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Summary 
This study investigates how hydraulic and meteorological variables act together to affect dike stability, with 
emphasis on inner-slope failure during extreme hydrometeorological events. The variables influencing dike 
stability are first identified through a literature review, after which their correlations are examined and analysed 
using copula theory. The effect of these correlations is then assessed in more detail by applying a groundwater 
model developed with Pastas and performing slope stability calculations using the Bishop method. 

The analysis focuses on the period from December 2023 to January 2024, when the Netherlands experienced 
high cumulative rainfall, elevated river discharges, and restricted outflow due to sea storm surges, leading to 
prolonged high water levels in the IJsselmeer–Markermeer system. The case study is a lakeside dike along 
Markermeer between Hoorn and Enkhuizen (about 17.8 km), where data availability enables detailed 
hydrological and geotechnical modelling. Two cross-sections (raai_2 and raai_3) are instrumented with multiple 
observation wells from phreatic to deep sand layers. Inputs combine hourly lake levels from Krabbersgat Zuid 
and the nearby Drieban pumping station, hourly precipitation and daily evapotranspiration from Berkhout 
station, and local groundwater measurements from 10 Nov 2023 to 25 Feb 2025. These data are used to calibrate 
and validate Pastas groundwater models and to evaluate slope stability for representative hydraulic loading 
conditions. 

The literature indicates that phreatic levels around Markermeer and IJsselmeer are governed by external 
hydraulic loads, climate, internal soil properties, dike geometry, and local lake dynamics. Using statistical 
analysis, copula modelling, and time-series groundwater simulations, this study examines how precipitation 
and lake level jointly influence the phreatic surface within the dike. Results show a moderate positive correlation 
between cumulative local precipitation and lake water levels. Copula models, particularly the BB8 family, 
capture asymmetric dependence between rainfall and water level, highlighting an increased likelihood of joint 
extremes. 

For stability evaluation, observed groundwater data were first used as input to D-Stability to compute the factor 
of safety (FoS) over selected periods. This “dependent” case reflects the real, correlated relationship between 
precipitation and water level and shows a moderate negative correlation with FoS, meaning increases in either 
driver reduce stability. An “independent” case is then constructed by generating a new water-level series from 
the fitted bivariate copula using conditional sampling with rank-exact back-mapping, so that water level is 
statistically independent of precipitation while preserving the marginal (univariate) distributions. The Pastas 
model is re-fitted with this synthetic water-level series to produce new groundwater heads, and FoS is 
recomputed. Under the observed (dependent) case, peak external water levels coincided with prolonged high 
precipitation, producing higher phreatic levels and a lower minimum FoS (1.745). When the same marginals 
were used but the drivers were made independent, peak water levels were lower and the minimum FoS improved 
(1.768). By evaluating the correlation, the dependent case shows stronger negative correlation for both 
precipitation (-0.67) and water level (-0.49) versus FoS. In the case of independent variable, the correlation 
between water level and FoS strengthened to −0.85, while the correlation between precipitation and FoS 
weakened to −0.18.  

Based on the previous results, it can be concluded that during the wet season, the correlation between 
precipitation and water level leads to a more conservative outcome, expressed as a lower factor of safety (FoS) 
for dike stability. This finding is consistent with real-world conditions, where periods of higher rainfall typically 
occur together with higher local lake water levels caused by runoff from around the lake, direct rainfall itself, and 
polder drainage pumping into the lake. This conclusion is based on the assumption that the water level dataset 
used in this study represents local water level observations, where in reality the actual local water level at this 
specific dike section may differ slightly depending on wind magnitude and direction. The main recommendation 
for dike assessment based on this study is that the correlation between precipitation and water level should be 
explicitly considered in stability analyses, since neglecting this dependence may underestimate phreatic levels 
within the dike and result in a less conservative estimate of the factor of safety. 
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Chapter 1.  Introduction 

1.1. Research Context 
In December 2023 and January 2024, rivers and lakes in Netherlands experienced relatively high-water levels 
(Expertise Netwerk Waterveiligheid, 2024), leading to increased alertness from water authorities and significant 
media attention. According to Expertise Netwerk Waterveiligheid (ENW) Report, there are three main events that 
caused significant load on Dutch dikes during this period: sea storm surge, high water level on the main and 
regional river, and prolonged rainfall. Based on observational data from Lobith, the peak water level in the Rhine 
River was relatively low at around 1432 cm NAP (Figure 1.1), which corresponds to a return period of 
approximately 5 years. The peak discharge at the end of December 2023 was about 7500 m³/s (Figure 1.2), which 
corresponds to a return period of 4 years. In comparison, the Overijssel Vecht River experienced a peak 
discharge of approximately 400 m³/s, which corresponds to a return period of 50 years. Additionally, according 
to GRADE simulations at the Lobith station, the average discharge over 51 days for the Rhine River was estimated 
at 5102 m³/s, corresponding to a return period of 40 years (Expertise Netwerk Waterveiligheid, 2024). Although 
the flood event did not cause substantial problems, it emphasized the critical role of flood defences, when faced 
with multiple extreme events at the same time. 

 
Figure 1.1 Water Level Measurement at Lobith (from Rijkswaterstaat Waterinfo) 

 
Figure 1.2 Discharge Measurement at Lobith (from Rijkswaterstaat Waterinfo) 

Dike safety standards in the Netherlands are assessed based on the probability of failure of the entire flood 
defence system, defined as the loss of the dike’s ability to retain water and protect the surrounding area. Various 
failure mechanisms must be considered during the assessment, one of which is dike inner slope instability. This 
failure mechanism occurs when water infiltrates the dike body due to groundwater recharge, local rainfall, or 
high river/lake water levels on the outer side of the dike. 

During the December 2023 – January 2024 period, exceptionally high amount of rainfall in Rhine basin led to 
increased river discharge. According to daily rainfall record in Heino (Figure 1.3), while no extreme peak observed 
during November 2023 - January 2024, the prolonged rain with moderate to high intensity plus sharp peak at the 
end of December 2023 caused high river discharge for longer than usual duration. At the same time, multiple 
storms raised sea levels outside the Afsluitdijk (shown in Figure 1.4, where increase of sea level observed during 
December 2023), limiting discharge capacity. This resulted in sustained high-water levels in both the IJssel River 
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and IJssel Lake (as shown in Figure 1.5, where increased water level reaching beyond 60 cm+NAP is observed 
starting from middle of December 2023 and decreasing at first half of January 2024). The simultaneous 
occurrence of high water levels and high precipitation increased pore water pressure, represented by the 
phreatic line and head lines within the dike, potentially leading to slope instability. 

 
Figure 1.3 Daily Rain Intensity at Heino Rain Station  (from Rijkswaterstaat Waterinfo) 

 
Figure 1.4 Water Level Measurement at Kornwerderzand buiten (Afsluitdijk – Wadden Sea side) (from Rijkswaterstaat Waterinfo) 

 
Figure 1.5 Water Level Measurement at Kornwerderzand binnen (Afsluitdijk – IJsselmeer side) (from Rijkswaterstaat Waterinfo) 

Although no dike breaches were observed during this period, concerns have arisen about the combination of 
loading scenarios—specifically, the compound event between river/lake water levels and local precipitation 
intensity—that contributed to increased pore water pressure and potential dike instability. Evaluating these load 
combinations in the context of the December 2023 – January 2024 flood event can provide valuable insights into 
the event’s extremity based on failure probability estimations. 

1.2. Research Scope 
This research will focus on a dike section built around Markermeer, which influenced by lake water level, local 
precipitation and evapotranspiration, IJssel river discharge, storm surge at the Afsluitdijk, and polder water level. 
The dike section that will be used is chosen according to data availability. Also, between multiple dike failure 
mechanisms, inner slope instability case of failure probability is assessed in this research. 
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1.3. Research Objective and Research Questions 
From the research context, the following main research objective is formulated: “To assess how the Effect of 
Hydraulical and Meteorological Correlations towards Dike Stability during Extreme Events.”  

And the following sub research questions are proposed to answer the research objective: 

1. What are the variables influencing the phreatic line, which also influence dike stability in dike section, in 
Markermeer and IJsselmeer region? 

2. Is there any correlation between hydraulic and meteorological variables that influence dike stability? 
3. Based on the proposed stochastic variables, what is the effect of correlation between water level and 

precipitation for the phreatic level in extreme conditions for dike stability in Markermeer during the wet 
season (Dec 2023 – Jan 2024)? 

1.4. General Approach 

 
Figure 1.6 Theoretical Framework 

To answer the previous Research Question, theoretical framework is composed (Figure 1.6). First, few variables 
that influence phreatic level is proposed, focused on lake water level, local precipitation and evapotranspiration, 
with soil parameters and dike characteristics to support calculation of Factor of Safety. Then, to answer 
Research Question 2 the interdependency will be modelled using Copula. Research Question 3 will be answered 
using time series model to create and simulate Phreatic Line, which then used as an input to calculate dike 
factor of safety. The result then compared to determine return period plot, which will be used to answer the main 
research objective to determine how extreme the high-water event was. 

1.5. Outline 
After the Introduction in Chapter 1, the theoretical background and analysis of existing relevant research are 
presented in Chapter 2 – Literature Study. The proposed theoretical framework is then detailed and explained 
further in Chapter 3 – Methodology and Approach. The location used for this study is described in Chapter 4 – 
Case Study and Datasets. The results of the analysis are shown in Chapter 5 – Result, and further discussion, 
including limitations and assumptions, is provided in Chapter 6 – Discussion. Lastly, the conclusion and 
recommendations based on this study are presented in Chapter 7 – Conclusion and Recommendation. 
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Chapter 2. Literature Study 

2.1. Hydrology and Meteorological Variables 
The stability of dike slopes depends on the condition of the phreatic line, which is defined as the groundwater 
table within the dike. This phreatic line is crucial because its location, along with pore pressures, directly 
impacts the inner slope macro stability of a dike. An increase in groundwater pressure, commonly observed 
during flooding or high-water events, reduces the effective stress in the soil and can lead to lower shear forces 
and increased driving forces, ultimately threatening the dike's structural integrity and potentially causing slope 
instability. (Hassan & Ismail, 2018) 

The phreatic level inside a dike, and its interactions with surrounding water bodies like the IJssel Lake and River 
system, are governed by a combination of external hydraulic loads, internal dike material properties, and 
climatic conditions. 

2.1.1. Water Level Fluctuations and Hydraulic Loads 
The most significant influence on the phreatic line's position comes from the water levels on both the inner and 
outer sides of the dike. These water levels dictate the entry and exit points of the phreatic line within the dike 
body. During high water waves, there is a delay in the response of pore pressures inside the dike, a phenomenon 
known as the "lingering effect," which is particularly pronounced in low-permeability clay dikes. 

Studies have shown that during high water waves, the estimated phreatic line schematizations can be exceeded 
at the inner toe of homogeneous clay dikes. This suggests that current schematic estimations may 
underestimate the actual phreatic line in these areas, especially when sub-soil thickness is thinner (e.g., 1 meter 
vs. 4 meters), with exceedance occurring as early as 12 to 20 days into a normative water level simulation. For 
sandy dikes, however, these schematic estimations are generally not exceeded. (Woerkom, 2023) 

The rate of water level fluctuation can affect the changing rate of the water table within piezometer tubes. While 
some models reasonably estimate the phreatic line under uniform lowering conditions, they may underestimate 
it when the lowering rate is very large. The peak hydraulic heads in canal dikes, for instance, are influenced by 
various weather events and the duration of precipitation. (Yan et al., 2010) 

2.1.2. Precipitation and Evapotranspiration 
Hydrological processes like precipitation and evapotranspiration are key determinants of water inflow and 
outflow in a dike, thus controlling the phreatic line's height. 

Precipitation 

Not all precipitation infiltrates directly into the dike body; a considerable portion of rainfall can result in surface 
runoff, particularly during intense or prolonged events. However, the water that does infiltrate contributes to 
raising the groundwater table inside the dike, leading to an elevated phreatic line. This effect tends to be most 
noticeable at the inner and outer toes of the dike, where water accumulates and infiltration pathways are 
concentrated. 

The extent of infiltration is influenced significantly by the composition of the dike’s surface layers. Dikes with 
less permeable surfaces, such as asphalt covers, dense clay layers, or compacted soils, tend to resist water 
penetration, limiting infiltration and reducing the potential for a rise in the phreatic level. Conversely, dikes with 
more permeable surfaces such as sand layers or grass covers allow rainwater to infiltrate more readily. Grass-
covered surfaces, in particular, can facilitate infiltration through porous soil structures and preferential flow 
paths created by root systems or small cracks in the surface. 

The properties of the unsaturated zone above the phreatic line also play a critical role in determining how quickly 
infiltrated rainfall reaches the groundwater table. The pore size distribution and capillary characteristics of this 
zone control the rate of downward water movement. Coarse-grained materials enable faster percolation, while 
fine-grained soils slow infiltration due to higher water retention in small pores. 
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During periods of heavy or prolonged rainfall, the infiltration capacity of the dike material may be exceeded, 
causing a significant rise in the phreatic level within the dike. According to Technische Rapport Waterspanningen 
bij Dijklichamen (TRWD), under extreme rainfall conditions, the phreatic line can rise by approximately 0.5 to 1.0 
meters, particularly between the inner toe and the inner crest of the dike. Simulations further show that in such 
conditions, the phreatic surface near the inner crest can be up to 1 meter higher compared to dry periods, 
reflecting the combined effect of increased infiltration and lateral groundwater flow within the dike body. 
(Denkers, 2021) 

Evapotranspiration 

The interaction between soil, vegetation, and atmospheric conditions has been identified as a critical factor 
affecting the hydraulic and mechanical behavior of dike structures. This soil–vegetation–atmosphere (SVA) 
system influences not only the moisture content within the dike body but also the overall water balance, flow 
patterns, and pore water pressure distribution. In particular, processes such as evapotranspiration and drought-
induced loss of moisture significantly alter the hydraulic response of dikes during varying climatic conditions. 
(Jamalinia et al., 2021) 

Extended periods of drought lead to progressive drying of the dike’s surface layers through evaporation and 
transpiration. As moisture is lost from fine-grained soils, shrinkage occurs, leading to the formation of surface 
and subsurface cracks. These shrinkage cracks represent a significant structural weakening of the dike material, 
creating discontinuities that compromise cohesion and shear strength. Moreover, these cracks function as 
preferential flow paths during subsequent rainfall or high-water events, effectively bypassing the natural 
filtration capacity of the unsaturated zone. The presence of such cracks increases the hydraulic conductivity of 
the dike body, allowing infiltrating water to move more rapidly and reach deeper soil layers where it contributes 
to elevated pore water pressures. (Jamalinia et al., 2021) 

The development of high pore pressures within the dike due to rapid infiltration through cracks can substantially 
reduce the effective stress in the soil structure. This reduction in effective stress lowers the soil’s shear strength 
and, consequently, the overall factor of safety of the slope, increasing the risk of slope failure or internal erosion 
processes. According to Wang et al. (2022), the hydraulic response of cracked soil is markedly different from 
that of intact structures, with infiltration and seepage patterns being governed by the presence, orientation, and 
extent of the crack network. As crack network grew, the water flow more rapidly in the path formed by the crack 
and infiltrate the subsoil quicker compared to less permeable soil material.  

In addition to its impact on hydraulic behavior, drought-induced cracking also affects the vegetation cover on 
the dike surface. Reduced soil moisture and physical disruption of the root zone from cracking typically result in 
a decline in vegetation density. This is reflected in a lower Leaf Area Index (LAI), which indicates diminished 
canopy coverage and a reduced capacity for evapotranspiration. As vegetation thins, the storage capacity of the 
root zone decreases, leading to further soil drying and potentially accelerating crack development. (Sammis et 
al., 1986) 

2.1.3. Internal Dike Material Properties (Soil Layers) 
The behavior of groundwater within dikes is strongly influenced by the permeability and hydraulic conductivity 
of the soil layers that compose the structure. Permeability governs the ease with which water moves through the 
soil, and it plays a critical role in determining the shape and position of the phreatic line, particularly during 
fluctuations in river or groundwater levels. Clay, often characterized as a low-permeability material, typically 
exhibits anisotropic hydraulic conductivity, with horizontal conductivity generally exceeding vertical 
conductivity due to its laminated structure and depositional environment (Clennell et al., 1999). This anisotropy 
becomes especially important in understanding the hydraulic response of a dike. A low hydraulic conductivity 
limits both infiltration and drainage rates, causing the phreatic line to remain relatively high and stable 
throughout the year. This slow response time is a critical consideration during flood events, where the rapid rise 
of river water may not be immediately matched by internal pore water adjustments. In such cases, horizontal 
hydraulic conductivity becomes the dominant factor influencing the lateral flow of water, whereas vertical 
conductivity is more relevant in scenarios involving direct infiltration from precipitation. (Adji et al., 2023) 
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Another important parameter affecting groundwater dynamics within dikes is the volumetric specific storage 
capacity. This property determines the amount of water a soil can store or release in response to changes in 
hydraulic head. Soils with lower storage capacity tend to exhibit a more stable and elevated phreatic line, as they 
have a reduced ability to absorb transient fluctuations in water levels (Pešková & Štibinger, 2015). In 
combination with hydraulic conductivity, specific storage capacity governs the rate at which the phreatic surface 
migrates through the dike body in response to external hydraulic stimuli, such as high river stages or heavy 
rainfall. A reduced storage capacity, therefore, can lead to prolonged saturation within the dike, contributing to 
elevated pore pressures and reduced effective stress, particularly during extended high-water periods. 

The internal structure of a dike further complicates the groundwater behavior due to inherent soil heterogeneity. 
Unlike engineered embankments constructed with uniform materials, many dikes have evolved over time 
through a series of repairs and reinforcements using locally available soils. This historical layering and variability 
lead to significant heterogeneity in both hydraulic and mechanical properties across the dike body. Such 
variability must be accounted for in stability assessments, as ignoring it can result in misleading estimates of 
dike safety. For instance, the combination of a highly permeable dike fill material overlying a relatively 
impermeable foundation or subsurface layer can restrict the vertical dissipation of pore pressures. This 
configuration can trap water within the dike body, particularly after high river levels recede, and lead to sustained 
high pore water pressures. These conditions pose a serious risk to slope stability, especially on the landward 
side of the dike, where delayed dissipation of pore pressure can result in slope failure during rapid drawdown 
events. 

2.1.4. Dike Geometry and Sub-soil Conditions  
The geometry of the dike, including its slope, height, and width, in conjunction with the characteristics of the 
underlying sub-soil, plays a significant role in controlling the behavior of the phreatic line and, by extension, the 
overall stability of the dike structure. These physical attributes influence both the hydraulic response of the dike 
to external water level changes and the internal distribution of pore pressures within the dike body. 

The steepness of the dike slope is particularly critical in determining slope stability. Steeper dikes tend to 
facilitate more efficient surface and internal drainage, resulting in generally lower phreatic levels. This reduced 
saturation in the upper part of the slope contributes to improved stability under both static and dynamic loading 
conditions. In contrast, flatter slopes may retain more moisture, potentially leading to higher pore pressures and 
reduced shear strength, thereby increasing the risk of slope instability. The height of the dike also plays a 
supporting role, as it governs the hydraulic gradient and influences the total volume of water that can be stored 
or transmitted within the structure. (Denkers, 2021) 

Dike width is another influential geometric factor. Wider dikes typically exhibit higher phreatic lines due to their 
greater internal volume and storage capacity. This larger volume results in slower drainage rates and a more 
gradual response to external hydraulic forcing, such as river water level fluctuations or rainfall infiltration. As a 
result, wide dikes may experience prolonged periods of saturation, especially under sustained high-water 
conditions, which can elevate internal pore pressures and impact slope stability. 

