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Executive summary

The industrial sector is one of the most energy consuming and CO2-emitting end-use sectors. To reach
climate goals, decarbonization of these industrial sectors is imminent, however, not so apparent. Es-
pecially the hard-to-abate industry sectors, such as the chemical, mineral processing, iron, and steel
sectors, are difficult to decarbonize as they require either high temperature heat or use fossil fuels as
feedstock.

Hydrogen has the potential to reduce carbon emissions in industries, such as chemicals, glass, iron,
and steel, as well as to serve as a cleaner heat source. To reach net-zero emissions by 2050, sectors
that currently use fossil fuels for high-temperature processes and as feedstock will likely need to shift
towards blue or green hydrogen. Currently, some industrial hydrogen use relies on gray hydrogen,
produced from fossil fuels and contributing to emissions. In contrast, blue hydrogen captures and
stores CO2 produced from fossil sources, while green hydrogen is entirely emissions-free, generated
from renewable energy. In other words, some processes need to change from gray to green/blue but
most of them need to change from other fossil fuel based processes to hydrogen processes.

Hydrogen offers a way to cut carbon emissions in industries like chemicals, glass, iron, and steel, and
can also act as a cleaner heat source. Achieving net-zero emissions by 2050 will likely require sectors
that currently depend on fossil fuels for high-temperature applications and feedstocks to adopt blue
or green hydrogen instead. Today, certain industrial applications still use gray hydrogen, derived from
fossil fuels and contributing to carbon emissions. However, blue hydrogen captures and stores the CO2
generated, while green hydrogen is emissions-free, produced using renewable energy. In essence,
some processes will need to transition from gray to blue or green hydrogen, while many others will shift
from fossil-fuel-based processes to hydrogen-based alternatives.

However, the timing and extent of the hydrogen transition are uncertain as they are heavily influenced
by external factors such as hydrogen prices, available subsidies, and alternative decarbonization op-
tions. Additionally, industrial plant owners may be reluctant to disclose decarbonization plans due to
competitive pressures, adding another layer of demand and participant uncertainty that complicates
infrastructure planning.

This thesis addresses the planning of hydrogen infrastructure within an industrial port cluster (IPC). IPCs
are defined by their proximity to water and concentration of industrial activities related to a specific sec-
tor. In order to effectively address spatial constraints, this thesis will plan the hydrogen networks along
the current road network within IPCs. Current infrastructure planning methods have a time horizon of
ten years. However, as the expectation is that the hydrogen demand will increase towards 2055, a
time horizon of ten years can increase the total costs of the network when the network is implemented
over time between 2025-2055. This introduces the following research question;

“How can a cost-efficient, robust pipeline network for an industrial port cluster be developed
over time under uncertainty?”

To answer this question, the robust backtracking planning method (RBPM) is developed. This method
aims to minimize costs over the 2025-2055 time frame while facilitating the hydrogen to the demanding
plants. Because the demand for hydrogen is likely to grow over time, this method finds a robust network
that is able to facilitate the demand in many possible future demand scenarios of 2055.

The robust network is then implemented incrementally for 2035, 2045, and 2055 using a backtracking
approach. In this context, backtracking means that when an industrial plant transitions to hydrogen
in one stage, pipelines are installed with the robust networks’ capacity, rather than just the minimum
required to meet that plant’s immediate needs. This extra capacity ensures that if other plants transition
in later years, the existing network can accommodate the increased demand without needing costly
pipeline extensions. By preemptively building capacity, this approach reduces future installation costs
and enhances the network’s ability to adapt to evolving demand patterns.
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The RBPM is tested on simulations of multiple simplified IPCs. By testing different IPC simulations, it is
studied how the difference in industrial plants determines the development of the network. The RBPM
is compared to the results of a traditional planning approach which only plans the networks with a time
horizon of ten years.

The results clearly show that the RBPM incurs lower costs over 30 years, but it requires a higher
investment in 2035 due to the greater capacity installed at that time. This thesis finds that the total
potential hydrogen demand and the physical size of an IPC significantly affect the performance of
the RBPM compared to the traditional planning approach. Additionally, the projected installation and
operational costs over time also impact the RBPM’s performance relative to the traditional planning
approach.

For IPCs with comparatively low hydrogen demand — typically clusters with fewer iron and steel fa-
cilities, chemical plants, or refineries — the RBPM emerges as the most economical approach. This
method requires only slightly higher investment by 2035 but ultimately generates substantial savings
by 2055. By installing sufficient pipeline capacity upfront, the RBPM avoids the need for additional
pipelines every ten years, leading to long-term cost efficiency through 2055.

For IPCs with high hydrogen demand — typically found in iron and steel plants, basic chemical plants,
or refineries — the initial installation costs and ongoing operational expenses of RBPM make it less
advantageous. While RBPM may offer slightly better economic profitability over a 30-year period, the
substantial investment required in 2035 compared to traditional planning makes implementation chal-
lenging due to budget constraints. In these high-demand clusters, the decision between RBPM and
the traditional approach for developing a hydrogen pipeline network depends on the cluster’s budget,
anticipated future installation costs, and projected operational expenses over time.

Opportunities for further research include the application of the RBPM to a real case study to validate the
result, increasing the amount of possible future scenarios by incorporating uncertainty in installation and
operating costs and increasing the demand and participant uncertainty range. Lastly, another research
direction to explore is the generation of different robust network methods and their performance.
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1
Introduction

1.1. Problem Statement
The global average temperature peaked in 2023, at 1.45 degrees above pre-industrial levels (Orga-
nization, 2024). This is an indication of a global trend: the world is warming. Global warming has
far-reaching effects, which include a decline in biodiversity, a rise in natural disasters and extreme
weather occurrences, and an increase in related societal risks (IPCC, 2022). The emission of green-
house gases, particularly CO2, contributes to global warming. The United Nations established the
Paris Agreement in 2015 to limit global warming, aiming for net-zero emissions by 2050 (United Na-
tions, 2015). Additionally, the European Union has elevated its objective to decrease GHG emissions
by at least 55% compared to the 1990 level by 2030 as part of the Fit-For-55 package, in pursuit of its
2050 target (European Council, 2024).
The industrial sector is one of the most energy-consuming and CO2-emitting end-use sectors (IEA,
2023b). In 2022, the Dutch industrial sector emitted 30% of the total annual CO2 emissions in the
country (Rijksoverheid: Emissieregistratie, 2024). Therefore, in order to reach the EU targets, the in-
dustrial sector needs to decarbonize as well. The decarbonization of the industrial sector is therefore,
very important but no so apparent. Especially the hard-to-abate industry sectors, such as the chemi-
cal, mineral processing, iron, and steel sectors, are difficult to decarbonize as they require either high
temperature heat or use fossil fuels as feedstock.

1.1.1. Hydrogen as decarbonization technology in industry
Hydrogen has the potential to reduce carbon emissions in hard-to-abate industries, such as the chem-
ical, glass, iron, and steel sectors, and as a substitute for heat generation (Deloitte, 2023; Namazifard
et al., 2024; Vine, 2021). The subsectors with the potential for transitioning to hydrogen either utilize hy-
drogen as a feedstock for decarbonization (e.g., basic chemicals, iron, and steel) or employ hydrogen
as a heat source.

Hydrogen plays a pivotal rola as a feedstock in multiple industrial subsectors, particularly within the
chemical and iron and steel industries. Hydrogen is crucial for the synthesis of ammonia, methanol, and
olefins in the basic chemicals sector. Ammonia manufacturing often employs the Haber-Bosch process,
which synthesizes hydrogen and nitrogen at elevated pressure. Currently, gray hydrogen, derived from
natural gas, predominates this process (Cioli et al., 2021). Nonetheless, a shift to green hydrogen,
produced through electrolysis utilizing renewable energy, or blue hydrogen, generated from natural
gas with Carbon Capture and Storage (CCUS), provides a near-zero carbon footprint for ammonia
production (Rouwenhorst et al., 2021). In this thesis, the term ”transition of hydrogen” refers to the shift
towards clean hydrogen, namely blue or green hydrogen.

In the iron and steel production, the primary method of producing crude steel rely heavily on coal and
coke, generating substantial CO2 emissions. The use of hydrogen in direct reduction processes, where
iron ore is converted to iron using green hydrogen instead of coal, can potentially reduce emissions
by up to 98% (IEA, 2024a). In 2024, the technology has been tested on multiple full scale prototypes
(IEA, 2024a). This hydrogen-based technology, while promising, is not yet prepared for commercial
implementation, and the timeline for its readiness for full-scale deployment remains uncertain (Fan &
Friedmann, 2021).

1
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In industrial operations, heat is necessary to initiate chemical reactions or to accomplish certain physical
and chemical changes. The type of heat required for typical operations varies from 50 C to 2000 C
(Neuwirth et al., 2022b). Conventional heat-generating techniques frequently entail burning fossil fuels,
which releases greenhouse gases into the atmosphere. The temperature of the heat, dictates what
kind of decarbonization technologies are available to replace the fossil fuel heat generation technique;
the higher the temperature needed for the process, the less clean heat solutions are available. For the
high temperature heat processes only hydrogen, biomass, and Carbon Capture Usage and Storage
(CCUS) are available (Vine, 2021).

How fast and what kind of decarbonization technologies will be implemented by industrial plants, de-
pends on multiple factors. These factors include political landscape, economical factors, social factors,
environmental factors, technologies available, and available infrastructure (IEA, 2023b). As it depends
on all these factors, the specific decarbonization pathway for an industrial plant is not easily predicted.
However, if a plant has a desire to transition to hydrogen, sufficient hydrogen infrastructure is a prereq-
uisite.

1.1.2. Hydrogen transmission infrastructure
In order to facilitate a hydrogen transition, infrastructure is needed to distribute hydrogen from the pro-
duction or import site to the industrial plant. The network of preference to satisfy industrial demand is
a pipeline transmission network, as it outperforms other alternatives like transportation as volume in-
creases and can easily provide a constant flow of hydrogen for industrial processes (André et al., 2013).
A hydrogen pipeline network is not yet widely implemented, but, by the need for rapid decarbonization,
networks are now widely pushed to be implemented. Historically, gas pipeline networks evolved incre-
mentally, growing node-by-node with increasing demand, leading to sub-optimal designs . Hydrogen
networks can now be designed with the advantage of leveraging advanced computational methods to
optimize the design and test configurations (Hammond et al., 2024). A hydrogen network is often visu-
alized by supply nodes (sources) and demand nodes (sinks) who are connected with pipelines. These
pipelines must allow the transportation of hydrogen from sources to sinks; the volume of flow a pipeline
can manage is referred to as its capacity.

Deep uncertainty
One of the challenges in constructing a hydrogen network is in the deep uncertainty surrounding fu-
ture hydrogen demand and supply, which is contingent upon technical, political, and economic factors
influencing the transition of fossil fuel-based technologies (IEA, 2023a). Deep uncertainty means that
because of the complexity of the system, there are a large number of plausible futures that cannot be
ranked based on the likelihood of their occurrence (J. H. Kwakkel et al., 2010). Although, it is difficult
to predict the future hydrogen demand for industrial plants, it is imperative to consider the future when
planning the pipeline diameter and location. Since pipelines typically have a lifespan between 30-50
years and an implementation time of several years, the future hydrogen demand should be taken into
account when planning hydrogen networks, in order to have a cost-efficient network in 2050 (Khan
et al., 2021).

1.1.3. Industrial Port Clusters
This thesis will concentrate on the development of hydrogen networks within industrial port clusters.
Specifically, a focus is set on clusters within particular industrial subsectors where hydrogen presents
a feasible solution for decarbonization.

An industrial port cluster (IPC) refers to an industrial cluster that is geographically located near a port.
An industrial cluster consists of a group of geographically adjacent, interconnected companies and
related institutions in a specific field (Kim et al., 2023). Clusters are characterized by specialization
in related industries and the dynamic interactions among many firms, rather than the presence of a
single large firm or plant or the specialization on only one narrow activity (European Observatory for
Clusters and Industrial Change, 2020). The advantage of having an industrial cluster near a port is the
convenient access to resources and suppliers, as the port can handle a significant amount of import
and export (Pivetta et al., 2024). However, the presence of water and the high concentration of firms
result in limited space for infrastructure expansion. This poses a challenge for infrastructure planners,
as they have to consider physical boundaries and constraints in the form of waterways and private
property.
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Actors
Within an IPC hydrogen network, the following primary actors are recognized:

• The network operator, who is tasked with network planning and bears the costs associated with
its development and maintenance (GasUnie, 2024). The network operator is frequently semi-
private. The network operator’s interests involve ensuring user facilitation and a safe transition
while generating profit.

• Industrial plant owners, who are represented by a plant owners association. They each determine
the timing and conditions under which the plant will alter its process technology for decarboniza-
tion. The plant owner is motivated by anticipated profit. The owner lacks a direct incentive for a
decarbonized society but can be influenced by economic policies such as carbon taxes, subsidies,
or energy carrier prices. The plant owners’ association advocates for adequate IPC infrastructure
to meet future plant requirements while minimizing utilization costs for current and prospective
customers (Deltalinqs, 2024).

• Hydrogen producers, who function as either hydrogen producers or importers. Producers need
a solid infrastructure and reliable demand linked to it to maintain a viable business model and
achieve economic benefits (IEA, 2023a).

• The Port Authority, who is responsible for managing, operating, and developing the port area.
The Port Authority, despite being publicly owned, functions with a profit-driven approach. It aims
to meet European Union standards and seeks to become future proof port, which means to be
environmentally sustainable (Port of Rotterdam, 2024).

The importance of cost-efficiency is significant for all stakeholders, whether it is to reduce investment
costs, or to have low utilization prices. This creates the need for a cost-effective hydrogen network. It
is also important for the hydrogen network to effectively facilitate both current and future users. Finding
a balance between these two requirements is difficult, as the most cost-effective network is having no
network at all, but that would not satisfy the needs of any users and hinder the shift towards a near-zero
emissions cluster. This highlights the need for a decision-making tool that helps in balancing cost and
demand facilitation in developing a hydrogen network in an IPC.

1.2. Identification of the research gap
For identification of the knowledge gap a literature study is conducted, where sixteen papers have
been found. The development and optimal design of hydrogen networks is a state-of-the-art research
field. As can be seen in table 1.1, five articles were recently (2024) published about hydrogen pipeline
network planning. Fourteen out of sixteen articles are analyzing the European hydrogen network; which
could be caused by the outspoken ambition of Europe to have an independent, reliable clean energy
system (Europese Commissie, 2022). Below, we will inspect the scale of the studies, how they deal
with robustness, and how they investigate the development of a network over time.

Scale
Most of these studies simulate hydrogen networks at the national or regional scale, where one node
represent larger geographical areas such as provinces, hubs, or industrial clusters. In these models,
the edges represent pipeline or truck connections between these nodes. However, there is a notable
scarcity of studies focusing on the local scale, where each node represents a single site. Furthermore,
in the papers focusing on regional and national scale, the pipeline locations are not taken into account
as a decision variable. In every article, the pipeline location is predefined in advance, for example, by
calculating the Euclidean distance between nodes and multiplying this length with a detour factor(Tlili
et al., 2020). Moreover, in some articles, in order to reduce the solving time, only subsets of possible
pipeline connections between nodes are incorporated. By predefining the distance and neglecting the
precise location of pipelines, the flexibility of determining the location of pipelines to minimize costs is
not exploited by these papers, which affect the cost efficiency of these networks (Bolat & Thiel, 2014).

Two studies are found that researched local hydrogen networks. André et al. (2014) developed a
heuristic to derive a minimum cost hydrogen pipeline network for fueling stations, and Hammond et
al. (2024) derived a minimum cost hydrogen pipeline network considering obstacles. In these local
scale studies, one node represents one single site and the pipeline lengths are the actual real lengths.
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Table 1.1: Overview literature on hydrogen networks

Source Scope Scenarios Area Over-time aspect
(Beagle et al., 2024) regional 7000 Texas
(Efthymiadou et al., 2024) regional 1 Great Britain x
(Hanto et al., 2024) international 3 Europe x
(Namazifard et al., 2024) regional 3 Belgium x
(Erdoğan & Güler, 2023) national 5 Turkey x
(Caglayan et al., 2021) national 1140 Europe
(Husarek et al., 2021) national 8 Germany
(Ochoa Robles et al., 2019) regional 6 France x
(Reuß et al., 2019) regional Many Germany
(Welder et al., 2018) regional 3 Germany
(Yáñez et al., 2018) regional 2 Spain x
(Moreno-Benito et al., 2017) regional 7 Great Britain x
(André et al., 2013) local, regional 1 France
(Almansoori & Shah, 2011) regional 9 Great Britain x
(Hammond et al., 2024) local 1 Great Britain
(André et al., 2014) regional 2 France x

However, these studies do not take into account the deep uncertain nature of hydrogen demand.

Deep uncertainty
Based on the found articles, themost influential and uncertain parameters of the network are found to be
the hydrogen demand, supply and price. To deal with this demand or supply uncertainty, most articles
use the best-guess or most likely approach, where only a few price or cost scenario’s are explored
in order to predict future systems. As explained in Section 1.1.2, a few scenarios cannot capture the
future of the hydrogen system due to the deep uncertain nature of the system (J. H. Kwakkel et al.,
2010).

Three studies ran many scenario’s (>100) either in demand or supply to grasp the behavior of the sys-
tem, deal with the deep uncertainty, and create a robust analysis (Beagle et al., 2024; Caglayan et al.,
2021; Reuß et al., 2019). For example, Beagle et al. (2024) studied the effect of different policies on
the Texas hydrogen system and ran 1000 Monte Carlo simulations per policy to address the price un-
certainties. These studies show that deep uncertainty can be addressed in hydrogen network planning
with the use of many scenario runs, and thereby creating a robust solution that is insensitive to a range
of plausible futures (Maier et al., 2016).

Over time development
The three studies that addressed high uncertainty by examining numerous scenarios predicted a ro-
bust system for 2050. Nonetheless, these studies did not consider the implementation of this robust
system over time. André et al. (2014) studied the over time implementation of a hydrogen network
leading to 2050, highlighting the necessity for more temporal deployment studies in the hydrogen in-
frastructure literature.

Research gap
The knowledge gap that exist in the literature is the lack of studies on local, robust hydrogen network
planning that look at the development of the hydrogen network over time. All three aspects are con-
sidered separately in studies, however, a combination of the aspects deep uncertainty, local scale and
temporal deployment has not been studied for hydrogen networks.

1.3. Research question
The identified research gap within the literature is the lack of studies regarding a robust planning ap-
proaches that consider over time development of the network under deep uncertainty. This thesis
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focuses on the development of a hydrogen network in an industrial port cluster (IPC), emphasizing the
uncertainties related to demand and participant involvement to create a robust network over time. This
thesis aims to answer the research question;

How to plan over time a cost-efficient, robust pipeline network for an industrial port cluster
under uncertainty?

In this thesis, a method is developed to plan a hydrogen network over time, taking into account cost
efficiency and robustness. This method is specifically designed for IPCs; however, it is not applied
to a single case study IPC. Instead, a general IPC model is developed to test the proposed method
under various conditions. Before addressing the main research question, the following sub-questions
are explored.

1. What characteristics of Industrial Port Clusters should be considered for the hydrogen network
development?

2. How can cost-efficiency and robustness be operationalized in a physical network?
3. What is a suitable method to generate a robust and cost-efficient hydrogen network over time?
4. How does the robust over time planning method perform compared to simpler planning methods?
5. What is the performance of the developed method across different clusters?
6. How does the developed method perform under different demand uncertainty ranges?

1.3.1. Thesis outline
In chapter 2, the first sub-question is investigated by defining characteristics of an IPC. Then, chapter 3
aims to answer the second sub-question by creating a theoretic framework regarding network optimiza-
tion and deep uncertainty, and at the end of this chapter, the concepts of cost-efficiency and robustness
are operationalized. Next, chapter 4 answers sub-question three by describing the developed method.
In chapter 5, the data is presented that is needed to analyse the developed method, and in chapter 6
the presented method is analyzed where sub-question 4, 5, and 6 are answered by conducting three
separate experiments. The findings of the results and limitations are further discussed in chapter 7,
and conclusions and future research are presented in chapter 8.

CoSEM master thesis
This thesis is written to obtain the MSc degree for Complex Systems Engineering and Management
(CoSEM), as this thesis addresses a design problem in a complex system with multiple actors and
uncertainties. First of all, the situation of a future hydrogen network in the port is highly complex due to
the different technical and economic factors playing a role. Second, the system involves numerous ac-
tors, including ports, network operators, and industrial plants, making it a multi-actor problem involving
both public and private interests. Because of this complexity, there is not one solution for this problem
(Johannesson & Perjons, 2021).



2
Important aspects of an IPC

This thesis specifically focus on the hydrogen network development in an industrial port cluster (IPC).
However, this research does not assess only one real-life IPC example, but examines the network
development on a multitude of modeled IPCs to develop a generic method. Therefore, in order to build
a hydrogen network development method, it is important to explore the characteristics of an IPC and
how they relate to the hydrogen network. In this chapter, firstly, the IPC is defined further, secondly,
the future role of hydrogen in an IPC is explored. Lastly, the important aspects of hydrogen network
development in an IPC are explained including an actor analysis to derive the network objectives.

2.1. What is an IPC?
The term Industrial Port Cluster (IPC) is defined for this thesis as an industrial cluster geographically
close to a port. First the term industrial cluster is explored, after which the port and specifically its
physical characteristics are described. Both the physical properties of a port and the characteristics of
an industrial cluster are important to consider for the planning of a hydrogen network.

2.1.1. Industrial cluster
There are multiple definitions of clusters and industrial clusters in the academic literature, which mainly
differ in their emphasis on cooperation or geographical scope (Boja, 2011). For instance, Porter (2000)
defines clusters as ”geographic concentrations of interconnected companies, specialized suppliers,
service providers, firms in related industries, and associated institutions, in a particular field that com-
pete but also cooperate”. This definition highlights the dual nature of clusters, where firms not only
compete but also collaborate within a shared environment. However, the geographic scope relates to
the distance over which informational, transactional, incentive, and other efficiencies occur.

For this thesis, the industrial cluster definition of Morosini (2004) is used, who characterizes an indus-
trial cluster ”as a community of people and a population of firms with economically linked activities
localized in close proximity in a specific geographic region, where a significant part of the population
cooperates”. Morosini’s definition emphasizes the importance of geographical closeness, highlighting
that in industrial clusters firms also benefit from reduced transportation costs by having the firms up
and down the supply chain be close together or by managing one feedstock together. Additionally, in
industrial clusters firms frequently work together to (re-)use residual flows, such as water, energy, and
materials.

