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Chapter 1

Introduction

Shipping natural gas overseas is an inexpensive and reliable way to move large volumes of fuel.
The advantages over other shipping methods, like pipelines or trucks, is that natural gas can
be transported globally; and, despite its longer transit, is the most efficient manner for moving it
across the world. In its gas state, natural gas density is about 0.8 kgm−3 at atmospheric conditions
which would make ships highly inefficient for its transport. Nevertheless, when cooled down to
its boiling temperature, approximately -162°C, the volume of the liquid drops to 1/600 of the gas
volume at atmospheric pressure. To carry the cryogenic fluid in the tanks, a cargo containment
system (CCS) is fit inside the cargo tanks to thermally insulate the fluid from the ship’s structure.
The CCS reduces the amount of boiled liquefied natural gas, known as boil-off, and prevents
the structure from cooling down to unsafe temperatures—the steel would become brittle in direct
contact with the cryogenic fluid.

Vessels transporting liquefied natural gas are known as LNG carriers. Despite being built, main-
tained and operated with higher standards than general ships, dry dock inspections have shown
deformed and/or punctured CCS caused by the sloshing of the LNG in partially filled tanks. When
a cargo tank is partially filled, the motion of the ship is transferred to the fluid and surface grav-
ity waves are formed and propagate towards the walls of the tank. These incidents, along with
the new market demands where maximizing the operational flexibility is sought—operating with
partially filled tanks for instance—led to multiple research programs for updating the methodology
used in the design of the CCS—the sloshing assessment methodology. Many authors have shown
that the methodology is globally conservative in the long term whereas reality is not perfectly rep-
resented in the short term statistics, as pressure values at full scale were found to be sometimes
larger than at model scale (Lund-Johansen et al., 2011; Bogaert, 2018). Having a methodology
that gives accurate estimates of the expected loads on the structure is of high importance due to
the existing trade-off between structural stiffness and insulation capacity.

The state-of-the-art sloshing assessment methodology is based on a structural reliability approach
(Gervaise et al., 2009). The probability distribution of the sloshing impact loads is determined by
model tests and compared to the structural capacity of the CCS to obtain the probability of failure.
However, many repetitions of the test conditions are required to obtain converged probability dis-
tributions of the load maxima due to the transient nature of sloshing impacts. In an investigation
to better understanding the physics of wave impacts, Bogaert (2018) divided the flow into two
parts: the global and the local flow. The global flow being considered as the solution of the incom-
pressible Euler equations for the liquid and gas in the tank; and the local flow as a perturbation
of the global flow. The research was focused on the the local flow and its link to the impact pres-
sures, and the structural response of the CCS. Nevertheless, the author found to be a challenge
to generate repeatable global flows and, therefore, to determine the contribution of the local flow
to the impact pressure variability. The challenges the author encountered were: (1) the inability
of the wavemaker to mechanically follow the steering signal accurately, (2) the lack of accuracy
in measuring the water depth due to low frequency waves in the flume and wind in the outdoor
facility; and (3) the effect of wind on the propagation of waves through the flume.
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INTRODUCTION CHAPTER 1

In this scenario is where the SLING research program comes into play. One of the SLING project
objectives is the extension of the physics in the numerical models to represent the phase change
between the gas and the liquid, the development of free surface instabilities and the structural
response. In order to achieve the objectives, a new facility is being established at MARIN: the
Multiphase Wave Lab (MWL), where a 12.5m flume is installed inside a 15m long, 2.5m diameter
autoclave, and where tests can be performed over a wide range of conditions—pressure, tem-
perature, gas composition and water depth can be independently, accurately and automatically
controlled. In addition, strict requirements in wave generation were demanded to reduce input
variability to negligible levels.

1.1 Problem definition and objectives
Despite the numerous experiments, numerical simulations and theoretical analysis that have been
conducted by the scientific community to investigate the local flow of liquid impacts, the physics
of the local flow are still not fully understood (Bogaert, 2018).

The limitations of the numerical simulations concern the accurate implementation of the physics,
whereas theoretical models lack physics and only describe a part of the impact pressures. There-
fore, numerical simulations and theoretical models need to be combined with experiments to
disentangle the physics of the local flow.

One of the main reasons why the analysis of the local flow does not result in definitive conclu-
sions in the literature is that the local flow results in impact pressures that vary significantly. In
consequence, many repetitions of the same global flow are needed in order to obtain converged
statistics of the impact pressures. However, experimental studies of the local flow often result in
a too small sample of the maximum impact pressures due to the difficulties researchers have to
obtain repeatable global flows.

In the previous section, the challenges Bogaert (2018) encountered in the generation of repeat-
able global flows were enumerated. The main objective of this thesis is ”to obtain repeatable
global flows in the MWL wave flume”. To achieve the objective, the following research questions
are defined:

Q1. What are the main sources of variability affecting the global flow?

Q2. What is the influence of the sources of variability in the global flow?

Q3. When is the global flow considered to be repeatable?

Q4. How can repeatability be achieved experimentally in the MWL?
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CHAPTER 1 INTRODUCTION

1.2 Research approach
To address the research questions formulated above, theoretical and experimental techniques
have been required. A wave generation and propagation model has been developed based on
linear wave/wavemaking theory. The model allowed for the evaluation of the sources of vari-
ability at different positions along the flume and also the generation of the control signals used
experimentally. From the analysis of the variability introduced at the focal point by the sources
of variability, a repeatability criterion has been derived. The criterion specifies the conditions un-
der which repeatable global flows are expected experimentally. To validate the theoretical work,
experimental tests were conducted for which image processing techniques have been required
to quantify the global flow repeatability from video data. An overview of the research approach
followed is shown in Figure 1.1.

Figure 1.1: Research approach to address the research questions.
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Chapter 2

Theory on wave focusing

The methodology to create breaking waves in a flume by means of linear or nonlinear superposi-
tion and phasing of wave components is known as wave focusing. The propagating velocity of a
wave in a medium is function of its wavelength and period, characteristics that are linked through
the dispersion relation. The dispersion relation is an expression obtained from substituting the
wave potential into the free surface boundary conditions, which shows that longer waves travel
faster than shorter waves. Wave focusing takes advantage of this effect to create a series of
wave components with different wavelengths that focus at a point. Shorter waves are generated
first followed by longer waves, which results in the longer waves catching up the shorter ones.
Wave breaking occurs when the height of the focused wave is over the maximum stable height.
Several criteria exist for the definition of this height, both empirical and theoretical, with common
parameters in its definition: the wave period and the water depth.

This chapter covers the underlying theory on wave focusing. From the dispersion relation to the
derivation of a wave train that would lead to wave focusing at a certain distance, the focal point;
by briefly describing the different existing techniques on wave focusing.

2.1 Frame of reference
Considering a rectangular two-dimensional basin of length, L, and water depth, h, where the
wavemaker is placed at the left side and the impact wall on the right, i.e., waves propagating
towards the right; the origin will be located at the focal point at the mean free surface level with
the positive x-direction pointing to the right and the positive z-direction up, see Figure 2.1.

Locating the origin at this position simplifies the definition of the wave shape, as the term kx
in the linear wave elevation equation (η(x, t) = a exp [i (kx− ωt+ φ)]) vanishes at this position.
Additionally, if the time at which focusing occurs, the focal time, is set to t = 0, meaning that wave
generation and propagation happens at negative times; the term ωt also vanishes. This implies
that, for a set of waves in phase at the focal time and position, setting φ = 0, the theoretical free

Figure 2.1: Frame of reference used for wave focusing.
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THEORY ON WAVE FOCUSING CHAPTER 2

surface elevation at that point is the sum of the amplitude of the individual components.

2.2 Governing equations
The flow field of free surface waves is described by a potential, Φ. Assuming the flow to be
inviscid, irrotational and incompressible, this potential satisfies the Laplace equation:

δ2Φ

δx2
+
δ2Φ

δz2
= 0 (2.1)

The boundary conditions to this problem are given by:

• The impermeability condition at the bottom (z = −h):

δΦ

δz
= 0

∣∣∣∣
z=−h

(2.2)

• The kinematic condition at the free surface:
δη

δt
+
δΦδη

δxδx
=
δΦ

δz

∣∣∣∣
z=η

(2.3)

• The dynamic condition at the free surface:

δΦ

δt
+

1

2

[(
δΦ

δx

)2

+

(
δΦ

δz

)2
]

+ gη = 0

∣∣∣∣∣
z=η

(2.4)

Conditions eq. (2.3) and eq. (2.4) can be linearized around the mean free surface level using the
Taylor expansions:

δΦ

δx

∣∣∣∣
z=η

=
δΦ

δx
+ η

δ

δz

δΦ

δx
+O

(
η2
)∣∣∣∣
z=0

(2.5)

δΦ

δz

∣∣∣∣
z=η

=
δΦ

δz
+ η

δ2Φ

δz2
+O

(
η2
)∣∣∣∣
z=0

(2.6)

Substituting a potential of the form:

Φ = P (z)ei(kx−ωt) (2.7)

into the Laplace equation, eq. (2.1), gives the form of the generic solutions:

P (z) = Aekz+a +Be−kz−b (2.8)

which substituted into the seabed condition, eq. (2.2), and solving for the constants gives the
generic solution of the potential, valid for the linear and nonlinear problem:

Φ = C cosh (k(z + h)) ei(kx−ωt) (2.9)

where C is a complex constant to be determined, k is the wavenumber of the free surface wave,
ω its frequency and h the water depth of the flume.

2.3 The dispersion relation
Wave focusing is only possible in the presence of wave dispersion. In its absence, waves would
propagate at the same speed and focusing would never occur. The dispersion relation is therefore
the basis of wave focusing. There are two types of dispersion relations based on the wave theory
from which it is derived:

1. The linear dispersion relation derived from the Airy wave theory; and

2. a nonlinear dispersion relation that accounts for nonlinear phenomena such as amplitude
dispersion, i.e., higher waves propagating faster than lower waves; or the fact that the wave
profile is not symmetric, the wave crests are sharper than the troughs.

A brief description of these theories is given below followed by a short discussion on the wave
theory used in this thesis.
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2.3.1 Linear theory
In the linear theory, quadratic and higher order terms are neglected. The linearized free surface
conditions:

δη

δt
=
δΦ

δz

∣∣∣∣
z=0

(2.10)

and

δΦ

δt
+ gη = 0

∣∣∣∣
z=0

(2.11)

are obtained from substituting eq. (2.5) and eq. (2.6) into eq. (2.3).

By differentiating eq. (2.11) to time and substituting eq. (2.10):

δ2Φ

δt2
+ g

δΦ

δz
= 0

∣∣∣∣
z=0

(2.12)

If the general solution, eq. (2.9), is substituted into this expression and evaluated at z = 0, the
linear dispersion relation is obtained:

ω2 = gk tanh(kh) (2.13)

The Airy wave solution only uses the real value (ω, k) pairs, obtaining the well-known free surface
elevation expression from the substitution of the general solution, eq. (2.9), in the linear boundary
condition, eq. (2.10):

η = aei(kx−ωt+φ) (2.14)

Nevertheless, the imaginary solutions are also required when deriving the wavemaker’s transfer
function, section 3.1. Obtaining:

η = − iω
g
C cosh(kh)ei(ωt−kx) (2.15)

The linear dispersion relation, eq. (2.13), shows that the relation (ω, k) does not depend on the
wave amplitude. Additionally, it can be shown that in shallow and deep waters, the expression
approximates to:

• Shallow water, kh� 1:

ω2 = ghk2 (2.16)

• Deep water, kh� 1:

ω2 = gk (2.17)

Phase and group velocity

The phase velocity is the speed at which a wave component propagates. The expression is
derived following a specific position of the wave in time. The wave phase at that location in
the wave must be constant as the wave propagates. Taking the wave elevation determined by
eq. (2.14) and choosing a position whose phase is zero for simplicity, the angle of the complex
expression must be equal at two different points in time and space, leading to the phase velocity:

kx0 − ωt0 = kx1 − ωt1

cp =
∆x

∆t
=
ω

k
(2.18)

The expression for the group velocity comes from the effects of superposing two waves with
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Figure 2.2: Two harmonic waves with slightly different frequencies ( ) adding up to a series of wave groups
( ). The envelope ( ) propagates with the group celerity. In each group, waves are being formed at the
tail and vanishing at the front due to the higher phase velocity.

the same amplitude and slightly different frequency. As a result of the interaction between them,
these waves reinforce each other when they are in phase, but cancel out when they are 180°
out of phase, see Figure 2.2. This effect repeats over creating a series of wave groups which
travels at the same speed as the wave energy (Holthuijsen, 2010). If the difference between the
frequencies is infinitely small, the group velocity is given by:

cg =
∂ω

∂k
(2.19)

The substitution of the phase speed, eq. (2.18), and group speed, eq. (2.19), into the linear
dispersion relation, eq. (2.13), results in:

cp =

√
g

k
tanh (kh) (2.20)

cg =
1

2
cp

(
1 + kh

1− tanh2 (kh)

tanh (kh)

)
(2.21)

In shallow and deep waters, these expressions simplify to:

• Shallow water:

cp = cg =
√
gh (2.22)

• Deep water:

cp =

√
g

k
(2.23)

cg =
1

2
cp (2.24)

Which clearly shows the relation between wavelength and water depth on the propagation speed.
In shallow waters there are not apparent dispersion effects. Waves propagate at the ’same’ speed
independently of the wavelength1. As a consequence, long waves that lie in the shallow water
regime have to be generated almost simultaneously in wave focusing due to the small difference
in propagating speed. On the other hand, on deep water conditions, wave components travel
exactly at half their phase velocity independently of the water depth. As it will be seen later on,
the wave components used in the MWL lie in the three regimes: shallow water, intermediate water
and deep water; which makes wave focusing highly dependent on the control and measurement
of the flume’s water depth.

2.3.2 Nonlinear theory
There are two main nonlinear wave theories assuming an irrotational flow: the Stokes theory,
suitable for waves which are not very long relative to the water depth; an the Cnoidal theory,
suitable for long waves relative to the water depth. The steady waves derived from these theories
are asymmetric, with the wave crest being sharper than the wave trough, Figure 2.3.

1Shallow and deep water are the asymptotic limits imposed in the dispersion relation and, therefore, they are never
reached. There will always be wave dispersion even when its value is infinitely small.
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y

x

h
d

λ

c

η(x)

H

Figure 2.3: A nonlinear steady wave derived either from Stokes’ or Cnoidal theory (Fenton, 1990). Conse-
quence of the asymmetry of nonlinear waves, the still water depth, d in the figure, does not lie at half the
wave height, H.

These theories can be approximated to any order, which depends on the application and the
steepness of the wave under study. Le Méhauté (2013) studied the validity of the different analyt-
ical theories comparing them to experimental data, showing the range of validity and the required
order, see Figure 2.4.

Figure 2.4: Validity theories for steady waves according to Le Méhauté (2013). The dashed blue lines
demarcate the required order in the Stokes’ wave theory.

Stokes assumed that all variation in the longitudinal direction of the wave can be represented
by Fourier series and the coefficient of these series can be written as perturbation expansions in
terms of the wave amplitude—Schwartz (1974) utilized the wave height instead because higher or-
der expansions showed wave height convergence before the maximum wave height was reached.
According to Stokes’ second-order theory, the wave elevation on arbitrary depth is given by:

η (x, t) = a

{
cos θ + (ka)

3− σ2

4σ3
cos 2θ

}
+O

(
(ka)

3
)

(2.25)

And the substitution of the second-order Stokes’ solution into the third-order equations of the
perturbation series for the periodic wave problem (not shown here for the sake of simplicity) gives

13
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the third-order dispersion relation2:

ω2 = (gk tanh(kh))

{
1 +

9− 10σ2 + 9σ4

8σ4
(ka)

2

}
+O

(
(ka)

4
)

(2.26)

with:

σ = tanh(kh)

Due to the complexity of the math involved in its derivation, Cnoidal theory is not covered in this
report. Nevertheless, Cnoidal theory must be used in those cases where Stokes’ theory does not
apply. The parameter defining the boundary between Stokes’ and Cnoidal theory is the Ursell
number:

U =
H/d

(d/λ)
2 =

”Nonlinearity” (measure of height)
”Shallowness” (measure of depth/length)

(2.27)

Hedges and Ursell (1995) showed that the reasonable boundary between the Stokes’ and Cnoidal
theory is:

U =
Hλ2

d3
= 40 (2.28)

Those waves with larger Ursell number are generally long-high waves, and Cnoidal theory should
be used. Smaller Ursell numbers correspond to deeper waters, relative to the wave length, and
Stokes’ theory is best. However, there is a discontinuity in the wave celerity predicted by these
theories. Kirby and Dalrymple (1986) propose an empirical extension to the existing formulations
which smoothly connects the Stokes’ analytical results to the empirical formulation for shallow
water of Hedges (1976). The second-order expression becomes:

ω2 = gk

(
1 +

√
tanh5 (kh) (ka)

2
D

)
tanh

 kh+ (ka)

1 +
√

tanh5 (kh) (ka)
2
D

 (2.29)

Where the coefficient D is an expression in terms of hyperbolic functions.

Many other empirical formulations exist connecting both shallow and deep water theories. Further
and more detailed information about the different dispersion relations can be found in van den
Boomgaard (2003).

2.3.3 Discussion
It is clear from literature that predictions of wave celerity from linear theory lead to errors in the
focal time and focal point due to waves propagating faster than predicted (Hofland et al., 2011;
John R. Chaplin, 1996; Fernández et al., 2014). Linear theory is therefore inconvenient where
waves of different heights or frequency are required at exactly the same point. Nevertheless,
for repeatability studies, where a wave is created many times, the use of linear theory seems
appropriate: it is simple and computationally cheap, which makes it ideal for sensitivity studies
and wave modelling, section 2.5.

2.4 Wave focusing techniques
Knowing how dispersion affects wave propagation, it can be used for the generation of extreme
events that would not be possible to create if waves propagated at the same speed. Examples of
such events are the generation of freak waves (or rogue waves) in irregular sea states (Liu et al.,
2011), or the generation of breaking waves (Kimmoun et al., 2010).