In addition to geometry, the sub-soil conditions beneath the dike exert a substantial influence on groundwater 
dynamics. The behavior of the phreatic line can vary depending on both the composition and thickness of the 
sub-soil layers. For clay-dominated sub-soils, greater thickness tends to result in a higher and more variable 
phreatic line. The low permeability of clay restricts vertical drainage, causing water to accumulate and persist 
within the dike structure. Over time, this can lead to significant seasonal variations in saturation and pore 
pressure. In contrast, for sand dikes, which generally exhibit higher permeability, the influence of underlying clay 
sub-soil thickness on the phreatic line appears to be negligible. The more permeable nature of sandy soils allows 
for rapid infiltration and drainage, resulting in a more dynamic and responsive phreatic behavior. (Nishiie et al., 
2019) 

2.1.5. Markermeer and Ijsselmeer Condition 
The phreatic levels of dikes surrounding the Markermeer and IJsselmeer are strongly affected by the water levels 
of these adjacent lakes. In the Markermeer, precipitation serves as the primary source of water input, 
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supplemented by inflows through sluices and limited river discharge. In contrast, the IJsselmeer primarily 
receives its water from river discharges, particularly from the IJssel, Meppelerdiep, Eem, and Laak rivers, which 
together contribute approximately 85% of its total inflow. Regarding water outflow, the Markermeer 
predominantly loses water through evaporation and sluice operations. Meanwhile, the IJsselmeer primarily 
discharges water via gravity flow towards the North Sea, representing its main mechanism for water level 
regulation. (Goossens, 2022) 

Other than water source itself, wind also plays a significant role in shaping the hydrodynamics and water level 
fluctuations within large, shallow lakes such as the Markermeer and IJsselmeer. Due to their extensive surface 
areas and shallow depths, these lakes are particularly sensitive to wind-driven forces. Wind set-up, also known 
as wind skewness or storm effect, occurs when persistent winds push water toward one side of a lake, raising 
water levels on the windward side and lowering them on the leeward side, creating a sloping water surface. The 
strength of this effect depends on wind speed, water depth, and fetch length—the distance over which wind 
blows across the water. In the IJsselmeer, strong south-westerly winds can raise water levels by over 1.5 meters 
on the windward side while lowering them by about 1 meter on the opposite side. In the Markermeer, easterly 
winds can cause level differences of up to 15 centimeters. This wind-driven effect weakens with increasing water 
depth. During storms, water levels can rise and fall rapidly, sometimes changing by over a meter in a short 
period, while waves of up to 1.5 meters can develop quickly due to the lakes’ large fetch. (Rijkswaterstaat, 2025; 
Goossens, 2022) 

2.2. Interdependence and Correlation Measures 
Interdependence describes relationship between two or more variables, and how a change in variable(s) affect 
other variable(s). One approach that can be used to determine interdependence is by calculating correlation. 
Correlation is a statistical measure that quantifies the degree of dependency between two variables. A positive 
correlation indicates that an increase in one variable is associated with an increase in the other, whereas a 
negative correlation signifies that an increase in one variable corresponds to a decrease in the other. A value 
close to zero suggests little to no linear relationship between the variables. (Czado, 2019). 

To assess interdependency between each related variable, correlation between variables will be calculated. 
There are three measures that will be applied: Pearson’s 𝜌𝜌; Spearman’s 𝜌𝜌𝑠𝑠; Kendall’s 𝜏𝜏. 

Table 2.1 Correlation Measures Formula 

Correlation measures Formula Note 

Pearson’s 
ρ�(𝑋𝑋1,𝑋𝑋2) =

∑ (𝑥𝑥𝑖𝑖1 − 𝑥𝑥1���)(𝑥𝑥𝑖𝑖2 − 𝑥𝑥2���)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖1 − 𝑥𝑥1���)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑥𝑥𝑖𝑖2 − 𝑥𝑥2���)2𝑛𝑛

𝑖𝑖=1
 

Range of interval [-1,1] 
For random sample 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2 
with size 𝑛𝑛 and 𝑖𝑖 = 1, … ,𝑛𝑛  
 x1� = 1

n
∑ 𝑥𝑥𝑖𝑖1𝑛𝑛
𝑖𝑖=1   

𝑥𝑥2��� = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1   

Spearman’s 
ρs� (𝑋𝑋1,𝑋𝑋2) =

∑ (𝑟𝑟𝑖𝑖1 − 𝑟𝑟1�)(𝑟𝑟𝑖𝑖2 − 𝑟𝑟2� )𝑛𝑛
𝑖𝑖=1

�∑ (𝑟𝑟𝑖𝑖1 − 𝑟𝑟1�)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑟𝑟𝑖𝑖2 − 𝑟𝑟2� )2𝑛𝑛

𝑖𝑖=1
 

Range of interval [-1,1] 
For random sample 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2 
with size 𝑛𝑛; ranks 𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2  and 
𝑖𝑖 = 1, … ,𝑛𝑛  
𝑟𝑟1� = 1

𝑛𝑛
∑ 𝑟𝑟𝑖𝑖1𝑛𝑛
𝑖𝑖=1   

𝑟𝑟2� = 1
𝑛𝑛
∑ 𝑟𝑟𝑖𝑖2𝑛𝑛
𝑖𝑖=1   

Kendall’s τ�(𝑋𝑋1,𝑋𝑋2) =
𝑁𝑁𝑐𝑐 − 𝑁𝑁𝑑𝑑

�𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑑𝑑 + 𝑁𝑁1 × �𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑑𝑑 + 𝑁𝑁2
 

 

Range of interval [-1,1] 
For random sample 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2 
with size 𝑛𝑛 and 𝑖𝑖 = 1, … ,𝑛𝑛  
𝑁𝑁𝑐𝑐  = concordant pairs 
𝑁𝑁𝑑𝑑  = discordant pairs 
𝑁𝑁1,2 = number of extra pairs 
for 𝑥𝑥1,2 

Pearson’s rho describes whether the two variables linearly correlated as long as the dataset follows normal 
distribution. If nonlinear transformation is applied to the variables, the Pearson’s rho does not stay the same. 
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Value of -1 describe perfectly decreasing linear relationship and +1 for perfectly increasing linear relationship. 
Value of 0 means no linear relationship.  

Meanwhile, Spearman’s rho and Kendall’s tau are known as rank-based correlation measure. Both methods use 
order of the value to determine the relation between two variables instead of the value itself. Due to this 
characteristic, the value does not depend on distribution of each variable (marginal distribution) and only 
depend on the parameters of its copula distribution. 

2.3. Copula Theory and Surrogate Time Series 
2.3.1. Copula Theory 
While correlation can quantify the strength and direction of the relationship between two variables, correlation 
by itself is insufficient for capturing complex dependencies, especially in non-linear relationships and extreme 
events in the tails of distributions. Therefore, joint distribution function is introduced in the form of copula. 
Following Sklar’s Theorem, copula can be used to characterize the dependency between non-dimensional 
variables, or to build multivariate distribution (Czado, 2019). 

According to Sklar’s Theorem, for a set of random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 with each variable has their own 
marginal distribution 𝐹𝐹𝑋𝑋1(𝑥𝑥),𝐹𝐹𝑋𝑋2(𝑥𝑥), … . ,𝐹𝐹𝑋𝑋𝑛𝑛(𝑥𝑥), then the multivariate joint cumulative distribution function 
(CDF) can be represented as copula 𝐶𝐶: 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝐶𝐶 �𝐹𝐹𝑋𝑋1(𝑥𝑥1),𝐹𝐹𝑋𝑋2(𝑥𝑥2), … . ,𝐹𝐹𝑋𝑋𝑛𝑛(𝑥𝑥𝑛𝑛)� (4 − 1) 

and the joint probability distribution function (PDF) written as: 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑐𝑐 �𝐹𝐹𝑋𝑋1(𝑥𝑥1),𝐹𝐹𝑋𝑋2(𝑥𝑥2), … . ,𝐹𝐹𝑋𝑋𝑛𝑛(𝑥𝑥𝑛𝑛)� 𝑓𝑓1(𝑥𝑥1)𝑓𝑓2(𝑥𝑥2) … 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) (4 − 2) 

where 𝑐𝑐 is copula density and 𝑓𝑓 is the PDF of 𝑋𝑋. 

To determine absolute limits of dependence between random variables, Fréchet-Hoeffding bound theorem is 
applied:  

For any bivariate copula 𝐶𝐶(𝑢𝑢, 𝑣𝑣) with 𝑢𝑢, 𝑣𝑣 ∈ [0,1], the following inequation should be satisfied: 

𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑢𝑢 + 𝑣𝑣 − 1) ≤ 𝐶𝐶(𝑢𝑢, 𝑣𝑣) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢, 𝑣𝑣) (4 − 3) 

The lower bound represent perfect negative dependence (when one variable increase, other variable decrease) 
and the upper bound represent perfect positive dependence (both variables increase or decrease together). 

Here is the bivariate copula family used in this study, following the availability from pyvinecopulib library: 

Table 2.2 Bivariate Family (adapted from Czado, 2019 and Joe, 1997) 

Bivariate Family Copula CDF Parameters 

Gaussian 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; ρ) = Φ2(Φ−1(𝑢𝑢1),Φ−1(𝑢𝑢2); ρ) Φ2(𝑥𝑥, 𝑦𝑦; ρ) = CDF of standard 
bivariate normal distribution with 
correlation ρ 
Φ−1(⋅) = inverse CDF of standard 
normal distribution 
No tail dependence 

Student’s t 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; ν, ρ) = � �
𝑡𝑡(𝑇𝑇ν−1(𝑣𝑣1),𝑇𝑇ν−1(𝑣𝑣2); ν, ρ)
𝑡𝑡ν�𝑇𝑇ν−1(𝑣𝑣1)�𝑡𝑡ν�𝑇𝑇ν−1(𝑣𝑣2)�

𝑢𝑢2

0
𝑑𝑑𝑣𝑣1𝑑𝑑𝑣𝑣2

𝑢𝑢1

0

= � � 𝑡𝑡(𝑥𝑥1, 𝑥𝑥2; ν, ρ)𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2
𝑏𝑏2

−∞

b1

−∞
 

𝑡𝑡(𝑥𝑥, 𝑦𝑦;𝑣𝑣, ρ) = CDF of standard 
bivariate Student's t-distribution 
with correlation ρ and degrees of 
freedom 𝑣𝑣 
𝑇𝑇𝑣𝑣−1(⋅) = inverse CDF of the 
standard univariate Student's t-
distribution 
Upper and Lower tail dependence 

with coefficient 2𝑡𝑡𝑣𝑣 �−√𝑣𝑣 + 1�1−ρ
1+ρ

� 

Clayton 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; 𝛿𝛿) = �𝑢𝑢1−δ + 𝑢𝑢2−δ − 1�−1/δ
 −1 <  δ <  ∞ 
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δ → 0 = independence copula 
where 𝐶𝐶(𝑢𝑢1,𝑢𝑢2) = 𝑢𝑢1 ⋅ 𝑢𝑢2 
δ → ∞ = positive dependence  
δ → −1 = negative dependence 
Lower tail dependence with 
coefficient 2−1/δ 

Gumbel 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; 𝛿𝛿) = exp �−�(− ln𝑢𝑢1)δ + (− ln𝑢𝑢2)δ�1/δ
� 𝛅𝛅 ≥  𝟏𝟏  

δ → ∞ = positive dependence 
δ =  1 = independence 
Upper tail dependence with 
coefficient 2 − 21/δ 

Frank 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; 𝛿𝛿) = −
1
δ

ln�1 +
�𝑒𝑒−δ𝑢𝑢1 − 1��𝑒𝑒−δ𝑢𝑢2 − 1�

𝑒𝑒−δ − 1
� 

−∞ ≤  δ ≤  ∞ 
𝛿𝛿 → 0 = independence copula 
where 𝐶𝐶(𝑢𝑢1,𝑢𝑢2) = 𝑢𝑢1 ⋅ 𝑢𝑢2 
𝛿𝛿 → ∞ = positive dependence  
𝛿𝛿 → −∞ = negative dependence 
No tail dependence 

Joe 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; 𝛿𝛿) = 1 − �(1 − 𝑢𝑢1)δ + (1 − 𝑢𝑢2)δ − (1 − 𝑢𝑢1)δ(1 − 𝑢𝑢2)δ�1/δ
 𝜹𝜹 ≥  𝟏𝟏  

𝛿𝛿 → ∞ = positive dependence 
𝛿𝛿 =  1 = independence 
Upper tail dependence with 
coefficient 2 − 21/𝛿𝛿  

BB1 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; θ, δ) = �1 + ��𝑢𝑢1−θ − 1�δ + �𝑢𝑢2−θ − 1�δ�
1/δ
�
−1/θ

 
θ >  0;  δ ≥  1 
θ → 0; δ → 1 = independence 
θ → ∞; δ → ∞ = positive dependence 
Upper tail dependence with 
coefficient 2 − 21/δ 
Lower tail dependence with 
coefficient 2−1/(θδ) 

BB6 
𝐶𝐶(𝑢𝑢1,𝑢𝑢2; θ, δ) = 1 − �1 − exp �− ��− log�1 − 𝑢𝑢1θ��

δ + �− log�1 − 𝑢𝑢2θ��
δ�

1
δ��

1
θ

 
1 ≤  θ; δ <  ∞ 
𝜃𝜃 → 1; 𝛿𝛿 → 1 = independence 
𝜃𝜃 → ∞; 𝛿𝛿 → ∞ = positive dependence 
Upper tail dependence with 
coefficient 2 − 21/(θδ) 

BB7 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; θ, δ) = 1 − �1 − ��1 − (1 − 𝑢𝑢1)θ�−δ + �1 − (1 − 𝑢𝑢2)θ�−δ − 1�
−1/δ

�
1/θ

 δ >  0;  θ ≥  1 
δ → 0;θ → 1 = independence 
δ → ∞;θ → ∞ = positive dependence 
Upper tail dependence with 
coefficient 2−1/δ independent of θ 
Lower tail dependence with 
coefficient 2 − 21/θ independent of δ 

BB8 𝐶𝐶(𝑢𝑢1,𝑢𝑢2; θ, δ) = δ−1 �1 − �1 − (1 − δ)θ�−1�1 − (1 − δ𝑢𝑢1)θ��1 − (1 − δ𝑣𝑣1)θ��
1
θ

 
0 <  δ ≤  1;  𝜃𝜃 ≥  1 
𝛿𝛿 → 0;𝜃𝜃 → 1 = independence 
𝛿𝛿 → 1;𝜃𝜃 → ∞ = positive dependence 
No tail dependence except when δ =
 1 

 

Some copula family like Gaussian and Frank has no tail dependence, which means that extreme events in one 
variable do not change the probability of extreme events in other variable. Illustration of tail dependence for 
some copula family is shown in the following figure: 

 
Gaussian 

 
Student’s t 

 
Clayton 

 
Gumbel 
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Figure 2.1 Bivariate Copula density of some known Copula Family (taken from Czado, 2019) 

2.3.2. Goodness-of-fit Measurement 
To evaluate and determine goodness-of-fit, two statistical measures are used: Akaike Information Criterion 
(AIC) and Cramér-von Misses criteria.  

AIC check the quality of each copula family related to other copula family, with AIC value calculated either 
from maximum likelihood value (formula 4-4) or from mean square error (formula 4-5 and 4-6): 

𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐,𝑀𝑀𝑀𝑀𝑀𝑀 = 2𝑚𝑚 − 2𝑙𝑙𝑙𝑙(𝐿𝐿) (4 − 4) 

MSEC =
1
𝑛𝑛
��𝐶𝐶𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) − 𝐶𝐶Θ𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖)�

2
𝑛𝑛

𝑖𝑖=1

 (4 − 5) 

AICC, MSE = 2𝑚𝑚 + 𝑛𝑛 log(MSEC) (4 − 6) 

where 𝑚𝑚 is dimension of parameters, 𝐿𝐿 is maximum likelihood estimate from the copula model with parameter 
θ in the form of 𝐿𝐿(θ;𝑢𝑢, 𝑣𝑣) =  ∏ 𝑐𝑐(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖;θ)𝑛𝑛

𝑖𝑖=1 , 𝑛𝑛 is sample size, 𝐶𝐶𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) is the empirical CDF and 𝐶𝐶θ𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) is 
theoretical CDF (Chen, 2019). 

Cramér-von Mises criteria is a non-parametric test to estimate goodness-of-fit from empirical CDF compared 
to theoretical CDF: 

𝐷𝐷𝑛𝑛2 = � �𝐶𝐶𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) − 𝐶𝐶Θ𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖)�
2𝑑𝑑𝐶𝐶Θ𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖)

∞

−∞
(4 − 7) 

with empirical value of the test statistic based on the sample is: 

𝑑𝑑𝑛𝑛 = 𝑛𝑛𝐷𝐷𝑛𝑛2 =
1

12𝑛𝑛
+ ��

2𝑖𝑖 − 1
2𝑛𝑛

− 𝐶𝐶𝑛𝑛(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1

 (4 − 8) 

Hypothesis 𝐻𝐻0 where 𝐶𝐶𝑛𝑛(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) = 𝐶𝐶Θ𝑛𝑛(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) will be accepted if 𝑑𝑑𝑛𝑛 ≥ 𝑑𝑑𝛼𝛼  where 𝑑𝑑𝛼𝛼  is 1 minus α-quantile order 
of 𝐷𝐷𝑛𝑛2 (OpenTURNS, n.d.). 

2.3.3. Conditional CDF in Bivariate Copula (h-function) 
From the copula theory explained in Section 2.3.1, conditional distributions can be described directly as partial 
derivative of bivariate copula 𝐶𝐶(𝑢𝑢, 𝑣𝑣): 

𝑃𝑃(𝑈𝑈 ≤ 𝑢𝑢|𝑉𝑉 = 𝑣𝑣) = ℎ(𝑢𝑢, 𝑣𝑣) =
𝜕𝜕𝜕𝜕(𝑢𝑢, 𝑣𝑣)
𝜕𝜕𝜕𝜕

  (4 − 10) 

In the case of conditional exceedance probability, then the formula can be written as: 

𝑃𝑃(𝑈𝑈 > 𝑢𝑢|𝑉𝑉 = 𝑣𝑣) = 1 − ℎ(𝑢𝑢, 𝑣𝑣) = 1 −
𝜕𝜕𝜕𝜕(𝑢𝑢, 𝑣𝑣)
𝜕𝜕𝜕𝜕

 (4 − 11) 

Proof of the bivariate conditional distribution (h-function) can be found in Czado (2019).  
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2.3.4. Surrogate Time Series via Rank-exact Back Mapping 
Surrogate time series is synthetic time series that preserve the original marginal distribution, while modifying or 
removing certain properties or structures of its dataset. According to Schreiber and Schmitz (1999), this 
approach is often termed constrained randomization where specific features are held constant and others 
deliberately randomized. Surrogate series are commonly used in climatology, hydrology, and nonlinear time 
series analysis to test hypotheses about system behaviour, like the presence of nonlinearity or dependence. 

One method to generate surrogate time series is by using rank-exact back mapping. This method involves 
permuting observed values according to a new ordering derived from an independent ranking variable, thereby 
preserving the full marginal distribution (quantiles, extremes, histogram) while altering temporal alignment or 
dependence structures. For example, one study applied a rank-based surrogate generation technique to test 
multifractality in water-level records by remapping data via a surrogate Gaussian process that preserved 
empirical order statistics (Wu et al., 2018) 

In this study, rank-exact back mapping is applied together with conditional exceedance probability to remove 
the dependence between two variables, while keeping the marginal distribution. For each pair of 𝑢𝑢 and 𝑣𝑣 where 
both variables are correlated, the conditional exceedance probability calculated from h-function is used to 
mapping the value and finding its unconditional equivalents under independence (uncorrelated) variable: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈 > 𝑢𝑢|𝑉𝑉 = 𝑣𝑣) = 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑈𝑈 > 𝒖𝒖) (4 − 12) 

To extend this mapping across the entire time series, both the correlated variable 𝑢𝑢 and their conditional 
exceedance probabilities 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈 > 𝑢𝑢|𝑉𝑉 = 𝑣𝑣) are sorted, and the smallest 𝑢𝑢 is assigned to the smallest 
conditional exceedance probability, the second smallest to the second conditional probability, and so forth. This 
ensures that the recreated time series exactly preserves the marginal distribution while removing the statistical 
dependence on 𝑣𝑣. The resulting surrogate time series thus represents the uncorrelated case against which the 
effect of dependence can be evaluated.  

2.4. Time Series Analysis by Transfer Function Model 
Time series analysis is described as method to describe relationship between variables by analyzing the past, 
sequentially recorded observations. These observations can be either independent or dependent on previous 
values, with the core idea being to understand the relationship between successive data points. Further, by 
applying stochastic process (evolution of a system over time influenced by random variables), probability 
distribution for the unknown future or past values can be described.  

2.4.1. Transfer Function Model 
According to STOWA (2021), there are two distinct time-series approach used in groundwater modeling: 
statistically oriented Box-Jenkins Transfer Noise, which based on Auto Regressive Moving Average (ARMA) 
model, and physically oriented Predefined Impulse Response Function In Continuous Time (PIRFICT), which 
combines statistic approach with physical hydrology process. Pastas is one example that apply PIRFICT model 
for groundwater hydrology analysis.  

Both models make use of transfer function model, which describes possible output (Y1,2,…) of dynamic system in 
response to input variable (X1,2,…) using impulse response function. This formulation may also include residual 
noise component (Nt), as illustrated in Figure 2.2 Transfer Function Noise Model (adapted from Manzione, 2017). 
The Box-Jenkins Transfer Noise model represents transfer function in an ARMA model form which requires time 
discretization. As a result, the interval sample for both input and output should be identical and therefore 
influence the frequency of whole dataset. 