Besides residual flow sharing, firms within an industrial cluster also engage in other types of collabo-
ration. Firms collaborate on linked activities, sharing and nurturing a common stock of products, tech-
nology, and organizational knowledge to generate superior products and services in the marketplace
(Mortensen et al., 2023). However, there is also competition between these firms. As a result, the firms
do not want to share all information with each other. As firms do not want to disclose their possible
future transition pathways, it is difficult to plan ahead for hydrogen network developers.
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2.1.2. Physical port aspects
The advantage of having an industrial cluster near a port is the convenient access to resources and
suppliers, as the port can handle a significant amount of import and export (Pivetta et al., 2024). The
term port typically refers to a network or infrastructure that enables the loading and unloading of cargo
from vessels and facilitates the transfer of cargo between different transportation modes. A port has a
water infrastructure with at least the following essential facilities according to Koningsveld et al. (2023):
approach channel(s), maneuvering areas, approach channels, and berths.

The water infrastructure is of influence for the development of a hydrogen pipeline network, as pipelines
placement under water is more difficult and therefore more expensive. However, it is outside the scope
of this thesis to fully study the workings of water infrastructure in a port. Therefore, an assessment of
the wet infrastructure in major European industrial ports was conducted to look for patterns. The visual
assessment of European industrial port clusters involved examining Google Maps satellite pictures.
These pictures are in small presented below. For a more zoomed in view of the IPC overview, see
appendix B.

Wet infrastructure
A visual inspection of ports such as Rotterdam, Duisburg, Antwerp, and Dusseldorf shows the water
infrastructure in blue. These four ports are chosen since these ports are the biggest industrial ports in
the European Union (Deloitte, 2023). First, of all one can see that the water infrastructure looks like a
tree that does not have any cycles. Having a cycle would also be inconvenient as it would create an
island and thereby decrease the accessibility of the facilities located on this island.

Zooming in on part of the ports, it can be seen that the wet infrastructure typically consists of multiple
docks where ships can load and unload, which corresponds with the findings of Koningsveld et al.
(2023). The extent and layout of these docks vary depending on the port. This is related with the kind
of ships that should be able to dock and thus turn in the port (Koningsveld et al., 2023). Additionally,
turning basins, used for ship maneuvering, are often located at the entrance of these docks.

Road network
Looking at other infrastructure in the ports, one can see train rails and roads. All this infrastructure is
needed to distributed the loaded or produced goods to the hinterland. Focusing on the road network,
one can see that the roads barely cross the water, per port there are one or two bridges crossing the
water. Additionally, the area between docks is often accessed by one road with occasional branches.
The primary purpose of this road network is to provide access to the plants and facilitate the efficient
transport of produce to other locations. Consequently, the roads are designed to be direct, minimizing
unnecessary turns that could increase transit time.

Furthermore, the presence of water and the high concentration of firms in the IPC result in limited space
for infrastructure expansion. This poses a challenge for hydrogen network development, as physical
boundaries and constraints in the form of waterways and private property will need to be considered
when planning new pipelines. In the Port of Rotterdam, the pipeline infrastructure has a dedicated
channel, that is placed next to the national road (CES Rotterdam-Moerdijk, 2021). Therefore, in this
thesis, it is assumed that the pipelines will be placed next to the roads. Consequently, the pipelines
will not be hindered by private property. Additionally, it is assumed that the pipelines will not be placed
next to a bridge,
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(a) Port of Rotterdam (b) Port of Duisburg

(c) Port of Antwerp (d) Port of Dusseldorf

Figure 2.1: Visual inspection of different ports made with Google (2024)

2.2. Hydrogen in an IPC
Hydrogen has the potential to reduce carbon emissions in hard-to-abate industries, such as the chem-
ical, iron, and steel sectors, and as a substitute for heat generation (Deloitte, 2023; Namazifard et al.,
2024; Vine, 2021). The subsectors with processes that can transition to hydrogen include those that
can achieve decarbonization by using hydrogen either as a feedstock (e.g., basic chemicals, iron, and
steel) or as a heat source.

Hydrogen as feedstock
Hydrogen plays a pivotal role as a feedstock in various industrial subsectors, especially in the chemical
and iron and steel industries. In the basic chemicals sector, hydrogen is essential for synthesizing am-
monia, methanol, and olefins. For example, ammonia production typically involves the Haber-Bosch
process, which combines hydrogen with nitrogen under high pressure. Currently, gray hydrogen, pro-
duced from natural gas, dominates this process. However, a transition to green hydrogen, derived
from electrolysis powered by renewable energy, or by blue hydrogen, derived from natural gas but
with Carbon Capture and Storage (CCUS) offers a near-zero carbon footprint for ammonia production
(Rouwenhorst et al., 2021). Similarly, methanol production, a basic chemical, which uses hydrogen
in the Auto Thermal Reforming process, can benefit from green hydrogen to produce CO2-neutral
methanol. This shift is crucial for achieving climate goals in this sector (Cioli et al., 2021).

In the iron and steel production, hydrogen’s role as a feedstock can be transformative. Traditional
methods rely heavily on coal and coke, generating substantial CO2 emissions. The use of hydrogen
in direct reduction processes, where iron ore is converted to iron using electrolytic hydrogen instead
of coal, can potentially reduce emissions up to 98% (IEA, 2024b). Despite the high costs and limited
current implementation, this technology represents a significant advancement towards decarbonizing
steel production. By integrating green hydrogen into these processes, industries can make substantial
progress towards sustainability and meet regulatory and environmental targets more effectively.

Hydrogen to generate heat
In industrial operations, heat is necessary to initiate chemical reactions or achieve certain physical
and chemical changes. The type of heat required for each operation varies from 50 ◦C to 1600 ◦C
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(Neuwirth et al., 2022b). Conventional heat-generating techniques often involve burning fossil fuels,
which releases greenhouse gases into the atmosphere.

The temperature of the heat dictates which decarbonization technologies can replace fossil fuel heat
generation. For low-temperature (≤ 150 ◦C) and mid-temperature heat (150 ◦C - 500 ◦C), there are
several clean heat solutions. Direct electrification is one of the most promising options if the electricity
grid can handle it and electricity prices can compete with fossil fuel prices (IEA, 2024a; Wei et al.,
2019). However, for high-temperature processes (≥ 500 ◦C), there are fewer options (see Table 2.1).
Clean heat solutions for high-temperature applications can be generated from biodiesel or using CCUS,
thus limiting carbon emissions. However, both face challenges: biomass production competes with
food production for land, and CCUS requires new infrastructure; currently, the legal framework in the
ETS does not accommodate CCUS (Vine, 2021; Wei et al., 2019). Another high-temperature option
is heat generated by hydrogen technology, which can reach 2800 ◦C, but, like CO2, it requires new
infrastructure (Vine, 2021).

Table 2.1: Possible clean heat solutions and to which process they can be applied [simplified table adopted from Vine (2021)]

Solar thermal Geothermal Nuclear Electrification Hydrogen Biomass and
biofuels CCUS

Low temperature heat process x x x x x x x
Mid temperature heat process x x x x x x
High temperature heat process x x x

2.2.1. Industrial Subsectors Suitable for Hydrogen-Based Decarbonization
As defined before, an industrial cluster is already defined as geographically close firms with linked eco-
nomic activity. For this thesis it is assumed that plants who belong to the same industrial subsector
have linked economic activity. In this section we will scope the industrial subsectors that will be con-
sidered this thesis. The European Observatory for Clusters and Industrial Change (2020) identifies 51
specialized subsectors for industrial sectors in their performance study on European regional industrial
clusters. This thesis will focus on eight industrial subsectors identified as likely candidates to transition
to hydrogen as decarbonization strategy (Neuwirth et al., 2022b). These subsectors are;

• Basic chemicals
• Refineries
• Iron and Steel
• Metal processing
• Paper and pulp
• Glass
• Mineral processing
• Non-ferrous metals

These subsectors are considered because their production processes include key steps that can be
transitioned to hydrogen-based technologies as part of their production operations (Neuwirth et al.,
2022a). These processes can either be transitioned to a hydrogen clean heat solution, or with hydrogen
as feedstock.

2.2.2. Process specifics
In this thesis, we argue that the probability for hydrogen transition can be determined by the specification
of the individual processes and technology within each plant, rather than the effect of the whole complex
system on the plant. In Figure 2.2, a schematic overview illustrates the relationship between subsectors,
processes, and process specifics of a plant. A plant belongs to a subsector and has a process that
can be decarbonized by adapting the hydrogen decarbonization technology. Additionally, the process
temperature and the technology readiness level (TRL) are indicated, and their relation to the concepts.
Below, it is discussed how process temperature and TRL are related to the probability of a process
adapting to the decarbonization technology.
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Figure 2.2: Schematic representation depicting the connections between subsectors, processes, and decarbonization
technologies. This diagram categorizes each plant within its respective subsector and specifies the processes that can

transition to hydrogen-based technologies. Furthermore, it mentions the process temperature and technology readiness level
(TRL) that influence the adaptation of the decarbonization technology.

Process temperature
The process temperature indicates the required temperature needed for the process. As explained in
section 2.2, clean heat solutions are available. Assuming that by 2050 all process heat is generated
by clean heat solutions, the question arises: which clean heat solution will be implemented? In this
thesis, the likelihood of adopting hydrogen decarbonization technology is linked to the number of com-
peting heat technologies that hydrogen faces. High temperature heat is expected to have the highest
probability for adaptation, as it only has two competing technologies. The assumption that a portion
of high temperature heat processes is likely to transition to hydrogen is supported by various studies
(IEA, 2021; Namazifard et al., 2024; Vine, 2021; Wei et al., 2019).

What is left out of consideration are the external factors such as economical, political or social factors
on which clean heat technology can be adapted. Such factors can give one clean heat technology
a head-start or a boost over the others. In this thesis, these factors and their influence on hydrogen
technology adaptation is later in this thesis incorporated by introducing uncertainty in the transition
probability of a process.

Technology readiness level
The technology readiness level (TRL) represents the maturity level of the technology. The TRL is an
ordinal scale ranking from level 1 to level 9. TRL 1 represents the initial idea of a technology, TRL 4-6
represent the prototype phase, and TRL 9 indicate that the technology is commercially available. In
Table 2.2, all TRL levels are described (IEA, 2019).

The TRL of a hydrogen decarbonization technology also influences the likelihood of transition in the
future. A technology that is currently in the early stages of prototyping is unlikely to be commercially
available and put into use within ten years. Therefore, for this thesis, the TRL is seen as an indicator for
the implementation of a technology in the near future (ten years). Beyond this period, the commercial
maturity of the technology remains uncertain due to various influencing factors. Therefore, the TRL
assigned now (2024) is not considered to affect the likelihood of transition after ten years.

Table 2.2: Representing the Technology Readiness Levels and their description adapted from IEA (2019)

Level Level name Description
1 Initial idea Basic principles have been defined
2 Application formulated Concept and application of the solution have been formulated
3 Concept needs validation Solution needs to be prototyped and applied
4 Early prototype Prototype proven in test conditions
5 Large prototype Components proven in conditions to be deployed
6 Full prototype at scale Prototype proven at scale in conditions to be deployed
7 Pre-commercial demonstration Solution working in expected conditions
8 First-of-a-kind commercial Commercial demonstration, full-scale deployment in final form
9 Commercial operation in relevant environment Solution is commercially available, needs evolutionary improvement to stay competitive
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2.3. Hydrogen network development in an IPC
As processes transition to hydrogen-based technologies, sufficient hydrogen supply and infrastructure
are essential to meet this growing demand. In this section, the hydrogen supply chain is discussed.
Following this, the current state of hydrogen network planning is discussed.

2.3.1. Hydrogen supply chain
The hydrogen supply chain encompasses the production, transportation, storage, and utilization of
hydrogen, as illustrated in Figure 2.3 (Griffiths et al., 2021). For this thesis, the focus is on local distri-
bution within an IPC. The hydrogen network within an IPC consists of interconnected supply, demand,
and storage locations. Below these four components shall be shortly explained, as well as important
assumptions connected to these components.

Hydrogen supply
Hydrogen supply in an IPC can originate from several sources, including generation plants, electrolysis,
steam methane reforming, and import facilities. Import facilities may involve pipelines or ammonia
cracking plants, which convert incoming ammonia from tankers into hydrogen (Griffiths et al., 2021).
The primary objective of the hydrogen network is to efficiently distribute hydrogen from these supply
nodes to the industrial plants that consume it.

Hydrogen storage
In addition to supply, storage is another crucial element of the hydrogen network in an IPC, acting as
a buffer to ensure a consistent supply of hydrogen, particularly when hydrogen is imported via tankers.
Effective hydrogen storage is vital due to the gas’s low density (Parolin et al., 2022). Various storage
methods can be employed, including compressed gaseous hydrogen and liquid hydrogen, each suited
for different applications. Additionally, underground storage solutions provide efficient options for larger
capacities, enabling a reliable and consistent supply of hydrogen within the network.

In this thesis, the focus is on the facilitation of the demand by the hydrogen network. Hereby it is
assumed that there is enough hydrogen supply in the system to provide this. Furthermore, storage
is not considered as a separate location. It is assumed that the storage facilities are located at the
same location as supply or demand facilities. Consequently, for this thesis the scope is on planning a
hydrogen network in such a way that the pipelines can facilitate the demand.

Hydrogen distribution infrastructure
This thesis primarily addresses the distribution of hydrogen. Gaseous hydrogen can be transported
over land through either pipelines or trucks. Pipelines are particularly well-suited for the delivery of
substantial quantities of hydrogen; they represent the most economically viable option for distributing
more than 1 ton of H2 per day over distances up to 3000 km (Korner, 2015; Parolin et al., 2022). In
contrast, when the quantity of hydrogen distributed is less than 1 ton, trucks are the more feasible
alternative. Given that this thesis focuses on industrial clusters that are likely to require large and
continuous flows of hydrogen, pipelines emerge as the most appropriate method of distribution.

Hydrogen demand
The future outlook for hydrogen demand has been addressed earlier in this thesis, highlighting the po-
tential for various processes to transition to hydrogen-based solutions, see section 2.2.1. The process
specifics play a critical role in assessing the likelihood of this transition in the future.

Generation DistributionStorage Consumer

Figure 2.3: Schematic overview Hydrogen Supply chain, and the place of distribution in this supply chain
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2.4. Actor analysis
In order to design an artifact that can help plan a hydrogen network, it is important to look at the
different actors and stakeholders involved in planning such network. The important actors are the
network operator, the industrial plant owners, the hydrogen producers, and the port authority who have
been introduced in Section 1.1.3. An overview of the actors, their description and their interests can be
seen in Table 2.3. This section covers the requirements of the hydrogen network based on the actors’
interests.

Table 2.3: Overview of the direct stakeholders and their interests regarding a hydrogen network in an IPC.

Actor Description Interests

Network opera-
tor

Semi-private entity responsible for network plan-
ning, development, and maintenance. Facilitates
users and ensures a safe transition.

- Economic profit
- Safety of network
- Facilitating users
- Facilitating NZE transition

Industrial plant
owners

Represented by a plant owners association; de-
termine plant changes for decarbonization. Influ-
enced by policies such as carbon taxes.

- Economic profit
- Sufficient infrastructure

Hydrogen pro-
ducers

Function as producers or importers; require solid
infrastructure and reliable demand to maintain a
viable business model.

- Economic profit
- Hydrogen market reachable by
infrastructure

Port Authority Publicly owned entity managing, operating, and
developing the port area. Aims to meet EU stan-
dards and become a future-proof, sustainable
port.

- Decrease emissions
- Adhere to EU regulations
- Safe environment
- Keep industrial plants operating
within the port

2.4.1. Cost-efficiency
Three key stakeholders prioritize economic profit: the network operator, industrial plant owners, and
hydrogen producers. Their interests and concerns regarding the hydrogen network are outlined below.

Network Operator The network operator seeks to generate profit, although this may be limited by crit-
ical infrastructure regulations. The operator’s expenses include network installation and maintenance,
which are covered through tariff charges. Thus, setting the right tariff level is crucial for balancing costs
and profitability.

Industrial Plant Owner Industrial plant owners prioritize economic gain and, therefore, advocate for
lower tariffs on network usage to reduce their operational costs. Lower tariffs help enhance their profit
margins by minimizing the expenses associated with accessing the hydrogen network.

Hydrogen Producers Hydrogen producers also aim for economic profit. Their profitability increases
when the input costs, such as electricity or ammonia, are low, and when hydrogen prices remain rel-
atively high in a robust market. For producers, it is particularly important that the hydrogen network
connects to a broad range of potential consumers. Additionally, low tariff costs are essential to keeping
the overall price of hydrogen competitive, thereby making it more appealing to potential customers.

Despite the shared goal of individual economic profit, a conflict emerges over tariff levels. The network
operator benefits from higher tariffs to increase revenue, provided this does not deter customers, while
hydrogen producers and consumers prefer lower tariffs to reduce costs.

From the previous analysis we observe that tariff levels are ultimately tied to the network’s costs. If
installation and maintenance costs are minimized, the network operator can charge lower tariffs without
compromising on profit. Therefore, this thesis will concentrate on strategies to minimize hydrogen
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network installation and operational costs. This approach is expected to have a positive impact on the
economic outcomes for both hydrogen producers and consumers by indirectly supporting lower tariffs.

Striking a balance between cost and user facilitation is challenging, as the most cost-efficient network
would involve no network at all, thereby failing to meet the needs of any users. This underscores the
imperative for a decision-making method that aids in navigating the trade-off between cost and demand
facilitation, while accounting for an uncertain future.

2.4.2. Facilitate users
It is crucial for the hydrogen network to effectively accommodate both existing and future users, which
is a primary interest of the network operator. However, the other three stakeholders also benefit from
an infrastructure that can meet current demands while being adaptable to future needs.

Future accomodation is particularly important for the port authority, as it relies on ensuring adequate
infrastructure to maintain a favorable investment climate for future industrial developments (Pivetta et
al., 2024). Guaranteeing sufficient capacity helps attract new industrial plants and supports the long-
term growth of the hydrogen market.

2.4.3. Safety
Lastly, another requirement for a hydrogen network is its safety. Hydrogen is smaller than natural
gas molecules, making it more challenging to contain in confined spaces such as storage facilities
and pipelines. Additionally, hydrogen’s reactivity with a wide range of materials raises further safety
concerns. Hydrogen can cause embrittlement in metals, leading to the degradation of pipelinematerials
and increasing the risk of leaks and ruptures. This phenomenon, known as hydrogen embrittlement,
occurs when hydrogen atoms diffuse into the metal, reducing its ductility andmaking it more susceptible
to cracking under stress (Moradi &Groth, 2019). Therefore, pipelines and storage systems designed for
hydrogen must be constructed from materials that resist such embrittlement to maintain their structural
integrity over time.

The safety of a hydrogen network has been addressed in multiple studies (Moradi & Groth, 2019; Najjar,
2013; Weber & Papageorgiou, 2018); however, this requirement is beyond the scope of this thesis, as
including it would expand the problem significantly and quickly increase computational demands.

2.5. Current state of hydrogen network planning
In practice, current energy infrastructure projects use a time horizon of 10 years to plan their hydrogen
infrastructure (Cuppen et al., 2021). This planning approach minimizes installation costs of the network
to facilitate the expected demand within the time horizon of 10 years. This planning approach is defined
in this thesis as the immediate demand planning method; where the network is only planned for the
immediate demand, namely the demand for one decade.

However, limiting the planning horizon to only 10 years may lead to repeatedly installing hydrogen
pipelines on the same trajectory to facilitate the growing demand over decades. As research studies
indicate that hydrogen demand will continue to grow until 2050, it can be suboptimal to only look at
costs minimization and demand facilitation per decade (IEA, 2023a).

This thesis hypothesizes that the immediate demand planning method which focuses on minimizing
costs within a 10-year time frame, may overlook opportunities for long-term cost reduction in the hydro-
gen network extending to 2055. To address this, a robust method is developed that aims to minimize
costs over the entire period up to 2055 by considering the facilitation of demand up-to 2055. The robust
method shall be implemented over time with an interval of 10 years; thereby considering the intervals
with the end year of 2035, 2045 and 2055.
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Theoretic Framework

Themethod that will be designed for this thesis will have to deal network optimization and participant and
demand uncertainty. In this chapter the approach for the two aspects of the method will be discussed. It
will be derived that graph theory and exploratory modeling approach will be used to develop the method.
Lastly, robust and cost-efficiency shall be operationalized thereby answering sub-question 2.

3.1. Optimizing networks
To determine the most effective approach for designing a hydrogen pipeline network for an Industrial
Port Cluster (IPC), a modeling technique is employed. This is necessary due to the impracticality of
real-world testing. There are three primary mathematical optimization methodologies for optimizing
networked systems: mixed-integer (non-)linear programming (MI(N)LP), agent-based models (ABMs),
and geometric graph theory (GGT) (Heijnen et al., 2019).

Mixed-integer (non-)linear programming (MINLP) is widely used in studies of future hydrogen infrastruc-
ture (Li et al., 2019). MINLP effectively optimizes costs within energy systems, constrained by decision
variables (Welder et al., 2018). Nevertheless, a notable limitation is the frequent exclusion of pipeline
topology as a decision variable. Furthermore, broadening the decision space to include more flexible
pipeline location options would substantially elevate the computational burden.

Agent-based models (ABMs) offer another approach. ABMs are designed for a broad range of ap-
plications and model systems from the bottom up, simulating the actions and interactions of individual
agents within the system (Dam et al., 2013). Ant Colony Optimization (ACO) is a possible ABMmethod
to optimize networks, this optimization method is inspired by ant behavior; the sources are described
by ant nests and food nodes represent the sinks (Heijnen, Chappin, & Nikolic, 2014; Sivanandam &
Deepa, 2008). A downside of ACO when applied to optimization networks, is that the tracks made by
the ants, should be translated to a graph in order to depict it in a nice and understandable way. Fur-
thermore, the ACO was outperformed by the GGT in computational time in a study done by Heijnen,
Chappin, and Nikolic (2014).