John R. Chaplin (1996) described the three different techniques that can be identified:

2The Stokes’ second-order dispersion relation matches Airy’s dispersion relation.
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1. The phase speed method: wave trains of different frequencies, traveling at different speeds,
add up producing reinforcement or cancellation of water surface displacements. The phases
of each wave component can be adjusted such that a large wave builds up at a specific point
in time, see Figure 2.5a.

In this method, the wavemaker control signal is derived from the wave elevation time trace
at the wavemaker’s position, which is computed summing up each sinusoidal component
whose phase is chosen to achieve reinforcement at the focal point. If focusing is set at x = 0,
t = 0; and the wave maker is located at x = −xf , as defined in section 2.1, the following
expression gives the wave elevation time trace at the wavemaker’s position derived from
linear theory.

ηwm =

n∑
i=1

aie
i(−kixf−ωit) (2.30)

2. The reverse dispersion method: from the release of an initial disturbance of the free surface,
waves travel outwards in both directions. The wave elevation time trace at a distance from
this releasing point can be used to derive the wavemaker’s control signal on the basis that,
if waves traveled in the opposite direction, they would lead to the same initial disturbance,
see Figure 2.5b. However, from the initial disturbance waves travel in both directions and,
therefore, having only one wavemaker would lead to a focused wave with half the energy of
the initial disturbance.

An analytical solution for this method was first presented by Cauchy and Poisson for the
simple case of waves moving outward from an initial surface elevation shaped as a delta
pulse. Many authors extended the work to include multidimensional propagation, interme-
diate water depth or a geometric distribution of the initial disturbance, among others (Lamb,
1923; Eckart, 1948; Unoki and Nakano, 1953; Wang et al., 1987).

3. The group celerity method: the front of a wave train propagates into still water at a speed
equal to the group celerity. Assuming that the speed of energy propagation is related to
the instantaneous frequency of the waves generated by the wavemaker, a continuous mod-
ulation in the frequency of the steering signal can lead to a concentration of energy at a
particular point in the flume, see Figure 2.5c.

Given the focal distance, the time domain
[
tbegin, tend

]
can be defined. The starting time,

tbegin, is obtained from the wave celerity of the maximum frequency component in the wave
train (the slowest of the components) via a dispersion relation. The end time, tend, is given
by either the celerity of the minimum frequency component in the set of waves or by the
physical limit—no more waves can be generated that reach the focal point on time when the
physically maximum possible group velocity is reached, eq. (2.22), (Hofland et al., 2011).

From the three techniques, the phase speed method has been used for the derivation of the wave
elevation time trace at the wavemaker’s position. To support the decision, Kimmoun et al. (2010)
showed great results in wave focusing and wave crest stability using this technique in a similar
flume. Additionally, it allows wave shape modelling at the focal point, which requires the use of
complex math in the reverse dispersion method (Wang et al., 1987); and there is no need for
phase adjustment like in the group celerity method (Hofland et al., 2011).

2.5 Wave modelling
Wave modelling will be referred to as the process of tuning the focused wave characteristics, i.e.,
period, height, focal point, etc; until the wave/impact of interest is obtained. Before the control
signal for the generation of these waves can be derived, the wave elevation time trace at the
wavemaker’s position must be obtained. The phases of each wave component at this position
can be computed using the phase speed method via a dispersion relation and the corresponding
wave theory, and the free surface elevation obtained from the summation of each wave component
elevation.
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(a) Phase speed method

(b) Reverse dispersion method

(c) Group celerity method

Figure 2.5: Illustrations showing the different methods for the derivation of the control signal

Due to its simplicity, linear theory is appropriate for wave modelling and sensitivity studies because
it allows to perform many computations in affordable amounts of time. Time is a key factor in wave
modelling as one would like to carry out as many test as possible. Typically, the waiting times
between two tests in a flume of this characteristics range from 20 to 60 minutes (Kimmoun et al.,
2010), so computing a control signal should be done, preferably, inside this time window. Any
higher order theory would result unpractical due to the large number of components required in
the derivation of the control signal, as will be discussed in section 3.2.1.

2.5.1 Frequency and amplitude distribution
A steady wave is characterized by a wavenumber, its frequency and the amplitude of the wave;
with the wavenumber and frequency linked through the dispersion relation. When a breaking
wave is sought, the energy of the wave train should lead to a focused wave height over the
minimum wave height for breaking. This minimum wave height is given by the Miche criterion,
which describes wave breaking when the limiting wave steepness is exceeded (Miche, 1944):

Hb

Lb
= 0.14 tanh

(
2πhb
Lb

)
(2.31)

Nevertheless, this is expression is valid for one steady wave, though a focused wave is formed
by the interaction of many wave components. Therefore, this expression should be taken as a
reference, realizing that wave breaking will occur at smaller wave heights (Southgate, 1988). With
this in mind, there are two ways to achieve wave breaking:

1. Giving to each wave frequency a constant fraction of its minimum wave breaking height: this
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Figure 2.6: Discrete amplitude spectrum illustration from a wave elevation record.

approach is used by Hofland et al. (2011). However, due to wave-wave interactions early
breaking of the higher frequency components was observed before the focal time; or

2. defining a wave amplitude spectrum whose total energy ensures wave breaking: this is the
approach used by Kimmoun et al. (2010). The amplitude spectrum can be tweaked not only
to avoid early breaking but also to modify the breaking wave characteristics (crest stability,
crest thickness, gas pocket size, etc)

While both methods give a breaking wave, defining an amplitude spectrum offers extra flexibility
in wave modelling.

The Ricker spectrum

The concept of wave spectrum is simple. Considering the surface elevation η(t) at one location
as function of time, with a certain duration D, the record can be reproduced as the sum of a large
number of harmonic wave components (a Fourier series):

η(t) =

n∑
i=1

ai cos (ωit+ φi) (2.32)

Ignoring the phase spectrum, only the amplitudes, ai, of each wave frequency, ωi, remain to char-
acterize the wave record. The pairs (ai, ωi) define the amplitude spectrum of a wave record,
Figure 2.6. Therefore, if all wave components are in phase at the focal point, φi = 0, the only
requirement to determine the wave elevation at the focal point, or wavelet, is the amplitude spec-
trum. It can be derived by either: (1) defining the wavelet and computing its spectrum via a
Fourier transform or (2) using existing spectrum formulations. The first method is subjected to the
requirements and limitations of the Fourier transform. It requires an extremely long time record
of the wavelet to increase the frequency resolution, and the amplitude of the zero frequency is
forced to be zero. On the other hand, while the second method loses the control on the wavelet
shape as it will be determined by the spectrum formulation, the frequency content in these analyt-
ically/empirically derived expressions is not predetermined and a non zero amplitude to the zero
frequency can be given (the importance of the amplitude of the zero frequency is explained later).
Thus, a spectrum formulation has been used to determine the amplitude distribution.

The most well-known and used spectrum formulations in coastal and maritime engineering are the
Pierson-Moskowitz and the JONSWAP spectra (Holthuijsen, 2010). These spectra are empirically
derived from measurements of ocean waves produced by wind and, therefore, are representative
of real sea states. Nevertheless, the resulting wavelet from these spectra resembles a Morlet
wavelet (a wave group). The issue with these wavelets is that, in an experimental flume, the
wavelet front reflects on the impact wall before focusing occurs, leading to focusing issues and the
development of free surface instabilities due to wave-wave interactions. In addition, the height of
the smaller-shorter waves at the front could be above the minimum height for breaking, resulting
in early breaking as seen in Hofland et al. (2011); Bogaert (2018). This problem was solved
by Kimmoun et al. (2010) using the spectrum derived from the mexican hat wavelet, the Ricker
wavelet. This wavelet is the negative second derivative of a Gaussian function. As a consequence,
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Figure 2.7: Representation of the normalized amplitude spectrum (left) and their respective wavelet (right)
for the Ricker spectrum ( ), the Pierson-Moskowitz spectrum ( ) and the JONSWAP spectrum ( ).

it results in a single crest preceded by a trough. Figure 2.7 compares the three amplitude spectrum
shapes and their wavelet.

The Ricker wavelet is defined in the time domain as:

ηR(t) =

(
1− 1

1

2
ω2
pt

2

)
exp

(
−1

4
ω4
pt

2

)
(2.33)

where ωp is the peak frequency of the event (in radians per second).

And its Fourier transform gives the Ricker wavelet amplitude spectrum (Wang, 2015):

aR(ω) =
2ω2

ω3
p

√
π

exp

(
−ω

2

ω2
p

)
(2.34)

However, when this amplitude spectrum is used for the derivation of a control signal and tested
experimentally, it results in a surging wave (a non-breaking rounded wave) or in a spilling wave (a
long and foamy breaking wave). The reason is the lack of energy in the lower part of the spectrum,
essential for wave breaking (Kimmoun et al., 2010). Researchers usually derive a control signal
using any method and introduce energy to the wave train by cutting out the last part of the control
signal and introducing the control signal of a solitary wave, see Figure 2.8 from Hofland et al.
(2011).

In this thesis, to introduce energy in the lower frequencies, avoiding hand-tweaking of the control
signal and increasing wave modelling flexibility, two parameters were included to the formulation
of the Ricker spectrum, eq. (2.34):

1. A parameter to increase the amplitude of the frequencies below the peak frequency by a
constant fraction of the amplitude difference of each frequency w.r.t. the peak frequency
amplitude; and

2. a parameter to compute the amplitude of the frequencies above the peak frequency from a
shifted frequency, which increases or decreases energy in those frequencies.

Including these parameters result in a piecewise expression of the spectrum:

ai(ω) =

{
(1− βl) aR(ωi) + βlaR(ωp) for: ωi ≤ ωp

aR(ωi + βh(ωp − ωi)) for: ωi > ωp

(2.35)

where βl and βh are the low and high frequency parameters, respectively.

The control that these parameters offer in the spectrum and wavelet shape is shown in Figure
2.9. Notice how the zero frequency component has a non-zero amplitude now in the spectrum,
equal to half the energy of the peak frequency, βl = 0.5; and the increase of energy in the higher
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Figure 2.8: Example of a control signal and how Hofland et al. (2011) introduced energy to the wave train
connecting the solitary wave solution (thick line).

frequencies, βh = 0.45. The original formulation is obtained when both parameters are equal to
zero. It must be said that having a non-zero value at the zero frequency results in a positive shift
of the wavelet equal to the amplitude of the frequency. This is not apparent in the figure because
a large number of components (10.000) are being used, precisely to reduce the relative influence
w.r.t. the wave height—as the number of wave components increases, the amplitude of each
component reduces. In the limit ∆ω → 0 the amplitude of each component is zero and, therefore,
the relative importance of each component to the free surface elevation is zero.

2.5.2 Wave elevation at the wavemaker
The wave elevation at the wavemaker is obtained combining the linear dispersion relation, the
wave elevation expression derived from linear theory, and the amplitude spectrum for the wave
characteristics of interest. The procedure is as follows:

1. The peak period, ωp, of the focused wave and its wave height is set. Then,

2. the amplitude spectrum for a number of wave frequencies is computed and scaled such that
its area matches the wavelet height matches the previously defined wave height; and

3. the wavenumbers are determined from the linear dispersion relation, eq. (2.13).

4. Amplitude, wavenumber and frequency are used to compute the wave elevation time trace
of each wave component at the wavemaker, eq. 2.14); and

5. by adding up the wave elevation time trace of all wave components, eq. (2.30), the wave
elevation at the wavemaker is obtained.

In this thesis, the reference wave height defining the spectrum is the wave crest height, Hc, or
the height from the mean free surface level to the crest of the wavelet. This has been done to
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Figure 2.9: Original Ricker spectrum and wavelet formulation ( ) compared to the spectrum and wavelet
using eq. (2.35) ( ).

Figure 2.10: Time trace of the wave elevation at the wavemaker position from the original Ricker spectrum
( ) and from the modified Ricker spectrum for βl = 0.5 and βh = 0 ( ); and for βl = βh = 0.5 ( ).

decouple the parameter βl from the wave height of interest. As will be seen next, the parameter
flattens the trough of the wavelet as it increases and therefore reduces the distance from trough
to crest. If two waves with the same wave height were compared in this way for two values of
βl, the result would be two waves with the impact point at two different heights. Therefore being
difficult to compare and evaluate the influence of the parameter in the wave shape.

The result of the previous operations is shown in Figure 2.10, comparing the obtained wave
elevation from the original Ricker spectrum and from the modified one. It is clear the increase
in amplitude of the high frequency components, consequence of the parameter βh. The effect of
increasing the energy in the lower frequencies is also evident. Increasing βl results in a reduction
of the trough’s amplitudes in the last part of the record. Also note that the maximum wave height
in the time trace gets reduced when the energy in the higher frequencies is increased (for the
same focused wave crest height). The implication is that, when limited by the maximum stroke
of the wavemaker, more energetic waves can be obtained increasing the energy in the higher
frequencies of the spectrum—as long as the wavemaker is able to accurately move at those
frequencies.

Once the wave train that leads to the desired focused wave is determined, the next step is to
compute the paddle motion that generates the wave elevation time trace at the wavemaker posi-
tion—the wavemaker control signal. Since this is a related but different problem, it will be covered
in a separate chapter.
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Chapter 3

Theory on wave generation

The wavemaker problem to determine the forced two-dimensional wave motion with outgoing
surface waves at infinity, generated by a harmonically oscillating vertical plane immersed in water,
was first solved by Havelock (1929). This is a first-order solution and, therefore does not account
for second-order effects such as the wave set-down of the water level (Hansen et al., 1980), or
spurious superharmonic waves that arise from wave interactions (Sulisz and Hudspeth, 1993).
The current chapter covers the derivation of the linear wave making theory and its application to
the wave elevation time trace obtained in the previous chapter to compute the wavemaker control
signal.

The most extensive and detailed second-order wave making theory was given by Schäffer (1996),
who derived a complete mathematical model for position-controlled wavemakers including the
sub- and superharmonic effects. Posterior studies are on improving the wave generation tech-
niques providing, for instance, active absorption to avoid spurious reflection, reducing the flume’s
stilling time; or the derivation of a second-order wavemaker theory using force-feedback control
which further reduces the spurious harmonic content (Spinneken and Swan, 2009).

A simple theory that illustrates the generation of waves by a piston type wavemaker was pro-
posed by Galvin Jr (1964) for shallow water. This is a very simple theory which does not consider
the boundary problem for two-dimensional waves propagating in an incompressible, irrotational
fluid—for which the governing equation for the velocity potential is the Laplace equation. Nev-
ertheless, it helps as an introduction to get insight about wave generation and the parameters
typically involved in higher-order theories: the reasoning is that the water displaced by the wave-
maker should be equal to the crest volume of the propagating wave. Being the volume per unit
width of water in a (linear) wave:

Vcrest =

∫ L/2

0

H

2
sin (kx) dx =

H

k
(3.1)

and the volume displaced by the wavemaker per unit width:

Vwm = Sh (3.2)

where S is the stroke of the wavemaker.

The expression for the wavemaker motion is found by equating both volumes, yielding:

H

S
= kh (3.3)

3.1 Linear wave making theory
Having the same frame of reference as the one described in section 2.1, the internal flow is still
represented by eqs. (2.1–2.9).
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If the wavemaker is piston type (MWL’s wavemaker), the wave flap displacement is only time
dependent, ξ(t). As water cannot flow trough the flap, the impermeability boundary condition
must be satisfied:

δξ

δt
=
δφ

δx

∣∣∣∣
x=ξ

(3.4)

With the flap describing a unitary harmonic motion:

ξ(t) = eiωt (3.5)

the boundary condition, eq. (3.4), at the wave flap becomes:

ω = −kC cosh (k(z + h)) (3.6)

Solving for the complex amplitude, C, requires decomposing the expression into a set of orthog-
onal basis functions (cosh(k(z + h))):∫ 0

−h
cosh(k(z + h)) · ω dz =

∫ 0

−h
cosh(k(z + h)) · [−kC cosh(k(z − h))] dz (3.7)

After some algebra:

C =

−4ω

(
sinh(kh) +

1− cosh(kh)

kh

)
k (sinh(2kh) + 2kh)

(3.8)

Substituting into the linear free surface elevation, eq. (2.15), results in the transfer function from
flap excursion to wave elevation:

ζpiston =
4iω2 cosh(kh)

gk

 sinh(kh) +
1− cosh(kh)

kh
sinh(2kh) + 2kh

 (3.9)

From which ω2 can be eliminated using the linear dispersion relation, eq. (2.13). Then the transfer
function becomes:

ζpiston =
4i sinh2(kh)

sinh(2kh) + 2kh
(3.10)

This transfer function suffices to compute the wavemaker control signal. Higher-order wave mak-
ing theories would be required when the spectrum to be obtained experimentally is required to
match the theoretical one. Nevertheless, the object of study is wave repeatability and, therefore,
the wave making and wave theory used is not of high importance as long as wave focusing occurs.
The spurious waves that form from the linear wave making theory lead to wave-wave interactions
not accounted beforehand which shift the focal point. However, these interactions will be the same
in different repetitions if the entire process of wave generation is exactly repeatable.

3.2 Wavemaker control signal
The equation defining the wave elevation time trace at the wavemaker, eq. (2.30), divided by
the flap excursion to wave elevation transfer function, eq. (3.10), gives the control signal of the
wavemaker.

X(t) =

n∑
i=1

ai exp
[
i(−kixf − ωit)

]
· sinh(2kih) + 2kih

4i sinh2(kih)
(3.11)

The obtained control signal for the original Ricker spectrum, eq. (2.34), and the expression of
the spectrum used in this work, eq. (2.35), is shown in Figure 3.1. Three main differences are
observed here:

22



CHAPTER 3 THEORY ON WAVE GENERATION

Figure 3.1: Wave elevation at wavemaker position (left) and wavemaker control signal (right) derived for the
same focused wave crest height for βl = βh = 0 ( ) and βl = βh = 0.5 ( ).

