly, nonlinear springs and dampers could be implemented in
the design. This will, however, make the impedance optimization harder since the system has to be linearized
to convert it into frequency domain.

Moreover, a prototype could be made. This way, it can be studied how people react to wearing a passively
controlled (SP)CMG. The gait of the wearer will change due to the moments that are applied to the body. It is,
however, also likely that the wearer would adapt to the new moments and therefore, might change their gait
in unexpected ways.






Conclusion

By modelling a CMG and an SPCMG and optimizing their impedance, it was possible to replicate the dy-
namics of a spring, a damper, a mass, and a mass-spring-damper system. It was not possible to replicate
the dynamics of the PDXCoM. When the found parameters were used in a walking simulation, it showed
that the generated moments were in the opposite direction to the angular velocity of the walking person.
This shows that a CMG and an SPCMG could be able to generate stabilizing moments for balance. A CMG
generates higher moments than an SPCMGs when they have the same impedance. However, the moments
generated by the SPCMG are easier to model and therefore, easier to predict than the CMG. This study lays the
groundwork for impedance optimization of (SP)CMGs. Insight is gained in what the influence of the design
parameters is on the behaviour of the (SP)CMG. Furthermore, it should now be easy to match new desired
impedances to the impedance of an (SP)CMG.
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Appendix A

A.1. Written out equations of motion

The equations of motion found for the CMG can be seen in Eq. (A.1). To reduce the lenght of the equations
siny is written as sy and cosYy is written as cy.

cyUgs(cy(@y +ywy) + sy @y = Y0u)) + Lys (€Y @y +YWy) + SY @y = Y0u)) + Igg (Y + 0w) @y €Y — 0ySY)...
—Igt (Y + ww)(@ycy — 0y sy)) — sYUgs(cy (@y — Ywy) = SY(@y + YWy)) + Lyt (€Y @y — YWu) = SY (@y + Y0y))...
+ys(Y +0w)(Q+oycy +wysy) — Igg(Y + 0yw) (@ycy + wysy) + Igs(y + 0w (@ycy + 0y sY)...
=Ty (Y + wy) @y Cy + wysy));
B(H)N = cyUgi(cy(@y —Ywy) = sY(@y +Ywy)) + Ly (€Y (@) = Y0u) = SY @y +Y0) + Lips(Y + 0 ) (Q + @y cy + @y SY)...
—Ige (Y + wy) (@ycy + wysy) + Igs (¥ + 0p) (@ycy + 0y sY) — Lyt (Y + @) (@y €Y + @y $Y)) + Sy Ugs(cy @y + Ywy)...
+sy(@y —ywy)) + Iys(Cy(@y +ywy) + sy(@y —ywu)) + Igg (Y + ww) (@ycy — 0y SY) — Ige (¥ + wy) (@y ¢y — 0y SY));

Ige (¥ + @) + Tyt (¥ + y) — Igs(@ycy + 0y sy) Wy ey — 0y sY) + Igr(@ycy + 0y sy) @y cy — Wy sy)...
+yt(wycy +wysy)(wycy —wysy) — Lys(wycy —wy, sY)(Q+wycy +wySYy)

(A.1)
The equations of motion found for the CMG can be seen in Eq. (A.2).

25y (sY? — 1) = 211y SY* = 2Igg 0y — 2Ig1@y SY? + 21150y (572 = 1)...
—ZIgtw,,ww(syZ =1 +20ysQwy sy +2Igsywy $2y — 2Ig1 YWy S2Y + 211y s YWy, S2 ...
=21 YuS2Y + 21 g0y 01 SY? + 21150y 01 SY* = 2111001 SY%;

By 2Ig5@y (cy* = 1) =211 @y CY* = 2Ig10yCY* + 2150y (y* = 1)....
2]y + 211y, (cy? — 1) = 21,5 7Qcy — 215 YW, 52y ..
+2Igywys2y —21ysywys2y + Zth}'fa)USZ)/—ZIgswuwwcyz —leswuwwcyz +21wtwuwwcy2;

2yok — 21,17 — 2bY — 2Igg¥ — 27 — Igsw? s2Y + Lg% 82y + Igs00% 2y ...
—Ig 1% 52y — Lysw? 52y + 111 %, 82y + Lysw? s2y — Ly, w3 s2y +21,,sQu ¢y

(A.2)

A.2. Lagrange approach for a single CMG in the body-fixed Frame

To check if the equations of motion are correct, also the Lagrange method was used to compute the equations
of motion. For the generalized coordinates, y was used. The kinetic energy used for the this method was:

T=

N | =

((Qgs +78g +9 R Bwpn) 1w (Qgs +78¢ +9 REwsN) + (78 +9 R Bwpin) T (78 +9 R(y)gwgw))
(A.3)
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The potential energy used was:

1
V=2 (ky - Y0)) (A4)
The Lagrangian, L, of the system is:
L=T-V (A.5)
The non conservative generalized forces will be in Q:
Q=-by (A.6)
To compute the equations of motion the following equation was used:
d(aL)_aL_Q A7)
dt oy’ oy ’

This can be solved for g which leads to:

¥==[by—k(yo—7) +@wlgg + Iiyt) — Igs(wy cOSY + wy Siny) (wy COSY — wy Siny) + Igs (W, COSY + wy siny)
(wycosy —wysiny) + Iy (wy, cosy + w, siny) (@, cosy —wy siny) — I, s(w, cosy —w, siny)
(Q+wycosy+wysiny)l/(gg+ L)
(A.8)
Which is the same as Eq. (2.11)

A.3. Lagrange approach for scissored pair gyro

To generate the Lagrange equations of motion, one generalized coordinate was used, g = y. The kinetic
energy,T, of the system are defined as:

T1= 5 ((Qgs + 785 + Rgwsin) T Qg+ 7gg +9 Riwp ) + (78 +5 Rpwisin) Ty (85 +° Rgwss )
T2 =5 ((Qgs—78¢ +9* REwp ) 1 (Q8s — V8¢ +92 REwp n) + (—78g +92 REwp /) TTg (-7 85 +92 REwp 1))
T=T1+T2

(A.9)

Where T1is the kinetic energy of the first CMG respectively and T2, is the kinetic energy of the second CMG

respectively. The potential energy is twice the potential energy of a single CMG, which was given in Eq. (A.4).

The Lagrangian of the system is then is done in the same manner as Eq. (A.5). There are no external forces
applied to the system so Q consists only of non conservative forces, which are only the two dampers.

Q=-2by (A.10)
To compute the equations of motion, equation Eq. (A.7) was used. When this is solved for ¢, this results in:
¥ = =[2by = 2(yo — V) k + Igsw% sin(2y) — Ig;w% sin(2y) — Igsw? sin(2y)

+Ig;w% sin(2y) + Iysw?, sin(2y) — Iy;0% sin(2y) — Iysw? sin(2y) (A.11)
+1w% sin(2y) + 21,,sQy sin(y)]/ [2(Igg + Lv/)]

Which is equivalent to Eq. (2.27).

A.4. Numerical differentiation

Numerical differentiation was used to validate B(H)s. To do this, first Y H had to be transformed to the
natural frame. This was done by first transforming it to the body fixed frame and then to the natural frame.
The rotation matrix from the gimbal fixed frame to the body fixed frame is explained in Section 2.1. The
rotation matrix from the body fixed frame to the natural frame is:

1 0 0 cos@ 0 sinf cosy siny O
Ry=| 0 cos¢ —-sing |, Rg= 0 1 0 , Ry= —-siny cosy 0 |, (A.12)

0 sin¢g sin¢g —sinf 0 cosf 0 0 1
MRy =RyRoRy, (A.13)
This leads to:
Nu =V RERZH (A.14)

Next, values are given to all the variables and the difference between the time step is taken. This difference
should now equal 2 (H) 5 when it is rotated to \. The plot of both can be seen in
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Appendix B

B.1. Impedance of a Single CMG
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B.4. Transmissability of Scissored Pair Gyros
The transmissability describes the response of y with a perturbation
l _ — (1); Sin(zy*)(]37]I)+IWSQSin(Y*) (B 22)
Wy~ ktbst+Jgs2+Is—Jiwp? cos2y* +(Ji—J5)wy? cos2y* +1ysQu}, cosy* :
T o wy sin(2y*)Us—J) (B.23)
Wy " ktbs+]gst+]—Jiwi? cos2y* +(Ji—J)w}? cos2y* +1,ysQui; cosy* :
Fa
Ww

(B.24)






Appendix C

C.1. Frequency Response of a Single CMG with realistic parameters
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Figure C.1: Frequency response of a CMG when it was optimized to simulate a spring.
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Figure C.2: Frequency response of a CMG when it was optimized to simulate a damper.
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Figure C.3: Frequency response of a CMG when it was optimized to simulate a mass.
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Figure C.4: Frequency response of a CMG when it was optimized to simulate a mass spring damper system.
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Figure C.5: Frequency response of a CMG when it was optimized to simulate the XCoM.
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C.2. Frequency Response of a SPCMG with realistic parameters
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Figure C.6: Frequency response of a SPCMG when it was optimized to simulate a spring.
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Figure C.7: Frequency response of a SPCMG when it was optimized to simulate a damper.
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Figure C.8: Frequency response of a SPCMG when it was optimized to simulate a mass.
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Figure C.9: Frequency response of a SPCMG when it was optimized to simulate a mass spring damper system.
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Appendix D

D.1. Time Response CMG

D.1.1. Spring
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Figure D.1: Time response of a single CMG when optimized for a spring without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.2: Time response of a single CMG when optimized for a spring without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2m/s
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Figure D.3: Time response of a single CMG when optimized for a damper without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.4: Time response of a single CMG when optimized for a damper without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2m/s
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Figure D.5: Time response of a single CMG when optimized for a mass without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.6: Time response of a single CMG when optimized for a mass without bounds. The walking speed was a self selected fast walking
speed between 1.9 - 2.2m/s

D.1.4. Mass Spring Damper
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Figure D.7: Time response of a single CMG when optimized for a mass spring damper system without bounds. The walking speed was
between 0 - 0.4m/s
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Figure D.8: Time response of a single CMG when optimized for a mass spring damper system without bounds. The walking speed was a
self selected fast walking speed between 1.9 - 2.2m/s
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Figure D.9: Time response of a single CMG when optimized for PDXCoM without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.10: Time response of a single CMG when optimized for PDXCoM without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2m/s

D.2. CMG with realistic parameters
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Figure D.11: Time response of a single CMG when optimized for a spring with realistic bounds. The walking speed was between 0 -
0.4m/s
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Figure D.12: Time response of a single CMG when optimized for a spring with realistic bounds. The walking speed a self selected fast

speed between 1.9 - 2.2m/s
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Figure D.13: Time response of a single CMG when optimized for a Damper with realistic bounds. The walking speed was between 0 -

0.4m/s
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Figure D.14: Time response of a single CMG when optimized for a Damper with realistic bounds. The walking speed a self selected fast

speed between 1.9 - 2.2m/s
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Figure D.15: Time response of a single CMG when optimized for a mass with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.16: Time response of a single CMG when optimized for a mass with realistic bounds. The walking speed a self selected fast
speed between 1.9 - 2.2m/s