The last approach is the Geometric Graph Theory (GGT), for this thesis GGT is chosen as approach
to optimize networks. In GGT, sources and sinks are represented as nodes n (production facilities,
users) and their connections (pipelines) are represented as edges e together, they form a graph G(n, e)
(Melese et al., 2017). Compared with MI(N)LP and ABM, graph theory is more focused on the visual
presentation of networks specifically and can therefore be better used as a tool to help decision makers
(Yeates et al., 2021). In addition, GGT is developedwith the aim of analyzing networks and can be easily
modified to meet additional system requirements, such as the prohibition of pipeline transport through
specific areas, or the promotion of pipeline transport through existing pipeline corridors, something that
is harder to model with MINLP (Heijnen, Ligtvoet, et al., 2014; Reuß et al., 2019).

3.1.1. Important theorems GGT
As already mentioned, GTT refers to networks as graphs G(n, e) that consist of nodes n that are con-
nected by edges e. An edge is always a connection between two nodes e = (ni, nj). The nodes and
edges can have attributes w(e); for example, an edge can have the length of the edge as attribute.
Graphs can have all kind of forms, for this project, we will only look at trees. A graph is a tree if there
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are no cycles in the graph; meaning there is exactly one path between two arbitrary nodes. Applied
to hydrogen pipeline infrastructure, a tree is the most cost-efficient way to distribute hydrogen gas 3.2.
A downside, however, is that in case of a fall-out of a pipeline, some nodes will not be accessible.
However, for this thesis, this will be left out of consideration.

An old graph theory problem is the minimum spanning tree (MST) problem; given a network find a tree
that connects all nodes and of which the sum of the attributes of these edges is minimum (Kruskal,
1956). This problem can be solved either using Prims algorithm or Kruskals algorithm and it is known
that the optimal solution is always found (Kruskal, 1956; Prim, 1957). This problem has been applied
to hydrogen infrastructure before (André et al., 2013). However, as mentioned in the introduction, it
is assumed that the pipelines will be placed next to the roads in the IPC. Consequently, the minimum
spanning tree (MST) is not the right problem for this thesis, as the MST assumes that there are direct
routes between the nodes and that they must all be connected to each other.

Therefore, in this thesis, the pipeline network is represented as a Capacitated steiner tree, which con-
sists of two types of nodes: terminal nodes and steiner nodes. In reality, the terminal nodes represent
the supply and hydrogen demand nodes and the steiner nodes represent the road or routing network.
Eventually, the terminal nodes need to be connected with each other using part of the road network.
The goal is to find a steiner graph that minimizes the costs while also delivering the necessary hydrogen
from the supply node to the demand node. Below the minimum steiner tree and minimum capacitated
steiner tree will be shortly explained.

Minimum steiner Tree
A minimum steiner tree in a graph (MStTG) is a subgraph that connects all terminal nodes, possibly
incorporating some steiner nodes, while minimizing the total edge length (Winter, 1987). The task of
finding a minimum steiner tree MStT in a graph G is known as the minimum steiner tree in a graph
problem. This problem is NP-hard, meaning there are no practical algorithm to find an exact solution
in a reasonable amount of time, particularly if the size of the network increases (Žerovnik, 2015).

As a result, sub-optimal approaches, or heuristics, are used to address the minimum steiner tree prob-
lem. While these heuristics can identify a steiner tree, they do not guarantee that the solution obtained
is the global minimum. Instead, they often converge on a local minimum. Numerous heuristics exist to
approximate solutions to the MStTG (Winter, 1987). For instance, v. Mikulicz-Radecki et al. (2023) uses
a MStTG heuristic to study the development of the hydrogen pipelines using the existing natural gas
grid. They specifically applied the Minimum Spanning Tree Heuristic to identify an optimal hydrogen
network integrated into the existing natural gas infrastructure (Hagberg et al., 2008).

Capacitated networks
Pipeline networks are depicted in GGT as capacitated networks, consisting of sink and source nodes.
The sink represents a plant that demands hydrogen, while the source represents a supplier that pro-
vides hydrogen to the network. The capacity of a pipeline limits the volume of hydrogen that can be
transported from the source to the sinks, and the network must be able to facilitate this flow. Addition-
ally, the cost of a pipeline depends not only on its length but also on its capacity, as increased capacity
requires a larger-diameter pipeline, resulting in higher material expenses. To minimize the costs of the
network, it is insufficient to simply minimize the length; rather, the cost must be minimized as a function
of both length and diameter. This is known as the Minimum Capacitated steiner Tree (MCStT) problem.
To the authors’ knowledge, there are no existing heuristics that solve the Minimum Capacitated steiner
Tree problem for pipeline networks. However, there is a review of several capacitated spanning tree
heuristics applied to pipeline networks by Yeates et al. (2021). Since it is possible to convert the MC-
StT into an MCST problem, we will first discuss the minimum-cost capacitated spanning tree (MCST)
heuristics and then later adapt the chosen heuristic to a steiner tree problem (Van den Eynde et al.,
2022).

Minimum-cost Capacitated Spanning Tree heuristic
Finding the MCST can be done by brute-force, where all the optimal MCST by drawing up all possible
capacitated steiner tree and then selecting the one that has minimum costs. However, this brute-force
approach gets extensive very fast, since a network withN nodes results inNN−2 possible trees (Cayley,
1857). Therefore, in practice heuristics are used to approximate the MCST.
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Multiple MCST heuristics are used in the literature to plan hydrogen pipeline infrastructure. All heuris-
tics, have the same outline; they start with an initial network (often a minimum spanning tree), capacity
is then allocated and then the network is optimized with a heuristic to find a network which has less
costs than the initial network (Yeates et al., 2021). In Figure 3.1, you can see an example of the differ-
ent steps. Below, some network optimization heuristics will be described. This network optimization
heuristic corresponds to the third arrow in Figure 3.1.

Figure 3.1: Example of the different steps of a minimum-cost capacitated spanning tree heuristic (Yeates et al., 2021)

The first heuristic is the delta change heuristic, which Rothfarb et al. (1970) introduced and André et al.
(2013) implemented for hydrogen infrastructure. The essence is that cycles are created in the network
with capacity by adding one edge. Then candidate networks (trees) are generated by removing one
edge from the cycle, for the candidate networks, the costs are calculated. If the candidate network
has lower costs than the previous network, the network is saved (Yeates et al., 2021). André et al.
(2013) applied this delta change heuristic to hydrogen transmission network in France, however, to
limit computational costs, only the closest node to another node was chosen to create a cycle, instead
of choosing all nodes, see Figure 3.2.

Figure 3.2: The delta change heuristic as applied by André et al. (2013)

Another heuristic is the edge turn heuristic created by Heijnen et al. (2019); which is in some sense
the exact opposite of the delta change heuristic. Where the delta change heuristic creates a cycle that
needs to be broken to achieve a tree. The edge turn heuristic removes one edge (ni, nj) of the tree
thereby creating two components in the graph, see Figure 3.3. Then, candidate networks are created
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Figure 3.3: Example of implementation edge turn heuristic (Yeates et al., 2021)

by connecting the two components again with an edge that is connected with either ni or nj and another
node of the graph nk. These candidate networks are then optimized in such way that they can facilitate
the required demand. From the candidate network and the starting network, the lowest cost network is
chosen.

Yeates et al. (2021) compared different methods and found that the edge turn by Heijnen et al. (2019)
had the fastest computation time compared to all heuristics, with an average computation time of 0.5
seconds for a MCST with 12 sources. The delta change heuristic, the runner up, took on average
2 seconds. A disadvantage of the edge turn heuristic is that it does not always achieve the optimal
network. Nevertheless, if we aimed for significantly higher accuracy toward the optimal solution, the
heuristic would get more complex, and the computation time would be almost 100 times longer (Yeates
et al., 2021). These computationally complex heuristics combine a local search heuristic with a meta-
heuristic. Given that we need to integrate network optimization with deep uncertainty, a fast heuristic
is preferred as it will significantly decrease computational time. Therefore, the edge turn heuristic is
chosen as the minimum capacitated steiner tree heuristic.

The edge turn heuristic applied to a routing network acts in essence the same. As a first step one edge
is removed, creating components. Then by iterating over the nodes in the other component nk and
adding the shortest path between ni/j in the road network the two components are connected. Each
tree is seen as a new candidate network if the shortest path between ni/j and nk is not partly located in
one of the components, see Figure 3.4. Then the candidate network is selected with the lowest costs.
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Figure 3.4: Example of the edge turn heuristic applied to a routing network

3.2. Decision Making under Deep Uncertainty
The network optimization method that will be developed using GGT will be used as a decision making
support tool. However, making decision about the hydrogen infrastructure of an Industrial Port Cluster
is very difficult as the hydrogen demand is deeply uncertain due the amount of external factors that
influence this hydrogen demand. Deep uncertainty means that because of the complexity of the system,
there are a large number of plausible futures that cannot be ranked based on the likelihood of their
occurrence (Maier et al., 2016).

To model plausible futures for a deep uncertain future scenarios should be generated (Herman et al.,
2015). There are three kind of scenarios; predictive scenarios, exploratory scenarios and normative
scenarios. First kind of scenario is a predictive scenario. A predictive scenario can also be called a
what-if or a best-guess scenario (Maier et al., 2016). Predictive scenarios are used if the system is
relatively well-known and well-defined (van Vuuren et al., 2012). Another kind of scenario modeling
is with exploratory modeling; where the multiple future space is explored to answer the question what
could happen (Maier et al., 2016). The last kind of scenarios that can be used to model future scenarios
is the normative scenario; with normative scenarios generation the model is more solution focused and
tries to answer a question like how can a specific future be realized?

For this thesis, exploratory scenario generation will be employed because the hydrogen energy system
is still in its early stages and not yet well-defined, making predictive scenarios unsuitable (Paredes-
Vergara et al., 2024). Normative scenarios are also inappropriate, as there is no single, shared future
that the group of stakeholders aims to achieve independently of external factors. Therefore, this thesis
will utilize exploratory modeling to examine how external factors beyond the influence of the stakehold-
ers affect the future of the network (Börjeson et al., 2006). The Exploratory Modeling Analysis python
package developed by J. H. Kwakkel and Pruyt (2013) is used in this thesis to generate the exploratory
scenarios.

This thesis uses Many-Objective Robust Optimization (MORO) as robust optimization approach as it
uses exploratory scenarios to optimize the robust solution, effectively tackling uncertainty from the be-
ginning (Bartholomew & Kwakkel, 2020). In contrast to other robust decision making methods, which
only use several or one reference case for robust optimization. MORO measures the robustness for
each outcome by sampling from the plausible future space, guaranteeing that solutions function satis-
factorily across all plausible futures.

Eventually, the method will support decision makers in developing a robust design for the hydrogen
pipeline network. The robustness definition as practiced by this thesis is that robustness is a measure
of the adequate performance of the design under a range of plausible scenarios (Maier et al., 2016).
However, the precise definition of adequate performance is not globally determined, on the contrary
the robustness measure should be defined by the interested parties. An appropriate robustness metric
is determined by the combination of the likely impact of system failure and the degree of risk aversion
of the decision-maker (McPhail et al., 2018).
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3.3. Synthesis Theoretic Framework and Problem definition
In this section, the problem definition and the theoretic framework shall be synthesized and summarized,
thereby defining cost-efficiency and robustness.

Since the hydrogen pipeline network method should be a decision making support tool, a geometric
graph theory approach is used to optimize networks as this is a intuitive and visual approach to optimize
networks and it makes it easy to add additional constraints or nodes. As the industrial port cluster is
densely built, it is assumed that the pipelines will follow the road network. Thus, the optimization pipeline
network problem is a capacitated minimum steiner tree problem. Using the actor analysis, the objective
of the network is to minimize costs and to facilitate demand over time. To address the over time aspect
the method shall optimize the hydrogen network every ten years (2035, 2045, and 2055), it thereby
represents the standard monetary planning horizon of infrastructure development. Furthermore, it will
also be able to depict the path-dependency that is attributed to pipeline network infrastructure by using
the developed network of the previous years as input for the next ten years.

Due to the uncertainty in industrial hydrogen demand towards 2050, it is uncertain how much demand
should be facilitated over-time. To take demand and participant uncertainty into account exploratory
scenario generation will be used for multi-objective robust optimization, by optimizing networks for a lot
of plausible future demands. The goal of generating all these networks is to create a robust network
from all these scenarios, that optimizes a robustness measure related to the facilitation of demand. A
robustness measure represents the risk-adverseness and values of stakeholders and should therefore
be defined by the decision makers.

In this thesis, it is assumed that the robustness measure should portray a high risk aversion for missed
facilitated demand. This assumption is based on the study of Cuppen et al. (2021), where a collab-
orative approach was adopted to investigate possible interventions in the energy infrastructure with
important stakeholders. Stakeholders that were actively involved in that study were the network opera-
tors, the industrial plant owners, and the port authority. The collaborative robustness metric defined in
that study was a negative definition of success: the least number of missed transition events from the
pathway of events. This corresponds with a high risk aversion for missed facilitation of demand; this
stance of decision makers is what we will implement for this research as well. The robustness measure
evaluates the performance value of facilitated demand, which we aim to maximize.

Since we want to optimize the facilitated demand, a regret-based metric is preferable, especially when
combined with cost minimization (McPhail et al., 2018). High risk aversion metrics that account for re-
gret include minimax regret and the 90th percentile (P90) minimax regret. From these two, the minimax
regret exhibits the highest degree of risk aversion in comparison to the 90th percentile minimax regret.
For this thesis, the 90th percentile minimax is selected, as it displays reduced sensitivity to outliers.



4
Methodology

The current hydrogen infrastructure planningmethod is the Immediate DemandPlanningMethod (IDPM),
as described in Section 2.5. It uses a 10 year time horizon to plan cost-efficient infrastructure, which
could lead to increased costs over time. This chapter describes a new method for developing a robust
and cost-efficient network within an IPC, which aims to minimize costs over 30 years. This method is
called the Robust Backtracking Planning Method (RBPM).

This chapter is organized into several sections, with a visual summary provided in Figure 4.1. First,
Section 4.1 introduces the IPCmodel, which is based on the observed IPC characteristics from Chapter
2. This model will later be used to test the different planning methods. Next, Section 4.2 explains the
process of generating demand scenarios, using the IPC model as input. In Section 4.3, it is described
how the networks are optimized towards 2055 from the current infrastructure planning method point of
view; per decade and per demand scenario. In Section 4.4, it is reported how these optimized networks
can be visually analyzed to better understand the future solution space of the IDPM. Following this,
Section 4.5 presents two methods for generating robust networks. Finally, Section 4.6 describes the
implementation of these robust methods over time.

IPC model 
generation

(4.1)

Demand 
scenario 

generation
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generation
(4.3)

Visual Analysis
(4.4)
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for each scenario s

Figure 4.1: Visual overview of the methodology, each blocks represents a flow block in the method and the corresponding
section is indicated
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4.1. IPC Model
This thesis is not using a case study, like an existing industrial port cluster. Instead, for this study small
industrial port clusters are generated. The purpose of generation the IPC model is first of all to illustrate
the method (Edmonds, 2017). Secondly, the models goal is a theoretical exposition where the model
is used to test different hypotheses of the robust method regarding different clusters.

In this IPC model the main characteristic derived in chapter 2 will be incorporated. The main charac-
teristics of an IPC related to hydrogen networks are

• High presence of water ways and docks that have a tree like structure
• A road network that is heavily influences by the water ways, that does not often cross the water,
and its road network is structured around the water

• High concentration of firms
• Large share of industrial plants from the same industrial subsector
• Hydrogen network follows the road network due to presence of water and high concentration of
firms.

For modeling purposes two concepts are distinguished; the IPC layout and the IPC configuration. An
IPC layout consists of waterways, road network, and plant locations. An IPC configuration is a com-
bination of the IPC layout and the assignment of plant specifics to the plant locations. Below, first the
port layout generation step is discussed, and then the IPC configuration step is presented.

4.1.1. IPC layout generation
The output of this step is a port layout with industrial nodes, a road network, and the wet infrastructure.
The port layout is generated using a method developed by Petra Heijnen to generate case studies for
project groups in the course Prestatie Analayse in Energie en Industrie for the Technology, Policy and
Management bachelor program. An overview of the port layout generation model can be seen in Figure
4.2.

In Step 1, waterways are created by generating a minimum spanning tree (MST) from randomly gen-
erated locations within 80% of the total dimensions of the port. These randomly generated locations
serve as the waterway points. This MST is subsequently connected to a rectangle that represents the
water at the bottom of the graph. From the MST, a polygon is formed by adding width to the edges and
smoothing the lines by removing polygon points that are less than ϵ distance apart. This process yields
a set of randomly located waterways. The author conducts a visual inspection of these waterways to
ensure they resemble the wet infrastructure described in Section 2.1.2. The primary visual assessment
criterion for the waterways is that they should effectively represent a dock structure.

In Step 2, a road grid is generated by overlaying a grid of squares across the entire harbor layout, with
each grid line corresponding to the specified resolution. Grid points located within or near a 20-meter
radius of the waterways are subsequently removed. Additionally, grid corners are randomly eliminated
with a 10% probability to create a more varied composition of the road grid in areas unaffected by water.
The coordinates of the road grid are further adjusted randomly within a distance of 5 meters in both the
x and y directions. Given that a strictly grid-based infrastructure would normally favor the shortest path
routes, this small change in location is required to avoid the formation of uniform paths.

In Step 3, the locations of industrial plants are assigned to nodes within the road grid. Each industrial
node is preferably situated at the end of a road, which is defined as a node with only one neighboring
connection. In cases where there are insufficient endpoints available, the remaining industrial locations
are placed arbitrarily at other points within the road grid. Throughout the placement process, the au-
thor visually assessed the distribution of industrial nodes, ensuring that at least one industrial node is
assigned to each quarter of the IPC area to achieve a balanced representation.

In Step 4, a subset of the road grid is selected to form the road network. In reality, the road network
is primarily developed to facilitate the efficient transport of produce to other locations, as discussed in
section 2.1.2. Consequently, the road network is derived from the road grid by identifying the roads
that lie along the shortest paths between two arbitrary industrial nodes or those that are part of the
minimum steiner tree that connects all industrial nodes. Furthermore, nodes that Lastly, to simplify the
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road network, nodes located on straight roads that have a degree of 2 are eliminated, as they do not
contribute additional value to the road network.

The final road networkH(N,E) is a steiner graph with the industrial nodes as terminal nodesNterminal ∈
N and the grid corners are represented by the steiner nodes Nsteiner ∈ N .

Inputs Model Output

Subsection road network
only the steiner graph and 

shortest path between industry 
nodes

Place plant locations
preferable at dead- end roads
Otherwise placed randomly

Generate Road Network Grid
roads do not cross or come 

near obstacles
10% of grid nodes are removed

Generate wet infrastructure
From a MST of size N_ww

manually selected to resemble 
real wet infrastructure

- dimensions (x, y)
- N number of industries
- width of water ways
- N_ww number of water way points
- resolution of road network grid
- smoothness parameter ε

harbour layout with
- plant locations
- road network 
- water ways

Figure 4.2: Schematic overview of the harbour layout generation model

It is imperative to acknowledge that the algorithm for generating waterways is somewhat random and
may not accurately reflect real-life conditions. For example, the real life wet infrastructure of a port does
not conform to a minimum spanning tree. Unfortunately, due to time constraints, it was not feasible to
develop a more realistic algorithm for generating the wet infrastructure of the port layout.

4.1.2. IPC configurations
For one IPC layout multiple configurations can be generated. A configuration is generated from the
IPC layout by assigning the industrial nodes as either a supply node, or a demand node.

Supply node
In each configuration, a single supply node represents the hydrogen production and storage facilities
in the IPC. Initial tests revealed that the location of this supply node significantly impacts network out-
comes. Additional research revealed that facilities for producing hydrogen are intended to be situated
in close proximity to one another (CES Rotterdam-Moerdijk, 2021). As a result, the decision was made
to display the supply facilities as a single network node.

Additionally, the supply node is restricted to the lower quadrant of the IPC, near major water bodies, to
align with regulations that position flammable materials away from populated areas (Koningsveld et al.,
2023). Since this supply node represents both hydrogen production and storage, it is assumed to meet
all demand requirements. Without this assumption, supply variability would need to be accounted for,
potentially fluctuating throughout the day (Caglayan et al., 2021). This variability in supply, however,
falls outside the scope of this thesis, which assumes a continuous and sufficient hydrogen supply from
the designated supply node.

Demand node
Demand nodes are conceptual representations of existing industrial plants associated with a specific
process within a subsector. For simplicity, each demand node is modeled to feature only one process
that can transition between different states. This simplification is justified by the relatively small scale
of the IPC; if a company has multiple potential hydrogen processes, these are represented in the IPC
as separate nodes.
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Table 4.1 outlines the properties assigned to each demand node and describes their interrelationships.
In addition to the subsector, process, and decarbonization technology, each demand node is assigned
a production capacity, which indicates the amount of product produced annually.

Furthermore, as this thesis posits that the likelihood of transitioning to hydrogen processes is influ-
enced by the specifics of the processes and technologies involved. Consequently, each demand node
is categorized by its process temperature and assigned a Technology Readiness Level (TRL). Finally,
to project future hydrogen demand, each demand node is also associated with a Specific Energy Co-
efficient (SEC), which quantifies the energy consumption of the decarbonization technology per ton of
output product.

Some demand nodes are labeled as extra. They represent the possibility of another industrial plant
relocating to this particular IPC or an existing plant expanding its operations. In future demand sce-
narios, the likelihood of an extra node appearing will reflect the business climate in the IPC, which is
influenced by a variety of external factors.

Table 4.1: Table to list the properties given to each industrial node in a configuration

Property Assignment criteria Unit
Subsector Sub-sector picked from the subsector list identified as likely candidates to transition to hydrogen as decarbonization strategy -
Process Given the sub-sector, a corresponding process is randomly picked -
H2 decarbonization technology Given the process, a corresponding hydrogen technology is picked as decarbonization technology -
Production Capacity Given the process, the production capacity is picked from a normal distribution ton/year
Process Temperature Category Attribute to the Process, given the process, the associated temperature category based on Table 2.1
Specific Energy Coefficient Attribute to he H2 decarbonization technology
Technology Readiness Level Attribute to the H2 decarbonization technology

4.1.3. Cluster generation
As previously defined in Chapter 2, IPCs consist of geographical close companies operating within the
same specialization field, such as a specific subsector. The IPC configurations are conceptualized to
represent a cluster in which at least cc percent of the industrial nodes belong to a single subsector. For
instance, in the context of this thesis, we refer to an Iron and Steel cluster if at least cc % of the plants
within that IPC are classified as Iron and Steel industrial plants.

