
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Spike Time Sensitivity
in Spiking Neural
Networks
Investigating the Effect of Sample Difficulty in
Time-to-First-Spike Coded Spiking Neural Networks

Eren Aydoslu

Spike Time
Sensitivity in Spiking

Neural Networks
Investigating the Effect of Sample Difficulty in

Time-to-First-Spike Coded Spiking Neural
Networks

by

Eren Aydoslu

Student Name Student Number

Eren Aydoslu 4997778

Faculty: Electrical Engineering, Mathematics and Computer Science, Delft

Cover: Cover art generated by Dream AI
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

This thesis grew out of my genuine interest in the overlap between neuroscience and machine learning. I’ve
always been fascinated by how the brain processes information, and Spiking Neural Networks offered an ideal
framework for pursuing this curiosity. Throughout my research, I discovered unexpected connections with
stochastic processes and cognitive neuroscience, which enriched the project as I’ve always liked working across
disciplines. This thesis represents the results of that spirit: it synthesizes ideas from deep learning, stochastic
dynamics, and human cognition to shed new light on how sample difficulty affects spike-time sensitivity in
SNNs.

I’d like to thank my supervisors, Dr. J.C. van Gemert, Dr. N. Tömen, Dr. O. Booij, and A. Micheli, for their
support and guidance. This project deepened my understanding of deep learning more than I expected and
boosted my appreciation for all the researchers who dedicate their careers to tackling these complex topics.

And finally, I would like to thank my family and my friends for always being there and for their continuous
support throughout the whole process.

Eren Aydoslu
Delft, June 2025

i

Contents

Preface i

Nomenclature iv

1 Introduction 1

2 Artificial Neural Networks 2
2.1 Perceptron and Deep Learning . 2

2.1.1 The Perceptron . 2
2.1.2 Universal Approximation and Depth . 2
2.1.3 Back-Propagation and Gradient Descent . 2

2.2 Multi-Layer Perceptrons . 3
2.3 Convolutional Neural Networks . 3

3 Spiking Neural Networks 6
3.1 Leaky Integrate-and-Fire Neuron Model . 6
3.2 Spike Encoding . 6

3.2.1 Rate Encoding . 7
3.2.2 Latency Encoding . 7
3.2.3 Biological Plausibility . 7

3.3 Training Spiking Neural Networks . 7
3.3.1 Surrogate Gradients . 7
3.3.2 Backpropagation Through Time . 8

3.4 Loss Function . 8

4 Sample Difficulty in Machine Learning and Deep Learning 9
4.1 Theoretical Perspectives on Sample Difficulty . 9
4.2 Metrics for Sample Difficulty . 10
4.3 Gaussian Noise as a Proxy Measure of Difficulty . 11
4.4 Relevance to Latency-Coded SNNs . 12

5 Statistical Learning Theory 13
5.1 Bias-Variance Trade-off . 13

5.1.1 Parameter Estimation and Bias . 13
5.1.2 Parameter Estimation and Variance . 14

5.2 Parameter Regularization . 14
5.2.1 Gaussian Noise as a Regularizer . 15

5.3 Bias-Variance and Generalization in Neural Networks . 16
5.3.1 Deep and Convolutional Artificial Networks . 16
5.3.2 TTFS Spiking Neural Networks . 16

5.4 Synaptic Weights in TTFS-SNNs . 16

6 Stochastic Processes 18
6.1 Random Walks . 18

6.1.1 Gaussian Random Walk . 18
6.1.2 Wiener Processes (Brownian Motion) . 18

6.2 First Hitting Time Problem . 19
6.3 Modeling Neuron Spiking with First Hitting Times . 20

6.3.1 Assumptions and Fundamental Model . 20
6.3.2 Building the Model . 20

6.4 Verifying the Model . 23
6.4.1 Gaussian Step Assumption . 23

ii

Contents iii

6.4.2 Spike Distribution of Images . 24
6.4.3 Model Results . 25

6.5 Effect of Synaptic Weight Variance on First-Spike Timing . 26
6.5.1 Impact of Noise Training on Inference Latency . 27

7 Decision Making 28
7.1 Drift Diffusion and Evidence Accumulation . 28

7.1.1 Bridging DDM to SNNs . 29
7.2 Sample Difficulty and Evidence . 29

7.2.1 Margin Distance and Evidence Accumulation . 29
7.3 The SepDots Synthetic Classification Task . 29

7.3.1 Problem Definition . 30
7.3.2 Mapping to TTFS SNN Inputs . 30
7.3.3 Exact Margin Tracking . 31
7.3.4 Predictions . 31

7.4 Impact of Sample Difficulty on First-Spike Latency . 32

Academic Article 33

References 49

Nomenclature

Abbreviations
Abbreviation Definition

ANN(s) Artificial Neural Network(s)
CNN(s) Convolutional Neural Network(s)
DDM Drift Diffusion Model
GRW Gaussian Random Walk
MLP Multi Layer Perceptron
NN(s) Neural Network(s)
SNN(s) Spiking Neural Network(s)
RW Random Walk
TTFS Time to First Spike

iv

1
Introduction

Artificial intelligence has gone through incredible jumps in performance in recent years, pushing the boundaries
of what’s possible in tasks like image recognition, natural language processing, and even creative generation.
Despite these advancements, the human brain remains an unmatched marvel in its efficiency, speed, and
accuracy, especially in sensory perception and decision-making tasks [23, 44, 75]. This biological benchmark
continues to inspire alternative models of computation that seek to emulate the brain’s mechanisms more
closely than traditional artificial neural networks (ANNs).

Among the most promising of these bio-inspired approaches are Spiking Neural Networks (SNNs), which
introduce temporal dynamics into neural computation [47]. Unlike ANNs that process data in continuous
activations, SNNs transmit information through discrete events known as spikes. This inherently temporal
encoding offers a closer approximation to neural behavior observed in the brain and opens up the potential for
highly efficient, low-power computation, especially when paired with event-based neuromorphic hardware [19,
35, 48].

Within the family of SNNs, one particularly compelling coding scheme is Time-to-First-Spike (TTFS). In this
encoding, information is conveyed by the latency of the first spike relative to stimulus onset. TTFS coding has
shown promise in accelerating inference and improving energy efficiency [15, 50]. However, one underexplored
aspect of TTFS SNNs is how the difficulty of input samples affects their spiking behavior. In biological systems,
easier stimuli often result in faster reactions, a trait that enhances survival and decision-making efficiency [23].
Whether TTFS SNNs exhibit similar sensitivity to input difficulty remains an open question.

This thesis aims to investigate this relationship in depth. Specifically, we explore how varying sample difficulty
influences inference latency in TTFS-coded SNNs. We hypothesize that easier samples will trigger earlier
spikes, mirroring human reaction patterns [60, 61]. Furthermore, we examine whether introducing noise
during training, analogous to ℓ2 regularization, affects this dynamic by smoothing learned representations and
potentially altering time-to-spike distributions.

To guide this investigation, our primary research questions are:

• Does spike latency increase with intrinsic sample difficulty in TTFS-SNNs?
• Can noise training (without augmentation) during training reduce inference latency for difficult samples?

The rest of this thesis is structured in two parts. The first is a comprehensive background review that lays
the groundwork for understanding the key concepts explored, including SNN architectures, TTFS coding,
neural noise, and biological analogues of decision-making latency. The second part is an academic paper that
encapsulates the core experiments, results, and contributions of this work.

1

2
Artificial Neural Networks

Before delving into Spiking Neural Networks (SNNs), it is essential to establish a clear understanding of
their non-spiking counterparts - Artificial Neural Networks (ANNs). This chapter, therefore, reviews the core
principles that underpin modern ANNs, focusing on concepts that will later be revisited in the spiking domain.
We concentrate on fully connected and convolutional architectures, as these are directly transformed to SNNs
in the remainder of this thesis.

2.1. Perceptron and Deep Learning
2.1.1. The Perceptron
The simplest neuron model is the perceptron, proposed by Rosenblatt in 1958 [65]. Given an input vector
x ∈ R𝑑, weight vector w ∈ R𝑑, bias 𝑏 ∈ R, and non-linearity 𝜎(·) (e.g. tanh or ReLU), the unit outputs

𝑦 = 𝜎(𝑤⊤x + 𝑏). (2.1)

Equation 2.1 is the fundamental building block of both MLPs and the fully connected layers frequently used at
the tail of CNNs.

2.1.2. Universal Approximation and Depth
A single perceptron is a linear classifier; stacking layers of perceptrons with non-linear activations yields the
MLP (section 2.2) and opens the door for the universal approximation property [34]. Depth allows hierarchical
feature composition, but also introduces a non-convex optimization landscape that must be navigated during
training.

2.1.3. Back-Propagation and Gradient Descent
Modern artificial neural networks (ANNs) are trained by minimizing a differentiable loss function ℒ(𝜃), where
𝜃 represents the set of all trainable parameters. For classification tasks, a widely adopted loss function is the
cross-entropy loss:

ℒCE = −
∑

𝑡𝑐 log 𝑝𝑐 , (2.2)

with 𝑡𝑐 denoting the one-hot encoded target vector and 𝑝𝑐 representing the predicted probability obtained via a
soft-max layer.

Efficient gradient computation with respect to parameters is achieved through the back-propagation algorithm,
a cornerstone of ANN training. Back-propagation employs the chain rule from calculus to systematically
propagate error signals backwards through the network layers, starting from the output and moving towards
the input layers [68]. Specifically, after the forward pass computes predictions, the backward pass sequentially
computes the partial derivatives of the loss function with respect to each parameter by recursively applying the
chain rule. Formally, the parameter gradients are obtained as:

𝜕ℒ
𝜕𝜃

= backprop(ℒ, 𝜃). (2.3)

2

2.2. Multi-Layer Perceptrons 3

Figure 2.1: Illustration of forward and backward propagation for a single neuron. Black arrows indicate the forward pass, where input ℎ
and parameters 𝑤2 , 𝑏2 are combined. Red arrows indicate the backward pass, where the gradient of the loss 𝜕𝐿/𝜕𝑧2 is propagated back

to compute the parameter gradients 𝜕𝐿/𝜕𝑤2 and 𝜕𝐿/𝜕𝑏2, as well as the input gradient 𝜕𝐿/𝜕ℎ.

Once gradients are computed, parameters are iteratively updated using (stochastic) gradient descent. Gradient
descent is an optimization algorithm foundational to training neural networks. Its primary goal is to minimize
the loss function by iteratively adjusting the model parameters in the direction of the steepest descent. The
intuition behind gradient descent is analogous to descending a mountain: at each step, the algorithm assesses
the slope of the terrain (computed as the gradient of the loss function) and moves downhill, aiming to reach the
lowest possible point, or the global minimum, of the loss landscape.

In mathematical terms, gradient descent updates the model parameters as follows:

𝜃← 𝜃 − 𝜂𝜕ℒ
𝜕𝜃

(2.4)

where 𝜂 is the learning rate, a hyperparameter controlling the step size of each update. A small learning rate
ensures stable convergence but may result in slow training, while a large learning rate speeds up training but
risks overshooting the minimum. Adaptive variants such as Adam and RMSProp address this challenge by
dynamically adjusting step sizes during training, significantly enhancing the robustness and efficiency of the
optimization process [40].

2.2. Multi-Layer Perceptrons
An MLP comprises an input layer, 𝐿− 2 hidden layers, and an output layer. Each hidden layer performs a linear
transformation followed by an activation:

h(ℓ) = 𝜎
(
W(ℓ)h(ℓ−1) + b(ℓ)

)
, ℓ = 1, . . . , 𝐿 − 2, (2.5)

where 𝑥 ∈ R𝑑 is the input, W(ℓ) ∈ R𝑚ℓ×𝑚ℓ−1 and b(ℓ) ∈ R𝑚ℓ are the layer’s weights and biases, and 𝜎 is a
pointwise nonlinearity (e.g., ReLU or tanh). The final layer’s activations h(𝐿−1) are interpreted as class logits for
classification tasks.

Although conceptually simple, MLPs can approximate any continuous function on a compact domain when
sufficiently wide or deep, known as the universal approximation theorem [34]. However, they ignore spatial
structure (e.g. in images) and suffer 𝒪(𝑑2) parameter growth, motivating convolutional designs for high-
dimensional inputs.

2.3. Convolutional Neural Networks
In a convolutional layer, the kernel (often referred to as a filter) serves as a localized feature detector that
systematically surveys the input tensor [43]. Each kernel comprises a small set of learnable weights that, once

2.3. Convolutional Neural Networks 4

Figure 2.2: MLP with two hidden layers: each neuron in a given layer connects to every neuron in the preceding and subsequent layers.

trained, respond maximally to a specific elementary pattern, such as an edge at a particular orientation or a
localized texture [91]. As the kernel is convolved across the entire spatial extent of the input, it generates a
feature map whose entries quantify the presence of that pattern at each location. This mechanism confers two
important properties: first, the model learns to recognize features irrespective of their position, since the same
kernel is reused everywhere [90]; second, by employing multiple distinct kernels in parallel and by stacking
convolutional layers, one obtains a hierarchy of representations that progresses from simple, low-level cues in
the earliest layers to increasingly abstract, high level constructs in deeper layers.

Mathematically, the learnable kernel is defined as K ∈ R𝑘×𝑘×𝐶in×𝐶out , and is slid across the input feature map
to produce an output feature map:

𝑌𝑖 , 𝑗 ,𝑐 =

𝑘∑
𝑢=1

𝑘∑
𝑣=1

𝐶𝑖𝑛∑
𝑐′=1

𝐾𝑢,𝑣,𝑐′ ,𝑐 𝑋𝑖+𝑢,𝑗+𝑣,𝑐′ (2.6)

Since the same kernel slides over every spatial location, the layer is intrinsically translation-equivariant [43].
By stacking multiple convolutions (often interleaved with non-linearities and pooling), the network’s receptive
field grows, enabling it to capture increasingly large (see Figure 2.3) and abstract features [46, 92].

Figure 2.3: The receptive field of a 3×3 convolution increases with depth: each successive layer “sees” a larger region of the original input.

While perceptrons constitute simple nonlinear units (see Equation 2.1), stacking them produces powerful MLPs
that capture global data interactions, albeit at the cost of ignoring spatial structure and scaling poorly in high
dimensions. In contrast, convolutional kernels detect local patterns by sliding a small weight matrix across
inputs, yielding translation invariance through weight sharing. As layers are stacked, their receptive fields

2.3. Convolutional Neural Networks 5

expand recursively, enabling hierarchical feature extraction from raw data [27, 45, 70, 73]. These layer types,
fully connected and convolutional, underlie virtually all modern deep vision architectures and will be translated
into spiking equivalents in the forthcoming chapters.

3
Spiking Neural Networks

Spiking Neural Networks (SNNs) are the third generation of neural network models, in which information is
communicated via discrete spikes rather than continuous activations. This temporal coding of information
enables SNNs to exploit the time domain, offering potential gains in computational efficiency and biological
plausibility [47]. In this chapter, we review the foundations of SNNs, including the neuromorphic computing,
neuron and encoding models, and training methods.

3.1. Leaky Integrate-and-Fire Neuron Model
Biological neurons are extraordinarily complex structures, they typically have thousands of dendritic branches,
complicated ion-channel dynamics, nonlinear membrane properties, and diverse forms of synaptic plasticity,
making detailed biophysical models like Hodgkin-Huxley computationally intensive and mathematically intricate
[32]. While such realism is valuable for neuroscience, it poses severe challenges for large-scale simulations
or for practical applications requiring real-time or energy-efficient computation. It is therefore common in
neuromorphic modelling and spiking neural networks to replace detailed neuron descriptions with much simpler
abstractions that capture the essence of neuronal spiking behavior.

The Leaky Integrate-and-Fire (LIF) model exemplifies this approach, distilling core neuron dynamics into a
basic temporal integrate-and-decay process with a threshold and reset [9]. Despite its simplicity, the LIF
neuron retains essential temporal filtering and thresholding behavior, allowing it to emulate key computational
features of more complex neurons while remaining efficient enough for use in large networks or hardware
implementations [87]. The membrane potential update equation for LIF in discrete time is given by:

𝑉𝑖[𝑡 + 1] = 𝛽𝑉𝑖[𝑡] +
∑
𝑗

𝑤𝑖 𝑗𝑆 𝑗[𝑡] −𝑉𝑡ℎ 𝑆𝑖[𝑡] (3.1)

where,

• 𝑉𝑖[𝑡] is the membrane potential of neuron 𝑖 at timestep 𝑡,
• 𝛽 ∈ (0, 1) is the decay factor,
• 𝑤𝑖 𝑗 denotes the synaptic weight from presynaptic neuron 𝑗 to neuron 𝑖,
• 𝑆 𝑗[𝑡] ∈ {0, 1} indicates whether neuron 𝑗 emitted a spike at 𝑡,
• 𝑉𝑡ℎ is the firing threshold, and
• if 𝑉𝑖[𝑡] ≥ 𝑉𝑡ℎ then 𝑆𝑖[𝑡] = 1 and 𝑉𝑖[𝑡] is reset by substracting 𝑉𝑡ℎ .

3.2. Spike Encoding
Biological neurons communicate via discrete action potentials (spikes), whereas most sensory data (e.g.,
images, audio, sensor readings) are represented as continuous-valued signals. To leverage the temporal
dynamics and event-driven efficiency of SNNs, continuous inputs must be transformed into spike trains that
the network can process [47].

6

3.3. Training Spiking Neural Networks 7

3.2.1. Rate Encoding
In rate encoding, the intensity of an input feature is mapped to the average firing rate of a spike train over a
given time window. For example, one may generate a Poisson spike train whose rate parameter is proportional
to the pixel intensity. While rate codes are robust to temporal noise and simple to implement in hardware, they
require many spikes (and thus many timesteps) to convey information accurately, limiting latency and energy
efficiency [74, 81].

3.2.2. Latency Encoding
Latency (or time-to-first-spike) encoding converts input magnitude into the timing of a single spike: larger
values spike earlier, and smaller values spike later. Formally, for an input 𝐼 ∈ [0, 1], the spike time is given by

𝑡spike =

{
round ((1 − 𝐼) · 𝑇max) , 𝐼 > 𝜖,

no spike, 𝐼 ≤ 𝜖,
(3.2)

where 𝑇max is the simulation duration and 𝜖 a threshold below which inputs are ignored [15].

Because of its high efficiency, requiring only one spike per input channel, TTFS encoding is particularly
attractive for low-power neuromorphic hardware. In this thesis, we focus on latency encoding to explore the
time-to-first-spike dynamics of SNNs.

3.2.3. Biological Plausibility
Rate codes align with slow, averaged neural responses in some sensory systems but fail to capture rapid
processing observed in vision and audition [74]. In contrast, latency codes (also called rank-order or first-spike
codes) closely mirror observations in the retina, auditory pathways, and tactile systems, where the timing of
the first spike carries the majority of the informational content [81].

3.3. Training Spiking Neural Networks
Training SNNs is challenging due to the non-differentiable nature of spikes. Although there are many ways to
overcome this problem, we focus on two key techniques that address this issue: surrogate gradient methods
and Backpropagation Through Time (BPTT).

3.3.1. Surrogate Gradients

Figure 3.1: Comparison of the ideal Heaviside step activation (solid black) with its differentiable surrogate gradients: a sigmoid-based
forward surrogate in dashed blue and the backward surrogate gradient in solid orange.

Spiking generation is modeled by the Heaviside step function in the forward pass:

𝑆 =

{
1, 𝑉 ≥ 𝑉𝑡ℎ ,
0, 𝑉 < 𝑉𝑡ℎ ,

(3.3)

whose exact derivative is zero almost everywhere and undefined when 𝑉 = 𝑉𝑡ℎ . Surrogate gradients replace
this with a smooth approximation during backpropagation (see Figure 3.1). A common choice is the shifted

3.4. Loss Function 8

arc-tangent:
𝑆 ≈ 1

𝜋
arctan

(𝜋
2 𝛼𝑉

)
(3.4)

𝜕𝑆

𝜕𝑉
=

1
𝜋

1
1 +

(
𝜋
2 𝛼𝑉

)2 (3.5)

where 𝛼 controls smoothness [15, 55]. This enables gradient-based optimization despite the inherent disconti-
nuity.

3.3.2. Backpropagation Through Time
Since SNNs evolve over multiple timesteps, training requires propagating gradients through both spatial
connections and temporal dynamics. BPTT unfolds the network in time, treating each timestep as a layer in a
deep computational graph. Gradients are then computed across this graph, enabling end-to-end learning of
synaptic weights while preserving temporal dependencies [85].

3.4. Loss Function
For latency-encoded output layers, one can define a temporal MSE loss over normalized spike times [15].
Given normalized spike times 𝑡𝑖 ∈ [0, 1] and target times 𝑦𝑖 (0 for correct class, 1 for incorrect), the loss is:

𝐿 =
1
𝑁

𝑁∑
𝑖=1
(𝑡𝑖 − 𝑦𝑖)2. (3.6)

However, the mapping from the continuous membrane potential 𝑉 to the discrete spike time index 𝑡𝑠𝑝𝑖𝑘𝑒 (see
Equation 3.2) is inherently non-differentiable with respect to 𝑉 , since 𝑡𝑠𝑝𝑖𝑘𝑒 is defined as the first timestep at
which 𝑉 crosses threshold, resulting in a piecewise constant (indexed) function of 𝑉 . As a result, the formal
derivative 𝜕𝑡𝑠𝑝𝑖𝑘𝑒/𝜕𝑉 is undefined almost everywhere. To permit gradient-based learning despite this, it is
common to impose the heuristic

𝜕𝑡𝑠𝑝𝑖𝑘𝑒

𝜕𝑉
= −1, (3.7)

thereby encoding the intuitive relationship that a larger membrane potential causes a proportionately earlier
firing time [15].

4
Sample Difficulty in Machine
Learning and Deep Learning

This chapter outlines key theoretical frameworks and metrics for understanding and quantifying sample difficulty,
setting the stage for empirical investigations of how such difficulty affects latency in Time-to-First-Spike coded
Spiking Neural Networks. Finally, we investigate the question:

How can we measure sample difficulty?