D.2.4. Mass Spring Damper
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Figure D.17: Time response of a single CMG when optimized for a mass spring damper system with realistic bounds. The walking speed
was between 0 - 0.4 m/s
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Figure D.18: Time response of a single CMG when optimized for a mass spring damper system with realistic bounds. The walking speed
a self selected fast speed between 1.9 - 2.2m/s
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Figure D.19: Time response of a single CMG when optimized for the PDXCoM system with realistic bounds. The walking speed was
between 0 - 0.4m/s
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Figure D.20: Time response of a single CMG when optimized for the PDXCoM system with realistic bounds. The walking speed a self
selected fast speed between 1.9 - 2.2m/s

D.3. SPCMG without bounds

D.3.1. Mass

Moment in Nm

7 in rad

10+

- o
T T T T T

VT T T

2

2.5 3
Time in s

Figure D.21: Time response of a single SPCMG when optimized for a spring without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.22: Time response of a single SPCMG when optimized for a spring without bounds. The walking speed was a self selected fast

walking speed between 1.9 - 2.2m/s
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Figure D.23: Time response of a single SPCMG when optimized for a damper without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.24: Time response of a single SPCMG when optimized for a damper without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2m/s
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Figure D.25: Time response of a single SPCMG when optimized for a mass without bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.26: Time response of a single SPCMG when optimized for a mass without bounds. The walking speed was a self selected fast
walking speed between 1.9 - 2.2m/s

D.3.4. Mass Spring Damper
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Figure D.27: Time response of a single SPCMG when optimized for a mass spring damper system without bounds. The walking speed
was between 0 - 0.4 m/s
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Figure D.28: Time response of a single SPCMG when optimized for a mass spring damper system without bounds. The walking speed
was a self selected fast walking speed between 1.9 - 2.2m/s
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Figure D.29: Time response of a single SPCMG when optimized for the PDXCoM system without bounds. The walking speed was between
0-0.4m/s
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Figure D.30: Time response of a single SPCMG when optimized for the PDXCoM system without bounds. The walking speed was a self

selected fast walking speed between 1.9 - 2.2m/s

D.4. SPCMG with realistic bounds
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Figure D.31: Time response of a SPCMG when optimized for a spring with realistic bounds. The walking speed was between 0 - 0.4m/s
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Figure D.32: Time response of a SPCMG when optimized for a spring with realistic bounds. The walking speed a self selected fast speed
between 1.9 - 2.2m/s
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Figure D.33: Time response of a SPCMG when optimized for a damper with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.34: Time response of a SPCMG when optimized for a damper with realistic bounds. The walking speed a self selected fast speed

between 1.9 - 2.2m/s
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Figure D.35: Time response of a SPCMG when optimized for a mass with realistic bounds. The walking speed was between 0 - 0.4 m/s
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Figure D.36: Time response of a SPCMG when optimized for a mass with realistic bounds. The walking speed a self selected fast speed
between 1.9 - 2.2m/s
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Figure D.37: Time response of a SPCMG when optimized for a mass spring damper system with realistic bounds. The walking speed was
between 0 - 0.4m/s
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Figure D.38: Time response of a SPCMG when optimized for a mass spring damper system with realistic bounds. The walking speed a
self selected fast speed between 1.9 - 2.2m/s

D.4.5. PDXCoM

5]
©w

>-aa

Moment in Nm

~r

Angular Velocity in rad/sAngular Acceleration in rad/s?

3.119387
£ 3.1193868
2 3.1193866

= 3.1193864
3.1193862
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Appendix E

Matlab notation

Table E.1: Matlab notation list

Symbol Matlab name
é5,8,8; es, et, eg
BRrg bRg
Awpg | wbg a
91,91 g Iwheel_g, Igimbal_g
9H,,9H, ¢ | Hwheel_g, Hgimbal_g
) B/N)c | dwbn_c_a
Y7 ¥ gamma, dgamma, ddgamma
Q omega
A(H,)p | dHwheel b_a
AH,) A~ | dHwheel N_a

E.1. Main File: Single CMG

% This script is made by Roemer Helwig for his master thesis. It generates
% the equations of motion of a single CMG the impedance of the QVIG.

% Furhtermore, it can optimize the impedance to mimic an arbitrary transfer
% function. With the optimized parameters it can then compute the time

% response.

% Roemer Helwig, 11-12-2019

addpath ('Necessary_functions’)

clear
close all

% % Bode options
PP bodeoptions;
PP.PhaseWrapping = 'on’;

PP.FreqUnits = 'Hz’;
PP .XLim = [le-3 le4];
PP. Grid = 'on’;

TS S S S S SIS ST TS ST ST ST SIS TSI SIS TSI SIS TSI TSI o
%% Newton—Euler Equations of Motion
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B T e s s T s A A I T e A A A A A L T A B L LT

% Generate symbolic variables

syms omega domega gamma m r dgamma ddgamma k g t time r b Mu MvMw Js Jt Jg w phi

theta psi

syms ws wt wg dwbn dws dwt dwg Igs Igt Igg Iws Iwt Iwg Ms Mt Mg s gamma0 wu wv ww

dwu dwv dww wuS wvS wwS gammaS
disp ('EoM via Newton—-Euler... ')

% Unit vectors of the gimbal fixed frame
es = [1; 0; 0];
et [0; 1; 0];
eg = [ 0; 0;1];

% projection of the gimbal fixed frame on the body fixed frame

eu = [cos(—gamma); sin(-gamma); 0];

ev = [—sin(—gamma) ; cos(—gamma); 0];
ew = [0; 0; 1];
gRb= [eu ev ew]; % Rotation matrix from body to gimbal fixed frame

bRg= transpose (gRb); % Rotation matrix from

% Angular velocities in the gimbal frame

wbg g = [0 ; 0; —dgammal];
wwg g [omega; 0; 0];

wgb_g [0;0;dgammal];

% Angular velocities in the body frame
wbn b = [wu;wv;ww];
wbg b = bRg+wbg g;

wgn_b = wbn_b-wbg b;
wbn_g = gRb*wbn_b;
wgn_g = gRbxwgn b;

% Moment of inertia tensor in Gimbal frame
Iwheel g = diag([Iws;Iwt;Iwt]);
Igimbal_g = diag([Igs;Igt;Iggl);

% Angular momentum in gimbal frame

gimbal to body fixed frame

Hwheel_g = Iwheel_g*(wwg g + wgb_g + wbn_g);

Hgimbal g = Igimbal _g=(wgb_g + wbn_g);

% Angular acceleration of the body frame wrt the natural frame expressed in

% the body frame
dwbn_b_b = [dwu; dwv; dww];

% Angular acceleration of the gimbal frame wrt the natural frame expressed in

% the body frame
dwbn_g b = dwbn_b_b + cross(wbg b,wbn_b);

% Angular accelerations in the gimbal frame
dwbn_g g = gRbxdwbn_g b;
dwwg g g = [domega;0;0];
dwgb_ g g [0;0;ddgamma];
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domega = 0;

% Take the time derivative with respect to the G frame
dHwheel g g = Iwheel_g+(dwgb_g g + dwbn_g g);
dHgimbal g g = Igimbal_g=(dwgb_g g + dwbn_g g);

% Use transport theorem to calculate derivatives with respect to N frame
dHwheel N_g = dHwheel g g + cross(wgn_g,Hwheel _g);

dHgimbal N_g = dHgimbal g g + cross(wgn_g,Hgimbal g);

dH_g = dHwheel N_g + dHgimbal N_g;

dH N b = simplify (bRg+xdH_g) ;

% Moment due to bearings, spring and dampers
Mpassive = [0; 0; 0-b=*(dgamma)—k*(gamma-gamma0) ];
Mb = dH_N_b — Mpassive;

MBODY = —M b;

% equation of motion in body frame

[I_b, Mom b] = equationsToMatrix (MBODY(3) == 0,ddgamma) ;
[I2_b, Mom2 b] = equationsToMatrix (MBODY == 0, ddgamma) ;
ddgamma_eq = simplify (I_b\Mom b) ;

%% Validation

% Rotation Matrices to go to Natural frame

rotphi = [1 0 0;0 cos(phi) —sin(phi);0 sin(phi) cos(phi)];

rottheta = [cos(theta) 0 sin(theta);0 1 0;—sin(theta) 0 cos(theta)];
rotpsi = [cos(psi) sin(psi) 0;—sin(psi) cos(psi) 0;0 0 1];

% Change to natural frame
Hwheel N = rotphi*rottheta*rotpsi+*bRg+(Hwheel_g);
dHwheel N = rotphi*rottheta*rotpsi+bRg+dHwheel N_g;

% Validation (Hwheel N, dHwheel N) ;
S S S S S T S T S T S ST ST ST o

%% Lagrange Equations of Motion
B SIS S SIS SIS SIS SIS SIS SIS SIS SIS SIS SIS STII o

disp ('EoM via Lagrange... )
q = gamma;
dq = dgamma;

ddq = ddgamma;

% Kinetecs and Potential Engeries

T = 0.5 * ((omegaxes + dgammaxeg + gRbx*wbn b).’ s Iwheel g * (omegaxes + dgammaxzeg +

gRb*wbn_b) + (+dgammaxeg + gRbx*wbn_b).’+ Igimbal_g * (+dgammaxeg + gRbswbn_b));

V = 0.5 = (k * (gamma-gamma0) A2);
% Lagrangian
L = T-V;

% Partial Derivatives
dLdq = jacobian(L,q);
dLdqd jacobian(L,dq);
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1w ddtdLdqd = jacobian(dLdqd,[q; dq; wbn_b]) *[dq; ddq; dwbn_g b]l;

132

13 % Non conservative forces

1 Qnc = —bxdgamma;

135

w L_eq = simplify(ddtdLdqd — dLdq.’ — Qnc);

137

s [Inertia ,Moment] = equationsToMatrix(L_eq == 0, ddq);

1 ddq_eq = simplify(Inertia\Moment);

140

1 S S S S S S S SIS SIS SIS SIS SIS0
uz %% Check if Newton—-Euler and Lagrange are equivalent

s SIS S SIS TSI S TS I TSI S TSI IS TSI ST TSV ST TSI TS TSI TS T TSI TSI
w  Error = simplify (ddgamma_ eq — ddq_eq);

145

146

147

148 if Error == 0

149 disp ('Newton—Euler and Lagrange are equivalent’)

150 else

151 error ('Formulations are not equivalent. Please check definitions’)
152 end

153

154 Igt = IgS;

155 Momb = subs(Momb) ;

158 SIS SIS SIS SIS SIS SIS TSI TSI TSI STI TSI o

157 %% Compute General Transfer functions of the system

158 SIS S S S S S SIS TS SIS SIS SIS

159

1w CompAllTFs = yes_or_no (’'Compute all the Transfer Functions?’); % function by Daniel
Lemus

161

ez 1f (CompAllTFs)

s % Uncomment following lines to insert values to the impedance

w k= 5;
w b = 1;
w6 Iws = 4.4e—4;

w Iwt = 2.5e—4;

168 IgS = 8.8e—4;

169 Igg = 5.0e—4;

1w omega = 2513;

171

2 %linearize for different gammas

173 gammatemp = [0;pi/6;pi/3;pi/2];

174

s % optional to use different spring stiffness or damping

s ktemp = [0.001;1;100;];

w7 btemp = [0.001;1;1001;

m % linearize for specific anglar velocity of the human

179 wbn_bO = [0,0,0],

180

181

w2 for i = 1:length (gammatemp)

183 gammaS = gammatemp (i) ;