1. The signal gets longer when increasing βh, both in the wave elevation and in the control
signal; this was already seen in the previous chapter.

2. The amplitude gets smaller in both signals. This is a combined consequence of increasing
the energy of the lower and higher frequencies, βl and βh.

3. The last part of the wavemaker control signal shifts to a constant non-zero value when βl 6=
0. This is the most important characteristic, and the main reason, for choosing a spectrum
that allows a non-zero amplitude of the zero frequency. Those frequencies which travel at
the physical velocity limit (cp = cg =

√
gh) must leave the wavemaker simultaneously such

that they reach the focal point on time, therefore shifting the amplitude of the wavemaker
motion to a large value as the amplitudes add up. This value seems to be constant due to
the extremely long wavelengths of the associated wave frequencies, nevertheless, it would
come back to zero if the control signal were computed further in time.

The importance of it is that the last part of this control signal resembles the one developed
by Hofland et al. (2011), Figure 2.8, adding energy to the lowest frequencies without the
necessity of hand-crafting the signal.

3.2.1 Number of wave components
The ”drawback” of the used amplitude spectrum formulation is the large number of wave compo-
nents required to derive the control signal. The non-zero amplitude of the zero frequency leads to
a positive mean displacement of the free surface as discussed in section 2.5.1—a zero frequency
is infinitely long, extending along the entire flume with amplitude aR(0). The wave elevation di-
vided by the transfer function leads to a positive non-zero excursion of the paddle at the time of
generation because the infinitely long wave must be already in the flume. Then, shorter wave
components interact with the zero-frequency moving the wavemaker mean position backwards.
The drift velocity of the wavemaker reduces as the number of wave components increases, being
zero in the limit ∆ω → 0, when the contribution (amplitude) of each wave component is zero, see
Figure 3.2; which results in a constant negative offset of the paddle as shown in the figure for
50000 wave components. Since this offset is only a consequence of having a non-zero amplitude
in the zero frequency component—the theory used does not account for constant volume of water
in the flume—the signal is centered in practice such that it starts at the zero position of the paddle.

3.2.2 Control system requirements
To fulfill the requirements of the wavemaker control system, the signal must start and end at its
zero position. Therefore, a sinusoidal signal was attached at the end of the control signal, slowly
returning the wavemaker back to zero. Additionally, it may happen that the wavemaker control
signal is not accepted by the control system because its motion is out of limits. This usually
happens in the last stroke of the control signal, where its maximum forward motion almost doubles

23



THEORY ON WAVE GENERATION CHAPTER 3

Figure 3.2: Wavemaker control signals obtained with the same focused wave characteristics with 500 wave
components ( ), 5000 wave components ( ) and 50000 wave components ( ). As the number of
wave components increases the drift velocity of the wavemaker reduces due to wave interactions. When the
number is sufficiently large, it results in a ‘constant’ mean deviation of the wavemaker, which can then be
removed from the control signal ( ).

Figure 3.3: Wavemaker control signal combining the zero-amplitude requirement at both ends and the offset
feature to deal with the asymmetry of the signal when it is over the maximum amplitude.

the maximum backward motion. Due to this large asymmetry of the control signal, a feature was
included in the control signal algorithm that attaches a sinusoidal signal to the beginning of the
control signal, slowly moving the wavemaker to an offset zero-position, allowing larger focused
waves to be created, see Figure 3.3.
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Chapter 4

Sources of variability

Repeatability issues in wave focusing techniques are quite often mentioned in the literature. Bo-
gaert (2018) concluded that: It was found to be a challenge to generate repeatable global flows
due to (1) the inability of the piston to mechanically follow the control signal, (2) the lack of accu-
racy in measuring the water depth due to low frequency waves in the flume; and (3) the effect of
wind in wave propagation. Fernández et al. (2014) said: The problem is that when a wave packet
containing different wave frequencies is generated, the waves interact and new components that
are not satisfying the linear dispersion relation are created. This means that small changes in the
associated wavemaker control signal lead to large and unpredictable changes in the generated
focused wave.

It is clear from these statements that wave focusing is highly sensitive to small variations in the
involved variables. It is therefore of crucial importance for the repeatability of breaking waves
not only to identify these variables but to evaluate their relative importance in the wave focusing
process and to provide effective means for their correction when possible.

The entire process of wave generation using a wave focusing technique has been covered in the
previous chapters. The sources of variability can be identified by looking at this process from
the generation of the first set of waves, with completely still water in the tank, until the moment a
second test is carried out. An initial evaluation of the variables involved in wave generation and
wave propagation resulted in four sources of variability:

1. Inaccuracy of the wavemaker motion,

2. uncertainty in the water depth measurements,

3. long bounded waves (seiching); and

4. residual currents.

Each source of variability is assessed in the present chapter in a similar way: the variability
coming from these sources is introduced in the wave propagation and generation algorithm by
means of linear theory. The objective is to derive the wavelets resulting from wave generation and
propagation including variability effects and compute the error w.r.t. the undisturbed wavelet. The
theoretical criteria of repeatability is also defined—the theoretical maximum error of a focused
wave to be considered repeatable—which is then used to specify the experimental conditions to
obtain repeatable results.

4.1 Wave characteristics
During a preliminary test campaign with Olivier Kimmoun in the MWL, a set of waves had been
selected for future research work in the facility. These waves had similar characteristics: a peak
period, Tpeak, around 2.2 seconds, wave crest heights, Hc, ranging from 160 to 180 millimeters
and the focal point spread around 10 meters to have different breaking wave shapes. To obtain
meaningful results from the theoretical evaluation of the sources of variability, three waves have

25



SOURCES OF VARIABILITY CHAPTER 4

been chosen based on the typical characteristics of the waves generated during these tests, only
varying the wave crest height, Table 4.1.

Table 4.1: Wave characteristics used in the theoretical evaluation of the sources of variability presented in
the following sections.

Hc Tpeak βl βh xf

mm s − − m

[150, 170, 200] 2.2 0.5 0.45 10.0

4.2 Inaccuracy of the wavemaker motion
The wavemaker is essential and the most important element in wave generation and wave focus-
ing. Its importance in global flow repeatability relies in the distance to the focal point and the focal
time. In the MWL flume the focal point is at approximately 10m from the wavemaker and the focal
time is about 60s. This means that waves of a few centimeters in wavelength, for instance, have
to propagate a distance three orders of magnitude larger to meet with other wave components in
an event that takes place in milliseconds. Additionally, wave-wave interactions occur while waves
propagate and non-linearities become important when the breaking wave is building up. Alto-
gether, a slight difference in the paddle motion might lead to a large difference in the focused
wave. A numerical evaluation of the variability introduced by the wavemaker is, therefore, a tough
task. The reason is that the problem should include the description of the paddle motion and
statistics of the error, wave generation—including the generation of spurious waves—and wave
propagation considering wave-wave interactions and non-linearities.

To overcome its complexity, the problem was rethought: instead of considering the wavemaker
motion as a source of variability of unknown magnitude, the design requirements of the wave-
maker motion error were used to establish the uncertainty of the wavemaker motion, linking in
this way theory and experiments. This simplifies the problem enormously: the uncertainty in wave
generation can be used to derive a control signal that deviates the most from the original, that is
then propagated by means of linear theory to the focal point. The error of the resulting wavelet
w.r.t. the Ricker wavelet (not affected by variability) determines the ’maximum’ error due to wave-
maker motion uncertainty. Nevertheless, the ’maximum’ error is expected to be smaller than if
derived with non-linear theory as non-linearities would further deviate wave components. Though
this offers one advantage: as the error is smaller than expected, it can be used to derive the
repeatability criteria with a ’safety’ factor. It will be further explained in the following sections.

4.2.1 Wavemaker motion design requirements
MARIN determined a series of design acceptance values from the results of the SLOSHEL project,
function of the steering signal amplitude, which are given in Table 4.2. These values represent
the maximum average motion error of the wavemaker design over a period of 5 seconds and were
derived from the analysis of the repeatable impact-pressure tests performed by Bogaert (2018).

4.2.2 Repeatability criteria
One of the most challenging tasks during the project was the definition of the repeatability criteria:
when is a breaking wave (or its global flow) considered to be repeatable. From the multiple
discussions held with researchers in the topic, the conclusion is that there is no clear consensus
on the repeatability criteria and that it is dependent on its final application. Ultimately, the MWL
will be studying the effects of the development of crest instabilities on the impact pressures and
the role environmental conditions (pressure, temperate, gas composition...) have on it. Clearly,
the global wave shape must be similar enough to exclude wave generation and wave propagation
from the obtained variability. Only then, conclusions about crest instabilities and environmental
conditions could be drawn.

By establishing the maximum error of the wavemaker, which can be taken as the wavemaker
motion uncertainty, MARIN also sets the uncertainty of the wavelet at the focal point since the
error can be propagated to the focal point. This means that, if all other sources of variability were
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Table 4.2: Maximum allowable average motion error vs. steering signal amplitude.

Steering signal Average motion error
amplitude over 5 seconds

mm mm
0.25 0.025
1.00 0.075
2.00 0.100
5.00 0.175
10.0 0.25
20.0 0.30
50.0 0.40

Maximum amplitude 0.50
At zero positions 0.025

mitigated, there will always be some variability coming from the paddle motion that cannot be
controlled—taking a measuring equipment as an analogy, the wavemaker uncertainty would be
the resolution uncertainty of the equipment. In this context, it was decided that repeatability is
achieved when the errors coming from all the sources of variability are smaller than the paddle
motion uncertainty—or when the total measurement error is below the resolution uncertainty in
the analogy.

4.2.3 Wavemaker motion uncertainty
The maximum wavemaker motion errors presented in Table 4.2 were used to derive the wave-
maker uncertainty at the focal point. Firstly, the undisturbed wavemaker control signal was com-
puted for each of the waves defined in section 4.1, see Figure 4.1. Then, the uncertainty region
of the control signal was determined from the maximum wavemaker motion errors and a second
wavemaker control signal was computed that deviates the most from the undisturbed signal, Fig-
ure 4.2. Lastly, both control signals were propagated through the flume resulting in two wavelets:
the Ricker wavelet and the wavelet of maximum paddle motion error, Figure 4.3. In this last fig-
ure it is also shown the elevation errors of both wavelets and the absolute cumulative error. The
average elevation error of the wavelet due to the maximum paddle motion error can be computed
by dividing the cumulative error over its integration time. Instead of using an arbitrarily chosen
integration time, like 5 seconds in Table 4.2, it was chosen a characteristic time of the wave, its
peak period. As can be seen in the figure, the peak period covers an area where the 99.9% of the
total cumulative error can be found and, additionally, the cumulative error curve is approximately
linear; so it is reasonable to define the maximum time-averaged error as:

ε̄wlet,max =
εcum(Tpeak/2)− εcum(−Tpeak/2)

Tpeak
(4.1)

and the theoretic repeatability criterion as:

ε̄sources < ε̄wlet,max (4.2)

The data from Figure 4.3 gives the following maximum errors function of the wave crest height:

Table 4.3: Maximum time-averaged wavelet errors derived by linear theory for Tpeak = 2.2s.

Wave crest height
150 170 200 mm

ε̄wlet,max 0.386(0.26) 0.405(0.24) 0.433(0.22) mm(%Hc)
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Figure 4.1: Wavemaker control signals for the generation of three waves with the same peak period, Tpeak =
2.2s, and different wave crest height: Hc = 150mm ( ), Hc = 170mm ( ) and Hc = 200mm ( ).

The ’safety’ factor mentioned at the beginning of the section can now be explained. The repeata-
bility criterion, eq. (4.2), requires that the average error introduced in the wavelet by other sources
of variability must be smaller than the maximum average error introduced by the wavemaker mo-
tion uncertainty to consider two tests repeatable. Nevertheless, linear theory was used to obtain
the maximum average error introduced by the wavemaker. This error is, therefore, smaller than
the error derived from a nonlinear theory as wave interactions would lead to larger errors as stated
by Fernández et al. (2014). This means that:

ε̄sources < ε̄wlet,max,linear < ε̄wlet,max,nonlinear (4.3)

4.2.4 Experimental repeatability criterion
The repeatability criterion derived in the previous section presents a way to theoretically compute
the limits in the sources of variability—how much a source of variability needs to be controlled
experimentally to expect repeatable results. However, it cannot be used to directly determine
experimental repeatability because the criterion is defined at the focal point, where nonlinearities
become important and the breaking wave is no longer a smooth wavelet but an overturning wave.
As the wave propagation algorithm, see chapter 5, allows to compute the wave elevation at any
position in the flume given the control signal, the control signals derived shown in Figure 4.2 can
be used to compute the wave elevations at the positions where the experimental measurements
of the wave elevation are taken, at 5.2 and 7.7 meters from the wavemaker, x = (−4.8,−2.3)m,
see Figure 4.4; which can be used to establish the experimental repeatability criterion.

Perlin and Bustamante (2016) presented a method for the quantitative comparison of two signals,
applicable to temporal and/or spatial extent in one or two dimensions. The method returns a
similarity parameter, Q, that has been normalized so that it lies between zero and one. When the
quotient is zero both surfaces (signals) are in perfect agreement, whereas a value of one indicates
perfect disagreement. The method is based on the Sobolev norm of the Fourier-space represen-
tation in conjunction with a normalizing denominator via the triangle inequality. The normalized
error or similarity parameter, Q, is defined as:

Q(f1, f2) =

(∫
|F1(ω)− F2(ω)|2 dω

)1/2

(∫
|F1(ω)|2 dω

)1/2

+

(∫
|F2(ω)|2 dω

)1/2
(4.4)

where F (ω) is the usual Fourier transform of f(t).

Note that the definition takes advantage of using the phase information as well as the amplitude
in the frequency domain to quantify the difference between two signals.
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Figure 4.2: Derivation of the control signal used to compute the maximum error at the focal point due
to paddle motion uncertainty. The maximum wavemaker motion error ( ) is computed from the original
Ricker control signal ( ) to derive a control signal that maximizes the error without applying a phase shift
( ).

Figure 4.3: Comparison of the wavelets obtained from the undisturbed control signal and considering the
design maximum error of the wavemaker: Hc = 150mm ( ), Hc = 170mm ( ), Hc = 200mm ( ),
wavelet from max. wavemaker motion error ( ). The elevation error is plotted due to the small differences
obtained, < 1mm. The absolute cumulative error is also shown, from which the average elevation error, as
defined in Table 4.2, can be computed over the peak period.
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(a) Free surface elevations at x = −4.8m.

(b) Free surface elevations at x = −2.3m.

Figure 4.4: Theoretical wave elevations at the positions where the experimental measurements are taken,
4.8m and 2.3m from the impact wall. The solid lines represent the wave elevations from the Ricker spectrum
for Hc = 150mm ( ), Hc = 170mm ( ) and Hc = 200mm ( ). The dashed lines the elevations
obtained from the control signal of the maximum paddle motion error ( ). Three zoomed-in plots have
been included at each position to perceive the small differences in wave elevations due to the maximum
motion error of the wavemaker design.
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Table 4.4: Maximum similarity parameter, Qmax, derived by linear theory for Tpeak = 2.2s at two intermediate
positions along the flume to obtain repeatable focused waves.

Wave crest height
150 170 200 mm

Qmax
x = −4.8m 0.003 0.003 0.003 —
x = −2.3m 0.003 0.003 0.003 —

The application of the expression to the wave elevations computed at the intermediate positions
along the flume, Figure 4.4, yields the similarity values shown in Table 4.4.

These results clearly show that the differences in wave propagation remain constant along the
flume by using linear theory. Qmax is the maximum ’dissimilarity’ due to the design requirements
of the wavemaker. Therefore, the repeatability criterion, eq. (4.2), can be rewritten in terms of the
similarity parameter to evaluate experimental repeatability:

Qsources ≤ Qmax (4.5)

as:

Qexp = Qwm +Qsources (4.6)

and:

Qwm ≤ Qmax = 0.003 (4.7)

then:

Qexp ≤ 2Qmax = 0.006 (4.8)

This value has been used in chapter 6 to evaluate the experimental wave focusing repeatability.

4.3 Uncertainty in the water depth measurements
If the wavemaker was considered the most important element in wave generation, wave focusing
and wave repeatability; the water depth is also a very sensitive parameter. In chapters 2 and 3
the (linear) theory in wave focusing and wave generation was presented. A common parameter in
the expressions defining the theory is the water depth. It appears in wave generation through the
transfer function and in wave propagation through the dispersion relation—only in deep water con-
ditions wave propagation would be independent of the water depth. In linear theory, water depth
affects wave propagation by altering the wave speed of the different components. Higher frequen-
cies are less sensitive to a change in water depth because they ’are’ in a deep water regime.
On the other hand, lower frequencies are more sensitive to a water depth change, speeding up
when the water depth is increased, see Figure 4.5a. Water depth also affects wave generation
by increasing the amplitude of the generated wave. Higher frequencies are less affected by water
depth changes because the small wavenumbers dominate over the water depth in eq. (3.10) and
the paddle motion tends to zero, see Figure 4.5b.

4.3.1 Evaluation of the variability
The procedure for the evaluation of the variability introduced by uncertainties in the water depth
measurements is similar to the method used for the evaluation of the paddle motion uncertainties.
The goal is to obtain the wavelet resulting from the control signal considering the uncertainties in
the water depth.

The control signal derived from the Ricker spectrum at the design water depth, h = 400mm, is
used to compute the wave train that will propagate to the focal point—multiplying by the transfer
function, eq. (3.10). Although the water depth used in the transfer function would range from 395
to 405 millimeters, i.e., h ∈ 400 ± 5mm. The wave train is then propagated by linear theory to
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(a)

(b)

Figure 4.5: Effects of the water depth on the phase velocity (a) and in the amplitude of the generated wave
component (b) in function of the wave frequency for h = 401mm ( ), h = 405mm ( ) and h = 410mm
( ). Shown in percentage of the phase velocity and wave amplitude at h = 400mm.

the focal point, with its corresponding water depth, resulting in different wavelets which are then
compared in the same way as the paddle motion uncertainty, Figure 4.3. The expression used to
obtain the wavelets considering water depth uncertainties is1:

ηwlet(h, t) =

n∑
i=1

ai exp

[
i
(

(ki,h − ki,400)xf − ωit
)]
· ζ(h)

ζ(400)
(4.9)

where ki,400 and ki,h are, respectively, the wavenumbers obtained at the design water depth
and considering a ∆h between ±5 millimeters and ζ(400) and ζ(h) are the transfer functions from
flap excursion to wave elevation, eq. (3.10), at the design water depth and ∆h.