4.1. Theoretical Perspectives on Sample Difficulty
In theoretical terms, the "difficulty" of a sample often relates to how inherently hard it is for any model to predict
that sample’s label correctly. One classical view comes from statistical learning theory: if a data point lies in an
ambiguous region of feature space, where multiple classes have similar probability, that point has a high Bayes
error and is intrinsically difficult [79]. In other words, if the true conditional probability 𝑃(𝑦|𝑥) for a sample 𝑥
is near 0.5 in a binary classification or uniformly spread across classes in multi-class, no classifier can be
confident, i.e., the sample is inherently hard to classify. By contrast, a sample in a "pure" region (far from class
boundaries, with 𝑃(𝑦|𝑥) ≈ 1 for the correct class) is intrinsically easy.

Figure 4.1: Illustration of the Bayes error rate in a binary classification task. Class 1 given by the blue distribution and class 2 given by the
red distribution. Bayes error is given by the total area in the intersection of the two distributions. Samples coming from this region are

ambiguous as both classes are probable in this interval.

This concept connects to the notion of margin in classification. In a geometric sense, a sample’s difficulty
can be associated with its distance to the decision boundary of an optimal classifier. [11] introduces the
idea of maximizing margins in support vector machines; a point with a small margin, lying near the decision

9

4.2. Metrics for Sample Difficulty 10

boundary, is more "hard" or borderline, whereas points deep inside a class region, with a large margin, are
"easy". The margin serves as a direct measure of difficulty: samples on or inside the margin are those most
often misclassified if the decision boundary shifts slightly, indicating high sensitivity.

Beyond margins, researchers have linked sample difficulty to more complex data characteristics. The manifold
hypothesis in high-dimensional data suggests that each class forms a manifold, and classification involves
separating these manifolds [16, 53, 58]. Recent work indicates that local geometric and topological properties
of these manifolds can signal difficulty. For example, regions of high curvature, high intrinsic dimensionality, or
complex topology can yield "hard" samples, while flatter, well-separated regions yield "easy" ones. In essence,
class overlap (where different class manifolds intertwine) is a primary factor making an instance hard to classify.
Indeed, a study by [71] found that as instance difficulty increases, so does class overlap: many hard examples
reside in areas where different classes’ data points intermingle. In such cases, even an optimal classifier may
be uncertain, which aligns with the Bayes perspective.

In summary, theory suggests that a sample is difficult if it is in an intrinsically ambiguous or complex region: it
might lie near class boundaries (small margin), be surrounded by other-class neighbors, or require a complex
decision function to get right. Conversely, a sample is easy if it’s well inside the territory of its correct class with
little ambiguity. These theoretical definitions motivate many practical metrics for difficulty.

4.2. Metrics for Sample Difficulty
In practice, there are numerous metrics and heuristics to quantify the sample difficulty across different domains.
These metrics are usually defined for any arbitrary model, not necessarily SNNs, and they can be broadly
categorized into a few groups: (1) those based on a trained model’s outputs (confidence or loss), (2) gradient-
based measures, and (3) data geometry measures.

One of the most straightforward ways to gauge difficulty is to see how a well-trained model behaves on the
sample. If a trained classifier assigns a low confidence to the true label (or equivalently, if the sample has a
high loss), that sample can be deemed difficult for that model. For example, the prediction margin (difference
between the predicted probability for the correct class and the highest incorrect class) is a useful indicator: a
small margin or high entropy prediction suggests the model is unsure, often reflecting an inherently hard case.
This idea is long-standing and has been used in active learning to pick out hard, uncertain samples [58].

Some lines of research examines when and how a sample is learned during training. One such measure is the
Forgetting Score introduced by [76]. This score counts how many times a network learns and then “forgets” an
example over the course of training. Concretely, each time a sample transitions from being classified correctly
(at some point in training) to being misclassified later on, a forgetting event is recorded. The total count of
forgetting events is the forgetting score. Intuitively, easy examples, once learned, stay learned, they have
zero or very few forgetting events. Hard examples might flicker between learned and unlearned states as the
model’s decision boundary shifts, yielding multiple forgetting events.

A more recent approach is to look at a sample’s impact on the model’s gradients during training. In [1], they
propose a Variance of Gradients (VoG) as a difficulty measure. The idea is to track how the gradient for a
particular sample changes over the course of training. If a sample is easy, once the model starts to learn
it, the gradients associated with that sample should become small and consistent (the model doesn’t need
to keep adjusting its parameters for that sample). If a sample is hard, the model’s gradient on that sample
will fluctuate a lot as the model oscillates in how it tries to fit it [42]. Thus, VoG computes the variance of the
per-sample gradient over training. High variance indicates the sample causes learning instability, meaning the
model keeps revisiting it, which correlates with difficulty. In experiments, [1] showed that the top VoG-scoring
examples included many that were mislabeled or corrupted, and generally “the data points with high VoG
scores are far more difficult for the model to learn”.

A natural way to quantify sample difficulty is via its distance, or margin, to the decision boundary (see Figure 4.2).
For linear classifiers, this margin represents the signed Euclidean distance from the sample 𝑥𝑖 to the classifier’s
separating hyperplane [82]. A small margin indicates that 𝑥𝑖 lies near the decision boundary and is thus more
susceptible to misclassification, even under slight perturbations of the model. This corresponds directly to
intrinsic difficulty: samples with small margins possibly reside in regions where the true conditional probability
𝑃(𝑦|𝑥) is ambiguous, approximately aligned with the Bayes error being high [49, 79]. In fact, the Bayes
error, the irreducible error of the best possible classifier, arises precisely from these borderline regions where

4.3. Gaussian Noise as a Proxy Measure of Difficulty 11

Class A

Class B

Margin

Figure 4.2: Illustration of a linear decision boundary separating two classes, Class A and Class B. The margin, defined as the shortest
distance from the decision boundary to the nearest sample (indicated by the dotted line), represents the level of confidence in

classification.

class-conditional distributions overlap.

The margin framework also integrates with manifold-based perspectives. Under the manifold hypothesis, each
class is assumed to lie on a dimensional manifold embedded in the high-dimensional feature space [4]. Points
deep within a class manifold, that is, far from any boundary, tend to have large margins and are intrinsically
easy. In contrast, points near the intersections or regions of high curvature between manifolds often have
small margins, indicating both a geometric proximity to other, class manifolds and inherently higher Bayes
error [16, 26]. Empirically, margin-based metrics are widely used in active learning and uncertainty sampling
precisely because they capture both local ambiguity and global class structure [3, 4].

Consequently, using the margin distance as a sample difficulty metric offers a principled, unified approach: it
simultaneously reflects (1) the sample’s geometric resilience, (2) its probabilistic certainty relative to Bayes-
optimal decisions, and (3) its position in the manifold landscape. As a scalar, continuous, and interpretable
measure, margin distance serves as a powerful bridge between theoretical insights and practical methodologies
for quantifying and leveraging sample difficulty.

4.3. Gaussian Noise as a Proxy Measure of Difficulty
Margin-based metrics reliably capture a sample’s intrinsic difficulty by measuring its distance to the (real)
decision boundary. However, when working with real-world data such as MNIST or CIFAR images, directly
estimating this true boundary is often infeasible [24, 69]. Therefore, rather than compute exact margins, we
instead induce hardness by systematically adding Gaussian noise to each sample. This moves points towards
more ambiguous, overlapping regions of the feature space, effectively simulating reduced margins and higher
Bayes error, without requiring explicit knowledge of the decision boundary.

Gaussian noise has also been employed as a proxy measure for sample difficulty in machine learning. By
artificially introducing Gaussian white noise to samples, researchers simulate conditions of ambiguity or
uncertainty, closely relating to theoretical constructs such as Bayes error and manifold complexity. The intuition
is that adding noise disturbs the clarity of the data representation, pushing samples towards more ambiguous
or overlapping regions in the feature space [5].

From a theoretical perspective, the addition of Gaussian noise can be viewed through the lens of the data
manifold hypothesis. Data typically reside on low-dimensional manifolds embedded within high-dimensional
spaces [16]. Adding Gaussian noise effectively perturbs the points away from these manifolds, making it
harder for models to discern the intrinsic structure and thus increasing the likelihood that samples become
difficult to classify. This aligns well with the notion that difficult samples often lie near the manifold boundaries
or in regions where different class manifolds intersect or overlap.

Furthermore, this proxy aligns neatly with the Bayes error concept. Introducing Gaussian noise to a sample

4.4. Relevance to Latency-Coded SNNs 12

effectively increases its conditional class uncertainty, shifting its true conditional probability 𝑃(𝑦|𝑥) closer to
the ambiguity region, e.g., near 0.5 for binary classification. Consequently, as noise intensity grows, the Bayes
error for these samples increases, marking them as intrinsically more challenging to classify correctly.

Research examining Gaussian noise as a proxy for sample difficulty offers valuable insights [10, 30, 56]. While
moderate noise addition can improve generalization by preventing models from overfitting, excessive noise
generally leads to poorer performance due to elevated uncertainty and reduced confidence in predictions
[25]. Moreover, noise-based augmentation is widely used in robust machine learning and adversarial training
contexts because it generates difficult samples that enhance model robustness [93].

In summary, Gaussian noise offers a practical and theoretically consistent measure of sample difficulty. It
effectively simulates ambiguous conditions by perturbing data points off their manifolds and increasing intrinsic
uncertainty, thus directly correlating with theoretical difficulty measures such as Bayes error and manifold
overlap.

4.4. Relevance to Latency-Coded SNNs
This chapter discussed various theoretical and practical views on sample difficulty, emphasizing ambiguity,
margin distances, manifold complexities, and noise-based proxies. These concepts form the foundation for
investigating how sample difficulty might influence latency in TTFS-coded SNNs.

Margin-based metrics reliably measure intrinsic difficulty but computing true margins or decision boundaries
for datasets like MNIST or CIFAR is often infeasible. Therefore, we will use margin as a hardness metric when
we can, and when it is intractable, we will induce hardness via Gaussian noise. This approach allows us to
approximate difficulty either directly (via margins) or indirectly (via controlled perturbations).

Moreover, employing Gaussian noise as a difficulty proxy is particularly relevant for studying TTFS-coded SNNs.
By artificially varying noise levels, we simulate increasing levels of uncertainty. Such controlled experiments
enable us to systematically evaluate how TTFS-SNN latency responds to difficulty: specifically, we can observe
whether increased noise leads to longer latency spikes and whether training with harder samples accelerates
inference for subsequently encountered noisy samples.

5
Statistical Learning Theory

Classical statistical learning theory provides foundational insights into machine learning models, especially
through its characterization of the bias-variance trade-off. This trade-off represents the balance that must be
maintained between a model’s complexity and its generalization capability. Highly complex models tend to fit
training data closely (low bias) but fail to generalize well to new data (high variance), while simpler models
generalize better but might underfit the data (high bias, low variance) [6]. In this chapter, we will investigate the
question:

Could noisy training affect the synaptic weights of an SNN?

5.1. Bias-Variance Trade-off
In machine learning, the prediction error can be decomposed into three components: bias, variance, and
irreducible error. The bias represents the error introduced by approximating a real-world problem with a
simplified model. In contrast, variance quantifies how sensitive the model is to variations in the training data.
Ideally, a model should minimize both; however, reducing one typically leads to increasing the other. This
phenomenon is well-known as the bias-variance trade-off [21]. Finding an optimal balance is crucial as it
directly affects the predictive performance and reliability of the trained models. Models exhibiting excessive
complexity tend to overfit, capturing noise as if it were meaningful patterns, while overly simplistic models miss
essential relationships inherent in the data [2].

Figure 5.1: Figure illustrating the relationship between the true error of a model and its bias and variance

5.1.1. Parameter Estimation and Bias
In terms of parameter estimation, bias is the difference between the expected value of a model’s parameter
estimates and the true parameter value. If a parameter estimation method consistently produces results that

13

5.2. Parameter Regularization 14

deviate from the actual parameter, it is considered biased. When estimating a parameter 𝛽 using 𝛽̂ the bias is
measured as:

Bias[𝛽̂] = E[𝛽̂] − 𝛽 (5.1)

High bias in parameter estimation generally results from overly simplistic models or inappropriate assumptions,
leading to systematic errors in predictions. Reducing bias typically involves increasing the complexity of the
model [28].

5.1.2. Parameter Estimation and Variance
Variance in parameter estimation refers to the variability of parameter estimates when the estimation process
is repeated on different datasets sampled from the same distribution. Similarly, when estimating a parameter 𝛽
using 𝛽̂, we can measure the variance of our estimator as:

Var
[
𝛽̂
]
= E

[(
𝛽̂ − E

[
𝛽̂
])2

]
(5.2)

High variance indicates that the estimated parameters change significantly with slight variations in the training
dataset. This typically occurs in complex models that capture noise in the training data. Variance can be
reduced by using regularization methods or by simplifying the model architecture [28].

5.2. Parameter Regularization
Regularization techniques are designed to manage the bias-variance trade-off by penalizing overly complex
models, typically through adding a penalty term related to the magnitude of model parameters. Common
approaches such as ℓ2 regularization (ridge regression) penalize large parameter weights, encouraging
smoother, less complex functions [33]. Regularization thus directly reduces variance by discouraging overfitting,
improving generalization on unseen data. Another prevalent form of regularization is ℓ1 regularization (lasso),
which encourages sparsity in model parameters, effectively pruning irrelevant features and further enhancing
generalization. Regularization methods can also be adaptive, adjusting penalty terms dynamically during
training, providing flexibility in handling datasets with varying complexity and noise characteristics [95].

To better understand the role of regularization, we begin with the classical linear regression problem. In its
standard form, linear regression attempts to model the relationship between input features and a continuous
output by learning a parameter vector 𝛽. This model is written as:

𝑦 = 𝑋𝛽 + 𝜀 (5.3)

where, 𝑋 ∈ R𝑛×𝑑 is the input data matrix, 𝛽 ∈ R𝑑 is the parameter vector we want to learn, 𝑦 ∈ R𝑛 is the target
vector, and 𝜀 is the noise term. Since an exact solution 𝑋𝛽 = 𝑦 may not exist, the goal becomes finding the
parameter vector 𝛽 that minimizes the squared error between the predicted and observed outputs:

min
𝛽

����𝑦 − 𝑋𝛽
����2 (5.4)

We can set the gradient with respect to 𝛽 to 0, to find the 𝛽 that minimizes the squared error.

∇𝛽 = − 2𝑋⊤𝑦 + 2𝑋⊤𝑋𝛽 = 0 (5.5)
− 𝑋⊤𝑦 + 𝑋⊤𝑋𝛽 = 0 (5.6)
𝑋⊤𝑋𝛽 = 𝑋⊤𝑦 (5.7)

𝛽 =
(
𝑋⊤𝑋

)−1
𝑋⊤𝑦 (5.8)

To address the limitations of OLS, e.g., the tendency to overfit when the number of features is large, ridge
regression introduces a regularization term to the objective function. Specifically, ridge regression adds a ℓ2
penalty to the squared loss, resulting in the following objective:

min
𝛽

����𝑦 − 𝑋𝛽
����2 + 𝜆 ����𝛽����2 (5.9)

5.2. Parameter Regularization 15

where 𝜆 ≥ 0 is a regularization hyperparameter controlling the strength of the penalty. Similar to linear
regression, we can set the gradient to zero to find the solution to 𝛽:

∇𝛽 = − 2𝑋⊤𝑦 + 2𝑋⊤𝑋𝛽 + 2𝜆𝛽 = 0 (5.10)
− 𝑋⊤𝑦 + 𝑋⊤𝑋𝛽 + 𝜆𝛽 = 0 (5.11)
𝑋⊤𝑋𝛽 + 𝜆𝛽 = 𝑋⊤𝑦 (5.12)
𝛽
(
𝑋⊤𝑋 + 𝜆𝐼

)
= 𝑋⊤𝑦 (5.13)

𝛽 =
(
𝑋⊤𝑋 + 𝜆𝐼

)−1
𝑋⊤𝑦 (5.14)

5.2.1. Gaussian Noise as a Regularizer
Adding Gaussian noise to input data or activations during training can also act as a regularization technique.
This approach, akin to data augmentation, helps smooth the model’s learned function by reducing its sensitivity
to specific data points. More fundamentally, the addition of Gaussian noise with zero mean can be shown to
be mathematically equivalent to applying ℓ2 regularization under certain assumptions, particularly in linear
models [5]. In the following, we present the derivation that illustrates how adding Gaussian noise to inputs
during training leads to a loss function that includes an ℓ2 penalty term - effectively performing ridge regression.

Let’s consider the same linear model from Equation 5.3. Suppose that we add noise to the inputs 𝑋 + 𝜀, where
𝜀 ∼ 𝑁(0,Σ). Now we can write our objective as:

min
𝛽

����𝑦 − (𝑋 + 𝜀) 𝛽
����2 (5.15)

equivalently,
min
𝛽

(
𝑦 − 𝑋𝛽

)⊤ (
𝑦 − 𝑋𝛽

)
− 2

(
𝑦 − 𝑋𝛽

)⊤
𝜀𝛽 + 𝛽⊤𝜀⊤𝜀𝛽 (5.16)

The term 𝜀 is a stochastic variable. Therefore, let’s take the expectations with respect to 𝜀. The expectations
of each term are given by:

E𝜀

[(
𝑦 − 𝑋𝛽

)⊤ (
𝑦 − 𝑋𝛽

)]
=
(
𝑦 − 𝑋𝛽

)⊤ (
𝑦 − 𝑋𝛽

)
(5.17)

E𝜀

[
2
(
𝑦 − 𝑋𝛽

)⊤
𝜀𝛽

]
= 0 (5.18)

E𝜀

[
𝛽⊤𝜀⊤𝜀𝛽

]
= 𝛽⊤𝑛Σ𝛽 (5.19)

Thus, the expected squared error is: (
𝑦 − 𝑋𝛽

)⊤ (
𝑦 − 𝑋𝛽

)
+ 𝛽⊤𝑛Σ𝛽 (5.20)

or equivalently, ����𝑦 − 𝑋𝛽
����2 + 𝑛Σ ����𝛽����2 (5.21)

We can further go on to show that the solution by setting the gradient to zero is given by:

∇𝛽 = − 2𝑋⊤𝑦 + 2𝑋⊤𝑋𝛽 + 2𝑛Σ𝛽 = 0 (5.22)
− 𝑋⊤𝑦 + 𝑋⊤𝑋𝛽 + 𝑛Σ𝛽 = 0 (5.23)
𝑋⊤𝑋𝛽 + 𝑛Σ𝛽 = 𝑋⊤𝑦 (5.24)
𝛽
(
𝑋⊤𝑋 + Σ

)
= 𝑋⊤𝑦 (5.25)

𝛽 =
(
𝑋⊤𝑋 + 𝑛Σ

)−1
𝑋⊤𝑦 (5.26)

The derived solution under Gaussian noise (Equation 5.26) is equivalent to the solution of ridge regression
(Equation 5.19) when 𝜆𝐼 = 𝑛Σ. This shows that for 𝜆𝐼 = 𝑛Σ (or in 1D: 𝜆 = 𝑛𝜎2), minimizing the expected
loss under input noise is identical to minimizing the standard loss with added ℓ2 penalty. Hence, Gaussian
noise acts as a form of implicit regularization, with the noise variance Σ serving as the regularization strength.

5.3. Bias-Variance and Generalization in Neural Networks 16

5.3. Bias-Variance and Generalization in Neural Networks
The bias-variance principles discussed above extend naturally to modern neural architectures, but their
displays differ according to the architectural priors and learning rules embedded in each model class. In
over-parameterised deep networks, generalization hinges as much on how the parameters are used as on the
raw parameter count itself, leading to phenomena such as double-descent in test error curves [2, 54]. Below we
summarize the most important statistical-learning considerations for three families that are relevant to our case:
fully-connected multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and time-to-first-spike
(TTFS) spiking neural networks (SNNs).

5.3.1. Deep and Convolutional Artificial Networks
Implicit Regularization and Flat Minima
Although very deep or wide networks can interpolate the training data perfectly, stochastic gradient descent
(SGD) rarely drives them to all possible interpolating solutions. Instead, optimization and noise tend to locate
flat minima in weight space whose associated functions are smoother and therefore lower-variance [31, 39].
From a statistical perspective, SGD acts as an implicit regularizer as it biases learning toward low-complexity
solutions without an explicit penalty term.

Weight Sharing and Equivariance
CNNs further reduce variance by hard-coding locality and translation equivariance through weight sharing.
The same 𝑘 × 𝑘 filter is applied across the whole receptive field, meaning only 𝒪(𝑘2) independent weights
model thousands of spatial correlations. This architectural bias lowers the effective model capacity relative
to a similarly sized fully-connected layer, thereby shifting the bias–variance operating point toward better
generalization on images [24].

Explicit Penalties
When implicit regularisation is insufficient, explicit techniques such as weight decay, dropout, or data augmen-
tation are introduced. In CNNs, ℓ2 decay keeps kernel norms small, suppressing sharp minima and improving
robustness to small input perturbations [22, 41]. Regularization based on weight correlations constraints can
additionally reduce redundancy, such as weight-vector correlations, further lowering variance and improving
generalization [37].

5.3.2. TTFS Spiking Neural Networks
Event-Driven Sparsity
TTFS coding stipulates that each neuron is allowed to fire at most once and that the information is carried solely
in the first-spike latency. As a consequence, only a fraction of synapses are active per timestep, yielding a form
of activity sparsity that functions as an architectural prior against overfitting [50]. In statistical-learning terms,
the network’s effective capacity at test time is far smaller than its parameter count would suggest, because the
majority of weights do not contribute for most stimuli.