184 A H = linearization(—dH_N_b, [ddgamma;dgamma;gamma;wbn_b;dwbn_b_b] ,gammaS, wbn_b0)
; % Linearization of the Moments
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%

%
%
%
%
%

end

dH_lin = A _H=*[ddgamma;dgamma;gamma-gammaS; wbn_b-wbn_b0;dwbn_b_b];

ddgamma = simplify (inv(I_b)*Momb); % recalculate ddgamma

[A_ gamma] = linearization (ddgamma, [dgamma;gamma;wbn_b;dwbn_b_b] ,gammaS, wbn_b0) ;
% Linearization of ddgamma

ddgamma_lin = A gammax[dgamma;gamma;wbn_b;dwbn_b_b];

% Take the Laplace transforms
dgamma = s*gamma;

ddgamma = sA2xgamma;

dwu = s=*wu;

dwv = sxwv;

dww = ssww;

gamma = simplify (solve (subs(ddgamma_lin) — sA2+gamma == 0,gamma)); % solve for
gamma

sdH = simplify (subs(subs(dH_lin))); % Fill in the Laplace transforms in the
Linearized moments

AA = linearization (sdH,wbn_b,[] ,wbn_b0); % Reduce so that equations are only
dependant on wbn

dH_reduced = AA * wbn_b;

eql = dH_reduced — [Mu;Mv;Mw]; % Make equation: terms — M = 0
% Compute transfer functions
Gsuu = comptf(eql,wu,1,Muy,1); Gsvu

comptf(eql,wu,1,Mv,2); Gswu = comptf(eql,

wu, 1,Mw; 3) ;

Gsuv = comptf(eql,wv,2 ,Mu,1); Gsvv = comptf(eql,wv,2 ,Mv,2); Gswv = comptf(eql,
wv,2 ,Mw;3) ;

Gsuw = comptf(eql,ww,3 ,Mu,1); Gsvw = comptf(eql,ww,3,Mv,2); Gsww = comptf(eql,
ww, 3 ,Mw; 3) ;

Gs = syms2tf(subs(Gsvv));

Gs.InputName = '\omega_ v’;
Gs. OutputName = 'Mv’;

G = bodeplot (Gs,PP);

hold on

grid on

clear gamma dgamma ddgamma dws dwt dwg
syms gamma dgamma ddgamma

Compute Transmisability

eq2 = gamma2 — gamma;

Hl = comptf(eq2,wu,1 ,gamma,1) ;
H2 comptf(eq2,wv,2 ,gamma, 1) ;
H3 = comptf(eq2,ww,3 ,gamma, 1) ;
Hs = [H1 H2 H3];

% Uncomment following lines to plot the impedance
legend (num2str (gammatemp) )

fh = gcf;

Ih = findall (fh, 'Type’, Line’);

arrayfun (@(x) set(x, LineWidth’,2),lh)

leg = legend (’show’);

title (leg, "\gamma’)
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end

B B B B e e e e B R R R R e e e e e e B e B L B L B B Ao Ao o e e L L LS
%% Load Optimal Parameters
ST S ST ST SIS ST IS I TSI IS TSI SIS TS TS TSI TSI STIT o
LoadPar = yes_or_no(’'Load the best paramters?’);

if (LoadPar)

close all

num_opt = 100;

n_par = 5;

X = zeros(n_par,num_opt) ;
resnorm = ones(1l,num_opt)* 1lel0;
x0 = zeros(n_par,num_opt);

for j = l:num_opt

parameter(j) = load ([ opt_parameter_’ num2str(j) '.mat’],’x’, ’resnorm’, ' Gs’,’x0");
x(:,j) = parameter(j).x;
resnorm(j) = parameter(j).resnorm;
Gs(:,j) = parameter(j).Gs;
x0(:,j) = parameter(j).x0;
end
% Find the best parameters, Gs and initial guess
[~, col] = find (min(resnorm) == resnorm) ;

col = min(col);

x_best = x(:,col);

Gs = Gs(:,col);

x0 = x0(:,col);

% k = x_best(1); b = x_best(2); Iws = x_best(3); Iwt
Igt = Igs; Igg = x_best(6); gammaS = x_best(7);

% k = x_best(1); b = x_best(2); Iws = x_best(3); Igg
= 1/2+Igg; Igt = Igs; gammaS = x_best(5);

x_best(5);

x_best(4); Igs

x_best(4); Iwt

1/2+Iws; Igs

omega = 2500; k = 0.001; b = 50; Iws = 0.01; Iwt = 4; Igs = 0.1; Igg = 0.3; gammaS =
0;

gammal = gammasS;
sortRes = sort(resnorm, 'descend’);

% Create desired transfer function
kp = 100;

kd = 32;

Jdes = 0.5; bdes = 5; kdes= 30;

% TFdes = syms2tf(+(kp+kd=s)/s);
TFdes = syms2tf(—(kdes)/s);

% Find poles, zeros, damping and natural frequency
[wn, zeta] = damp(Gs);

Gpole = pole(Gs);

Gzero = zero (Gs)

wuS = 0; wvS = 0; wwS = 0;
omega = 1500;
Gswlemp = syms2tf(subs(Gsvv));
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% Make bode plot of the optimized impedance and the desired transfer

% function
BodeGraph (GsvvTemp, TFdes)
% Make plot of the resnorm

% figure ()
% semilogy (sortRes, 'mo’ ,...

% "LineWidth’ ,2,...

% "MarkerEdgeColor’, 'k’ , ...

% "MarkerFaceColor’,[.49 1 .63],...
% "MarkerSize’,10)

% title (' Optimizations Sorted by Resnorm’)

% ylabel ('resnorm’)
% xlabel (’Number of Iterations’)

end

B s T T e I B e e B e T B A s e B B s A A A B B L T B B L LT

%% Optimization of the Transfer Functions

B s e e s e T s L T e s A I I A A A I A L LT

if LoadPar ==

OptTF = yes_or_no (’'Optimize the Transfer Function?’); % function by Daniel Lemus

if (OptTF)

% Fill in unoptimizable parameters
Igt = Igs;

Igs = 1/2+1gg;

Iwt = 1/2xIws;

wuS = 0; wvS = 0; wwS = 0;

omega = 1500;

% Create desired transfer function
kp = 100;

kd = 32;

Jdes = 0.5; bdes = 5; kdes= 30;

% Weights for the Cost function

wl = 100; %best 100

w2 = 1;

% Parameters that will be optimized
par = [k b Iws Igg gammaS];

% Create frequency vector in Hz
wHz = logspace(—-2,1,2e2);

% Create frequency vector in rad/s
w = wHz+2+pi;

num_opt = 100;

TFdes = —(Jdes*s~2 + bdesxs + kdes)/s;
% TFdes= +(kp+kd=s)/s;

s = 1j*w;

substitude s for jw
Gsn = subs(subs(Gsvv));
TFdesl = subs(subs(TFdes));

%
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Cl = wlx(imag(TFdes1-Gsn)) ; % Phase
part of costfunction

C2 = w2+(real (TFdes1-Gsn) ) ; %
Magnitude part of costfunction

C = Cl1+C2;

errorfun = matlabFunction(C, 'Vars’ ,{par});

for j = l:num_opt

[x,resnorm,Gs,~,x0] = optimization (Gsvv,TFdes, errorfun);

save ([ 'RP_MSD_opt_parameter_’ num2str(j) '.mat’], 'x’, 'resnorm’, ' Gs’, x0")
end

clear s

syms s

load gong.mat;
sound (y, Fs) ;

else

% k = 1.20; b = 8.13; omega = 2.513e+03; Iws = 0.1238; Iwt = 0.0116; Igg = 0.153;
gammaS = 0; gamma0 = gammaS; Igs = 0.001; Igt = 0.001;

end

end

B T B A T B B B A B e s A A B A e R A B A B e A A A A e B A A L A L B L L Lo
%% Fill in Parameters and compute Frequency response

S SIS TSI STSIT TSI o
if (CompAllTFs)

SubsTF = yes_or_no(’Fill in parameters in TFs and compute Freq Response?’);

% Compute all transfer functions
if (SubsTF)
wuS = 0.1; wvS = 0.1; wwS = 0.1;

Gsuu = zpk(syms2tf(subs(Gsuu))); Gsvu = zpk(syms2tf(subs(Gsvu))); Gswu = zpk(
syms2tf (subs (Gswu) ) ) ;

Gsuv = zpk(syms2tf(subs(Gsuv))); Gsvv = zpk(syms2tf(subs(Gsvv))); Gswv = zpk(
syms2tf (subs (Gswv) ) ) ;

Gsuw = zpk(syms2tf(subs(Gsuw))); Gsvw = zpk(syms2tf(subs (Gsvw))); Gsww = zpk(

syms2tf (subs (Gsww) ) ) ;

Gstot = [Gsuu Gsvu Gswu;Gsuv Gsvv Gswv; Gsuw Gsvw Gsww];

Gstot.InputName = 'Moment’ ;
Gstot . OutputName = ’omega’;
figure ()

bodeP = bodeplot(Gstot,PP);

p=getoptions (bodeP) ;

% p.Ylim{1l}= [-10 100]; %Setting the y—axis limits
% p.Ylim{2}= [-10 100]; %Setting the y—axis limits
% p.Ylim{3}= [-10 100]; %Setting the y—axis limits
setoptions (bodeP,p); %update your plot

fh = gcf;
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lh = findall (th, 'Type’, 'Line’);

arrayfun (@(x) set(x, LineWidth’,1.5),lh)
end

end

B s T e e s T s A L e A A A I A A A I A LT

%% Comp Time Response from Gait Data

B T T e A B B B e e B A L e I B A A e e B A A L A A B s L L BB B L LT

CompTimeResp = yes_or_no(’'Compute time response from gait data?’);

if (CompTimeResp)

close all

clear s dwu dwv dww gamma dgamma ddgamma wu wv ww
syms dwu dwv dww gamma dgamma ddgamma t time wu wv ww

FrameRate = 100; % per second

h = 1/FrameRate; % time step

h2 = 0.01+h; % time step for interpolation
omega = 1500;

ddgamma_eq = subs(ddgamma eq) ;

M_b_opt = subs (subs (MBODY) ) ;

Condition = 5; % Select which walking condition to use for input. Range from 1 to 5.