In contrast, PIRFICT model differs by using integral function to capture the dynamic system in continuous time. 
This integral equation is applied to both impulse response function and noise function. The accuracy and 
performance of this model depends on which type of impulse response function is chosen, if the solution is 
known. The type of functions can be empirical solutions, such as Gamma or Exponential distribution function, 
or physically deterministic function. Due to the continuous nature of the integral approach, it is not necessary 
to synchronize the frequency of the input and output observations. (von Asmuth, 2002) 
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Figure 2.2 Transfer Function Noise Model (adapted from Manzione, 2017) 

The basic model of PIRFICT model is written as: 

ℎ(𝑡𝑡) = ℎ∗(𝑡𝑡) + 𝑟𝑟(𝑡𝑡) + 𝑑𝑑 (5 − 1) 

ℎ∗(𝑡𝑡) = � 𝑆𝑆𝑚𝑚
𝑡𝑡

−∞
(𝜏𝜏)𝜃𝜃𝑚𝑚(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 (5 − 2) 

𝑟𝑟(𝑡𝑡) = � 𝜙𝜙(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑡𝑡

−∞
 (5 − 3) 

where: 

ℎ(𝑡𝑡) = observed value at timestep 𝑡𝑡 (in this case, groundwater head) 

ℎ∗(𝑡𝑡) = contribution of stress to the observed value, relative to 𝑑𝑑 (i.e. stress due to precipitation and/or 
evapotranspiration) 

𝑟𝑟(𝑡𝑡) = residual series 

𝑑𝑑 = base elevation of the model 

𝑆𝑆𝑚𝑚(𝑡𝑡) = time series of related stress 

θ𝑚𝑚(𝑡𝑡) = transfer impulse response function of the related stress 

𝜙𝜙(𝑡𝑡) = noise transfer function 

𝑊𝑊(𝑡𝑡) = continuous white noise (Wiener) process with 𝐸𝐸{𝑑𝑑𝑑𝑑(𝑡𝑡)} = 0;𝐸𝐸[{𝑑𝑑𝑑𝑑(𝑡𝑡)}2] =
𝑑𝑑𝑑𝑑;𝐸𝐸{𝑑𝑑𝑑𝑑(𝑡𝑡1)}𝑑𝑑𝑑𝑑(𝑡𝑡2)} = 0, 𝑡𝑡1 ≠ 𝑡𝑡2 

The noise model used for PIRFICT model should capture irregular spacing of residual series, which is 
equivalent to exponential decay function based on AR(1) model: 

𝜙𝜙(𝑡𝑡) =  �2𝛼𝛼𝜎𝜎𝑛𝑛2𝑒𝑒−𝛼𝛼𝛼𝛼 (5 − 4) 

where 𝛼𝛼 = decay rate parameter and 𝜎𝜎𝑛𝑛2 = residual variance. 

In Pastas, there are multiple response functions that can be used during groundwater analysis, each with 
different usage depending on case study, shown in Table 2.3. 

Table 2.3 Response Functions in Pastas 

No Name Formula Parameters (𝒑𝒑) 

1 Exponential 𝜃𝜃(𝑡𝑡, 𝑝𝑝) =
𝐴𝐴
𝑎𝑎
∙ exp(−

𝑡𝑡
𝑎𝑎

) 𝐴𝐴 (scaling), 𝑎𝑎 (shape) 

2 Gamma 
𝜃𝜃(𝑡𝑡, 𝑝𝑝) = 𝐴𝐴

𝑡𝑡𝑛𝑛−1 ∙ exp(− 𝑡𝑡
𝑎𝑎

)
𝑎𝑎𝑛𝑛 ∙ Γ(𝑛𝑛)

 
𝐴𝐴 (scaling), 𝑎𝑎 (shape), 𝑛𝑛 (shape) 
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3 Hantush 𝜃𝜃(𝑡𝑡, 𝑝𝑝) =
𝐴𝐴

2𝑡𝑡 ∙ 𝐾𝐾0(2√𝑏𝑏)
∙ exp(−

𝑡𝑡
𝑎𝑎
−
𝑎𝑎𝑎𝑎
𝑡𝑡

) 
𝐴𝐴 (scaling), 𝑎𝑎 (shape), 𝑏𝑏 (shape), 
𝐾𝐾0 = modified Bessel function of 
second kind, order zero 

4 Double 
Exponential 𝜃𝜃(𝑡𝑡, 𝑝𝑝) = 𝐴𝐴 ∙ (

1 − 𝛼𝛼
𝑎𝑎1

∙ exp �
−𝑡𝑡
𝑎𝑎1
� +

𝛼𝛼
𝑎𝑎2
∙ exp(−

𝑡𝑡
𝑎𝑎2

)) 𝐴𝐴 (scaling), 𝑎𝑎1 (shape), 𝑎𝑎2 
(shape), 𝛼𝛼 (distribution) 

5 Polder 
𝜃𝜃(𝑡𝑡, 𝑝𝑝) = 𝐴𝐴 ∙ �

𝑎𝑎𝑎𝑎
𝜋𝜋
𝑡𝑡−1.5 ∙ exp(−

𝑡𝑡
𝑎𝑎
−
𝑎𝑎𝑎𝑎
𝑡𝑡

) 
𝐴𝐴 (scaling), 𝑎𝑎 (shape), 𝑏𝑏 (shape) 

6 Four Parameter - Combination of Exponential, 
Gamma, Hantush and Polder 

Gamma function is the most common one to use, because it can model the delay depending on value of 𝑛𝑛, with 
𝑛𝑛 > 1 shows the delay in response. Gamma response function often used for precipitation and evaporation 
stress, while Exponential can be used as simplified Gamma function with less parameters, which can be helpful 
during model optimization and processing time, or with stresses that immediately affect the groundwater head 
(no delay). Hantush response function mainly used in case of pumping well scenario, and Polder response 
function is used for the case of surface water level variation boundary. Double exponential function is intended 
for case of multi-aquifer system. 

2.4.2. Water Balance Model 
The minimum input variable needed to build the PIRFICT groundwater model in Pastas, following STOWA 
guideline, are groundwater level measurement, precipitation and evaporation. Both precipitation and 
evaporation influence toward groundwater storage were proved by Milly (1994) using simple water balance 
model, depicted in Figure 2.3, which shows that local annual water balance is controlled by the distribution of 
supply (precipitation) and demand (evapotranspiration) and balanced by soil water storage (groundwater). In the 
water balance model, precipitation serves as the main source of water input to the land surface, with a portion 
infiltrating the soil profile and contributing to groundwater recharge, depending on soil properties, land cover, 
and antecedent moisture conditions. In contrast, evaporation, together with transpiration from vegetation 
(collectively referred to as evapotranspiration), constitutes the principal mechanism for atmospheric water loss. 

To improve model accuracy, few additional variables can be considered. Artificial groundwater extraction from 
pumping well drilled into the aquifer will influence the phreatic line, especially if the infiltration rate is lower than 
the extraction. Conversely, artificial groundwater recharge via surface flooding or from reclaimed wastewater 
also helps to balance the water demand while keeping the soil water storage constant. In the area with hydraulic 
connection such as rivers and lakes, surface discharge and/or water level can have larger impact toward 
groundwater head via seepage flux mechanism. Han et al. (2019) also shows that there is both discharge and 
recharge relationship between lake and groundwater, which vary by season. The cumulative effect of high-
frequency pumping and recharge activities over extended periods can lead to pronounced long-term shifts in 
groundwater trends. 

 
Figure 2.3 Simple Water Balance Model (Han et al., 2019) 

2.4.3. Recharge Model 
During setting up model, there are few ways to incorporate precipitation and evapotranspiration as an input, 
either separate or combined. Recharge model is a stress model that combines both variables to model 
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groundwater fluctuations. There are four types of Recharge model options included in Pastas library: Linear; 
Berendrecht; FlexModel; Peterson (see Table 2.4). 

Table 2.4 Recharge model formula and their notation 

Recharge model Recharge formula (𝑹𝑹) Notation 

Linear 𝑅𝑅 = 𝑃𝑃 − 𝑓𝑓 ∙ 𝐸𝐸 𝑃𝑃 = precipitation rate 
𝑓𝑓 = evaporation factor, default = 1 
𝐸𝐸 = evaporation 

Berendrecht 𝑑𝑑𝑆𝑆𝑒𝑒
𝑑𝑑𝑑𝑑

=
1
𝐷𝐷𝑒𝑒

(𝑃𝑃𝑒𝑒 − 𝐸𝐸𝑎𝑎 − 𝑅𝑅) 

𝑅𝑅(𝑆𝑆𝑒𝑒) = 𝐾𝐾𝑠𝑠𝑆𝑆𝑒𝑒𝜆𝜆 �1 − �1 − 𝑆𝑆𝑒𝑒
1
𝑚𝑚�

𝑚𝑚

�
2

 

𝑆𝑆𝑒𝑒  = effective degree of water 
saturation (0 < 𝑆𝑆𝑒𝑒 ≤ 1) 
𝐷𝐷𝑒𝑒  = effective thickness of root 
zone, calculated as root zone 
depth multiplied by difference 
between saturated and residual 
soil water content 
𝑃𝑃𝑒𝑒  = net precipitation (gross 
precipitation multiply by 
interception factor) 
𝐸𝐸𝑎𝑎  = actual evapotranspiration 
𝐾𝐾𝑠𝑠 = saturated hydraulic 
conductivity 
𝜆𝜆,𝑚𝑚 = empirical shape factors 
with 𝜆𝜆𝜆𝜆 ≥  −2 

FlexModel 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑒𝑒 − 𝐸𝐸𝑎𝑎 − 𝑅𝑅 

𝑅𝑅 = 𝐾𝐾𝑠𝑠 �
𝑆𝑆
𝑆𝑆𝑢𝑢
�
𝜆𝜆

 

𝑆𝑆𝑢𝑢 = maximum storage capacity 

Peterson 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑒𝑒 − 𝐸𝐸𝑎𝑎 − 𝑅𝑅 

𝑃𝑃𝑒𝑒 = 𝑃𝑃 �1 −
𝑆𝑆

10𝑆𝑆𝑢𝑢
�
𝛼𝛼

 

𝐸𝐸𝑎𝑎 = 𝐸𝐸𝑝𝑝 �
𝑆𝑆

10𝑆𝑆𝑢𝑢
�
𝛾𝛾

 

𝑅𝑅 = 10𝐾𝐾𝑠𝑠 �
𝑆𝑆

10𝑆𝑆𝑢𝑢
�
10𝛽𝛽

 

𝐸𝐸𝑝𝑝 = potential evapotranspiration 
rate 
𝛼𝛼, 𝛾𝛾,𝛽𝛽 = dimensionless parameter  

Berendrecht, FlexModel and Peterson use non-linear model for calculation based on soil-water balance 
equation. These non-linear models have their own strength, with Berendrecht model is one of the earliest non-
linear models based on degree of saturation at the root zone and can predict extreme groundwater event better 
than Linear model. Peterson model improves on the previous model with main goal to simulate episodic 
recharge and droughts. FlexModel use less input (precipitation, potential evaporation, and groundwater levels) 
but still shows remarkable improvement compared to linear model. In this study, both Linear and FlexModel will 
be used and compared. 

2.5. Slope Stability Analysis 
How does groundwater level influence slope stability in dike? To answer this question, the basic concept of slope 
stability should be introduced. Slope instability occurs when shear stress of soil is larger than its shear strength. 
Shear strength of soil is the maximum amount of resistance toward sliding along failure plane within soil mass, 
which is controlled by effective stresses. The Mohr-Coulomb (drained) criteria states: 

𝑠𝑠 = 𝑐𝑐′ + 𝜎𝜎𝑛𝑛′ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙 (5 − 5) 

where 𝑠𝑠 is shear strength, 𝑐𝑐′ is effective cohesion, σ𝑛𝑛′  is effective stress and ϕ is angle of internal friction. This 
equation assumed soil dilatancy equal to angle of internal friction. Effective stress can be calculated from total 



19 

stress of the soil, which is sum of all forces acting on soil (i.e. self-weight, water, external load, etc.) 𝐹𝐹 divided by 
its area 𝐴𝐴, minus pore water pressure 𝑢𝑢: 

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

= 𝜎𝜎′ + 𝑢𝑢 (5 − 6) 

2.5.1. Pore Water Pressure 
Pore water pressure 𝑢𝑢 consists of hydrostatic water pressure (pressure due to gravity) 𝑢𝑢0 and additional water 
pressure due to external load Δ𝑢𝑢. Hydrostatic water pressure at depth 𝑑𝑑 below water surface: 

𝑢𝑢0 = 𝛾𝛾𝑤𝑤𝑑𝑑 (5 − 7) 

with γ𝑤𝑤  is unit water weight (9.81 𝑘𝑘𝑘𝑘/𝑚𝑚3).  

While the total stress is same, the balance between effective stress and pore water pressure will be different 
depending on soil conditions during loading: undrained and drained. In the case of undrained soil, there is no 
change in soil volume such that resistance force from the additional loading is fully carried by pore water 
pressure. However, if the soil is drained, the water inside the soil is allowed to flow over time. Therefore, the 
additional loading will be resisted by the soil granule itself, and the pore water pressure left is only from 
hydrostatic water pressure. (Duncan et al., 2014) 

For soil with cross section consists of multiple layers of clay and sand, there are another factor to be considered 
where water flows vertically upwards from sand layer to clay layer, called seepage. This phenomenon occurs 
when the water pressure in confined sand layer is higher than the clay layer above, causing pressure gradients 
to occur. In the case of upward flow, the calculation of pore water pressure changes to: 

𝑢𝑢 = 𝛾𝛾𝑤𝑤𝑑𝑑(1 − 𝑖𝑖) (5 − 8) 

with 𝑖𝑖 as hydraulic gradient from Darcy’s law, 𝑖𝑖 = −𝑘𝑘
𝑞𝑞

 where 𝑞𝑞 is specific discharge and 𝑘𝑘 is hydraulic 

conductivity (Verruijt, 2018). 

To determine pore water pressure in soil cross section, there are two lines that must be determined: phreatic 
line, based on hydraulic head measured at unconfined aquifer, and piezometric line, measured at confined 
aquifer.  

2.5.2. Bishop Method 
To determine safety factor against slope failure, Bishop limit equilibrium method is chosen. This method 
determines failure surface as a circular with specific radius, beginning from some distance before the slope 
starts and finished at some distance after the slope ends. Determination of which failure surface causes the 
most critical conditions can be done using trial-and-error or optimization algorithm. After that, the soil is 
divided into multiple slices, each with its own properties.  

Bishop method works with assumption that for each slide the equilibrium vertical force is zero and shear 
stresses between each slice is neglected such that only resultant force is horizontal (Figure 2.4).  

 
Figure 2.4 Bishop slices and force direction 

 

αi Ni,

Ti

Hi-1

Hi+1

Wi

R

ui



20 

The vertical equilibrium per slices calculated as: 

Σ𝐹𝐹𝑣𝑣 = 0 → −𝑊𝑊𝑖𝑖 + 𝑁𝑁𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖 +  𝑢𝑢𝑖𝑖  𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑖𝑖 + 𝑇𝑇𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑖𝑖 = 0 (5 − 9)   

and moment equilibrium calculated as: 

Σ𝑀𝑀𝑖𝑖 = 0 → 𝑊𝑊𝑖𝑖𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑅𝑅 =  0 (5 − 10) 

The shear force along the slip plane is equal to maximum shear force divided by Factor of Safety 𝐹𝐹𝐹𝐹𝐹𝐹, and 
shear strength follows Mohr-Coulomb equation on (5-5) such that the shear force equation become: 

𝑇𝑇𝑖𝑖 =
𝑠𝑠𝑖𝑖𝑙𝑙𝑖𝑖
𝐹𝐹𝐹𝐹𝐹𝐹

=
𝑐𝑐′𝑙𝑙𝑖𝑖 + (𝑁𝑁𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖) 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙

𝐹𝐹𝐹𝐹𝐹𝐹
(5 − 11) 

Substitute Equation (5-11) into (5-10) and solve for 𝑁𝑁𝑖𝑖  and then sum for all slices such that  𝐹𝐹𝐹𝐹𝐹𝐹 can be 
calculated as: 

𝐹𝐹 = ��𝑐𝑐′𝑙𝑙𝑖𝑖 + tan𝜙𝜙�
𝑊𝑊𝑖𝑖 −

𝑐𝑐′𝑙𝑙𝑖𝑖 sinα𝑖𝑖
𝐹𝐹

cosα𝑖𝑖 �1 + tan𝜙𝜙 tanα𝑖𝑖
𝐹𝐹

�
��

𝑛𝑛

𝑖𝑖=1

×
1

∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1 sinα𝑖𝑖

(5 − 12) 
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Chapter 3. Methodology and Approach 
This chapter explain the detailed steps taken during this study. Flowchart of whole processes is shown in Figure 
3.1 and Figure 3.2. 

3.1. Hydrology and Meteorological Variables 
To determine the hydrology and meteorological variables, literature review approach is used based on Chapter 
2.1. Relevant scientific articles, technical reports, and government publications were collected using databases 
such as Scopus, Google Scholar, and official Dutch water management agency sources (e.g., Rijkswaterstaat 
reports). Publications were selected based on their relevance to phreatic line behavior and dike stability. Data 
extracted from these sources were systematically categorized to identify variables affecting the phreatic level, 
their interactions, and their impact on slope stability. 

To support the literature review finding, a simple calculation will be executed by calculating discharge volume 
over time from IJsselmeer to North Sea on the Afsluitdijk, which then will be compared with wind direction and 
magnitude from relevant weather station. To calculate the hydraulic discharge, simplified version of formula to 
calculate discharge over submerged weir will be used: 

𝑄𝑄 = 𝐵𝐵 (ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑑𝑑)�2𝑔𝑔(ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

where 𝐵𝐵 is the width of sluice, ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the water level from IJsselmeer side, ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is the water level at the 
North Sea side of Afsluitdijk, 𝑑𝑑 is the elevation of the base of sluice and 𝑔𝑔 is gravitational acceleration.  

3.2. Correlation and Copula Fitting 
This analysis focuses on exploring the dependence structure between water level and precipitation data using 
correlation measures and copula fitting techniques using pyvinecopulib. The water level dataset, recorded every 
10 minutes, is resampled to hourly frequency by computing the hourly mean, while the precipitation dataset, 
recorded hourly, is processed by rounding up rainfall values between 0 and 0.05 mm to 0.05 mm.  

Correlation between the hourly water level and the smoothed hourly precipitation is evaluated using three 
statistical measures: Pearson, Spearman, and Kendall, as outlined in Table 2.1. Also, correlation between hourly 
water level and each of the following scenario: hourly precipitation, 7-day sum, 14-day sum, 21-day sum, 28-day 
sum is calculated, and then compared to choose the highest correlation. A scatter plot is generated to visualize 
the relationship between both variables. To isolate the dependence structure from the marginal distributions, 
the Probability Integral Transform (PIT) is applied to both datasets, transforming them into standard uniform 
distributions. This transformation involves ranking each dataset and dividing the ranks by the total number of 
observations plus one, resulting in a u-v plot (union space) where copula fitting is conducted. 

Several copula families are tested to model the dependence structure, including Gaussian, Student’s t, Clayton, 
Gumbel, Frank, Joe, BB1, BB6, BB7, and BB8, as listed in Table 2.2. For each fitted copula, the Akaike Information 
Criterion (AIC) is calculated to evaluate the trade-off between model fit and complexity, with the lowest AIC 
indicating the best balance. Additionally, the Cramer-von Mises (CvM) statistic is computed to assess the 
goodness-of-fit by comparing the empirical and theoretical copula cumulative distribution functions (CDFs). The 
empirical CDF is calculated by counting the proportion of observation pairs less than or equal to each data point 
in the union space, while the theoretical CDF is derived from the fitted copula. The copula with the smallest CvM 
value is considered the best fit. 

Finally, random samples are generated from the best-fitting copula model to visually validate the fit. These 
samples are plotted alongside the observed data in both the uniform (union) space and the original variable 
space. The original space is reconstructed through the inverse PIT process, allowing a direct comparison 
between the generated and observed datasets. 

3.3. Groundwater Modelling 
Due to limited availability of groundwater observation data, it is necessary to define a model to simulate longer 
dataset, which will be used as input during dike stability calculation. To create the model, an open-source 
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Python package called Pastas will be used. Pastas model is a type of time-series analysis model where the 
output series is influenced by multiple input series and added noise such as autocorrelated residuals from 
autoregressive (AR) and moving average (MA) process. In the context of groundwater modeling, by combining 
multiple factors such as precipitation, evapotranspiration and observed water level, a groundwater head model 
can be generated and fitted with existing groundwater observation.  

Pastas is chosen for this research because it can simulate synthetic groundwater head time series beyond 
available dataset based on the previously defined model.  The model then can be used to perform hindcasting 
(backward projection) or forecasting (future projection) and its uncertainty, which also can be improved by using 
longer time series of precipitation and evapotranspiration.  