4.2. Scenario generation
Given an IPC configuration many plausible future scenarios will be generated in the demand scenario
generation phase using EMA work package (J. H. Kwakkel & Pruyt, 2013), a schematic overview of this
step can be seen in Figure 4.3. The inputs of this step are the plant specifics from the IPC configuration,
the uncertainty parameters and the technology specific energy data.

Each demand scenario specifies hydrogen demand for every industrial plant in the years 2035, 2045,
and 2055. These scenarios are generated based on the transition probability pn,t for each plant node
n at timestep t and the estimated hydrogen demand Dest,n if the plant transitions to hydrogen. At
each timestep, the plant transitions to hydrogen with probability pn,t (see Equation 4.1). Notably, if
the technology readiness level TRLn ≤ 6, the probability of transition in 2035 is set to zero. The flow
diagram illustrating the generation of a single demand scenario is provided in Appendix Figure D.1.

Dn,t =

{
Dest,n if p < pn,t or Dn,t−1 = Dest,n,

0 otherwise,
∀n ∈ Ndemand, pn,t ∈ [0, 1], t ∈ {2035, 2045, 2055}

(4.1)

A simple example of a demand scenario can be seen in Figure 4.4. As one can notice, the hydrogen
demand per node is either on or off there is no gradual aspect on this function. This is done since
one node resembles one process, and we will assume that this full process will transition to hydrogen.
However, in reality it is can be the case that only a small portion is first transitioned as pilot project or
that the plant will expand. This subtlety is not modeled in these scenarios.
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Figure 4.3: Overview of the demand generation of one node for one scenario

Figure 4.4: An example of one demand scenario. One demand scenario contains the future demand and supply for the
demand nodes in the years 2035, 2045 and 2055.

4.2.1. Hydrogen demand per process
The estimated maximum hydrogen demand Dest,n is based on Neuwirth et al. (2022a). In their paper,
the maximum hydrogen potential per industrial plant Dmax,n is determined using the specific energy
consumption (SEC) and the plant specifics. SEC represents the energy use of the technology per
ton of output product. Thereby, if the process would transition from fossil fuel use to hydrogen use, the
maximum hydrogen demandDmax,n is a function of the production capacity ProdCapn and the Specific
Energy Consumption of the technology SECtechnology,n:

Dmax,n = SECtechnology,n · ProdCapn. (4.2)

with maximum hydrogen demand Dmax,n in TWh/year, specific energy consumption SECprocess,n in
MWh/ton, and production capacity ProdCapn in Mton/year.

The approach of estimating hydrogen consumption based on current industrial process characteristics
is also adopted by Namazifard et al. (2024), who explored several potential hydrogen supply scenarios
for Belgium in 2050. However, while their focus is on supply, this thesis emphasizes the hydrogen
network as a function of demand. In different future scenarios, the hydrogen required for transitioning
industrial processes may vary due to technological advancements, as well as slight expansions or re-
ductions in plant capacity during the transition. To account for this uncertainty in the future hydrogen
demand, we model the estimated demand at each node, Dest,n, as a uniform distribution. This distri-
bution accounts for possible deviations from the maximum demand Dmax,n per scenario. Specifically,
the estimated demand is assumed to lie within a range defined by the demand range ∆D. The uniform
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distribution is given by:

Dest,n ∼ U(Dmax,n · (1−∆D), Dmax,n · (1 + ∆D)) (4.3)

where Dest,n is uniformly distributed between Dmax,n ∗ (1−∆D) and Dmax,n ∗ (1 + ∆D). The demand
range∆D is a number between 0 and 1, andDmax,n is the calculated maximum potential demand given
in equation 4.2.

This approach reflects the assumption that future demand could vary symmetrically within this interval,
accounting for both potential increases and decreases in demand due to factors such as technological
improvements or capacity changes. It is important to note that once a node undergoes the transition,
its hydrogen demand is assumed to stabilize and remain constant.

4.2.2. Uncertainty Parameters
Multiple scenarios are generated using the Exploratory Modeling Analysis (EMA) work package (J. H.
Kwakkel & Pruyt, 2013). As explained in section 3.2, with EMA it is possible to generate exploratory
scenarios by formulating uncertainty parameters and the uncertainty parameter space. The EMA work
package then, sample from this uncertainty parameter space using Latin Hypercube Sampling (LHS).
LHS splits the uncertainty space by the number of scenarios and randomly combines these values ,
this way a unique and uniform distribution of values across scenarios is ensures (Huntington & Lyrintzis,
1998).

The uncertainty parameters used in this thesis can be seen with their definition in Table 4.2. We dis-
tinguish three types of uncertainty; the transition uncertainty pT , the settle uncertainty pextra and the
demand uncertainty ∆D.

Firstly, the probability of an industrial plant transitioning to hydrogen decarbonization technology is char-
acterized as an uncertain parameter, as it relies on numerous external factors. These external factors
are encapsulated in the transition uncertainty pT , as referenced in equation 4.1. In this thesis, three
transition probabilities pT are distinguished: low, medium, and high categories. These categories cor-
respond to the likelihood of a plant successfully transitioning. As discussed in Chapter 2, processes
that require high-temperature heat or serve as feedstock have a greater likelihood of transitioning com-
pared to those that operate with low-temperature heat. The assignment of the transition probability
category is based on the temperature category of each process.

Secondly, another uncertainty parameter is chosen; pextra the probability of an extra node occurring
in the IPC. When this node appears in the IPC, then it will be treated just as a normal demand node
with each decade a chance of pT to transition. Thirdly, the last uncertainty parameter is the demand
uncertainty, which is represented as the demand range ∆D, see equation 4.3.

Table 4.2: Uncertainty parameters for EMA used to generate demand scenarios

Uncertainty Parameter Definition
plowT The chance that a plant transition with low temperature
pmidT The chance that a plant transition with medium temperature
phighT The chance that a plant transition with high temperature or with a feedstock process
pextra The chance that an extra industrial plant appears
∆D The range of which the estimated demand Dest,n deviates from Dmax,n

4.3. Network optimization
This network optimization step should resembles the immediate demand planning method (IDPM),
where a time horizon is executed of one decade. For each decade, a network is identified that meets
the demand for that specific decade while minimizing installation costs.

4.3.1. Optimal Network Layout Tool
The network optimization for one decade is based on the Optimal Network Layout Tool (ONLT) devel-
oped by Heijnen (2024). The ONLT is a graph-theory-based tool that employs the edge turn heuristic
to identify a minimum capacitated steiner tree. This tool is highly flexible regarding its inputs, as it is
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designed for easy change in inputs such as demand, nodes, road networks, and existing infrastruc-
ture, thereby assisting in multi-actor decision-making processes. This input flexibility makes the ONLT
particularly suitable for this thesis, which aims to analyze various IPC layouts under different demands.

The ONLT is designed to find one cost-efficient network based on multiple demand scenarios. In the
original ONLT framework, a single node can function as either a demand or supply node at different
time steps and the demand can increase and decrease. However, in this thesis, nodes are distinctly
classified as either demand or supply nodes. This distinction is due to the small scale of the IPC,
where it is assumed that industrial plants do not return hydrogen to the system. Additionally, if the
supply amount and location is constant the ONLT will always solve its network for the scenario with the
highest demand. Since the demand in this study is only anticipated to increase over time, the ONLT
will only be given one demand scenario, which is the scenario at the end of the decade, which naturally
has the highest demand of the entire decade.

Additionally, for this thesis, the ONLT is adapted for use across three decades 2025-2035, 2035-2045,
2045-2055 indicated by the end year: 2035, 2045, and 2055. The ONLT finds the minimum capaci-
tated steiner tree for one timestep so for each scenario the ONLT is ran three times resulting in three
capacitated graphs G2035, G2045, G2055 where Gt−10 is an input for the calculation of Gt. This way, the
path dependency of installing pipelines using the IDPM and the influence this has on the future network
is modeled.

This adaptation allows the ONLT to represent the Immediate Demand Planning Method (IDPM) with
three times a time horizon of one decade. At each time step, the ONLTminimizes the costs for installing
new pipelines that are needed to facilitate demand.

4.3.2. Cost function
The cost function is used to optimize each scenario network, therefore the cost function is an important
part of the network optimization. The cost function of the ONLT is a unitless cost function as the ONLT
is not specifically tailored to optimize hydrogen networks, but rather any commodity in pipelines, such
as natural gas or biogas (Heijnen, Ligtvoet, et al., 2014).

For this thesis, the ONLT cost function is substituted with a cost function that is already applied to a
local hydrogen infrastructure network by Hammond et al. (2024). This function takes into account the
labor, material and other various costs needed to install the pipelines. Originally, Hammond et al. (2024)
made a cost function in pounds, therefore, for this thesis the cost function is conversed to million euros
using the average conversion rate of 2024 (X-Rates, 2024).

The cost function C(t) consists of capital costs CC(t) and operating costs CO(t). The operational costs
are taken as 4% of the total capital costs per year (Hammond et al., 2024). For the edges (i, j) that
are newly installed in decade t, the operating costs are assumed to only be applied for 5 years. This
assumption is made as some edges will be installed early in the decade, and other later, so on average
it is set that the operational costs of the installed edges at timestep t are halved.

C(t) = CC(t) + CO(t) (4.4)

CO(t) = (0.04 · 10) ·
t−10∑

i=2035

CC(i) + (0.04 · 5) · CC(t) (4.5)

(4.6)

where C(t) is the total costs in million euros for one timestep t, CC(t) the capital costs in million euros
for one timestep, and CO(t) the operational costs in million euros for one timestep.

The capital costs CC(t) at timestep t is the costs for the installation of newly installed edges. Newly
installed edges are portrayed as the difference between the network at the current timestep Gt and the
already installed network Gt−10 if it exist. This includes edges that are not placed yet or edges that
require a higher capacity.
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CC(t) =
∑

(i,j)∈Gt\Gt−10

cCij (4.7)

cCij(lij , dij) = 50833lije
0.0697dij + 297(dij)

2 + 71800dij + 546582 (4.8)

where cCij is the capital costs of one edge between nodes i, j with length lij in meters and outside
diameter dij in meters.

The ONLT can only influence the edges (i, j) installed at timestep t, as the edges installed in previ-
ous decades are already installed. Therefore, the ONLT aims to minimize CC(t) in equation 4.7. The
ONLT is designed to alter both the length lij and the capacity qij of an edge to look for cost minimiza-
tion. However, the selected cost function is based on the diameter dij rather than the capacity, which
is the primary focus of the ONLT method. To determine the relationship between diameter dij and
capacity qij ., a simplification of the fluid flow equation is conducted. For a detailed derivation, please
see appendix C.1. The simplified formula for the diameter dij is as follows:

dij(lij , qij) =
[
0.27 qij l

0.5
ij

]−2.5 (4.9)

where lij is the length of the pipeline in meters, and qij the capacity of the pipeline in ton H2/day.

In Figure 4.5 the behavior of the capital costs CC as function of the length and capacity can be seen.
As one can see the costs scale almost linearly with lij , in the pipeline length range of an IPC [0, 1 km].
The behaviour of Cij as a function of lij corresponds with the pipeline cost function defined in the ONLT
where cij = lij ∗ qβij (Heijnen, Ligtvoet, et al., 2014). Looking at the behaviour of cCij as a function of the
capacity, one can see that when qij gets large, the dependency with the costs assumes a linear form.
Depending on the length of the pipeline, the capacity has more influence on the rising costs. This is
because when lij is larger, the term amplifying e0.0697dij also grows thereby amplifying the effect of the
capacity on the costs.

Figure 4.5: Plot to visualize behavior of the cost of one edge as a function of the edges length and capacity.

4.3.3. Network optimization algorithm
In this subsection the algorithm is described that is used to minimize the capital costs (Eq. 4.7) every
decade. The inputs of this network optimization algorithm can be seen as an example in Figure 4.6
and are listed below.

• Road network H(N,E) with the industrial nodes as terminal nodes Nterminal ⊂ N

• Demand Ds,t,n for each scenario s for each timestep t and terminal node n ∈ Nterminal

• Network of already placed pipelines in previous timestep Gt−10. This network is empty for G2025
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Figure 4.6: Example of inputs needed for the optimization network algorithm for one timestep

Using these inputs a capacitated network is generated that minimizes costs while facilitating the de-
mand of Ds,t. This happens in two steps, these steps are depicted in Figure 4.7, and are further
described below.

Figure 4.7: Flow of the ONLT for a steiner Tree in a Graph problem for one timestep

Step 1 Generate Minimum Steiner Tree: The minimum steiner tree (MStT) is determined using the
distance network heuristic developed by Kou et al. (1981). Using this heuristic, first a complete
graph between all the demanding terminals, where the edges resemble the shortest path in the
steiner graph is generated where the existing edges are used as existing connections. Then
from this complete graph the MST is calculated that spans the active terminal nodes. Lastly, the
complete graph MST is translated back to the road network by replacing the edges by the shortest
paths in the steiner graph. The capacities are assigned to the edges of the MStT is such way that
the demand of the nodes can be delivered from the supply node to all the demand nodes. Then
the network costs as a function of the edges capacities qe and the edges length le is calculated.
The result is an approximated minimum length steiner tree with capacity and a certain costs

Step 2 Search for (near) Minimal Capacitated Steiner Tree: A network with lower cost is search for
by removing each new pipeline, starting with the longest, and with the edge turn heuristic look for
a new one (recall Section 3.1). The objective here is the least cost, and the constraint is that all
demand should be facilitated for this timestep. The already existing pipelines are not removed.
This heuristic is iterated until all edges are visited.

4.3.4. Example of outcome
The final output of the network optimization algorithm are three networks G2035, G2045, andG2055 which
belong to the same demand scenario Ds. An example of an outcome is depicted in Figure 4.8. Where
the green edges indicate the road network, the black edges the newly installed pipelines, the blue
edges the previously installed pipelines, and purple edges indicates an extension of previously installed
pipelines. One can see that the pipelines between the supply node and node 5 is extended every
decade. Since every decade the hydrogen demand increases and as a consequence that pipeline
needs to be extended.



4.4. Analysis scenario-optimized networks 29

Figure 4.8: Example of the outcome of the network optimization; three networks for 2035, 2045, and 2055.

4.4. Analysis scenario-optimized networks
There are multiple scenario-optimized networks, each representing a potential future reality; however,
the likelihood of any specific scenario happening is almost null. Consequently, during the analysis
phase, the scenario-optimized network structures are visually examined to identify emerging networks
and patterns.

Two visualization tools are utilized in this methodology: the overlapping capacity graph and the occur-
rence graph. These visualizations are adapted from the plotting functions of the ONLT, which already
includes several features for effectively plotting network data. The plotting function of the ONLT can
plot one network in the IPC area, indicating the terminal nodes and the steiner nodes, and the capacity
of each edge in that network is indicated by the thickness of the edge.

The overlapping capacity graph shows the capacity of an edge over all scenarios. The thickness of an
edge corresponds to its capacity, while the darkness of the edge represents the frequency with which
that capacity is observed across all scenarios.

The occurrence graph visualizes the frequency with which an edge appears across the demand sce-
narios, specifically showing how often edge (i, j) ∈ Nt occurs. This is represented in an IPC network
plot, where the thickness of an edge reflects the number of times that edge is counted in all the demand
scenarios.

This visual analysis is particularly useful during the exploratory phase of a multi-actor decision-making
process, as it can illuminate the possible outcomes of the network (Heijnen, Ligtvoet, et al., 2014).
Furthermore, the occurrence and overlapping capacity graphs contribute to the interpretation of the
robust network, the development of which will be discussed in the next section.

4.4.1. Facilitated Demand
Furthermore, these scenario-optimized networks are also analyzed by looking at their performance in
the whole future demand scenario space. The cost function is already discussed in the previous section,
but here the facilitated demand objective will be described and its associated robustness measure, after
which the multi-objective optimization problem at hand will be discussed.

The facilitated demand is an important objective for the stakeholders involved with planning a hydrogen
network. The facilitated demand of a network in one scenario FDGi,t,s,t is defined as the maximum
flow Φ the network can facilitate for that demand scenario;

FDGi,t,s,t = ΦGi,t,Ds,t . (4.10)

Where FDGi,t,s,t is the facilitated demand in ton H2/day for network i at timestep t, and ΦGi,t,Ds,t
the

maximum flow the network can facilitate for that specific demand scenario Ds,t in ton H2/kg.
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The range of FDGi,t,s,t extends from 0 to Ds,t, with Ds,t representing the optimal value when all de-
mand is satisfied, and 0 indicating the scenario where no demand is met. The decision to express
the facilitated demand in tons H2/day rather than as a unitless fraction based on the percentage of the
maximum facilitated demand is due to the facilitated demands’ correlation with potential profit. From
a profitability standpoint, it is significant whether 2% of 1000 or 2% of 20 is not facilitated. Moreover,
from a decarbonization perspective, the total quantity is also more significant than the proportion; an
increased volume of H2 per day correlates with a greater production of decarbonized products.

4.4.2. Robustness Measure
In order to compare the networks over the different scenarios, we are specifically interested in the facil-
itated demand over the set of plausible futures. As discussed in section 3.2, in principle the robustness
measure should be chosen in consultation with the decision makers. However, as this thesis devel-
ops a generic method, thus, an example robustness measure is determined. During application of this
method to a real case example, the robustness metric should be determined in cooperation with actors.
In this thesis, it is determined that the actors value high risk aversion for missed facilitated demand, as
already mentioned in Section 3.3.

High risk aversion metrics that account for regret include (100th percentile) minimax regret and the 90th
percentile (P90) minimax regret. Where the minimax regret exhibits the highest degree of risk aversion
in comparison to the 90th percentile minimax regret. For this thesis, the 90th percentile minimax is
selected, as it displays reduced sensitivity to outliers. Below first the calculation of the minimax regret
shall be described, and then the 90th percentile.

The minimax regretMRi,s,t is a relative performance value as it represents the regret one has in a cer-
tain scenario compared to the calculated optimal outcome of that scenario (Savage, 1951). Applied to
our case, the maximum regret is the facilitated demand a networkGi,t has for one scenario s, compared
to the maximum facilitated demand all networks Gj,t can achieve for the same scenario;

MRGi,t(s) = max
j

(FDGj,t,s,t)− FDGi,t,s,t (4.11)

Where MRGi,
(s) is the maximum regret in ton H2 /day for one scenario at one timestep. The optimal

value ofMRGi,t(s) is 0. This equation can be simplified if each network Gi=s is optimized for scenario
s as is done with the ONLT tool. If so, the termmaxj(FDGj,t,s,t) is always equal to the FDGs,t,s,t which
is always the total demand Ds,t of that scenario s. This simplification is helpful since it will reduce the
calculation of the maximum regret if applicable.

To create a single robustness value R(Gi,t), the 90th percentile is taken P90 from the arrayMRGi,t
(s);

R(Gi,t) = P90

(
MRGi,t(s)

)
, s ∈ S (4.12)

With R(Gi,t) the robustness value in ton H2/day and MRGi,t
(s) the minimax regret of the network for

each scenario.

This robustness value makes it possible to compare the network performance over different scenarios.
The optimal value for R(Gi,t) is 0. This optimal value means that in 90% of the scenarios the network
can facilitate the demand.

Example robustness measure
To illustrate the robustness measure a small example will be given by calculating the robustness for
three network G1,2055, G2,2055, and G3,2055 depicted in Figure 4.9. They are generated to fulfill the
demand scenarios Ds,2055 for s = 1, 2, 3 depicted in Figure 4.10. It can be seen that scenario 3 is the
only scenario where node 1 has demand, and this demand is high. As a result, the network G3,2055 has
high capacity pipelines towards node 1.
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Figure 4.9: Networks 1,2, and 3 in 2055 used for the robustness measure example. The thickness of the edge indicates the
capacity of the edge.

Figure 4.10: Demand scenarios 1,2, and 3 in 2055 used for the robustness measure example

The maximum regret MRGi,t(s) is calculated and presented in an i × s matrix, as illustrated in Figure
4.11a. It is evident that the minimax regret is 0 when i = s, which is logical since this network is
designed to meet that specific demand. Furthermore, it is observed that G1 and G2 perform poorly in
scenario 3, as indicated by the last column in the heat map. Their underperformance can be attributed
to the fact that they are not connected to node 1, which has high potential demand.

(a) Heatmap indicating the the minimax regret calculation
of the three networks for three scenarios.

(b) Heatmap indicating the robustness value, the 90th
percentile of the minimax regret for each network.

Figure 4.11: Example how the minimax regret and the robustness value are connected.

In this thesis, the focus is on decarbonization and facilitating demand; therefore, the minimax regret
is considered in absolute terms rather than relative terms. This approach directly corresponds to the
actual missed opportunities for hydrogen facilitation and indirectly influences the amount of CO2 saved.
As a result, the failure to facilitate a node with high demand (such as node 1) is weighted more heavily
than the facilitation of a node with low demand (such as node 0).
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Consequently, network G3 emerges as the best-performing network, achieving a robustness value of
10, as illustrated in Figure 4.11b. Although networkG1 only fails to meet all demand in one scenario, this
failure occurs in one-third of the total scenarios considered, which significantly impacts its robustness
value. If G1 were to fail to only once out of at least ten scenarios, its robustness score would be
calculated as 0.

4.5. Robust Network Generation
In this section the robust networks heuristic is explained, these networks will later be used in the robust
backtracking planning method (RBPM). The starting point of designing a robust network is that the
robust network should have sufficient capacity to facilitate demand over time across multiple scenarios.
Thereby once this robust network will be implemented the capacity will only be needed to be installed
once, instead of every timestep.

For the generation of a robust network the scenario-optimized networks from the final timestep Gi2055

are used as input. The rationale for selecting Gi2055 as the input, rather than using the network directly
calculated for the demand at t = 2055 without considering the path-dependency of previous networks,
is that the detours made in the earlier time steps, while potentially sub-optimal for later periods, become
beneficial when the robust network is implemented in the earlier time steps. These initial detours sim-
plify decision-making by encouraging the use of shorter routes and reducing operational costs during
the early stages.

The robust network will be developed in two steps, as illustrated in Figure 4.12. First, a robust topology
is constructed from the scenario-optimized networks. Following this, capacity is assigned to each edge,
resulting in the generation of a robust (capacitated) network. The methodology of initially selecting the
most frequently occurring topology and subsequently assigning capacity to create a robust network is
introduced by Huisman (2021). However, in this thesis, the facilitation of demand takes precedence
over cost considerations, and the robustness metric is defined differently. Consequently, the process
of assigning capacity is different. The details of these two steps will be explained in the subsections
that follow.