% Load gait data
addpath ('Matlab Motion Data’)

AngVel = load ([ "AngVel’ num2str (Condition) ’.txt’]);
AngAcc_temp = load ([ 'AngAcc’ num2str (Condition) ’.txt’]);
AngAcc = zeros(length (AngVel) ,3);

AngAcc(2:end—1,:) = AngAcc_temp;

TrunkRot = wrapTo360(load ([ 'TrunkRot’ num2str(Condition) '.txt’]));

EventData = xlIsread ([ 'Events’ num2str(Condition) ’.xlsx’]);

[LFO, LFS,RFO, RFS, TimePoint] = RecEvent(EventData) ;
et = (0:length (AngVel) —-1) '+h;

% Create function of the gait data
omega_func = @(t_i) interpl(et,AngVel,t_i);

wv_func = @(t_i) interpl(et,AngVel(:,2),t_i);
wu_func = @(t_i) interpl(et,AngVel(:,1),t_i);
dww_func = @(t_i) interpl(et,AngAcc(:,3),t_i);

% Create function of the moments and ddgamma
Mcmg b = matlabFunction (M_b_opt, 'file ', 'Mcmg b’ ) ;

ddgamma_fun_b = matlabFunction ([ddgamma_eq], ' file ', 'ddgamma fun b’);

% % Create function handle and use odel5s for numerical integration
% ddgamma_func = @(t,y) ddgamma_fun b(y(2) ,dww_func(t) ,y(1) ,wu_func(t) ,wv_func(t));

% [t,y] = odel5s(ddgamma_func,[0 3],[0 1]);
wul = AngVel(:,1);

dwul
dwvl

AngAcc(:,1);
AngAcc(:,2);
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dwwl

AngAcc(:,3);

Time = length (wul) =h;

% Interpolate to improve integration

wul = interpl (0:h:(Time-h) ,wul,0:h2:(Time-h2), PCHIP ) ;

wvl = AngVel (:,2);

wvl = interpl (0:h:(Time-h) ,wvl,0:h2:(Time-h2) , 'PCHIP);

wwl = AngVel (:,3);

wwl = interpl (0:h:(Time-h) ,wwl,0:h2:(Time-h2) , 'PCHIP ) ;

dwul = interpl (0:h:(Time-h) ,dwul,0:h2:(Time-h2), PCHIP ) ;
dwvl = interpl (0:h:(Time-h) ,dwvl,0:h2:(Time-h2) , 'PCHIP);
dwwl = interpl (0:h:(Time-h) ,dwwl,0:h2:(Time-h2), 'PCHIP’);
TrunkRot = interpl (0:h:(Time) ,TrunkRot,0:h2:(Time) , 'PCHIP ) ;

% Create initial conditions

W =
dw
wu

zeros (3,length (wul)) ;
= zeros(3,length (wul));
= wul(1,1); wv = wvl(1,1); ww = wwl(1,1);

dwu= dwul(1,1); dwv= dwvl(1,1); dww= dwwl(1,1);
ddgammal = zeros(1l,length(wul)); dgammal = zeros(l,length(wul)); gammal = zeros

(1,length (wul));

gamma = gammasS;

dgamma = 0;

initial_conditions = [wu;wv;ww;gamma;dgammal];
M_b_optl = zeros(3,length (wul));

ddgammal(1,1) = ddgamma_fun_b (dgamma, dww, gamma, wu, wv) ;

ddgamma = ddgammal(1,1);

M_b_optl(1:3,1) = Mcmg b(ddgamma, dgamma, dwu, dwv, dww, gamma, wu, wv,ww) ;
gammal (1,1) = gamma;

dgammal(1,1) = dgamma;

% Numerical integration

for

%
%
end

i = 2:length (wvl)

nC = rotx ((TrunkRot(i,1)))*roty ((TrunkRot(i,2)))=*rotz ((TrunkRot(i,3)+pi/2));
w(l:3,i) = nCx[wul(i);wvl(i);wwl(i)];

dw(1:3,i) = nCx[dwul(i);dwvl(i);dwwl(i)];

wu = w(l,i); wv = w(2,1i); ww = w(3,i);

dwu= dw(1,i); dwv= dw(2,1i); dww= dw(3,1);

ddgammal (i) = ddgamma_fun_b (dgamma, dww, gamma, wu, wv) ;

ddgamma = ddgammal (i) ;

dgammal (i) = dgammal(i—-1) + double(ddgammal (i) *h2);

dgamma = dgammal (i) ;

gammal (i) = gammal(i—-1) + double (dgammal(i)+h2 + 0.5*ddgamma*h2/2);
gamma = gammal (i) ;

M_b_optl (:,i) = Mcmg b(ddgamma,dgamma, dwu, dwv,dww, gamma, wu, wv,ww) ;

if isnan(ddgamma) == 1
error ('decrease time step’)
end
controle (i) = dgamma+wg;
check(i) = Mt/controle (i);
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% Plot Generated Moments Due Walking %
GaitEvent = [LFO,LFS,RFO,RFS];

FirstEvent = find (GaitEvent(1,:) == 0);

if FirstEvent ==
Tagl = 'LFO’;
Tag2 = 'LES’;
Tag3 = 'RFO’;
Tagd = 'RFS’;

elseif FirstEvent ==
Tagl = 'LES’;
Tag2 = 'RFO’;
Tag3 = 'RFS’;
Tagd = 'LFO’;

elseif FirstEvent ==
Tagl = 'RFO’;
Tag2 = 'RFS’;
Tag3 = 'LFO’;
Tagd = 'LFS’;

elseif FirstEvent ==
Tagl = 'RES’;
Tag2 = 'LFO’;
Tag3 = 'LES’;
Tagd = 'RFO’;

end

Tagb = Tagl;

Tagb6 = Tag2;

Tag7 = Tag3;

if TimePoint(1) < 0.1
Tagl =~ 7 ;

end

figure ()

subplot(4,1,1)

plot (0:h2:(Time-h2) ,M_b_optl (1,:), Linewidth’,2, Linestyle’, =)

hold on

plot (0:h2:(Time-h2) ,M_b_optl (2,:), Linewidth’,2, Linestyle’, —.")
plot (0:h2:(Time-h2) ,M_b_optl (3,:), 'Linewidth’,2, Linestyle’, :")

ylabel ('Moment in Nm’)

xlim ([0.1 Time(end)])

ylim ([min(M_b_optl (:) ) max(M_b_optl (:))])

vline (TimePoint (1), 'k’);

text (TimePoint (1) ,max(M_b_optl (:)) ,Tagl, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint (2) , 'k’);

text (TimePoint(2) ,max(M_b_optl (:) ) ,Tag2, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, 'FontSize’,11)

vline (TimePoint (3), 'k’);

text (TimePoint (3) ,max(M_b_optl (:)) ,Tag3, 'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint(4) , 'k’);

text (TimePoint(4) ,max(M_b_optl (:)) ,Tagd, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’ ,11)

vline (TimePoint (5) , 'k’);

text (TimePoint(5) ,max(M_b_optl (:) ) ,Tags, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

)

)

)

)

)

"center’,

"center’,

"center’,

"center’,

"center’,

’

)

’

’

’
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vline (TimePoint (6) , 'k’);

text (TimePoint(6) ,max(M_b_optl (:) ) ,Tag6, 'HorizontalAlignment’, center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint (7), 'k’);

text (TimePoint(7) ,max(M_b_optl (:)) ,Tag7, ’'HorizontalAlignment’, center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

legend ('$M_u$’ , '$M_v$’ , '$M_w$’, 'Location’, 'best’);

’

)

subplot(4,1,2)

plot (0:h2:(Time-h2) ,ddgammal, 'Linewidth’,1.5);
ylabel (’$\ddot{\gamma}$ in rad/s$/{2}$")

xlim ([0.1 Time(end)])

ylim ([mean (ddgammal) —2.3+std (ddgammal) mean(ddgammal) +2.3+*std (ddgammal) ])
vline (TimePoint (1), 'k’);

vline (TimePoint (2), 'k’);

vline (TimePoint (3), 'k’);

vline (TimePoint (4) , 'k’);

vline (TimePoint(5) , 'k’);

vline (TimePoint (6) , 'k’);

vline (TimePoint (7), 'k’);

subplot(4,1,3)

plot (0:h2:(Time-h2) ,dgammal, 'Linewidth’,1.5);
ylabel ('$\dot{\gamma}$ in rad/s’)

% ylim ([mean (dgammal) —1.5+std (dgammal) mean(dgammal) +1.5+std (dgammal) ])
xlim ([0.1 Time(end)])

ylim ([min (dgammal (:) ) max(dgammal (:) ) ])

vline (TimePoint (1), 'k’);

vline (TimePoint(2) , 'k’);

vline (TimePoint(3), 'k’);

vline (TimePoint (4) , 'k’);

vline (TimePoint (5) , 'k’);

vline (TimePoint (6) , 'k’);

vline (TimePoint(7) , 'k’);

subplot(4,1,4)

plot (0:h2:(Time-h2) ,gammal, 'Linewidth’,2);
ylabel ('${\gamma}$ in rad’)

xlabel ('Time in s’)

xlim ([0.1 Time(end)])

ylim ([min (gammal (:) ) max(gammal (:))])
vline (TimePoint (1), 'k’);

vline (TimePoint (2) , 'k’);

vline (TimePoint (3), 'k’);

vline (TimePoint(4) , 'k’);

vline (TimePoint (5) , 'k’);

vline (TimePoint (6) , 'k’) ;

vline (TimePoint (7), 'k’);

setInterpreter (gcf, "latex’);
% save_fig(gcf, path’,’/Figures/’, filename’ ,{’ GyRAB_contour_10Nms'} ,’ extensions’,{’
matlabfrag ’})

% Plot Angular Velocity Data %
% figure ()
% plot (0:h2:(Time-h2) ,w,’ Linewidth’,2)
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% xlim ([0.1 Time-h2])

% ylim ([min(w(:)) max(w(:))])

% hold on

% vline (TimePoint(1) ,’k’);

% text(TimePoint(1) ,max(w(:)),Tagl, ’HorizontalAlignment’,’ center’,
VerticalAlignment’, ’bottom’, ’FontSize’,11)

% vline (TimePoint(2),’k’);

% text (TimePoint(2) ,max(w(:)) ,Tag2, ’'HorizontalAlignment’,’ center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

% vline (TimePoint(3),’k’);

% text (TimePoint(3) ,max(w(:)),Tag3, ’'HorizontalAlignment’,’ center’,
VerticalAlignment’, ’bottom’, ’FontSize’,11)

% vline (TimePoint(4) ,’k’) ;

% text (TimePoint(4) ,max(w(:)),Tag4, ’'HorizontalAlignment’,’ center’,
VerticalAlignment’, "bottom’, ’ FontSize’,11)

% vline (TimePoint(5),’k’) ;

% text (TimePoint(5) ,max(w(:)) ,Tagb, ’'HorizontalAlignment’,’ center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

% vline (TimePoint(6) ,’k’) ;

% text (TimePoint(6) ,max(w(:)),Tag6, 'HorizontalAlignment’,’ center’,
VerticalAlignment’, "bottom’, ’FontSize’,11)

% vline (TimePoint(7),’k’);

% text (TimePoint(7) ,max(w(:)) ,Tag7, ’'HorizontalAlignment’,’ center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

% legend (’$\omega u$’,’ $\omega v$’,’ $\omega w$’)

% setInterpreter (gcf, ' latex’);

end

%% Functions
function [x1,resnorm,Gs,TFdes,x0] = optimization (Gs,TFdes, errorfun)
ub = [4500, 3800, 0.04, 0.02, 0.1]; % Upper bounds

x0 = [rand(1)+0.01 , rand(1)+0.001 , rand(1)+*ub(3), rand(1)+*ub(4), rand(1l)+pi + rand
(1)*—pil; % Initial guess

% XS = [4500, 3800, 0.3, 0.3, O0]; % Upper
bounds

% x0 = [rand(1)+0.01 , rand(1)*0.001 , rand(1)*XS(3), rand(1)*XS(4), rand(1)*pi +
rand(1)+—pi]; % Initial guess

%

% ub = [inf, inf, inf, inf, 0.1];

Ib =00, 0, 0, 0, —-0.1]; % Lower
bounds

options = optimoptions (@lsqnonlin, "Algorithm’, "trust-region—reflective ') ;

options.MaxFunctionEvaluations = 180000;

options. MaxlIterations = 12000;

[x1, resnorm] = lsqnonlin (errorfun,x0,lb,ub, options); %
Optimization function

k =x1(1); b =x1(2); Iws = x1(3); Igg = x1(4); gammaS = x1(5); Iwt = 1/2xIws; Igs =
1/2+1gg; Igt = Igs;
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clear s

syms s
Gs = syms2tf(subs(Gs));

end

E.2. Main File: SPCMG

% This script is made by Roemer Helwig for his master thesis. It generates
% the equations of motion of a SPCMG, the impedance of the SPCMG.