To build the Pastas model, the following datasets are prepared: historical groundwater level observations, hourly 
precipitation data (where rainfall values between 0 and 0.05 mm are rounded up to 0.05 mm), hourly 
evapotranspiration data, and hourly water level records. The groundwater observations are divided into two 
subsets: a calibration set and a validation set. To ensure seasonality is represented despite the limited 
observation period, the calibration set covers at least one year of data, while the remaining data are reserved for 
validation stage. 

3.3.1. Determining model configuration 
The first step in the modeling process is to determine the most suitable model configuration. The primary goal is 
to identify which configuration results in the best performance based on statistical metrics. A total of eight 
configurations are evaluated: 

• Configuration A_Lin: using Linear recharge model with response function Exponential 
• Configuration A_Flex: using FlexModel recharge model with response function Exponential 
• Configuration B_Lin: using Linear recharge model with response function Gamma 
• Configuration B_Flex: using FlexModel recharge model with response function Gamma 
• Configuration C: using separate stress model for Precipitation and Evapotranspiration, with each stress 

model using response function Gamma 
• Configuration D: same as Configuration C, with addition of Water Level measurement from Markermeer as 

stress model with response function Polder 
• Configuration E_Lin: same as Configuration B_Lin, with addition of Water Level measurement from 

Markermeer as stress model with response function Polder 
• Configuration E_Flex: same as Configuration B_Flex, with addition of Water Level measurement from 

Markermeer as stress model with response function Polder 

In general, the Polder or One response function is typically used for modeling the influence of water levels. The 
One response function represents an immediate response with no delay and is more appropriate for observation 
wells located very close to the water surface. The Polder response function, on the other hand, introduces a 
delayed reaction and is better suited for wells situated further from the Markermeer. 

All model configurations use the same input datasets, which include hourly precipitation and evapotranspiration 
data and groundwater level measurements from observation well. For configurations that include water level as 
a stress model, the data is taken from the representative station. This dataset, originally recorded at 10-minute 
intervals, is resampled to 15-minute intervals for consistency. 

In calibration stage, each configuration is run once with simulated frequency is set to hourly. The initial result 
then evaluated using two performance metrics: the coefficient of determination (𝑅𝑅2) and the corrected Akaike 
Information Criterion (ΔAICc). 𝑅𝑅2  quantifies how well the model predictions align with observed values by 
calculating the proportion of explained variance. Although a higher 𝑅𝑅2  indicates a better fit, it may also suggest 
overfitting, particularly when the model contains a large number of parameters. Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, on the other hand, 
introduces a correction term to the standard AIC, imposing a stronger penalty for complexity when the sample 
size is small. A Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value of zero indicates the best configuration among those compared. 
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During validation, each model configuration generates samples for the same timeframe as the validation 
dataset. The results are then evaluated again, this time using 𝑅𝑅2 and the Root Mean Squared Error (RMSE) 
metrics. RMSE measures the average magnitude of prediction errors, with an emphasis on larger errors due to 
squaring before averaging. Consequently, a smaller RMSE value indicates fewer large deviations, reflecting a 
better overall fit. 

The configuration then evaluated based on both calibration and validation result. Configuration with low Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
value, low RMSE value and acceptable 𝑅𝑅2 for both calibration and validation stage is selected as the default for 
the next modeling steps. However, if the default configuration does not provide a satisfactory fit during next 
modeling, it may be modified and re-evaluated to achieve improved results. 

3.3.2. Groundwater scenario 
Several groundwater modeling scenarios are developed, each based on different dike cross-sections and 
associated water level observation stations. While the spatial configuration varies, all scenarios consistently 
use hourly precipitation and evapotranspiration data from the same reference station, and groundwater 
observation datasets are also recorded at hourly intervals. The corresponding water level datasets have a higher 
resolution, recorded every 15 minutes. The purpose of these scenarios is to examine and compare groundwater 
behavior patterns across various locations.  

Each scenario initially uses the default model configuration determined from the earlier model selection step. 
Similar to previous step, each model is generated once for calibration and then validated. However, if the 
resulting model fit is unsatisfactory where 𝑅𝑅2 is below 0.5 after validation stage, then the configuration is 
modified. If 𝑅𝑅2 remains below 0.5 after adjustment, the configuration with the highest achievable 𝑅𝑅2 is chosen. 

The final results after adjustment are visualized in a mosaic plot format. The upper-left panel displays a 
comparison of observed and modeled groundwater levels, while the next panel below it shows the residuals. 
Additional panels on the lower-left present the contribution of each input variable to the model prediction, 
indicating whether the influence is positive or negative. On the upper-right side, the first table summarizes the 
model’s goodness-of-fit metrics, followed by a second table listing the calibrated model parameters. The 
remaining panels on the right illustrate the step response of each variable, showing the dynamic impact of each 
input on the groundwater head over time. 

Using the calibrated Pastas model for each scenario, a hindcasted daily random sample is generated to fill in 
missing groundwater data from. A one-year warm-up period is applied to stabilize the model before simulation 
begins. In the case when hindcasted sample shows irregular behavior, parameters used in the model might be 
manually modified until reasonable behavior is observed. 

3.4. Slope Stability Modelling 
The slope stability modeling process begins with the preparation of essential inputs, including soil parameters 
and dike section geometry. A single dike cross-section is selected for analysis due to the availability of detailed 
soil stratigraphy at that location. 

Two main tools are used together in this process: D-Stability and the geolib Python module. D-Stability is 
employed to define the geometry of the dike cross-section, soil layer structure, and relevant geotechnical 
properties. The geolib module is used to automate the assignment of phreatic and head lines and to run stability 
calculations in a looped structure for multiple groundwater conditions. 

The geometry of the selected dike cross-section is configured in D-Stability, along with the corresponding soil 
layer properties. The Bishop limit equilibrium method is chosen as the stability solver, combined with a brute-
force search algorithm to identify the critical slip surface with the lowest safety factor for each input condition. 

Groundwater data are derived from a measured time series. To reduce computational load during simulation, 
shorter period were chosen, specifically during high water season (end of 2023 – start of 2024). 

The groundwater datasets of the 4 stand pipes in the considered cross-section are used as input in the geolib 
Python workflow. While the geometry and soil layer data are saved in a standardized format (.stix) from D-
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Stability, the groundwater time series and observation well positions are defined directly in the Python code. The 
slope stability solver is then executed in a loop, where the phreatic and head lines are updated for each time 
step. The results are visualized in both Q-Q plots and time series plot together with best rolling window sum of 
precipitation (from Chapter 3.2) and hourly water level to observe overall trends and identify extreme event when 
the safety factor is lowest. 

To indicate the effect of correlated versus uncorrelated variable towards dike safety factor, synthetic water level 
time series is generated from marginal statistics. This independent water level time series should have the same 
exceedance probability of the observed peak water level as the dependent one. By calculating the probability of 
observed peak water level during dependent case given local precipitation during same timeframe 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊 > 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚|𝑅𝑅) using previously established copula model in Chapter 3.2, the marginal statistics for 
independent water level can be used to determine specific water level w with same exceedance probability 
value, 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑊𝑊 > 𝒘𝒘). This conditional exceedance probability is calculated for each pair in whole 
observed time series. To form the synthetic water level time series, rank-exact back-mapping method is applied. 
By sorting both observed water level value and the conditional exceedance probability, then assign the smallest 
water level to largest conditional exceedance probability, the second smallest to second largest, and so on. This 
step ensure that the dependence of precipitation is removed. 

The synthetic water level time series then used as an input to Pastas, together with existing precipitation and 
evapotranspiration dataset to generate new hydraulic head time series while keeping the parameters the same. 
Then, factor of safety is calculated again using D-Stability python module with similar workflow as previous run. 
The result then analysed and compared with correlated run. 

  



 

 
Figure 3.1 Flowchart of whole process (part 1 of 2) 
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Figure 3.2 Flowchart of whole process (part 2 of 2) 
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Chapter 4. Case Study and Datasets 

4.1. IJsselmeer System Area  
IJsselmeer system area is divided into four major subsystems: IJsselmeer, Markermeer, IJssel-Vecht delta and 
peripheral lake around Veluwe area. Outside of the system, there are three large polders where the run-off 
directly impacts the Ijsselmeer system as shown in Figure 4.1: Wieringermeer (A), Flevoland (B) and 
Nordoostpolder (C).  

The main function of Ijsselmeer system is divided into three: flood defence, mainly to control balance between 
water from Ijssel river and regional runoff versus high water from storm surge; freshwater supply, mainly for 
agriculture, drinking water and salination flushing; aquatic ecosystem as habitat for existing flora and fauna. Due 
to smaller storage capacity of Markermeer (around 700 km2) compared to Ijsselmeer (around 1200 km2), 
Ijsselmeer receive more water discharge especially during Winter period. The permitted fluctuation for 
Ijsselmeer is around -0.40 to -0.05 m NAP, where Markermeer around -0.40 to -0.20 m NAP. During summer, 
Ijsselmeer area maintain water level around -0.10 to -0.30 m NAP to keep up with freshwater demands.  

In the schematic of Ijsselmeer Area ( Figure 4.2), water from Ijssel river and Ijssel-Vecht delta is contained in 
Ijsselmeer lake area. The discharge is controlled from Afsluitdijk with two main gates: Stevinsluis and 
Lorentzsluizen. This structure closed off Ijsselmeer area from directly exposed to North Sea, and therefore the 
impact of high water level due to storm surge is alleviated. Also, Houtribdijk, together with two gates: 
Krabbersgat and Houtribsluizen, split the Ijsselmeer from Markermeer, which also affect the dominant hydraulic 
load toward dike in Ijsselmeer area. Besides IJsselmeer, the water level fluctuation in Markermeer area is also 
controlled from North Sea Canal using two lock complexes: Ijmuiden locks between North Sea and North Sea 
Canal, and Schellingwoude locks between North Sea Canal and Markermeer. Due to main function of North Sea 
Canal as shipping route to Port of Amsterdam, the water level at North Sea Canal is maintained around -0.45 m 
NAP. Both lock complexes also function to control salt intrusion from North Sea to Markermeer. Based on this 
system, Markermeer dike is mostly affected by changes in water level, while Ijsselmeer dike and IJssel-Vecht 
delta are more prone to onshore wind effect from North Sea.  (Deltares, 2022) 

 
Figure 4.1 Hydrological Map of Netherlands (from Water Management in the Netherlands, Rijkswaterstaat, 2019). The main run-off 

toward IJssel Lake comes from Wieringermeer (A), Flevoland (B) and Nordoostpolder (C), while discharge control in Afsluitdijk is 
handled 
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 Figure 4.2 Schematic of Ijsselmeer Area (left), and Map Illustration (right). Arrows show the main flow direction of water in case of high 

water.  

4.2. Dike Section 
The dike section chosen for this study is located between Hoorn and Enkhuizen, with total length for this sector 
is around 17.8 km (Figure 4.3). Markermeer dike provides protection from flood for North Holland population that 
living behind the dike. Markermeer lake itself now is a freshwater lake after the construction of Afsluitdijk that 
closed off the water from North Sea. After dike assessment in 2006, Markermeer dike needs to be reinforced 
according to new standard from Water Act 2017. Now, Markermeer dike is under reinforcement project executed 
by local water board Hoogheemraadschap Hollands Noorderkwartier (HHNK). According to HHNK in their 
booklet Naar veilige Markermeerdijken (2014), the dike protects around 1.2 million people with economic value 
reaching up to 25 billion Euros. Compared to dike in Ijsselmeer and North Sea coastal area which highly 
influenced by high waves, Markermeer dike is prone to failure from precipitation and high water level from lake. 
(HHNK, 2014) 

 
Figure 4.3 Location of Dike Section (left), Photo from Google Street View – left side is Markermeer (upper right), Typical Dike Cross 

Section (lower right) 

In this Hoorn-Enkhuizen dike section, which is part of Markermeer flood control system, the water level is tightly 
maintained with the sluices and canal operation. The change on water level is relatively low but during storms 
the capacity to discharge to sea and IJsselmeer is constrained and wind set-up/seiche can temporarily raise lake 
levels, causing outer slope loading and overtopping which directly affects dike safety. Meanwhile in the land 
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area, during prolonged rainfall the polder fills and pumping increases, yet if lake levels are high or structures are 
restricted, backwater effects keep polder levels elevated. Higher landward water levels reduce the lake to polder 
head difference (slightly easing piping risk), but they increase pore pressures in the dike’s inner slope, lowering 
effective stress and shear strength such that macro-stability/micro-instability become more critical. After the 
storm, if the lake is drawn down quickly, the dike can remain water-logged on the inside, which is an unfavorable 
rapid drawdown condition. Rapid post-storm drawdown of the lake can also leave pore pressures high in the 
dike body, unfavourable for inner-slope stability.  

Typical cross section of Markermeer dike is shown in Figure 4.3 at lower right. For calculation of dike safety 
factor, only raai_2 cross section is chosen due to availability of soil data layer. Soil characteristic of the dike 
consist of sand as main dike body covered in clay while the inner berm mainly built from clay. The first soil layer 
is peat with thickness around 1 m, followed with organic clay, sand mixed with clay, and then organic clay again 
before peat layer shown again. This layer is repeated once again until reaching deep sand layer. After the inner 
berm, there is a polderpeil or ditch with water level maintained at -1.85 m NAP (HHNK, 2023).   

 

 
Figure 4.4 Cross section of the considered dikes, raai_2 (left) and raai_3 (right) 

There are two dike cross-section that will be analyzed further: cross section raai_2 which have 6 groundwater 
observation stations and cross section raai_3 which have 4 groundwater observations (Figure 4.4). All these 
observation stations differ based on the location point from closest to furthest from lake, and from the depth of 
observation well in correlation with soil layer under the dike (Table 4.1). 

Table 4.1 Observation Well per Cross Section 

Cross Section Observation Well Soil Layer 

raai_2 MB012-PB1 Phreatic 
 HB025-PB1  Phreatic 
 MB026-PB2 Phreatic 
 MB026-PB1 Sandy intermediate layer 
 MB013-PB2 Sandy intermediate layer 
 MB013-PB1 Deep sand layer 
raai_3 MB014-PB1 Sandy intermediate layer 
 MB014-PB2 Phreatic 
 HB027-PB1 Phreatic 
 MB015-PB2 Deep sand layer 

4.3. Dataset 
The overview of variables used in this study and data availability is shown in Table 4.2. 

Table 4.2 Variable used and data availability 

Variables Data Availability 

Water level Hourly water level (mm) Rijkswaterstaat 
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Precipitation Hourly precipitation (mm) KNMI 
Evapotranspiration Daily evapotranspiration (mm) KNMI 
Wind Magnitude and Direction Daily wind magnitude and its 

direction (m/s) 
KNMI 

Groundwater Measurement Local groundwater measurement 
in Markermeer dike section (see 
Chapter 4.2) 

Local water board (HHNK) 

Dike Geometry Cross section of the dike Local water board (HHNK) 
Soil Characteristic Soil parameters (unit weight, 

drained Mohr-Coulomb 
parameters) 

Local water board (HHNK), and 
assumptions were used in the 
case of unknown parameters. 

 

4.3.1. Hydrological and Meteorological Variable Dataset 
Dataset that will be used to support the literature review analysis: Water level from Kornwerderzand Buiten and 
Binnen station (2023-01-01 until 2024-07-31) per 10 minutes frequency, wind direction and magnitude from The 
Kooy station, same period, with daily frequency. 

4.3.2. Correlation and Copula Fitting Dataset 
There are two variables to be analyse: water level and hourly precipitation. Water Level dataset is taken from 
Krabbersgat Zuid measurement station, period 1999-03-22 – 2025-05-23 from Rijkswaterstaat Waterinfo, while 
daily precipitation dataset is taken from Berkhout weather station with same period from KNMI.  

Figure 4.5 Hourly Rainfall Berkhout, period 1999 – 2025. Bottom plot shows 7-day, 14-day, 21-day and 28-day Rolling Window 
Cumulative (total rainfall). 

 

 
Figure 4.6 Hourly Water Level in Krabbersgat Zuid, period 1999 – 2025. 

4.3.3. Groundwater Model and Slope Stability Dataset 
Dataset that will be used for groundwater model and slope stability analysis are: 
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• Historical dataset of groundwater measurement from two chosen dike cross-section, which is taken 
from dike section around Markermeer area, location between Hoorn and Enkhuizen. The measurement 
is taken between 10/11/2023 until 25/02/2025.  

• Hourly precipitation dataset taken from Berkhout Station, start from 23/03/99 until 06/05/25. Data 
source from KNMI. 

• Daily evapotranspiration dataset taken from Berkhout Station, start from 23/03/99 until 06/05/25. Data 
source from KNMI. 

• Hourly period water level recording from two sources: 
o Water level at pumping station Drieban (start from 16/10/23 until 26/02/25)  
o Water level recording at Krabbersgat Zuid taken from Rijkswaterstaat   

(from 23/03/99 until 06/05/25 following the availability data of precipitation and 
evapotranspiration).  

• Soil parameter and dike cross section of raai_2. 

While Drieban pumping station is closer to dike cross section location, the length of observation is more limited 
compared to Krabbersgat Zuid. To check the difference of water level between Drieban pumping station and 
Krabbersgat Zuid station, visual inspection during same period is plotted at Figure 4.9. While the general shape 
and height is similar, there are more ‘spikes’ at Krabbersgat Zuid, which can be caused from wind effect. It is 
also interesting to see that during the highest measured water level at the beginning of January 2024, Drieban 
Pumping Station record 0.571 m while Krabbersgat Zuid record 0.77 m, which shows that the wind direction 
during that day is around northeast. 

Table 4.3 Soil Layer Properties of raai_2 Cross Section 

Soil Layer Unit Weight (kN/m3) Cohesion (kN/m2) Friction Angle (deg) 

Clay – Top Layer 16.32 5 20 
Sand 18 0 35 
Clay – Shallow 14.92 5 20 
Peat 10.89 5 15 
Organic Clay 13.76 5 20 
Sand with Clay 18 0 35 
Clay – Deep 14 5 20 

 

 
Figure 4.7 Dataset from Berkhout Station, daily evaporation in mm (top) and hourly precipitation in mm (bottom) 
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Figure 4.8 Location of raai_3, raai_2, Drieban pumping station and Krabbersgat Zuid observation 

 
Figure 4.9 Water Level Observation, Drieban (top) and Krabbersgat Zuid (bottom), during same time period (16 Oct 2023 – 26 Feb 2025) 
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Chapter 5. Results 

5.1. Hydrological and Meteorological Variables 
Based on the reviewed literature in Chapter 2.1, the phreatic level in dikes surrounding Markermeer and 
IJsselmeer is influenced primarily by water level fluctuations, precipitation patterns, evapotranspiration rates, 
internal material permeability, dike geometry, and regional hydrodynamic conditions. Each of these variables 
interacts to determine groundwater movement within the dike body, affecting pore pressures and thus inner 
slope stability. 

 
Figure 5.1 Discharge Volume over Time compared with Water Level inside Afsluitdijk (Korn. Binnen), outside of Afsluitdijk (Korn. Buiten) 

and Wind Direction and Magnitude from The Kooy weather Station. All dataset is in period October 2023 – April 2024. 

Figure 5.1 shows the discharge volume over time between October 2023 until April 2024 in Afsluitdijk. Interesting 
pattern is observed during end of December 2023 when the water level inside the Afsluitdijk increase rapidly and 
stay high until decreasing during first-second week of January 2024. At that moment, the water level outside of 
Afsluitdijk is relatively stable and slightly decreasing during end of first week January 2024 while the wind speed 
is lower. Sharper movement at the discharge volume together with high wind speed and wind direction towards 
IJsselmeer means that the amount of water flowing outside of IJsselmeer is limited and controlled by sluice. 
After the wind speed is lower (first-second week of January 2024), the discharge is gradually decrease together 
with Korn. Binnen water level measurement which indicates water inside IJsselmeer can flow outside of sluice. 

5.2. Correlation and Copula Fitting 
Correlation is calculated between hourly rainfall and hourly water level, and for subsequent cumulative day.   

The result of correlation calculation is shown below: 
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Table 5.1 Correlation Comparison between Pearson, Spearman and Kendall based on Statistics value and p-value. All comparison were 
calculated compared to hourly water level. 

Precipitation 
Type 

Coefficients p-value 

Pearson Spearman Kendall Pearson Spearman Kendall 

Hourly 0.0663 0.033 0.0261 1.25E-221 2.00E-56 1.79E-55 
7-day sum 0.1753 0.1316 0.089 0 0 0 
14-day sum 0.1973 0.147 0.0994 0 0 0 
21-day sum 0.1892 0.1316 0.0891 0 0 0 
28-day sum 0.1694 0.105 0.0712 0 0 0 

 

Based on the result, all coefficients value is positive and statistically significant (p-value less than 0.05 such that 
null hypothesis is rejected) which shows evidence of linear relationship. However, the coefficient value is 
relatively low (less than 0.2) which means precipitation alone doesn’t fully explain the changes in Markermeer 
water level. Between five precipitation type, 14-days sum shows strongest correlation which suggests that 
Markermeer water level responds to cumulative precipitation. 