The results of applying the equation to five water depths are depicted in Figure 4.6 for a 200
millimeter wave crest height. The first thing that draws the attention is the deviation that water
depth introduces: approximately five times larger than the maximum allowable error derived in
the previous section for only 2 millimeters difference, ∆h = 2mm; and over ten times larger for
5 millimeters difference, ∆h = 5mm, which clearly shows the importance of the water depth and
how carefully and precise it must be measured and controlled. Also note that the cumulative errors
at h = 395mm and h = 405mm are not exactly the same. Increasing/reducing the water depth
leads to differing errors due to less/more wave components ’feeling’ the bottom of the flume, i.e.,
the wave components are displaced towards a deep/shallow water regime respectively. Lastly,
the effects of water depth on the wave celerity as shown in Figure 4.5a are also appreciable.
Increasing the water depth shifts the wavelet to the left (negative times) which means the focused
wave arrives sooner at the focal point, therefore propagating faster. Another conclusion that can

1The mathematical derivation of the equation can be found in chapter 5.
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Figure 4.6: Resulting wavelets for Hc = 200mm after adding a ∆h = −5mm ( ), ∆h = −2mm ( ),
∆h = 0mm ( ), ∆h = 2mm ( ) and ∆h = 5mm ( ) to the design water depth. The maximum error
computed in previous section ( ) is also shown to give insight about the required control over the water
depth.

be drawn combining Figures 4.5a and 4.6 is that the focal point shifts with the water depth. The
propagation velocity of the lower frequencies is more sensitive than the higher ones to a change
in the water depth, which means that the focal time of the higher frequencies remains almost
constant, whereas the focal time of the lower frequencies reduces as the water depth increases
and vice versa. This implies that the waves must meet before/after the focal point depending on
the water depth change.

The averaged errors of the wavelets over a peak period are shown in Table 4.5. An important
result from the table is that water depth variability is a linear function of the wave crest height,
which means that the error can be derived for any intermediate wave crest height multiplying the
normalized error by the wave crest height.

Table 4.5: Time-averaged wavelet errors due to water depth variability.

Crest Height Water depth
mm 395 396 397 398 399 400 401 402 403 404 405 mm

150
4.52 3.61 2.70 1.80 0.90 0.00 0.89 1.78 2.66 3.54 4.42 mm

3.01 2.41 1.80 1.20 0.60 0.00 0.59 1.19 1.78 2.36 2.94 %Hc

170
5.12 4.09 3.06 2.04 1.02 0.00 1.01 2.02 3.02 4.02 5.01 mm

3.01 2.41 1.80 1.20 0.60 0.00 0.59 1.19 1.78 2.36 2.94 %Hc

200
6.03 4.81 3.60 2.40 1.20 0.00 1.19 2.37 3.55 4.73 5.89 mm

3.01 2.41 1.80 1.20 0.60 0.00 0.59 1.19 1.78 2.36 2.94 %Hc

From Table 4.3 and 4.5 the maximum uncertainty in the water depth measurement and control,
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in the absence of any other source of variability, can be obtained by means of a simple linear
interpolation, Table 4.6.

Table 4.6: Maximum uncertainty in water depth measurement and control, Uh,max, in the absence of other
sources of variability, to satisfy the repeatability criterion defined in the previous sections.

Crest Height
150 170 200 mm

Uh,max 0.43 0.41 0.37 mm

4.4 Long bounded waves—seiching
Seiches are long-period standing oscillations in an enclosed basin or in a locally isolated part of a
basin, commonly initiated from atmospheric processes or from the non-linear interaction of waves
or swell. In fact, wave generation in an enclosed flume will cause seiching due to wave reflections
or wave grouping effects that can transfer wave energy to low frequencies (Haller and Dalrymple,
2001). While the term typically used to describe the free-surface oscillations occurring in storage
tanks or basins is sloshing, in this work the term seiching will be used instead. Sloshing refers
to any movement of liquid inside another object. However, the motion under consideration in this
section occurs at the natural resonant periods of the basin, known as seiches.

The periods of the seiches are determined by the basin geometry. The mode with lowest fre-
quency is referred to as the fundamental mode (Mei, 1989). These ’eigen’ frequencies are inde-
pendent of the external mechanism forcing the oscillation. They are a fundamental property of a
particular basin. In closed basins, energy losses of seiches are mostly associated with dissipa-
tion (Rabinovich, 2010). Beaches at the end of wave flumes provide a mechanism to dissipate
the wave energy. Nevertheless, the extremely long period and small amplitude of these standing
waves makes beaches highly inefficient against them. As a consequence, these waves stay in
the wave flume for a long time, altering the conditions found in still water by: (1) making the local
water depth a function of time and the longitudinal position in the flume, h(x, t); and (2) pulling
mass from one end of the flume to the other due to the oscillatory motion, therefore inducing a
current.

4.4.1 Eigen periods
The elevation of a standing wave, ηs, in a closed, long and narrow rectangular basin of length, L,
and uniform depth, h, has a single trigonometric form (Wilson, 1972):

ηs(x, t) = as cos(kx) cos(ωt) (4.10)

As shown in chapter 2, the angular frequency and wave number are linked through the following
relation:

cp =
ω

k
(4.11)

where cp is the long-wave phase speed derived from the Airy wave theory for shallow water
regime, eq. (2.22)—shallow water can be assumed because the wavelength is much longer than
the water depth.

The impermeability condition at x = 0 and x = L yields the wave numbers:

k =
π

L
,

2π

L
,

3π

L
, . . . ,

nπ

L
(4.12)

From where the Merian’s expression, for the natural periods of a standing wave in a rectangular
basin of uniform depth, is found combining both relations, eq. (4.11) and eq. (4.12) (Rabinovich,
2010):

Tn =
2L

n
√
gh

where: n = 1, 2, 3, . . . (4.13)
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Table 4.7: Eigen periods of the MWL flume for h = 400mm.

Mode
n = 1 n = 2 n = 3

Period 10.1 5.0 3.4 s

This relation shows that the longer the basin length or the shallower the basin depth, the larger
the seiche period. The fundamental mode, n = 1, and the odd modes are antisymmetric: when at
one side the water is at its maximum the opposite side is at its minimum. This means that a nodal
point is found at x = L/2. The nodal points or lines are those positions where η(x, t) = 0 for all
time, see Figure 4.7.

The eigen periods of the first three seiche modes are shown in Table 4.7.

4.4.2 Seiching-induced currents
In addition to the disturbance of the free surface, seiches induce a current due to mass being
pulled from one side of the flume to the other. The maximum seiche-induced current is located
at the nodal point of the seiche and can be roughly estimated by eq. (4.14)—conservation of
momentum (Rabinovich, 2010).

Vmax = as

√
g

h
(4.14)

Assuming an amplitude of the first seiche mode, as = 0.5mm, and the design water depth, h =
400mm, results in Vmax ≈ 2.5mms−1; which might seem a small current velocity. However, the last
generated wave reaches the focal point in approximately 5 seconds, see Figure 4.2 for instance,
which is half the period of the first seiche mode of the MWL flume. This means that, in the
presence of a seiche in the flume, the last wave might propagate in an opposing or following
current at all time. A (too) simple calculation, multiplying the focal time of the last wave by the
maximum velocity of the seiche-induced current, results in a shift of the focal point of ∆xf =
Vmaxtf ≈ 12mm.

Potential theory can be used to determine the velocity field of a seiche mode. A standing wave
is formed by the superposition of two waves, with the same frequency, propagating in opposite
directions. As superposition is valid in potential theory, the velocity potential of the standing wave
is found adding up the velocity potentials of both waves. Assuming shallow water, the velocity
potential of the waves is:

Φr = =
{
ar

1

kh

ω

k
exp

[
i(kx− ωt)

]}
(4.15)

Φl = =
{
al

1

kh

ω

k
exp

[
i(−kx− ωt)

]}
(4.16)

Closed basin
n = 3

n = 4

0.00 1.00
L

n = 1

n = 2

n = 3

n = 2

n = 3

n = 4

n = 2

n = 3

n = 4 0.00 1.00
L

Figure 4.7: Surface elevations for the first four seiche modes in a closed rectangular basin of uniform depth
(Rabinovich, 2010).
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where the subindices r and l refer to a right and left propagating wave, repectively.

Superposition yields the velocity potential of the standing wave:

Φs = Φr + Φl (4.17)

Φs = as
1

kh

ω

k
cos(kx) sin(−ωt) (4.18)

and its derivative w.r.t. the x-axis gives the horizontal velocity in the flow:

ux(x, t) =
∂Φs

∂x
(4.19)

ux(x, t) = as
ω

kh
sin(kx) sin(ωt) (4.20)

As shallow water was assumed, the horizontal velocities are depth-independent and the result of
eq. (4.20) is equal to the depth-averaged horizontal velocity.

4.4.3 Evaluation of the variability
The procedure for the evaluation of the variability introduced by a seiche in the wave flume is
similar to the method used in the previous sections. The objective is the same: obtaining the
wavelet at the focal point resulting from propagating the wave train generated by the control signal.
This time, the fundamental seiching mode is placed in the flume while waves are being generated
and propagated—it was assumed that higher modes damp much faster than the fundamental
mode, being the latter the main source of seiching variability.

The control signal derived from the Ricker spectrum at the design water depth, h = 400mm, is
used to compute the wave train that will propagate to the focal point. However, the process is not
as straightforward as it was in the previous section. It is assumed that the fundamental mode was
not completely damped and, therefore, the water depth at the wavemaker oscillates around the
design water depth.

hwm(t) = hd + ηs(−xf , t) (4.21)

Thus, the wave train generated by the control signal considering the fundamental seiching mode
is determined by:

ηwm(t) =

n∑
i=1

ai exp
[
i(−ki,400xf − ωit)

]ζ(hwm(t))

ζ(400)
(4.22)

At this point, a new phenomenon must be introduced: the Doppler shift of the frequency of a
propagating wave in the presence of a current. A constant current (in depth and length) adds
up to the flow, increasing or decreasing the horizontal fluid velocities in a way that two people,
one of them in a stationary frame of reference and the other one moving with the current, would
measure two different wave periods. When the current is constant in depth but its magnitude
depends on the longitudinal position—as is the case of a seiche-induced current—the horizontal
fluid velocities are accelerated in the direction of the gradient of the current—the wave elevation
would also be affected due to mass conservation. Consequence of the acceleration, the wave
period is progressively increasing or reducing as the wave propagates. However, for an observer
from a stationary frame of reference, it is the wave length which gets shorter/longer. This means
that, in a Lagrangian frame of reference, the Doppler shift occurs in the wave period, whereas in
an Eulerian frame of reference the shift occurs in the wave length, see Figure 4.8.

The combined effects of seiching were included in the wave propagation algorithm by allowing the
wave to change its wavenumber as it propagates in an oscillating water depth and in the presence
of a current. The equation to propagate the wave train, ηwm(t), to the focal point is2:

ηwlet(t) =

n∑
i=1

ai exp

[
i

(∫ 0

−xf

ki(x, t) dx− ωit+ φi,wm

)]
ζ(hwm(t))

ζ(400)
(4.23)

2The mathematical derivation of the equation can be found in chapter 5.
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Figure 4.8: Effects of an opposing current—uniform over depth and non-uniform over time/space—in the
wave characteristics depending on the frame of reference.

where ki(x, t) is obtained from:

ωi = σi − ki(x, t)ux(x, t) (4.24)

σ2
i = ki(x, t)g tanh

(
ki(x, t)

(
hd + ηs(x, t)

))
(4.25)

with σi the intrinsic frequency, i.e., the frequency of the wave relative to the current; and φi,wm

the phase of each wave component at the wavemaker at t = 0, which are obtained from the
phases of the wave train, ηwm(0):

φi,wm = −ki,400xf (4.26)

Computing the wavelet requires a numerical method because the dispersion relation is an implicit
equation. The domain has been discretized in 1000 elements, which corresponds to a ∆x =
10mm. The shortest of the wave components, approximately a frequency of 3.5Hz, has a wave
length of approximately 125 millimeters. Therefore, a discretization at centimeter level ensures
having at least 10 integration points per wavelength in all wave components. Bisection method
was used to compute the wave numbers and Simpson’s rule to integrate the wave numbers along
the flume.

The results obtained from including the fundamental seiching mode in wave generation and prop-
agation are depicted in Figure 4.9 for Hc = 200mm. The introduced seiche amplitude ranged from
0 to 5 millimeters. Additionally, the seiche focal-phase was set to 0 and π/2 radians to evaluate
the effects of a leading/opposing current in the lower frequencies—it is important to remark that
the phase of the seiche is specified at the focal time, t = 0, because the initial time of the control
signal is not fixed, it can be extended/shortened. Overall, these results show that seiches are
less important than the accurate measurement and control of the water depth. The errors from
the uncertainties in the paddle motion and from seiching are in the same order of magnitude—al-
though seiches of 5 millimeters amplitude are never found in the flume with typical waiting times
(20 minutes), which indicates that seiching is not expected to be a problem in the experimental
flume unless wave-wave interactions are highly sensitive to wave-current interactions. It is also
found that the errors of a propagating wave train in a seiche with focal phase φs = 0 lead to
smaller errors than when the focal phase is φs = π/2. This is in agreement with the results from
the evaluation of the water depth uncertainties. A seiche with φs = 0 is at its maximum amplitude
at the focal time at the focal point. This means that those waves with a focal time smaller than
half the period of the seiche will propagate on a free surface elevation that is, at all times, above
the mean water level; therefore increasing the mean water depth. The conclusion of the previous
section was that an increase in the water depth leads to a smaller error than a decrease, which is
also shown in this section.
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Figure 4.9: Resulting wavelets for Hc = 200mm after introducing the fundamental seiching mode in the
wave propagation algorithm: as = 0mm and φs = 0 ( ), as = 2mm and φs = 0 ( ), as = 2mm and
φs = π/2 ( ), as = 5mm and φs = 0 ( ); and as = 5mm and φs = π/2 ( ). The maximum error
derived from the paddle motion uncertainty ( ) is shown to give insight about the importance of seiching.

The averaged errors of the wavelets over a peak period are shown in Table 4.8. As can be seen,
seiching variability is a linear function of the wave crest height, which means that the error could
be derived for any intermediate wave crest height multiplying the normalized error by the wave
crest height.

Table 4.8: Time-averaged wavelet errors due to seiching variability.

Crest Height
Seiche amplitude

φs = 0 φs = π/2

mm 5 4 3 2 1 0 1 2 3 4 5 mm

150
0.33 0.26 0.20 0.13 0.07 0.00 0.07 0.14 0.21 0.29 0.36 mm

0.22 0.18 0.13 0.09 0.05 0.00 0.05 0.09 0.14 0.19 0.24 %Hc

170
0.37 0.30 0.23 0.15 0.08 0.00 0.08 0.16 0.24 0.32 0.41 mm

0.22 0.18 0.13 0.09 0.05 0.00 0.05 0.09 0.14 0.19 0.24 %Hc

200
0.44 0.35 0.27 0.18 0.09 0.00 0.09 0.19 0.28 0.38 0.48 mm

0.22 0.18 0.13 0.09 0.05 0.00 0.05 0.09 0.14 0.19 0.24 %Hc

4.5 Combined effect of water depth and seiching
The set of equations derived in the previous section can be used to evaluate the repeatability of
a focused wave when the effects of seiching and water depth uncertainty are combined. For this,
the design water depth, hd, in eq. (4.21) and eq. (4.25) is taken as h ∈ 400± 5mm, and the same
procedure is followed.
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Figure 4.10: Time-averaged wavelet errors due to seiching and water depth uncertainty. The repeatability
criteria defined at the beginning of the chapter is also included.

The normalized time-averaged errors of the resulting wavelets are shown in Figure 4.10. These
results are in agreement with the conclusions from water depth variability and seiching. The tilt in
the contours indicate that seiche–water-depth interaction lead to larger errors when both effects
interact constructively. Neglecting the effects on the higher frequencies—shorter waves are barely
affected by water depth and the seiching effects average to zero—it can be explained with those
wave components whose focal time is shorter than half the period of the seiche, the longer waves
of the spectrum. These waves propagate at all times in a leading or opposing current and the
mean water depth they propagate on deviates from the design water depth. Thus, when the focal
phase of the seiche is φs = 0 and the change in water depth is negative, ∆h < 0, the seiche wave
induces a positive current increasing the propagation velocity of the wave components; and the
water depth change slows them down due to the stronger interaction with the bottom—the effect
is exactly the opposite when φs = π/2 and ∆h > 0. The combined effect is a time-averaged error
of the wavelet that is smaller than if seiching and water depth interact constructively, φs = 0 and
∆h > 0, or φs = π/2 and ∆h < 0; which results in inclined contour lines.

The repeatability criterion derived in section 4.2.3 is also included in Figure 4.10. These contour
lines clearly show that the importance of seiching in wave repeatability is not as relevant as the
accurate control and measurement of the water depth. Nevertheless, an accurate measurement
of the water depth cannot be done if the water surface is not completely still. A solution would be
to place the measurement device in the nodal point of the fundamental mode, but disturbances of
the symmetric modes are unavoidable.