% Furhtermore, it can optimize the impedance to mimic an arbitrary transfer
% function. With the optimized parameters it can then compute the time

% response.

% Roemer Helwig, 11-12-2019

addpath (’'Necessary_functions’)

clear
close all

% Bode options
PP bodeoptions;

PP.PhaseWrapping = 'on’;

PP.FreqUnits = 'Hz’;
PP.XLim = [le—4 2e2];
PP. Grid = 'on’;

ST S ST SIS SIS TSI IT TSI IS TSI TSI TSI TS TSTIT o
9%% Newton—Euler Equations of Motion
B B B e e e R R R R R R A e A e e B e B B e B e e e e e B L L L LTS

% Generate symbolic variables
syms omega domega gamma m r dgamma ddgamma k g t time r b Mu MvMw Js Jt Jg Mc w phi
theta psi
syms ws wt wg dwbn dws dwt dwg Igs Igt Igg Iws Iwt Iwg Ms Mt Mg s gamma0 wu wv ww
dwu dwv dww wuS wvS wwS gammaS
disp ('EoM via Newton—-Euler... ')

9%% Gimbal 1

% Unit vectors of the first gimbal fixed frame
gs = [1; 0; 0O];

gt = [0; 1; 0];

gg = [ 0; 0;1];

% projection of the gimbal fixed frame on the body fixed frame
eul = [cos(—gamma); sin(—gamma); O0];

evl = [—sin(—gamma) ; cos(—gamma); O0];
ewl = [0; O; 1];
glRb= [eul evl ewl]; % Rotation matrix from body to gimbal fixed frame

bRgl= transpose(glRb); % Rotation matrix from gimbal to body fixed frame

% Angular velocities in the gimbal frame

wbg gl = [0 ; 0; —dgammal;
wwg gl [omega; 0; O0];

wgb_gl = [0;0;dgamma];
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% Angular velocities in the body frame
wbn b = [wu;wv;ww];

wbgl_b = bRgl*wbg gl;

wgln_b = wbn_b-wbgl_b;

wbn_gl = glRb*wbn_b;

% Moment of inertia tensor in Gimbal frame
Iwheel_gl = diag ([Iws;Iwt;Iwt]);

Igimbal_gl

= diag([Igs;Igt;Iggl);

% Angular momentum in gimbal frame

Hwheel_gl
Hgimbal gl

% Angular acceleration of the body frame wrt the natural frame expressed in

= Iwheel_gl+(wwg gl + wgb_gl + wbn_gl);

= Igimbal_g1*(wgb_gl + wbn_gl);

% the body frame

dwbn b b =

% Angular acceleration of the gimbal frame wrt the natural frame expressed in

[dwu; dwv; dww];

% the body frame
dwbn_gl b = dwbn_b_b + cross(wbgl_b,wbn_b);

% Angular accelerations in the gimbal frame

dwbn_gl_gl
dwwg gl gl
dwgb_gl gl

domega

% Take the

% Use transport theorem to calculate derivatives with respect to N frame
gl = dHwheel _gl_gl + cross(glRbx*(wgln_b) ,Hwheel gl);
dHgimbal N_gl = dHgimbal gl gl + cross(glRb*(wgln_b) ,Hgimbal gl);

dHwheel _N_

= glRbxdwbn_gl_b;
= [domega;0;0];
= [0;0;ddgamma];

:0,

time derivative with respect to the G frame
dHwheel gl _gl = Iwheel_gl*(dwgb_gl gl + dwbn_gl gl);
dHgimbal_gl_gl1 = Igimbal_gl+(dwgb_gl_gl + dwbn_gl_gl);

dH_N_gl = dHwheel N_gl + dHgimbal N_g1;

dH1 N b =

Ml = dHI_N_b — [0;0; — k*(gamma-gamma0) —b *dgamma+Mc] ;

simplify (bRgl+=dH_N_gl) ;

%% Gimbal 2

% projection of the gimbal fixed frame on the gimbal fixed frame

eu2 = [cos
ev2
ew2

[0;

bRg2= transpose ([eu2 ev2 ew2]); % Rotation matrix from gimbal to body fixed frame

g2Rb= [eu2

% Angular
wbg2_g2 =
wwg2_ g2 =
wg2b_g2 =

(gamma) ; sin (gamma); 0];

[—sin (gamma) ; cos (gamma) ; 0];

0; 11;
ev2 ew2];

velocities in the second gimbal frame
(0 ; 0; dgammal];

[-omega;0;0];

(0;0; —dgammal] ;
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% Angular velocities in the body frame
wbn b = [wu;wv;ww];

wbg2_b = bRg2+wbg2_g2;

wg2n_b = wbn_b-wbg2 b;

% Moment of inertia tensor in Gimbal frame
Iwheel_g2 = diag([Iws;Iwt;Iwt]);
Igimbal_g2 = diag([Igs;Igt;Iggl);

% Angular momentum in gimbal frame
Hwheel g2 = Iwheel g2x(wwg2_g2 + wg2b_g2 + g2Rb*wbn_b);
Hgimbal g2 = Igimbal_g2+(wg2b_g2 + g2Rb*wbn_b);

%Angular acceleration of the second gimbal fram wrt the natural frame
%expressed in the body frame
dwbn_g2 b = dwbn_b_b + cross(wbg2_b,wbn_b);

% Angular accelerations in the gimbal frame
dwbn_g2_g2 = g2Rb*dwbn_g2_b;
dwwg2 g2 g2 = [-domega;0;0];
dwg2b_g2 g2 = [0;0; —ddgamma];

dHwheel_g2_g2 = Iwheel_g2+(dwg2b_g2 g2 + dwbn_g2_g2);
dHgimbal_g2_g2 = Igimbal_g2x(dwg2b_g2_g2 + dwbn_g2_g2);

% Use transport theorem to calculate derivatives with respect to N frame
dHwheel N_g2 = dHwheel g2 g2 + cross(g2Rbxwg2n_b, Hwheel g2) ;

dHgimbal N_g2 = dHgimbal_g2_g2 + cross(g2Rb*wg2n_b, Hgimbal_g2) ;

dH_g2 = dHwheel N_g2 + dHgimbal N_g2;

dH2 N b = simplify (bRg2+dH_g2) ;

M2 = dH2_N_b - [0;0;+k*(gamma-gamma0) +b *dgamma-+Mc] ;
%% Total system

% Moment due to spring and dampers

Mc = solve (M2(3) == 0,Mc);

Ml = subs(Ml);

Mb = Ml + [M2(1);M2(2);0];

MBODY = -M_b;

% equation of motion in body frame
[I_b, Mom b] = equationsToMatrix (MBODY(3) == 0,ddgamma) ;

ddgamma_eq = simplify (inv(I_b)*Mom.b) ;
%dwb_bn_b_b = simplify (inv(I2_b) *Mom2 b) ;

%% Validation

Htot_b = bRgl+Hwheel gl + bRg2+Hwheel_g2;

rotphi = [1 0 0;0 cos(phi) —sin(phi);0 sin(phi) cos(phi)];

rottheta = [cos(theta) 0 sin(theta);0 1 0;—sin(theta) 0 cos(theta)];
rotpsi = [cos(psi) sin(psi) 0;—sin(psi) cos(psi) 0;0 0 1];

Htot_N = rotphi*rotthetasrotpsi*Htot_b;

dHtot_b = bRgl*dHwheel N_g2 + bRg2+dHwheel N_g2;
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dHtot_ N = rotphi*rottheta*rotpsi*dHtot_b;

% Validation (Htot_N,dHtot N) ;

B e e e e e e e e T e L e L e L e e A L T T LT

%% Lagrange Equations of Motion

B S SIS SIS SIS SIS SIS TSI SIS SIS SIS STII o
disp ('EoM via Lagrange... )

q = gamma;
dq = dgamma;
ddq = ddgamma;

% Kinetecs and Potential Engeries

Tl = 0.5 = ((omega*gs + dgammaxgg + glRbxwbn b).’+ Iwheel gl * (omega*gs + dgammaxgg
+ glRb*wbn_b) + (dgamma:gg + glRbswbn b).’+ Igimbal_gl = (dgammaxgg + glRbxwbn_b
1)

T2 = 0.5 * ((omega*—gs + —dgammaxgg + g2Rbxwbn_b).’* Iwheel_g2 * (omega*—gs + —
dgammaxgg + g2Rb*wbn_b) + (—dgammaxgg + g2Rbxwbn_b).’* Igimbal g2 * (—dgammaxgg +
g2Rb*wbn_b) ) ;

T = T1+T2;

V1 = 0.5 * (k * (gamma-gamma0)2);

V2 = 0.5 * (k * (gammaO-gamma)2);

V = V1+V2;

L = T-V;

dLdq = jacobian(L,q);
dLdqd = jacobian(L,dq);
ddtdLdqd = jacobian (dLdqd,[q; dq; wbn_b]) *[dq; ddq; dwbn_gl b];

Qnc = —2+bxdgamma;
L_eq = simplify (ddtdLdqd — dLdq.’ — Qnc);

[Inertia ,Moment] = equationsToMatrix(L_eq == 0, ddq);

ddq_eq = simplify(Inertia\Moment) ;

S S S ST S SIS TSI SIS SIS SIS SIS STSIT I o
9%% Check if Newton-Euler and Lagrange are equivalent

B B T T e e R L R e A A A A B A R A B A B A B e B A A A A B L L L oL
Error = simplify (ddgamma eq — ddq_eq) ;

if Error == 0

disp ('Newton Euler and Lagrange are equivalent’)
else

error ('Formulations are not equivalent. Please check definitions’)
end

% omega = 2513; %1500
Igt = Igs;

B e e e e e e R R R e e e e e s s s e o o o e e e LS
9%% Compute General Transfer functions of the system

B s T e e A s T s A I e A A A A A I A B L LT

CompAllTFs = yes_or_no( 'Compute all the Transfer Functions?’); % function by Daniel



212

213

214

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

252

253

254

255

256

257

258

259

260

102

E. Appendix E

Lemus

if (CompAIllTFs)

%linearize for different gammas, stiffness or damping

gammatemp = [gammaS];

% optional to use different spring stiffness or damping

ktemp = [0.1;0.5;1;3;5;10];

btemp = [0.1;0.5;1;3;5;10];

domega = 0;

% linearize for specific anglar velocity
wbn_b0 = [wuS;wvS;wwS];

for i = 1:length (gammatemp)
%b = btemp(i);

of the human

A = linearization ((—dH1_N_b—dH2 N_b) , [ddgamma;dgamma;gamma;wbn_b;dwbn_b_b],
gammatemp (i) ,wbn_b0); % Linearization of the Moments
dH_lin = Ax[ddgamma;dgamma;gamma-gammatemp (i) ; wbn_b-wbn_b0;dwbn_b_b];

ddgamma = simplify (inv(subs(I_b))*subs(Momb)); % recalculate ddgamma
[Ag] = linearization ([ddgamma] , [dgamma;gamma;wbn_b;dwbn_b_b] ,gammatemp (i) ,wbn_b0