To check whether there is lag effect, for each precipitation type, a lag was imposed from 0 until 14 days. The 
result is shown in Appendix A. Overall result shows that the correlation decrease steadily with each increasing 
lag, and by lag larger than 7 days most correlations are close to zero or even slightly negative. This suggests the 
lake responds to recent cumulative precipitation, but not significantly delayed rainfall. 

After calculating the correlation, copula analysis is executed for 14-day sum condition. Both rainfall and water 
level datasets are converted to uniformly distributed data by dividing rank of the data with total sample plus one 
(Figure 5.2). 

 
Figure 5.2 Data before transformed (left) and after transformed to uniformly distributed data (right) 

In the previous figure, the pattern before transformed shows dense cluttering near the center, with water level 
spread around -50 cm until 0 cm NAP and rainfall spread between 0 and 10 mm. The right figure shows uniformly 
transformed dataset in u and v space evenly spread in [0,1] range. Strong vertical banding is observed due to 
many repeated values in water level measurement. The vertical bandings happen when rank transformation 
assigns the same rank to duplicate values, and many identical water level values collapse into the same vertical 
strip when converted to uniform values. 

From the uniformly distributed data, multiple bivariate copula family then fitted to existing dataset using 
pyvinecopulib module. The result then checked and compared to determine best copula shown in Table 5.2. 
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Table 5.2 Model selection test using AIC between chosen Copula family 

Rank Copula Family AIC 

1 BB8 -9249.3872 
2 BB6 -8085.9881 
3 Joe -8067.712 
4 BB7 -8013.2814 
5 Gumbel -7783.4721 
6 BB1 -7781.4546 
7 Gaussian -6981.3706 
8 Student (t) -6560.7665 
9 Frank -4943.7569 

10 Clayton -1141.4677 
 

Based on Table 5.2, copula BB8 with parameter value of 𝜃𝜃 = 1.3 and 𝛿𝛿 = 0.97 is the best model according to AIC 
test where lower AIC shows better tradeoff  between fit and complexity. Compared to other copula families, the 
BB8 copula is capable of capturing both upper and lower tail dependence, as well as asymmetric dependence. 
In the context of rainfall and Markermeer water levels, this asymmetric dependence helps explain events where 
heavy rainfall can lead to a rise in water level, but the reverse is not necessarily true. The presence of upper and 
lower tail dependence allows the BB8 copula to model the joint occurrence of extreme rainfall and extreme 
water levels. However, due to the asymmetric nature of the dependence, these co-occurring extreme events 
may not consistently appear. 

On the other hand, the Gaussian and Student’s t copulas, which assume symmetric and elliptical dependence, 
show a poor fit. This suggests that Markermeer water levels do not respond uniformly across the entire range of 
precipitation values. Among the tested copulas, the Clayton copula performed the worst. This is likely because 
Clayton focuses on modeling lower tail dependence, such as extreme droughts. This does not align with the 
characteristics of the Markermeer, where water levels are more sensitive to extreme or cumulative rainfall 
events (upper tail) rather than to moderate or symmetric changes. 

To represent how well the copula fitting, BB8 copula model with previous parameter value is used to generate 
samples, which then compared with original observations. 

 
Figure 5.3 Simulated vs Observed Dataset, in union space (left) and normal space (right) 

Based on Figure 5.3, the simulated dataset shows no vertical banding compared to observation which is 
expected from continuous function. The contour curves reflect the dependency structure captured by the 
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copula which in this case is asymmetric and nonlinear. On the right plot, the spread of simulated dataset follows 
closely to observation, which shows that the copula model preserves the marginal distributions, since it 
simulates in (u, v) space and transforms back using real data distributions. 

Marginals of water level and precipitation are compared with Q-Q and EDCF plot: 

 
Figure 5.4 Q-Q Plot between simulated dataset and observed dataset 

 
Figure 5.5 EDCF Comparison between simulated dataset and observed dataset 

From Figure 5.4, the empirical quantile pairs closely follow the red diagonal line, which means simulated water 
level distribution matches the observed distribution very well, suggesting an accurate marginal fit and effective 
inverse-transformation from the copula. In Figure 5.4, the empirical distributions of both observed and 
simulated water levels and rainfall are nearly identical, further demonstrating that the BB8 copula provides a 
good representation of the marginal distributions for both variables. Overall, BB8 copula simulation with 
empirical marginals has successfully reproduced the marginal distributions of both water level and rainfall. 

To visualize the empirical BB8 copula, a 3-dimensional figures are plotted between observed dataset and 
simulated dataset, and goodness-of-fit is calculated and compared by Cramer-von-Mises test: 
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Figure 5.6 3-dimensional representation of BB8 copula between observation (left plot), simulated (middle plot) and the difference (right 

plot) 

Table 5.3 Goodness-of-Fit test using Cramer-von Mises (CvM) Criterion 

Rank Copula CvM Criterion 

1 BB8 7.4e+06 
2 Gumbel 8.8e+06 
3 Clayton 2.2e+07 
4 Gaussian 1.0e+07 

 
In the Figure 5.6, the BB8 copula model can represent the empirical dependence well enough with similar shape 
and peak. The difference shown in right plot are mostly centered around zero, with some slight overestimation 
(blue shadow) in the mid-range region and underestimation in the water level marginal due to asymmetry and 
rounded observation numbers. No major bias or structural mismatch is observed.  

In Table 5.3, BB8 has the lowest CvM score, confirming it's the best at capturing the joint structure of rainfall and 
water level, including possible tail asymmetry and nonlinear patterns. Gumbel distribution also fits reasonably 
well, especially in the upper tail, but still less flexible than BB8. Meanwhile, Gaussian does not model tail 
dependence or asymmetry, and Clayton focuses on lower tail dependence only, explaining the poor fit for both 
model.   

5.3. Groundwater Model  
5.3.1. Determining Model Configuration 
The result of each configuration model predictions compared with real observation from HB27_PB1 well during 
calibration stage is shown in Figure 5.7.  

 
Figure 5.7 Time series plot of observation from HB27_PB1(black markers) vs model prediction for each Configuration (line graphs) in 

Calibration stage. 

Figure 5.7 presents the observed groundwater measurements for well HB27_PB1 (black markers) alongside the 
simulated groundwater levels from eight different model configurations (A_Lin to E_Flex, represented by colored 
lines). The dataset spans from 2023-11-10 until 2024-11-10 following calibration dataset period, with 
groundwater levels reported in meters. 



38 

The observed groundwater levels show quick rise followed by highest level measurements around the middle of 
November 2023 reaching 1.1 m. This spike pattern also observed repeatedly during November 2023 until March 
2024, with notable peaks around 1.0 m occurred in January 2024 and end of February 2024. After this period, the 
groundwater tends to decline gradually, with smaller peaks observed in end of April 2024 and beginning of June 
2024.  

The prediction models generally follow the trend of observed groundwater levels. All models can reproduce the 
four observed peak of January 2024, end of February 2024, end of April 2024 and June 2024, with varying level of 
deviations. All models consistently predict higher value during the rapid decrease in the middle of January 2024, 
and lower peak value during last three observed peaks. Only configuration D and E_Lin capture the peak of 
January 2024 and rapid decline around March-April 2024. Configuration D also predict lower groundwater level 
in December 2023 just below 0.3 m. In the low season starting from end of June 2024, all prediction models show 
more erratic behavior with higher peak during middle of July 2024, lower value in September 2024 and rapid 
increase at October 2024.  

No significant difference is observed between Lin configuration (using Linear recharge model) and Flex 
configuration (using FlexModel recharge model).   

The goodness-of-fit metric from calibration stage is shown in Table 5.4. 

Table 5.4 Goodness-of-Fit Comparisons between each Configuration in Calibration stage.  
Bold number shows the best value for each metric. 

Configuration 
Setting 𝑅𝑅2 Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

A_Lin 0.77 2740.42 
A_Flex 0.74 3664.08 
B_Lin 0.77 2643.59 

B_Flex 0.75 3294.25 
C 0.77 2476.12 
D 0.83 0.0 

E_Lin 0.8 1188.27 
E_Flex 0.75 3303.28 

Table 5.4 presents the goodness-of-fit comparisons for each configuration during the calibration stage. 
Configuration D indicates the best fit among other configurations with highest 𝑅𝑅2 value of 0.83 and lowest Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
value of 0. Meanwhile, Configuration A_Flex performs the worst with lowest 𝑅𝑅2 of 0.74 and highest Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value 
of 3664.08. The value of 𝑅𝑅2 for other configuration settings ranging from 0.75 to 0.80 and Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 values between 
1188.27 and 3294.25.   

Validation test for each configuration is set to run using groundwater observation at period 2024-11-11 until 
2025-02-25. The result of each configuration model predictions compared with real observation from HB27_PB1 
well during observation stage is shown in Figure 5.8.  

 
Figure 5.8 Observed Groundwater Measurement from HB27_PB1 versus Model Prediction from all configurations  

during Validation Stage 
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Figure 5.8 displays the observed groundwater measurements together with prediction from eight model 
configurations, with goodness-of-fit metrics 𝑅𝑅2 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 included. The original measurement shows a clear 
increasing trend from late November 2024, peaking around early January 2025, and then declining through 
February 2025. The highest observed levels reach approximately 0.75 m, while the lowest fall observed at 2024-
11-12 below -0.2 m.  

While all models can replicate the gradual increase in groundwater level at the middle of November 2024, they 
consistently underestimate the groundwater level during observed peaks at December 2024 and early January 
2025. For example, the observed peak near 0.75 m is consistently underpredicted by all models, with simulated 
peaks generally not exceeding 0.4 m. Following this peak, models such as A_Lin (blue line), B_Lin (green line) 
and C (purple line) show consistently lower simulated levels compared to observations from end of November 
2025 through February 2025. 

With regards to model performance, 𝑅𝑅2 metric show relatively low value, with some configurations in the 
negative range, starting from -0.204 (configuration B_Lin) with the highest value is 0.491 (configuration D). For 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values, all configurations show considerable deviations ranging from 0.176 m from configuration D until 
0.270 m measured at configuration A_Lin and B_Lin. Comparison between all configurations shows Lin 
configuration (using Linear recharge model) models consistently measured at negative 𝑅𝑅2 value and higher value 
of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 from 0.252 until 0.270. Meanwhile, configuration D in validation stage also indicates the best fit with 
highest r-squared value among other configurations at 0.491 and lowest 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 at 0.176. 

5.3.2. Creating the Groundwater Model 
Four scenarios were proposed during the development of the groundwater model to assess the influence of 
different nearby water level sources on the selected cross-sections. In Scenario 1, a groundwater model was 
created for cross-section raai_3, incorporating an additional water level stress model based on data from 
Drieban. Scenario 2 also focused on raai_3 but used the water level stress model from Krabbersgat Zuid instead. 
For Scenario 3, the groundwater model was developed for cross-section raai_2, with the water level stress model 
taken from Drieban. Lastly, Scenario 4 involved modeling raai_2 using the water level stress model from 
Krabbersgat Zuid.  

Scenario 1 vs Scenario 2

 
Figure 5.9 Precipitation, Evapotranspiration and Water Level plot during Calibration period (2023-11-10 until 2024-11-10) 
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The groundwater observation wells in raai_3 for both scenario 1 and 2 is set up using configuration D: separate 
stress model with water level measurement as additional stress model. Similar to previous run, the groundwater 
level dataset is split between calibration stage and validation stage. In this first stage, the result is presented as 
mosaic graphs which combine both Scenario 1 and Scenario 2 result per each observation well. Input dataset 
for precipitation, evapotranspiration and water level used in calibration stage is also presented in Figure 5.9. 

After calibrating the Pastas models for Scenario 1 and Scenario 2, comparative mosaic plots were generated. 
Each mosaic displays the observed and simulated groundwater heads with residuals in the upper-left panel; the 
upper-right panel reports goodness-of-fit statistics and calibrated parameter values for both scenarios. The left 
column shows the time-varying stress contributions of precipitation, evapotranspiration, and chosen local 
water level (Drieban pumping station for Scenario 3, Krabbersgat Zuid for Scenario 4), while the right column 
presents the corresponding step-response functions. Typical mosaic plot is shown in the Figure 5.10, and the 
detailed result is shown in Appendix C. 

Across four observation wells (MB014-PB1, MB014-PB2, HB027-PB1, MB015-PB2), both scenarios reproduce 
the seasonal groundwater dynamics and many sub-seasonal fluctuations. Deviations are concentrated around 
sharp peaks or rapid drawdowns; residuals for MB014-PB1 are mostly within ±0.1 m, with a single excursion near 
−0.12 m. Visual fit is high at MB014-PB1 (𝑅𝑅2 = 0.96 for S1; 0.95 for S2), moderate at MB014-PB2 (0.58; 0.59), and 
good at HB027-PB1 (0.83; 0.85). For MB015-PB2, the narrative indicates accurate predictions with some 
underestimation between March–August 2024; the 𝑅𝑅2 value was not reported in the excerpt.  

Process attribution is consistent with hydrogeological expectations. Precipitation and surface-water level 
changes contribute positively to heads, whereas evapotranspiration exerts a negative influence. Step-response 
plots for precipitation and water level are near-vertical (very short characteristic times; shallow system 
behavior), while evapotranspiration responses are slow and negative, approaching a stable level (e.g., ~−50 in 
the MB014-PB1 step response). Scenario-specific differences are subtle but systematic: at MB014-PB1 the 
Scenario 1 system is slightly “slower” (blue curve) than Scenario 2 (orange), whereas at MB014-PB2 the 
precipitation contribution is much larger and smoother under Scenario 2; Scenario 1’s precipitation amplitude 
is near zero (Prec_A ≈ 4.54 × 10⁻³) with larger shape and smaller scale parameters. At HB027-PB1, 
evapotranspiration is far less negative and much faster in Scenario 1 (~150 days to plateau) than in S2 (~6000 
days), implying more persistent evapotranspiration effects under Scenario 2. For MB015-PB2, precipitation and 
water-level step responses are short (near-instantaneous), and evapotranspiration shows a sinusoidal, net-
negative contribution. 

𝑅𝑅2 is relatively similar between Scenario 1 and Scenario 2, with small advantages: Scenario 1 at MB014-PB1; 
Scenario 2 at MB014-PB2 and HB027-PB1. Differences arise primarily from how each scenario partitions 
variance between precipitation and evapotranspiration and from their effective response times. In particular, 
Scenario 2 often attributes a smoother, stronger role to precipitation (MB014-PB2) and a more persistent 
evapotranspiration influence (HB027-PB1), whereas Scenario 1 tends toward faster evapotranspiration 
dynamics and, at some sites, slightly closer tracking of abrupt rises (MB014-PB1).  

Overall, all models in this calibration stage show relatively good approximation toward training dataset, with 𝑅𝑅2 
value all higher than 0.5. However, stress contribution pattern for some models is atypical, such as precipitation 
pattern for MB014-PB2, and evapotranspiration pattern for MB014-PB1, MB014-PB2 and HB027-PB1. Statistical 
comparisons ( 𝑅𝑅2 and Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) for Scenario 1 and 2 is shown in Table 5.5. 

Table 5.5 Statistical comparisons by groundwater well for Scenario 1 vs Scenario 2. Bold letters indicate better result between 
scenarios. 

Groundwater 
Well 

Scenario 1 Scenario 2 
𝑅𝑅2 Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

MB014-PB1 0.96 0.00 0.95 2172.18 
MB014-PB2 0.58 250.49 0.59 0.00 
HB027-PB1 0.83 1145.81 0.85 0.00 
MB015-PB2 0.83 0.00 0.83 192.24 
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Figure 5.10 Typical Mosaic Plot Comparison between Scenarios 

 

After calibration stage, the validation simulation is executed with dataset from 2024-11-11 until 2025-02-25, 
which is illustrated in Figure 5.11. The result for validation is shown in Figure 5.12. 

 
Figure 5.11 Precipitation, Evapotranspiration and Water Level plot during Validation period (2023-11-10 until 2024-11-10) 
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Figure 5.12 Observation vs prediction for validation stage, Scenario 1 vs 2. 

In the first plot, the prediction models follow the observation data very closely but starting from 2025-02-04 
major deviation is detected where downward trend for both models occur which is opposite of upward trend 
from original observation. This also reflects on the 𝑅𝑅2 value at negative value of -0.786 for Scenario 1 and -0.571 
for Scenario 2. In the second plot, the validation dataset shows rapid and significant fluctuations which both 
model struggle to capture correctly. Scenario 1 veers over higher average value around 1.0 m and almost 
consistently overpredicted, such that the 𝑅𝑅2 value is significantly low at -3.141. Scenario 2 fare a little bit better 
with higher but still negative 𝑅𝑅2 and downward trend observed, but both model failed to predict correct peak and 
troughs. In third plot (HB027-PB1), both models show better performance with highest 𝑅𝑅2 value compared to 
other groundwater location. Nonetheless, the models remain insensitive to extreme events, and Scenario 2 
model shows significant overpredict at the beginning. For fourth plot, while both models follow the general trend 
of the observed dataset reasonably well, they consistently underpredict groundwater levels throughout the 
entire period. 

To improve model performance, parameter adjustments were added to the model, with main focus to maintain 
physical properties especially evapotranspiration stress contribution. Parameter adjustment is done by setting 
initial, minimum value and maximum value for specific parameters during model solver. The adjusted model 
parameters are shown in Appendix B. 

The hindcasting simulation result before parameter calibration is shown in Figure 5.13, and after parameter 
calibration in Figure 5.14. 
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Figure 5.13 Hindcasting simulation result for Scenario 1 and 2 before manual calibration 

In the first set of hindcast plots (before calibration), both Scenario 1 and Scenario 2 reproduce the broad 
groundwater trends but often miss the observed values: Scenario 1 is closer at MB014_PB1, HB027_PB1, and 
MB015_PB2, while Scenario 2 better matches MB014_PB2. After manual adjustment of model parameters 
(second set of plots), the simulated curves from both scenarios fall much closer to the black‑dot observations 
at all four sites. In MB014_PB1 and MB014_PB2, there is a slightly downward trend of prediction from 1999 to 
2025, and both prediction model show almost exact same prediction value. As the only difference between 
Scenario 1 and 2 is the water level dataset, it shows that after manual calibration, the stress contribution from 
water level to the groundwater level prediction is almost negligible, and the prediction mainly influenced by 
precipitation and evapotranspiration stress. Calibration reduces the bias and variance of the predictions, so that 
the models now capture both the mean levels and short‑term fluctuations almost equally well across every 
monitoring location. 
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Figure 5.14 Hindcasting simulation result for Scenario 1 and 2 after manual calibration 

 
Scenario 3 vs Scenario 4 
Both scenario 3 and scenario 4 use groundwater data from raai_2 cross section, which consist of 6 groundwater 
well: MB012-PB1, HB025-PB1, MB026-PB2, MB026-PB1, MB013-PB2, MB013-PB1. The setup is mostly similar to 
scenario 1 and 2, where scenario 3 use water level dataset from Drieban and scenario 4 from Krabbersgat Zuid.  
The calibration dataset is shown previously in Figure 5.9, and validation dataset refers to Figure 5.11. 

Similar to previous scenario comparison, the typical mosaic plot is same as Figure 5.10, and the detailed result 
is shown in Appendix C.  

Across six observation wells, both Scenario 3 and Scenario 4 reproduce the seasonal groundwater dynamics 
and many sub-seasonal fluctuations. Residuals are typically small, around ±0.1–0.2 m, with the largest 
deviations coinciding with sharp, isolated peaks or drops in head.  Erratic, short-lived observations are not 
consistently captured, suggesting local rapid processes (e.g., runoff/infiltration or site-specific boundary 
effects) that are difficult to resolve by the model.  

In terms of process, stress-contribution and step-response plots show a fast, positive head response to 
precipitation and local water level changes and a slower, negative response to evaporation. Scenario 4 generally 
approaches equilibrium marginally sooner than Scenario 3, indicating slightly leaner/stronger weighting on 
water level as additional boundary stresses. 

Where Scenario 4 is favoured (MB026-PB2, MB013-PB2), the calibration typically down-weights precipitation 
(lower precipitation amplitude/scale) and places relatively greater weight on evaporation and/or boundary 
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stresses, while achieving a lower corrected Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 for comparable or higher R².  At sites where Scenario 3 is 
preferred, precipitation shows a stronger influence and the Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value favours its slightly higher dynamics.  