Figure 4.12: Schematic overview of the robust network generation steps

4.5.1. Robust topology
The robust topology is constructed by selecting all the edges present in the set of scenario-optimized
networksGi,2055, followed by the removal of cycles from this network. This is accomplished by eliminat-
ing the least frequently occurring edge and subsequently removing dead ends. A dead end is defined
as an edge that terminates at a node, where that node is a Steiner node rather than an industrial node;
in other words, the pipeline does not lead to any further connections.

To identify these dead ends, the algorithm iteratively examines each steiner node in the robust topology
to determine if it has only one neighbor. If a Steiner node is found to have only one neighbor, the edge
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connecting that node is removed.

The pseudo-code outlining this process can be found in Appendix D.1, while a visual example illustrating
the robust topology heuristic is presented in Figure 4.13.

Figure 4.13: Visual example of the robust topology heuristic

4.5.2. Robust Capacitated Network
Given the topology, the robust network (RN) will be derived by assigning the robust topology capacity.
As an important objective of the hydrogen network is that it should facilitate demand, the RN should
score perfectly on the robustness measure (RRN = RRN,2055 = 0). Since the robustness measure
is a 90th percentile of the maximum regret this does not mean that the RN is equal to the maximal
capacitated network. A maximal capacitated network is a network where the edge capacity is equal to
the highest capacity it has been assigned in all the scenario-optimized networks Gi,2055. The maximal
capacitated network is used to determine the RN by taking it as starting point and slowly lowering the
capacity as long as the network does not raise the RRN. This is done in the following steps:

Step 1 The maximum capacity network is derived by selecting for each edge ek the maximum capacity
of all ej ∈ Gi,2055(N,E) is selected. The maximum capacity network has the perfect robustness
score RRN = 0.

Step 2 For each edge ek in the maximum capacity network the maximum capacity is lowered with incre-
ment capacity ∆DQ as long as this decrease in capacity does not change the RRN

4.6. Implementation Robust Network
The implementation of the robust network over time, referred to as the Robust Backtracking Planning
Method (RBPM), will be described in this section. Backtracking, as introduced by André et al. (2014),
serves as a strategic approach for deploying a projected network over time.

In the backtracking methodology, each timestep involves the installation of the necessary pipelines to
meet the demand at various nodes, ensuring that the capacity aligns with that of the robust network.
A significant advantage of planning in reverse, starting from the final robust network, is that it nearly
eliminates the need to expand pipelines throughout the timesteps. In most scenarios, the robust ca-
pacity installed is sufficient to meet the projected demand in 2055. This approach contrasts with the
immediate demand planning method, where the installed capacity is only adequate to address demand
within that specific decade.

The pseudo code for the robust network implementation is presented in Appendix D.1.4. Figure 4.14
illustrates this implementation, demonstrating that no pipeline expansions occur, as evidenced by the
absence of purple edges in the diagram.
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Figure 4.14: Example of the robust backtracking planning method, where the robust network is implemented for one future
demand scenario

4.7. Comparing Planning Methods
The RBPM will be analyzed in comparison to two other planning methods: the immediate demand
planning method (IDPM) and the minimum length robust backtracking planning method (ML-RBPM).
Figure 4.15 illustrates the various planning methods and their implementations.

IDPM: The immediate demand planning method is a straightforward approach that involves installing
only the pipelines necessary to meet demand for one decade. The IDPM matches the generation of
the scenario-optimized networks in Section 4.3.

ML-RBPM: The minimum length robust backward tracking planning method (ML-RBPM) shares sim-
ilarities with the RBPM. As indicated by its name, the robust topology is established by identifying the
minimum length steiner tree within the graph and as result a minimum length robust network (ML-RN)
is derived. The, reason why ML-RN is chosen as comparison is to investigate the difference between
optimizing length as a topology and the RBPM, who indirectly optimizes costs over time by selecting
the most occurring edges in the scenario-optimized networks.

Similarly to the RBPM method, the robust capacity is assigned in the same way. In Section 4.5, Step 1
is modified from selecting the emerging topology to deriving the MStT through the Kou heuristic (Kou
et al., 1981). The kou heuristic does not differentiate between demand and supply nodes, resulting in
a topology that is purely dependent on IPC layout rather than IPC configuration. In Appendix D.1, the
pseudo-code for the ML-RBPM topology heuristic can be found.
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Figure 4.15: Overview of the three planning methods; Robust Backtracking Planning Method, Minimum Length Robust
Backtracking Planning Method, and Immediate Demand Planning Method



5
Experimental setup

In this chapter, the data inputs for the method are described first, followed by the setup for each exper-
iment in the second section, and finally, the performance metrics are presented in the last section.

5.1. Data inputs
The key data inputs described here are those needed to generate IPC configurations, as well as those
used for optimization and analysis scenarios. An overview of the inputs and their role in the method
can be seen in Figure 5.1. These inputs are described sequentially below.

Figure 5.1: Overview of the inputs and where they are used in the method. The method steps are indicated by dotted squares
and the corresponding section in the methodology is also given.

5.1.1. IPC layouts
An IPC layout consist of the location of the industrial nodes, a road network, and the wet infrastructure.
For the analysis three IPC layouts are used; layout 0, 1, and 2. As described in Section 4.1, these
layouts have been hand-selected to ensure that the wet infrastructure of the port visually aligns with
existing ports. Table 5.1 provides an overview of the characteristics of each IPC layout. Although
the three layouts contain an equal number of terminal nodes, they differ in size. Layouts 0 and 1 are
relatively small, each covering approximately 6 km2, which helps to limit computation time. In contrast,
layout 2 has been designed to be larger in order to observe the behavior of the planning methods
within a more extensive and complex road network. A visual representation of the three IPC layouts is
depicted in Figure 5.2; however, it is important to note that the scale of layout 2 is larger than that of
the other two layouts.

36
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Table 5.1: Overview of the inputs for the IPC layout generation.

Parameter Layout 0 Layout 1 Layout 2
Number of industrial plants 12 12 12
Number of existing demand nodes 9 9 9
Number of extra nodes 2 2 2
Number of supply nodes 1 1 1
Grid size road network 0.2 km 0.2 km 0.5 km
Maximum y coordinate supply node 0.8 km 0.8 km 2.5 km
Y dimension 3 km 3 km 10 km
X dimension 2 km 2 km 9 km
Area 6 km2 6 km2 90 km2

Figure 5.2: Overview of the three layouts used, green is the road network, red are the terminals and green are the steiner
nodes. Layout 2 is around 10 times bigger than layout 0 and 1 and therefore the road network is more extensive.

5.1.2. IPC configurations inputs
An IPC configuration is generated by assigning plant and process specifics to the industrial nodes of
the IPC layout, multiple configurations can be created for the same IPC layout. The IPC configuration
is defined by the cluster coefficient, cluster sector, production capacity, and process characteristics.
Below the values of these parameters are discussed.

Cluster coefficient
The cluster coefficient quantifies the proportion of specific subsector plants required to meet the cluster
specification. In this thesis, the coefficient is a constant across all configurations, set at 0.5.This is
assumption that at least 50% of the plants should be of the same (dominant) subsector is grounded
in the desire for the IPC to have one dominant subsector that defines the specialization field of the
industrial cluster as defined in section 2.1, while also maintaining heterogeneity in the IPC configuration.

Subsector
The subsectors are derived in chapter 2, encompassing hard-to-abate industries such as iron and steel,
basic chemicals, and refineries, along with other sectors capable of implementing hydrogen-based heat
technologies (Namazifard et al., 2024; Neuwirth et al., 2022b). A subsector is given to each terminal
node. These subsectors are chosen randomly from the following list;

• Iron and Steel
• Basic chemicals
• Glass
• Metal processing
• Mineral processing
• Non-ferrous metals
• Pulp and paper
• Refineries
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When generating an IPC configuration with a specific subsector as the specialization field, the indus-
trial nodes are randomly assigned a subsector, and this process is iterated until 50% of the industrial
demand nodes belong to the specific subsector.

Process Specifics
Process specifics are the attributes of industrial nodes assigned to demand nodes, including the pro-
cess, temperature category, and prospective hydrogen decarbonization technology. Given the sub-
sector the node belongs to a process from the relevant subsector is randomly selected, along with a
hydrogen technology capable of decarbonizing that process. These selections are based on the spe-
cific energy consumption data created by Neuwirth et al. (2022a). An overview of this data can be
found in Table 5.3. This data also includes the temperature range of the technologies, the technol-
ogy readiness level, and the Specific Energy Coefficient (SEC), which are used in generating demand
scenarios.

Production capacity
Next to a subsector, plants are also assigned a production capacity. The production capacity is de-
rived from a process specific normal distribution. The parameters of the normal distribution for each
process are presented in Table 5.2. This particular normal distribution is obtained from the German in-
dustrial plants database referenced in Neuwirth et al. (2022a), from which this thesis derives a normal
distribution of the production capacity for each process of the existing German plants. A more detailed
explanation of the derivation of production capacity is available in appendix E.

The normal distributions make it probable that a plant will be assigned a negative capacity. This is
approached by establishing that if a randomly pick is negative, the minimal production capacity in the
German database is selected.

Table 5.2: Production Capacity distribution as derived from the production data from Neuwirth et al. (2022a).

Process µ [Mton/year] σ [Mton/year]

Aluminum, primary 0.04 0.01
Ammonia 0.20 0.11
Board and packaging paper 0.02 0.02
Casting 0.17 0.12
Cement/Clinker 0.21 0.11
Chemical pulp 0.05 0.04
Chlorine, diaphragm 0.12 0.13
Chlorine, membrane 0.04 0.03
Container glass 0.02 0.01
Flat glass 0.04 0.02
Graphic paper 0.04 0.05
Lime burning 0.03 0.06
Methanol 0.08 0.03
Olefins 0.24 0.14
Refinery 0.85 0.55
Rolling (hot) 0.20 0.25
Steel, primary 0.51 0.26
Tissue paper 0.01 0.01
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Table 5.3: Technology-specific energy consumption data (Neuwirth et al., 2022a)

Process Technology Temperature (°C) Fuel SEC (MWh/t) Feedstock SEC (MWh/t) TRL (1–9)

Iron and steel
Crude steel, primary Blast furnace 1200–1450 3.2 - 9

H2-DRI - 1.89 - 8
Metal processing
Casting NG burner 1100–1600 0.008 - 9

0.028 - 9
H2-burner for process heat 0.028 - 4–5

Rolling (hot) NG burner 700–1250 0.67 - 9
0.58-0.61 - 9
0.35 - 9

H2-burner for process heat 0.67 - 4–5
Non-ferrous metals
Aluminum, primary NG burner 700–950 2.1 - 9

2.2 - 9
Melting: 1.3 - 9
Casting: 0.6 - 9

H2-burner for process heat 1.9 - 4–5
Glass
Container glass Recuperative NG burner 1450–1650 1.61 - 9

1.28-1.72 - 9
H2-burner in furnace 1450–1650 1.28 - 4–5

Flat glass Recuperative NG burner 1450–1650 3.03 - 9
2.17-2.56 - 9
2.58 - 9

H2-burner in furnace 1450–1650 2.17 - 4–5
Mineral processing
Cement/Clinker NG burner 1400–1450 0.97 - 9

0.83-1.25 - 9
1.08 - 9

H2-burner in rotary kiln 1400–1450 0.97 - 4–5

Lime burning NG burner 900–1200 1.03 - 9
1.14 - 9

H2-burner in furnace 900–1200 1.03 - 3–5
Pulp and paper
Board & packaging paper NG burner 80–220 1.36 - 9

1.36-1.58 - 9
H2-burner in steam generator 80–220 1.36 - 8–9

Tissue paper NG burner 80–220 1.92 - 9
1.92-2.25 - 9

H2-burner in steam generator 80–220 1.92 - 8–9

Graphic paper Ng burner 80–220 2 - 9
2.0-2.33 - 9

H2-burner in steam generator 80–220 2 - 8–9

Recovered Fibers NG burner 80–220 0.139 - 9
0.139-0.167 - 9

H2-burner in steam generator 80–220 0.15 - 8–9

Chemical pulp NG burner 130–150 3.42 - 9
2.86-3.42 - 9

H2-burner for process heat 130–150 2.86 - 8–9
Basic chemicals
Olefins Steam cracker 800–950 6.64 - 9

Boiler: 3.17-3.69 - 9
Methanol-to-Olefins - 17.67 - 8–9

Methanol H2 from steam reforming 200–300 4.17 6.31 9
H2 from electrolysis - 6.31 - 8–9

Ammonia Steam reforming 350–550 3.14 5.92 9
2.5-4.61 - 9

H2 from electrolysis - 5.92 - 9

Chlorine diaphragm NG burner 0.86 - 9
0.81-1.6 - 9

H2-burner for process heat 0.86 - 8–9
Chlorine membrane NG burner for process heat 0.28–0.33 - 9

H2-burner for process heat 0.28 - 8–9
Refineries
Refinery H2 for crude oil refining - 0.389–0.639 0.389-0.639 9

H2 from electrolysis for hydro treating - - 7-9
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5.1.3. Demand scenario generation
The data inputs discussed in this section are related to the demand scenario generation. One demand
scenario consists of the demand of each industrial node for the years 2035, 2045, and 2055. For one
configuration multiple demand scenarios are generated using the EMA work package (J. H. Kwakkel
& Pruyt, 2013). The difference in these demand scenarios is created by the uncertainty parameters;
demand range, transition probability, and extra node probability.

Other needed data inputs for demand scenario generation, such as SEC, TRL, and production capacity
are set for every configuration and are therefore already known in this step. The demand generation
function is tested to be deterministic for the same random seed.

Demand range
The demand range serves as a parameter for demand uncertainty, defining the extent to which the
calculated demand may deviate from the actual demand (see equation 4.3). In the EMA work package,
the demand range is represented as a categorical uncertainty parameter; for each generated scenario,
one value from the predetermined set of demand range values is selected. This uncertainty parameter
is set at 0.2 unless mentioned otherwise.

The value of 0.2 is established as an educated estimate. Given that the calculated hydrogen potential
is derived from production capacity and specific process characteristics, along with the assumption
that one process transitions completely at once, it is reasonable to conclude that the actual potential
demand is likely to be situated close to the calculated demand. Consequently, a value of 0.2 has been
chosen as a reasonable compromise that balances these considerations.

Transition probability parameters
The participant uncertainty parameters are the low, medium, and high transition probability parameters.
All three are uncertainty parameters, assigned a range corresponding to the likeliness (low/mid/high)
of future transition. The categorization of low, medium, and high is assigned according to the plant
specifics, recall Section 4.2.2.

This categorization is first of all based on the temperature of the process. The data on technology-
specific energy consumption provides the temperature range of a process, however, some technolo-
gies do not have a temperature indication. Table 5.4 illustrates that certain technologies, particularly in
the basic chemical, iron and steel, and refineries sectors, lack an assigned temperature range since
these technologies do not generate heat. Rather, there hydrogen is used as feedstock. Hydrogen is
considered a viable option for the decarbonization of essential chemical, iron and steel, and refining
processes (IEA, 2023a). Therefore, basic chemicals, refineries, and iron and steel are assigned a high
transition probability.

Extra node probability parameter
Next to the transition probability parameters, there is also a extra node uncertainty parameter. This
extra node probability is assigned to the terminal nodes that are labeled extra, and that dictates the
chance of an extra plant appearing in the IPC. This extra node probability resembles the business
climate, and the range of this probability is between zero and one, see 5.4.

Table 5.4: Overview participant uncertainty parameters range

Uncertainty parameter Description Minimum Maximum
plowT probability a process below 150 degrees transitions in one decade 0 0.125
pmidT probability a process between 150 - 500 degrees transitions in one decade 0.125 0.3
phighT probability a process above 500 degrees transitions in one decade 0.3 0.5
pextra probabilty an extra plant appears on the grid in one decade 0 1

Participant uncertainty parameter range
Once the process is assigned a transition probability parameter, its range should be determined, as
this range will be used by the EMA workbench to generate multiple scenarios. The uncertainty range,
indicated by a minimum and maximum value, is shown in Table 5.4. The uncertainty parameter’s
range is reasonably assumed by examining the probability that a plant will transition to hydrogen by
2055, denoted as P2055, as a function of the transition probability pi of the process over a decade;
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P2055 = 1− (1− pi)
3. (5.1)

After 30 years, we anticipate a high probability that high-temperature plants will have transitioned, while
the likelihood of transition for low-temperature plants will be minimal. However, we do not desire the
probability to approach 1, as this contradicts the inherently uncertain nature of the problem. Figure
5.3 illustrates the function of P2055 along with the selected maximum values for the temperature-based
uncertainty parameters. The range is selected to ensure that the values are distributed with nearly
uniform spacing across the P2055.

Figure 5.3: Indication of the maximum for each temperature-based uncertainty parameter and how that translates to the
chance of the plants transitioning towards 2055.

5.1.4. Robust network generation input
Increment capacity
The increment capacity determines the accuracy regarding minimization of costs of the robust capaci-
tated network, however it also heavily influences the computational time it takes to calculate the robust
network. As a middle ground, the increment capacity is 0.01 ton H2/day. Compared with the total
potential hydrogen demand in an IPC, this is between 5% and 0.5% of the total possible capacity of a
cluster, depending on the dominant subsector in the cluster.

5.1.5. Robust network implementation
To evaluate the robust network implementation, new demand scenarios, referred to as analysis sce-
narios, are generated. It is crucial to emphasize that the optimization scenarios used to develop the
network are distinct from the analysis scenarios. This distinction between optimization and analysis sce-
narios is significant, as the analysis scenarios should be viewed as test scenarios that do not replicate
the training (optimization) scenarios.

Even when the ranges of uncertainty parameters are set identically, differences arise from the sampling
methods employed by the EMA workbench, as well as variations in the random seed. These factors
contribute to the divergence between optimization and analysis scenarios. Furthermore, it is possible to
modify the uncertainty parameter ranges between analysis and optimization scenarios in experimental
settings. This approach allows for the assessment of how the Robust Backtracking Planning Method
(RBPM) performs in scenarios other than those for which they were optimized.
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5.2. Set-up per experiment
In this section the experiments shall be described, including their link to the sub-research questions
and their set-up. The experiment outcomes shall be presented in the next chapter, where in total one
proof of concept and three experiments will be presented.

5.2.1. Proof of concept
How will this method be implemented for a real industrial port cluster?

First, a proof of concept to show how the method will be presented. Here it will be shown how the
method can be applied to a real Industrial Port Cluster (IPC). Therefore, the proof of concept will apply
the RBPM to one IPC configuration. Furthermore, this section will also give the reader a comprehension
on themethod applied to one IPC. This comprehension can be used as a little help to interpret the results
of the other experiments which analyse a collection of multiple IPCs.

The chosen subsector for the proof of concept is Iron and Steel, this choice was made semi-arbitrary
since it can be any subsector. The reason Iron and Steel was chosen is it has a lot of potential hydrogen
demand, thereby it is easy to show the pipeline capacity changing over the years when more plants
transition. The plant specifics of the configuration can be seen in Appendix H.1. The robust network
is derived from 30 optimization scenarios, the robust network implementation with the RBPM is then
illustrated with one analysis scenario.

Table 5.5: Set-up Proof of Concept

Parameter Value
Method RBPM
Layout 1
Cluster Iron and Steel
Configuration 1
Optimization Scenarios 30
Analysis Scenarios 1

5.2.2. Experiment 1: Comparison simpler methods
How does the robust over time planning method perform compared to simpler planning methods?

The aim of this experiment is to answer the sub research question regarding the comparison of the
robust plannings method (RBPM) with simpler methods. Therefore, in this experiment the performance
of the RBPM is compared with the simpler methods; the minimum length robust backward planning
method (ML-RBPM) and the Immediate Demand Planning Method (IDPM). The methods performance
is measured in costs and length. Length is here chosen as a performance metric as length is used as
optimization objective for the ML-RBPM robust topology heuristic, for more details recall Section 5.3.
The three methods shall be evaluated for three layouts, as we want to test if the topology of the road
network, and the placement of the terminal nodes affects the performance.

Furthermore, the experiment shall be conducted for two clusters; Iron and Steel, and Pulp and Paper.
These clusters were selected due to the significant differences in their plant characteristics. Specifically,
the Iron and Steel cluster exhibits a high demand for hydrogen and includes numerous processes with
a high transition probability. In contrast, the Pulp and Paper cluster has a relatively low demand for
hydrogen and predominantly consists of low-temperature processes characterized by low transition
probabilities.

By analyzing these two contrasting clusters, the experiment aims to assess the performance of the
methods while capturing a broad spectrum of plant specifics. The decision to limit the analysis to only
two clusters is motivated by computational constraints and the desire to maintain clarity in visual repre-
sentation and comparison. Including more clusters would not only increase computational complexity
but also complicate the visualization of results. For each cluster, five configurations are tested, where
each configuration has a different assignment of plant characteristics, the only thing constant is that
at least 50% of the plant processes should belong to either Iron and Steel, or Pulp and Paper. An
overview of the configurations used in this experiment can be found in Appendix H.2.
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The robust network for the RBPM and ML-RBPM method are generated using 30 optimization scenar-
ios, and the implementation analysis is conducted with 40 analysis scenarios.

Table 5.6: Set-up experiment 1

Parameter Value
Methods RBPM, IDPM, ML-RBPM
Layouts 0,1, 2
Clusters Iron and Steel, Pulp and Paper
Configurations 5
Optimization Scenarios 30
Analysis Scenarios 40

5.2.3. Experiment 2: Performance over different clusters
What is the performance of the developed method across different clusters?

Goal of this experiment is to compare the performance of the robust backward planning method (RBPM)
over different cluster subsectors and thereby looking for patterns of network development. This will be
done for layout 0 and 1 for all different clusters (eight) and five plant configurations per subsector, in
total 80 configurations. The reason why layout 2 is not analyzed is that the size of layout 2 reduces
the computation time. A quick assessment of the configurations per cluster is provided below. A full
overview of the plant specifics for layouts 0 and 1 can be found in Appendix H.3.

For each configuration a robust network is derived using 30 optimization scenarios. The RBPM perfor-
mance is than analyzed with 40 different analysis scenarios, looking at costs. The demand range is
kept constant at 0.2.