); % Linearization of ddgamma

ddgamma_lin = Ag*[dgamma;gamma;wbn_b;

dwbn_b b];

dgamma = s*gamma; % Take the Laplace transforms

ddgamma = sA2+gamma;
dwu = s=*wu;
dwv = sxwv;
dww = s*ww;

gamma = simplify (solve (subs(ddgamma_lin) — sA2+gamma == 0,gamma) ) ;

gamma

% solve for

sdH = simplify (subs(subs(dH_lin))); % Fill in the Laplace transforms in the

Linearized moments

AA = linearization (sdH,wbn_b,[] ,wbn_b0); % Linearize again

dH_reduced = AA * wbn_b;

eql = dH_reduced — [Mu;Mv;Mw]; % Make equation: terms — M = 0

% Compute transfer functions

Gsuu = comptf(eql,wu,1,Mu,1); Gsuv
,3,Mu, 1) ;

Gsvu = comptf(eql,wu,1,Mv,2); Gsvv =
,3,Mv,2) ;

Gswu = comptf(eql,wu,1 ,Mw,3); Gswv =

% clear gamma dgamma ddgamma dws dwt
% syms gamma dgamma ddgamma

% % Comute transmissability

% eq2 = gamma2 — gamma;

% H1 = comptf(eq2,wu,1,gamma, 1) ;

% H2 = comptf(eq2,wv,2 ,gamma, 1) ;

%
% H3 = comptf(eq2,ww,3 ,gamma, 1) ;

comptf(eql ,wv,2 ,Muy,1); Gsuw
comptf(eql,wv,2 ,Mv,2); Gsvw
comptf(eql ,wv,2 ,Mw;3); Gsww

dwg

comptf(eql,ww
comptf(eql,ww

NaN;
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% Hs = [H1 H2 H3];

%

% Hs.InputName = ’Moment’;

% Hs. OutputName = 'omega’;

% H = bodeplot (Hs,PP);

% setoptions (H, 'FreqUnits’, "Hz’ ,’ PhaseVisible’, "on’) ;
% hold on

% grid on

end

end

B s T e I B B e e B e e e I B A s e B B e e A e I A B s L T B B L LT

%% Load Optimal Parameters

B s e e s A e T s A I T B e A A A I A A A I A B L LT

LoadPar = yes_or_no(’'Load the best paramters?’);
if (LoadPar)

close all

% addpath (' Par_Scissored ’)

it = 100;

n_par = 5;

X = zeros(n_par,it);

resnorm = ones(l,it)x1el0;

x0 = zeros(n_par,it);

% Load results of the optimizations
for j = 1:it

parameter(j) = load ([ opt_parameter_’
x(:,j) = parameter(j).x;

resnorm(j) = parameter(j).resnorm;
Gs(:,j) = parameter(j).Gs;

x0(:,j) = parameter(j).x0;

end

% Find the best parameters, Gs and initial guess

[~, col] = find (min(resnorm) == resnorm) ;

col = max(col);

x_best = x(:,col);

Gs = Gs(:,col);

x0 = x0(:,col);

% k = x_best(1); b x_best(2); Iws = x_best(3); Iwt = x_best(4); Igs
Igt = Igs; Igg = x_best(6); gammaS = x_best(7);

k = x_best(1); b = x_best(2); Iws = x_best(3); Igg = x_best(4); Iwt =
1/2+1gg; Igt = Igs; gammaS = x_best(5);

gammal = gammasS;
sortRes = sort(resnorm, 'descend’);

% Create desired transfer function
kp = 100;

kd = 32;

Jdes = 0.5; bdes = 5; kdes= 30;

= x_best(5);

1/2«Iws; Igs

num?2str(j) ’.mat’], x’, 'resnorm’, Gs’,’x0");
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% TFdes = syms2tf(+(kp+kd=s)/s);
TFdes = syms2tf(—(bdesx*s)/s);

% Find the poles, zeros, and the natural frequency

Gpole = pole(Gs);
[wn, zeta] = damp(Gs) ;
Gzero = zero(Gs);

% wuS = 0.1; wvS = 0.1; wwS = 0.1;
% omega = 2513;
% GsvvTemp = syms2tf(subs(Gsvv));

BodeGraph (Gs, TFdes)
% Plot the Resnorm in descending order

% figure ()
% semilogy (sortRes, 'mo’ ,...

% 'LineWidth’ ,1.5,

% "MarkerEdgeColor’, 'k’ , ...

% "MarkerFaceColor’,[.49 1 .63],...
% "MarkerSize’,10)

% title (’Optimizations Sorted by Resnorm’)

% ylabel ('resnorm’)
% xlabel ('Number of Iterations’)
end

B B R L B L B B A R e B B e L B B A B e B e B e L e B L L L LT
%% Optimization of the Transfer Functions
B B T T L R e R L e e A e e A B e R A e e A e A e e A L L L L oL

if LoadPar ==

OptTF = yes_or_no(’Optimize the Transfer Function?’); % function by Daniel Lemus

if (OptTF)

% Fill in unoptimizable parameters
Igt = Igs;

Igs = 1/2+1gg;

Iwt = 1/2xIws;

wuS = 0; wvS = 0; wwS = 0;

omega = 1500;

% Create desired transfer function
kp = 100;

kd = 32;

Jdes = 0.5; bdes = 5; kdes= 30;

% Weights for the Cost function

wl = 100; %best 100

w2 = 1;

% Parameters that will be optimized
par = [k b Iws Igg gammaS];

% Create frequency vector in Hz
wHz = logspace(-2,1,2¢e2);

% Create frequency vector in rad/s
w = wWHz#2+*pi;

num_opt = 100;

TFdes = —(Jdes*s~2 + bdesxs + kdes)/s;
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% TFdes= +(kp+kdxs)/s;

s = 1j=w; %
substitude s for jw

Gsn = subs(subs(Gsvv));

TFdesl = subs(subs(TFdes));

Cl = wl+(imag(TFdesl1-Gsn)) ; % Phase
part of costfunction

C2 = w2+(real (TFdes1-Gsn)) ; %
Magnitude part of costfunction

C = C1+C2;

errorfun = matlabFunction (C, 'Vars’ ,{par});

for j = l:num_opt

[x,resnorm,Gs,~,x0] = optimization (Gsvv,TFdes, errorfun);

save ([ 'opt_parameter_’ num2str(j) '.mat’], 'x’, 'resnorm’, ’Gs’, 'x0")
end

clear s
syms s

load gong.mat;
sound (y, Fs) ;

else

% k = 30.20; b = 20.13; omega = 2.513e+03; Iws = 0.1238; Iwt = 0.0116; Igg = 0.153;
gammaS = -1.891; gamma0 = gammaS; Igs = 0.001; Igt = 0.001;

end

end

T S S S S S S SIS SIS ST SIS ST ST ST STSTSTSTSTST TSI o
%% Fill in Parameters and compute Frequency response
TS S S SIS o
if (CompAllTFs)

SubsTF = yes_or_no(’Fill in parameters in TFs and compute Freq Response?’);

if (SubsTF)
wuS = 0.1; wvS = 0.1; wwS = 0.1;

Gsuu = zpk(syms2tf(subs(Gsuu))); Gsvu = zpk(syms2tf(subs(Gsvu))); Gswu = zpk(
syms2tf (subs (Gswu) ) ) ;

Gsuv = zpk(syms2tf(subs(Gsuv))); Gsvv = zpk(syms2tf(subs(Gsvv))); Gswv = zpk(
syms2tf (subs (Gswv) ) ) ;

Gsuw = zpk(syms2tf(subs(Gsuw))); Gsvw = zpk(syms2tf(subs (Gsvw))); Gsww = zpk(

syms2tf (subs(0)));

Gstot = [Gsuu Gsvu Gswu; Gsuv Gsvv Gswv; Gsuw Gsvw Gsww];

Gstot.InputName = ’'omega’;
Gstot . OutputName = 'Moment’ ;
figure ()

bodeplot (Gstot,PP)
fh = gcf;
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lh = findall (th, 'Type’, 'Line’);
arrayfun (@(x) set(x, LineWidth’,2),lh)

end
end

B IS TSI IS I SIS IS TSI TSI TS TITTITTS o
%% Comp Time Response from Gait Data

B T L B e T B B A B T A B A B s A A A A A e R A B A B A A R A A B A T A A L B L L L AL
CompTimeResp = yes_or_no (’'Compute time response from gait data?’);

if (CompTimeResp)

close all

clear s dwu dwv dww gamma dgamma ddgamma wu wv ww

syms dwu dwv dww gamma dgamma ddgamma t time wu wv ww

FrameRate = 100; % per second
h = 1/FrameRate; % time step
h2 = 0.01xh; % time step for interpolation

omega = 1500;

ddgamma_eq = subs(ddgamma_eq) ;
M_b_opt = subs (subs (MBODY) ) ;

Condition = 1;

% Load gait data

addpath ('Matlab Motion Data’)

AngVel = load ([ 'AngVel’ num2str (Condition) ’.txt’]);
AngAcc_temp = load ([ 'AngAcc’ num2str (Condition) ’.txt’]);
AngAcc = zeros(length (AngVel) ,3);

AngAcc(2:end—1,:) = AngAcc_temp;

TrunkRot = wrapTo360(load ([ 'TrunkRot’ num2str(Condition) ’.txt’]));
EventData = xlIsread ([ 'Events’ num2str(Condition) ’.xlIsx’]);
[LFO, LFS,RFO, RFS, TimePoint] = RecEvent (EventData) ;

t = (0:length (AngVel) —1) '«h;

% t2= (h:length (AngAcc)) '+h;

% Create function of the gait data

% omega_func = @(t_i) interpl (t,AngVel,t_i);
% wv_func = @(t_i) interpl (t,AngVel(:,2),t_i);
% wu_func = @(t_i) interpl (t,AngVel(:,1),t_i);

% dww_func

@(t_i) interpl(t,AngAcc(:,3),t_i);

% Create function of the moments and ddgamma
Mcmg_sc matlabFunction (M_b_opt, 'file ', "Mcmg sc’) ;
ddgamma_fun_sc = matlabFunction (ddgamma eq, 'file ', "ddgamma_fun sc’);

% % Create function handle and use odel5s for numerical integration

% ddgamma_func = @(t,y) ddgamma_fun b(y(2) ,dww_func(t) ,y(1) ,wu_func(t),wv_func(t));

% [t,y] = odel5s(ddgamma func,[0 3],[0 1]);
wul = AngVel(:,1);

dwul = AngAcc(:,1);
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dwvl = AngAcc(:,2);

dwwl = AngAcc(:,3);

Time = length (wul) =h;

% Interpolate to improve integration

wul = interpl (0:h:(Time-h) ,wul,0:h2:(Time-h2) , 'PCHIP ) ;

wvl = AngVel (:,2);

wvl = interpl (0:h:(Time-h) ,wvl,0:h2:(Time-h2) , 'PCHIP’);

wwl = AngVel (:,3);

wwl = interpl (0:h:(Time-h) ,wwl,0:h2:(Time-h2) , 'PCHIP ) ;

dwul = interpl (0:h:(Time-h) ,dwul,0:h2:(Time-h2) , PCHIP ) ;

dwvl = interpl (0:h:(Time-h) ,dwvl,0:h2:(Time-h2) , 'PCHIP);

dwwl = interpl (0:h:(Time-h) ,dwwl,0:h2:(Time-h2) , PCHIP");