Temporal margins and Robustness
In TTFS classifiers, the decision is triggered as soon as one output neuron fires; training objectives therefore
seek to maximize the temporal margin, the time-to-first-spike gap between the target class and its nearest rival.
In [67], they formalize the idea in their Temporal Support Vector Machine (T-SVM), showing that maximizing the
dynamical margin in an SNN yields generalization bounds analogous to the large-margin theory of hard-margin
SVMs. Empirically, deeper TTFS networks that achieve larger first-spike gaps exhibit better resilience to
corruptions [57]. These results support the view that a larger temporal margin in TTFS models plays the same
variance-reducing role that a wider geometric margin plays in classical statistical learning theory.

5.4. Synaptic Weights in TTFS-SNNs
The theoretical insights from statistical learning theory presented in this chapter lay a critical foundation for
understanding the anticipated effects of Gaussian noise training on synaptic weights within TTFS SNNs. Reg-
ularization techniques systematically influence the characteristics of the learned synaptic weights. Specifically,
introducing Gaussian noise during training functions analogously to explicit ℓ2 regularization, which encourages
synaptic weights to remain relatively small and stable by penalizing large parameter fluctuations. While this

5.4. Synaptic Weights in TTFS-SNNs 17

lets us approximately understand how the weights might behave in a spiking network, it still remains to be
empirically tested.

As outlined previously, statistical learning theory emphasizes that regularization typically reduces parameter
variance, leading to smoother, less sensitive weight distributions. Hence, based on our investigations in
this chapter, we anticipate that synaptic weights trained with Gaussian noise will exhibit lower variability and
increased robustness compared to weights learned without noise regularization. This reduction in variance
may translate into more stable synaptic behavior, reflected in less volatile membrane potentials when neurons
process input signals. Therefore, it is inevitable that this process will also affect spike times. In chapter 6 on
stochastic processes, we model the neuron’s membrane potential dynamics explicitly as stochastic systems
and try to formalize how changes in synaptic weights should affect spike times.

6
Stochastic Processes

Stochastic processes describe systems evolving randomly over time, widely utilized in various fields such as
finance, physics, biology, and computer science [7, 51, 66]. They form the foundational theory behind modeling
unpredictable events and temporal evolution of variables influenced by randomness. In this chapter, we outline
the framework to be able answer the question

How does changes in synaptic weights affect the first spike time of a spiking neuron when we
model it as a stochastic process?

Modeling synaptic weight changes within a first-hitting-time framework allows membrane potential’s stochastic
dynamics to be analytically related to expected first-spike latencies. Incorporating these stochastic process
analyses into our research provides a mathematical foundation to quantify how synaptic weight dynamics and
noise introduced during training modulate first-spike behavior, directly connecting weight dynamics to temporal
coding performance under varying sample difficulties.

6.1. Random Walks
A random walk (RW) represents one of the simplest forms of a stochastic process, describing a path composed
of successive random steps. Formally, consider the discrete-time process:

𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 , (6.1)

where 𝑋𝑖 are independent and identically distributed (i.i.d.) random variables representing incremental steps.
This model captures various phenomena including particle diffusion and financial price fluctuations.

6.1.1. Gaussian Random Walk
A specific and important instance is the Gaussian random walk (GRW), where increments are drawn from a
Gaussian distribution, 𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2). The evolution of the random walk then is given by:

𝑆𝑛 = 𝑆𝑛−1 + 𝑋𝑛 , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎2). (6.2)

Gaussian random walks are particularly relevant because of their mathematical tractability and applicability in
diffusion processes [17]. They exhibit stationary, normally distributed increments and are Markovian, meaning
the next state depends only on the current position and not on the past history. Additionally, the variance of the
walk grows linearly with time, a property that aligns closely with empirical observations in many physical and
biological systems [20].

6.1.2. Wiener Processes (Brownian Motion)
When considering the continuous-time limit of a Gaussian random walk with infinitesimally small increments, the
Wiener process, also known as Brownian motion, emerges. A Wiener process 𝑊𝑡 has the following properties:

• 𝑊0 = 0,

18

6.2. First Hitting Time Problem 19

0 100 200 300 400 500
Step Number

10

0

10

20

30

40

50

Gaussian Random Walks - Step ~ N(0, 1)

Figure 6.1: Two realizations of Gaussian random walks with zero mean and unit variance steps, i.e., increments drawn i.i.d. from 𝑁(0, 1).
Each walk begins at zero and exhibits distinct trajectories due to stochastic variation.

• Independent increments: for 0 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 , the increments 𝑊𝑡2 −𝑊𝑡1 , . . . , 𝑊𝑡𝑛 −𝑊𝑡𝑛−1 are
independent,

• Gaussian increments: 𝑊𝑡 −𝑊𝑠 ∼ 𝑁(0, 𝑡 − 𝑠),
• Continuity: The paths 𝑡 ↦→𝑊𝑡 are continuous.

Formally, Brownian motion serves as the standard model for random fluctuations observed in various scientific
disciplines, particularly in modeling diffusive behavior and noise in biological systems [38].

6.2. First Hitting Time Problem

0 100 200 300 400 500
Step Number

50

0

50

100

150

200

250

First Hitting Time in Gaussian Random Walks

Random Walk
Random Walk
Threshold

Figure 6.2: Illustration of the first hitting time in Gaussian random walks with i.i.d. steps. First hitting time is the first time the walk reaches
over the threshold. The orange trajectory hits the threshold (dotted line) first, while the blue trajectory takes a bit longer.

The first hitting time problem is concerned with determining the time at which a stochastic process first reaches
or surpasses a predefined threshold (see Figure 6.2). Mathematically, for a stochastic process (𝑆𝑡) and a
threshold level 𝑏, the first hitting time 𝑇𝑏 is defined as:

𝑇𝑏 = inf{𝑡 ≥ 0 : 𝑆𝑡 ≥ 𝑏}. (6.3)

The distribution of first hitting times is crucial for understanding various phenomena such as neuron firing in
neuroscience, financial barrier options, and failure times in reliability analysis [64, 77]. In neuron models, the
first hitting time can represent the moment when the membrane potential reaches a threshold, triggering a
spike.

6.3. Modeling Neuron Spiking with First Hitting Times 20

6.3. Modeling Neuron Spiking with First Hitting Times
In this part, we will model the membrane potential dynamics of a spiking neuron as a stochastic process and
treat it as the first hitting time problem described above. Modeling the first spike time in a TTFS spiking neural
network is essential for two main reasons. First, in latency encoding, the timing of the spikes is very crucial.
Capturing its dynamics would allow us to better quantify how quickly a neuron responds to varying inputs.
Secondly, by analyzing how the distribution of first spike times shifts under different circumstances, we can
better understand its behavior and make more informed predictions about it.

Applying first-hitting-time models to neuronal spiking has been extensively studied in mathematical neuroscience
[9, 12, 64, 72, 77, 78]. However, to the best of our knowledge, these approaches have not yet been explored
in the context of TTFS spiking neural networks, where modeling the distribution and variability of first-spike
latencies across network layers could yield new insights into coding efficiency and dynamic behavior.

6.3.1. Assumptions and Fundamental Model
Let’s consider a non-leaky integrate-and-fire neuron model. Assuming each input to a neuron spikes at some
point in time, the membrane potential after 𝑛 inputs is given by

𝑆𝑛 =

𝑛∑
𝑖=1

𝑤𝑖 , (6.4)

where 𝑤𝑖 are the weights of the incoming edges of the neuron, since spikes are binary events taking values 0
or 1. We assume the incoming synaptic weights are independent and identically distributed Gaussian random
variables with mean 𝜇 and variance 𝜎2, making {𝑆𝑛} a Gaussian random walk. The i.i.d assumption of edge
weights is likely not correct in a trained SNN, however, for the purposes of the model, it will allow us to create
a good approximation. To ensure that the first-hitting-time to a fixed threshold is almost surely finite and
possesses finite moments, we assume a positive mean 𝜇 > 0; if 𝜇 ≤ 0, the probability of ever crossing the
threshold is strictly less than one and the expected hitting time diverges [64]. Finally, we adopt a unit threshold
𝑉th = 1, as is common in many spiking neuron models.

6.3.2. Building the Model
First-Hitting-Time of Wiener Process
Although our spiking neurons operate in discrete time and are more akin to a Gaussian random walk, the
continuous-time analogue given by the Wiener process admits a closed-form solution for its first-hitting-time
distribution, whereas no closed-form solution is known for the Gaussian random walk. Consider a Wiener
process 𝑊(𝑡) with drift 𝜇 and variance parameter 𝜎2 and a threshold 𝑉th = 1. Given these parameters, the
distribution of the first-hitting-time is given by the inverse Gaussian Distribution [18, 38]:

𝑓𝑇(𝑡) =
1√

2𝜋 𝜎2 𝑡3
exp

(
−(1 − 𝜇 𝑡)

2

2 𝜎2 𝑡

)
, 𝑡 > 0. (6.5)

The first two moments of this distribution take the simple form:

E[𝑇] = 1
𝜇

(6.6)

Var(𝑇) = 𝜎2

𝜇3 (6.7)

Figure 6.3 compares the simulated first-passage time histograms (in blue) with their inverse Gaussian fits (in
red) across three different random walk variance levels. The histograms and the inverse Gaussian densities
closely follow each other, showing that the inverse Gaussian provides a highly accurate approximation of the
discrete-time first-hitting-time distribution as well.

Incorporating Membrane Decay
Most spiking neuron models include a leakage term that gradually resets the membrane potential toward rest.
To capture this, we introduce the decay factor 𝛽 ∈ (0, 1) from Equation 3.1 so that after each incoming spike,
the membrane potential evolves as

𝑆𝑛 = 𝛽 𝑆𝑛−1 + 𝑤𝑛 , (6.8)

6.3. Modeling Neuron Spiking with First Hitting Times 21

0 25 50 75 100 125 150 175 200
First Hit Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
en

si
ty

Random Walk Variance = 0.05

Inverse Gaussian (IG)
Estimated Density
IG Expected Value
Estimated Expected Value

0 25 50 75 100 125 150 175 200
First Hit Time

Random Walk Variance = 0.025

Inverse Gaussian (IG)
Estimated Density
IG Expected Value
Estimated Expected Value

0 25 50 75 100 125 150 175 200
First Hit Time

Random Walk Variance = 0.01

Inverse Gaussian (IG)
Estimated Density
IG Expected Value
Estimated Expected Value

First Hitting Time Distribution of Gaussian Random Walk (= 0.02, T = 1)

Figure 6.3: First hitting time distributions for Gaussian random walks with drift 𝜇 = 0.02 and threshold 𝑇 = 1 under different RW variance
conditions. Blue bars show the histogram of simulated first-passage times, red curves denote the theoretical inverse Gaussian density,

and vertical dashed lines mark the theoretical mean of the inverse Gaussian (red) and the empirical mean from simulations (blue).

where 𝑤𝑛 ∼ 𝑁(𝜇, 𝜎2) as before, and we retain a fixed threshold 𝑉th = 1. The leaky random walk thus must
“fight” against decay to accumulate enough potential to fire.

Figure 6.4 illustrates how decay (𝛽 = 0.95) reshapes the first-spike-time distribution under three variance
settings. Key observations include:

• No Closed-Form Fit: Leakage breaks the pure-diffusion assumptions, so the inverse Gaussian approxi-
mation no longer holds and is dropped in the next steps.

• Leakage vs. Fluctuations: High-variance inputs still overcome decay to spike more reliably, whereas
low-variance inputs often decay away before the threshold is reached, dramatically delaying spikes.

• Increased Variability: Decay amplifies timing variability, especially in low variance regimes where drift
is weak relative to leak.

0 50 100 150 200 250 300
First Hit Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
en

si
ty

Random Walk Variance = 0.05

Inverse Gaussian (IG)
Estimated Density
IG Expected Value
Estimated Expected Value

0 50 100 150 200 250 300
First Hit Time

Random Walk Variance = 0.025

Inverse Gaussian (IG)
Estimated Density
IG Expected Value
Estimated Expected Value

0 50 100 150 200 250 300
First Hit Time

Random Walk Variance = 0.01

Inverse Gaussian (IG)
Estimated Density
IG Expected Value
Estimated Expected Value

First Hitting Time Distribution of Gaussian Random Walk with Decay (= 0.02, T = 1, = 0.95)

Figure 6.4: First-spike-time distributions for a leaky Gaussian random walk (𝛽 = 0.95, 𝑉th = 1) under high, medium, and low variance.
Decay suppresses early crossings in low-variance regimes, yielding heavier tails and fewer timely spikes.

Spike-Step Limitation and Discrete Time Bins
Our current membrane potential decay isn’t exactly accurate regarding how the spiking neuron we use decays.
We have to introduce timestep bins. At each timestep 𝑡 ∈ {1, . . . , 𝑇}, we (1) accumulate all incoming spikes to
form a synaptic current, then (2) apply decay once at the end of the step, so that

𝑆𝑡 = 𝛽 𝑆𝑡−1 +
𝑛𝑡∑
𝑖=1

𝑤𝑖 , (6.9)

where 𝑛𝑡 is the number of spikes in bin/timestep 𝑡.

In the first convolutional layer of a spiking neural network, each neuron samples from a receptive field (see
Figure 2.3 for an illustration of the receptive field) of size 𝐾 × 𝐾 × 𝐶. For example, 𝐾 = 3 on an RGB image

6.3. Modeling Neuron Spiking with First Hitting Times 22

(𝐶 = 3) gives
𝑁max = 𝐾 × 𝐾 × 𝐶 = 3 × 3 × 3 = 27 (6.10)

possible input-spike events per neuron. We refer to each such potential event as a random-walk step, since
the input pattern over that receptive field is effectively a walk through at most 𝑁max spike placements.

It is important to note that
𝑁max = 27

is not the number of simulation time-steps: instead, 𝑁max bounds the total number of input spikes a neuron
can possibly receive across the entire receptive field. By contrast, we discretize real time into 𝑇 bins with

𝑡 ∈ {1, . . . , 𝑇},

and within each bin 𝑡 we may accumulate zero, one, or multiple spikes. Thus:

• Random-walk steps (maximum 𝑁max = 27) enumerate the potential spike events determined by the
static receptive-field geometry.

• Timesteps (𝑇) define the discrete intervals at which the neuron integrates incoming spikes and updates
its membrane potential.

Hence, even if 𝑇 exceeds 𝑁max, we will only ever see at most 𝑁max incoming spikes in total; conversely, if
𝑇 < 𝑁max, some potential spikes must coincide within the same time bin.

To approximate a uniform average-case assignment of the 𝑁max ≤ 27 potential spikes into 𝑇 bins, We proceed
with two probabilistic steps:

1. Draw a probability vector from the Dirichlet distribution

p = (𝑝1 , . . . , 𝑝𝐵) ∼ Dir(𝛼, . . . , 𝛼), (6.11)

where 𝛼 > 0 is a concentration parameter
2. Given p, we convert these continuous probabilities into integer spike counts by sampling via the multino-

mial distribution:

(𝑛1 , . . . , 𝑛𝑏) ∼Mult
(
𝑁max , p

)
,

𝑇∑
𝑡=1

𝑛𝑡 = 𝑁max , (6.12)

Needless to say, a real image probably will not have a uniform distribution of spikes. Pixels will have similar
values to their neighbors, meaning that their spikes will arrive together and not spread apart in time. However,
this should yield a good approximation of what should happen in an average case.

Another point to look out for is that binning can overestimate the true first-spike time, since the threshold may be
crossed partway through a bin but the model only emits a spike at the bin’s end. However, this isn’t necessarily
a problem, as the real neuron model works in the same way as well.

Figure 6.5 shows the impact of varying the number of bins 𝑇: as 𝑇 increases, both the fraction of runs that fire
within 𝑁max steps and the mean first-spike time shift. Furthermore, similar to an effect observed Figure 6.4,
increasing the number of timesteps both increases the number of times the membrane potential is decayed
and increases the temporal sparsity of spikes, exacerbating the effect of decay.

Incorporating Kernel Bias
In convolutional networks, each filter typically includes a bias term 𝑏 added after the weighted sum of its inputs.
To account for this in our SNN model, we introduce a bias drawn once per neuron from a Gaussian distribution

𝑏 ∼ 𝑁(𝜇𝑏 , 𝜎2
𝑏
), (6.13)

and include it in the membrane-potential update at each timestep:

𝑆𝑏 = 𝛽 𝑆𝑡−1 +
𝑛𝑏∑
𝑖=1

𝑤𝑖 + 𝑏 (6.14)

6.4. Verifying the Model 23

0 5 10 15 20 25
First Hit Time

0

500

1000

1500

2000

2500

3000

C
ou

nt
Number of Timesteps = 10

Estimated Expected Value
Spike (%) = 29.0%

0 5 10 15 20 25
First Hit Time

Number of Timesteps = 25
Estimated Expected Value
Spike (%) = 21.6%

0 5 10 15 20 25
First Hit Time

Number of Timesteps = 50
Estimated Expected Value
Spike (%) = 12.0%

First Hitting Time Distribution of Gaussian Random Walk with Timesteps (= 0.02, 2 = 0.025, T = 1, = 0.95, N = 100000)

Figure 6.5: Monte-Carlo simulations of first-spike time histograms for a leaky Gaussian random walk (𝜇 = 0.02, 𝜎2 = 0.025, 𝑉th = 1,
𝛽 = 0.95, 𝑁 = 105) when spikes are binned into 𝐵 = 10, 25, 50 discrete timesteps. Bars show empirical counts, the vertical dashed line

marks the mean spike time, and the annotation gives the percentage of simulations that fired within the allotted bins.

0 5 10 15 20 25
First Hit Time

0

2000

4000

6000

8000

10000

C
ou

nt

Bias ~ N(0.01, 0.025)
Estimated Expected Value
Spike (%) = 45.1%

0 5 10 15 20 25
First Hit Time

Bias ~ N(0.05, 0.025)
Estimated Expected Value
Spike (%) = 54.7%

0 5 10 15 20 25
First Hit Time

Bias ~ N(0.1, 0.025)
Estimated Expected Value
Spike (%) = 66.1%

First Hitting Time Distribution of Gaussian Random Walk with Timesteps and Bias (= 0.02, 2 = 0.025, T = 1, = 0.95, N = 100000)

Figure 6.6: First-spike-time histograms for a leaky Gaussian random walk with bias 𝑏 ∼ 𝑁(𝜇𝑏 , 0.025). Panels correspond to
𝜇𝑏 = 0.01, 0.05, 0.10. Increasing bias adds drift, yielding earlier spikes and higher firing rates within the allotted bins (dashed line: mean

spike time; annotation: % of runs that spiked).

where 𝑤𝑖 ∼ 𝑁(𝜇, 𝜎2) are the synaptic weights, 𝛽 is the decay factor, and 𝑛𝑏 is the number of spikes in bin 𝑡.
The bias effectively adds a constant drift, shifting first-spike times earlier and increasing firing probability.

Figure 6.6 shows the impact of varying the bias mean 𝜇𝑏 (with fixed 𝜎2
𝑏
= 0.025) on the first-spike-time

distribution. As expected, increasing the mean decreases the expected first hitting time and increases the
number of neurons that spike within 27 input spikes.

6.4. Verifying the Model
To assess the accuracy of our first-spike-time model, we compare its predictions on the first-spike time of the
simulated neurons, against the observed spiking behavior in the first convolutional layer of a Spiking CNN
(SCNN) trained on CIFAR-10. We will use a SCNN trained with parameters: 𝛽 = 0.95, 𝑉th = 1, and 10
timesteps. To this end, we will count the number of spikes each neuron receives before it spikes in the trained
CNN and compare it with simulation results. Before we dive into the comparison, we will try to validate some
of the assumptions we have made.

6.4.1. Gaussian Step Assumption
Figure 6.7 shows the empirical distributions of the biases and weights in layer 1, respectively. We fit Gaussians
to each:

𝑤 ∼ 𝑁(𝜇̂𝑤 , 𝜎̂2
𝑤), 𝑏 ∼ 𝑁(𝜇̂𝑏 , 𝜎̂2

𝑏
),

with estimated parameters 𝜇̂𝑤 = 0.031, 𝜎̂2
𝑤 = 0.020, 𝜇̂𝑏 = 0.026, and 𝜎̂2

𝑏
= 0.010. Although the agreement

between histograms and normal curves isn’t one-to-one, we can see that in both cases the distributions are
approximately normal. These observations provide some empirical support for the Gaussian weight and bias
assumptions introduced in subsection 6.3.1 and subsection 6.3.2.

6.4. Verifying the Model 24

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Parameter Value

0.0

0.5

1.0

1.5

2.0

2.5

D
en

si
ty

Weights
Weights
N(0.031, 0.020)

0.2 0.1 0.0 0.1 0.2 0.3
Parameter Value

0

1

2

3

4

D
en

si
ty

Biases
Biases
N(0.026, 0.010)

Distribution of Layer 1 Weights and Biases in a Trained CNN

Figure 6.7: Empirical distributions of layer-1 convolutional kernel weights (left) and biases (right) in a Spiking CNN trained on CIFAR-10.
Blue bars show the observed parameter histograms, and red curves denote the fitted Gaussian densities 𝑁(𝜇̂𝑤 , 𝜎̂2

𝑤) and 𝑁(𝜇̂𝑏 , 𝜎̂2
𝑏
) with

𝜇̂𝑤 = 0.031, 𝜎̂2
𝑤 = 0.020, 𝜇̂𝑏 = 0.026, and 𝜎̂2

𝑏
= 0.010.

6.4.2. Spike Distribution of Images
In subsection 6.3.2, we previously mentioned, real images are unlikely to produce uniform spike counts across
timesteps. For example, Figure 6.8 shows a CIFAR-10 cat image, and Figure 6.9 plots the empirical number of
input spikes in each of 10 timesteps for that image. Clearly, the observed counts (𝑚1 , . . . , 𝑚𝑇) deviate from a
flat profile.