Model efficiency (𝑅𝑅2) is generally similar between scenarios within each well, so model selection is primarily 
governed by Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Scenario 3 provides the better fit vs complexity balance at four wells (MB012-PB1, HB025-
PB1, MB026-PB1, MB013-PB1), whereas Scenario 4 is superior at two wells (MB026-PB2, MB013-PB2). This 
mixed outcome indicates spatial variability in dominant stresses across the network, justifying per-well model 
choice. 

Overall results show that most model prediction in raai_2 cross section can reproduce general trend of real-
world observation but struggling to capture extreme and erratic movement which is to be expected. All models 
also show correct physical interpretation of evapotranspiration negative sinusoidal pattern. Water level 
contribution, compared to Scenario 1 and 2, is less prone to rapid movement which reflected in the initial step 
response and smoother shape. Statistical comparisons ( 𝑅𝑅2 and Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) for Scenario 3 and 4 is shown in Table 
5.6. 

Table 5.6 Statistical comparisons by groundwater well for Scenario 3 vs Scenario 4. Bold letters indicate better result between 
scenarios. 

Groundwater 
Well 

Scenario 3 Scenario 4 
𝑅𝑅2 Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

MB012-PB1 0.76 0.00 0.76 4.93 
HB025-PB1 0.50 0.00 0.50 57.64 
MB026-PB2 0.89 1846.24 0.91 0.00 
MB026-PB1 0.76 0.00 0.76 63.1 
MB013-PB2 0.71 1432.76 0.75 0.00 
MB013-PB1 0.50 0.00 0.49 46.83 

 

After calibration, validation stage is performed for all groundwater wells in raai_2.  

Figure 5.15 presents the validation results comparing groundwater observations against two predictive model 
scenarios across six groundwater monitoring wells. For MB12-PB1, both scenarios significantly overpredict 
groundwater levels, particularly during peak events, resulting in strongly negative 𝑅𝑅2 values (-3.318 for Scenario 
1 and -5.190 for Scenario 2). In HB25-PB1, sharp peaks observed above 2 meters are poorly represented by both 
scenarios, which predict relatively stable levels around 1 meter, yielding low 𝑅𝑅2 values (0.177 for Scenario 1 and 
0.182 for Scenario 2). The validation for MB26-PB2 indicates challenges in capturing observed peaks, with 
Scenario 1 notably underpredicting (𝑅𝑅2 = -0.208), while Scenario 2 shows modest improvement but still lacks 
accuracy (𝑅𝑅2 = 0.438). Conversely, MB26-PB1 demonstrates good model performance, with both scenarios 
closely following observed fluctuations and achieving higher 𝑅𝑅2 values (0.617 for Scenario 1 and 0.605 for 
Scenario 2). For MB13-PB2, both models reasonably track the overall observed groundwater trends, although 
Scenario 2 (𝑅𝑅2 = 0.473) better captures fluctuations than Scenario 1 (𝑅𝑅2 = 0.406). Lastly, at MB13-PB1, both 
scenarios show limited predictive accuracy, as neither model accurately replicates short-term fluctuations and 
the observed downward trend, resulting in low or negative 𝑅𝑅2 values (Scenario 1 = -0.048; Scenario 2 = 0.170). 
Overall, the models vary in predictive skill depending on location, particularly struggling with short-term peaks 
and rapid groundwater fluctuations. 
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Figure 5.15 Observation vs prediction for validation stage, Scenario 3 vs 4 

To improve model performance, parameter adjustments were added to the model. Unlike Scenario 1 and 2, the 
evapotranspiration properties already show correct physical properties during calibration stage such that this 
parameter adjustment focus is to maintain consistent pattern for evapotranspiration scale and shape. 
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Parameter adjustment is done by setting initial, minimum value and maximum value for specific parameters 
during model solver. The adjusted model parameters are shown in Appendix B. 

 
Figure 5.16 Hindcasting simulation result for Scenario 3 and 4 before manual calibration 
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Figure 5.17 Hindcasting simulation result for Scenario 3 and 4 after manual calibration 

Figure 5.16 and Figure 5.17 compare hindcasting results of groundwater levels at six monitoring wells before and 
after parameter calibration. Before calibration, model predictions across most wells exhibit substantial 
deviations from observed groundwater heads, particularly evident at wells MB12-PB1, HB25-PB1, and MB26-
PB2, where model scenarios either significantly underpredict or overpredict observed data trends. Additionally, 
at wells MB26-PB1, MB13-PB2, and MB13-PB1, initial predictions align closer to observations, although 
considerable biases and mismatches remain visible. After parameter calibration, predictions show marked 
improvements at all monitoring locations. For example, at MB12-PB1, the calibrated models closely capture 
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observed seasonal fluctuations, substantially reducing bias. Similar improvements occur at HB25-PB1 and 
MB26-PB2, where calibrated predictions more accurately track the observed variability and peaks. Moreover, at 
MB26-PB1, MB13-PB2, and MB13-PB1, calibration significantly enhances model performance by reducing 
deviations and aligning predictions closely with observations throughout the entire historical period. Overall, 
parameter calibration results in visually improved accuracy, even though both models still cannot capture 
extreme event observed especially in HB25-PB1 and MB13-PB1. This suggest that there is another unknown 
stress contribution that not yet included in the Pastas model. 

Comparing both Scenario 1 vs 2 and Scenario 3 vs 4, it should be noted that extreme downward trend shown in 
some prediction is not shown after parameter fixing, as the parameters specifically for evapotranspiration is set 
up such that the stress contribution mirrors the physical, real world phenomena which described as sinusoidal, 
negative stress contribution, and step response limited to one year following the yearly seasonality of daily 
evapotranspiration time series. 

5.4. Dike Stability 
Given the availability of the soil characteristics, for raai_2 cross section the dike stability is assessed. The dike 
stability id determined with the D-Stability software, using the Bishop brute force method. The cross sectional 
profile with the soil layers is shown in Figure 5.18. 

  
Figure 5.18 Cross Section of raai_2, Soil Layer and resulting slip plane on one of the calculations with Bishop Brute Force. 

First Run: Correlated variables, Dec 2023-Jan 2024 event 

The groundwater dataset used in this model follows from Scenario 4 result (raai_2 cross section and Krabbersgat 
Zuid water level observation). First run is set up using hourly simulated groundwater result from 2023-12-01 
00:00 until 2024-01-16 00:00, which amounts to 1127 rows of data. The relationship between related variables 
(precipitation, Markermeer water level) and dike stability (factor of safety) is illustrated and calculated using 
correlation measures (Figure 5.19 and Table 5.7).  

 
Figure 5.19 Relationship between multiple variables that influence groundwater level and factor of safety (FoS) of the dike – Correlated 

Case. Left plot: cumulative 14-days hourly rain vs FoS, right plot: hourly water level vs FoS. 
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Table 5.7 Correlation coefficient between variables and factor of safety – Correlated Case 

Correlation 
(correlated case) 

Cum. Precipitation Water Level 

Pearson -0.67 (p≈0.0) -0.49 (p=0.0) 
Spearman -0.68 (p≈0.0) -0.45 (p=0.0) 

Kendall -0.48 (p≈0.0) -0.30 (p≈0.0) 
 

The time series of the dike stability, Markermeer water level and precipitation is shown in Figure 5.28. Overall, 
the comparison between the Markermeer water level and the factor of safety shows moderately negative 
correlation where lower water levels correlate with safer dikes. Similar moderate negative correlation is 
observed between 14-days cumulative precipitation and the Factor of Safety. This is supported by the correlation 
coefficients in Table 5.7 which indicates negative correlation for water level at -0.30 until -0.49, and negative 
correlation for the cumulative sum water level at -0.48 until -0.67.  

 
Figure 5.20 Time Series Plot of First Run (based on Hourly Dataset from 2023-12-01 00:00 until 2024-01-16 00:00). Red line shows 14-

days cumulative rain based on rolling window sum. 

The time series plot illustrates the relationship between slope stability (Factor of Safety), Markermeer water 
levels, and precipitation dynamically. The top panel shows the hourly Factor of Safety (FoS), which exhibits 
noticeable declines, particularly around late December to early January, indicating periods of reduced stability. 
The middle panel displays water levels, the local Markermeer water level and internal piezometric responses at 
various layers. The peak in external water level and corresponding rise in internal pore pressures align with the 
drop in FoS, suggesting that hydraulic loading from the water body contributes significantly to instability. In the 
bottom panel, observed hourly precipitation (blue dots) and its 14-days cumulative version (red dashed line) are 
shown. The cumulative rainfall appears to align more closely with the observed drops in FoS, indicating that 
prolonged wetting rather than isolated rain bursts is the dominant trigger, because the 14-day accumulation 
better captures soil saturation and the delayed rise of phreatic pressures that weaken the slope. The gap in FoS 
around middle of December is caused by the gap of observed pore pressures, specifically at the phreatic line 
outside of the dike. The FoS value around 12 January 2024 shows significant outlier with strong jump of FoS from 
1.835 to 1.865 and then decreasing fast to 1.835 few hours later while there was no significant event on the local 
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water level, phreatic level or precipitation observed around that timeframe. This can be explained due to the 
significant change of Bishop slip plane at the specific time event compared to typical slip plane shown in Figure 
5.18 (right side), as the method to determine the safety factor is repeatedly create the slip plane and calculate 
the FoS (brute force) with the predetermined search grid as the boundary condition.  

Second run: Uncorrelated (independent) variables, synthetic water level time series 

Both the Markermeer water level and the local 14-day precipitation have a negative correlation with dike stability 
(as shown Figure 5.28 and Table 5.5). As derived in Chapter 5.2 (Table 5.1), there is a positive albeit low 
correlation between the Markermeer water level and the local precipitation. This positive correlation makes low 
stability factors more likely, compared to a zero-correlation case. Therefore, an uncorrelated case is analysed 
by reconstructing Markermeer water level time series so that its water level has the same exceedance probability 
under the assumption of independent drivers as the observed water level (for example, NAP +0.7 m; see Figure 
5.29) has under dependent drivers (see Section 2.3.4). 

The conditional exceedance probability during observed peak water level is calculated as:  

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊 > 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑅𝑅 = 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 1 − 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊 ≤ 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑅𝑅 = 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 1 −  
𝜕𝜕𝜕𝜕(𝑢𝑢, 𝑣𝑣)
𝜕𝜕𝜕𝜕

 

where 𝜕𝜕𝜕𝜕(𝑢𝑢,𝑣𝑣)
𝜕𝜕𝜕𝜕

 is conditional distribution function of bivariate copula, called ℎ-function, 𝑢𝑢 is the empirical CDF 
value (quantile) of the critical water level, and 𝑣𝑣 is the empirical CDF value of the critical cumulative 
precipitation. Both 𝑢𝑢 and 𝑣𝑣 are in [0,1] uniform space, independent of 𝑅𝑅. The copula is previously defined as BB-
8 copula with parameter 𝜃𝜃 = 1.3 and 𝛿𝛿 = 0.97 (see Chapter 5.2).  

For 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  = 0.7 m, 𝑅𝑅 = 203.92 mm such that: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊 > 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑅𝑅 = 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) =  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊 > 0.7|𝑅𝑅 = 203.92) = 0.000022 

which is equivalent to 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑊𝑊 > 𝒘𝒘) with 𝒘𝒘 = 0.54 m. The conditional exceedance probability is 
calculated for each pair in whole time series. To form the synthetic water level time series, rank-exact back-
mapping method is applied. By sorting both observed water level value and the conditional exceedance 
probability, then assign the smallest water level to largest conditional exceedance probability, the second 
smallest to second largest, and so on. This step ensure that the dependence of precipitation is removed. 
Recreated time series is shown in Figure 5.21. 

 
Figure 5.21 Observed Markermeer water level (blue line) and generated water level time series based on its marginal distribution (red 

line) 

Together with observed precipitation time series and evapotranspiration, the generated water level time series 
is used to obtain the time series of the hydraulic head in the dike using Pastas, following the parameters 
previously defined (see Chapter 5.3). From the Pastas hindcasted hydraulic head, the time series of FoS is 
calculated using D-Stability, and the result is shown in Figure 5.22 – 5.23 and Table 5.8. 
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Figure 5.22 Relationship between multiple variables that influence groundwater level and factor of safety (FoS) of the dike – 

Uncorrelated Case. Left plot: cumulative 14-days hourly rain vs FoS, right plot: hourly water level vs FoS. 

Table 5.8 Correlation coefficient between variables and factor of safety – Uncorrelated Case 

Correlation 
(uncorrelated case) 

Cum. Precipitation Water Level 

Pearson -0.18 (p≈0.0) -0.85 (p=0.0) 
Spearman -0.17 (p≈0.0) -0.91 (p=0.0) 

Kendall -0.12 (p≈0.0) -0.76 (p≈0.0) 
 

 
Figure 5.23 Time Series Plot of Second Run (based on Hourly Dataset from 2023-12-01 00:00 until 2024-01-16 00:00). Red line shows 

14-days cumulative rain based on rolling window sum. 

Based on Figure 5.23, the peak water level is much lower compared to first run (correlated), around -0.2 m. 
However, in this independent case, the overall factor of safety is much higher, with lowest recorded FoS is 1.827 
for water level w > -0.2 m compared to FoS of 1.745 in the dependent case. By looking at the range, the recorded 
FoS range is from 1.878 until 1.827, compared to correlated case range from 1.84 until 1.745, which is 86.3% 
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larger. It is also interesting to observe that due to relatively flat local water level, the shape of safety factor time 
series is close to the inverse of the 14-days cumulative precipitation, which support the negative correlation 
between FoS and precipitation. Therefore, this result confirms previous statement that positive correlation 
makes low stability factors more likely, compared to a zero-correlation case.  

Correlated vs Uncorrelated results 

 
Figure 5.24 Comparison of Factor of Safety over time, correlated case (First run, blue color) vs uncorrelated case (Second run, orange 

color) 

Following the results from first run and second run, a comparison on FoS has been made in Figure 5.24. During 
this period, the uncorrelated case yields a consistently higher and smoother factor of safety compared to the 
correlated case. In the correlated case, clear fluctuations and deeper dips are observed, particularly during 
periods of high water levels and rainfall, whereas the uncorrelated case remains relatively stable with only 
gradual variations. The minimum values of FoS are visibly lower in the correlated series, while the uncorrelated 
series maintains higher FoS throughout the entire time window. 

 
Figure 5.25 Comparison of Pearson coefficient measures, correlated case (left side) vs uncorrelated case (right side) 

The comparison of coefficient measures is illustrated in Figure 5.25. There are few points to consider from this 
figure: 

- In the dependent (correlated) case, both precipitation and lake water level show strong negative 
correlations with the factor of safety (FoS). When the dependence between precipitation and water level 
is removed, water level becomes the dominant driver. This indicates that water level largely controls the 
stability response, while precipitation mainly amplifies the FoS reduction when it occurs together with 
high water levels. 

- There are two implications from this: 
o Accounting for dependence between precipitation and water level yields a lower FoS, which is 

more conservative and aligns with many real situations for dikes along rivers and lakes. For river 
dikes, weak or no local dependence can occur, for example when rain or snowmelt happens 
upstream so that a high river stage develops downstream without local precipitation. For large 
lakes, correlated conditions are more commonly found in storm events, where the rain often 
cover both the lake and the adjacent dike and directly affect the local water level. 

o At the design stage, using the dependent combination tends to be more conservative during wet-
season conditions (as shown for December 2023 to January 2024), since it generally produces a 
lower FoS. If a combination-factor approach is used, apply a site-specific multiplier for 
precipitation conditional on high lake level rather than a fixed, independent factor. 
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Chapter 6. Discussions 
In this chapter, several assumption and limitation made during this study will be explained. 

While many factors and variables influence the phreatic level within the dike, only a few were selected for further 
analysis: precipitation, evapotranspiration, water level, dike cross-section, and soil layer properties. The wind 
factor was not considered due to the lack of local water level measurements near the selected dike cross-
section. Although wind setup significantly affects water level fluctuations in large bodies of water such as the 
Markermeer and IJsselmeer, predicting local water levels in time-series form is challenging. However, for 
extreme condition calculations, it is possible to estimate the effect of wind setup using the Young and Verhagen 
(1996) equation, which can be used to calculate the significant wave height to be added to the normal water 
level. 

Copula analysis is used to demonstrate not only the correlation between variables but also their dependency 
structure. The main purpose of using a copula model is to capture and simulate extreme values that cannot be 
adequately represented by simple linear models. By combining samples generated from the copula model with 
seasonal time-series models, such as Seasonal ARIMA, it is possible to create synthetic time series for input 
into groundwater modeling. However, in this study, the generated copula samples were not used as input for 
Pastas because the available dataset was sufficient to address the research questions within the scope of this 
study. 

During groundwater modeling for all cross-sections, the groundwater measurements at both raai_2 and raai_3 
show a large difference between the start and end of the calibration period, although sharp peaks and troughs 
are still observed throughout the intermediate period. Although the calibration period was set to one full year, 
this large difference suggests that the yearly seasonality (high and low seasons) is shifted and does not follow a 
consistent annual pattern. Extending the calibration period could improve the model’s accuracy; however, due 
to data availability limitations, only one year of data could be used for calibration, with an additional three 
months reserved for validation. 

During validation stage, there are lots of model with poor performance where 𝑅𝑅2 value is negative (worse 
compared to mean value prediction of target variable). While the model parameter itself is chosen based on 
comparison in section 5.3.1, the poor performance is due to training dataset used during calibration stage is not 
enough to capture the possible pattern during validation stage. This is also relevant with previous paragraph, 
where the major trend of observed groundwater level during calibration stage is decreasing but when it comes 
to validation stage the dataset is increased sharply then flat (ignoring the short-term seasonality).  

The extreme divergence of the model tail especially before model calibration arises because the model was 
never constrained by observations in that early period, and then during hindcasting simulation the small error is 
building up over time, therefore longer period of hindcasting will cause larger accumulated error. Therefore, 
longer historic data for calibration are needed to bring the model tail closer to reality. 

To assess whether the limited dataset contributes to the model’s poor performance, walk-forward validation is 
used as a comparison to static validation. Walk-forward validation, also known as rolling origin cross-validation, 
is a time series-specific technique that evaluates forecasting models by continuously retraining them as new 
observations become available (Siami‐Namini & Namin, 2018). This method is particularly suitable for time 
series datasets, as it simulates a real-world forecasting scenario where the model is regularly updated with the 
most recent data. 

Compared to a static split, walk-forward validation offers an iterative approach that better reflects the dynamic 
nature of time series. In this process, the model is first trained using 𝑛𝑛 months of data, then validated using the 
data from month 𝑛𝑛 + 1. The chosen error metrics (R² and RMSE, in this case) are recorded after each run. In the 
next step, the model is retrained using 𝑛𝑛 + 1 months of data and validated on month 𝑛𝑛 + 2. This process repeats 
iteratively until the final step, where the model is trained using the entire dataset minus the last month, and the 
final month is used as the validation period. This approach allows for a more robust evaluation of the model’s 
performance over time, providing insights that a static validation split might overlook. 
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Walk-forward validation model is applied to Scenario 2 of groundwater model, specifically on MB014-PB1 
groundwater well location. For the first part, the model is trained using 3 months of data, from 2023-11-10 until 
2024-02-10. The result is shown in the following graph: 

 
Figure 6.1 Walk-forward Validation Model for MB014-PB1 Scenario 2 with 12 steps. 

The results of the rolling-origin validation show significant difference between the model’s performance during 
calibration and validation stage. Specifically, the model reaches consistently high 𝑅𝑅2 value during the calibration 
stage, indicating a strong fit to the calibration dataset. However, during validation, the 𝑅𝑅2 values become 
negative, and in some cases very significant, suggesting that the model's predictive accuracy is inferior to that 
of a simple mean-based predictor. This pattern is further supported by the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values observed during 
validation, which shows inconsistent and large prediction errors.  

The possible reason why the groundwater model failed to predict during validation stage is most likely due to 
data extrapolation error, where the model may operate outside its trained range due to extreme events, trends 
or seasonality that have not yet captured during calibration stage. This argument further supported based on the 
result during step 8 and 9. In those steps, the model performs well, with a high 𝑅𝑅2 during calibration and a 
positive 𝑅𝑅2 during validation. This corresponds to the period from July 2024 to September 2024, when the 
observed data show a linear decreasing trend. To improve the model's accuracy, the response functions could 
be enhanced by using a more complex model, such as a Recharge model. Alternatively, adding additional 
datasets that include more diverse events could help improve the training process and overall model 
performance. 

During model improvement for hindcasting, parameter fixing in the evapotranspiration stress model was chosen 
as the primary modification. This approach was selected to ensure that the evapotranspiration stress follows a 
typical sinusoidal pattern and maintains a negative contribution to the groundwater head, reflecting the physical 
reality that increased evapotranspiration leads to a decrease in groundwater levels. However, because the 
Pastas solver uses least squares optimization, where the main goal is to minimize the sum of squared residuals 
between observed and simulated groundwater heads by adjusting the response function parameters, the initial 
calibration results tend to focus on maximizing the 𝑅𝑅2 value. This can sometimes come at the expense of 
maintaining the correct physical representation of evapotranspiration. By specifically fixing the 
evapotranspiration parameters, the 𝑅𝑅2 value may decrease slightly, but the model preserves a more realistic 
physical behavior. 