4.6 Residual currents
When a test is carried out in an experimental flume, shear stresses inside the boundary lay-
er—which develops in the vicinity of the walls of the flume due to viscosity—eddy generation from
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the breaking wave and the wave impact introduce vorticity to the flow. Swan (1990) investigated
the velocity beneath a series of progressive gravity waves breaking in a beach, concluding that:
convection does play an important part within an experimental flume. The vorticity generated at
the end conditions is convected backwards with the mass transport velocity. As a result, the near
shore region progressively influences the entire length of the wave flume. The convective pro-
cesses eventually dominate the flow behaviour and the assumption of irrotationality breaks down.
However, these conclusions are drawn after 3 hours of wave generation, which gives the energy
and time required for vorticity to be convected and develop a drift velocity field in the flume. In the
discussion of the results it is stated that: in the early stages, the motion in the interior of the flow
field remains irrotational and therefore the drift velocity is very similar to the back flow predicted
by Stokes’ solution.

While the experimental set-up is not the same—the presence of a beach in the breaking region
changes the way vorticity is being generated and convected—the time scale difference between
these two experiments has been decisive to assume that residual currents due to convected
vorticity from a previous experiment is negligible in wave focusing. Wave generation in the MWL
flume takes approximately 60 seconds. During this time, vorticity is being generated at the side
walls and the bottom due to viscosity, and convected through the flow. Once wave generation
finishes, the vorticity introduced by the walls, the breaking wave and the wave impact diffuses as
there is no longer an energy source for convection. Therefore, as vorticity is convected for about
a minute, compared to hours in the previous publication, it has been assumed that any particle
motion introduced in the flow from a previous experiment rapidly decays due to diffusion and its
magnitude is negligible compared to the seiche-induced current.
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Chapter 5

Code implementation

The previous chapter has proposed a theoretical method to compute and evaluate the variability
introduced by the sources of variability at different positions along the flume. The method relies on
the wave focusing technique used—the phase speed method—to alter the propagation velocity of
the different wave components as the water depth varies or a current develops. The differences in
the wave celerity results in the phase shift of some wave components which leads to differences
in the focal point/time and in the amplitude of the wavelet.

This chapter is dedicated to describe the implementation of the expressions presented in the
previous chapters into the programming language Python by means of open-source libraries. It
has been considered a modular approach in its development, such that if, for instance, another
spectrum formulation is of interest, the user only has to define a new function in the script and call
it instead of the Ricker formulation.

5.1 Generation of control signals
The control signal is obtained by solving eq. (3.11). The amplitude spectrum and the wavenum-
bers corresponding to each frequency are required before it can be computed. These are readily
determined taking advantage of basic array manipulations of Numpy arrays in Python. Numpy is
a package used for scientific computing with Python and, besides its scientific uses, it can also be
used as an efficient multidimensional container of generic data (van der Walt, 2011). The basic
array manipulations used in the following sections are:

• Attributes of arrays: determining the size, shape, memory consumption and data type of the
array.

• Indexing of arrays: getting and setting the value of individual array elements.

• Slicing of arrays: getting and setting smaller subarrays withing a larger array.

• Reshaping of arrays: changing the shape of a given array.

• Joining and splitting of arrays: combining multiple arrays into one, and splitting one array
into many.

The amplitude spectrum

First of all, the spectrum properties must be defined to compute the Ricker spectrum expressed
by eq. (2.35), i.e., the wave crest height, Hc, the peak period, ωp, the parameters controlling
the spectrum shape, βl and βh; and the number of wave components into which the spectrum
is discretized, n. Then, an evenly spaced 1D-array containing the frequencies in the interval of
interest is defined. During the thesis, the (arbitrarily) chosen interval has been [0, 8ωp] rad/s. The
higher frequency of the interval (upper bound) has to be large enough such that its amplitude can
be neglected. Note that zero amplitude in the Ricker spectrum is an asymptotic limit only reached
at ω = +∞ rad/s—although it rapidly decreases from the peak frequency—which means that
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all wave components participate in obtaining the characteristic wavelet and cannot be drastically
removed.

The piecewise expression of the amplitude spectrum is implemented using the slicing attribute
of Numpy arrays and the possibility to be used with boolean arrays. An initial zero 1D-array is
defined which will store the amplitudes of each wave component. The piecewise condition is
expressed by means of a boolean mask array which takes a TRUE value at the positions where
the frequency is smaller or equal than the peak frequency and a FALSE value when otherwise.
Once the amplitude spectrum is computed, each amplitude is summed-up yielding the wave crest
height of the wavelet. As this value differs from the predefined wave crest height—the original
Ricker formulation is derived from the normalized Ricker wavelet and the implementation of βl
and βh change the total energy of the spectrum—a correction value is computed (Hc/Hc,Ricker)
and multiplied by the spectrum. The pseudocode of the required steps to obtain the amplitude
spectrum is shown below:

Given Hc, ωp, βl, βh and n
Set ωlist = linspace from 0 to 8ωp, num=n
Initialize alist = zeros(n)
Set mask = ωlist ≤ ωp # boolean array: [1, 1, · · · , 1, 0, 0, · · · , 0]

Set alist where mask==1 to aR(ω ≤ ωp)
Set alist where mask==0 to aR(ω > ωp)
Set Hc,Ricker = sum(alist)
Set correction = Hc/Hc,Ricker

Update alist = correction · alist # results in a wavelet with crest height Hc

The wavenumbers

Approximately 100.000 wave components are used to derive a control signal. Computing the
wavenumbers requires the use of a numerical solver because the dispersion relation is an implicit
equation, resulting in the most expensive task in the algorithm. Bisection method was used due
to its simplicity and because it resulted in faster convergence of the solution compared to built-
in solvers. Nevertheless, the computational times were still too high to compute the variability
introduced by seiching when written in pure Python. In consequence, the task was written in
TensorFlow, an open-source library for Python used for machine learning. The library builds a
dataflow graph with the operations to be done highly optimizing its parallelization. In addition, it
was used to perform the computation in the GPU (CUDA cores) instead of in the CPU. As an
example of the differences in computational power, the latest GPU’s have over 3000 CUDA cores
compared to 4-8 cores in an average CPU.

The control signal

The wavemaker control signal was computed in Python rewriting eq. (3.11) into a matrix equation
that makes use of broadcasting—a property of Numpy arrays to perform arithmetic operations on
arrays with different shapes. It resembles the mathematic operation known as dyadic product,
outer product or tensor product:

ab ≡ a⊗ b ≡ ab> =

 a1

a2

a3

( b1 b2 b3

)
=

 a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3


with the advantage that Numpy broadcasting extends it to any arithmetic operation. As a result,
the expression used in Python to compute the wavemaker control signal is:

X =

[
a� ζ

]
·
[

exp
(
i(−k>xf − ω>t)

)]
(5.1)
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with:

ζ =
[
4i sinh2(kh)

]
�
[

sinh(2kh) + 2kh
]

(5.2)

where all vectors are row vectors 1× n with exception of t, which is a row vector whose length
is given by the duration of the control signal and its resolution. The symbol · is the scalar product
and � represent the Hadamard division, or the element-wise matrix division.

The result of eq. (5.1) is a 1D-array with the same shape as t where the element Xi is the paddle
excursion at time ti.

As discussed in chapter 3, the last part of the wavemaker control signal shifts to a constant non-
zero value when βl 6= 0. Nevertheless, the wavemaker control system requires that the signal
starts and ends with zero values for a duration of at least two seconds. At the beginning of the
signal, this is obtained attaching a zero 1D-array whose length is equal to 2Fs, where Fs is the
sampling frequency of the control signal. At the end of the control signal, a sinusoidal shape
must be first attached to it slowly bringing the paddle back to its zero position. In Python, this is
achieved concatenating the vector:

Xend = Xn

(
1

2
+

1

2
cos

(
π

Dend
tend

))
(5.3)

to the end of the vector X. Where Xn is the last element of X, Dend is the duration of the control
signal to bring the paddle back to the zero position and tend is a row vector from 0 to Dend with the
same time resolution as the control signal.

As also mentioned in chapter 3, due to asymmetry of the control signal—the paddle excursion for-
ward is larger than backwards—it may happen that the control signal is rejected by the wavemaker
control system due to the motion being out of limits—it usually occurs when the wave character-
istics are too large, for instance the wave crest height or its period; or when the spectrum is too
narrow, which means the wave energy must be concentrated over a small number of wave com-
ponents. To tackle this issue and extend the range of waves that can be generated, the possibility
to shift the control signal was included. As the shift results in a change of the zero position of the
wavemaker, the focal point has to be adjusted to account for the later shift of the control signal.
For example, if the focal point is expected at 10cm from the impact wall, a shift of 5cm backwards
in the control signal will result in the focal point at 15cm from the impact wall. Thus, the focal point
is modified given the shift that is desired in the control signal by:

xf = xf,0 + ∆X (5.4)

where xf,0 is the focal point considering the frame of reference depicted in Figure 2.1 and ∆X
is the shift in the zero position of the wavemaker, being positive forward. Then, a sinusoidal signal
is attached to the beginning of the control signal, slowly moving the paddle from the mechanical
zero position to the shifted zero position. In Python it is achieved concatenating the vector:

Xbeg = ∆X

(
1

2
− 1

2
cos

(
π

Dbeg
tbeg

))
(5.5)

in front of the vector X. Where Dbeg and tbeg are, respectively, the duration of control signal
to bring the wavemaker to the shifted zero and a row vector from 0 to Dbeg, with the same time
resolution as the control signal.

The previous series of steps result in a control signal as depicted in Figure 3.3. The pseudocode
to obtain the control signal is shown below:
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Given xf,0, ∆X, ω, a, k, ζ, t, tbeg, tend, Dbeg and Dend

Set xf = xf,0 + ∆X
Compute X # Eq. (5.1)

Compute Xbeg # Eq. (5.5)

Compute Xend # Eq. (5.3)

Update X = concatenate(Xbeg, X, Xend)

Update X = 0-padding(X, len=2Fs, side=both ends)

5.2 Sources of variability
The sources of variability were evaluated in the previous chapter propagating the wave train gen-
erated by the control signal, at different water depths and current conditions, to the focal point;
obtaining wavelets that slightly differed from the Ricker wavelet. This section explains how the
expressions presented in chapter 4 were implemented in the wave propagation algorithm as a
module that can be activated when the variability effects are to be evaluated.

Water depth variability

The wavelet at the focal point considering errors in the water depth measurements are obtained
with eq. (4.9). Note that the control signal (in time domain) is not explicitly included in this
expression. The reason is that, if the control signal were the input of the algorithm to get the
wavelets, a Fourier analysis would be required to get the amplitude spectrum of the signal, leading
to errors when compared to the Ricker spectrum due to the finite length and discrete resolution of
the input signal. Instead, the Ricker amplitude spectrum was divided by the transfer function from
paddle excursion to wave elevation at the design water depth but, instead of adding up the result
which would lead to a time domain signal, the result is multiplied again by the transfer function, this
time considering a different water depth. These operations model the (linear) variability introduced
in the amplitude spectrum by the wavemaker, due to the fact that the control signal was derived
at the design water depth but wave generation occurred at a different water depth. Then, knowing
the phase of each wave component at the wavemaker, x = −xf , at t = 0 and h = 400mm;
the components are propagated to the focal point at a different water depth, which affects the
dispersion relation and results in a phase shift. Adding up all wave components over time results
in the wavelets considering errors in the measurement of the water depth.

The mathematical derivation of the expression is shown below.

• The free surface elevation of a linear wave is determined by:

η(x, t) = a exp
[
i (kx− ωt+ φ)

]
(5.6)

• The paddle excursion to produce the wave elevation at the wavemaker, x = −xf , given the
initial phase, φ = 0, is determined by:

X(−xf , t) = a exp
[
i (−k400xf − ωt)

] 1

ζ(400)
(5.7)

where k400 is the wavenumber at the design water depth, h = 400mm; and ζ(400) is the
transfer function from flap excursion to wave elevation at the design water depth, eq. (3.10).

• To obtain the free surface elevation at the wavemaker position considering water depth vari-
ability, the previous expression is multiplied by the transfer function at the new water depth:

ηwm(h, t) = a exp
[
i (−k400xf − ωt)

] ζ(h)

ζ(400)
(5.8)

• Propagating the wave back to the focal point at a different water depth results in a phase
shift, φ 6= 0:

φ = −k400xf + khxf (5.9)
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where hh is the wavenumber at the different water depth. When the water depth is the
same both wavenumbers cancel out and the phase shift is zero. On the other hand, when
the water depth increases, the wavenumber reduces (longer wavelength) and the phase
shift becomes negative, i.e., the wave crest has already passed the focal point (the wave
arrives earlier); the opposite applies when the phase is positive.

• Result of the differences in phase, the wave elevation at the focal point, x = 0, becomes:

η0(h, t) = a exp

[
i
(

(kh − k400)xf − ωt
)] ζ(h)

ζ(400)
(5.10)

• When multiple waves are found in the flume, the free surface elevation is the sum of all wave
components, resulting in eq. (4.9):

ηwlet(h, t) =

n∑
i=1

ai exp

[
i
(

(ki,h − ki,400)xf − ωit
)] ζ(h)

ζ(400)
(5.11)

Taking advantage of the Numpy array attributes presented in the previous section, the implemen-
tation of the equation is straightforward. The expression can be rewritten in a matrix form:

ηwlet(h) =

[
a ◦ ζh � ζ400

]
·
[

exp
(
i
((
k>h − k>400

)
xf − ω>t

)) ]
(5.12)

where all vectors are row vectors 1×n with exception of t, which is a row vector defining the time
domain of the wavelet. The symbol · is the scalar product and ◦ and � represent, respectively, the
Hadamard product and division, or the element-wise matrix product and division.

Seiching variability

Seiching was covered in section 4.4. The variability introduced in the wavelet was computed
considering a residual standing wave in the flume—the fundamental seiching mode—which intro-
duces a space-time-dependent current and a space-time-dependent water depth which oscillates
around the mean water depth. Consequence of the space-time dependency, a numerical ap-
proach was required to obtain the wavelets at the focal point. The expression that has been
computed numerically is eq. (4.23). Like in the previous section, the basis is to compute the vari-
ability introduced in the Ricker spectrum by the wavemaker, due to the fact that wave generation
occurred at a water depth different than the design water depth. This operation is time dependent.
Therefore, the amplitude spectrum needs to be updated at every time step. Then, the phase shift
at the focal point and focal time resulting from the different water depths is determined. The step
requires the discretization of the space and time domains to compute the wavenumbers at every
position and time in the flume—function of the local water depth and current. Lastly, the wavelet
is computed.

Mathematically, eq. (4.23) is derived as follows:

• The (general) free surface elevation of a linear wave is:

η(x, t) = a exp
[
i

(∫ x

0

k(x, t) dx− ωt+ φ

)]
(5.13)

when the wavenumber is independent of the position, k = k(t) (or k = const), and the
lower limit is zero, x0 = 0, eq. (5.6) is obtained.

• The amplitude of the wave resulting from wave generation at a different water depth than
the one used for the derivation of the control signal is:

a(t) = a0
ζ(hwm(t))

ζ(400)
(5.14)

where a0 is the desired wave amplitude, ζ(400) is the wavemaker transfer function at the
design water depth and ζ(hwm(t)) is the time-dependent transfer function of the wavemaker
at the instant water depth at the wavemaker position.
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• At the focal point, eq. (5.13) becomes:

η(0, t) = a0 exp
[
i

(∫ 0

−xf

k(x, t) dx− ωt+ φwm

)]ζ(hwm(t))

ζ(400)
(5.15)

where φwm is the phase of the wave at the wavemaker position at t = 0 due to the bounds
of the integral, given by:

φwm = −k400xf (5.16)

• Combined, when multiple waves are found in the flume, eq. (4.23) is obtained:

ηwlet(t) =

n∑
i=1

ai exp

[
i

(∫ 0

−xf

ki(x, t) dx− ωit− k400xf
)]

ζ(hwm(t))

ζ(400)
(5.17)

The expression was implemented in the algorithm in the matrix form:

ηwlet =

[
a ◦ ζhwm � ζ400

]
·
[

exp
(
i
(
K> − ω>t+ φwm

)) ]
(5.18)

where K is the result of integrating the wavenumbers from x = −xf to x = 0. a, ζ400, ω, t, and
φwm are row vectors 1 × n, with n the number of wave components. ζhwm and K are matrices
m× n, with m the length of the discretized time domain and n the number of wave components.

As can be seen, the dimensions to perform the operations do not match. For instance, the
Hadamard product a ◦ ζhwm is a [1 × n] ◦ [m × n] operation, while it would require a to be a
m × n matrix. As introduced in the beginning of the chapter, Numpy arrays have the property of
broadcasting, which automatically complete the missing dimensions in an array. In the example:

a ◦ ζhwm =
[
a1 · · · an

]
◦


ζ1,1 · · · ζ1,n

...
. . .

...
ζm,1 · · · ζm,n

 =


a1ζ1,1 · · · anζ1,n

...
. . .

...
a1ζm,1 · · · anζm,n

 (5.19)

Eq. (5.18) is, however, the last step when computing the wavelet resulting from having the fun-
damental seiching mode in the flume. The amplitudes must be computed for each time step,
as well as the transfer functions and the integration of the wavenumbers along the flume. The
pseudocode to compute the required values is shown below:

Given xf, ω, a, ζ400, x, t and ωseich

Set kseich = solve(disp relation, ω=ωseich, current=0) # Eq. (4.25)

Set k400 = solve(disp relation, ω=ω, current=0) # Eq. (4.25)

Set φwm = −k400xf
Initialize ζhwm = K = zeros(m× n)
for ti in t:
Set ηseich = aseich cos(kseichx) cos(ωseichti) # x is the discretized space vector

Set h = h400 + ηseich
Compute ux(x, ti) # Seiche current at each position, eq. (4.20)

Set k = solve(disp relation, ω=ω, current=ux(x, ti)) # Eq. (4.25)

Set K[i, :] = integrate(k, vector=x, method=Simpson)

Compute ζhwm[i, :] # Eq. (3.10)

Compute ηwlet # Eq. (5.18)
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Water depth and seiching combined variability

The previous set of expressions can be used to compute the combined variability from water
depth and seiching. The only requirement is to change the water depth when computing the
seiche-induced current and the wavenumbers at the discretized positions. The pseudocode is
very similar to the one shown above:

Given xf, ω, a, ζ400, x, t and ωseich

Set kseich = solve(disp relation, ω=ωseich, current=0) # Eq. (4.25)

Set k400 = solve(disp relation, ω=ω, current=0) # Eq. (4.25)

Set φwm = −k400xf
Initialize ζhwm = K = zeros(m× n)
for ti in t:

Set ηseich = aseich cos(kseichx) cos(ωseichti) # x is the discretized space vector

→ Set h = hvar + ηseich # hvar ∈ 400± 5mm
Compute ux(x, ti) # Seiche current at each position, eq. (4.20)

Set k = solve(disp relation, ω=ω, current=ux(x, ti)) # Eq. (4.25)

Set K[i, :] = integrate(k, vector=x, method=Simpson)

Compute ζhwm[i, :] # Eq. (3.10)

Compute ηwlet # Eq. (5.18)

5.3 Verification and validation
The aim of this section is to verify the numerical model used for the evaluation of the sources of
variability, which in the end is used for the derivation of the repeatability criteria; and to validate the
model with measurements of the free surface elevations obtained in the experimental flume. What
is to be understood by verification and validation in this context has been well expressed in Roache
(1998): verification is a purely mathematical exercise that intends to show that ”the equations are
being solved right”, whereas validation is a science/engineering activity that intends to show that
”the right equations are being solved”.