To incorporate this image-specific timing, we define the normalized spike ratios

𝑝̂𝑡 =
𝑚𝑡∑𝑇
𝑗=1 𝑚 𝑗

, 𝑡 = 1, . . . , 𝑇, (6.15)

so that
∑𝑇
𝑡=1 𝑝̂𝑡 = 1. We then allocate the 𝑁max = 27 potential spikes via

(𝑛1 , . . . , 𝑛𝑇) ∼ Mult
(
𝑁max , 𝑝̂

)
,

𝑇∑
𝑡=1

𝑛𝑡 = 𝑁max (6.16)

replacing the Dirichlet-multinomial scheme with a multinomial draw driven by the actual spike distribution of the
image. This ensures our simulated first-spike times respect the temporal structure present in real inputs.

Figure 6.8: An image of a cat from CIFAR-10

6.4. Verifying the Model 25

0 1 2 3 4 5 6 7 8 9
Timestep

0

200

400

600

800

1000

N
um

be
r o

f S
pi

ke
s

Spikes per Timestep in the Input Image

41

211

697

836

647

434

95

17

94

0

Figure 6.9: Empirical total spike counts per timestep for the CIFAR-10 “cat” image in Figure 6.8 with 10 timesteps. The non-uniform
distribution (𝑚1 , . . . , 𝑚10) motivates our data-driven allocation of the 𝑁max = 27 spikes according to the normalized ratios

𝑝̂𝑡 = 𝑚𝑡/
∑
𝑗 𝑚𝑗 .

6.4.3. Model Results

0 5 10 15 20 25
Spike Count / First Hit Time

0

1000

2000

3000

4000

5000

C
ou

nt

Simulated
Measured

0 5 10 15 20 25
Spike Count / First Hit Time

0

500

1000

1500

2000

2500

3000

3500

4000

C
ou

nt

Simulated
Measured

0 5 10 15 20 25
Spike Count / First Hit Time

0

1000

2000

3000

4000

5000

C
ou

nt

Simulated
Measured

0 5 10 15 20 25
Spike Count / First Hit Time

0

1000

2000

3000

4000

5000

C
ou

nt

Simulated
Measured

Simulated vs Measured First-Spike Distributions in Trained CNN (Nneurons = 65536)

Figure 6.10: Simulated vs. measured first-spike-time distributions for layer 1 neurons across four CIFAR-10 images (Boat, Frog, Car, Cat).
Blue histograms show model simulations using the fitted parameters 𝜇̂𝑤 = 0.031, 𝜎̂2

𝑤 = 0.020, 𝜇̂𝑏 = 0.026, 𝜎̂2
𝑏
= 0.010, 𝛽 = 0.95, 𝑉th = 1,

and 10 timesteps. Orange histograms show the empirical first-spike times recorded from 𝑁neurons = 65 536 units. The close alignment
demonstrates that our stochastic first-hitting-time model accurately mimics the spiking dynamics of a trained SCNN’s first layer.

6.5. Effect of Synaptic Weight Variance on First-Spike Timing 26

Figure 6.10 illustrates the comparison between measured and simulated first-spike-time distributions for layer
1 neurons across four CIFAR-10 images (Boat, Frog, Car, and Cat). For each image, we first recorded (over
all 𝑁neurons = 65 536 neurons) the number of incoming spikes needed before each neuron emitted its first
spike. We then generated the same number of simulated first-spike times using the random-walk model and
the parameters estimated from the trained SCNN itself.

The blue histograms (simulated) and orange histograms (measured) exhibit a close overlay in all panels.
This strong alignment confirms that our stochastic first-hitting-time framework accurately captures the timing
behavior of real TTFS neurons, despite simplifying assumptions such as i.i.d. Gaussian weights and temporally
independent input spikes.

6.5. Effect of Synaptic Weight Variance on First-Spike Timing

0 5 10 15 20 25
First Hit Time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
ou

nt

Random Walk Variance = 0.05
Estimated Expected Value
Spike (%) = 39.1%

0 5 10 15 20 25
First Hit Time

Random Walk Variance = 0.025
Estimated Expected Value
Spike (%) = 24.0%

0 5 10 15 20 25
First Hit Time

Random Walk Variance = 0.01
Estimated Expected Value
Spike (%) = 7.3%

First Hitting Time Distribution of Gaussian Random Walk with Timesteps (= 0.02, T = 1, = 0.95, Ntimesteps = 20, Nsim = 100000)

Figure 6.11: First-hitting-time distributions for a leaky Gaussian random walk (𝜇 = 0.02, 𝑉th = 1, 𝛽 = 0.95, 𝑁timesteps = 20, 𝑁sim = 105)
under three variances 𝜎2. Lower 𝜎2 produces heavier tails and delays in spiking.

To investigate how synaptic weight variance 𝜎2 influences the latency of the first spike, we simulate our leaky
Gaussian random-walk model with decay 𝛽 = 0.95, threshold𝑉th = 1, and 𝑁timesteps = 20 bins over 𝑁sim = 105

trials. Figure 6.11 presents the resulting first-hitting-time histograms for three values of random walk variance.
As the variance decreases from 0.05 to 0.01, the distributions shift steadily to the right, showing that lower
variability in the weight increments yields fewer large jumps to overcome the leak, and thus more steps are
required on average to reach the threshold.

0.0100.0150.0200.0250.0300.0350.0400.0450.050
Random Walk Variance

16

17

18

19

20

21

R
W

 S
te

ps
 b

ef
or

e
Sp

ik
e

[1
, 2

7]

Mean Number of Steps to First Spike

0.0100.0150.0200.0250.0300.0350.0400.0450.050
Random Walk Variance

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Ti
m

es
te

p
of

 S
pi

ke
 [1

, 2
0]

Mean First Spike Timestep

Monte Carlo Estimates of Gaussian Random Walk Variance vs First Spike

Figure 6.12: Monte Carlo (𝑁 = 100 000) estimates of (a) mean number of steps to first spike and (b) mean first-spike timestep as
functions of synaptic variance 𝜎2. Decreasing 𝜎2 leads to slower accumulation relative to leak, increasing the expected latency. N.B., the

x-axis is inverted.

We quantify this effect more precisely in Figure 6.12, which plots (a) the mean number of random-walk steps
before the first spike and (b) the mean first-spike timestep versus 𝜎2. Both measures increase monotonically

6.5. Effect of Synaptic Weight Variance on First-Spike Timing 27

as 𝜎2 decreases, confirming that smaller step-size fluctuations exacerbate the competition between synaptic
accumulation and membrane decay, thereby prolonging the first-hitting time.

6.5.1. Impact of Noise Training on Inference Latency
One of our primary research questions was whether injecting noise during training, without any data augmenta-
tion, could reduce inference latency for difficult samples. As previously discussed in chapter 5, we hypothesize
that noise training will drive down the magnitude of learned weights to counteract variability during learning,
thereby reducing effective random walk step size. According to our model, any decrease in the synaptic
weights’ variance must increase the expected first hitting time, i.e., slower first spikes. Consequently, the
hypothesis that noise training reduces latency is not supported by our stochastic first-hitting-time framework,
and furthermore, it should even increase latency during inference due to slower spike times.

7
Decision Making

In this chapter, we outline the theoretical framework used to investigate one of our primary research questions:

Does time-to-first-spike latency increase with sample difficulty?

To answer this, we adopt the Drift Diffusion Model (DDM) and evidence accumulation theory. We discuss: (1)
drift diffusion and its links to stochastic processes; (2) sample difficulty via margin-based metrics as defined in
chapter 4; (3) how margin connects to evidence accumulation; and (4) concrete predictions from the DDM in
the context of TTFS SNNs.

7.1. Drift Diffusion and Evidence Accumulation

Figure 7.1: Schematic of the drift diffusion model. The decision variable accumulates noisy momentary evidence 𝑒(𝑡) over time with
mean drift rate 𝜇 (red dashed line), until it reaches the upper boundary +𝐴 (choose 𝐻1) or lower boundary −𝐴 (choose 𝐻2). The inset

illustrates the probability density of momentary evidence 𝑒, whose mean shifts according to stimulus strength. Figure from [23].

Drift Diffusion Models (DDMs) are cognitive-level models that describe decision-making as an accumulation
of evidence over time until a threshold is reached [60]. In the classical formulation [59], evidence starts at a
point 𝑧, drifts with mean rate 𝑣 toward one of two boundaries (separated by distance 𝑎), and terminates upon
boundary crossing, yielding a choice and response time determined by the first hitting time [60]. DDMs have
been highly successful in explaining neural response times and accuracy in tasks like perceptual decisions [29,
36, 52, 80]

DDMs decompose response time into decision time (accumulation to threshold) plus non-decision components
(encoding and motor delays). As task difficulty increases (e.g., less discriminable stimuli), drift rate 𝑣 reduces,
resulting in slower and more variable decision times [52].

28

7.2. Sample Difficulty and Evidence 29

7.1.1. Bridging DDM to SNNs
Modern computer vision increasingly involves dynamic, sequential data (e.g. video streams or event camera
outputs), where decisions must be made over time under uncertainty. Integrating DDMs into SNNs would
provide a theoretically grounded approach: the SNN could accumulate visual evidence (such as object features
or motion cues) in a drift-diffusion-like fashion until a decision threshold is reached.

In neural terms, a spiking neuron (e.g. a leaky integrate-and-fire unit) performs a similar computation: it
accumulates input (drift), includes noise or leak, and fires an output spike once the membrane potential hits a
threshold. There have been research outlining explicit parallels between the two [36, 80]. For example, [8]
showed that the classic drift-diffusion process can be mapped onto a highly interactive neural network with
pooled inhibition, effectively linking a DDM to a recurrent spiking circuit. Similarly, attractor network model
proposed by [86], a biophysically detailed spiking network with excitatory and inhibitory pools, was shown to
instantiate evidence accumulation to a threshold, producing decision behavior well-described by a DDM.

In summary, while DDMs have indeed been implemented within spiking neural networks, these efforts have
primarily focused on biologically plausible models intended for simulation and neurophysiological interpretation,
rather than deep learning oriented architectures [13, 80, 83, 84, 86, 89]. These classical approaches prioritize
biological realism over computational efficiency or task performance. By contrast, applying DDM principles to
TTFS SNNs remains unexplored. Thus, investigating whether TTFS networks naturally exhibit drift-diffusion-like
behavior, and whether decision latency scales with sample difficulty under this formalism, could yield valuable
insights.

7.2. Sample Difficulty and Evidence
We need a principled way to measure evidence directly from individual samples, since our central hypothesis
is that low evidence corresponds to high difficulty. In typical supervised classification, margin-based metrics
(see chapter 4) offer exactly this: the (signed) margin is defined as the distance of a sample to the decision
boundary, which inherently should quantify how strongly the model supports the predicted class [14, 88, 94].

7.2.1. Margin Distance and Evidence Accumulation
In chapter 4, we describe how margin distance effectively captures sample difficulty. Here, we hypothesize
that the signed margin not only reflects difficulty but also plays a role as evidence strength; a small or negative
signed margin indicates that the model has weak or even conflicting evidence regarding which class the sample
belongs to. Thus, by using signed margin as our metric, we obtain a unified metric that quantifies how much
(or how little) evidence is available for the SNN to make a decision in the DDM framework.

In the DDM framework, as mentioned previously, drift rate 𝑣 represents the average speed of evidence
accumulation toward the correct decision boundary: high drift rates correspond to strong, clear evidence, and
low drift rates to less discernible signals [52]. We can therefore draw a formal link: the signed margin of a
sample maps to 𝑣, such that larger margins produce higher drift rates, while small or negative margins yield
low–or even reverse–drift. Thus, as margin increases, the DDM predicts faster and more reliable decisions.
Conversely, as margin decreases, or becomes negative, evidence is weak or misleading, and the model
forecasts slower responses and higher error rates.

Moreover, the DDM also predicts that on trials resulting in an incorrect decision, the response time will tend to
be longer than on correct trials. This arises from across-trial variability in the drift rate, equivalently, variability
in per-sample evidence, which increases the likelihood of slow boundary crossings when the instantaneous
drift is weak or even in the “wrong” direction [60, 62, 63]. In our TTFS framework, this directly corresponds to
per-sample variability in the sample margin: samples with near zero or negative margins not only produce
slower mean latencies but, when they do lead to a choice, tend to produce even longer first-spike times on
error trials.

7.3. The SepDots Synthetic Classification Task
In this section, we introduce a simple, analytically tractable binary classification task “Separating the Dots” (or
SepDots for short), inspired by Two-Alternative Forced Choice (2AFC) methods to measure the sensitivity of
response times in humans or animals with respect to input stimuli. This experiment allows us to compute exact
margins and directly relate them to time-to-first-spike of spiking neural networks.

7.3. The SepDots Synthetic Classification Task 30

7.3.1. Problem Definition
Let x = [𝑥1 , 𝑥2]𝑇 ∈ R2. We define two classes, each a bivariate normal distribution with identical, isotropic
covariance:

Class 1 : x ∼ 𝑁
(
[−𝜇, −𝜇]𝑇 , 𝜎2I

)
,

Class 2 : x ∼ 𝑁
(
[+𝜇, +𝜇]𝑇 , 𝜎2I

)
,

where 𝜇 > 0 controls class separation and 𝜎2 = 0.05 is fixed. The optimal linear decision boundary between
the two classes is

𝑥1 + 𝑥2 = 0 , (7.1)

so that the signed margin (euclidean distance to the decision boundary) of any sample x is

𝑚(x) =
𝑥1 + 𝑥2√

2
. (7.2)

Figure 7.2: Heatmaps of the two-class bivariate normal distributions for three values of 𝜇: (left) 𝜇1 = −0.5, 𝜇2 = +0.5, (center)
𝜇1 = −0.25, 𝜇2 = +0.25, (right) 𝜇1 = −0.1, 𝜇2 = +0.1. The dashed white line indicates the optimal decision boundary 𝑥1 + 𝑥2 = 0.

The separation between the two classes under different values of 𝜇 is visualized in Figure 7.2. As 𝜇 decreases,
the two Gaussians overlap more heavily, increasing the Bayes error.

7.3.2. Mapping to TTFS SNN Inputs
To present SepDots samples to a TTFS SNN, we proceed as follows:

1. Discrete Timesteps. We simulate 𝑇 = 20 time bins. At each timestep 𝑡 = 1, . . . , 𝑇, we draw 𝐾 = 5 i.i.d.
samples {x(𝑡)

𝑘
}𝐾
𝑘=1 from the true class distribution (each class chosen with probability 1/2).

2. Spatial Encoding. Each x ∈ R2 is first clipped to [−1, 1] and then mapped onto a 35 × 35 binary image,
such that [0, 0] corresponds to the center of the image. The continuous coordinates x are linearly scaled
and rounded to pixel indices:

𝑖 = round (17 · (𝑥1 + 1)) , 𝑗 = round (17 · (𝑥2 + 1)) ,

and pixel (𝑖 , 𝑗) is set to 1.
3. Aggregation. The 𝐾 dots at time 𝑡 form the input image I(𝑡). This sequence {I(𝑡)}𝑇

𝑡=1 is streamed into
the SNN.

To illustrate how individual samples look on the 35×35 grid over the first few timesteps, we show in Figure 7.3b
a trial from Class 2 at 𝜇 = 0.1, and in Figure 7.3a a trial from Class 1 at 𝜇 = 0.25. The red cross marks the
true class mean projection onto pixel-space, and the dashed line is again 𝑥1 + 𝑥2 = 0.

As we can see in Figure 7.3b, even for moderate separation (𝜇 = 0.1) the instantaneous pattern of dots may lie
close to the decision boundary, yielding small signed margins; in contrast, the example in Figure 7.3a shows
clearer separation and thus larger margins. These visualizations motivate our later analysis of how cumulative
margin 𝑀(𝑡∗) at the first-spike time correlates with TTFS latency.

7.3. The SepDots Synthetic Classification Task 31

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Timestep 1
Decision Boundary
Class Mean

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Timestep 2
Decision Boundary
Class Mean

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Timestep 3
Decision Boundary
Class Mean

Slice of a Sample from Class 1 with = 0.25

(a) Class 1 sample (𝜇 = 0.25)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Timestep 1
Decision Boundary
Class Mean

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Timestep 2
Decision Boundary
Class Mean

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Timestep 3
Decision Boundary
Class Mean

Slice of a Sample from Class 2 with = 0.1

(b) Class 2 sample (𝜇 = 0.1)

Figure 7.3: Three-timestep slices of two SepDots trials. Each yellow square is one of the 𝐾 = 5 dots at that timestep and the red cross is
the true class mean.

7.3.3. Exact Margin Tracking
Because we know each x(𝑡)

𝑘
exactly, we first compute its raw signed margin 𝑚(x(𝑡)

𝑘
). However, samples from

Class 1 (mean [−𝜇,−𝜇]) produce negative margins by construction. To measure distance on the correct side
of the decision boundary regardless of class label, we introduce

𝑦 =

{
+1, if sample from Class 2,
−1, if sample from Class 1,

𝑚̃(x) = 𝑦 𝑚(x) . (7.3)

Then at each timestep 𝑡 with 𝐾 samples, we define:

• Instantaneous margin at timestep 𝑡:

𝑚̃(𝑡) =
1
𝐾

𝐾∑
𝑘=1

𝑚̃
(
x(𝑡)
𝑘

)
. (7.4)

• Cumulative margin up to timestep 𝑡:

𝑀̃(𝑡) =
1
𝑡

𝑡∑
𝜏=1

𝑚̃(𝜏) . (7.5)

When the network emits its first output spike at time 𝑡∗, we record the cumulative margin 𝑀̃(𝑡∗) at the spike
time, as the total evidence available at decision time.

7.3.4. Predictions
Under the DDM analogy, we hypothesize:

7.4. Impact of Sample Difficulty on First-Spike Latency 32

• Class-correct margin drives speed: Larger 𝜇 (greater class separation) leads to stronger evidence
𝑚̃(𝑡) and higher average drift 𝑣, hence earlier first-spike times 𝑡∗.

• Absolute margin governs latency regardless of correctness: Because the network integrates
magnitude of evidence, a large negative margin also produces strong drift. Thus

��𝑀̃(𝑡)�� should inversely
correlate with spike time even for incorrectly-classified trials, leading to fast but wrong decisions when
𝑚̃(x) was large in magnitude but on the wrong side.

• Incorrect outputs are will be slower: DDM predicts that trials ending in error will on average have
longer response times, due to across-trial variability in drift rate. In our TTFS context, this implies that on
samples where the network misclassify, the first-spike latency should be longer than on correct trials,
reflecting slower evidence accumulation in those cases.

7.4. Impact of Sample Difficulty on First-Spike Latency
One of our primary research questions in this chapter was whether time-to-first-spike latency in a TTFS SNN
systematically increases with sample difficulty, as defined in Chapter 4. As we have argued under the DDM
analogy, smaller signed margins should correspond to lower drift rates and therefore to slower evidence
accumulation. To empirically test this prediction, we designed the SepDots task to manipulate margin-based
difficulty and directly measure first-spike times. According to the DDM framework, reductions in per-sample
margins will increase the expected first-hitting time due to decreased drift rates. Hence, the hypothesis that
latency should increase with sample difficulty is supported with our DDM framework.

Effect of Sample Difficulty on the Time-to-First-Spike of Spiking Neural
Networks

Eren Aydoslu
TU Delft

Abstract

Spiking neural networks (SNNs) with Time-to-First-Spike
(TTFS) coding promise rapid, sparse, and energy-efficient
inference. However, the impact of sample difficulty on TTFS
dynamics remains underexplored. We investigate (i) how in-
put hardness influences first-spike timing and (ii) whether
training on hard samples expedites inference. By quanti-
fying difficulty via geometric margins and Gaussian-noise
perturbations, and modeling leaky integrate-and-fire dy-
namics as Gaussian random walks, we derive first-hitting-
time predictions. We further show that training-time noise,
akin to ridge regularization, reduces weight variance and
increases expected spike latencies. Empirical results on a
synthetic task, MNIST, NMNIST, and CIFAR-10 with spik-
ing MLPs/CNNs confirm that harder inputs slow inference
and noise-trained models trade robustness for latency. Our
findings align TTFS behavior with drift-diffusion models
and provide a framework for balancing speed and robust-
ness in neuromorphic SNNs.

1. Introduction

Spiking neural networks (SNNs), inspired by biological
neural systems, encode information using spike timings
rather than continuous activation values. Among various
neural coding schemes, Time-to-First-Spike (TTFS) cod-
ing has garnered attention for its efficiency and biological
plausibility. TTFS-based SNNs inherently prioritize rapid,
sparse, and energy-efficient computation, making them par-
ticularly appealing for low-power and real-time applications
[10].

However, the performance and characteristics of TTFS-
based SNNs under conditions of varying sample difficulty
remain under-explored. Specifically, understanding how
the time-to-first-spike behavior of latency-encoded SNNs
changes as samples become intrinsically more challenging
is crucial for both theoretical insights and practical appli-
cations. In classical machine learning, sample difficulty is

often associated with ambiguity in the data distribution and
proximity to decision boundaries [8, 41]. Inspired by this,
our research investigates the following central questions:
1. What happens to the TTFS behavior of latency-encoded

SNNs as samples become increasingly difficult?
2. Can we use harder samples during training to make in-

ference faster?
We approach this question by considering sample dif-

ficulty through a proxy measure, additive Gaussian noise.
Drawing parallels from statistical learning theory and ridge
regression equivalence in linear models, we hypothesize
that introducing Gaussian noise to training samples reduces
the variance of the learned weights. Under this assump-
tion, we model neuronal membrane potentials as Gaussian
random walks, enabling analysis through the lens of first-
hitting-time stochastic processes. We believe that reduced
weight variance, induced by noisy training, leads to higher
expected first-spike times, thus potentially decelerating in-
ference.

To validate our hypothesis, we conducted extensive ex-
periments utilizing spiking multi-layer perceptrons (MLPs)
and convolutional neural networks (CNNs) using a syn-
thetic dataset and across widely-used datasets, MNIST,
NMNIST, and CIFAR-10, examining network responses
under various noise strength. Through empirical analyses,
we measure and explain how first-spike latency evolves rel-
ative to sample difficulty, thereby advancing the understand-
ing of latency coding dynamics in spiking neural networks.