The overall diagnostic plots (see Appendix A) for all scenarios generally show no strong systematic bias. The Q-
Q plots align well with the theoretical distribution, and the histograms indicate an approximately normal 
distribution of residuals. However, the ACF plots reveal strong seasonality and significant autocorrelation, 
suggesting that the models tend to miss short-term processes in groundwater fluctuations. 
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In some cases, the probability plots show a poor fit, reflected by low 𝑅𝑅2 values—such as for well MB12-PB1 in 
Scenarios 3 and 4. The observed groundwater levels at this location exhibit highly erratic behavior over time, 
which is difficult for the model to replicate. This could be due to the specific location of MB12-PB1, which is 
situated relatively far from Markermeer on the landward side of the dike. Additionally, the base of the well is 
located in a deep sand layer with high hydraulic conductivity, making it more susceptible to external influences 
such as groundwater pumping or localized recharge occurring within the same aquifer. These factors may 
explain the model's limited ability to capture the observed fluctuations at this particular well. 

The Bishop brute force method was chosen to calculate the safety factor instead of other methods available in 
D-Stability, such as Particle Swarm (Uplift-Van method) or Genetic Algorithm (Spencer method). This choice was 
made because the slope is relatively simple, and the dike geometry and soil layer properties are constant. As a 
result, the grid area remains fixed and manageable, allowing the Bishop method to provide fast computational 
times and a less complex iterative solution compared to the other available methods. 

A long-term dike stability analysis was not conducted in this study due to the limited quality of the hindcasting 
results. The groundwater model generated using Pastas was based on a relatively short period of real 
groundwater observations, which lacked the temporal variation needed to accurately represent long-term 
trends. As a result, the model was unable to capture the full range of seasonal and extreme conditions that are 
essential for a reliable long-term stability assessment. To perform such an analysis, a longer and more 
comprehensive dataset would be required to ensure that the groundwater fluctuations and their effects on dike 
stability are realistically represented over time. 

Overall, despite these limitations and assumptions, the model depicts the phenomenon that influence the dike 
stability in real life. Groundwater levels rise after rainy periods or when the lake level is high, and they fall in dry 
periods when evapotranspiration is strong, which is consistent with what is observed in practice. However, there 
are still some variables that not yet captured in the model that influence the prediction in specific scenario. Local 
wind effect in the dike section is not captured due to no measurement available, but this wind effect can push 
groundwater up near the dike temporarily, explaining the short, erratic spikes in the observed dataset. Local 
pumping and draining also influence the head measurement in short to medium timeframe. Also, the model only 
trained on a year of validation observed dataset with limited trends and seasonality. Longer groundwater 
measurements (more than 5 years) can improve the model parameters and even changing the stress model 
configuration, which in turn improve the prediction.  

In the context of dike stability, the soil parameters are selected deterministically to produce a single factor of 
safety (FoS) each time step due to computational time limitation. Due to this approach, there is risk of FoS 
overconfidence due to uncertainty in related variable such as dike geometry, unit weight, etc. This can be 
improved by either adding sensitivity analysis or cross-check with other method outside of Bishop (i.e. Spencer 
or Uplift-Van model) as comparison.  

The framework used in this study can also be applied to the other dike section, such as IJsselmeer dike sections 
or even dike section that directly facing the North Sea. However, in these cases the influence of other variables 
might be stronger, such as wind setup for dike facing North Sea, or pump operation for dike facing polder, such 
that the correlation between other variables can be explored further and might even have larger influence dike 
stability compared to precipitation and local water level. 
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Chapter 7. Conclusions and Recommendations 

7.1. Conclusions 
Conclusion will be formulated based on the research objective to assess how the Effect of Hydraulical and 
Meteorological Correlations towards Dike Stability during Extreme Events, by answering the following research 
questions: 

1. What are the variables that influence phreatic level, which also influence dike stability in dike section 
around Markermeer and IJsselmeer region? 
 
The phreatic level within dikes around the Markermeer and IJsselmeer region is influenced by a combination 
of external hydraulic loads, climatic conditions, internal soil properties, dike geometry, and local lake 
dynamics, all of which impact dike stability. A key external influence is the fluctuation of lake water levels, 
affected by storm conditions, sluice operations, and wind-driven water movement. As previously illustrated 
in Figure 5.1, in the case of Afsluitdijk the wind storm from northeast will increase the water level in the outer 
dike but simultaneously decrease the water level in the inner dike (IJsselmeer side). In this case, the sluice 
will closed and no water can get out from IJsselmeer, which when combined with heavy rainfall and runoff 
will increase the water level in the IJsselmeer and in turn will increase the load on the dike. When the wind 
goes from southwest, the inverse happens, and water from IJsselmeer can be discharged to the North Sea. 
In the context of local dike, strong winds across the IJsselmeer and Markermeer can push water toward the 
shorelines, causing temporary rises in local water levels that increase hydraulic pressure on nearby dikes. 
Rapid changes in water levels cause delayed pore pressure responses within low-permeability clay dikes, 
increasing the risk of internal instability. Climatic variables such as precipitation and evapotranspiration 
also play a crucial role where rainfall can infiltrate and raise the phreatic line, especially at the inner toe and 
crest, while drought conditions lead to shrinkage cracks that act as rapid infiltration pathways during the 
following wet periods. Internally, the permeability and specific storage capacity of soil layers govern how 
quickly water moves and is stored, with low-permeability, clay-ey soil type, or heterogeneous soils tending 
to maintain higher and more persistent phreatic levels. Dike geometry, including slope, width, and height, 
further influences drainage and storage behavior, with wider or flatter dikes retaining more water and 
elevating pore pressures. Sub-soil conditions, particularly clay thickness beneath the dike, also affect 
drainage and saturation levels. Collectively, these variables determine the phreatic behavior and, in turn, 
the macro-stability of dikes in this low-lying region. 
 

2. Is there any correlation between hydraulic and meteorology variables that influence dike stability? 
 
Yes, there is correlation between hydraulic and meteorology variables that influence dike stability, as 
demonstrated in the result of correlation measurement between precipitation and water level in Chapter 
5.2. The analysis shows that cumulative precipitation, particularly over a 14-day period, correlates 
positively with rising water levels, indicating that sustained rainfall contributes to increased hydraulic load. 
The copula fitting results strengthen this understanding. The best-fit copula (BB8) successfully captures 
asymmetric dependence and tail co-occurrence, which indicates that extreme rainfall events and high 
water levels tend to occur together, though not always symmetrically. This suggests a nonlinear and 
complex relationship between meteorological (rainfall) and hydraulic (water level) variables that jointly 
influence dike safety. 
 

3. Based on the proposed stochastic variables, what is the effect of correlation between water level and 
precipitation for the phreatic level in extreme conditions for dike stability in Markermeer during the wet 
season (Dec 2023 – Jan 2024)? 
 
The analysis in Chapter 5.4 shows that during the wet season of December 2023 to January 2024, both 
Markermeer water level and 14-day cumulative precipitation exhibit negative correlations with the dike’s 
factor of safety while the correlation between water level and precipitation is slightly positive, making 
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simultaneous extreme conditions more probable. Under the observed (dependent) case, peak external 
water levels coincided with prolonged high precipitation, producing higher phreatic levels within the dike 
and a lower minimum factor of safety (1.745). In contrast, when the same marginal distributions were used 
but the drivers were made independent, peak water levels were lower, and the minimum factor of safety 
improved (1.768).  
 
By looking at the Pearson correlation measures, the correlation between 14-days cumulative precipitation 
and hourly water level is 0.20, while the correlation between cum. precipitation vs Factor of Safety (FoS) is 
-0.67 and hourly water level vs FoS is -0.49. After removing the correlation between cum. precipitation and 
water level, the correlation between water level and FoS is stronger (-0.85) compared to precipitation case  
(-0.18).  This result confirms that while main external load on Markermeer dike phreatic levels is the lake 
water level, in the case of wet season during December 2023 – January 2024, precipitation and water level 
tend to rise together (correlation = 0.2), such that the cum. precipitation has more influence on the dike 
stability. 
 

7.2. Recommendations 
In light of the findings presented in this study, the following recommendations are proposed to improve the 
assessment and modelling of dike stability under varying hydrometeorological conditions: 

1. Extend groundwater observation records 
The availability of long-term groundwater data is essential for enhancing model calibration and 
validation. Extended datasets would allow better representation of seasonal variability, extreme events, 
and long-term trends, thereby increasing the reliability of groundwater and stability modelling. 

2. Incorporate detailed soil and hydraulic properties 
The current approach used generalized soil characteristics. More detailed and spatially variable data on 
soil permeability, specific storage, and stratigraphy are recommended to better capture subsurface flow 
responses, particularly in areas with heterogeneous or highly permeable soils. 

3. Advance time-series modelling techniques 
Seasonal ARIMA and walk-forward validation proved valuable for identifying model limitations. Future 
studies should continue to apply adaptive time-series techniques, including recharge-based models 
and rolling-origin cross-validation, to address extrapolation errors and improve model generalization 
under changing conditions. 

4. Integrate copula-based stochastic simulation 
Copula modelling revealed significant nonlinear dependencies between rainfall and water level. 
Integrating copula-generated time series into groundwater models would allow for more realistic 
scenario generation, particularly for stress testing under joint extreme conditions. 

5. Maintain physically meaningful parameter constraints 
While achieving a high goodness-of-fit is important, it should not override the need for physical realism. 
Fixing evapotranspiration parameters to ensure negative contributions to groundwater head reflects 
actual processes and improves the interpretability and reliability of model outcomes. 

6. Investigate site-specific anomalies 
For locations where model performance was poor, such as well MB12-PB1, further investigation is 
recommended. Site-specific influences such as groundwater abstraction, recharge from local features, 
or deep aquifer interactions may need to be considered to improve simulation accuracy. 
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Appendix 
A. Correlation Coefficients for Each Precipitation Type with Lag up to 14 days 

Precip Type Lag (days) 
Coefficients p-value 

Pearson Spearman Kendall Pearson Spearman Kendall 
Hourly 0 0.0663 0.033 0.0261 1.25E-221 2.00E-56 1.79E-55 

1 0.0306 0.001 0.0008 1.39E-48 0.616074928 0.638696946 
2 0.0407 0.0152 0.0121 8.64E-85 3.19E-13 4.01E-13 
3 0.038 0.0114 0.009 6.96E-74 5.45E-08 5.73E-08 
4 0.0338 0.0048 0.0038 6.60E-59 0.021530584 0.020720059 
5 0.032 0.0007 0.0006 3.69E-53 0.741129917 0.732169171 
6 0.0325 0.0014 0.0011 1.11E-54 0.514292596 0.507712069 
7 0.0305 -0.004 -0.0032 2.59E-48 0.054670269 0.053577907 
8 0.0263 -0.0042 -0.0033 2.01E-36 0.043518798 0.044055919 
9 0.0253 -0.0061 -0.0049 6.68E-34 0.003555716 0.003467042 

10 0.0264 -0.0082 -0.0065 9.78E-37 8.23E-05 8.46E-05 
11 0.0235 -0.0135 -0.0108 2.89E-29 9.26E-11 8.77E-11 
12 0.0252 -0.0131 -0.0105 1.22E-33 3.21E-10 2.63E-10 
13 0.0231 -0.0137 -0.0109 1.69E-28 5.86E-11 5.52E-11 
14 0.0217 -0.0214 -0.017 3.24E-25 1.62E-24 1.18E-24 

7-day sum 0 0.1753 0.1316 0.089 0 0 0 
1 0.1693 0.1226 0.0831 0 0 0 
2 0.1627 0.1119 0.0761 0 0 0 
3 0.1522 0.0983 0.067 0 0 0 
4 0.1453 0.0897 0.0611 0 0 0 
5 0.1388 0.0807 0.0551 0 0 0 
6 0.1335 0.0753 0.0513 0 1.84E-285 3.35E-287 
7 0.1272 0.0693 0.0471 0 5.72E-242 1.06E-242 
8 0.1216 0.0629 0.0426 0 1.65E-199 3.35E-199 
9 0.1132 0.0535 0.0361 0 6.58E-145 2.07E-143 

10 0.105 0.0446 0.03 0 4.33E-101 1.08E-99 
11 0.094 0.0361 0.0242 0 5.13E-67 1.11E-65 
12 0.0844 0.0266 0.0179 0 4.44E-37 1.01E-36 
13 0.0735 0.0147 0.01 1.74E-271 2.03E-12 1.77E-12 
14 0.0651 0.0067 0.0046 3.11E-213 1.30.E-03 1.10.E-03 

14-day sum 0 0.1973 0.147 0.0994 0 0 0 
1 0.1898 0.1366 0.0927 0 0 0 
2 0.18 0.1234 0.0838 0 0 0 
3 0.1678 0.1085 0.0736 0 0 0 
4 0.1562 0.095 0.0643 0 0 0 
5 0.1457 0.0831 0.0562 0 0 0 
6 0.1351 0.0723 0.0489 0 6.31E-263 1.07E-261 
7 0.1256 0.0637 0.043 0 2.05E-204 2.42E-203 
8 0.1161 0.0549 0.0369 0 4.74E-152 4.69E-150 
9 0.1072 0.0465 0.0311 0 1.24E-109 2.30E-107 

10 0.0982 0.0377 0.0252 0 1.01E-72 7.14E-71 
11 0.0887 0.0291 0.0195 0 3.90E-44 5.44E-43 
12 0.0794 0.0201 0.0133 7.12E-317 8.44E-22 5.05E-21 
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13 0.0685 0.0093 0.006 3.56E-236 8.78E-06 2.42E-05 
14 0.0576 -0.0016 -0.0015 4.18E-167 0.431697938 0.299962387 

21-day sum 0 0.1892 0.1316 0.0891 0 0 0 
1 0.1787 0.1186 0.0805 0 0 0 
2 0.1683 0.1054 0.0716 0 0 0 
3 0.1558 0.0908 0.0617 0 0 0 
4 0.1448 0.0782 0.0531 0 3.35E-307 9.87E-308 
5 0.1341 0.0668 0.0453 0 1.34E-224 1.15E-224 
6 0.1228 0.0561 0.0379 0 9.11E-159 1.05E-157 
7 0.1109 0.0446 0.0299 0 6.85E-101 3.25E-99 
8 0.0995 0.0327 0.0216 0 5.36E-55 8.52E-53 
9 0.0888 0.021 0.0136 0 9.32E-24 5.59E-22 

10 0.0782 0.0099 0.006 9.51E-307 2.28E-06 2.13E-05 
11 0.0678 -0.0007 -0.0012 2.49E-231 0.753843884 0.408427402 
12 0.058 -0.0108 -0.008 2.18E-169 2.60E-07 1.48E-08 
13 0.0466 -0.0221 -0.0157 4.89E-110 4.95E-26 1.45E-28 
14 0.0353 -0.0329 -0.023 6.41E-64 9.47E-56 2.02E-59 

28-day sum 0 0.1694 0.105 0.0712 0 0 0 
1 0.1572 0.0902 0.0613 0 0 0 
2 0.1453 0.0752 0.0511 0 5.47E-284 3.15E-285 
3 0.1319 0.0599 0.0406 0 1.32E-180 4.74E-181 
4 0.1202 0.0467 0.0315 0 1.07E-110 8.49E-110 
5 0.109 0.0347 0.0233 0 8.19E-62 1.23E-60 
6 0.0972 0.0231 0.0153 0 1.84E-28 4.57E-27 
7 0.0849 0.0116 0.0074 0 2.86E-08 1.74E-07 
8 0.0736 0.0009 0.0001 1.09E-271 0.65175688 0.960639372 
9 0.0625 -0.0094 -0.0071 1.20E-196 6.38E-06 5.02E-07 

10 0.0514 -0.0197 -0.0142 1.48E-133 3.87E-21 1.49E-23 
11 0.0403 -0.0299 -0.021 7.27E-83 1.98E-46 5.88E-50 
12 0.0301 -0.0393 -0.0274 5.61E-47 1.32E-78 2.31E-83 
13 0.0191 -0.0498 -0.0345 6.61E-20 2.17E-125 3.57E-131 

14 0.0083 -0.0601 -0.0414 7.05E-05 8.87E-182 3.45E-188 
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B. Diagnostic Result  
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C. Groundwater Model Comparisons 

Scenario 1 vs 2 

 
Figure C.1 Mosaic plot result for MB014-PB1 observation well (calibration stage) between Scenario 1 and 2. Coloured lines correspond 

to model-predicted measurement and black markers for observations.  

Figure C.1 shows the result of groundwater modeling analysis using Pastas for monitoring well MB014_PB1 
between Scenario 1 and 2. The top-left graph illustrates the comparison between observed groundwater heads 
together with model predictions from Scenario 1 and 2. Visually, both Scenario 1 and 2 follows the observed 
trend well with only few significant departures: slight under-predicted during end of 2024-05, slight over-
predicted at the end of 2024-09 and sharp peak over-predicted around 2024-10. This deviation can also be seen 
in the residual plot directly under the comparison plot, with most variation hovering between 0.1 and -0.1 m 
except for that one sharp peak with -0.12 m. The right-top table presents statistical measure of fit for both 
models, with 𝑅𝑅2 value shows 0.96 for Scenario 1 and 0.95 for Scenario 2, indicating high correlation for both 
scenarios.  

The last three plots illustrate the effect of the corresponding stresses (precipitation, evaporation, and water 
level) on the left side, and their corresponding step response plots in the right side. For precipitation stress, the 
contribution toward model prediction is overall positive, with no significant difference between Scenario 1 and 
Scenario 2. Evapotranspiration stress shows linear negative trend and keeps decreasing for both scenario 1 and 
2. Water level contribution plot shows erratic behavior, with distinct positive peak at 2024-01 followed by gradual 
decline that stabilizes at negative range value beginning in 2024-03. From step response plot, both precipitation 
and water level stresses show almost vertical line and no plateau which indicates very quick initial response 
which is the characteristic of shallow aquifers, while evapotranspiration step response for both scenario shows 
no initial response, and over time both responses drop until reaching stability around -50, which indicates 
negative step response. Blue curve (Scenario 1) tends to be slower system compared to orange curve (Scenario 
2) which drops faster and earlier. 
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Figure C.2 Mosaic plot result for MB014-PB2 observation well (calibration stage) between Scenario 1 and 2. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.2 illustrate the model result for MB014-PB2 groundwater well. For observation versus model prediction 
plot, both Scenario generally follow the overall trend from the observation with 𝑅𝑅2 value of 0.58 for Scenario 1 
and slightly higher for Scenario 2 with 0.59. However, both scenarios tend to underpredict the rapid declines and 
sharp peaks. Scenario 1 predicts sharp increase in groundwater level around 2024-10, which is closer to actual 
observations compared to Scenario 2. The residual plot overall confirms the previous findings, showing that the 
largest residuals occur at the highest peaks and deepest troughs of the observation. Precipitation contribution 
shows different pattern, with Scenario 1 shown a very small amplitude teetering at zero, as shown in Prec_A 
model parameters of 4.54e-03, and more unstable behavior compared to Scenario 2 which shows smoother line 
and higher contribution. This is further confirmed by Scenario 1’s larger shape (Prec_n) parameter and smaller 
scale (Prec_a) parameter.  

Evaporation contribution plot depicts an almost horizontal line at large negative value, with smaller amplitude 
for Scenario 2 (-19.11) compared to Scenario 1 (-11.22). From step response plot, precipitation for Scenario 2 
shows gradual increase which then plateau until reaching steady state at t = 1500 days. Scenario 1 precipitation 
step response has very small magnitude compared to Scenario 2 such that it cannot be shown in the plot. For 
evaporation step response, Scenario 1 exhibit gradual decline over an extended period, reaching plateau at 
approximately t = 6500 days, while Scenario 2 reaches its plateau early and achieve steady state around t =5500 
days. 
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Figure C.3 Mosaic plot result for HB027-PB1 observation well (calibration stage) between Scenario 1 and 2. Coloured lines correspond 

to model-predicted measurement and black markers for observations.  