Code verification

Verification is used in numerical computations to establish the credibility of the numerical results.
Eça and Hoekstra (2014) split the verification process in two different activities: code verification
and solution verification. The former intends to verify, by error evaluation, that a given code solves
correctly the equations that the model contains. The latter intends to estimate the error/uncertainty
of a given calculation for which, in general, the exact solution is not known.

This section treats code verification of the wave propagation model used for the evaluation of
seiching variability and the combined effects of seiching and water depth. The equations used for
the derivation of the control signal and the evaluation of the water depth variability are analytic
expressions and, therefore, the magnitude of the expected errors in these calculations is the
machine truncation error.

A test case for which the solution is known has been used to verify the numerical model. In the
absence of a seiche in the flume and a still water depth equal to the design water depth, the
resulting wavelet from the numerical model must be the same as the wavelet obtained from the
Ricker spectrum:

ηwlet =

n∑
i=1

aR(ωi) exp (−iωit) (5.20)

This expression is considered to be simple enough to not require verification.

Next step is to use eq. (5.18) with the same initial amplitude spectrum to derive the numerical
wavelet considering ηseich = 0 and h = 400mm. This verifies that the space discretization is
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enough to capture the wave shape of all wave components, ensuring the accurate integration of
the wavenumbers. Figure 5.1 shows the comparison of the resulting wavelets as presented in
the same kind of graph as in the previous chapter. As can be seen, the error of the numerical
wavelet compared to the analytical one is zero—computing the amplitude error of the individual
frequencies also shows an exact zero value, meaning that if there is an error it is smaller than a
64-bit float number—which verifies the numerical model for wave propagation in the absence of a
seiche.

Figure 5.1: Comparison of the analytical wavelet ( ) obtained with eq. (5.20), and numerical wavelet
( ) obtained with eq. (5.18) in the absence of a seiche. The spectrum characteristics are: Tp = 2.2s,
Hc = 170mm, βl = 0.5 and βh = 0.45.

To verify the numerical model in the presence of a seiche, the computed velocity field of the stand-
ing wave will be compared to the maximum seiche-induced current estimated by eq. (4.14). It is
assumed that if the seiche current and elevation is computed right, the previous verification of the
propagation model ensures that the resulting wavelet is correct. Thus, considering a fundamental
seiching mode of amplitude as = 1mm, three conditions must be satisfied: (1) when the seiche
is with the maximum amplitude at one end of the flume, the velocities in the flow must be zero.
(2) when the elevation of the seiche is zero along the entire flume, the velocities at the node are
maximum and, according to eq. (4.14), its magnitude is approximately Vmax ≈ 5.0mm/s; and (3)
the boundary conditions must be satisfied, i.e., the velocities at the side walls must be zero at all
times. Figure 5.2 clearly shows that the three conditions are satisfied and, therefore, the current
and the seiche elevations are also correctly computed.

Code validation

The wave propagation algorithm presented in the previous section was used to compute the
control signals, the (theoretical) variability at the focal point and also to derive the experimental
repeatability criterion at the positions where the cameras are located (x = [−4.8,−2.3]m). The
verification step showed that the equations of the model are being solved right. Nevertheless, the
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Figure 5.2: Horizontal velocity field of the fundamental seiching mode and corresponding elevation of the
seiche at four instants. Contours show the magnitude of the horizontal velocities. In red positive in the
direction of propagation and, in blue, opposing to the wave propagation. The seiche elevation is shown with
an orange line.
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model is used to link theory and experiments and, therefore, must be also validated.

The goal of validation is to quantify the modelling uncertainty, i.e., how well the model represents
the physical world. The first task in any validation process is to determine the quantities of interest.
The model may be adequate to accurately determine some quantities and give poor estimations
on others. Once the decision has been made, a second challenge appears: determining the
most appropriate validation metric. This is still a research topic and there are several proposals
available in the literature (Eça and Hoekstra, 2013).

Models that are subjected to validation are mathematical expressions that try to represent the
physical world with high fidelity. The series of expression used in this thesis are, however, simple
expressions derived from linear theory that were never intended to give an accurate estimate of
a flow quantity. Therefore, a quantitative validation of the model does not make any sense, since
the assumptions made in its derivation are off from reality. For instance, linear wave theory fails in
estimating the wave shape. Real waves have a flatter trough and sharper crest and, therefore, a
higher order theory should have been used if an accurate estimation of the wave elevations were
required for the application. Thus, the validation of the model will be qualitative, comparing the
free surface elevations obtained experimentally and numerically at the camera positions.

While linear theory fails in predicting the wave shape and linear wavemaking theory does not
account for higher order effects, such as the generation of superharmonic waves that arise from
wave interactions, the propagation velocity is expected to be accurate—at least in those compo-
nents where the relative importance of non-linearities is small, i.e., the shorter waves. A com-
parison between the free surface elevations obtained numerically and a measurement obtained
experimentally is shown in Figure 5.3. It is clear the large differences obtained in the amplitudes of
the higher frequencies. The wave elevations are larger experimentally than numerically which can
only be explained by a shift of the spectrum towards higher frequencies due to wave generation,
meaning that linear wavemaking theory does not accurately generate the desired spectrum or that
the spectrum shape is not realistic. To check that this is the case, the numerical and experimental
amplitude spectra were computed, see Figure 5.4. The figure confirms a shift of the spectrum,
with the experimental peak frequency being almost three times higher than the theoretical one.
Regarding the wave propagation velocity, it can be seen that the phases of the waves are aligned,
with the exception of last wave of the train. As the energy of the lower frequencies is higher in the
theoretical spectrum, the apparent frequency of the last wave is lower, resulting in a wave that is
being generated later in time and, therefore, reaches the camera positions also later.

Considering the theoretical model valid or not is a difficult task. Looking at the wave elevations, it is
obvious that the model does not accurately predict the wave elevations. Nevertheless, as stated
at the beginning of the section, in model validation one should first determine the quantities of
interest. The ”quantity” used in the theoretical work to derive the experimental repeatability crite-
rion was the Fourier-space of the elevations. As depicted in Figure 5.4, the amplitude spectrum
of the elevations shifts experimentally and, therefore, should be considered not valid. However,
assuming there is a transformation vector, T , such that:

aexp(ω) = alin(ω)T (5.21)

The theoretical work and the repeatability criterion would still be valid as, according to Perlin and
Bustamante (2016): The similarity parameter Q has been normalized so that its value does not
change if the signals get re-scaled by a common factor.
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(a) Free surface elevations at x = −4.8m.

(b) Free surface elevations at x = −2.3m.

Figure 5.3: Comparison of the free surface elevations obtained numerically ( ) and experimentally ( )
at camera positions.
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Figure 5.4: Comparison of the normalized theoretical amplitude spectrum ( ) and the amplitude spectrum
of the measurements ( ).
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Chapter 6

Experimental results and analysis

Multiple wave impact tests were performed during this study to evaluate the repeatability of the
global flow of breaking waves in the Multiphase Wave Lab (MWL) at MARIN. The MWL is an
unique facility built from the results of the Sloshel Joint Industry Project (Bogaert, 2018). Bogaert
concluded that, to experimentally study the multiphase dynamics on sloshing impact loads, the
governing parameters of each multiphase dynamic must be varied one at a time. After investigat-
ing different technical solutions to perform wave impact tests in an environment that allowed such
systematic investigation, the decision was to install a wave flume inside a high-end autoclave. A
graphical representation of the design is presented in Figure 6.1.

Initial experiments in the facility were carried out to determine the parameters of the spectrum
that define specific wave characteristics, gaining insight in how they control certain aspects of
the wave (thickness and stability of the wave crest, impact type, gas pocket size and wave crest
height). Once the waves of interest were established with assistance from Olivier Kimmoun, sev-
eral number of experiments were run at different temperature and pressure conditions (only the
results obtained from different pressure conditions will be shown in this thesis). Image process-
ing techniques were then required to obtain measurements of the wavemaker motion and the
wave elevations at two positions along the flume. These measurements were compared to the
repeatability criteria derived in the previous chapters to evaluate the global flow repeatability.

In this chapter, a brief introduction to the MWL and the experimental setup is given first, section
6.1. Next, the waves used during the experiments and observations about how the spectrum
affects the wave shape are presented, section 6.2. It follows a description of the image processing
algorithms used to obtain measurements from the recordings, section 6.3; and, lastly, the results
from the experiments are presented and evaluated, section 6.4.

Figure 6.1: Basic design of the MWL flume and the 15m long autoclave (Bogaert, 2018).
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6.1 Experimental set-up
The MWL consists of a 15m long × 2.5m diameter autoclave with observation windows, gas and
liquid supply systems and a heating and cooling system for the autoclave environment and the
water in the flume tank. These systems allow a range of temperature from 5°C to 180°C and an
absolute pressure from 5mbar to 10bar. The gas inside the autoclave can be a mixture of air,
water vapor, He, N2 and SF6.

Flume tank

The flume is a 12.5m × 0.6m × 1.2m tank made of steel with five glass panels on one side for
observation and five light diffuser panels on the other. The glass panels are marked in the mid-
dle with two columns of laser printed reference dots spaced vertically every 50mm and 100mm
horizontally. Demineralized water is used in the flume to avoid corrosion that could damage the
different subsystems or that could lead to the presence of particles in the water. Due to the harsh
environmental conditions inside the autoclave—and the use of demineralized water—resistive
measurement devices cannot be used. In addition, vacuum conditions make impossible the use
of sound based devices. In consequence, a mechanical water depth sensor is placed in a pipe
parallel to the flume not disturbing the flow field. The resolution of the sensor is 0.1mm. Water
depth is continuously monitored and automatically controlled when need be through the Overall
Control System (OCS) of the facility.

Wavemaker

A position-controlled piston type wavemaker is located at one end of the flume. Its zero position
is defined such that the distance from its front surface to the impact wall is 10m. The wavemaker
can be automatically controlled through the OCS via recipes—predefined functions that send a
series of commands—or manually through the proprietary software developed by the company in
charge of its design. A very useful feature of the software is the automatic generation of motion
correction files. Usually, when a control signal is sent to the wavemaker control system, it results
in an ’erratic’ motion either due to wave reflections, friction or environmental conditions. Some
wave components are slightly out of phase and/or their amplitudes are not as prescribed. The tool
compares the measured position of the paddle with the control signal and automatically computes
a correction signal in the frequency domain. Once the correction is applied, the paddle motion
closely follows the position of the control signal. The design acceptance values of the wavemaker
motion error had been presented in Table 4.2.

The wavemaker is driven by a 10A electric motor located outside the autoclave on top of the
wavemaker. An encoder in the electric motor gives the position of the paddle with a resolution of
approximately 0.06mm. A tracking pattern has also been stuck to the side surface of the paddle,
allowing for camera measurements of its position. Behind the wavemaker, a stainless steel beach
is found, reducing sloshing impacts in the back surface of the paddle due to reflections.

Camera systems

Two high speed cameras are placed outside the autoclave focused at the impact wall. One of
them captures the breaking wave in a plane parallel to the direction of wave propagation and
perpendicular to the impact wall. The second camera is positioned at an angle such that the
transversal development of instabilities or other phenomena is captured. The cameras shoot at
1kHz to 5kHz depending on the uncertainties in the focal time—5kHz recordings require accurate
predictions of the focal time, which were not available at all times due to the different control
signals tested. These cameras were used for wave modelling—tuning the wave spectrum to get
a specific wave shape/impact—and for global flow comparisons.

Two slow speed cameras are positioned along the length of the flume, placed at 5.2m and 7.7m
from the wavemaker. These two cameras record the wave elevations at 200Hz and 100px ×
1920px resolution as only a narrow strip is required to compute the wave elevations, which saves
postprocessing time and storage capacity.
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Two additional slow speed cameras were placed at the wavemaker position which were used
to record the motion of the wavemaker. The focal length was set at 25mm and 69mm. With
this configuration, high resolution in the smaller amplitude motions is achieved—approximately
0.09mm with 69mm focal length—and sufficient horizontal field of view for the larger motions is
obtained—about 450mm with 25mm focal length.

Synchronization

The facility is equipped with a Meinberg IRIG-B time generator. Wavemaker, cameras and data
acquisition (not used during this research) are started at the desired moment through the trigger
system connected to the Meinberg card, giving a synchronization uncertainty of 0.5ms. How-
ever, while the trigger system generates a synchronized IRIG-B signal to the wavemaker, the
signal passes through the wavemaker control system before the wavemaker starts moving. This
was found to increase the synchronization uncertainty of the wavemaker to approximately 50ms.
Therefore, an IRIG-B–wavemaker synchronization was required to compare different experiments.

6.2 Selection of waves
In Chapter 2 the definition of the wave amplitude spectrum was introduced. From the investiga-
tion of the amplitude spectrums most commonly used in coastal and marine engineering, it was
concluded that neither of them was a good candidate to achieve good quality focused waves due
to reflections of the shorter wave components, propagating at the wave front, before focusing
occurs, Figure 2.7. The Ricker spectrum was found to be ideal, as the leading shorter waves
are removed from the wavelet. Additionally, it was proven to perform exceptionally well in wave
focusing experiments as presented by Kimmoun et al. (2010), resulting in a stable and smooth
wave shape.

Using the Ricker amplitude spectrum formulation presented in this thesis, eq. (2.35), and the
phase speed method as the wave focusing technique, section 2.4; five parameters are found that
control the breaking wave shape: (1) the peak frequency of the amplitude spectrum, ωp, (2) the
wave crest height, Hc, (3 and 4) the amplitude distribution of the spectrum in the lower and higher
frequencies, determined by βl and βh; and (5) the focal point, xp. During the first campaign of
experiments, the goal was to obtain a set of waves presenting differing characteristics that were
of interest not only for this thesis but also for future research in the facility. Olivier Kimmoun was
assisting during wave modelling and wave selection (observations on wave modelling are given
at the end of this section). Three waves were sought:

C3. A wave with a rounded wave crest and a gas pocket size that were rather small. Numerical
and experimental studies in wave focusing have shown that a small part of the mechanical
energy of the liquid is progressively given to the gas as the breaking wave gets closer to
the impact wall. The larger the density ratio gas-liquid, the larger the transfer of energy
(Etienne et al., 2018). The result is a delay in the wave front for increasing density ratios.
Results extracted from Karimi et al. (2016) showing the effect are presented in Figure 6.2.
As pressure variations were intended, increasing/reducing the density ratio, the wave was
selected such that the shift in the wave front does not result in extremely unstable wave
crests when the DR is increased.

The chosen wave is a focused wave at xf = 9.955m with a wave crest height of Hc = 155mm
and a peak frequency ωp = 1.85rads−1. The distribution of the amplitude is given by βl =
0.70 and βh = 0.60, which leads to a small gas pocket size and a rounded wave crest.

C12. A wave with a quasi-unstable wave crest and a large gas pocket size at ambient conditions.
This wave is intended to give understanding on the influence of the DR in the development
of wave crest instabilities.

The wave is achieved by an increase of the wave crest height to Hc = 170mm, a shift of
the focal point to xp = 10.045m and a decrease of the amplitude in the lower and higher
frequencies, βl = 0.6 and βh = 0.5; while keeping the peak frequency at ωp = 1.85rad s−1.

C13. A wave representative of a flip-through impact (a focused wave with a flat wave front). No
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Figure 6.2: Effects of the density ratio in the breaking wave due to transfer of energy (Karimi et al., 2016).

(a) Wave C3. (b) Wave C12. (c) Wave C13.

Figure 6.3: The three different waves chosen for the experiments carried out in the MWL.

gas pocket is present in this kind of waves.

The wave is challenging to get with the Ricker wave spectrum. In the literature, this kind of
wave is often obtained after the early breaking of the small wave components leading the
wave train. However, early breaking was barely observed using the Ricker spectrum, requir-
ing combinations of wave height and amplitude of the higher frequencies larger than usual.
In addition, early breaking introduces free surface instabilities in front of the wave before it
focuses, resulting in a perturbed wave crest shape, which was avoided. The closest result
with the Ricker spectrum was obtained for a focal point xp = 9.945m, a wave crest height
Hc = 180mm, increasing the peak frequency ωp = 2.08rads−1, and the same amplitude
distribution as C3, βl = 0.70 and βh = 0.60.

Waves C3, C12 and C13 at ambient conditions are presented in Figure 6.3.

6.2.1 Observations during wave selection
The time invested in wave modelling was useful to gain insight in how the five parameters defining
a focused wave affect its characteristics. A summary of the general trend of the wave shape when
varying these values is presented below:
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• Wave breaking occurs at lower amplitudes than predicted by Miche’s criterion, eq. (2.31).
The expression returns a minimum breaking height of approximately Hb = 340mm, whereas
the wave height used during the experiments (trough to crest) is below H < 200mm. As
discussed in section 2, the expression is valid for one steady wave. When several wave
components are present, wave breaking occurs at smaller wave heights.