In summary, we make the following contributions:
1. We introduce a principled analytical framework that

models TTFS dynamics under varying sample difficulty
by treating membrane-potential accumulation as a Gaus-
sian random walk with decay/mean-reversion and apply-
ing first-hitting-time theory.

2. We establish a theoretical link between training-time
Gaussian noise (akin to parameter regularization) and in-
creased first-spike latencies via reduced synaptic-weight
variance.

3. We empirically validate our theory on both a synthetic
SepDots task and three standard benchmarks (MNIST,

1

NMNIST, CIFAR-10) using spiking MLPs and CNNs,
showing that harder inputs systematically slow inference
and that noise training trades robustness for latency.

4. We demonstrate that TTFS latency under uncertainty
aligns with classical drift-diffusion models.

2. Related Work
2.1. Sample Difficulty Metrics
In related literature, many different principal approaches
have been proposed to quantify the intrinsic “difficulty” of
individual samples. However, for the scope of this research,
we are only interested in two: (i) geometric margin mea-
sures relative to a decision boundary, and (ii) synthetic hard-
ness induced by Gaussian-noise perturbations. These met-
rics have been successfully applied in supervised learning,
active learning and robustness studies, but have not yet been
systematically linked to latency behavior in TTFS-coded
SNNs.

2.1.1. Margin-Based Difficulty
A classical measure of sample difficulty is the signed dis-
tance (margin) from the sample to the optimal decision
boundary. In support vector machines, maximizing the min-
imum margin yields better generalization, and samples with
small margins are those most susceptible to misclassifica-
tion under slight model perturbations [9, 43]. Varshney et
al. [45] showed that margin directly captures both geomet-
ric resilience and Bayes error: points near the boundary lie
in regions where class-conditional distributions overlap, in-
curring high irreducible error. More recent work has ex-
tended margin concepts to deep networks, demonstrating
that margin distributions correlate with per-sample uncer-
tainty and generalization gaps [1, 26]

2.1.2. Gaussian Noise as a Proxy for Difficulty
When the true decision boundary is unknown or intractable,
hardness can be induced by adding isotropic Gaussian
noise to inputs. The manifold hypothesis posits that
high-dimensional data (e.g., images) lie near much lower-
dimensional manifolds, each encoding semantic factors
such as object identity or pose [12]. In modern vision em-
bedding spaces, whether derived from contrastive models
like CLIP or from GAN latent representations, individual
semantic concepts (e.g., “cat”-ness, orientation, age) align
with specific low-dimensional directions on these manifolds
[22, 33]. Because isotropic Gaussian noise perturbs all co-
ordinates equally at random, it is very unlikely to produce
a change that aligns with a particular semantic direction
(with probability near zero in high dimensions) and thus
very unlikely to increase a sample’s semantic class align-
ment or “margin” relative to its true manifold [2, 19]. In
other words, to give an example, adding noise to an image
of a cat is not very likely to make the image more cat-like.

Instead, noise almost invariably pushes samples off their na-
tive manifolds toward regions of higher class overlap, in-
creasing conditional uncertainty and Bayes error [13, 20].
Empirical studies confirm that moderate Gaussian pertur-
bations can improve generalization by discouraging overfit-
ting, whereas large noise amplitudes reliably degrade accu-
racy by elevating sample hardness [6, 21, 31].

2.2. Sample Difficulty and SNNs
Drift Diffusion Models (DDMs) describe the decision pro-
cess as the accumulation of noisy evidence to one of two
decision thresholds (see Figure 1), successfully capturing
response-time distributions and choice accuracies across
tasks and species [34, 35]. In their simplest form, DDMs
introduce a one-dimensional decision variable X(t) that
evolves according to

dX = v dt+ σ dW (t), (1)

where v is the drift rate (mean evidence per unit time),
σ the diffusion coefficient (noise magnitude), and W (t) a
standard Wiener process; choice and response time corre-
spond to the first-passage time of X(t) to one of two ab-
sorbing boundaries at ±a [35]. This framework naturally
accounts for both the mean and variability of reaction times
as well as speed–accuracy trade-offs: higher v yields faster,
more consistent responses, while lower v produces slower,
more variable decisions with increased error rates [3].

Figure 1. Schematic of the drift diffusion model. The decision
variable accumulates noisy momentary evidence e(t) over time
with mean drift rate µ (red dashed line), until it reaches the upper
boundary +A (choose H1) or lower boundary −A (choose H2).
The side-panel plot illustrates the probability density of momen-
tary evidence e, whose mean shifts according to stimulus strength.
Emphasizing how strong evidence leads to faster decisions. Figure
taken from [18].

Although DDMs provide an elegant account of behavior,
their abstract variables lack a clear mapping onto biophys-
ically realistic neurons, motivating neural-level implemen-
tations that can measure diffusion dynamics in spiking ac-
tivity. Analyses have directly linked neuron firing rates to
accumulator processes in perceptual decisions, motivating
neural-level diffusion analogues of DDM [18, 27, 29, 32].

2

In computational neuroscience, spiking neural network im-
plementations have long been proposed as neural substrates
for evidence accumulation, with early work demonstrating
that interconnected pools of excitatory and inhibitory neu-
rons can instantiate drift-like dynamics mapped onto diffu-
sion model parameters [3, 47]. For instance, the biophys-
ically detailed model by Wang (2002) [46] and its exten-
sion by Wong and Wang (2006) [47] showed that recurrent
spiking circuits could replicate behavioral data by varying
input “drift rate” and synaptic parameters corresponding to
decision thresholds. Subsequent analyses mapped manip-
ulations of spiking circuit parameters, such as input sensi-
tivity, background excitation, and recurrent connectivity, to
drift rate, boundary separation, and non-decision time in the
diffusion model, elucidating concrete neural implementa-
tions of cognitive-level variables [44]. Additionally, spiking
decision-making models with learning rules have been pro-
posed to bridge cognitive models and SNNs, showing that
accumulation can emerge from trainable spiking networks
[23, 28].

However, these efforts have primarily focused on biolog-
ical plausibility and parameter-mapping, often overlooking
task-performance and latency effects under varying sample
difficulties in deep learning oriented TTFS SNN architec-
tures [3, 28, 47]. To date, the impact of sample-specific
difficulty metrics, such as margin distance or noise-induced
hardness, on first-spike latency within a drift-diffusion
framework in TTFS SNNs has not been systematically ad-
dressed. This gap underscores the need to integrate sample
difficulty measures into evidence-accumulation analyses of
TTFS networks to predict and control inference latency un-
der uncertainty.

In the DDM framework, the impact of sample difficulty
on decision times is captured by the drift rate parameter v.
Harder samples, such as stimuli with lower discriminability
or higher noise, yield smaller drift rates, resulting in longer
times for the decision variable to reach a boundary and
thus slower and more variable response times (RT) [3, 35].
Across diverse perceptual tasks, formal fittings of the DDM
consistently show that difficulty-induced reductions in drift
rate account for observed changes in RT distributions under
ambiguous or noisy conditions [27, 37]. Classic random-dot
motion tasks illustrate this relationship: as motion coher-
ence decreases (i.e., the stimuli becomes harder), drift rate
diminishes, producing increased mean reaction times and
heavier right tails in RT distributions [30, 34, 37]. Conse-
quently, when mapping sample difficulty metrics to TTFS-
coded SNNs, higher difficulty should correspond to lower
effective drift rates in a DDM interpretation, predicting sys-
tematically later first-spike latencies for harder samples.

Moreover, the DDM also predicts that trials ending in
an incorrect choice tend to have longer response times than
correct trials. This follows from across-trial variability in

drift rate: high drift rates produce fast, accurate bound-
ary crossings, whereas low drift rates both increase error
probability and slow the accumulation process, leading to a
distribution of missclassified response times that is shifted
toward longer latencies [35, 38]. In our TTFS context,
this implies that samples with particularly small or negative
margins, not only accumulate evidence more slowly on av-
erage, but when they do lead to misclassification, will evoke
the longest first-spike latencies.

2.3. Spiking Neuron as a Stochastic Process
2.3.1. Membrane Potential as a Gaussian Random Walk
The sub-threshold membrane potential of leaky integrate-
and-fire neurons has long been modeled as a stochastic pro-
cess whose increments converge to a Gaussian distribution
under the Central Limit Theorem (CLT) when driven by
many weak synaptic inputs [14, 16]. Gerstein and Mandel-
brot [17] first employed an inverse-Gaussian framework to
describe first-passage problems in neural spiking, demon-
strating that membrane dynamics under constant drift and
Gaussian noise can be treated as a random walk with drift.
Later works formalized the discrete-time analogue, show-
ing that if (i) the number of presynaptic inputs is large, (ii)
synaptic weights have finite variance, and (iii) presynap-
tic spike trains are weakly correlated, then the membrane
potential sum approaches Gaussian [4, 25]. These analy-
ses, however, predominantly consider continuous-time or
asymptotic regimes and do not fully characterize the influ-
ence of finite-step effects or input “difficulty” in Time-to-
First-Spike coding schemes.

2.3.2. First Hitting Time Models for Time-to-First-Spike
First-hitting time (or first-passage time) models have been
extensively used to predict spike latencies in stochastic
neuron models. Classic results by Siegert derived the
inverse-Gaussian density for barrier crossing times in diffu-
sion approximations of integrate-and-fire neurons [39, 40].
Chang and Peres [7] later provided rigorous bounds show-
ing that discrete-time Gaussian random walks converge to
the inverse-Gaussian limit as the time step vanishes. More
recent numerical methods have improved the estimation of
first-passage time densities for Ornstein–Uhlenbeck neuron
models [5, 42]. Despite these foundational contributions,
existing work largely addresses homogeneous synaptic in-
puts and continuous diffusion models; the specific effects
of discrete timesteps, synaptic weight variability, sample
and difficulty, remain underexplored in the context of TTFS
SNNs architectures.

3. Approach

In this section, we detail the methodologies and key theo-
retical formulations employed in our research.

3

tspike(x, y, c) =

{
round((1− I(x, y, c))× Tmax), if I(x, y, c) > ϵ

no spike, otherwise
(2)

3.1. Leaky Integrate-and-Fire Neuron Model
We use the discrete-time Leaky Integrate-and-Fire (LIF)
neuron model, characterized by the following update equa-
tion:

Vi[t+ 1] = βVi[t] +
∑

j

WijSj [t]− VthSi[t] (3)

Here, Vi[t] denotes the membrane potential of neuron i at
discrete timestep t, β ∈ [0, 1] is the leak parameter control-
ling the decay of the potential over time, Wij represents the
synaptic weight between neuron j (presynaptic) and neuron
i (postsynaptic), Sj [t] indicates whether neuron j emitted
a spike at timestep t, and Vth is the threshold potential. If
Vi[t] surpasses Vth, neuron i emits a spike (Si[t] = 1) and
its membrane potential resets accordingly.

3.2. Latency Encoding of Inputs
In our implementation, latency encoding converts pixel in-
tensities from input images into spike timings. Each pixel
value, initially in the range [0, 1], is transformed into a
spike timing such that pixels with higher intensities (closer
to 1) spike earlier, and pixels with lower intensities spike
later. Formally, this is described in Equation 2, where
I(x, y, c) represents the intensity of the pixel at location
(x, y) in channel c, Tmax denotes the maximum number of
timesteps, and ϵ is a clipping threshold below which pixel
intensities do not generate spikes.

3.3. Temporal Mean Squared Error Loss
To effectively train our latency-encoded SNN, we utilize a
temporal mean squared error (MSE) loss function defined
over spike timings [10]. Consider an output layer of neu-
rons, each producing spike times represented as normalized
timings within [0, 1]. Given example spike times [t1, t2, t3]
for three neurons, normalized by dividing each by the to-
tal number of timesteps Tmax (e.g., for spike times [1, 2, 3]
and Tmax = 5, the normalized times are [0.2, 0.4, 0.6]), the
temporal MSE loss is computed as follows:

L =
1

N

N∑

i=1

(ti − yi)
2 (4)

where ti is the normalized spike time of neuron i, yi is
the desired normalized target time (0 for the correct class,
meaning spike as early as possible, and 1 for incorrect
classes, meaning spike as late as possible or ideally never),

and N is the total number of output neurons. This ap-
proach encourages the network to minimize the latency of
correct class spikes while delaying or inhibiting incorrect
class spikes.

One significant challenge in training with the temporal
MSE loss arises from the fundamental discontinuity in spike
timing mechanisms. Since the precise moment a neuron
fires depends on a threshold-crossing event, the derivative
of spike timing with respect to membrane potential is math-
ematically undefined. To circumvent this issue, we employ
a commonly used custom gradient approximation during
backpropagation [10]. Specifically, we set:

∂tspike
∂U

= −1 (5)

This sign estimator establishes the directional relationship
that increasing membrane potential leads to earlier firing
times.

3.4. Surrogate Gradients and Backpropagation
Through Time

Training SNNs presents a fundamental challenge: the spike
generation mechanism is inherently non-differentiable, cre-
ating a discontinuity in the gradient flow. To address this,
we employ surrogate gradients that approximate the deriva-
tive of the spiking function. For the forward pass, we use
the Heaviside step function:

S =

{
1 if U ≥ Uthr

0 if U < Uthr

(6)

For the backward pass, we utilize the gradient of a shifted
arc-tangent function as our surrogate:

S ≈ 1

π
arctan(πU

α

2
) (7)

∂S

∂U
=

1

π

1

(1 + (πU α
2)

2)
(8)

where α is a hyperparameter controlling the smoothness of
approximation [11]. Additionally, since our network pro-
cesses information across multiple timesteps, we use Back-
propagation Through Time (BPTT), which unfolds the SNN
temporally and applies backpropagation across the resulting
computational graph. This allows gradients to flow back-
ward through both spatial connections and temporal dynam-
ics, enabling end-to-end training while preserving the tem-
poral characteristics essential to latency-encoded networks.

4

0.0100.0150.0200.0250.0300.0350.0400.0450.050
Random Walk Variance

16

17

18

19

20

21

R
W

 S
te

ps
 b

ef
or

e
Sp

ik
e

[1
, 2

7]

Mean Number of Steps to First Spike

0.0100.0150.0200.0250.0300.0350.0400.0450.050
Random Walk Variance

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Ti
m

es
te

p
of

 S
pi

ke
 [1

, 2
0]

Mean First Spike Timestep

Monte Carlo Estimates of Gaussian Random Walk Variance vs First Spike

Figure 2. Monte Carlo (N = 100 000) estimates of (a) mean number of steps to first spike and (b) mean first-spike timestep as functions
of synaptic variance σ2. Decreasing σ2 leads to slower accumulation relative to leak, increasing the expected latency. N.B., the x-axis is
inverted.

3.5. Discrete-Time Spiking Neuron Model and Vari-
ance Effects

We model each neuron as a non-leaky integrate-and-fire unit
operating in discrete timesteps. Let St denote the mem-
brane potential at timestep t. Assuming each presynaptic
spike contributes a weight wi ∈ {0, 1} · N (µ, σ2), the sub-
threshold dynamics form a Gaussian random walk:

St = St−1 +

nt∑

i=1

wi (9)

with S0 = 0 and threshold Vth = 1. Under the i.i.d. Gaus-
sian weight assumption, the first-hitting time T to reach Vth

admits a continuous-time approximation via a Wiener pro-
cess with drift µ > 0 and diffusion σ2, whose hitting-time
density is inverse Gaussian [15, 24]:

fT (t) =
1√

2πσ2t3
exp

(
− (1−µt)2

2σ2t

)
, (10)

E[T] =
1

µ
, Var(T) =

σ2

µ3
(11)

To capture realistic membrane leakage and finite input
spikes, we introduce a decay factor β ∈ (0, 1] and bin inputs
into T discrete steps:

St = β St−1 +

nt∑

i=1

wi,
T∑

t=1

nt = Nmax ≤ 27. (12)

Monte Carlo simulations of this leaky random walk (with
β = 0.95, varying σ2, up to Nmax = 27 for a 3×3 RGB re-
ceptive field in a convolutional layer) reveal that decreasing
synaptic-weight variance shifts the first-spike distribution to

the right, i.e., lower σ2 yields heavier tails and longer mean
latencies (see Figure 2).

Quantitatively, both the expected number of steps to
threshold and the mean first-spike timestep increase mono-
tonically as σ2 decreases, confirming that reduced weight
variability slows evidence accumulation relative to leak,
thereby prolonging time-to-first-spike.

3.6. SepDots Synthetic Classification Task
SepDots (short for separating the dots) is a synthetic binary
classification dataset designed to provide analytical control
over sample difficulty via tunable class separation, enabling
exact margin computation and direct investigation of first-
spike latency under varying difficulty.

3.6.1. Problem Definition

x =

{
N
(
[−µ,−µ]T , σ2I

)
, Class 1,

N
(
[+µ,+µ]T , σ2I

)
, Class 2,

(13)

where µ > 0 controls class separation (and thus difficulty)
and σ2 = 0.05 is fixed. We simulate 20 discrete timesteps
and at each timestep we draw K = 5 i.i.d. samples from
the true class distribution (see Figure 3), where each class
is chosen with probability 1/2. Finally, sampled values are
mapped to a binary 35× 35 image in a linear fashion, such
that [0, 0] corresponds to the center of the image.

3.6.2. Margin Computation
The optimal linear decision boundary is

x1 + x2 = 0 . (14)

Then, we can calculate the signed margin of a sample x as

m(x) =
x1 + x2√

2
. (15)

5

Figure 3. Three-timestep slices of a SepDots sample. Each yellow square is one of the K = 5 dots at that timestep and the red cross is the
true class mean.

Dataset Type Levels

SepDots Class mean, µ {0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.25}
MNIST Gaussian noise, σ {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
NMNIST Pixel-flip, pflip {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}
CIFAR-10 Gaussian noise, σ {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25}
CIFAR-10 Gaussian blur (33× 33 kernel), σ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

Table 1. Perturbation parameters used to induce sample difficulty.

Let the true label be

y =

{
+1, x from Class 2,
−1, x from Class 1,

(16)

so that the class-corrected margin is

m̃(x) = ym(x) . (17)

3.6.3. Temporal Margin Aggregation
At each discrete timestep t, we draw K i.i.d. samples
{x(t)

k }Kk=1. We then compute:

m̃(t) =
1

K

K∑

k=1

m̃(x
(t)
k) (instantaneous margin), (18)

M̃ (t) =
1

t

t∑

τ=1

m̃(τ) (cumulative margin). (19)

These exact margin metrics allow us to quantitatively link
sample difficulty, via m̃ and M̃ .

The key advantage of SepDots is its tunable difficulty via
µ: as µ decreases, class overlap increases and the Bayes er-
ror rises, offering a fine-grained control over sample hard-
ness. This synthetic task thus provides a clear testbed for

linking evidence-accumulation predictions under the Drift
Diffusion Model to actual TTFS latency under varying dif-
ficulty levels.

3.7. Experiments
We evaluate our theoretical predictions on four datasets,
SepDots, MNIST, NMNIST, and CIFAR-10, by systemat-
ically varying both testing and training sample hardness.
Furthermore, we repeat each experiment 30 times to in-
crease the reliability of the results. Our two primary hy-
potheses are:
1. Increasing testing hardness will slow inference (longer

first-spike latencies) due to reduced effective drift
(weaker evidence accumulation).

2. Increasing training hardness will also slow inference,
because noise-driven reductions in learned synaptic-
weight variance will decrease membrane potential
threshold-crossing speed.

3.7.1. SepDots
Hardness is controlled by the class-separation parameter µ,
which directly modulates Gaussian overlap and margins.
We train and test networks under multiple separation set-

6

tings, observing how reduced µ (smaller margins) affects
first-spike latency.

3.7.2. MNIST, NMNIST, CIFAR-10
For MNIST and CIFAR-10, hardness is induced by adding
isotropic Gaussian noise or (only for CIFAR-10) Gaussian
blur to each image prior to training and/or evaluation. For
event-based NMNIST, hardness is induced by flipping each
pixel with a fixed probability. However, we don’t want to
augment the data. Therefore, we sample each noise or blur
pattern once before training and use the same perturbed
dataset both during training. To keep overall spike-count
statistics constant, we histogram-match the noisy inputs to
their clean counterparts.

Additionally, for CIFAR-10 we use a small CNN (CNN-
S) with ≈ 86k parameters and a large CNN (CNN-L) with
≈ 20M parameters.

3.7.3. Training and Evaluation Regime
The perturbation parameters we use to induce hardness in
each dataset are defined in Table 1.
1. For each dataset and training hardness setting, train a

TTFS-coded SNN from scratch.
2. For each trained model, evaluate on each testing hard-

ness setting, recording first-spike latencies across output
neurons.

3. Analyze the mean and variance of first-spike times as
functions of training and testing hardness.
This process should allow us to separate the effects of

testing difficulty, slower evidence accumulation, from those
of training difficulty, changed synaptic weight statistics, on
TTFS inference latency.

4. Results
Before we go into classic datasets, let’s first analyze the be-
havior of the first spike times in our synthetic classification
task SepDots.

4.1. Time-to-First-Spike Behavior
4.1.1. SepDots
Figure 4 reports the classification accuracy matrix as a func-
tion of the training-distribution mean µtrain (x–axis) and the
testing-distribution mean µtest (y–axis). Accuracy remains
near 100% when µtest ≥ 0.1 regardless of training hard-
ness, but degrades sharply when testing separation falls be-
low µtest ≈ 0.05.

To probe the latency effects, we first examine the
marginal relationship between cumulative margin at spike
time and latency (Figure 5). Latency is longest for near-
zero cumulative margins, where evidence is weakest, and
decreases monotonically as M̃ grows in magnitude. This
brings prominence to the drift-diffusion prediction that
higher net evidence yields faster first-spike times.

0.010.01750.0250.050.0750.10.150.25
Train Distribution Mean

0.
01

0.
01

75
0.

02
5

0.
05

0.
07

5
0.

1
0.

15
0.