Table 5.7: Set-up experiment 2

Parameter Value
Methods RBPM
Layouts 0, 1
Clusters Iron and Steel, Pulp and Paper
Configurations 5
Optimization Scenarios 30
Analysis Scenarios 40

Overview configurations
Overview of layout 1 and its configurations used for experiment 2 are depicted in two figures that show
the plant characteristics of each configuration. Figure 5.4 displays the temperature category counts of
the plants per configuration. As one can see, the distribution of temperature and feedstock processes
over the plants differs per cluster, for some high probability processes have a high share (Glass, Basic
Chemicals, Refineries and Iron and Steel) and for others medium probability processes are dominating
(Non-ferrous metals), or low probability (Pulp and Paper).
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Figure 5.4: Overview of the amount of plants per temperature category for the 5 configurations per cluster for layout 1.

Additionally, Figure 5.5 displays the potential hydrogen demand per configuration, ordered per tem-
perature category. The high probability processes dominate the potential hydrogen demand. This
is because the average production capacity of certain high probability processes, such as Olefins,
Refineries, and Steel, is approximately ten times higher than that of other processes (see Table 5.2).
Consequently, these clusters exhibit significantly high potential hydrogen demand, while Glass, despite
having a substantial share in high probability processes, has lower total potential demand.

Figure 5.5: Overview of the total potential demand per cluster, with on the x-axis the 5 configurations for layout 1 per cluster.

5.2.4. Experiment 3: Performance under higher demand uncertainty
How does the developed method perform under different demand uncertainty ranges?

Goal of this last experiment is to access the performance of the RBPM under a higher uncertainty of
demand. Until now, it is assumed that the demand range parameter is a constant (0.2); meaning there
is some uncertainty in the asked demand per node over the scenarios, namely ±0.2. However, it is
possible that this range in demand uncertainty is larger or smaller. Furthermore, it is possible that the
robust network will be trained with optimization scenarios that are set to a certain demand range while
in reality another demand range is the case. Therefore, in this experiment different demand ranges will
be tested for both optimization scenarios and analysis scenarios.

The demand range is varied for both the optimization and analysis scenarios separately. Therefore,
the optimization demand range and the analysis demand range analysis is introduced. The optimiza-
tion demand range optimization is a constant that is set per robust network optimization, the analysis
demand range is a categorical uncertainty parameter, where using the EMA worckpackage for each
scenario one value from the possible categories is chosen as that demand uncertainty. This way, the
robust network optimized for one demand range can be tested for a variety of demand range values in
the analysis scenarios.

We distinguish two sub-experiments. Experiment 3a looks at what happens if the demand uncertainty
is higher in reality than optimized for. Experiment 3b studies what happens if the optimized demand
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uncertainty is high and the real demand uncertainty is as much or less. The set-up for both experiments
is listed below.

Table 5.8: Set-up experiment 3a

Parameter Value
Methods RBPM, IDPM
Layout 1
Cluster Iron and Steel
Configurations 1
Optimization Scenarios 60
Analysis Scenarios 90
demand range optimization 0.2
demand range analysis [0.1,0.2,0.3,0.4,0.5]

Table 5.9: Set-up experiment 3b

Parameter Value
Methods RBPM, IDPM
Layout 1
Cluster Iron and Steel
Configurations 1
Optimization Scenarios 60
Analysis Scenarios 90
demand range optimization 0.5
demand range analysis [0.1,0.2,0.3,0.4,0.5]

The highest demand range setting in these experiments is 0.5, this value is already quite high, but
chosen for exploratory reasons; to see what happens in the extreme. The reason why not an even
higher value because this would increase the amount of optimization scenarios too much; thereby
increasing the computational time too heavily. Additionally, if a demand range of more than 50% would
be practiced, in reality this would mean that a plant would increase or decrease its production capacity
with more than 50%, which is an unlikely scenario.

Furthermore, the RBPM performance is compared with the IDPM performance to access more clearly
the response of the RBPM. Mainly, because it is interesting to see the difference between the RBPM
that is made to be robust for all scenarios versus the IDPM method that is fit for only one specific
scenario. The RBPM and IDPM will be compared regarding total costs, costs per decade, demand
facilitated and demand not facilitated.

5.2.5. IPC configurations per experiment
The configuration specifications of the setups for each experiment are presented in Table 5.10, where
the total configurations equal the product of the number of layouts, the number of clusters, and the
number of configurations per cluster.
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Table 5.10: Overview amount of configurations per experiment

Layouts #clusters cluster specification #configurations per cluster total configurations
Proof of concept 1 1 Iron and Steel 1 1

Experiment 1 0,1,2 2 - Iron and Steel
- Paper and pulp 5 30

Experiment 2 2 8

- Iron and Steel
- Paper and pulp
- Glass
- Refineries
- Basic chemicals
- Non-ferrous metals
- Metal processing
- Mineral processing

5 80

Experiment 3 1 1 Iron and Steel 1 1

5.3. Performance metrics
The performance metrics used to measure and compare the methods are presented in this section.
The metrics relate to costs, demand facilitation, and duration. These performance metrics overlap with
the objectives of cost and demand facilitation used for the developed method, which is logical, as they
should align with the actors’ objectives derived in chapter 2. Nonetheless, all performance metrics are
mentioned below for completeness, and any (dis)similarities with the objectives will be noted.

5.3.1. Costs
Costs are an important objective for the actors, see chapter 2. In the IDPM, costs are minimized for
every decade. The RBPM and ML-RBPM do not have a direct cost objective, however, by installing
more capacity than needed in the first decades, it is expected that the (ML-)RBPM still reduces costs.
To grasp the different behaviour of these planning methods both costs per decade (C) and cumulative
costs (CC) are used as performance metrics. Additionally, to compare the methods better the relative
cost function (RC) is also introduced.

Costs per decade
The function costs per decade C is similar to the cost function described in the methodology;

Cm
l,c,s(t) = ((1 + (0.04 · 5) · CC,m

l,c,s (t) + 0.04 ·
t−10∑

i=2035

CC,m
l,c,s (i) (5.2)

where Cm
l,c,s(t) is the costs of decade t in M euro for layout l, configuration c, and scenario s when

using methodm. 0.04 indicate the fraction of operational costs, and CC,m
l,c,s (t) is the capital costs for the

installation of the network using methodm for layout l, configuration c, and scenario s at timestep t, the
capital costs are calculated with equation 4.7

Cumulative costs
The cumulative costs CC provide a clearer overview of the total incurred over multiple decades com-
pared to the costs calculated per decade. This perspective is particularly useful for analyzing the total
costs made by the year 2055 for each method.

CCm
l,c,s(t) =

i=t∑
i=2035

Cm
l,c,s(i), with t = 2035, 2045, 2055 (5.3)

where the cumulative costs CCl,c,s in M euro is the summation of costs per decade, indicating the
total costs spend on the network generated by method m up until decade t. The cumulative costs are
calculated per layout l, configuration c and scenario s.
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Relative costs
The relative costs RC are particularly useful when comparing different methods with each other. The
relative costs is the difference of the cumulative costs of one method m with the RBPM . A positive
value of RC means that the RBPM has lower cumulative costs compared to method m.

RCm
l,c,s(t) = CCm

l,c,s(t)− CCRBPM
l,c,s (t) (5.4)

whereRCm
l,c,s(t) is the difference in cumulative costs in million euros between methodm and the RBPM

at time step t.

5.3.2. Facilitation of demand
Demand facilitated is next to costs the other objective derived from the actor analysis in chapter 2.
For performance measurements, both the demand facilitated is measured, as well as the demand not
facilitated.

Demand facilitated
The facilitated demand is defined in the same manner as the methodology. The equation is:

FDm
l,c,s(t) = Φ(Nm

l,c,s(t), Dl,c,s(t)) (5.5)

Where FDm
l,c,s is the facilitated demand in ton H2/day at timestep t, and Φ(Nm

l,c,s(t), Dl,c,s(t)) the maxi-
mum flow the network Nm

l,c,s(t) can facilitate for that specific demand scenario Dl,c,s(t) in ton H2/kg.

Demand not facilitated
In addition to facilitated demand, we are also interested in non-facilitated demand NFD. Examining
non-facilitated demand provides a comprehensive overview of missed opportunities related to hydro-
gen that are not currently being facilitated. Additionally, it gives a quick comparison between the total
demand in a scenario and the facilitated demand. Non-facilitated demand is defined as

NFDm
l,c,s(t) = Dl,c,s(t)− FDm

l,c,s(t) (5.6)

Where NFDm
l,c,s is the not facilitated demand in ton H2/day at timestep t using method m applied to

layout l, configuration , Ds,t is the demand for scenario s at timestep t, and ΦGm
l,c,s,t,Ds,t

the maximum
flow the network can facilitate for that specific demand scenario Dl,c,s(t) in ton H2/kg.

5.3.3. Length
Length is used as a performance metric, despite it not being an objective of the actors. This metric is
still used as the difference between the topology heuristics RBPM and ML-RBPM is that RBPM has
a occurrence heuristic and ML-RBPM a minimum length heuristic. Therefore, when comparing these
methods, the length is also chosen as a performance metric, to assess the difference. The length
metric is defined as follows;

Lm
l,c,s(t) =

∑
(i,j)∈Nm

l,c,s(t)

lij (5.7)
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Results

In this chapter, the results are presented as follows: First, the proof of concept for the developed
method is introduced. Next, the performance of the Robust Backtracking Planning Method (RBPM)
is compared with the Immediate Demand Planning Method (IDPM) and the minimum length robust
backtracking planning method (ML-RBPM) in Experiment 1. This is followed by Experiment 2, which
compares RBPM across different clusters. Lastly, Experiment 3 evaluates the performance of the
RBPM under various types of demand uncertainty.

6.1. Proof of concept
How will this method be implemented for a real industrial port cluster?

The configuration used as proof of concept is an Iron and Steel cluster with layout 1. The characteristics
of each node for this specific configuration are presented in Table H.1. First, a visual analysis of the
optimization scenarios is presented, and then the robust network and its implementation is presented.

6.1.1. Visual analysis
The 30 scenario-optimized networks are visualized in a capacity graph (Figure 6.1) and an occurrence
graph (Figure 6.2). The overlapping capacity graph illustrates that pipeline capacity expands over time.
The thickness of an edge indicates the capacity through the pipes, and the blackness of the edge
indicates the frequency that capacity is set to the edge.

Figure 6.1: Overlapping capacity graph of all the 30 demand networks. The width of the edge indicates the capacity and the
darkness of the edge indicates how often the edge in that capacity is used.

The occurrence graph illustrates the frequency of each edge, with the thickness of the edges repre-
senting their relative frequency. The graph indicates the emergence of a network tree, characterized
by thicker edges. However, a small cycle is visible in the bottom-right corner of the occurrence graph.
This cycle arises from the optimization of the network for each demand scenario timestep, where the
connections between nodes vary depending on whether they participate in the scenario simultaneously.

48
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Since the costs of installing a new pipeline are higher than those of installing a pipeline with greater
capacity, the most cost-efficient network in 2055 will favor the sharing of pipelines. This principle is
illustrated in the utilization of the left and lower sides of the graph. Notably, the lower pipeline in the
graph appears the least frequently, which can be attributed to the asynchronous transitioning of the
plants.

Once a pipeline is installed with a specific capacity, any additional capacity is treated such that it neces-
sitates the installation of new pipelines. Consequently, when the nodes transition asynchronously, they
are regarded as two separate optimization problems. This results in a different network configuration
that minimizes the distance between the nodes and the supply node compared to scenarios in which
transitions occur synchronously. In the latter case, the IDPM algorithm would perceive the situation as
a combined optimization problem, where shared capacity could lead to a more significant reduction in
costs compared to a small decrease in pipeline length.

Figure 6.2: Occurrence graph visualizing the occurrence of the edges by the thickness of the edge.

6.1.2. Robust network
The robust network, constructed from scenario-optimized networks described is illustrated in Figure 6.3.
The robust network looks the same as the most occurring edges in the occurrence graph. It can be
seen that the cycle in the bottom right corner is removed; however, the most cost-efficient trajectory, at
the bottom, of the cycle is not selected. The advantage of this choice is that if only one plant transitions
in a plausible future, the costs are lower; however, if both plants transition, the costs are suboptimal.

Figure 6.3: Overview of the robust network derived by applying the robust algorithm to the case example
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In Figure 6.4, one can see how the robust network is implemented for one possible future scenario. It
can be seen that once pipelines are installed they are not extended over the years, this is an advantage
as this will limit installation costs. This is in contract with the immediate demand planning method
(IDPM), where often pipelines are extended. In Figure 6.5the IDPM implementation is shown for the
same future scenario, the purple pipelines indicate the extended pipelines.

Furthermore, looking at the costs per method for one scenario in Table 6.1, one can see the difference
between the IDPM and the (ML-)RBPM. Where RBPM have relatively high costs in 2035, but less costs
in 2045 and 2055 compared to the IDPM. This behaviour will be further studies in the next experiment.

Figure 6.4: Development of a network in a hypothetical future using the Robust Backtracking Planning Method.

Figure 6.5: Development of a network in a hypothetical future using the Immediate Demand Planning Method.
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Table 6.1: Costs per decade and total costs for implementing network for one analysis scenario for the three different methods.

2035 2045 2055 Total
Method

IDPM 120 130 120 370
ML-RBPM 160 80 80 320
RBPM 150 80 80 310

6.2. Experiment 1: Comparison simpler methods
How does the robust over time planning method perform compared to simpler planning methods?

Here, the RBPM is compared with the two simpler methods ML-RBPM, and IDPM, who are defined
in section 4.7. They are compared by looking at both Iron and Steel and Pulp and Paper clusters for
three different layouts. Layout 0 and 1 represent both a relatively small IPC area (6km2), and layout 2
represents a large IPC area of around 90 km2. The methods are compared by looking at costs, and
length. First the length comparison shall be presented, and secondly the cost comparison.

6.2.1. Length
The three methods are compared by looking at the length in 2055 of the different networks implemen-
tation, per layout and for the five configurations per layout. The behaviour is the same for each layout,
but for layout 2 the pattern is enlarged due to the bigger area covered by the IPC. In Figure 6.6 the
length comparison is shown for layout 2 per configuration and per cluster, the length comparison for all
layouts can be seen in appendix Figure I.1. Notably, the RBPM scores better on length for every lay-
out, compared to the ML-RBPM. This is a surprise since the robust topology heuristic of ML-RBPM, the
MStT heuristic, minimizes length, while RBPM topology heuristic maximizes the occurrence of edges
from the optimization scenarios.

Figure 6.6: Boxplot comparing the lengths for the networks developed by either RBPM, IDPM, or ML-RBPM.

In Figure 6.7, the robust network (RN) topology and the minimum length robust network (ML-RN) topol-
ogy are visually shown for a configuration 3 with supply node 2. The length of the ML-RN is smaller
(52km) than the RN who is 53.5km. So here it can be seen that the heuristic has minimized length
for the ML-RN compared to the RN. However, when the robust networks are deployed over time using
backtracking the length differences are created.

Namely, when an extra node does not participate in a future scenario, this has effect on the length of
the network. Specifically on the RBPM network as there the extra nodes are connected to the network
with branches, meaning that these branches only need to be placed when the extra nodes participate.
However, this is not the case for ML-RBPM, since the extra nodes are part of trajectories connecting the
supply node with other terminals, it does not matter whether the extra node participates, the pipelines
will most likely be placed.
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Therefore, when executing the ML-RBPM and RBPM, the networks deployed with RBPM have on
average a lower total length than the ML-RBPM. Zooming in on the outliers of the RBPM, in Figure 6.6,
one can see that these outliers are almost equal to the highest values of the ML-RBPM. Since these
lengths are the lengths when almost all extra nodes are participating in the network.

Figure 6.7: Comparison of the robust topology of the robust network (RN) topology used for RBPM and the minimum length
robust network (ML-RN) topology used for ML-RBPM. This comparison is made for the robust network developed for Iron and

Steel cluster, configuration 3.

6.2.2. Costs
To assess the difference between the simpler methods with the RBPM method regarding costs, the
relative costs RC are presented in Figure 6.8 per configuration. A positive value of RC means that the
RBPM performs better regarding costs in that decade. The cumulative costs comparison can be found
in appendix I.1.1. Below we will first discuss the behaviour of ML-RBPM, and then discuss the IDPM
compared to the RBPM.

Cost comparison with ML-RBPM
In Figure 6.8 the RCML−RBPM , indicated as the dark blue lines, is always positive, and therefore per-
forms worse than the RBPM regarding costs. The cause of this is already explained in the section
above; the ML-RBPM topology does not distinguish supply, extra, and demand nodes and therefore
the ML-RN is not tailored for the specific configuration. Whereas, the RBPM selects the most occur-
ring edges of the optimization scenarios and thereby the selected topology is tailored for the specific
configuration.

Zooming in on layout 2, one can see two patterns in the RCML−RBPM ; for configurations 0, and 3 the
relative costs are maximum 150 million euro, while the RCML−RBPM for configuration 1,2 and 4 are
around 200 million euros or higher. This difference is caused by the different placement of the supply
node between these patterns. Both configuration 0, and 3 have supply node 2, corresponding with the
supply node on the right of the water, and the other configurations have the supply node on the left side
of the water, see Figure 6.7.

In appendix I.1.2, the RN and ML-RN of the five configurations are presented. And from there it is
observed that for configuration 0, and 3 the RN and ML-RBPM topologies have a more similar pipeline
structure and specifically the pipeline structure with high capacity. Thus for these configurations the
costs of RBPM and ML-RBPM are more alike and therefore the RCML−RBPM is more closely to zero.
However, the RBPM still performs better for every layout, cluster, configuration and at any timestep.
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Figure 6.8: Relative cost difference comparing the cumulative costs of the methods with the cumulative costs of RBPM per
decade. A negative value for relative costs, means that in that decade the method has lower costs than RBPM.

Cost comparison with IDPM
After the cost comparison of the ML-RBPM, the IDPM comparison is presented in this section. First
thing that stands out is that the RCIDPM (2035) is negative for every cluster, layout configuration. The
cost for the IDPM network in 2035 are lower compared to the RBPM costs. This is caused by the
fact that the pipelines placed in 2035 for the RBPM have an overcapacity, while the IDPM placed
pipelines are just the right fit for the asked demand at that timestep. Every decade new pipelines need
to be installed with IDPM to extend the capacity, while the costs of RBPM after 2035 are less since
no pipelines need to be extended and thus there are less installation costs. As a result the RCIDPM

grows. It differs per layout, and cluster, at which timestep the RCIDPM is positive. But in almost
all cases RCIDPM (2055) is positive, indicating that RBPM results in less total costs spends over 30
years, than IDPM. Below the differences in behaviour of RCIDPM for different clusters and layouts is
discussed
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Looking at the difference in clusters one can already see that the RCIDPM is steeper in the Iron and
Steel clusters compared to the Pulp and Paper clusters. Secondly, one can see that the starting point
RCIDPM (2035) is lower for Iron and Steel compared to Pulp and Paper. This different pattern is caused
by the difference in hydrogen potential demand in the clusters. Pulp and paper is the sector with the
least hydrogen potential demand, while Iron and Steel has the most, see section 5.2.3. Therefore
in an Iron and Steel cluster, the initial costs in 2035 for RBPM are very high as much capacity is
installed at once. While in the Pulp and Paper sector the extra capacity that is installed is not that much
which explains the difference in RCIDPM (2035). The steepness is also caused by the higher potential
demand, as the extended pipeline capacity required for IDPM is greater, leading to a more significant
increase in CCIDPM over time compared to CCRBPM .

Additionally, it is interesting to note that by 2055, the total costs saved with the implementation of RBPM
for Pulp and Paper are comparable to those for Iron and Steel. Although the absolute cumulative costs
for Iron and Steel are higher, see appendix Figure I.2.

Looking at the RCIDPM over the different layouts for the same clusters, so comparing vertically in the
Figure 6.8, the layout 2 for Iron and Steel shows much more diversion for RCIDPM over the config-
urations, and additionally the RCIDPM (2055) is near zero. In contrast, layout 2 for Pulp and Paper
shows exactly the same pattern as layout 0, and 1. Per layout, some slight difference in the spread of
configurations can be seen, for Pulp and Paper this is likely caused by the specific plant specifics of
these configurations
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6.3. Experiment 2: Performance over different clusters
What is the performance of the developed method across different clusters?

In this experiment the RBPM performance is analyzed for different clusters. For this analysis the main
focus is on seeing patterns in the RBPM cost behaviour and linking this to the cluster specifications.
These clusters and the configuration characteristics are depicted in Appendix H.3.

To look at the difference the costs per decade C(t) are compared over different clusters for RBPM. In
Figure 6.9, a box plot is provided for a comprehensive overview of the cost per decade, illustrating the
distribution of values for each cluster, combining data from all layouts and configurations. It can be
seen that Iron and Steel, Refineries, and Basic chemicals have the highest costs in 2035 C(2035). The
other clusters show less initial costs in 2035, and in comparison also less or equal costs in 2045 and
2055.

Figure 6.9: Costs per decade for the implementation of RBPM, the presented data is a collection of the data from layout 0 and
1.

Furthermore, a pattern for each cluster can be seen where C(2045) and C(2055) show less variation
in costs, compared to the high variation in C(2035). This is as expected, as the more pipelines are
already placed of the robust network to facilitate certain nodes, there is less variation possible towards
2055 for placing extra nodes and thereby generating extra costs.

As noted in the previous experiment, configuration specifics significantly impact costs. Figure 6.10 illus-
trates the costs per decade for layout 1, categorized by cluster. The costs vary among configurations
within each cluster, particularly for mineral and metal processing, where differences are pronounced.
For instance, in metal processing, Configuration 1 shows that over 25% of scenarios have zero costs
projected for 2035.

Furthermore, in Appendix I.2, the costs per decade for layout 0 are presented, revealing the same
patterns observed in layout 1.
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Figure 6.10: Cost per decade RBPM for layout 1. For each cluster, the costs per decade are depicted for each configuration
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6.4. Experiment 3: Performance under higher demand uncertainty

How does the developed method perform under different demand uncertainty ranges?

In this experiment, the behaviour of the RBPM under higher uncertainty is tested by changing the
demand range. First, in experiment 3a the RN is not optimized for this increased demand range, and
then, in experiment 3b the RN is optimized with this increased demand range.