• When the wave crest height is set too high—for instance over Miche’s criterion—early break-
ing of the shorter wave components occurs before focusing, usually resulting in a flip-through
impact if the focal point is set appropriately. Nevertheless, the free surface is perturbed.

• Reducing the peak period while keeping the amplitude distribution constant generally trans-
lates to a thicker wave crest; and increasing the peak period results in a thinner wave crest.

• Wave crest stability is closely related to the amplitude distribution and the focal point. In-
creasing the amplitude of lower frequencies while keeping or reducing the amplitude of the
higher frequencies gives stability to the wave crest—the opposite also applies. However,
when the focal point is far from the impact wall, the wave crest loses its stability.

• From the previous point, a control signal that removes almost completely the higher frequen-
cies was run with the expectation of a thicker and more stable wave crest. It resulted in a
surging wave. It was concluded that higher frequencies—unwanted due to the difficulty of
their accurate generation—are required to achieve wave breaking.

• As mentioned before, it was observed a shift of the experimental focal point with respect to
the theoretical one. Wave focusing occurred about 100mm before the predicted location by
linear theory. Nevertheless, a true definition of the experimental focal point does not exist.
Once the wave surpasses the breaking wave height, it becomes impossible to determine if
the wave components are in phase.

6.3 Image processing
The wide range of conditions for which the MWL was designed prevents the use of typical mea-
surement devices inside the autoclave. In wave flumes, the free surface elevation is usually
measured with resistive wave gauges, which operate by measuring the resistance of the wa-
ter between a pair of parallel rods—the resistance is proportional to the immersion depth. As
mentioned at the beginning of the chapter, demineralized water is used for the experiments in the
MWL, which spoils the basic principle of the instrument: electric conductivity. In those applications
that require non-intrusive techniques, sound and laser based devices are often used for the mea-
surement of the free surface elevation. However, vacuum conditions and the use of water impede
their use in the MWL. Measurements of the wavemaker motion are also required. At first, it was
measured with a LVDT (Linear Variable Differential Transformer). A electromechanical transducer
that converts the rectilinear motion of the paddle to a corresponding electrical signal. However, the
apparatus rely on the magnetic field generated by an internal winding. Initial suspicions about its
nonlinear behavior on high temperatures were confirmed during the commissioning of the heating
system, so the device was removed from the autoclave. In this scenario, the best choice for mea-
suring the free surface elevation and the paddle motion is by means of video recordings, meeting
the requirements of a non-intrusive and temperature/pressure/gas-composition insensitive device.
Two image processing algorithms were developed to obtain measurements of the free surface el-
evation and the paddle motion from the slow speed cameras. The basis of the techniques used
are described in the following sections.

6.3.1 Wavemaker motion
The lateral surface of the wavemaker was fitted with 4×4 chessboard patterns. The chess-
board provides a region were the intensities of the gray-scale image are highly distinguishable
from its surroundings and, therefore, the wavemaker motion can be accurately measured. While
thresholding would be a very simple method to implement for segmenting the images into bi-
nary images—which can then be used to perform object recognition—it requires a clean image,
good lighting conditions and fine tuning of the threshold value to perform accurate object track-
ing—conditions that are not always met. Droplets are quite often found on the glass in front of the
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Figure 6.4: Example of the cross-correlation method for wavemaker tracking on a 2 × 2 sticker. The pattern
was updated to a 4 × 4 chessboard later on to increase the correlation points.

chessboard pattern and condensation on the observation windows when increasing the temper-
ature lead to light reflections and a blurred image. Therefore, thresholding was discarded as the
image processing method for this application. Instead, a cross correlation method was preferred.
It computes the sliding inner-product of a reference image over the obtained data. The location of
the maximum value from the cross-correlation is the position where the reference image matches
the most with the given data. To increase the tracking accuracy, the reference image is directly
obtained from the data, therefore being subjected to the same lighting/perspective conditions as
the original image, which maximizes the correlation value. An example of the method is shown in
Figure 6.4 at the first frame of a recording. The left image in the figure shows the original image
and the area chosen for the cross-correlation marked by red edges. On the right, the result of the
cross correlation is shown. The highest intensity value in the right image is the tracking point. The
efficiency of the algorithm improves when the size of the reference image (red square) increases,
being maximum when the reference image is the same size as the image data. The reason is that
the number of passes that the algorithm needs to perform in the cross correlation decreases as
the height/width increases.

The image processing method described above was used for the two slow speed cameras record-
ing the wavemaker motion. The algorithm tracks the wavemaker motion using the zoomed-in
camera until the moment the chessboard pattern is out of the field of view. In that moment, the
position of the wavemaker is given by the zoomed-out camera. The position of the wavemaker is
given again by the zoomed-in camera when it passes through its field of view.

Once the position of the paddle is determined in the image (in pixels), it is scaled with a calibration
file. Different methods were implemented to perform the calibration during the research In the end,
reference marks were sticked to the glass covering the entire field of view, and the calibration file
was generated from the position of the marks in the image knowing the distance between them.

6.3.2 Wave elevations
Getting the wave elevations required a more complex image processing technique based on the
Hough transform, a technique used in image analysis, computer vision and digital image process-
ing for feature extraction—the identification of arbitrary shapes, most commonly lines, circles and
ellipses. Nevertheless, many solutions were tried in an attempt to get accurate measurements of
the free surface elevation before the Hough transform was used. These can be grouped in two
main techniques described below. Consider Figure 6.5 as the image to process.

• Intensity based technique: from an initial evaluation of the data, it was observed that there
were two areas clearly differentiated: (1) the wet region, demarcated by very low values
of intensity and (2) the dry region above the free surface line, where the values of inten-
sity cover a wide range. The free surface line delimits both areas, being darker than the
surrounding areas, see Figure 6.6.
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Figure 6.5: Example of a camera image from where the free surface must be detected. Rotated counter-
clockwise for a better use of space. The sharp dark line in the mid-bottom region ( ) is the free surface line
in the foreground. The blurred dark line in the mid-top region ( ) is the free surface line in the background.

The main idea was to follow the peak in intensity of the meniscus using the free surface
elevation from the previous frame to determine its new elevation. However, the presence
of particles1 in the water led to misdetections that affected the detection in the next im-
ages. Blurring, gradient of intensities and polinomial extrapolation from the previous detec-
tions were applied unsuccessfully. Further information on intensity based techniques can
be found in Basu (2002) and on its application in Spinka IV et al. (2009).
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Figure 6.6: Intensities along the centerline of the image.

• Edge detector technique: the Canny edge detector—a multi-stage algorithm to detect a
wide range of edges in images—was used. The algorithm returns a binary image with the
detected edges. Particles, the reference dots in the glass and any other feature of the
image are nicely detected if the two threshold values required by the Canny algorithm are
well calibrated. The binary image was then used as input in a contour function that identifies
each feature and stores them in different variables. As a result, the edges could be sorted
by length such that small size detections were removed. However, there were two issues
with the technique: (1) the selection of the threshold values. Due to the small difference
in intensities between the free surface line and the wet region, low threshold values are
required, leading to the detection of many edges in the image; and (2) identifying the free
surface line from the detected contours. In the absence of dirt in the water, the free surface
is perfectly detected and easily identifiable, see Figure 6.7. Nevertheless, when particles
are found, and they are close to the free surface, they are grouped as one contour line and,
therefore, cannot be removed when sorting by length; which results in a hardly identifiable
free surface line, see Figure 6.8. For details on the Canny edge detector see Rong et al.
(2014) and on its application Spinka IV et al. (2009).

Figure 6.7: Canny edge detector applied to an image with clean water.

Figure 6.8: Canny edge detector applied to an image with dirt in the water.

1The origin of these particles is unknown at the moment of writing.
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Table 6.1: Number of repetitions each wave was run at each pressure condition.

Wave
Absolute pressure

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.7 2.0 bar

C3 1 − 1 − 1 − − − − − #

C12 1 1 2 1 2 1 1 2 2 2 #

C13 1 − 1 − 1 − − − − − #

The Hough transform

The solution was a combination of image processing techniques mainly using the OpenCV library
for Python (Bradski, 2000). First of all, a bilateral filter was applied to the image. The result is a
blurred image, which removes unwanted noise, while keeping the edges—the free surface—fairly
sharp. Then, adaptive thresholding is applied to compute the edges of the image while removing
the lighting difference between the wet and dry region. The threshold value is calculated auto-
matically for each pixel from the Gaussian mean of the neighborhood values. The binary image
goes then through a dilation kernel—a matrix that, when multiplied by the image, increases the
size of the detected edges—ensuring that all detected points in the free surface are connected.
Lastly, the Hough (lines) transform of the image is computed, returning all detected lines in the
image. Due to the camera orientation, the line of interest is always the bottommost one, the other
detected lines are discarded. The result of the detection in the same image as before is shown
in Figure 6.9. As the method only detects lines in the binary image, particles or any other feature
are not detected by the algorithm, resulting in a more reliable method for measuring the wave
elevations. The free surface elevation is taken at the centerline of the image and scaled with a
calibration file generated from the laser-printed reference dots in the glass.

Figure 6.9: Free surface elevation detected using the Hough transform with dirt in the water.

6.4 Results and analysis
A total of 140 waves were run in the facility during the thesis. Nevertheless, as the facility was still
in the commissioning phase, most of them were used for the evaluation of the different systems. In
addition, the algorithms for measuring the wavemaker motion and the wave elevations have been
developed in parallel with the experiments, suffering from continuous modifications. As a result,
meaningful data was collected only for the last 20 experiments (tests 114 to 130 and 132 to 138)
from the 140 total waves. These experiments were run at different pressure conditions, ranging
from 0.4bar to 2bar, over a period of two days. One breaking wave was generated approximately
every 20 minutes. Table 6.1 shows the number of repetitions at each pressure condition. As can
be seen, two repetitions with the same pressure conditions are only found for wave C12. The
named wave is also the only one that was run at higher pressures due to schedule constrictions.
The measured water depths are shown in Table 6.2.

The results will be presented in the following order: the repetitions of wave C12 at the same
conditions are analysed in section 6.4.1, evaluating the repeatability of the paddle motion and
the repeatability of the global flow of the breaking wave; and in section 6.4.2, the wave C12
at different conditions is evaluated from which conclusions about the effect of pressure in wave
propagation are drawn. Waves C3 and C13 will not be considered due to the lack of repetitions.
The experiments will be referred to as Cxx-yy-n, where ’xx’ is the wave type, ’yy’ the absolute
pressure and ’n’ the repetition, for instance: C12-07-0 is wave C12, pressure 0.7bar, repetition 0.
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Table 6.2: Water depth measured before wave generation.

Wave Rep.
Absolute pressure

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.7 2.0 bar

C3 0 399.2 − 399.2 − 397.2 − − − − − mm

C12
0 399.4 399.4 399.3 399.4 399.4 399.4 399.7 400.0 400.2 400.1 mm

1 − − 398.5 − 397.2 − − 400.1 400.3 399.9 mm

C13 0 399.3 − 398.4 − 397.2 − − − − − mm

6.4.1 Wave C12 – same pressure
The results obtained from the two repetitions at pressures Pa = (0.6, 0.8, 1.3, 1.7, 2.0)bar using
wave C12 are presented and discussed in this section. The water depth difference between
repetitions was kept below 0.2mm for waves generated at pressures above atmospheric pressure.
Less care was taken below atmospheric pressure2, with differences that reached ∆h = 2.5mm,
see Table 6.2.

C12-06-0 and C12-06-1

The wavemaker motion compared to the steering signal is shown in Figure 6.10a. Three subplots
were included to adequately compare both signals. Additionally, the time shift required to have the
wavemaker synchronized with the IRIG-B time is shown in the caption. 1s of the synchronization
time was a delay manually set in the control panel. About 0.8s was found to be the mean delay
between the trigger signal and the wavemaker motion; and approximately 50ms is the actual
uncertainty in the starting time of the wavemaker.

The wave elevations are depicted in Figure 6.10b (elevation at x = −4.8m from the focal point) and
Figure 6.10c (elevation at x = −2.3m from the focal point) with three details each. The similarity
parameter as defined in the previous chapter is also included in the caption. The resulting wave
shapes at four different instants separated by 10ms are shown in Figure 6.11.

Many things draw the attention in these results. To keep a clear direction of analysis, the results
will be evaluated from the observable differences in the breaking wave, Figure 6.11, to the rea-
sons these differences are observed; a direction from general to details. Three differences are
observed in the wave shape in Figure 6.11: (1) the size of the gas pocket at the moment of im-
pact, (2) the wave crest height, which is more apparent in the leftmost frames; and (3) presence
of more wave instabilities in the upper part of the gas pocket in wave C12-06-1. The experiments
were run with a difference in the water depth of 0.8mm—which is twice the maximum allowable
difference derived theoretically in the previous chapter, Table 4.6. With this difference, the con-
clusions given in the previous chapter were that the longer waves propagating in shallower water
would arrive later at the focal point and, additionally, the focal point would get closer to the impact
wall the shallower the water is. The measurements of the wave elevations show that, indeed, the
last wave of the train in Figure 6.10c, arrives around 5ms later when the water depth is shallower
(barely appreciable in the figure). These results might seem contradictory at first: the wave eleva-
tions show that the wave propagates slower and, therefore, the focal point should be closer to the
wall; and, however, the wave propagating in the shallower water (C12-06-01) has the larger gas
pocket. To understand the reason this is happening, one should avoid relating the focal point with
the gas pocket size. As stated in the previous chapter: there is no clear definition of focal point in
experiments; being these two waves a good example. Water depth has a larger effect in the longer
wave components forming the wave train. Thus, the longer wave components in C12-06-1 will be
farther from the focal point than the longer wave components in C12-06-1, while the theoretical
focal point of the shorter waves will remain unchanged. In consequence, the wave crest height
at the focal time for wave C12-06-0 will be larger than C12-06-1 (think of summation of wave
components with the largest wave at different phase). This is observed in the first frame in Figure

2Accurately controlling the water depth took longer than expected—the different subsystems had to be controlled
manually at the moment—and the facility was under a tight schedule, therefore limiting the available time for water depth
adjustments.
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(a) Comparison of the wavemaker motion. Control signal ( ). ∆t( )= +1.840s. ∆t( )= +1.839s

(b) Wave elevations at x = −4.8m (Q = 0.018)

(c) Wave elevations at x = −2.3m (Q = 0.018).

Figure 6.10: Results from runs C12-06-0 ( ) and C12-06-1 ( ).
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(a) C12-06-0

(b) C12-06-1

Figure 6.11: Wave shapes at different instances before impact (∆t = 10ms) for wave C12 at Pa = 0.6bar.

6.11. In addition, when the shorter wave components reach the focal point, the height of the wave
is already above the breaking height—independently of whether the larger wave components are
in phase or not—and the wave starts overturning. As wave C12-06-1 is missing energy from the
larger wave components in the wave crest, this becomes thinner and more unstable, which is
shown in the following frames. The gas pocket becoming larger is also related to wave energy.
When the wave loses energy in the lower frequencies, the spectrum of the wave shift towards
higher frequencies. As a result, the peak period characterizing the wave gets shorter—smaller
wavelength. Entering in Miche’s criterion with this wave characteristics results in a lower breaking
wave height, which means the wave starts breaking earlier. Altogether, the gas pocket becomes
larger.

Figure 6.10 also shows some interesting details. First of all, the similarity parameter, Q, is three
times larger than the maximum value for repeatable results derived in the previous chapter,Qexp ≤
0.006. With the repeatability of the wavemaker still not discussed, having a water depth difference
that is twice the theoretical maximum allowable explains the dissimilarity.

Another phenomena that draws the attention are the fluctuations of the free surface elevations
in the crests, for instance at t ∈ [46, 48]s. While it was thought to be a problem in the detection
algorithm, the wabbles are consequence of surface tension effects in the meniscus—which is
the line used for detection of the free surface. When a wave propagates through the flume, the
side walls are being wet by the wave crest. The following wave in the wave train is higher and,
therefore, the wave trough propagates in a wetted surface while the wave crest does it over a dry
surface. Looking at this effect at a specific longitudinal position—like the camera does—a column
of water propagates in height first over a wetted glass, and then over a dry glass. In the transition,
the meniscus ’sticks’ for a time to the dry glass, which explains the oscillation. An example is
shown in Figure 6.12

Considering the wavemaker motion, ’large’ relative differences are appreciable in the lower ampli-
tude motions in Figure 6.10a. Nevertheless, the magnitude of the difference is not clear. Figure
6.13 shows the five seconds average error w.r.t. the steering file measured from the camera and
compares them with the design criteria established by MARIN, Table 4.2. It is also included the
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Figure 6.12: Example of the meniscus effect shown in the wave elevation measurements consequence of
the friction difference when the wave crest propagates on a dry wall. ( ) represents the intersection from
wet to dry glass and ( ) the free surface elevation. ∆t = 10ms.

difference between the two signals as it might occur that large wavemaker motion errors are found
but the error is repeatable, leading to zero motion error between experiments. As can be seen,
larger errors than the design criteria are found for the smaller amplitudes, X(t < 45s) < 7.5mm.
The error of the motion between experiments gets closer to the design criteria, so it can be con-
cluded that the errors in the wave shape are mainly consequence of the water depth difference.

C12-08-0 and C12-08-1

The wavemaker motion compared to the steering signal for wave C12 at Pa = 0.8bar are shown
in figures 6.14a and 6.16. The wave elevations at x = −4.8m in Figure 6.14b, and at x = −2.3m
in Figure 6.14c. The resulting wave shapes at four instance before impact are depicted in Figure
6.15.

The result of a larger difference in the water depth, ∆h = 2.2mm, results in larger values of
the similarity parameter, Q(x = −4.8) = 0.023 and Q(x = −2.3) = 0.028. The mean five seconds
averaged wavemaker motion errors compared to the control signal are above the maximum motion
error specified by the design criteria, while the difference of the paddle motion between the two
repetitions is below the design criteria. This was found to be a constant during the experiments.
The design requirements in the higher frequencies seem to be too high to be complied.