25
Te

st
 D

is
tri

bu
tio

n
M

ea
n

6464636059585756

7473726766646261

8281797472706765

9696958987858179

9999999595939189

1001001009898979694

100100100981001009999

10010010098100100100100

SepDots Accuracy Matrix

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Figure 4. SepDots: Classification accuracy for varying train and
test distribution means µtrain (x-axis) and µtest (y-axis). High test
separation (µtest ≥ 0.2) yields near-perfect accuracy, while low
separation degrades performance, especially when networks are
trained on very hard (small-µtrain) data. From left-to-right harder
training; from bottom-to-top harder testing.

0.2 0.0 0.2 0.4 0.6
Cumulative Margin

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Fi
rs

t S
pi

ke
 T

im
e

[0
, 1

9]

Marginal Effect of Cumulative Margin on Latency

Figure 5. SepDots: Marginal effect of cumulative margin M̃ at
first-spike time on latency, estimated via LOWESS regression. La-
tency peaks near zero margin (weak evidence) and decreases as
the absolute cumulative margin grows, confirming that stronger
net evidence speeds first spikes.

Next, Figure 6a and Figure 6b show how mean first-
spike time varies with µtest and µtrain, respectively. Aver-
aging out training effects, increasing µtest reduces latency
from ≈ 3.7 timesteps at µtest = 0.01 down to ≈ 2.4 at
µtest = 0.25. Conversely, when averaging out testing hard-
ness, raising µtrain speeds inference even more dramati-
cally, from over 5.5 timesteps at µtrain = 0.01 to just under
2.0 at µtrain = 0.25. Thus both testing and training hard-
ness could be independently controlling spike-latency via

7

0.000.050.100.150.200.25
Test Distribution Mean

2.4

2.6

2.8

3.0

3.2

3.4

3.6

M
ea

n
Fi

rs
t-S

pi
ke

 T
im

e
[0

, 1
9]

SepDots Marginal Effect of test on Latency

(a) SepDots: Mean first-spike time versus test distribution mean µtest (av-
eraging over µtrain). Decreasing µtest yields slower spikes. Networks
tested on easier data exhibit faster inference. N.B. the x-axis is inverted to
show the effect of going from easy to hard.

0.000.050.100.150.200.25
Train Distribution Mean

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
ea

n
Fi

rs
t-S

pi
ke

 T
im

e
[0

, 1
9]

SepDots Marginal Effect of train on Latency

(b) SepDots: Mean first-spike time versus train distribution mean µtrain

(averaging over µtest). Networks trained on harder data exhibit slower
inference. N.B. the x-axis is inverted to show the effect of going from easy
to hard

Figure 6. Marginal effects of test-set and train-set distribution
means on TTFS first-spike latency.

evidence-accumulation dynamics.
Finally, the combined heatmap in Fig. Figure 7 visu-

alizes mean first-spike time across the full (train, test)
grid. The lower-left corner (small µtrain, µtest) exhibits
the largest latencies, while the upper-right corner (large
µtrain, µtest) compresses latencies. The smooth gradient
along both axes seems to provide evidence for our two hy-
potheses.

4.1.2. Qualitative Analysis
To motivate our quantitative analysis (which will come later
in subsection 4.2) and better understand its implications,
we visualize the results obtained on the NMNIST dataset.
While our earlier qualitative study focused on the SepDots

0.010.01750.0250.050.0750.10.150.25
Train Distribution Mean

0.
01

0.
01

75
0.

02
5

0.
05

0.
07

5
0.

1
0.

15
0.

25
Te

st
 D

is
tri

bu
tio

n
M

ea
n

7.05.64.63.42.62.32.12.1

6.85.54.53.32.52.32.12.1

6.65.34.43.32.52.32.12.1

5.84.63.83.02.42.22.12.0

5.14.03.42.82.22.12.12.0

4.73.63.02.62.12.02.01.9

4.23.22.72.42.01.91.91.9

4.13.02.62.31.91.91.91.8

SepDots Mean First-Spike Time

2

3

4

5

6

M
ea

n
Fi

rs
t-S

pi
ke

 T
im

e
[0

, 1
9]

Figure 7. SepDots: Heatmap of mean first-spike time across the
grid of (µtrain, µtest) values. Latency increases smoothly from
easy–easy settings in the bottom left to from hard–hard settings in
the top-right, confirming both training and testing hardness effects.

dataset, we now extend this investigation to the classic NM-
NIST benchmark. In particular, we examine:
1. Accuracy under noise: how varying levels of additive

input noise affect overall classification accuracy.
2. Spiking behavior: the temporal spike patterns produced

during correctly and incorrectly classified samples as
noise increases.

3. Latency dynamics: the impact of noise injected dur-
ing training on the time-to-first-spike inference latency
of the network.

0.00 0.02 0.04 0.06 0.08 0.10
Training Noise

82

84

86

88

90

92

94

96

Ac
cu

ra
cy

 (%
)

NMNIST Test Set Accuracy
Zero Test Noise
Same Test Noise

Figure 8. NMNIST test-set accuracy as a function of the training
noise level. The blue curve shows performance when evaluated
with zero test noise, while the orange curve shows performance
when evaluated with the same noise level used during training.

Figure 8 illustrates how increasing the level of additive
noise during training impacts classification accuracy on the

8

NMNIST test set. When evaluated without any test noise
(blue line), accuracy degrades sharply as training noise in-
creases, dropping from about 96% at zero noise to around
81% at a noise level of 0.1. By contrast, evaluating with
matching test noise level with training noise level yields
a more shallow decline, demonstrating that training with
noise produces robustness to the similar perturbations at in-
ference time.

0.00 0.02 0.04 0.06 0.08 0.10
Training Noise

2

4

6

8

10

12

Fi
rs

t S
pi

ke
 T

im
e

[0
, 1

9]

Correct vs Incorrect - Mean First Spike Time in NMNIST
Zero Test Noise Incorrect
Same Test Noise - Incorrect
Zero Test Noise - Correct
Same Test Noise - Correct

Figure 9. Mean time-to-first-spike for correctly and incorrectly
classified NMNIST samples as a function of training noise. Solid
lines denote correctly classified samples (blue: zero test noise; or-
ange: matching test noise with training noise), while dashed lines
denote incorrectly classified samples.

Figure 9 reveals a key insight: incorrectly classified sam-
ples (dashed lines) exhibit substantially longer TTFS com-
pared to correctly classified ones (solid curves), indicating
that misclassifications are associated with delayed spiking
responses.

Figure 10 focuses on the TTFS of the correctly classified
samples. In the figure, the TTFS under matching test noise
(orange) consistently lies above that under zero test noise
(blue), demonstrating that higher inference noise reliably
increases latency. Moreover, for both test-noise settings,
the mean TTFS increases monotonically with the training
noise level, showing that increased training hardness pro-
longs output latency in all these cases.

4.2. Quantitative Analysis of Results
Prior to detailed latency analysis, we first examined how
first-spike times varies between correct versus incorrect
classifications (see Table 2). Since classification accuracy
itself varied substantially with both training and testing
noise, pooling all TTFS values would merge the effects cor-
rect vs incorrect spike times with sample difficulty. If we
used all, the estimated parameters might be dominated by
the change in accuracy rather than observing the real effect
of training and testing noise. To isolate changes in latency

0.00 0.02 0.04 0.06 0.08 0.10
Training Noise

2.0

2.2

2.4

2.6

2.8

3.0

Fi
rs

t S
pi

ke
 T

im
e

[0
, 1

9]

NMNIST Mean First Spike Time of Correct Classifications
Zero Test Noise
Same Test Noise

Figure 10. Mean time-to-first-spike of correctly classified NM-
NIST samples under zero test noise (blue) and matching test noise
(orange) as a function of training noise. This figure is equivalent
to Figure 9 except it’s zoomed in on correct classifications

Dataset Hardness Model Correct
TTFS

Incorrect
TTFS

SepDots
Distribution
Overlap CNN 3.04 3.47

MNIST GWN MLP 0.91 6.82

MNIST GWN CNN 2.61 8.24

NMNIST Pixel Flip CNN 2.75 8.39

CIFAR-10 GWN CNN-S 3.85 4.62

CIFAR-10 GWN CNN-L 3.88 4.58

CIFAR-10
Gaussian
Blur CNN-S 3.91 4.84

Table 2. Mean first spike times for correct and incorrect predic-
tions across different datasets and models. The table highlights
the significant difference between the first spike times of correctly
classified samples and incorrectly classified samples. GWN =
Gaussian White Noise

from accuracy, we do the following analysis exclusively on
correctly classified samples.

To estimate quantify the effects of testing and training
hardness, we fit a ordinary least squares (OLS) regression to
predict TTFS as a function of training noise, testing noise,
and their interaction. Formally, for test sample i:

TTFSi = β0 + β1 σ
train
i + β2 σ

test
i

+ β3

(
σtrain
i × σtest

i

)
+ εi (20)

where σtrain
i and σtest

i are the noise levels during training
and testing, respectively, and εi is the residual error.

Although our primary focus is on the marginal effects

9

Dataset Hardness Model Type Intercept Training Noise Test Noise Interaction
β0 (±SE) β1 (±SE) β2 (±SE) β3 (±SE)

SepDots Distribution Overlap CNN 4.83 (< 0.01) −15.5† (0.01) −9.17† (0.01) 45.1 (0.06)
MNIST Gaussian White Noise MLP 0.66 (< 0.01) −0.30 (< 0.01) 2.23 (0.01) −2.30 (0.02)
MNIST Gaussian White Noise CNN 2.34 (< 0.01) 0.37 (0.01) 1.10 (0.01) 0.62 (0.03)
NMNIST Pixel Flip CNN 1.94 (< 0.01) 4.13 (0.03) 23.7 (0.03) −212. (0.44)
CIFAR-10 Gaussian White Noise CNN-S 3.78 (< 0.01) 1.21 (0.01) −1.07 (0.01) 4.53 (0.08)
CIFAR-10 Gaussian White Noise CNN-L 3.81 (< 0.01) 0.14 (< 0.01) 0.14 (< 0.01) 3.76 (0.06)
CIFAR-10 Gaussian Blur CNN-S 3.70 (< 0.01) 0.11 (< 0.01) 0.12 (< 0.01) −0.02 (< 0.01)

† For SepDots we expect β1 and β2 to be negative due to decreasing hardness with increasing distribution µ. For all other datasets, we expect β1, β2 > 0.

Table 3. OLS estimates for predicting TTFS from training noise, test noise, and their interaction (correctly classified samples only).
Standard errors in parentheses. N.B., because each dataset’s noise levels are defined over a different scale and exhibits a distinct functional
relationship with TTFS, the magnitudes of β1, β2, β3 estimates aren’t directly comparable across datasets.

of training and test noise on TTFS, we additionally include
the interaction term σtrain×σtest to guard against potential
moderation effects. In this context, a significant interaction
would indicate that the impact of increasing test-time noise
on TTFS depends on the noise regime under which the net-
work was trained, for instance, a model trained with high
noise might exhibit smaller latency shifts when exposed to
further noise at test time compared to a model trained on
clean data. By modelling this non-additivity, we ensure that
the estimates of the main effects β1 and β2 remain unbiased
and that the overall model fit is improved.

To evaluate how training-noise (hardness) acts as a regu-
larizer on the learned synaptic weights, we fit the following
two OLS regression models. Let σtrain denote the noise
level used during training, and let

y
(std)
i = StdDev

(
wlearn

i

)
, y

(mean)
i = Mean

(
wlearn

i

)

be, respectively, the standard deviation and mean of the
synaptic weights measured across the 30 repeats. We then
estimate

y
(std)
i = β4 + β5 σ

train + εi, (21)

y
(mean)
i = β6 + β7 σ

train + εi. (22)

Table 4 reports the estimates of β4 and β5 for (21), while
Table 5 reports the estimates of β6 and β7 for (22).

As summarized in Table 3, we fit a OLS to predict the
time-to-first-spike based on training noise intensity, test
noise intensity, and their interaction. The intercept term,
β0, captures the baseline TTFS for each dataset under zero
noise. For the SepDots dataset, both the training-hardness
coefficient β1 = −15.5 and the testing-hardness coefficient
β2 = −9.17 are significantly negative1, providing evidence

1For SepDots we a priori expected β1, β2 < 0 due to decreasing hard-
ness (and sample margins) with increasing distribution separation; for all
other datasets we hypothesized β1, β2 > 0.

for our hypothesis that increasing sample difficulty deceler-
ates inference latency. In contrast, for MNIST, NMNIST,
and CIFAR-10, the noise coefficients are mostly positive,
indicating that higher noise levels tend to delay spike emis-
sion, in agreement with our prior research. Finally, only
SepDots exhibits a strong positive interaction (β3 = 45.1),
suggesting a compounding effect when both training and
test noises are elevated.

4.3. Effect of Test-Time Difficulty on TTFS
The estimates of the test-noise coefficient β2 across most
datasets are positive, indicating that as samples become
more difficult at test time (higher σtest), the mean time-to-
first-spike increases. This provides direct evidence for our
first research question “What happens to the TTFS behav-
ior of latency-encoded SNNs as samples become increas-
ingly difficult?”. Furthermore, the results are consistent
with drift-diffusion predictions that lower drift rates yield
longer response times as harder inputs slow down inference
latency [3, 35]. An exception arises for CIFAR-10 with
Gaussian white noise, where β2 = −1.07 (SE = 0.01), sug-
gesting a slight decrease in latency under added test noise.
One plausible explanation is that the CNN never learned a
robust feature representation on CIFAR-10 (peak accuracy
≈ 60% across all training-testing combinations), so moder-
ate noise may inadvertently regularize activations in a way
that triggers earlier spikes. To an extent, this is supported
by the near–zero β2 = 0.12 in the Gaussian-blur condition,
indicating very minimal sensitivity.

4.4. Effect of Training-Time Difficulty on TTFS
The training-noise coefficient β1 quantifies whether expos-
ing the network to harder samples during training speeds
up or slows down inference, our second research question,
“Can we use harder samples during training to make in-
ference faster?” Except for SepDots (where hardness is in-
versely correlated with µ), almost all β1 estimates are pos-

10

Dataset Hardness Model Type Intercept Training Noise
β4 (±SE) β5 (±SE)

SepDots Distribution Overlap CNN 0.099 (0.001) 0.163† (0.006)
MNIST Gaussian White Noise MLP 0.046 (< 0.001) −0.008 (< 0.001)
MNIST Gaussian White Noise CNN 0.114 (< 0.001) 0.009 (0.001)
NMNIST Pixel-Flip CNN 0.056 (< 0.001) −0.024 (< 0.001)
CIFAR-10 Gaussian White Noise CNN-S 0.075 (< 0.001) −0.018 (< 0.001)
CIFAR-10 Gaussian White Noise CNN-L 0.017 (< 0.001) −0.003 (< 0.001)
CIFAR-10 Gaussian Blur CNN-S 0.075 (< 0.001) −0.002 (< 0.001)

† For SepDots we expect β5 to be positive due to decreasing hardness with increasing distribution µ, i.e., increased standard deviation in weights with
increased training distribution µ. For all other datasets, we expect β5 < 0.

Table 4. OLS estimates for the effect of training noise on the model’s synaptic weight standard deviation. In all cases but MNIST-CNN,
the standard deviation of synaptic weights decreases with increased training hardness. Giving us a reasonable indication that increased
latency during inference due to increased training noise might be stemming from decreased weight variance.

Dataset Hardness Model Type Intercept Training Noise
β6 (±SE) β7 (±SE)

SepDots Distribution Overlap CNN 0.028 (< 0.001) 0.065 (0.004)
MNIST Gaussian White Noise MLP −0.003 (< 0.001) 0.014 (< 0.001)
MNIST Gaussian White Noise CNN 0.012 (< 0.001) 0.009 (0.001)
NMNIST Pixel-Flip CNN −0.003 (< 0.001) −0.005 (0.001)
CIFAR-10 Gaussian White Noise CNN-S 0.001 (< 0.001) 0.003 (< 0.001)
CIFAR-10 Gaussian White Noise CNN-L −0.002 (< 0.001) < 0.001 (< 0.001)
CIFAR-10 Gaussian Blur CNN-S 0.001 (< 0.001) < 0.001 (< 0.001)

Table 5. OLS estimates for the effect of training noise on model’s learned synaptic weights. Overall, the coefficient β7 values are near
zero, except for SepDots. The effect of training hardness seems to be minimal on mean weight.

itive, indicating that noisier training regimes systematically
increase TTFS and thus slow inference. Hence, on standard
vision benchmarks, harder training does not accelerate first
spikes but rather delays them, reflecting a trade-off between
robustness and latency. Furthermore, in SepDots, where in-
creasing µ makes samples easier, β1 = −15.5 (SE = 0.01)
also confirms that training on “easier” distributions quick-
ens inference, consistent with our first-hitting-time model
of spiking neuron predictions.

An interesting exception also appears for the MNIST
MLP, which exhibits a slightly negative β1 = −0.30 (SE
< 0.01), suggesting that moderate Gaussian-noise training
speeds up TTFS. We hypothesize this arises from an unex-
pected increase in the mean of synaptic weights under noise
(see β7 for MNIST-MLP in Table 5): whereas statistical
learning theory predicts that adding input noise should reg-
ularize the network, reducing both the mean and variance of
learned weights, the MLP instead showed an upward trend
in weight means. Within our stochastic integrate-and-fire
framework, an increased mean input current corresponds to
a higher effective drift rate, thereby reducing first-hitting
times and yielding faster spikes.

As shown in Table Table 4, the coefficient β5 indicates

that increased training hardness reduces parameter variance
in all cases except the MNIST-CNN. This aligns with the
concept of noise as a regularizer and provides reasonable
evidence as to why inference slows down with increased
training hardness. In contrast, Table Table 5 shows that β7

remains mostly near zero, demonstrating that noise has min-
imal effect on the mean synaptic weight.

Finally, Figure 5 demonstrates that cumulative decision
margin M̃ at the spike time exhibits the inverted-U relation-
ship with latency, very closely mimicking what drift dif-
fusion models predict [18, 35, 36, 38]: TTFS peaks near
zero margin and decreases as |M̃ | grows. This suggests
that in SepDots, margin could be an effective proxy for in-
stantaneous drift rate, and that TTFS SNNs embody classic
evidence-accumulation dynamics when sample difficulty is
measured geometrically.

5. Conclusion

In this work, we have shown that the classical drift-diffusion
model, long used to describe decision times in biological
neurons and detailed spiking-network simulators, also pro-
vides a principled framework for understanding latency-

11

encoded TTFS SNNs in machine-learning settings [44, 46,
47]. Specifically, we hypothesized that (i) harder samples,
whether defined by geometric margin or synthetic Gaus-
sian perturbations, would slow down inference by reduc-
ing the effective drift rate, and (ii) misclassified trials would
exhibit longer first-spike times, mirroring DDM predic-
tions about error-driven RT elongation. Our empirical re-
sults confirm both implications: test-noise coefficients (β2)
are overwhelmingly positive (indicating longer TTFS for
harder inputs) and mean TTFS for incorrect trials is substan-
tially higher than for correct ones across all datasets. Fur-
thermore, the relationship between cumulative margin M̃
and latency (Figure 5) exhibits the characteristic inverted-U
shape of DDM first-passage times, peaking near zero evi-
dence and decaying as |M̃ | grows, thus validating geomet-
ric margin as a drift-rate proxy in TTFS SNNs.

We built a model based on the classical first-hitting-
time theory for static thresholds, most notably the inverse-
Gaussian model, to discrete-time leaky integrate-and-fire
neurons under sample-dependent inputs. Statistical learn-
ing theory predicts that adding Gaussian noise during train-
ing is mathematically equivalent to a ridge penalty, thus
reducing the variance of the learned synaptic weights [2].
Our Monte Carlo simulations then show that a reduction in
weight variance alone systematically increases first-hitting
times, and hence TTFS, across discrete timesteps. More-
over, the empirical training-noise coefficients β1 from our
OLS analyses provide strong evidence for this mechanism,
as increased training-time hardness led to longer inference
latencies in nearly all dataset–model combinations, yield-
ing a clear accuracy-latency trade-off: test-time corruption
degraded accuracy sharply unless matched by comparable
training-time noise, but this matching incured slower infer-
ence. These findings bridge a gap between mathematical
neuroscience and ML-oriented TTFS SNNs, demonstrat-
ing that (i) first-hitting-time analyses are directly applica-
ble to predict SNN latency under discrete timesteps [39],
and (ii) controlling synaptic-weight variance via noise-
equivalent regularization provides a tunable mechanism for
trading off robustness against speed in neuromorphic clas-
sifiers.