TrunkRot = interpl (0:h:(Time) ,TrunkRot,0:h2:(Time) , 'PCHIP ) ;

% Create initial conditions

w = zeros(3,length (wul));

dw = zeros(3,length (wul));

wu = wul(1,1); wv = wvl(1l,1); ww = wwl(1l,1);

dwu= dwul(1,1); dwv= dwvl(1,1); dww= dwwl(1,1);

ddgammal = zeros(l,length(wul)); dgammal = zeros(l,length(wul)); gammal = zeros

(1,length (wul));
gamma
dgamma
initial_conditions = [wu;wv;ww;gamma;dgammal];
M_b_optl = zeros(3,length (wul));

= gammasS;
= 0;

ddgammal(1,1) = ddgamma_fun_sc(dgamma, gamma, wu, wv) ;
ddgamma = ddgammal(1,1);

M_b_optl(1:3,1) = Mcmg sc(ddgamma, dgamma, dwu, dwv, gamma, wu, wv,ww) ;

gammal (1,1) = gamma;
dgammal (1,1) = dgamma;

% Numerical integration

for

end

i=

2:length (wvl)

nC = rotx ((TrunkRot(i,1)))*roty ((TrunkRot(i,2)))=*rotz ((TrunkRot(i,3)+pi/2));

dw (
wu

w(l:3,i) = nCx[wul(i);wvl(i);wwl(i)];

1:3,i) = nCxs[dwul(i);dwvl(i) ;dwwl(i)];
=w(l,i); wv = w(2,1); ww = w(3,1);

dwu= dw(1l,i); dwv= dw(2,1); dww= dw(3,1);
ddgammal (i) = ddgamma_fun_sc(dgamma, gamma, wu, wv) ;
ddgamma = ddgammal (i) ;

dgammal (i) = dgammal (i —1) + double (ddgammal (i) *h2) ;
dgamma = dgammal (i) ;

gammal (i) = gammal(i—1) + double (dgammal(i)*h2 + 0.5*ddgammaxh242);

gamma = gammal (i) ;

M_b_optl (:,i) = Mcmg_sc(ddgamma, dgamma, dwu, dwv, gamma, wu, wv,ww) ;

if

end

isnan (ddgamma) ==
error ('decrease time step’)
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% Plot Gait Data
GaitEvent = [LFO,LFS,RFO,RFS];

FirstEvent = find (GaitEvent(1,:) == 0);

if FirstEvent ==
Tagl = 'LFO’;
Tag2 = 'LES’;
Tag3 = 'RFO’;
Tagd = 'RFS’;

elseif FirstEvent ==
Tagl = 'LES’;
Tag2 = 'RFO’;
Tag3 = 'RFS’;
Tagd = 'LFO’;

elseif FirstEvent ==
Tagl = 'RFO’;
Tag2 = 'RES’;
Tag3 = 'LFO’;
Tagd = 'LFS’;

elseif FirstEvent ==
Tagl = 'RES’;
Tag2 = 'LFO’;
Tag3 = 'LES’;
Tagd = 'RFO’;

end

Tagb = Tagl;

Tagb6 = Tag2;

Tag7 = Tag3;

if TimePoint(1) < 0.1
Tagl =~ 7 ;

end

figure ()

subplot(4,1,1)

plot (0:h2:(Time-h2) ,M_b_optl (1,:), Linewidth’,2, Linestyle’, =)

hold on

plot (0:h2:(Time-h2) ,M_b_optl (2,:), Linewidth’,2, Linestyle’, —.")
plot (0:h2:(Time-h2) ,M_b_optl (3,:), 'Linewidth’,2, Linestyle’, :")

ylabel ('Moment in Nm’)

xlim ([0.1 Time(end)])

ylim ([min(M_b_optl (:) ) max(M_b_optl (:))])

vline (TimePoint (1), 'k’);

text (TimePoint (1) ,max(M_b_optl (:)) ,Tagl, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint(2) , 'k’);

text (TimePoint(2) ,max(M_b_optl (:) ) ,Tag2, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, 'FontSize ’,11)

vline (TimePoint (3), 'k’);

text (TimePoint(3) ,max(M_b_optl (:) ) ,Tag3, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint(4) , 'k’);

text (TimePoint(4) ,max(M_b_optl (:)) ,Tagd, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint (5) , 'k’);

text (TimePoint(5) ,max(M_b_optl (:) ) ,Tags, ’'HorizontalAlignment’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

’

)

)

)

)

"center’,

‘center’,

"center’,

"center’,

‘center’,
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vline (TimePoint (6) , 'k’);

text (TimePoint(6) ,max(M_b_optl (:) ) ,Tag6, ’'HorizontalAlignment’, center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

vline (TimePoint (7), 'k’);

text (TimePoint(7) ,max(M_b_optl (:) ) ,Tag7, ’'HorizontalAlignment’, center’,
VerticalAlignment’, 'bottom’, ’FontSize’,11)

legend ('$M_u$’ , '$M_v$’ , '$M.w$’, 'Location’, 'best’);

)

)

subplot(4,1,2)

plot (0:h2:(Time-h2) ,ddgammal, 'Linewidth’,1.5);
ylabel (’$\ddot{\gamma}$ in rad/s$/{2}$")

xlim ([0.1 Time(end)])

ylim ([mean (ddgammal) —2.5+std (ddgammal) mean(ddgammal) +2.5+*std (ddgammal) ])
vline (TimePoint (1), 'k’);

vline (TimePoint(2), 'k’);

vline (TimePoint (3), 'k’);

vline (TimePoint (4) , 'k’);

vline (TimePoint(5) , 'k’);

vline (TimePoint (6) , 'k’);

vline (TimePoint (7), 'k’);

subplot(4,1,3)

plot (0:h2:(Time-h2) ,dgammal, 'Linewidth’,1.5);
ylabel ("$\dot{\gamma}$ in rad/s’)

% ylim ([mean (dgammal) —1.5+std (dgammal) mean(dgammal) +1.5+*std (dgammal) |)
xlim ([0.1 Time(end)])

ylim ([min (dgammal (:) ) max(dgammal (:) ) ])

vline (TimePoint (1), 'k’);

vline (TimePoint(2) , 'k’);

vline (TimePoint(3), 'k’);

vline (TimePoint(4) , 'k’);

vline (TimePoint (5) , 'k’);

vline (TimePoint (6) , 'k’);

vline (TimePoint(7), 'k’);

subplot(4,1,4)

plot (0:h2:(Time-h2) ,gammal, 'Linewidth’ ,1.5);
ylabel ('${\gamma}$ in rad’)

xlabel ('Time in s’)

xlim ([0.1 Time(end)])

ylim ([min (gammal (:) ) —0.00000000001 max(gammal (:) ) +0.00000000001])
vline (TimePoint (1), 'k’);

vline (TimePoint (2) , 'k’);

vline (TimePoint (3), 'k’);

vline (TimePoint(4) , 'k’);

vline (TimePoint (5) , 'k’);

vline (TimePoint (6) , 'k’);

vline (TimePoint (7), 'k’);

setInterpreter (gcf, "latex’);

% figure ()

% plot(TimePoint, [LFO, LFS,RFO,RFS], 'x’, 'MarkerSize’,10, LineWidth’,2)
% hold on

% plot (0:h2:(Time-h2) ,w,’Linewidth’,2)
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% legend ('LFO’,’LFS’,’RFO’,’RFS’,'wu’, "wv’, "'ww’)
end

function [x1,resnorm,Gs,TFdes,x0] = optimization (Gs,TFdes, errorfun)
ub = [4500, 3800, 0.04, 0.02, 0.1]; % Upper bounds

x0 = [rand(1)*0.01 , rand(1)+0.001 , rand(1)+*ub(3), rand(1)+*ub(4), rand(1l)+pi + rand
(1)*—pi]; % Initial guess

% XS = [4500, 3800, 0.3, 0.3, O0]; % Upper
bounds

% x0 = [rand(1)*0.01 , rand(1)+0.001 , rand(1)*XS(3), rand(1)*XS(4), rand(1)*pi +
rand(1)+—pi]; % Initial guess

%

% ub = [inf, inf, inf, inf, 0.3];

Ib =0, 0, 0, 0, —0.3]; % Lower
bounds

options = optimoptions(@lsqnonlin, 'Algorithm’, trust-region—-reflective ") ;

options.MaxFunctionEvaluations = 180000;

options.MaxIterations = 12000;

[x1, resnorm] = lsqnonlin(errorfun,x0,lb,ub, options); %
Optimization function

k =x1(1); b =x1(2); Iws = x1(3); Igg = x1(4); gammaS = x1(5); Iwt = 1/2xIws; Igs =
1/2+1gg; Igt = Igs;

clear s

syms s
Gs = syms2tf(subs(Gs));

end

E.3. Extra Functions
E.3.1. Linearization

function [A] = linearization (f,x,gamma, wbn)

gamma = gamma;
gammal = gamma;
dgamma = 0;
ddgamma = 0;
ws = wbn(1l);
wt = wbn(2);
wg = wbn(2);
wu = wbn(1);
wv = wbn(2);
ww = wbn(3);
dws =
dwt =
dwg =
dwu =
dwv =
dww =

)
)
)

)

S O o O o O
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A = jacobian(f,x);
A = subs(subs(A));
end

E.3.2. Compute Transfer Function

function sys = comptf(fun, anguler_velocity, angular_axis ,Moment, Moment_axis)

eql = fun(Moment_axis) ;

gamma = 0;
if angular_axis == 1
wt = 0;
wg = 0;
wv = 0;
ww = 0;
elseif angular_axis ==
ws = 0;
wg = 0;
wu = 0;
ww = 0;
elseif angular_axis ==
ws = 0;
wt = 0;
wu = 0;
wv = 0;
end

if Moment_axis ==

Mt = 0;
Mg = 0;
Mv = 0;
Mw = 0;
elseif Moment_axis == 2
Ms = 0;
Mg = 0;
Mu = 0;
Mw = 0;
elseif Moment_axis == 3
Ms = 0;
Mt = 0;
Mu = 0;
Mv = 0;

end
eql = subs(subs(eql));

w = solve(eql == 0,anguler_velocity);
Mw = Moment/w;

Mw = simplify (subs (M. w));

sys = M.w;



49

50

51

52

53

55

56

57

58

59

60

61

62

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

112 E. Appendix E

% if numel(symvar(Mw)) == 0
% sys = tf(double(Mw),1);
% end

%

% if numel(symvar M w)) ==
% sys = syms2tf (M w) ;

% end

% if numel(symvar(Mw)) > 1
% sys = 0;

% end

end

E.3.3. Bode Plots

function BodeGraph (Gs, TFdes)
% Makes a bode plot of two transfer function. For the transfer function Gs
% the poles and zeros will be marked.