6.4.1. Analysis scenarios with higher uncertainty
In Figure 6.11, the kernel density estimation plot of the costs and facilitated demand can be seen for
both the IDPM and the RBPM for all demand range scenarios. The RBPM is trained with demand
range ∆D of 0.2, and the analysis scenarios have a demand range up to 0.5. Regarding total costs,
RBPM performs still better than the IDPM. However, RBPM does not facilitate all demand, lookiin at
the not-facilitated-demand, NFD sometimes reaches 10% of the total demand.

Figure 6.12 zooms in on the behaviour of RBPM per different demand range. As one can see, the
demand ranges of 0.3, 0.4, and 0.5 are the main cause of the not facilitated demand outliers. Which
is as expected as these demand range scenarios are not used as optimization scenarios. The kde
plots are not a one-on-one representation of the counts for the not facilitated demand as the lines are
smoothed out in order to interpret the results better. The exact counts of the demand not facilitated per
demand range can be seen in Figure I.10. That Figure portrays the same behaviour, and the values
do not go below zero. Something that appears to be the case in the kernel density plots.

Figure 6.11: Kernel density estimation comparing RBPM and IDPM. The experiment is conducted with higher uncertainty in
the analysis scenarios compared to the optimization scenarios. Notably, total costs of RBPM are less compared to IDPM,

however RBPM does not facilitate all demand.
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Figure 6.12: Kernel density estimations comparing the behaviour of RBPM for different demand ranges. The experiment is
conducted with higher uncertainty in the analysis scenarios (∆D = 0.5) compared to the optimization scenarios (∆D = 0.2).

Notably for higher demand ranges the RBPM does not facilitate all demand.

6.4.2. Optimizing with high uncertainty
Figure 6.13 shows the kernel density estimation plots of the robust network optimized for demand
scenarios with demand range 0.5. The performance of the robust network in terms of demand not
facilitated and demand facilitated per demand range of the analysis scenarios is much better compared
to the previous experiment. All demand except for one scenario is facilitated independent of the demand
range, see Figure 6.13.

Figure 6.13: Kernel density estimations comparing the behaviour of RBPM for different demand ranges. The experiment is
conducted with high uncertainty in optimization scenarios (∆D = 0.5). Notably, the demand is facilitated for all analysis

scenarios except one scenario with (∆D = 0.5

Comparing the high uncertainty optimized RBPM with the IDPM in Figure 6.14, the network on average
still performs better in total costs, although, compared to the robust network optimized with ∆D = 0.2,
the total costs are higher for the network optimized with ∆D = 0.5.
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Figure 6.14: Kernel density estimation comparing RBPM and IDPM. The experiment is conducted with high uncertainty in
optimization scenarios (∆D = 0.5). Notably, total costs of RBPM are less compared to IDPM.
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Discussion

In this chapter first, the results are interpreted per experiment, and then the limitations of this study are
discussed.

7.1. Results interpretation
This section presents the key findings from the study, first by studying the proof of concept and then
interpreting experiments 1, 2, and 3.

7.1.1. Proof of concept
The proof of concept showed the robust backtracking planningsmethod (RBPM) implementation for one
configuration, simulating a real life application of the RBPM. The proof of concept also showed how
the robust network (RN) topology is derived from the occurrence of edges. And hereby it highlighted,
the effect the optimization scenarios have on the RN topology. The RN topology is derived from the
in 2055 over time generated networks with IDPM. These IDPM networks in 2055, are a result of the
path dependent network optimization per decade and are therefore not the cost optimal network for the
demand in 2055. This has advantages and disadvantages.

The advantage is that the RN optimization indirectly distinguishes between nodes that are likely to
transition early and nodes that are likely to transition late. While the RN in total might be costlier if all
demand nodes are participating, if the demand nodes participate that are most likely to, the RN imple-
mentation is probably more cost efficient. For example, the extra nodes in a RN are often connected to
the network with long trajectories connected them to the ’backbone’ of the network. These trajectories
are more costly when they are needed to be placed, however, the benefit is that if they are not placed
it is economically more profitable than redirecting the whole network.

However, two high-transitioning nodes transition more frequently across different decades since each
transition probability is lower than 45%. The cycles that appear in the occurrence graph, as seen in
Figure 6.2, are caused by the differing participation timings of at least two demand nodes. As these
nodes transition asynchronously more often, the edges chosen represent the two separate optimized
capacitated paths between the demand nodes and the supply node, rather than the combined optimized
path or the two transitioning nodes.

This disadvantage is caused by how cycles are dealt with in the RN topology heuristic where the lowest
occurring edge is removed to remove the cycle. These cycles can occur frequently in the IPCs due to
the grid structure of the road network; where multiple almost as short routes exist. Further research
could explore various topology heuristics or conduct a comparative analysis of the derivation of the RN
from the scenario-optimized network over time, in relation to the directly cost-optimized networks for
the demand of 2055.

Lastly, when comparing the costs to existing hydrogen projects, the estimated costs presented in this
thesis are within the same order of magnitude; however, they are slightly higher. For instance, the
HyTransPortRTM project, which is developing a hydrogen pipeline in the Port of Rotterdam, spans 30
kilometers and has a capacity of 3 ton H2/ day (CES Rotterdam-Moerdijk, 2021; IEA, 2024b). This
project has estimated investment costs of approximately 100 million euros, with a possible variation of
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± 40%. The estimated costs for the scenario outlined in the proof of concept for the year 2035 range
between 120 and 160 million euros.

Recognizing that the proof-of-concept network is around halve the length than that of the HyTrans-
PortRTM project, the cost estimates in this thesis align with the magnitude of those from existing hydro-
gen projects, but are higher than what has been announced by these projects. This discrepancy can
partly be attributed to the inclusion of operational costs in this thesis, which account for 20% of the total
costs projected for 2035. Additionally, it is possible that simplifications in the calculations of diameter
to capacity ratios have led to an overestimation of costs, thereby resulting in the higher values reported
here.

7.1.2. Comparison with simpler methods
For this experiment, the RBPM is compared with ML-RBPM and IDPM. They are compared by looking
at both Iron and Steel and Pulp and Paper clusters for three different layouts. In this section first the
results of the ML-RBPM comparison are discussed, and then the IDPM comparison.

Comparison with ML-RBPM
The difference between ML-RBPM and RBPM is how the robust network topology is derived. Namely,
for ML-RBPM, the minimum length robust network (ML-RN) topology heuristic is used and for RBPM
the robust network (RN) topology heuristic is used.

Looking at costs the RBPM performs compared to ML-RBPM better for every configuration. This out-
come aligns with theoretical expectations, as the RBPM is designed to minimize costs, whereas the
ML-RBPM minimizes length. There are notable differences in total costs for the ML-RBPM across dif-
ferent configurations. This is attributed to the diverse placement of supply nodes, which significantly
affects the RBPPM topology of the network. In contrast to the RBPM, the performance of the ML-RBPM
is not influenced by the position of the supply nodes; rather, it is determined exclusively by the IPC lay-
out and the placement of the terminal node. Thus, when the supply node is placed such that the RBPM
topology looks more like the ML-RBPM, the methods perform more the same.

An interesting thing is that the full ML-RN topology was sometimes longer in length than the RN topology,
see appendix I.1.2. This is due to the fact that the ML-RN topology derivation also uses a heuristic,
namely the distance network heuristic (DNH) to derive the MStT. The DNH approximates the MStT by
first translating the steiner tree is translated into a graph with only the terminal nodes, where the edges
between the nodes represent the shortest paths between the terminal nodes in the steiner graph. Then
the minimum spanning tree is selected from this graph and the edges are translated back to the steiner
graph.

The DNH has a ’global’ approach of generating the MStT; where most optimization is done in the non-
steiner graph domain. The edge turn tree heuristic used in the developed method to approximate
the minimum capacitated steiner tree (MCStT) , starts with a MStT and iterates over different paths
to look for lower costs considering all possible node changes including steiner nodes. Thereby the
edge turn tree heuristic has a more local approach. Since the costs are also dependent on length, it is
possible that by iterating over different networks and selecting the least costs network, also a network
with minimum length is found. If for the ML-RN another heuristic was used that also iterates more, it is
probable that a better minimum length was found for some ML-RNs. However, since no heuristics can
guarantee the optimal solution this cannot be guaranteed.

However, even if the ML-RN topology is smaller in total length as is the case for Iron and Steel con-
figuration 3, when implemented the RBPM was on average smaller in length than ML-RBPM. This is
also inherently caused by the ML-RN topology heuristic and its lack of considering plant specifics. Be-
cause, while it can be the case that the ML-RN has minimal length if all demand nodes participate, the
ML-RN topology has not considered what happens if some nodes do not participate. While the RN has
this aspect way less as more of a backbone with high capacity is created where different nodes are
connected to with branches, this increases the total length, but the moment one of these nodes does
not participate the length is decreased.

The study conducted by André et al. (2013) involved a comparison between a minimum capacitated
spanning tree heuristic and a minimum spanning tree heuristic. The report indicated that the Minimum
Spanning Tree (MST) method was 4% shorter in length than the Minimum Cost Spanning Tree (MCST),



7.1. Results interpretation 62

but it also resulted in an additional cost of 18%. The analysis of costs aligns with the findings from this
experiment. However, the observations related to length are inconsistent with the observations of this
thesis.This difference in observation could be connected to the distinction between a minimum steiner
tree in a graph problem (MStG) and a minimum spanning tree problem (MST). While MST algorithms
always find the optimal solution, MStG algorithms do not.

Comparison with IDPM
This section will compare the RBPM with the IDPM. The relative costs plot in Figure 6.8 demonstrated
that, over a 30-year period, the total costs for the RBPM are lower than those for the IDPM across
almost all clusters and configurations. However, it also highlighted that the RBPM requires significantly
higher investment costs in the first decade, as substantial capacity needs to be installed upfront.

This high investment to implement RBPM in 2035 could be discouraging for decision-makers, who
may hesitate to invest heavily in hydrogen infrastructure during the early stages when the future of
the hydrogen economy is most uncertain. This is particularly true for clusters with high temperature
demands, as the absolute difference between the IDPM and the RBPM is higher, and thereby making
it more difficult to finance the budget.

Additionally, there is a difference in performance between low and high demand clusters. Looking at
the difference in total costs in 2055, the RBPM performs better in a low total potential demand cluster
(Pulp and Paper) than in a high total potential cluster (Iron and Steel); more or equal money is saved
when RBPM is implemented for Pulp and Paper compared to Iron and Steel. While in absolute values
the cumulative costs for Iron and Steel are higher. Thus, looking at percentages relative more costs
can be saved if the RBPM is implemented for networks that in total have less costs.

The lower relative costs for Iron and Steel cluster is caused by the fraction fOC determining operational
costs and plant specifics of the Iron and Steel configuration. It looks like there is a tipping point, where
at one point the total costs in 2035 are so high that RBPM is eventually as expensive as the IDPM,
especially if not all nodes transition towards 2055. This tipping point is almost reached in layout 2 of
Iron and Steel where the distances and potential demand are the highest. Because the high installation
costs also result in high operational costs per decade, as these are calculated as 40% of the total
investment costs per decade, which influence the costs in 2045 and 2055 as well.

Furthermore, the dominant processes of a cluster also influence the cost difference between IDPM
and RBPM. For the RBPM capacity is installed for almost all participating nodes, as the RBPM has
robust capacity. If one node with a significant potential hydrogen demand does not participate in an
analysis scenario, this capacity is already installed by the RBPM if these pipelines need to be used to
facilitate other plants. However this capacity will in that scenario not be installed by IDPM and thereby
installation costs for IDPM are spared. This increases the difference in costs between IDPM and RBPM
in favor of IDPM.

7.1.3. Comparing RBPM performance across different clusters
This experiment looked at the different patterns in costs for the RBPM implementation in different clus-
ters. Looking at the costs per decade for each cluster, two patterns can be visible separating the
clusters in two groups.

The first group consist of Iron and Steel, Refineries, and Basic chemicals. This group has higher costs
per decade compared to the other group and specifically the costs for 2035, C(2035), are high. The clus-
ters in this group correspond to the clusters with hydrogen feedstock decarbonization processes, and
these clusters have the three highest potential demand and have a high transition probability. However,
the reason why the C(2035) is so high for this group is not because of the high transition probability,
since the Glass cluster (also predominantly high transition probability) does not have the same cost pat-
tern as this group. Therefore, the reason of the high costs, especially the C(2035), is the high potential
demand.

The second group consists of the other five clusters; Metal processing, Non-ferrous metals, Glass,
Mineral processing, and Pulp and paper. This group still has the same pattern in costs per decade,
where C(2035) is the highest compared to C(2045) and C(2055). Only in the proportion of C(2035)
compared to 2045 and 2055 decades does this group differ from the first group, as C(2035) is not twice
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as much as C(2045). C(2035) being not much more than C(2045) is because the robust capacity that
needs to be installed is less for the second group clusters.

For decision makers, it is a good sign that the clusters with low hydrogen potential, who are most
economical preferable for RBPM implementation, also have on average low costs in 2035, as this
makes it easier to invest in a robust network, as less absolute money needs to be invested, compared
to the feedstock group.

The costs per decade for the RBPM show that configurations significantly affect the cost per decade
pattern, especially regarding the projected costs of C(2045) compared to C(2035). This is primarily
observed in clusters where decarbonization technologies have a low technology readiness level (TRL)
or low probability distribution. In these cluster, the randomly selected other 50% of the plants have
a greater influence on the hydrogen demand in 2035 and, consequently, the associated costs of the
network. For example, if these other 50% of the plants consist largely of high-demand facilities, such
as iron and steel, basic chemicals, or refinery plants, this results in an increase in C(2035). Conversely,
if these plants have low potential demand or a TRL below 6, C(2035) will decrease.

7.1.4. Performance under demand uncertainty
The RBPM showed sub optimal performance in scenarios characterized by higher uncertainty than
trained for. This is caused by the under representation of the estimated demand generated within the
high demand range in the optimization scenarios. This is demonstrated by the over representation
of analysis scenarios with demand ranges of 0.4 and 0.5 among the outliers of unmet demand. This
observation shows that a robust network is only as robust for the scenarios that are generated, a finding
corroborated by Beh et al. (2017) in their development of a cost-efficient water infrastructure.

Training the RBPM on optimization scenarios with greater demand uncertainty, characterized by a wider
demand range, improved the RBPM performance on facilitated demand. However, this came at the
cost of reduced cost efficiency. This aligns with Bartholomew and Kwakkel (2020) observation that
when a solution becomes more robust across multiple scenarios, it becomes less fit regarding costs
for individual scenarios.

This shows the trade-off this thesis started with; to facilitate all demand a network is very costly. How-
ever, from this experiment, it is concluded that it is wiser to consider a littler wider uncertainty range
than a smaller uncertainty range. However, this broader uncertainty should be considered within limits,
as excessive uncertainty may render the RBPM overly robust across multiple scenarios, leading to
suboptimal cost performance in many individual scenarios when compared to the IDPM.

This experiment also highlights an important difference between the IDPM and RBPM implementa-
tion. IDPM imposes the condition that demand must be satisfied at every timestep in every scenario,
whereas RBPM does not have this requirement. Rather, RBPM is the result of robust optimization
over the optimization scenarios using the 90th percentile robustness metric. Thereafter the RBPM is
implemented without adhering to the constraint of demand facilitation; when capacity does not satisfy
demand, no pipeline is expanded for RBPM.. This outcome highlights the challenges of directly com-
paring IDPM with RBPM; should RBPM adhere to the same constraints as IDPM, its costs would rise,
however, it is unlikely that these costs would reach the level of IDPM.

7.2. Limitations
In this section, the limitations of this study are discussed. The limitations are addressed in the following
order: first, the limitations of the IPC model; second, the limitations of the demand scenarios; third, the
discussions on deep uncertainty; and lastly, the limitations in the network optimization.

7.2.1. IPC model
The IPC model, while effective for illustration and method exploration, lacks relevance to the real life
industrial ports as there are a lot of assumptions regarding the IPC model. Below the assumptions
regarding wet infrastructure, industrial node placement, and the generation of IPC configurations are
discussed.
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Wet infrastructure
First of all, the wet infrastructure does not fully resemble real wet infrastructure. Although, the water
infrastructure is mostly selected by having a visual similarity with European ports, it is not possible in
the model to let the river flow through the full IPC area, as is the case for example in the Port of Antwerp.
Another limitation in the wet infrastructure is that the real life docks differ in width and its approaching
channels and docks are more straight that the wet infrastructure used in this thesis. As a result the
water ways are more random in the developed layout than in real life is the case.

Two other assumptions made regarding the IPC layout is that the road network cannot cross the water,
and that the pipelines will always follow the road network. These two assumptions limit the possible
hydrogen networks greatly and make the hydrogen network composition completely dependent on the
water infrastructure layout. Furthermore in real life, these two assumptions do not hold since for the
ports that are crossed by a river, these assumptions would make it impossible for two halves of the port
to share infrastructure. Therefore, in real life it is unlikely that this is the case, and it is likely that there
are a few places where roads and pipelines will cross the water, by tunnel or bridge.

Industrial node placement
Another important aspect of the IPC layout is the placement of the industrial nodes in relation to the
docks and the IPC size. It is assumed that the industrial nodes are very close to the actual docks.
Specifically, for the small layouts 0 and 1, the industrial nodes are packed together all within a radius
of one kilometer of the water.

In reality, it might be more likely that the industrial plants are located near the port, but within a range
of multiple kilometers of the water. This would imply that a port would look more like layout 2; where
some industrial plants are located further away from the water, and as a consequence the road network
is more extensive and therefore, there are more possibilities for the hydrogen network to form.

However, one must keep in mind that when bigger IPC areas are considered with less area occupied
by water, the assumption of pipelines following the road network should be revisited. As less water
occupation results in less constraints for the pipelines, and therefore it is more likely that pipelines will
cross land where there are not roads.

Reassignment natural gas pipelines
Natural gas pipelines are already placed in industrial areas, to provide heat and feedstock to the indus-
trial plants. It is expected that an extensive amount of natural gas pipelines will be unnecessary towrds
2050 as fossil fuel used will need to be limited and there are multiple studies and case studies in the
reassignment of natural gas pipelines to hydrogen pipelines (IEA, 2023a). The reassignment of natural
gas pipelines is not considered in this thesis, but can be a fruitful addition for the method. However,
it is important to note that the reassignment of natural gas pipelines regarding safety, operation, and
conversion costs is still an on-going academic debate (Martin et al., 2024). Therefore, the costs for
reassignment and the operation costs of these old natural gas pipelines should first be studied before
this can be implemented. However, once the reassignment cost function is known the implementation
into the existing robust method is straight forward as most of the code is already made by Heijnen et al.
(2019).

IPC configuration
An IPC configuration is classified as a cluster of a specific industrial subsector if at least 50% of the
plants within that configuration belong to that subsector and the rests of the plants subsectors are
arbitrary assigned. However, the threshold of 50% for the cluster coefficient is an assumption that lacks
empirical or academic validation. In contrast, European Observatory for Clusters and Industrial Change
(2020) identified 24 clusters in the province of East Flanders, which includes part of the Port of Antwerp.
Although not all of these are classified as industrial clusters, this observation suggests that various
subsector clusters can coexist within the same geographical region. While this thesis acknowledges
some heterogeneity among the plant subsectors, it does not assume that multiple subsectors can
coexist within the same IPC. As a result, more homogeneity or heterogeneity might be assumed within
the IPC configuration than might be realistic.

Despite these limitations, the IPC model serves as a valuable tool for testing the robustness of the
RBPM method. It enables a preliminary exploration of how the methodology can be applied across
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various network configurations. Moving forward, it would be interesting to investigate the method’s
performance in real-world industrial port clusters to validate the method. Furthermore, it would be inter-
esting to look for other aspects defining these industrial port clusters, other than the cluster coefficient.

7.2.2. Demand scenarios
There are numerous simplifications in the generation of demand scenarios. The first simplification is that
the transition uncertainty parameter is based on the presence of (prospected) competing technologies.
However, it does not take into account interdependencies between plants. Specifically, in each time
step, a plant independently ‘decides’ whether to transition, without considering the actions of other
plants or the availability of infrastructure. This fails to reflect reality, where industrial clusters typically
exhibit a high degree of interdependence, with some plants relying on each other’s by-products which
are influenced by process change of neighbors (Cioli et al., 2021). Consequently, when one plant
transitions, it can have a cascading effect on others, which is not modeled in this thesis.

Secondly, the estimated demand is derived from projected demand, calculated based on the production
capacity of the plants and a demand range that allows for deviations. This assumes a binary demand
behavior, whereas, in reality, it could follow a stepwise pattern where part of the production transitions
first, followed by additional increments later. Furthermore, for simplicity, it is also assumed that one
node represents only one process; in reality, a plant can execute multiple processes while having only
one connection to the network. As a result, the demand pattern per node modeled is simpler than it
is in reality. A stepwise demand function considering multiple processes per plant would expand the
range of plausible future scenarios, making the robust optimization problem more complex, as each
plant would have more potential demand outcomes by 2055.

7.2.3. Deep uncertainty
These simplifications in demand scenarios raise questions to which extend the robust approach ad-
dresses deep uncertainty of the system. For instance, what would occur if hydrogen for high-temperature
processes fails to kick-off? This thesis does not consider that potential future. There exists a trade-off
between constraining the future solution space to reduce computation time and encompassing all po-
tential futures to develop a highly robust network. In this thesis, the trade-off is established as follows:
participant uncertainty is defined within a range for each plant, while demand uncertainty is similarly
constrained within a range of an estimated demand, resulting in limitations on potential future demand
scenarios. Thereby there is a subset of the plausible futures generated, which places the demand sce-
narios in the middle of exploratory and predictive modeling scenarios (Maier et al., 2016). Therefore,
the presented results do not capture the deep uncertainty that the system is. Thereby the generated
robust network is only robust for a certain range of plausible futures.

While the choice of parameter space has resulted in findings that do not account for deep uncertainty,
the methodology itself has been developed from a deep uncertainty framework. However, it remains
untested whether the RBPM will yield the same results under deep uncertainty. When deep uncertainty
is considered, uncertainty parameters are more broadly defined; for instance, the high transition prob-
ability range is set to [0, 50] instead of the narrower range of [0.3, 0.45]. Consequently, scenarios in
which high-temperature processes fail to kick-off is plausible within these deep uncertain scenarios.