References
[1] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A

survey on metric learning for feature vectors and structured
data. 2013. 2

[2] Christopher M Bishop. Neural networks for pattern recogni-
tion. 1995. 2, 12

[3] Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and
Jonathan D. Cohen. The physics of optimal decision mak-
ing: a formal analysis of models of performance in two-
alternative forced-choice tasks. Psychological review, 113:
700–765, 2006. 2, 3, 10

[4] Nicolas Brunel. Dynamics of sparsely connected networks
of excitatory and inhibitory spiking neurons. Journal of com-
putational neuroscience, 8:183–208, 2000. 3

[5] A. N. Burkitt. A review of the integrate-and-fire neuron
model: I. homogeneous synaptic input. Biological Cyber-
netics, 95:1–19, 2006. 3

[6] Alexander Camuto, Xiaoyu Wang, Lingjiong Zhu, Chris
Holmes, Mert Gürbüzbalaban, and Umut Şimşekli. Asym-
metric heavy tails and implicit bias in gaussian noise injec-
tions, 2021. 2

[7] Joseph T. Chang and Yuval Peres. Ladder heights, gaussian
random walks and the riemann zeta function. Annals of Prob-
ability, 25:787–802, 1997. 3

[8] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995. 1

[9] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995. 2

[10] Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin
Wang, Gregor Lenz, Girish Dwivedi, Mohammed Ben-
namoun, Doo Seok Jeong, and Wei D. Lu. Training spiking
neural networks using lessons from deep learning. Proceed-
ings of the IEEE, 111(9):1016–1054, 2023. 1, 4

[11] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothee Masquelier,
Tiejun Huang, and Yonghong Tian. Incorporating learnable
membrane time constant to enhance learning of spiking neu-
ral networks. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2641–2651, 2021. 4

[12] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan.
Testing the manifold hypothesis. Journal of the American
Mathematical Society, 29(4):983–1049, 2013. 2

[13] Charles Fefferman, Sergei Ivanov, Matti Lassas, and Hari-
haran Narayanan. Fitting a manifold of large reach to noisy
data. Journal of Topology and Analysis, 2019. 2

[14] William Feller. An Introduction to Probability Theory and
Its Applications. John Wiley & Sons, 1968. 3

[15] J. L. Folks and R. S. Chhikara. The inverse gaussian distribu-
tion and its statistical application—a review. Journal of the
Royal Statistical Society Series B: Statistical Methodology,
40:263–275, 1978. 5

[16] Crispin W. Gardiner. Handbook of Stochastic Methods for
Physics, Chemistry and the Natural Sciences. Springer,
1985. 3

[17] George L. Gerstein and Benoit Mandelbrot. Random walk
models for the spike activity of a single neuron. Biophysical
journal, 4:41–68, 1964. 3

[18] Joshua I. Gold and Michael N. Shadlen. The neural basis
of decision making. Annual Review of Neuroscience, 30(1):
535–574, 2007. 2, 11

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 2

[20] Matthias Hein and Markus Maier. Manifold denoising. NIPS
2006: Proceedings of the 19th International Conference
on Neural Information Processing Systems, pages 561–568,
2007. 2

[21] Dan Hendrycks and Thomas G. Dietterich. Benchmarking
neural network robustness to common corruptions and sur-
face variations, 2018. 2

[22] Irina Higgins, Le Chang, Victoria Langston, Demis Hass-
abis, Christopher Summerfield, Doris Tsao, and Matthew

12

Botvinick. Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons.
Nature Communications 2021 12:1, 12:1–14, 2021. 2

[23] Sophie Jaffard, Giulia Mezzadri, Patricia Reynaud-Bouret,
and Etienne Tanré. Spiking neural models for decision-
making tasks with learning. 2025. 3

[24] Ioannis Karatzas and Steven E. Shreve. Brownian Motion
and Stochastic Calculus. Springer, 1991. 5

[25] Bruce W. Knight. Dynamics of encoding in a population of
neurons. The Journal of general physiology, 59:734–766,
1972. 3

[26] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations
of Machine Learning. MIT Press, 2nd edition, 2018. 2

[27] M. J. Mulder, L. van Maanen, and B. U. Forstmann. Percep-
tual decision neurosciences - a model-based review, 2014. 2,
3

[28] Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolf-
gang Maass. Bayesian computation emerges in generic corti-
cal microcircuits through spike-timing-dependent plasticity.
PLOS Computational Biology, 9:e1003037, 2013. 3

[29] Redmond G. O’Connell, Paul M. Dockree, and Simon P.
Kelly. A supramodal accumulation-to-bound signal that de-
termines perceptual decisions in humans. Nature Neuro-
science, 15, 2012. 2

[30] John Palmer, Alexander C. Huk, and Michael N. Shadlen.
The effect of stimulus strength on the speed and accuracy of
a perceptual decision. Journal of Vision, 5, 2005. 3

[31] Da Costa Gabriel B. Paranhos, Welinton A. Contato,
Tiago S. Nazare, João E. S. Batista Neto, and Moacir Ponti.
An empirical study on the effects of different types of noise
in image classification tasks, 2016. 2

[32] Marios G. Philiastides, Hauke R. Heekeren, and Paul Sajda.
Human scalp potentials reflect a mixture of decision- related
signals during perceptual choices. Journal of Neuroscience,
34, 2014. 2

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. Proceedings of
Machine Learning Research, 139:8748–8763, 2021. 2

[34] Roger Ratcliff. A theory of memory retrieval. Psychological
Review, 85:59–108, 1978. 2, 3

[35] Roger Ratcliff and Gail McKoon. The diffusion decision
model: theory and data for two-choice decision tasks. Neural
computation, 20:873–922, 2008. 2, 3, 10, 11

[36] Roger Ratcliff and Philip L. Smith. A comparison of sequen-
tial sampling models for two-choice reaction time. Psycho-
logical Review, 111:333–367, 2004. 11

[37] Roger Ratcliff and Francis Tuerlinckx. Estimating param-
eters of the diffusion model: Approaches to dealing with
contaminant reaction times and parameter variability. Psy-
chonomic Bulletin and Review, 9, 2002. 3

[38] Roger Ratcliff, Philip L. Smith, and Gail McKoon. Modeling
regularities in response time and accuracy data with the dif-
fusion model. Current directions in psychological science,
24:458, 2015. 3, 11

[39] Arnold J.F. Siegert. On the first passage time probability
problem. Physical Review, 81:617, 1951. 3, 12

[40] David Siegmund. Sequential Analysis. Springer New York,
1985. 3

[41] Michael Reed Smith, Tony Martinez, and Cristophe Giraud-
Carrier. An empirical study of instance hardness, 2010. 1

[42] Jonathan Touboul and Olivier Faugeras. A characterization
of the first hitting time of double integral processes to curved
boundaries. Advances in Applied Probability, 40:501–528,
2008. 3

[43] K. Tumer and J. Ghosh. Estimating the bayes error rate
through classifier combining. In Proceedings of 13th Inter-
national Conference on Pattern Recognition, pages 695–699
vol.2, 1996. 2

[44] Akash Umakantha, Braden A. Purcell, and Thomas J.
Palmeri. Relating a spiking neural network model and the
diffusion model of decision-making. Computational brain
& behavior, 5:279, 2022. 3, 12

[45] Kush R Varshney, Alan S Wilskv, and Edwin Sibley Webster.
Frugal hypothesis testing and classification. 2010. 2

[46] Xiao Jing Wang. Probabilistic decision making by slow re-
verberation in cortical circuits. Neuron, 36:955–968, 2002.
3, 12

[47] Kong Fatt Wong and Xiao Jing Wang. A recurrent network
mechanism of time integration in perceptual decisions. The
Journal of neuroscience : the official journal of the Society
for Neuroscience, 26:1314–1328, 2006. 3, 12

13

A. Performance of Trainings

Figure 11. Accuracy matrix for MNIST-MLP

Figure 12. Accuracy matrix for MNIST-CNN

Figure 11 up to Figure 15 present heatmaps of test accu-
racy (%) as a function of training-time noise (x-axis) and
test-time noise (y-axis) for each dataset–model combina-
tion. Several patterns are apparent:
• MNIST-MLP (Fig. 11). High accuracy (> 90%) is main-

tained across low to moderate noise levels; performance
only degrades when both training and test noise exceed
approximately σ = 0.3. Models trained with nonzero
noise exhibit greater robustness to test-time corruption
than those trained on clean images.

• MNIST-CNN (Fig. 12). The convolutional network
achieves peak accuracies near 93% under clean condi-
tions and shows a more gradual decline under increasing
test noise compared to the MLP, sustaining ≥ 90% accu-
racy up to σ ≈ 0.3 even when trained without noise.

Figure 13. Accuracy matrix for NMNIST-CNN

Figure 14. Accuracy matrix for CIFAR-CNN

• NMNIST-CNN (Fig. 13). Baseline accuracy on event-
based inputs is around 95%. Test-time pixel-flip rates
above 0.02 causes very steep drops in accuracy in the
clean training case, whereas injecting 5–10% flips dur-
ing training shifts the robust region upward, preserving
80–90% accuracy under moderate corruption.

• CIFAR-CNN with Gaussian Noise (Fig. 14). Clean ac-
curacy peaks near 60%. Small amounts of training noise
(σ ≤ 0.05) modestly improve clean and noisy inference,
but heavy noise degrades performance across the board.

• CIFAR-CNN with Gaussian Blur (Fig. 15). Test-time
blur with σ ≥ 1.0 reduces accuracy by 10–15%. Light
blur augmentation during training (σ = 0.25–0.5) par-
tially mitigates this drop, whereas strong blur training
harms both clean and blurred inference.

14

Figure 15. Accuracy matrix for CIFAR-CNN with blur

B. Noise and Synaptic Weights
The line plots in Figure Figure 16 summarize the overall
shift in the first-layer weight distribution as a function of
training noise standard deviation. The left plot shows the
mean deviation from the noiseless baseline, and the right
plot shows the variance. As σ increases further, both met-
rics decrease monotonically, reflecting a global smoothing
or regularization effect as the network learns to ignore high-
frequency fluctuations and focus on robust features.

However, these aggregate statistics obscure important
spatial patterns. The heatmaps in Figure 17 reveal that at
low noise levels (σ = 0.0125–0.05), the model develops
large negative weights on the border pixels (bright red re-
gions), effectively “subtracting” noisy edges instead of just
ignoring them with zero-mean edges. This pixel-wise over-
fitting is invisible in the line plots, which simply report
an average increase in variance. As noise grows beyond
σ ≈ 0.1, the border artifacts fade and the receptive field
becomes smoother and more centrally focused on the digit
shape—precisely the smoothing trend hinted at by the de-
clining variance in Figure 13. Thus, while the line plots
capture the magnitude of regularization, the heatmaps ex-
pose the location and nature of the weight adjustments in-
duced by noise training.

15

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Training Noise Std. Dev.

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

St
an

da
rd

 D
ev

ia
tio

n

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Training Noise Std. Dev.

0.00200

0.00205

0.00210

0.00215

0.00220

0.00225

0.00230

Va
ria

nc
e

Effect of Noise Training on Weights (Layer 1)

Figure 16. Statistics of first-layer weights in MNIST-MLP as a function of training noise standard deviation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.0125

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.025

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.05

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.075

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.15

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.25

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.4

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Mean Weight per Pixel

Figure 17. Pixel-wise mean edge weights in MNIST-MLP for various training noise levels.

16

References

[1] Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of
gradients. Aug. 2020. url: https://arxiv.org/abs/2008.11600.

[2] Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical bias–variance
trade-off”. In: Proceedings of the National Academy of Sciences 116.32 (2019), pp. 15849–15854. doi: 10.
1073/pnas.1903070116. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1903070116.
url: https://www.pnas.org/doi/abs/10.1073/pnas.1903070116.

[3] Aurélien Bellet, Amaury Habrard, and Marc Sebban. “A Survey on Metric Learning for Feature Vectors
and Structured Data”. In: (June 2013). url: https://arxiv.org/abs/1306.6709v4.

[4] Benyamin Ghojogh BGHOJOGH et al. “Spectral, Probabilistic, and Deep Metric Learning: Tutorial and
Survey”. In: (Jan. 2022). url: https://arxiv.org/abs/2201.09267v1.

[5] Christopher M Bishop. Neural networks for pattern recognition. Nov. 1995. doi: 10.1093/oso/9780198
538493.001.0001. url: https://doi.org/10.1093/oso/9780198538493.001.0001.

[6] Christopher M. Bishop. “Pattern Recognition and Machine Learning”. In: Springer (2006). doi: 10.1007/
978-0-387-45528-0.

[7] Fischer Black and Myron Scholes. “The pricing of options and corporate liabilities”. In: Journal of Political
Economy 81.3 (May 1973), pp. 637–654. doi: 10.1086/260062. url: https://doi.org/10.1086/
260062.

[8] Rafal Bogacz et al. “The physics of optimal decision making: a formal analysis of models of performance
in two-alternative forced-choice tasks”. In: Psychological review 113 (4 Oct. 2006), pp. 700–765. issn:
0033-295X. doi: 10.1037/0033-295X.113.4.700. url: https://pubmed.ncbi.nlm.nih.gov/
17014301/.

[9] A. N. Burkitt. “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input”. In:
Biological Cybernetics 95 (1 July 2006), pp. 1–19. issn: 03401200. doi: 10.1007/S00422-006-0068-
6/METRICS. url: https://link.springer.com/article/10.1007/s00422-006-0068-6.

[10] Alexander Camuto et al. Asymmetric heavy tails and implicit bias in gaussian noise injections. Feb. 2021.
url: https://arxiv.org/abs/2102.07006.

[11] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine Learning 20.3 (Sept. 1995),
pp. 273–297. doi: 10.1007/bf00994018. url: https://doi.org/10.1007/bf00994018.

[12] Susanne Ditlevsen and Petr Lansky. “Parameters of stochastic diffusion processes estimated from
observations of first-hitting times: Application to the leaky integrate-and-fire neuronal model”. In: Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics 76 (4 Oct. 2007), p. 041906. issn: 15393755.
doi: 10.1103/PHYSREVE.76.041906. url: https://journals.aps.org/pre/abstract/10.1103/
PhysRevE.76.041906.

[13] Peter Duggins and Chris Eliasmith. “A spiking neural model of decision making and the speed–accuracy
trade-off.” In: Psychological Review (Dec. 12, 2024). doi: 10.1037/rev0000520. url: https://doi.
org/10.1037/rev0000520.

[14] Gamaleldin F. Elsayed et al. “Large Margin Deep Networks for Classification”. In: Advances in Neural
Information Processing Systems 2018-December (Mar. 2018), pp. 842–852. issn: 10495258. url:
https://arxiv.org/abs/1803.05598v2.

[15] Jason K. Eshraghian et al. “Training Spiking Neural Networks Using Lessons From Deep Learning”. In:
Proceedings of the IEEE 111.9 (Sept. 2023), pp. 1016–1054. issn: 1558-2256. doi: 10.1109/JPROC.
2023.3308088.

[16] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. “Testing the manifold hypothesis”. In:
Journal of the American Mathematical Society 29.4 (Oct. 2013), pp. 983–1049. doi: 10.1090/jams/852.
url: https://doi.org/10.1090/jams/852.

49

https://arxiv.org/abs/2008.11600
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116
https://www.pnas.org/doi/pdf/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://arxiv.org/abs/1306.6709v4
https://arxiv.org/abs/2201.09267v1
https://doi.org/10.1093/oso/9780198538493.001.0001
https://doi.org/10.1093/oso/9780198538493.001.0001
https://doi.org/10.1093/oso/9780198538493.001.0001
https://doi.org/10.1007/978-0-387-45528-0
https://doi.org/10.1007/978-0-387-45528-0
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1037/0033-295X.113.4.700
https://pubmed.ncbi.nlm.nih.gov/17014301/
https://pubmed.ncbi.nlm.nih.gov/17014301/
https://doi.org/10.1007/S00422-006-0068-6/METRICS
https://doi.org/10.1007/S00422-006-0068-6/METRICS
https://link.springer.com/article/10.1007/s00422-006-0068-6
https://arxiv.org/abs/2102.07006
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00994018
https://doi.org/10.1103/PHYSREVE.76.041906
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.041906
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.041906
https://doi.org/10.1037/rev0000520
https://doi.org/10.1037/rev0000520
https://doi.org/10.1037/rev0000520
https://arxiv.org/abs/1803.05598v2
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1090/jams/852
https://doi.org/10.1090/jams/852

References 50

[17] William Feller. An Introduction to Probability Theory and Its Applications. Vol. 1. John Wiley & Sons,
1968.

[18] J. L. Folks and R. S. Chhikara. “The Inverse Gaussian Distribution and its Statistical Application—A
Review”. In: Journal of the Royal Statistical Society Series B: Statistical Methodology 40 (3 July 1978),
pp. 263–275. issn: 1369-7412. doi: 10.1111/J.2517-6161.1978.TB01039.X. url: https://dx.
doi.org/10.1111/j.2517-6161.1978.tb01039.x.

[19] Steve Furber. “Large-scale neuromorphic computing systems”. In: Journal of neural engineering 13 (5
Aug. 2016). issn: 1741-2552. doi: 10.1088/1741-2560/13/5/051001. url: https://pubmed.ncbi.
nlm.nih.gov/27529195/.

[20] Crispin W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences.
Springer, 1985.

[21] Stuart Geman, Elie Bienenstock, and René Doursat. “Neural Networks and the Bias/Variance Dilemma”.
In: Neural Computation 4.1 (Jan. 1992), pp. 1–58. issn: 0899-7667. doi: 10.1162/neco.1992.4.1.1.
eprint: https://direct.mit.edu/neco/article-pdf/4/1/1/812244/neco.1992.4.1.1.pdf.
url: https://doi.org/10.1162/neco.1992.4.1.1.

[22] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing deep networks:
weight decay and data augmentation affect early learning dynamics, matter little near convergence. May
2019. url: https://arxiv.org/abs/1905.13277.

[23] Joshua I. Gold and Michael N. Shadlen. “The neural basis of decision making”. In: Annual Review of
Neuroscience 30.1 (Mar. 2007), pp. 535–574. doi: 10.1146/annurev.neuro.29.051605.113038.
url: https://doi.org/10.1146/annurev.neuro.29.051605.113038.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[26] A. N. Gorban and I. Y. Tyukin. “Blessing of dimensionality: mathematical foundations of the statistical
physics of data”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 376 (2118 Apr. 2018). issn: 1364503X. doi: 10.1098/RSTA.2017.0237. url:
https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0237.

[27] Felix Grün et al. A taxonomy and library for visualizing learned features in convolutional neural networks.
June 2016. url: https://arxiv.org/abs/1606.07757.

[28] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning. Jan. 2009.
doi: 10.1007/978-0-387-84858-7. url: https://doi.org/10.1007/978-0-387-84858-7.

[29] Daniel Hausmann and Damian Läge. “Sequential evidence accumulation in decision making: The
individual desired level of confidence can explain the extent of information acquisition”. In: Judgment
and Decision Making 3 (3 Mar. 2008), pp. 229–243. issn: 1930-2975. doi: 10.1017/S19302975000
02436. url: https://www.cambridge.org/core/journals/judgment-and-decision-making/
article / sequential - evidence - accumulation - in - decision - making - the - individual -
desired-level-of-confidence-can-explain-the-extent-of-information-acquisition/
032EC02561554A883F5B06D31B5A687F.

[30] Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common corrup-
tions and surface variations. July 2018. url: https://arxiv.org/abs/1807.01697.

[31] Sepp Hochreiter and Jürgen Schmidhuber. “Flat Minima”. In: Neural Computation 9.1 (Jan. 1997),
pp. 1–42. issn: 0899-7667. doi: 10.1162/neco.1997.9.1.1. eprint: https://direct.mit.edu/
neco/article-pdf/9/1/1/813385/neco.1997.9.1.1.pdf. url: https://doi.org/10.1162/
neco.1997.9.1.1.

[32] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current and its application
to conduction and excitation in nerve”. In: The Journal of Physiology 117 (4 Aug. 1952), p. 500. issn:
14697793. doi: 10.1113/JPHYSIOL.1952.SP004764. url: https://pmc.ncbi.nlm.nih.gov/
articles/PMC1392413/.

https://doi.org/10.1111/J.2517-6161.1978.TB01039.X
https://dx.doi.org/10.1111/j.2517-6161.1978.tb01039.x
https://dx.doi.org/10.1111/j.2517-6161.1978.tb01039.x
https://doi.org/10.1088/1741-2560/13/5/051001
https://pubmed.ncbi.nlm.nih.gov/27529195/
https://pubmed.ncbi.nlm.nih.gov/27529195/
https://doi.org/10.1162/neco.1992.4.1.1
https://direct.mit.edu/neco/article-pdf/4/1/1/812244/neco.1992.4.1.1.pdf
https://doi.org/10.1162/neco.1992.4.1.1
https://arxiv.org/abs/1905.13277
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1098/RSTA.2017.0237
https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0237
https://arxiv.org/abs/1606.07757
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1017/S1930297500002436
https://doi.org/10.1017/S1930297500002436
https://www.cambridge.org/core/journals/judgment-and-decision-making/article/sequential-evidence-accumulation-in-decision-making-the-individual-desired-level-of-confidence-can-explain-the-extent-of-information-acquisition/032EC02561554A883F5B06D31B5A687F
https://www.cambridge.org/core/journals/judgment-and-decision-making/article/sequential-evidence-accumulation-in-decision-making-the-individual-desired-level-of-confidence-can-explain-the-extent-of-information-acquisition/032EC02561554A883F5B06D31B5A687F
https://www.cambridge.org/core/journals/judgment-and-decision-making/article/sequential-evidence-accumulation-in-decision-making-the-individual-desired-level-of-confidence-can-explain-the-extent-of-information-acquisition/032EC02561554A883F5B06D31B5A687F
https://www.cambridge.org/core/journals/judgment-and-decision-making/article/sequential-evidence-accumulation-in-decision-making-the-individual-desired-level-of-confidence-can-explain-the-extent-of-information-acquisition/032EC02561554A883F5B06D31B5A687F
https://arxiv.org/abs/1807.01697
https://doi.org/10.1162/neco.1997.9.1.1
https://direct.mit.edu/neco/article-pdf/9/1/1/813385/neco.1997.9.1.1.pdf
https://direct.mit.edu/neco/article-pdf/9/1/1/813385/neco.1997.9.1.1.pdf
https://doi.org/10.1162/neco.1997.9.1.1
https://doi.org/10.1162/neco.1997.9.1.1
https://doi.org/10.1113/JPHYSIOL.1952.SP004764
https://pmc.ncbi.nlm.nih.gov/articles/PMC1392413/
https://pmc.ncbi.nlm.nih.gov/articles/PMC1392413/

References 51

[33] Arthur E. Hoerl and Robert W. Kennard. “Ridge regression: Biased estimation for nonorthogonal prob-
lems”. In: Technometrics 12.1 (Feb. 1970), pp. 55–67. doi: 10.1080/00401706.1970.10488634. url:
https://doi.org/10.1080/00401706.1970.10488634.

[34] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal
approximators”. In: Neural Networks 2.5 (1989), pp. 359–366. issn: 0893-6080. doi: https://doi.org/
10.1016/0893-6080(89)90020-8. url: https://www.sciencedirect.com/science/article/
pii/0893608089900208.