Gpole = pole(Gs);
[wn,~] = damp(Gs) ;
Gzero = zero(Gs);

w = logspace(—-4,6,700000);
w = sort([w 0.5], ’'ascend’);
SkipPole = 0;

if isempty(Gpole) ==

SkipPole = 1;
[~,wixZ1] = min(abs(w-abs(Gzero(1))));

elseif isreal (Gpole) ==

[~,wixP1] = min(abs (w-abs(Gpole(1))));
[~,wixP2] = min(abs(w-abs(Gpole(2))));
[~,wixZ1] = min(abs(w-abs(Gzero(1))));
[~,wixZ2] = min(abs(w-abs(Gzero(2))));
[~,wixZ3] = min(abs(w-abs(Gzero(3))));
else

[~,wixP1] = min(abs (w-abs(wn(1))));
[~,wixP2] = min(abs (w-abs(wn(2))));
[~,wixZ1] = min(abs(w-abs(Gzero(1))));
[~,wixZ2] = min(abs(w-abs(Gzero(2))));
[~,wixZ3] = min(abs(w-abs(Gzero(3))));
end

[magGs, phaseGs] = bode(Gs,w) ;

phaseGs = wrapTol80 (phaseGs) ;
[magTFdes, phaseTFdes] = bode(TFdes,w) ;
phaseTFdes = wrapTol80 (phaseTFdes) ;
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figure (1)
subplot(2,1,1)

% Magnitude

loglog (w, squeeze(magGs), 'b’,’ Linewidth’,2, Linestyle’, =)
hold on
loglog (w, squeeze(magTFdes), r’, Linestyle’,’'—’, Linewidth’,2)

ylim ([10e-2 10e3]) ;

% Magnitude Poles

if SkipPole ==1

elseif wixP1 == wixP2

loglog (w(wixP1) , magGs(1,1,wixP1), 'x’, MarkerSize’,15, LineWidth’,2, Color’, "blue’)
loglog (w(wixP2) , magGs(1,1,wixP2),’+’, MarkerSize’,15, LineWidth’,2, Color’, blue’)
text (w(wixP2) , (max(magGs)*1e2) ,[ 'p_{1,2}=" num2str(real (Gpole(2)),3) ’\pm’ num2str (

imag(Gpole(2)),3) ’'i’], ’HorizontalAlignment’, left’, ’'VerticalAlignment’, bottom

", ’FontSize’,11)

else

<<<<<<< HFAD:Matlab/Necessary_functions/BodeGraph.m

text (w(wixP1) , (max(magGs) *1e2) ,[ 'p_l=" num2str(Gpole(1),3)’’], 'HorizontalAlignment
’, ’center’, ’VerticalAlignment’, 'bottom’,’ FontSize’,11)

text (w(wixP2) , (max(magGs) *1e2) ,[ 'p_2=" num2str(Gpole(2),3)’’], 'HorizontalAlignment
*,’left’, ’VerticalAlignment’, 'bottom’,’FontSize’,11)

text (w(wixP1) , (max(magGs)*1e3) ,[ 'p_l=" num2str(Gpole(1),3)’’], 'HorizontalAlignment
*,left’, ’VerticalAlignment’, 'bottom’, FontSize’,11)

text (w(wixP2) , (max(magGs) *1e3) ,[ 'p_2=" num2str(Gpole(2) ,3) ' '], 'HorizontalAlignment
*,'right’, ’VerticalAlignment’, 'bottom’,’ FontSize’,11)

>>>>>>> a87887ad2f846ad954ea31c4f8e904e62f822533 : Matlab/BodeGraph.m

loglog (w(wixP1), magGs(1,1,wixPl), 'x’, MarkerSize’,15, LineWidth’,2, Color’, blue’)

loglog (w(wixP2), magGs(1,1,wixP2), 'x’, MarkerSize’,15, LineWidth’,2, Color’, blue’)

end

% Magnitude Zeros

if Gzero(l) > 0

loglog (w(wixZ1) , magGs(1,1,wixZ1), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)

end

if wixZ1 == wixZ2

loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,10, LineWidth’,2, Color’, blue’)

<<<<<<< HFAD: Matlab/Necessary_functions/BodeGraph.m

text (w(wixZ2) ,magGs(1,1,wixZ2)*1000000,[ 'z _{1,2}=" num2str(real (Gzero(2)),3) '\pm’
num2str (imag(Gzero(2)),3) 'i’], 'HorizontalAlignment’,’ center’, ’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)

text (w(wixZ3) ,magGs(1,1,wixZ2)*1000000,[ 'z 3=" num?2str (Gzero(3) ,3) "', ’

HorizontalAlignment’, "left’, ’VerticalAlignment’, 'bottom’, FontSize’,11)
elseif wixZ2 == wixZ3
% text (w(wixZ1) ,magGs(1,1,wixZ2)+1000000,[’z_1=" num2str(Gzero(1),3)"’], ’
HorizontalAlignment’, center’, ’VerticalAlignment’, middle’, FontSize’,11)

loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,10, LineWidth’,2, Color’, blue’)

text (w(wixZ2) ,magGs(1,1,wixZ2)*1000000,['z_{2,3}=" num2str(real (Gzero(2)),3) '\pm’
num2str (imag(Gzero(2)),3) 'i’], 'HorizontalAlignment’,’ center’, ’
VerticalAlignment’, 'bottom’, ’FontSize’,11)
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loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)

elseif wixZl == wixZ2 && wixZ2 == wixZ3

% text (w(wixZ1l) ,magGs(1,1,wixZ2)*1000000,[’z_1=" num?2str(Gzero(1) ,3) '], ’
HorizontalAlignment’,’center’, ’VerticalAlignment’, top’, FontSize’,11)

loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,10, LineWidth’,2, Color’, blue’)

text (w(wixZ2) ,magGs(1,1,wixZ2)*1000000,[ 'z _{2,3}=" num2str(real (Gzero(2)),3) '\pm’
num?2str (imag(Gzero(2)),3) 'i’], 'HorizontalAlignment’, center’, ’
VerticalAlignment’, 'bottom’, 'FontSize’,11)

text (w(wixZ2) , (min(magGs) *0.000001) ,[ 'z_{1,2}=" num2str(real (Gzero(2)),3) ’\pm’
num2str (imag(Gzero(2)),3) 'i’], 'HorizontalAlignment’,’ center’, ’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)

text (w(wixZ3) , (min(magGs) *0.000001) ,[ 'z_3=" num2str(Gzero(3) ,3) "], ’

HorizontalAlignment’, "left ', ’VerticalAlignment’, 'bottom’, FontSize’,11)
elseif wixZ2 == wixZ3
text (w(wixZ1) , (min(magGs) *0.000001) ,[ 'z_1=" num2str(Gzero(1) ,3) "], ’
HorizontalAlignment’, 'center’, ’'VerticalAlignment’, middle’, FontSize’,11)

loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,10, LineWidth’,2, Color’, blue’)

text (w(wixZ2) , (min(magGs) *0.000001) ,[ 'z_{2,3}=" num2str(real (Gzero(2)),3) '\pm’
num2str (imag(Gzero(2)),3) 'i’], 'HorizontalAlignment’,’ center’, ’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)

elseif wixZ1 == wixZ2 && wixZ2 == wixZ3

text (w(wixZ1) , (min(magGs) *0.000001) ,[ 'z_1=" num2str(Gzero(1) ,3) "], ’
HorizontalAlignment’, 'center’, ’VerticalAlignment’, top’,’ FontSize’,11)

loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,10, LineWidth’,2, Color’, blue”)

text (w(wixZ2) , (min(magGs) *0.000001) ,[ 'z_{2,3}=" num2str(real (Gzero(2)),3) '\pm’
num?2str (imag(Gzero(2)) ,3) ’'i’], 'HorizontalAlignment’, center’, ’
VerticalAlignment’, 'bottom’, ’FontSize’,11)

>>>>>>> a87887ad2f846ad954ea31c4f8e904e62f822533 : Matlab/BodeGraph.m

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,20, LineWidth’,2, Color’, blue’)

elseif wixZ1 ==

loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)
text (w(wixZ2) ,magGs(1,1,wixZ2)*1000000,['z_2=" num2str (Gzero(2) ,3)" "], ’
HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’,’ FontSize ,11)

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)
text (w(wixZ3) ,magGs(1,1,wixZ2)*1000000,[ 'z _3=" num?2str (Gzero(3) ,3) "', ’
HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’, FontSize’,11)

else
loglog (w(wixZ2) , magGs(1,1,wixZ2), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)

<<<<<<< HFAD:Matlab/Necessary_functions/BodeGraph.m
text (w(wixZ1) ,magGs(1,1,wixZ2)*1000000,['z_1=" num2str(Gzero(1) ,3)" "], ’

HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’,’ FontSize ,11)
text (w(wixZ2) ,magGs(1,1,wixZ2)*1000000,[ 'z 2=" num?2str(Gzero(2) ,3) "], ’
HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’,’ FontSize ,11)

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, 'blue’)
text (w(wixZ3) ,magGs(1,1,wixZ2)*1000000,[ 'z 3=" num2str(Gzero(3) ,3)" "], ’
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HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’, FontSize ,11)

text (w(wixZ1) , (min(magGs) *0.001) ,[ 'z_1=" num2str(Gzero(1) ,3) "], ’

HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’,’ FontSize ,11)
text (w(wixZ2) , (min(magGs) *0.000001) ,[ 'z_2=" num2str(Gzero(2) ,3) "], ’
HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’, FontSize’,11)

loglog (w(wixZ3) , magGs(1,1,wixZ3), o’ , MarkerSize’,16, LineWidth’,2, Color’, blue’)
text (w(wixZ3) , (min (magGs) *0.000001) ,[ 'z_3=" num2str(Gzero(3) ,3) "], ’

HorizontalAlignment’, 'center’, ’'VerticalAlignment’, bottom’,’ FontSize ,11)
>>>>>>> a87887ad2f846ad954ea31c4f8e904e62f822533 : Matlab/BodeGraph.m

end

vline ((0.01) =2xpi, 'k’);
vline (10#2#pi, 'k’) ;

grid

xlabel ('Frequency in rad/s’)

ylabel ('Magnitude in dB’)

% Phase

subplot(2,1,2)

semilogx (w, squeeze(phaseGs),’'b’, Linewidth’,2)

hold on

semilogx (w, squeeze(phaseTFdes), 'r’, Linewidth’,2, Linestyle’, —")

% Phase Markers

semilogx (w(wixP1) , phaseGs(1,1,wixP1),’x’, MarkerSize’,15, LineWidth’,2,’
MarkerEdgeColor’,’b ")

if wixP1 == wixP2

semilogx (w(wixP2) , phaseGs(1,1,wixP2), '+, MarkerSize’,15, LineWidth’,2,’
MarkerEdgeColor’,’b’)

else

semilogx (w(wixP2) , phaseGs(1,1,wixP2), 'x’, MarkerSize’,15, LineWidth’,2,’
MarkerEdgeColor’,’b’)

end

% semilogx (w(wixZ1), phaseGs(1,1,wixZ1),’o’, MarkerSize’,16, LineWidth’,2,’Color’,’

blue’)

if wixZ1 == wixZ2 || wixZ2 == wixZ3

semilogx (w(wixZ2) , phaseGs(1,1,wixZ2), ’o’, MarkerSize’,10, LineWidth’,2, Color’,’
blue’)

else

semilogx (w(wixZ2) , phaseGs(1,1,wixZ2),’o’, MarkerSize’,16, LineWidth’,2, Color’,’
blue’)

end

semilogx (w(wixZ3) , phaseGs(1,1,wixZ3), ’o’, MarkerSize’,16, LineWidth’,2, Color’,’
blue’)

vline ((0.01) *2+pi, 'k’);
vline (10+2*pi, 'k’) ;

grid

xlabel ('Frequency in rad/s’)
ylabel ('Phase in deg’)

legend ('M_v/\omega v’ , TFdes’);
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h = gca;
h.YTick =

end

—-180:90:180;
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