Figure C.3 depicts the HB027-PB1 groundwater level observation and model prediction. For the first plot, with 
𝑅𝑅2 value of 0.83 for Scenario 1 and 0.85 for Scenario 2, the general shape and trend of actual observation can be 
captured by both models, with some deviations. Underpredictions observed at some peaks, such as during end 
of 2023-12, 2024-03 and middle of 2024-06. Different pattern emerges on 2024-10, where both models 
overestimated the increased level of groundwater by around 0.25 m. The residual show slightly more often 
variation predominantly less than zero which indicates more overpredictions. The precipitation stress 
contribution follows a similar pattern to that of MB014-PB1 with higher contribution from Scenario 1 compared 
to Scenario 2. While both scenarios show a negative contribution from evapotranspiration stress, Scenario 1’s 
effect is less pronounced, with an amplitude of -6.52e-02 compared to -6.21 for Scenario 2. Additionally, the 
response time for evapotranspiration in Scenario 1 is much shorter, around 150 days, compared to 
approximately 6000 days for Scenario 2. 
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Figure C.4 Mosaic plot result for MB015-PB2 observation well (calibration stage) between Scenario 1 and 2. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

For MB015-PB2 (Figure  C.4), the model prediction shows relatively accurate prediction, however between 2024-
03 and 2024-08 there are some underpredict tendency. Precipitation pattern between Scenario 1 and 2 follows 
very similar shape, which reflected on the parameters. Evaporation pattern shows sinusoidal pattern and 
negative contribution. Water level contribution is quite detail and ranging between +0.1 m and -0.1 m. Both 
precipitation and water level step response show similar pattern of short, almost instantaneous response time 
while evapotranspiration step response plot itself show decrease with similar drop between blue line (Scenario 
1) and orange line (Scenario 2), which is consistent with physical process when groundwater head drops 
gradually in response to increased evapotranspiration. 
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Scenario 3 vs 4 

 
Figure C.5 Mosaic plot result for HB025-PB1 observation well (calibration stage) between Scenario 3 and 4. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.5 compares observed groundwater heads at well MB12_PB1 (black dots) with model predictions under 
Scenario 3 (blue) and Scenario 4 (orange). In the top‑left panel, both scenarios reproduce the overall seasonal 
decline and short‑term fluctuations from January through November 2024, with only minor under‑prediction and 
over‑prediction toward the end of the period. The residual plot below shows that most errors remain within 
±0.1 m, apart from one spike around mid‑2024. The table at upper right reports identical coefficients of 
determination (𝑅𝑅2 = 0.76) for both scenarios; however, Scenario 3 achieves a lower corrected AIC (Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.0 
versus 4.93), indicating a better trade‑off between goodness of fit and model complexity. The parameter values 
reveal that Scenario 4 model is fitted using larger precipitation amplitude (Prec_A = 0.25 versus 0.10) and scale 
parameter (Prec_a = 108.04 versus 26.06) which then compensated by slightly smaller constant offset 
(constant_d = 1.97 versus 2.48) which resulting in similar value of 𝑅𝑅2.  

On the left side, the stress‑contribution plots illustrate that precipitation inputs raise groundwater levels while 
both evaporation and water level draw them down. Their corresponding step‑response curves on the right 
confirm a very rapid initial response for both rainfall and water level from Markermeer inputs, typical of a shallow 
aquifer, while evaporation produces a slower, steadily negative response. Scenario 4 reaches its equilibrium 
response slightly sooner than Scenario 3, reflecting its stronger recharge coefficient. 
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Figure C.6 Mosaic plot result for HB025-PB1 observation well (calibration stage) between Scenario 3 and 4. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.6 presents the Pastas hindcast for well HB25_PB1 under Scenario 3 (blue) and Scenario 4 (orange). In 
the top‐left panel, both model runs reproduce the broad seasonal decline and many of the short‐term 
fluctuations seen in the black‐dot observations, but neither captures the sharp, isolated spikes in water level. 
The residual plot shows that the largest errors occur at those peak events, while most residuals remain within 
±0.2 m. The metrics table at upper right gives an 𝑅𝑅2 of 0.50 for both scenarios, indicating only moderate 
agreement with the observations. Scenario 3 has the lower corrected AIC (Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  = 0.0 versus 57.64), suggesting 
it provides a better compromise between fit and complexity. The parameter table shows that both scenarios 
share the same precipitation amplitude (Prec_A = 0.64) but Scenario 4 has a slightly smaller precipitation scale 
(Prec_a = 2026.09 versus 2389.04) and a lower constant offset (constant_d = 0.88 versus 0.95).  

On the left, the precipitation contribution plot shows irregular positive pulses tied to rainfall events, with 
Scenario 3 peaks generally a bit lower than Scenario 4. The evaporation contribution is essentially a steady 
negative drawdown for both scenarios, with only minor differences in amplitude. The boundary‐condition (water‐
level) contribution follows a seasonal rise and fall, and again the two scenarios overlap closely. The step‐
response curves on the right confirm these dynamics: rainfall and boundary inputs produce a rapid initial rise 
that plateaus quickly, while evaporation yields a slower, steadily negative response. Scenario 4 reaches its 
equilibrium response slightly sooner than Scenario 3, reflecting its marginally stronger weighting of the recharge 
and boundary stresses. 
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Figure C.7 Mosaic plot result for MB026-PB2 observation well (calibration stage) between Scenario 3 and 4. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.7 shows the Pastas hindcast for well MB26_PB2 under Scenario 3 (blue) and Scenario 4 (orange). In the 
top‑left panel, both scenarios capture the overall seasonal decline and most short‑term fluctuations from 
January to November 2024, but neither reproduces all of the sharp peaks seen in the black‑dot observations. 
The residual plot directly below indicates that most errors lie within ±0.2 m. The table at upper right reports an 
𝑅𝑅2 of 0.89 for Scenario 3 and 0.91 for Scenario 4, while the corrected AIC strongly favors Scenario 4, suggesting 
it attains a better balance of fit and complexity. The parameter values reveal that Scenario 4 uses a slightly lower 
precipitation amplitude (Prec_A = 0.12 versus 0.18) and shape (Prec_n = 0.79 versus 0.85), a weaker negative 
evapotranspiration coefficient (Evap_A = –0.67 versus –0.82), and a larger boundary‑stage amplitude 
(waterlevel_A = 2.00 versus 0.52) with an effectively zero shape factor (waterlevel_b ≈ 4.5 × 10⁻⁵) compared to 
Scenario 3 which loses most of its characteristic time scale and shape. Scenario 4 also has a slightly smaller 
constant offset (constant_d = –0.63 versus –0.66). 

On the left, the stress‑contribution plots show that rainfall events generate positive pulses that decline in 
magnitude over the year, evaporation produces a nearly steady negative drawdown in sinusoidal pattern, and 
imposed water level stress drive a smooth long‑term fall in head. The step‑response curves on the right confirm 
that both rainfall and water level provoke a rapid rise that plateaus within a few hundred days, while evaporation 
yields a slower, steadily negative response. In each case Scenario 4 reaches its equilibrium response a little 
sooner than Scenario 3. 
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Figure C.8 Mosaic plot result for MB026-PB1 observation well (calibration stage) between Scenario 3 and 4. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.8 shows the hindcast results for well MB26_PB1 under Scenario 3 (blue) and Scenario 4 (orange). In the 
top‑left panel, both scenarios trace the broad seasonal decline and most short‑term fluctuations in the 
black‑dot observations from January to November 2024, although neither reproduces every sharp peak. The 
residuals directly below indicate that most errors lie within ±0.2 m, with no systematic bias. Interestingly, there 
are some rapid groundwater movements at the beginning of calibration period, which might be explained by 
effect of surface runoff or infiltration in the groundwater well. The metrics table at upper right reports identical 
R² values of 0.76 for both scenarios, but Scenario 3 achieves a lower corrected AIC (Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.0 versus 63.1), 
indicating it offers the better balance between fit and complexity. The parameter table shows only minor 
differences: Scenario 4 has a  marginally larger precipitation amplitude (Prec_a = 115.82 versus 109.21) and a 
slightly stronger precipitation coefficient (Prec_A = 0.12 versus 0.11), while the water level shape factor of a and 
b is higher in Scenario 4, causing more stretched out pattern and higher scale factor. 

On the left, the stress‑contribution plots reveal that rainfall induces modest positive pulses, evaporation 
produces a steady negative drawdown, and water level impact shows smooth long‑term fall. Their 
step‑response curves on the right show a rapid initial rise from rainfall that plateaus within a few hundred days, 
a slowly developing negative response from evaporation that stabilizes over thousands of days, and a fast 
decline from water level. Scenario 3’s step responses are slightly stronger and slower to stabilize than 
Scenario 4’s, consistent with its higher boundary amplitude and lower precipitation scale. 
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Figure C.9 Mosaic plot result for MB013-PB2 observation well (calibration stage) between Scenario 3 and 4. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.9 compares observed groundwater heads at well B13_PB2 (black dots) with Pastas model predictions 
under Scenario 3 (blue) and Scenario 4 (orange). In the top‑left panel, both scenarios follow the general seasonal 
decline and many of the short‑term fluctuations from January through November 2024, but neither captures all 
of the scattered peak events seen in the observations. The residual plot below shows most errors lie within 
±0.2 m, with larger deviations coinciding with those sharp peaks. Based on the observed heads, there are some 
rapid groundwater movements, which might be explained by the location of groundwater well in sandy 
intermediate layer such that it respons faster to external recharge or pumping factor. 

The metrics table at upper right reports an 𝑅𝑅2 of 0.71 for Scenario 3 and 0.75 for Scenario 4, while the corrected 
AIC (Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) is much lower for Scenario 4 (0.0 versus 1432.76), indicating that Scenario 4 achieves a better 
balance of fit and model parsimony. The parameter table shows that Scenario 3 has a higher precipitation 
amplitude (Prec_A ≈ 0.093) and scale (Prec_a ≈ 83.5) compared to Scenario 4 (Prec_A ≈ 0.019, Prec_a ≈ 3.9), so 
it responds more strongly to rainfall inputs. By contrast, Scenario 4 relies less on precipitation but more on 
evaporation (Evap_A = –1.00 versus –0.65) and has a much smaller boundary‑stage amplitude 
(waterlevel_a ≈ 0.42 versus 369.7). 

On the left side, the stress‑contribution plots show that rainfall spikes raise heads more under Scenario 3, 
whereas evaporation draws down heads more sharply under Scenario 4. The boundary input produces a smooth 
seasonal signal only in Scenario 3. The step‑response curves on the right confirm this behavior: Scenario 3 
shows a rapid, high‑magnitude rise from rainfall before plateauing, and a slow negative response from 
evaporation that stabilizes over several thousand days. Scenario 4’s rainfall response is almost negligible, its 
evaporation response reaches its steady negative drawdown more quickly, and its stage response is minimal. 
These differences explain why Scenario 4 fits the scattered observations better despite its simpler stress 
weighting. 
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Figure C.10 Mosaic plot result for MB013-PB1 observation well (calibration stage) between Scenario 1 and 2. Coloured lines correspond 

to model-predicted measurement and black markers for observations. 

Figure C.10 shows groundwater heads at B13_PB1 (black dots) alongside Pastas model outputs for Scenario 3 
(blue) and Scenario 4 (orange). In the main panel both scenarios follow the gradual long‐term decline from 
January through November 2024, but they fail to reproduce many of the large downward spikes in the 
observations. The residual plot beneath confirms that most errors lie below 0.2 m, with the largest under‐
predictions occurring at those sharp drops. Similar to the previous well, the groundwater head observations also 
exhibit erratic and rapid drops, indicating sudden fluctuations that are difficult for the model to capture 
accurately. 

The table at upper right reports 𝑅𝑅2 values of 0.50 for Scenario 3 and 0.49 for Scenario 4, while Scenario 3 has the 
lower corrected AIC (ΔAICc = 0.0 versus 46.83), indicating a slightly better balance of fit and simplicity. 
Parameter values show that Scenario 3 responds more strongly to precipitation (Prec_A = 0.044 versus 0.035; 
Prec_a = 129.9 versus 94.7) and more weakly to evaporation (Evap_A = –0.11 versus –0.45). Scenario 4, by 
contrast, has a higher evaporation shape factor (Evap_n = 0.95 versus 0.74) and a larger boundary‐stage shape 
(waterlevel_b = 0.74 versus 0.28). 

The stress‐contribution plots on the left reveal that rainfall produces a modest positive pulse, more pronounced 
in Scenario 3, while evaporation delivers a steady negative drawdown that is stronger under Scenario 4. The 
boundary condition input shows a smooth seasonal signal for both models. Finally, the step‐response curves 
on the right confirm that rainfall and water level trigger a rapid initial change followed by quick stabilization, while 
evaporation causes a slow negative response that only levels off after several thousand days. Scenario 4’s 
responses reach equilibrium slightly faster, reflecting its higher evaporation weighting and lower precipitation 
scale. 
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D. Comparison of Parameters after Parameter Fixing  

Scenario 1 

Observation Well Model Parameter Initial Value Min. Value Max. Value Adjusted Value 

MB014_PB1 Prec_A - - - 3.48e-02 
 Prec_n - - - 1.03 
 Prec_a - - - 135.44 
 Evap_A -0.1 -1 -0.1 -0.52 
 Evap_n 0.1 0.1 2 2.00 
 Evap_a 5 5 365 365.00 
 waterlevel_A - - - 0.61 
 waterlevel_a - - - 9.68 
 waterlevel_b - - - 8.77e-04 
 constant_d - - - -1.38 

MB014_PB2 Prec_A - - - 0.22 
 Prec_n - - - 1.30 
 Prec_a - - - 86.59 
 Evap_A -0.1 -1 -0.1 -1.00 
 Evap_n 0.1 0.1 2 2.00 
 Evap_a 5 5 365 238.49 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 782.87 
 waterlevel_b - - - 6.65e-02 
 constant_d - - - -7.27e-02 

HB027_PB1 Prec_A - - - 0.35 
 Prec_n - - - 1.89 
 Prec_a - - - 43.27 
 Evap_A -0.1 -1 -0.1 -0.10 
 Evap_n 0.1 0.1 2 1.41 
 Evap_a 5 5 365 62.81 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 187.95 
 waterlevel_b - - - 0.47 
 constant_d - - - -1.55 

MB015_PB2 Prec_A - - - 0.28 
 Prec_n - - - 1.22 
 Prec_a - - - 101.20 
 Evap_A -0.1 -1 -0.1 -0.17 
 Evap_n 0.1 0.1 2 1.60 
 Evap_a 5 5 365 125.87 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 200.74 
 waterlevel_b - - - 0.54 
 constant_d - - - -2.62 

 

Scenario 2 

Observation Well Model Parameter Initial Value Min. Value Max. Value Adjusted Value 

MB014_PB1 Prec_A - - - 4.48e-02 
 Prec_n - - - 1.66 
 Prec_a - - - 106.05 
 Evap_A -0.1 -1 -0.1 -0.52 
 Evap_n 0.1 0.1 2 2.00 
 Evap_a 5 5 365 365.00 
 waterlevel_A - - - 0.53 
 waterlevel_a - - - 19.79 
 waterlevel_b - - - 9.51e-04 
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 constant_d - - - -1.38 
MB014_PB2 Prec_A - - - 0.27 

 Prec_n - - - 1.80 
 Prec_a - - - 75.54 
 Evap_A -0.1 -1 -0.1 -1.00 
 Evap_n 0.1 0.1 2 2.00 
 Evap_a 5 5 365 238.07 
 waterlevel_A - - - 0.10 
 waterlevel_a - - - 10.00 
 waterlevel_b - - - 1.11e-06 
 constant_d - - - -0.34 

HB027_PB1 Prec_A - - - 0.36 
 Prec_n - - - 1.75 
 Prec_a - - - 52.41 
 Evap_A -0.1 -1 -0.1 -0.10 
 Evap_n 0.1 0.1 2 1.40 
 Evap_a 5 5 365 63.80 
 waterlevel_A - - - 0.22 
 waterlevel_a - - - 10.06 
 waterlevel_b - - - 1.13e-22 
 constant_d - - - -1.60 

MB015_PB2 Prec_A - - - 0.32 
 Prec_n - - - 1.33 
 Prec_a - - - 105.04 
 Evap_A -0.1 -1 -0.1 -0.23 
 Evap_n 0.1 0.1 2 1.49 
 Evap_a 5 5 365 169.63 
 waterlevel_A - - - 0.10 
 waterlevel_a - - - 10.00 
 waterlevel_b - - - 1.00e-02 
 constant_d - - - -2.80 

 

Scenario 3 

Observation Well Model Parameter Initial Value Min. Value Max. Value Adjusted Value 

MB012_PB1 Prec_A - - - 9.51e-02 
 Prec_n - - - 0.78 
 Prec_a - - - 25.16 
 Evap_A -0.1 -10 -0.1 -0.53 
 Evap_n 0.1 0.1 1 1.00 
 Evap_a 5 5 365 365.00 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 1000.00 
 waterlevel_b - - - 2.96e-02 
 constant_d - - - 5.02 

HB025_PB1 Prec_A - - - 7.51e-02 
 Prec_n - - - 0.67 
 Prec_a - - - 41.01 
 Evap_A -0.1 -10 -0.1 -0.47 
 Evap_n 0.1 0.1 1 1.00 
 Evap_a 5 5 365 365.00 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 880.69 
 waterlevel_b - - - 0.21 
 constant_d - - - 3.65 

MB026_PB2 Prec_A - - - 0.18 
 Prec_n - - - 0.85 
 Prec_a - - - 106.71 
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 Evap_A -0.1 -10 -0.1 -0.13 
 Evap_n 0.1 0.1 2 0.95 
 Evap_a 5 5 365 137.29 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 78.94 
 waterlevel_b - - - 0.40 
 constant_d - - - -0.66 

MB026_PB1 Prec_A - - - 0.12 
 Prec_n - - - 0.77 
 Prec_a - - - 116.17 
 Evap_A -0.1 -10 -0.1 -0.13 
 Evap_n 0.1 0.1 2 1.00 
 Evap_a 5 5 365 338.70 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 411.54 
 waterlevel_b - - - 0.66 
 constant_d - - - -0.73 

MB013_PB2 Prec_A - - - 6.98e-02 
 Prec_n - - - 0.76 
 Prec_a - - - 60.09 
 Evap_A -0.1 -10 -0.1 -0.26 
 Evap_n 0.1 0.1 2 1.00 
 Evap_a 5 5 365 364.92 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 329.97 
 waterlevel_b - - - 0.96 
 constant_d - - - -0.13 

MB013_PB1 Prec_A - - - 5.66e-03 
 Prec_n - - - 2.71 
 Prec_a - - - 0.73 
 Evap_A -0.1 -10 -0.1 -0.10 
 Evap_n 0.1 0.1 2 0.99 
 Evap_a 5 5 365 364.92 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 954.70 
 waterlevel_b - - - 3.41 
 constant_d - - - -6.55 

 

Scenario 4 

Observation Well Model Parameter Initial Value Min. Value Max. Value Adjusted Value 

MB012_PB1 Prec_A - - - 0.11 
 Prec_n - - - 0.78 
 Prec_a - - - 28.42 
 Evap_A -0.1 -10 -0.1 -0.11 
 Evap_n - - - 8.38 
 Evap_a 5 5 365 11.03 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 293.76 
 waterlevel_b - - - 0.11 
 constant_d - - - 5.02 

HB025_PB1 Prec_A - - - 0.37 
 Prec_n - - - 0.71 
 Prec_a - - - 297.68 
 Evap_A -0.1 -10 -0.1 -0.16 
 Evap_n - - - 4.82 
 Evap_a 5 5 365 32.83 
 waterlevel_A - - - 2.00 
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 waterlevel_a - - - 626.61 
 waterlevel_b - - - 0.29 
 constant_d - - - 1.49 

MB026_PB2 Prec_A - - - 0.19 
 Prec_n - - - 0.88 
 Prec_a - - - 97.99 
 Evap_A -0.1 -10 -0.1 -0.04 
 Evap_n - - - 10.00 
 Evap_a 5 5 365 7.82 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 70.34 
 waterlevel_b - - - 0.47 
 constant_d - - - -1.18 

MB026_PB1 Prec_A - - - 0.12 
 Prec_n - - - 0.77 
 Prec_a - - - 116.45 
 Evap_A -0.1 -10 -0.1 -0.05 
 Evap_n - - - 3.64 
 Evap_a 5 5 365 34.77 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 210.92 
 waterlevel_b - - - 1.41 
 constant_d - - - -0.76 

MB013_PB2 Prec_A - - - 7.29e-02 
 Prec_n - - - 0.75 
 Prec_a - - - 66.96 
 Evap_A -0.1 -10 -0.1 -0.05 
 Evap_n - - - 8.02 
 Evap_a 5 5 365 11.92 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 266.93 
 waterlevel_b - - - 1.22 
 constant_d - - - -0.05 

MB013_PB1 Prec_A - - - 3.53e-02 
 Prec_n - - - 0.65 
 Prec_a - - - 98.48 
 Evap_A -0.1 -10 -0.1 -0.02 
 Evap_n - - - 1.93 
 Evap_a 5 5 365 43.04 
 waterlevel_A - - - 2.00 
 waterlevel_a - - - 98.00 
 waterlevel_b - - - 0.76 
 constant_d - - - -1.08 
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