[35] Giacomo Indiveri and Shih-Chii Liu. “Memory and information processing in neuromorphic systems”. In:
Proceedings of the IEEE 103 (8 June 2015), pp. 1379–1397. doi: 10.1109/JPROC.2015.2444094. url:
http://arxiv.org/abs/1506.03264%20http://dx.doi.org/10.1109/JPROC.2015.2444094.

[36] Sophie Jaffard et al. “Spiking Neural Models for Decision-Making Tasks with Learning”. In: (June 2025).
url: https://arxiv.org/abs/2506.09087v1.

[37] Gaojie Jin et al. How does Weight Correlation Affect the Generalisation Ability of Deep Neural Networks.
Oct. 2020. url: https://arxiv.org/abs/2010.05983.

[38] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1991.
[39] Nitish Shirish Keskar et al. On Large-Batch training for deep learning: generalization gap and sharp

minima. Sept. 2016. url: https://arxiv.org/abs/1609.04836.
[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Dec. 2014. url: https:

//arxiv.org/abs/1412.6980.
[41] Anders Krogh and John A. Hertz. “A simple weight decay can improve generalization”. In: Proceedings of

the 5th International Conference on Neural Information Processing Systems. NIPS’91. Denver, Colorado:
Morgan Kaufmann Publishers Inc., 1991, pp. 950–957. isbn: 1558602224.

[42] Devin Kwok et al. “Dataset Difficulty and the Role of Inductive Bias”. In: (Jan. 2024). url: http :
//arxiv.org/abs/2401.01867.

[43] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553 (May 2015),
pp. 436–444. doi: 10.1038/nature14539. url: https://pubmed.ncbi.nlm.nih.gov/26017442/.

[44] Peter Lennie. “The cost of cortical computation”. In: Current Biology 13.6 (Mar. 1, 2003), pp. 493–497. doi:
10.1016/s0960-9822(03)00135-0. url: https://doi.org/10.1016/s0960-9822(03)00135-0.

[45] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmen-
tation. Nov. 2014. url: https://arxiv.org/abs/1411.4038.

[46] Wenjie Luo et al. Understanding the effective receptive field in deep convolutional neural networks. Jan.
2017. url: https://arxiv.org/abs/1701.04128.

[47] Wolfgang Maass. “Networks of spiking neurons: The third generation of neural network models”. In: Neural
Networks 10 (9 Dec. 1997), pp. 1659–1671. issn: 0893-6080. doi: 10.1016/S0893-6080(97)00011-7.

[48] Paul A. Merolla et al. “A million spiking-neuron integrated circuit with a scalable communication network
and interface”. In: Science 345 (6197 Aug. 2014), pp. 668–673. issn: 10959203. doi: 10.1126/SCIENCE.
1254642/SUPPL_FILE/MEROLLA.SM.REV1.PDF. url: https://www.science.org/doi/10.1126/
science.1254642.

[49] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. 2nd. MIT Press, 2018.
[50] Hesham Mostafa. “Supervised Learning Based on Temporal Coding in Spiking Neural Networks”.

In: IEEE Transactions on Neural Networks and Learning Systems 29.7 (2018), pp. 3227–3235. doi:
10.1109/TNNLS.2017.2726060.

[51] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Jan. 1995. url: https://dl.acm.
org/citation.cfm?id=234327.

[52] Catherine E. Myers, Alejandro Interian, and Ahmed A. Moustafa. “A practical introduction to using the
drift diffusion model of decision-making in cognitive psychology, neuroscience, and health sciences”.
In: Frontiers in Psychology 13 (Dec. 2022), p. 1039172. issn: 16641078. doi: 10.3389/FPSYG.2022.
1039172/BIBTEX.

https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1109/JPROC.2015.2444094
http://arxiv.org/abs/1506.03264%20http://dx.doi.org/10.1109/JPROC.2015.2444094
https://arxiv.org/abs/2506.09087v1
https://arxiv.org/abs/2010.05983
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2401.01867
http://arxiv.org/abs/2401.01867
https://doi.org/10.1038/nature14539
https://pubmed.ncbi.nlm.nih.gov/26017442/
https://doi.org/10.1016/s0960-9822(03)00135-0
https://doi.org/10.1016/s0960-9822(03)00135-0
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1701.04128
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/SCIENCE.1254642/SUPPL_FILE/MEROLLA.SM.REV1.PDF
https://doi.org/10.1126/SCIENCE.1254642/SUPPL_FILE/MEROLLA.SM.REV1.PDF
https://www.science.org/doi/10.1126/science.1254642
https://www.science.org/doi/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://dl.acm.org/citation.cfm?id=234327
https://dl.acm.org/citation.cfm?id=234327
https://doi.org/10.3389/FPSYG.2022.1039172/BIBTEX
https://doi.org/10.3389/FPSYG.2022.1039172/BIBTEX

References 52

[53] Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. “Topology of deep neural networks”. In: Journal
of Machine Learning Research 21.184 (Apr. 2020), pp. 1–40. url: https://jmlr.org/papers/
volume21/20-345/20-345.pdf.

[54] Brady Neal et al. “A modern take on the Bias-Variance tradeoff in neural networks”. In: arXiv (Cornell
University) (Jan. 2018). doi: 10.48550/arxiv.1810.08591. url: https://arxiv.org/abs/1810.
08591.

[55] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gradient Learning in Spiking
Neural Networks”. In: (Jan. 2019). url: https://arxiv.org/abs/1901.09948v2.

[56] Da Costa Gabriel B. Paranhos et al. An empirical study on the effects of different types of noise in image
classification tasks. Sept. 2016. url: https://arxiv.org/abs/1609.02781.

[57] Seongsik Park, Dongjin Lee, and Sungroh Yoon. Noise-Robust Deep Spiking Neural Networks with
Temporal Information. Apr. 2021. url: https://arxiv.org/abs/2104.11169.

[58] Pawel Pukowski and Haiping Lu. Investigating the impact of hard samples on accuracy reveals in-class
data imbalance. Sept. 2024. url: https://arxiv.org/abs/2409.14401.

[59] Roger Ratcliff. “A theory of memory retrieval”. In: Psychological Review 85 (2 Mar. 1978), pp. 59–108.
issn: 0033295X. doi: 10.1037/0033-295X.85.2.59.

[60] Roger Ratcliff and Gail McKoon. “The diffusion decision model: theory and data for two-choice decision
tasks”. In: Neural computation 20 (4 Apr. 2008), pp. 873–922. issn: 0899-7667. doi: 10.1162/NECO.
2008.12-06-420. url: https://pubmed.ncbi.nlm.nih.gov/18085991/.

[61] Roger Ratcliff and Philip L. Smith. “A Comparison of Sequential Sampling Models for Two-Choice Reaction
Time”. In: Psychological Review 111 (2 Apr. 2004), pp. 333–367. issn: 0033295X. doi: 10.1037/0033-
295X.111.2.333.

[62] Roger Ratcliff, Philip L. Smith, and Gail McKoon. “Modeling Regularities in Response Time and Accuracy
Data with the Diffusion Model”. In: Current directions in psychological science 24 (6 Dec. 2015), p. 458.
issn: 14678721. doi: 10.1177/0963721415596228. url: https://pmc.ncbi.nlm.nih.gov/
articles/PMC4692464/.

[63] Roger Ratcliff et al. “Diffusion Decision Model: Current Issues and History”. In: Trends in cognitive
sciences 20 (4 Apr. 2016), p. 260. issn: 1879307X. doi: 10.1016/J.TICS.2016.01.007. url:
https://pmc.ncbi.nlm.nih.gov/articles/PMC4928591/.

[64] Sidney Redner. “A Guide to First-Passage Processes”. In: A Guide to First-Passage Processes (Aug.
2001). doi: 10.1017/CBO9780511606014. url: https://www.cambridge.org/core/books/guide-
to-firstpassage-processes/59066FD9754B42D22B028E33726D1F07.

[65] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the
brain.” In: Psychological Review 65.6 (Jan. 1958), pp. 386–408. doi: 10.1037/h0042519. url: https:
//doi.org/10.1037/h0042519.

[66] Sheldon M. Ross. Introduction to probability models. Academic Press, Dec. 2009.
[67] Ran Rubin and Haim Sompolinsky. Temporal support vectors for spiking neuronal networks. May 2022.

url: https://arxiv.org/abs/2205.14544.
[68] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. (1986) D. E. Rumelhart, G. E. Hinton, and

R. J. Williams, "Learning internal representations by error propagation," Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, Vol. I, D. E. Rumelhart and J. L. McClelland (Eds.)
Cambridge, MA: MIT Press, pp. 318-362. Apr. 1988, pp. 675–695. doi: 10.7551/mitpress/4943.003.
0128. url: https://doi.org/10.7551/mitpress/4943.003.0128.

[69] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From theory to Algorithms.
Jan. 2015. url: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
understanding-machine-learning-theory-algorithms.pdf.

[70] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for Large-Scale image
recognition. Sept. 2014. url: https://arxiv.org/abs/1409.1556.

[71] Michael Reed Smith, Tony Martinez, and Cristophe Giraud-Carrier. An empirical study of instance
hardness. 2010. url: https://axon.cs.byu.edu/papers/smith.empirical.pdf.

https://jmlr.org/papers/volume21/20-345/20-345.pdf
https://jmlr.org/papers/volume21/20-345/20-345.pdf
https://doi.org/10.48550/arxiv.1810.08591
https://arxiv.org/abs/1810.08591
https://arxiv.org/abs/1810.08591
https://arxiv.org/abs/1901.09948v2
https://arxiv.org/abs/1609.02781
https://arxiv.org/abs/2104.11169
https://arxiv.org/abs/2409.14401
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1162/NECO.2008.12-06-420
https://doi.org/10.1162/NECO.2008.12-06-420
https://pubmed.ncbi.nlm.nih.gov/18085991/
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1177/0963721415596228
https://pmc.ncbi.nlm.nih.gov/articles/PMC4692464/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4692464/
https://doi.org/10.1016/J.TICS.2016.01.007
https://pmc.ncbi.nlm.nih.gov/articles/PMC4928591/
https://doi.org/10.1017/CBO9780511606014
https://www.cambridge.org/core/books/guide-to-firstpassage-processes/59066FD9754B42D22B028E33726D1F07
https://www.cambridge.org/core/books/guide-to-firstpassage-processes/59066FD9754B42D22B028E33726D1F07
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://arxiv.org/abs/2205.14544
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://arxiv.org/abs/1409.1556
https://axon.cs.byu.edu/papers/smith.empirical.pdf

References 53

[72] Mustafa Sungkar, Toby Berger, and William B. Levy. “Capacity achieving input distribution to the
generalized inverse Gaussian neuron model”. In: 55th Annual Allerton Conference on Communication,
Control, and Computing, Allerton 2017 2018-January (July 2017), pp. 860–869. doi: 10.1109/ALLERTON.
2017.8262829.

[73] Christian Szegedy et al. Going Deeper with Convolutions. Sept. 2014. url: https://arxiv.org/abs/
1409.4842.

[74] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. “Spike-based strategies for rapid processing”. In:
Neural Networks 14 (6-7 July 2001), pp. 715–725. issn: 0893-6080. doi: 10.1016/S0893-6080(01)
00083-1.

[75] Simon Thorpe, Denis Fize, and Catherine Marlot. “Speed of processing in the human visual system”. In:
Nature 1996 381:6582 381 (6582 1996), pp. 520–522. issn: 1476-4687. doi: 10.1038/381520a0. url:
https://www.nature.com/articles/381520a0.

[76] Mariya Toneva et al. An Empirical Study of Example Forgetting during Deep Neural Network Learning.
Dec. 2018. url: https://arxiv.org/abs/1812.05159.

[77] Jonathan Touboul. “Stochastic Processes and Hitting Times in Mathematical Neurosciences”. In: (2006).
doi: 10.34894/VQ1DJA. url: https://inria.hal.science/inria-00311967%20https://inria.
hal.science/inria-00311967/document.

[78] Jonathan Touboul and Olivier Faugeras. “A characterization of the first hitting time of double integral
processes to curved boundaries”. In: Advances in Applied Probability 40 (2 June 2008), pp. 501–528.
issn: 0001-8678. doi: 10.1239/AAP/1214950214. url: https://www.cambridge.org/core/
journals/advances-in-applied-probability/article/characterization-of-the-first-
hitting-time-of-double-integral-processes-to-curved-boundaries/0B1A26BC686C8A5D
5869AEA269CB016B.

[79] K. Tumer and J. Ghosh. “Estimating the Bayes error rate through classifier combining”. In: Proceedings
of 13th International Conference on Pattern Recognition. Vol. 2. 1996, 695–699 vol.2. doi: 10.1109/
ICPR.1996.546912.

[80] Akash Umakantha, Braden A. Purcell, and Thomas J. Palmeri. “Relating a Spiking Neural Network
Model and the Diffusion Model of Decision-Making”. In: Computational brain & behavior 5 (3 Sept. 2022),
p. 279. issn: 2522087X. doi: 10.1007/S42113-022-00143-4. url: https://pmc.ncbi.nlm.nih.
gov/articles/PMC9673774/.

[81] Rufin VanRullen and Simon J. Thorpe. “The time course of visual processing: from early perception to
decision-making”. In: Journal of cognitive neuroscience 13 (4 2001), pp. 454–461. issn: 0898-929X. doi:
10.1162/08989290152001880. url: https://pubmed.ncbi.nlm.nih.gov/11388919/.

[82] Kush R Varshney, Alan S Wilskv, and Edwin Sibley Webster. “Frugal hypothesis testing and classification”.
In: (2010). url: https://dspace.mit.edu/handle/1721.1/60182.

[83] Xiao Jing Wang. “Probabilistic Decision Making by Slow Reverberation in Cortical Circuits”. In: Neuron
36 (5 Dec. 2002), pp. 955–968. issn: 0896-6273. doi: 10.1016/S0896-6273(02)01092-9.

[84] Hui Wei, Yijie Bu, and Dawei Dai. “A decision-making model based on a spiking neural circuit and synaptic
plasticity”. In: Cognitive Neurodynamics 11 (5 Oct. 2017), p. 415. issn: 18714099. doi: 10.1007/S11571-
017-9436-2. url: https://pmc.ncbi.nlm.nih.gov/articles/PMC5637713/.

[85] Paul J. Werbos. “Backpropagation Through Time: What It Does and How to Do It”. In: Proceedings of
the IEEE 78 (10 1990), pp. 1550–1560. issn: 15582256. doi: 10.1109/5.58337.

[86] Kong Fatt Wong and Xiao Jing Wang. “A recurrent network mechanism of time integration in perceptual
decisions”. In: The Journal of neuroscience : the official journal of the Society for Neuroscience 26
(4 Jan. 2006), pp. 1314–1328. issn: 1529-2401. doi: 10.1523/JNEUROSCI.3733-05.2006. url:
https://pubmed.ncbi.nlm.nih.gov/16436619/.

[87] Kashu Yamazaki et al. “Spiking Neural Networks and Their Applications: A Review”. In: Brain sciences
12 (7 July 2022). issn: 2076-3425. doi: 10.3390/BRAINSCI12070863. url: https://pubmed.ncbi.
nlm.nih.gov/35884670/.

[88] Tom Yan and Chicheng Zhang. “Margin-distancing for safe model explanation”. In: (2022).

https://doi.org/10.1109/ALLERTON.2017.8262829
https://doi.org/10.1109/ALLERTON.2017.8262829
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1038/381520a0
https://www.nature.com/articles/381520a0
https://arxiv.org/abs/1812.05159
https://doi.org/10.34894/VQ1DJA
https://inria.hal.science/inria-00311967%20https://inria.hal.science/inria-00311967/document
https://inria.hal.science/inria-00311967%20https://inria.hal.science/inria-00311967/document
https://doi.org/10.1239/AAP/1214950214
https://www.cambridge.org/core/journals/advances-in-applied-probability/article/characterization-of-the-first-hitting-time-of-double-integral-processes-to-curved-boundaries/0B1A26BC686C8A5D5869AEA269CB016B
https://www.cambridge.org/core/journals/advances-in-applied-probability/article/characterization-of-the-first-hitting-time-of-double-integral-processes-to-curved-boundaries/0B1A26BC686C8A5D5869AEA269CB016B
https://www.cambridge.org/core/journals/advances-in-applied-probability/article/characterization-of-the-first-hitting-time-of-double-integral-processes-to-curved-boundaries/0B1A26BC686C8A5D5869AEA269CB016B
https://www.cambridge.org/core/journals/advances-in-applied-probability/article/characterization-of-the-first-hitting-time-of-double-integral-processes-to-curved-boundaries/0B1A26BC686C8A5D5869AEA269CB016B
https://doi.org/10.1109/ICPR.1996.546912
https://doi.org/10.1109/ICPR.1996.546912
https://doi.org/10.1007/S42113-022-00143-4
https://pmc.ncbi.nlm.nih.gov/articles/PMC9673774/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9673774/
https://doi.org/10.1162/08989290152001880
https://pubmed.ncbi.nlm.nih.gov/11388919/
https://dspace.mit.edu/handle/1721.1/60182
https://doi.org/10.1016/S0896-6273(02)01092-9
https://doi.org/10.1007/S11571-017-9436-2
https://doi.org/10.1007/S11571-017-9436-2
https://pmc.ncbi.nlm.nih.gov/articles/PMC5637713/
https://doi.org/10.1109/5.58337
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://pubmed.ncbi.nlm.nih.gov/16436619/
https://doi.org/10.3390/BRAINSCI12070863
https://pubmed.ncbi.nlm.nih.gov/35884670/
https://pubmed.ncbi.nlm.nih.gov/35884670/

References 54

[89] Leijun Ye and Chunhe Li. “Quantifying the Landscape of Decision Making From Spiking Neural Networks”.
In: Frontiers in Computational Neuroscience 15 (Oct. 2021), p. 740601. issn: 16625188. doi: 10.3389/
FNCOM.2021.740601/BIBTEX. url: www.frontiersin.org.

[90] Jason Yosinski et al. Understanding neural networks through deep visualization. June 2015. url: https:
//arxiv.org/abs/1506.06579.

[91] Wei Yu et al. Visualizing and comparing convolutional neural networks. Dec. 2014. url: https://arxiv.
org/abs/1412.6631.

[92] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. Nov. 2013.
url: https://arxiv.org/abs/1311.2901.

[93] Mo Zhou et al. Toward understanding the importance of noise in training neural networks. May 2019.
url: https://proceedings.mlr.press/v97/zhou19d.html.

[94] Weiyao Zhu et al. “Exploring the Learning Difficulty of Data: Theory and Measure”. In: ACM Transactions
on Knowledge Discovery from Data 18 (4 Feb. 2024). issn: 1556472X. doi: 10.1145/3636512. url:
https://dl.acm.org/doi/10.1145/3636512.

[95] Hui Zou and Trevor Hastie. “Regularization and Variable Selection Via the Elastic Net”. In: Journal of
the Royal Statistical Society Series B: Statistical Methodology 67.2 (Mar. 2005), pp. 301–320. issn:
1369-7412. doi: 10.1111/j.1467-9868.2005.00503.x. eprint: https://academic.oup.com/
jrsssb/article-pdf/67/2/301/49795094/jrsssb_67_2_301.pdf. url: https://doi.org/
10.1111/j.1467-9868.2005.00503.x.

https://doi.org/10.3389/FNCOM.2021.740601/BIBTEX
https://doi.org/10.3389/FNCOM.2021.740601/BIBTEX
www.frontiersin.org
https://arxiv.org/abs/1506.06579
https://arxiv.org/abs/1506.06579
https://arxiv.org/abs/1412.6631
https://arxiv.org/abs/1412.6631
https://arxiv.org/abs/1311.2901
https://proceedings.mlr.press/v97/zhou19d.html
https://doi.org/10.1145/3636512
https://dl.acm.org/doi/10.1145/3636512
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://academic.oup.com/jrsssb/article-pdf/67/2/301/49795094/jrsssb_67_2_301.pdf
https://academic.oup.com/jrsssb/article-pdf/67/2/301/49795094/jrsssb_67_2_301.pdf
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

	Preface
	Nomenclature
	Introduction
	Artificial Neural Networks
	Perceptron and Deep Learning
	The Perceptron
	Universal Approximation and Depth
	Back-Propagation and Gradient Descent

	Multi-Layer Perceptrons
	Convolutional Neural Networks

	Spiking Neural Networks
	Leaky Integrate‐and‐Fire Neuron Model
	Spike Encoding
	Rate Encoding
	Latency Encoding
	Biological Plausibility

	Training Spiking Neural Networks
	Surrogate Gradients
	Backpropagation Through Time

	Loss Function

	Sample Difficulty in Machine Learning and Deep Learning
	Theoretical Perspectives on Sample Difficulty
	Metrics for Sample Difficulty
	Gaussian Noise as a Proxy Measure of Difficulty
	Relevance to Latency-Coded SNNs

	Statistical Learning Theory
	Bias-Variance Trade-off
	Parameter Estimation and Bias
	Parameter Estimation and Variance

	Parameter Regularization
	Gaussian Noise as a Regularizer

	Bias-Variance and Generalization in Neural Networks
	Deep and Convolutional Artificial Networks
	TTFS Spiking Neural Networks

	Synaptic Weights in TTFS-SNNs

	Stochastic Processes
	Random Walks
	Gaussian Random Walk
	Wiener Processes (Brownian Motion)

	First Hitting Time Problem
	Modeling Neuron Spiking with First Hitting Times
	Assumptions and Fundamental Model
	Building the Model

	Verifying the Model
	Gaussian Step Assumption
	Spike Distribution of Images
	Model Results

	Effect of Synaptic Weight Variance on First‐Spike Timing
	Impact of Noise Training on Inference Latency

	Decision Making
	Drift Diffusion and Evidence Accumulation
	Bridging DDM to SNNs

	Sample Difficulty and Evidence
	Margin Distance and Evidence Accumulation

	The SepDots Synthetic Classification Task
	Problem Definition
	Mapping to TTFS SNN Inputs
	Exact Margin Tracking
	Predictions

	Impact of Sample Difficulty on First‐Spike Latency

	Academic Article
	References