The results in the breaking wave shape are evident in Figure 6.15. As before, the wave crest
height is lower in C12-08-1, the wave crest is thinner and the gas pocket size is slightly larger as
consequence of the shallower water depth.

C12-13-0 and C12-13-1

The results of the waves generated with approximately the same water depth conditions bring
more conclusions to the table. First of all, the differences in the global flow of the wave are
smaller and the wave crest thickness is very similar, though some differences are still appreciable
in the tip of the crest (considered local flow), see Figure 6.18. Regarding the wavemaker errors,
Figure 6.17a, while the mean five seconds error of the paddle motion is still above the design
criteria, it is found that the differences between the two repetitions are very low. With a difference
in the water depth equal to ∆h = 0.1mm and the difference in the paddle motion negligible, it is
expected the value of the similarity parameter, Q, to be below the repeatability criteria Qexp ≤
0.006. Nevertheless, when the quotient is computed from the wave elevations, Figure 6.17b and
Figure 6.17c, the value is still above the repeatability criteria, Q(x = −4.8) = 0.017 and Q(x =
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Figure 6.13: Five seconds average error of the paddle motion for waves C12-06-0 ( ) and C12-06-1 ( )
w.r.t the control signal ( ). The maximum allowable five seconds average errors, Table 4.2, are also plotted
( ). The difference of the wavemaker motion errors is included to check the variability of the error ( ).

−2.3) = 0.010. It was found that the presence of the meniscus effect in the measurement of the
wave elevation leads to these larger values as will be shown at Pa = 2.0bar.

C12-17-0 and C12-17-1

Due to synchronization errors in the slow speed cameras, results of the free surface elevation and
paddle motion are not available for these waves. The high speed images will be included when
evaluating the pressure effects in the wave shape in section 6.4.2.

C12-20-0 and C12-20-1

This set of waves confirmed the speculation of the similarity parameter being highly affected by
the meniscus phenomenon in the wave elevations. Figure 6.20b and Figure 6.17c show the wave
elevations at the camera positions. This time, two measurements of the wave elevations without
the meniscus phenomenon were taken. In addition, the paddle motion difference between the
experiments was close to zero. As a result, the values of the similarity parameter were below
the repeatability criteria, Q(x = −4.8) = 0.004 and Q(x = −2.3) = 0.005—as expected when the
difference in water depth is below the maximum derived in the previous chapter, Table 4.6, and
the error in the paddle motion is negligible. The resulting focused waves are shown in Figure 6.21.
No apparent difference is appreciable in the global flow from the images. To further prove that
the differences in the global flow are very low, Figure 6.23 shows both images overlapped with
one of the images color-shifted by the same amount towards the red and the other towards cyan.
When the intensity values of both images match, the resulting image is a gray-scale image. To
help understanding how well both images overlap, wave C12-06 is also included.

Observations and conclusions

A series of observations and conclusions can be made from the analysis of the data shown in the
previous paragraphs:

• It was found curious that the meniscus phenomenon always occurred in the initial wave—rep-
etition 0—and it vanished the second time the wave was run. There was only one case when
both measurements of the wave elevations were taken without the effect, wave C12-20. A
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(a) Comparison of the wavemaker motion. Control signal ( ). ∆t( )= +1.779s. ∆t( )= +1.790s

(b) Wave elevations at x = −4.8m (Q = 0.023)

(c) Wave elevations at x = −2.3m (Q = 0.028).

Figure 6.14: Results from runs C12-08-0 ( ) and C12-08-1 ( ).
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(a) C12-08-0

(b) C12-08-1

Figure 6.15: Wave shapes at different instances before impact (∆t = 10ms) for wave C12 at Pa = 0.8bar.

Figure 6.16: Five seconds average error of the paddle motion for waves C12-08-0 ( ) and C12-08-1 ( )
w.r.t the control signal ( ). The maximum allowable five seconds average errors, Table 4.2, are also plotted
( ). The difference of the wavemaker motion errors is included to check the variability of the error ( ).
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(a) Comparison of the wavemaker motion. Control signal ( ). ∆t( )= +1.755s. ∆t( )= +1.811s

(b) Wave elevations at x = −4.8m (Q = 0.017)

(c) Wave elevations at x = −2.3m (Q = 0.010).

Figure 6.17: Results from runs C12-13-0 ( ) and C12-13-1 ( ).
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(a) C12-13-0

(b) C12-13-1

Figure 6.18: Wave shapes at different instances before impact (∆t = 10ms) for wave C12 at Pa = 1.3bar.

Figure 6.19: Five seconds average error of the paddle motion for waves C12-13-0 ( ) and C12-13-1 ( )
w.r.t the control signal ( ). The maximum allowable five seconds average errors, Table 4.2, are also plotted
( ). The difference of the wavemaker motion errors is included to check the variability of the error ( ).
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(a) Comparison of the wavemaker motion. Control signal ( ). ∆t( )= +1.798s. ∆t( )= +1.850s

(b) Wave elevations at x = −4.8m (Q = 0.004)

(c) Wave elevations at x = −2.3m (Q = 0.005).

Figure 6.20: Results from runs C12-20-0 ( ) and C12-20-1 ( ).
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(a) C12-20-0

(b) C12-20-1

Figure 6.21: Wave shapes at different instances before impact (∆t = 10ms) for wave C12 at Pa = 2.0bar.

Figure 6.22: Five seconds average error of the paddle motion for waves C12-20-0 ( ) and C12-20-1 ( )
w.r.t the control signal ( ). The maximum allowable five seconds average errors, Table 4.2, are also plotted
( ). The difference of the wavemaker motion errors is included to check the variability of the error ( ).

71



EXPERIMENTAL RESULTS AND ANALYSIS CHAPTER 6

Figure 6.23: Impact moment of waves C12-06 (left) and C12-20 (right).

Figure 6.24: Wavemaker motion error between experiments as a function of the water depth difference.
∆h = 2.2mm ( ), ∆h = 0.8mm ( ), ∆h = 0.2mm ( ), ∆h = 0.1mm ( ).

further investigation of the experiments history showed that a third wave was actually run
at 2.0bar before the presented ones. This effect is, therefore, self-explanatory. The waiting
times between pressure changes were too long (approximately 40 minutes) which made the
first wave of the two repetitions propagate on dry side walls. 20 minutes later, the second
wave is generated and a thin layer of water (probably) remains on the side walls, so the
effect does not occur. It is therefore recommended to run a dummy wave before the formal
tests so that the effect disappears.

• It was observed that the wavemaker motion error is dependent on the water depth. Those
experiments that were run at approximately the same water depth, ∆h < 0.2mm, showed
negligible paddle errors between experiments. See Figure 6.24 for a comparative of the
wavemaker motion error as function of the water depth difference between experiments. On
the other hand, the wavemaker error w.r.t. the control signal was, with no exception, larger
than the design criteria set by MARIN. It is apparent that either the controller of the wave-
maker or the proprietary method for the generation of correction files needs to be improved.

• Despite of the similarity parameter being highly affected by the wabbles in the free surface
measurements, it is evident that provides a fast and easy method for the evaluation of global
flow repeatability. In addition, it seems that the repeatability criteria theoretically derived,
Qexp ≤ 0.006, is appropriate to discern repeatable and non-repeatable global flows in the
MWL. As a matter of fact, undistinguishable global flows were obtained the only time the
similarity parameter was below the limit, see Figure 6.23.

6.4.2 Wave C12 – different pressure
The wave shapes at absolute pressures Pa = (0.4, 0.6, 1.7, 2.0)bar are depicted in Figure
6.26. Repetition 0 was chosen for all waves as they minimize the difference in water depth,
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∆hmax = 0.9mm. Two trends can be observed in the figure: (1) the stability of the wave crest
increases as the pressure (DR) drops, and (2) the size of the gas pocket increases with the
pressure, consequence of the transfer of momentum liquid-gas as presented by Karimi et al.
(2016). Regarding the effect of pressure in wave propagation, it is observed in Figure 6.25 that
at Pa = 2.0bar the wave train propagates slower than the waves at lower pressures—as the wave
shapes are synchronized at the impact time it cannot be directly observed in the focused wave.
This is not consequence of the water depth difference. In fact, the water depth is deeper at
Pa = 2.0bar which means that the wave is being delayed even when the water depth is increasing
the propagation velocity of the wave train.
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(a) Comparison of the wavemaker motion. Control signal ( ). ∆t( )= +1.840s. ∆t( )= +1.825s. ∆t( )= +1.798s.

(b) Wave elevations at x = −4.8m. Q( )= 0.010. Q( )= 0.021.

(c) Wave elevations at x = −2.3m. Q( )= 0.007. Q( )= 0.026.

Figure 6.25: Results for waves C12-04-0 ( ), C12-06-0 ( ) and C12-20-0 ( ) at different pressures
(there is no wave elevation data for wave C12-17-0).
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(a) C12-04-0

(b) C12-06-0

(c) C12-17-0

(d) C12-20-0

Figure 6.26: Wave shapes at different instances before impact (∆t = 10ms) for wave C12 at Pa =
(0.4, 0.6, 1.7, 2.0)bar.
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Chapter 7

Conclusions

In the LNG industry, particularly in the transportation of LNG overseas, wave impact test are
performed to design the structure of the cargo containment system (CCS) of the vessels. The
state-of-the-art methodology, based on a probabilistic approach, requires many repetitions of the
test conditions to obtain a converged probability distribution of the load maxima, which are then
compared to the structural capacity of the CCS. However, measurements taken by Lund-Johansen
et al. (2011) on board of a 148.000m3 LNG carrier showed that the methodology is globally con-
servative—the maximum expected pressure for a long period is larger than what is experience in
reality—while the short term statistics showed that values at model scale are not always larger
than at full scale.

In an investigation to better understanding the physics of wave impacts, Bogaert (2018) divided
the flow into two parts: the global and local flow. The global flow being considered as the solution
of the incompressible Euler equations for the liquid and gas in the tank; and the local flow as a
perturbation of the global flow. The research was focused on the the local flow and its link to the
impact pressures, and the structural response of the CCS. Nevertheless, the author found to be
a challenge to generate repeatable global flows and, therefore, to determine the contribution of
the variability of the local flow in the impact pressure variability. As a result, a new facility was
designed and built in MARIN in the framework of the SLING project to further investigate the
physics of sloshing impacts: the Multiphase Wave Lab (MWL).

In this context, this thesis aimed to identify and evaluate the sources of variability of the global flow.
Based on a theoretical analysis of the variability introduced at different positions along the wave
flume, a criterion to experimentally define global flow repeatability was derived from the Sobolev
norm of the Fourier space of the free surface elevations at a distance from the focal point. By
defining the criterion sufficiently far from the focal point, the local flow variability is assumed to
be negligible and, in consequence, perfect repeatability of the wave elevations at these positions
would result in the same global flows at the focal point. Wave impact tests were also performed
to evaluate the validity of the mathematical model and the repeatability criterion. While more
repetitions are required to confidently conclude about the validity of the criterion, the experimental
results showed that when the ’dissimilarity’ value was below the theoretical maximum, exceptional
repeatability of the global flow before impact was obtained.

Section 7.1 summarizes the main conclusions of this thesis and section 7.2 provides recommen-
dations for future research on the used techniques and procedures.

7.1 Main conclusions
In the course of the thesis, a series of assumptions and decisions have been made in the devel-
opment of the theoretical model for the evaluation of the sources of variability, and in the devel-
opment of the tools used to obtain the experimental measurements. This section summarizes the
conclusions and findings of the parts in which the thesis is divided.
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7.1.1 Wave focusing
The phase speed method and linear wave theory were used to to derive the wave train the wave-
maker must generate to obtain a focused wave. The amplitude distribution of the frequencies was
obtained from a modified Ricker spectrum formulation, which included two parameters that control
the distribution of energy in the lower and higher frequencies. The resulting wavelet, suppresses
the small leading and trailing waves typical from other spectrum shapes that produce reflections
in the impact wall and that usually lead to early breaking of the wave front. Regardless of the
simplicity of the method and the use of linear theory, good quality breaking waves were obtained,
characterized by a smooth and round wave shape. Validation of the method showed that wave
propagation velocity is accurately predicted while discrepancies in the amplitude of the wave train
are obtained.

7.1.2 Wave generation
Linear wave making theory was used for the derivation of the wavemaker control signal from the
free surface elevation at the wavemaker location. By using the Ricker amplitude spectrum formu-
lation, the last part of the control signal resembles the solution of a solitary wave and, therefore,
no tweaking was necessary to add energy to the last stroke like in Hofland et al. (2011). Nev-
ertheless, the amplitude spectrum formulation is characterized by a non-zero amplitude of the
zero frequency and, as consequence, the required number of wave components becomes larger,
slightly increasing the computational cost. Validation of the model comparing the amplitude spec-
trum of the measurements w.r.t. Ricker amplitude spectrum showed a global shift of the spectrum
towards higher frequencies, which is in accordance with higher order wave theories—real waves
are characterized by a flatter trough and a sharper crest (higher frequencies).

7.1.3 Sources of variability
Variability was theoretically evaluated by systematically generating and propagating the wave train
produced by a control signal over different water depths, currents and residual wave amplitudes.
Wave repeatability was defined in function of the accuracy of the wavemaker. Two waves are
considered repeatable when the sources of variability introduce a combined time-averaged error
at the focal point smaller than the time-averaged error introduced by maximum wavemaker motion
error. Theoretical results showed that the water depth difference between experiments must be
kept below ∆hmax ≈ 0.45mm to obtain repeatable results. On the other hand, the theoretical work
showed that long bounded waves (seiching)—and their induced current—are less important in the
generation of repeatable global flows. However, both are related since an accurate measurement
of the water depth requires a still water free surface.

Since waves overturn at the focal point experimentally, the definition of the time-averaged error
theoretically derived cannot be used. Thus, a similarity parameter based on the Sobolev norm of
the Fourier space of the free surface elevations was used to derive the experimental repeatability
criterion at the camera positions. The quotient, Q, sets the maximum error of the Fourier space of
two signals to be considered repeatable. In the MWL, the maximum ’dissimilarity’ value between
two experiments is Qmax0.006.

7.1.4 Experimental results
In total 140 waves were generated during the the thesis. However, most of them were used
for the commissioning of the different systems of the facility and, therefore, only 20 waves were
meaningful for the evaluation of repeatability. These experiments ranged from Pa = 0.4bar to
Pa = 2.0bar and three different waves were generated (C3, C12 and C13) with different wave
shape characteristics.

The wavemaker motion and the free surface elevations at two positions along the flume were
recorded with four slow speed cameras at 200Hz with a synchronization uncertainty of 0.5ms, two
cameras combined for the wavemaker and two for the wave elevations. Measurements were taken
by means of image processing techniques with a resolution of ∆x ≈ 0.09mm for the wavemaker
motion and ∆η ≈ 0.2mm for the wave elevations. The wavemaker position was detected using
a cross correlation technique, which led to reliable measurements even in conditions were con-
densation in the observation windows were found. Getting the free surface elevations required a
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combination of different techniques, being the core of the algorithm a Hough transform of the im-
age to detect the free surface line. Due to meniscus/surface tension effects, some ’misdetections’
occurred, apparently when the waiting times between experiments were too large, though the real
cause must be further investigated.

The analysis of the data showed that, when the difference in water depth between experiments
was above ∆hmax, the values of the similarity parameter, Q, were above the maximum ’dissimilar-
ity’ value. Recordings from the high speed cameras at the moment of impact show that, indeed,
when Qexp > Qmax relatively large differences are obtained and the global flow of the waves is
not repeatable. However, the similarity parameter was below the maximum value when the water
depth difference was kept below ∆hmax, resulting in undistinguishable global flows, although more
repetitions are required to confidently state that the repeatability criterion Qmax = 0.006 is appro-
priate to discern between repeatable and non-repeatable global flows in the MWL. The results
also showed dependency of the wavemaker error in the water depth. In those experiments where
the differences in water depth was ∆h < 0.2mm, the error in the wavemaker motion between ex-
periments was negligible, whereas errors larger than the design acceptance errors were obtained
when the difference in water depth was larger.

7.2 Recommendations
While the thesis has been focused in the investigation of the sources of variability and the re-
peatability of the global flow in wave impact tests, the research also required to gain knowledge in
wave generation and image processing techniques. In this section, a series of recommendations
based on the findings and challenges encountered are given.

Regarding wave generation and propagation, linear theory was found to be sufficient to obtain
focused waves and accurately predict their focal time. Nevertheless, the experimentally measured
amplitude spectrum differs from the theoretical amplitude spectrum. For the case of wave impacts,
the relevance of the amplitude spectrum is not that important as long as wave focusing occurs. If
the application requires the generation of a specific spectrum, a higher order wave/wavemaking
theory must be used.

With respect to the image processing algorithm developed to detect and measure the free surface
elevations, the technique currently used led to some misdetections when the meniscus ’stuck’ to
the glass panel in the transition from wet to dry glass, leading to a deviation of the elevations
at the wave crests which increases the similarity parameter Q. From the experiments, it was
found that these misdetections always occurred in the first repetition at each condition, suggesting
that when the waiting times are too large the glass panels dry out and the effect is found. The
recommendations are: (1) to develop an algorithm that detects the free surface elevation at a
position not affected by the surface tension effects of the meniscus, or (2) to keep the waiting
times between experiments uniform and, if longer waiting times are required due to a change in
the autoclave conditions, a dummy test wave must be generated before taking any measurement.

About the wavemaker motion error, it was observed that the wavemaker error w.r.t. the control
signal was, with no exception, larger than the design acceptance values set by MARIN. Thus,
either the controller of the wavemaker or the method for the generation of correction files (or
both) need to be improved. However, the error was found to be dependent on the water depth
and, when the differences in water depth were insignificant, the wavemaker motion error between
experiments was negligible. Therefore, while the wavemaker performance is not as good as
designed, keeping the water depth carefully controlled allows to reduce the importance of the
wavemaker motion errors.
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