Moreover, one potential outcome of incorporating deep uncertainty is that the total costs associated
with the robust network may exceed those of the IDPM. This phenomenon arises from the selected
robustness metric, which dictates that the 90th percentile of demand must be facilitated over all opti-
mization scenarios. As a result, the robust capacity installed in the network will be high, even when the
transition probability is low. Consequently, in certain low-transition scenarios, the IDPM may outper-
form the robust network. This behavior could not be observed in the current study due to the constraints
imposed on the parameter space, which were implemented to limit computational time.

7.2.4. Network optimization
In this section the limitations of the cost function will be discussed. Furthermore, the network opti-
mization method minimizes the costs by altering the pipeline locations and capacity. However, this
method does not consider specific diameter sizes of pipelines nor does it takes into account fluid flow
or uncertainty in the costs over time.
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Cost function
The cost function used in this method is adapted from Hammond et al. (2024). They utilized the cost
function in a local industrial pipeline network, however its application was slightly different as it was used
in a MILP. In this study, the cost function is defined on a per-edge basis instead of a per-straight pipeline
basis, which creates a problem for the cost function. For instance, if a pipeline extends directly for 600
meters but intersects three nodes in the model, it is regarded as placing a pipeline three times, as
the pipeline consists of three edges. This presents an issue as the cost calculation (Eq 4.8 ) includes
a constant that does not depend on length nor diameter. This constant is approximately 0.5 million
euros and is connected to one time costs independent of length or capacity (Hammond et al., 2024).
This limitation results in increased costs for each network and favors long edges without interruption of
steiner nodes, rather than pipelines that run straight. Nevertheless, since the cost function is consistent
across all implementations and networks, it is unlikely to significantly influence the comparison when
the same layout is used.

Furthermore, construction costs may increase over the decades, a factor not considered in the current
cost function. While this thesis does not address changes in construction costs over time, it is important
to note that such changes will influence overall costs, particularly the costs per decade for IDPM, since
the implementation of IDPM requires the continual expansion of network trajectories to enhance ca-
pacity every decade. It is anticipated that pipeline construction projects will also decarbonize by 2055;
however, the timeline for the decarbonization of construction projects remains uncertain due to various
external drivers (Arogundade et al., 2023). This uncertainty introduces a variable into the cost function
that has not been addressed, as it was outside the scope of this study. Furthermore, if construction
equipment is not decarbonized, the potential for greenhouse gas emissions could result in future penal-
ties, affecting financial considerations. Conversely, it is possible that installation costs may decrease
as more hydrogen pipelines are established, benefiting from economies of scale. Additionally, inflation
is not accounted for in the cost function; if it were, it is conceivable that the performance of IDPM would
be lower compared to RBPM.

Pipeline diameter
The developed method determines the capacity of a pipeline without any constraints on its diameter.
However, in reality, only a limited range of diameters may be available (Johnson & Ogden, 2012; Reuß
et al., 2019). The restriction to a few diameter options can significantly affect both the IDPM and
RBPM. Implementing the diameter constraints may unintentionally make the planning methods either
less robust or more expensive, as restricting diameter options results in incremental behaviour in both
cost and facilitated demand per edge, rather than achieving a smooth optimization. This may dictate
the network to implement sub-optimal yet viable solutions that satisfy demand at increased costs and
with surplus capacity.

Fluid flow dynamics
Secondly, in this method, the detailed flow characteristics of pressurized hydrogen is not considered
as only a rough estimation is made when linking pipeline diameter to capacity. This is a significant
limitation, as the actual flow dynamics—especially in high-pressure environments—can lead to issues
such as vibrations, which affect the structural integrity of the pipeline over time and thereby influence the
safety of pipelines (Raj et al., 2024). Moreover, the pressure drop caused by the fluid flowing through
the pipeline is also not taken into account, as a result, pumping stations are not adequately taken into
account for the cost function.

However, Raj et al. (2024) also emphasize that a focus on demand scenarios is more important when
considering the network, than considering the fluid flow, as incorporating fluid flow only decrease the
costs with 2%. Furthermore, since it is important that this thesis is computational fast to compute
multiple scenarios, adding full fluid flow dynamics would counter act the possible fast usage of this
method. However, it can be beneficial for further research to look at some easy to implement objectives
based on fluid flow dynamics, such as limiting the amount of curves a pipeline network takes, since
pressure drop is minimal for a straight horizontal pipe (Nandagopal, 2022).

Further research could address the cost function and curves issue by allowing the method to recog-
nize specific edges as components of a continuous pipeline, thereby increasing the applicability of the
cost function and additionally align with one of the proposed fluid flow objectives to promote straight
pipelines.
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Conclusion

This thesis aimed to contribute to the development of hydrogen pipeline networks in an industrial port
cluster in order to facilitate the transition towards a near-zero emission society. Existing literature in
local hydrogen pipeline networks do not consider deep uncertainty when planning a future hydrogen
network, rather networks are developed to fit a few likely scenarios. However due to the complexity of
the hydrogen energy system, these few likely scenarios cannot capture the future of such a complex
system, as the deep uncertainty of the future makes it difficult to predict the outcome (J. H. Kwakkel
et al., 2010). This thesis aims to fill this gap by addressing the question: how to plan over time a
cost-effective, robust hydrogen pipeline network for industrial port clusters under uncertainty?

To address this research question, a method is developed that helps plan a network that accounts for
participant and demand uncertainty in industrial plants within an industrial port cluster. This method is
developed and tested throughout this thesis through six sub-questions. First, each sub-question will
be answered individually. Subsequently, the overarching research question will be addressed. Fol-
lowing this, the academic, social, and practical contributions of the thesis will be discussed. Finally,
recommendations for future research will be provided.

What characteristics of Industrial Port Clusters should be considered for the hy-
drogen network development?
This thesis develops a method that can be applied to different IPCs. Therefore, it is important to as-
sess the characteristics of an IPC. An industrial port cluster is defined in this thesis as a population of
firms located geographically close together and close to a port, that have economically linked activities
and want to cooperate. Firms with economically linked activities, such as a shared common stock of
products or re-using residual flows, benefit from a cluster as this reduces transportation costs and stim-
ulates cooperation. Important characteristics of an IPC are cooperation, geographical proximity, and
economically linked activities, which are often evidenced by the overrepresentation of one subsector
within an IPC.

Multiple industrial subsectors have processes eligible for transitioning to hydrogen to decarbonize.
These subsectors include iron and steel, glass, mineral processing, metal processing, basic chemi-
cals, non-ferrous metals, refineries, and pulp and paper. These subsectors either have processes that
require high -temperature heat or can transition to processes in which hydrogen can substitute fossil
fuel feedstock. However, it remains uncertain when or if these processes will transition to hydrogen.

In this thesis, it is proposed that the likelihood of a process in an IPC transitioning to hydrogen is
determined by the competing technologies available, with high-temperature heat technologies having a
greater chance of transition. Furthermore, the technology readiness level (TRL) of these technologies
will also influence the speed of transition over time. This thesis assigns a transition probability per
decade to each process, assuming that by predefining a range for this transition probability, it can
capture the range of effects from external variables (economic, political, technological, and social).

Additionally, the physical characteristics of an IPC also influence the hydrogen network, particularly the
possible locations for pipeline placement. The presence of water and the high concentration of firms
in the IPC result in limited space for infrastructure expansion. Therefore, this thesis assumes that the
pipelines will be placed next to the roads, thereby avoiding private property and water.
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An actor analysis was conducted, and the main take away is that the hydrogen network should minimize
operational and installation costs, while also facilitating current and future users. This approach will
benefit both the network operator and hydrogen consumers and producers using the network, as lower
network costs enable lower tariff rates.

How can cost-efficiency and robustness be operationalized in a physical net-
work?
Because of this complexity it is important that a network is robust. Robustness is defined as a measure
of the adequate facilitation of demand of the network under a range of plausible scenarios (Maier et
al., 2016). The demand is uncertain as this depends on multiple factors, thus several plausible future
scenarios are generated based on the transition probability of the processes in the IPC to grasp the
possible future space.

Moreover, the term adequately in the robustness definition can be presented mathematically by differ-
ent robustness metrics. These robustness metrics take all the outcomes of the performance metric
facilitation of demand per scenario and map them to one value. This robustness metric should be cho-
sen in cooperation with involved actors, since the robustness metric represents the risk-averseness of
actors. For this thesis, a quite risk-averse robustness metric is chosen; the 90th percentile minimax
regret robustness metric. This choice while not made in cooperation with actors is based on a study
on future energy infrastructure in the port of Rotterdam (Cuppen et al., 2021).

The 90th percentile minimax regret calculates per scenario the regret; the difference between the facili-
tated demand of the scenario and the optimal value. A regret based metric is favorable when combined
with a cost objective and risk averse actors. The 90th percentile makes the metric less sensitive for
outliers, thereby the network can be made robust, without being dominated by one worst or best case
scenario.

The other objective, cost-efficiency, is operationalized by saying that installation and operation costs
should be minimized given the constraint that the network should be able to facilitate demand. If a
network is very robust and will be able to facilitate the demand for every scenario, this network will be
quite costly. This shows a trade-off between costs and robustness.

What is a suitable method to generate a robust, and cost efficient hydrogen net-
work over time?
Current traditional infrastructure planning methods employ a time horizon of 10 years. This traditional
approach is defined in this thesis as the Immediate Demand Planning Method (IDPM), where planning
extends no further than 10 years into the future. Consequently, with this method multiple pipelines
are positioned alongside each other on the same trajectory as demand increases, which can lead to
significant additional costs, as installation expenses constitute a big portion of the overall costs.

The method developed in this thesis is the robust backtracking planning method (RBPM), where first a
robust network is generated using robust optimization and then over time the robust network is deployed
using backtracking. Below, first the robust network generation part shall be described, and then the
backtracking method shall be explained further.

Robust optimization
A robust network is derived by first generating multiple demand scenarios using the transition probability
of the industrial plants. These demand scenarios represent the demand of the IPC in the years 2035,
2045, and 2055. For each decade the hydrogen network is planned according to the IDPM where the
network is planned in such a way that the demand is facilitated for that demand scenario. This network
optimization is conducted with an adapted version of the Optimal Network Layout Tool (Heijnen, 2024).
Hereby, the calculated pipelines from previous decade is given as input for the next decade. The final
scenario optimized networks in 2055 are then used to generate a robust network. In this thesis, two
robust network generation are tested, the robust network and the minimum length robust network

The robust network is generated in two steps. First, the robust topology is extracted from selecting the
most occurring edges that form a tree. Secondly, the robust topology is given capacity using a heuristic
that uses the robustness metric. This heuristic starts with the robust topology with maximum capacity
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for each edge, and then subtracts capacity of this edge for as long as the network scores optimal for
the robustness metric, the 90th percentile minimax regret.

Backtracking planning method
The robust network is then implemented over time using backtracking. Where each decade only the part
of the network are deployed that are needed to facilitate the demand (André et al., 2014). Compared
with the IDPM the placed pipelines have more capacity and can thereby also facilitate future demand,
as a result the pipelines placed with either the RBPM do not have to be extended every decade.

The RBPM is suitable because hydrogen demand is projected to grow significantly by 2055. By ac-
counting for this anticipated demand growth, estimating it in advance, and then backtracking through
incremental planning stages, this method can help reduce installation costs. Given that future demand
remains uncertain, a robust approach is essential for approximating demand variations and designing
a robust network, which can be implemented using the backtracking approach.

How does the developed method perform compared to simpler planning meth-
ods?
The experiments comparing the RBPM performance with the IDPM and minimum length robust back-
tracking planning method (ML-RBPM) demonstrate that the RBPM is in general economically more
beneficial in terms of total costs incurred between 2025 and 2055.

For the ML-RBPM, the minimum length robust network is generated in two nearly identical steps as
the RBPM; however, it differs in how the topology is derived. The ML robust topology is generated not
by using the scenarios but by calculating the minimum steiner tree, which connects all the industrial
nodes. All other steps are the same as those in the RBPM.

The ML-RBPM incurs higher costs every decade relative to the RBPM due to the ML-RN topology
heuristic, which does not consider specific configuration details, such as supply node location, or plant
transition probabilities. TheRBPM indirectly considers these configuration specifics, as it uses scenario-
optimized networks in its topology heuristic. Consequently, the RBPM consistently outperforms the
ML-RBPM in terms of cost efficiency.

Comparing the IDPM to the RBPM, the IDPM shows lower costs in the first decade. This is due to
the high capacity required for the RBPM, which corresponds to the robust capacity calculated for the
projected high demand in 2055. The higher initial investment required for the RBPM in 2035 may
discourage decision-makers, who might be reluctant to invest heavily in hydrogen infrastructure during
the early stages of development, especially given the uncertainty surrounding the future of the hydrogen
economy. This is particularly relevant for clusters with high potential demand, where the absolute
difference in needed budget is more compared to low demand clusters.

Another potential challenge associated with the implementation of the RBPM in high-demand clusters
is that the projected profit from utilizing the RBPM instead of the IDPM decreases as both distance and
demand increase. As a result, it may become increasingly difficult for decision-makers to advocate for
a larger initial investment and to embrace the associated risks, particularly when there is no guarantee
of achieving substantial savings by 2055.

What is the performance of the developed method across different clusters?
The results of the costs per decade when implementing the RBPM across different clusters show two
patterns corresponding to two groups of clusters.

The first group includes the Iron and Steel, Basic chemicals, and Refineries clusters. These clusters are
characterized by high total potential demand and involve processes that require high-temperature heat
or can transition to hydrogen feedstock technologies with a high technology readiness level. The costs
projected for 2025-2035 in this high-demand group are, on average, twice as much as the costs for
2035-2045. The reason for this is twofold. First, due to the high transition probability of the plants, many
will need to be connected to the grid in the first decade. Second, because the total potential demand
is high, the robust capacity that must be installed with the RBPM is significant, thereby increasing the
costs of the network.
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The second group correspondswith the following clusters; Metal processing, Non-ferrousmetals, Glass,
Mineral processing, and Pulp and paper. These clusters have lower total potential demand and as a
result, the costs in the first decade are lower, but on average still higher than the costs for the second
and third decade, however, the difference is not so substantial as for the first group.

Additionally, the second group shows more deviations in RBPM performance per configuration, par-
ticularly for clusters characterized by low transition probability processes or by processes where the
hydrogen technology readiness level is still in the prototyping phase. As a result, it is highly unlikely that
these processes will transition by 2035. The other plants that do not belong to the cluster specializa-
tion have a greater effect on the cost behavior of the configuration in 2035. Hereby, the total potential
demand of the configuration is a good indication of the costs in 2035 and 2045, where a high potential
demand correlates with higher costs in 2035.

How does the developed method perform under different demand uncertainty
ranges?
The RBPM showed sub optimal performance in scenarios characterized by higher uncertainty than
trained for. This is caused by the under representation of the estimated demand generated within the
high demand range in the optimization scenarios. This observation shows that a robust network is only
as robust for the scenarios that are generated.

Training the RBPM on optimization scenarios with greater demand uncertainty, characterized by a wider
demand range, improved the RBPM performance on facilitated demand. However, this came at the
cost of reduced cost efficiency. Since training the performance of RBPM with more demand uncertainty
still resulted in a more cost efficient network compared to IDPM, it is advised that in case of doubt more
demand uncertainty is used for optimization than less. However, due to computational limits, this is not
tested for complete demand uncertainty, so the increase of demand uncertainty should be taken within
limits.
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8.1. Main research question
How to plan over time a robust and cost efficient network over time in an indus-
trial port cluster under uncertainty?
The best planning method for a network in an IPC where the main goal is to facilitate demand in a cost-
efficient manner depends on the IPC characteristics, the available budget, and the demand and cost
uncertainties. In this thesis the stakeholders main objective was to facilitate demand in every scenario
by developing and maintaining a network with the least amount of costs possible. The future scenarios
in this thesis are demand scenarios that have uncertainty in plant participation, and the demand of
these plants in an IPC.

A robust backtracking planning method (RBPM) is developed, that first, applies a robust optimization
heuristic to synthesize the different scenario optimization networks, and secondly, uses backtracking
to deploy the robust optimized network over time for the decades 2035, 2045, and 2055. The RBPM
is suitable because hydrogen demand is projected to grow significantly by 2055. By accounting for
this anticipated demand growth, estimating it in advance, and then backtracking through incremental
planning stages, this method can help reduce installation costs. Given that future demand remains
uncertain, a robust approach is essential for approximating demand variations and designing a robust
network, which can be implemented using the backtracking approach.

This RBPM is compared to the immediate demand planning method (IDPM). The IDPM allocates ca-
pacity for the network every decade, ensuring that the precise amount of capacity is assigned to meet
demand while minimizing costs over that decade. In contrast, the RBPM aims to achieve cost efficiency
over a three-decade horizon, while meeting demand every decade. This thesis demonstrates that the
total potential hydrogen demand and the length of the IPC influence the choice between IDPM and
RBPM.

Additionally, the performance of RBPM regarding costs is also affected by demand uncertainty. Notably,
when the RBPM was tested with a doubling of demand uncertainty, there was a positive impact on
facilitated demand without a substantial increase in overall costs. Consequently, it is recommended to
consider a higher level of demand uncertainty for optimization when levels of uncertainty are unclear.
However, it is important to note that while increasing demand uncertainty can be beneficial, it should
be constrained within reasonable limits due to the computational challenges associated with assessing
full demand uncertainty.

The RBPM is themost cost efficient if the IPC has a low total potential hydrogen demand, corresponding
with IPCs with a low share of Iron and Steel, or Basic chemical or Refinery plants. The RBPM installs
pipelines with robust capacity that are needed to facilitate the demand until 2055, thereby saving the
costs placing new pipelines for additional capacity every decade.

The RBPM is less beneficial regarding saved costs until 2055 compared to the IDPM, if the IPC has a
high total potential demand, corresponding with an iron and steel, basic chemicals or refineries cluster.
This is due to the amount of operational costs. Additionally, the investment costs for RBPM in the
first decade are higher, which can cause problems regarding budgeting to install the RBPM network.
Therefore, the best planning method of a hydrogen pipeline network in a cluster with a high share of
high demand plants, depends on the budget available, the expected rise or decrease of the installation
costs and the estimated operational costs.

8.2. Contributions
8.2.1. Academic Contribution
The knowledge gap identified is that, while some studies on hydrogen networks address demand un-
certainty and local-scale development over time, no research combines all these elements. In this
thesis a robust backtracking planning method is proposed that considers uncertainty in participants
and demand to generate a robust network for 2055. Then using backtracking, the planning method re-
sembles the over time deployment of the network per decade. This planning method approach is also
implemented by André et al. (2014), where the hydrogen capacitated network over time deployment
for North France was calculated for a low and a high scenario. However, André et al. (2014) did not
consider uncertainty in demand, nor did they consider constraints or obstacles when planning the net-
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work. This thesis has contributed by taking into account uncertainty in demand and participants when
calculating the network in 2055 and applying the method to an area with a high amount of constraints
and obstacles by approaching the problem as a Steiner tree in a graph problem.

However, this thesis has not filled the literature gap regarding deep uncertainty as this thesis does
not consider all potential futures. There exists a trade-off between constraining the future solution
space to reduce computation time and encompassing all potential futures to develop a highly robust
network. In this thesis, the trade-off is established as follows: participant uncertainty is defined within a
range for each plant, while demand uncertainty is similarly constrained within a range of an estimated
demand, resulting in limitations on potential future demand scenarios. As a consequence the generated
scenarios are a subset of all plausible futures, which places the demand scenarios in the middle of
exploratory and predictive scenarios. Where exploratory scenarios are scenarios that cover the full
plausible future space and predictive scenarios indicate the most likely future scenarios (Maier et al.,
2016). Thereby, the generated method does take into account some likely future uncertainty but not
the full possible future space that is required to consider deep uncertainty.

8.2.2. Societal contribution
This thesis contributes to the realization of a near-zero-emission (NZE) society by investigating the
development of cost-efficient and robust hydrogen networks in industrial clusters. Hydrogen will play a
role in achieving near-zero emissions by 2050. However, as of now, the transmission and demand side
of hydrogen development are lagging (IEA, 2023a). By providing insights into how hydrogen networks
can be developed efficiently, and showing that early investments in a robust network will result in lower
long-term costs, this research shows a beneficial situation in the long term for network developers, and
decision makers; Investing now in robust infrastructure will not only reduce overall costs towards 2055,
but also address the IEA (2023a) concern regarding the insufficient transmission capacity currently
being developed to meet the 2055 NZE targets.

Furthermore, this thesis emphasizes the significance of the temporal deployment of network studies,
demonstrating that the optimal planning strategies vary depending on the specific IPC configuration.
This study underscores that it is not solely the studies focused on the cost-efficient future end state of
the system in 2055 that are important; additionally the over time deployment for achieving that end state
over time is equally crucial. Such considerations are essential for creating a future hydrogen network
in a cost-efficient manner.

8.2.3. Practical relevance
Although the proposed planning method has not been applied to a real case study, several recommen-
dations can still be made for network developers in industrial port clusters (IPCs). Firstly, while it might
seem more attractive to delay investment until market conditions improve and demand for hydrogen
increases, it is likely to result in higher long-term costs. Developing hydrogen networks now, particu-
larly within industrial clusters, allows stakeholders to avoid costly capacity upgrades later by building
in scalability from the outset. When operational costs are expected to be low or when clusters have
moderate or low hydrogen demand, implementing a robust backtracking method can be economically
advantageous, providing long-term benefits without significantly higher initial investments.

Secondly, when considering uncertainty ranges for robust optimization, it is advisable to incorporate a
higher level of demand uncertainty rather than a lower one in situations where there is doubt. While this
thesis did not test the method under conditions of complete demand uncertainty due to computational
constraints, it was found that applying increased demand uncertainty within reasonable limit enhances
the robustness of network optimization without sacrificing too much in terms of costs.

8.3. Future research
Future research should incorporate the various factors influencing demand dynamics within IPCs to
further refine and expand the robust hydrogen network planning method developed in this thesis. This
research can include accounting for plant interdependencies, and a stepwise approach to demand
growth. Moreover, applying the RBPM to real-world IPCs could offer valuable insights into the factors
that characterize an IPC and how these factors influence hydrogen network development, while also
helping to validate the method’s effectiveness.



8.3. Future research 73

Another promising area for future exploration is examining the behavior of the RBPM under conditions
of deep uncertainty by relaxing the constraints on uncertainty parameters. This thesis did not address
this relaxation due to computational limitations; however, it holds significant potential given the sys-
tem’s deep uncertainty. Future studies could assess the performance of the RBPM in deeply uncertain
scenarios and explore the balance between cost-efficiency and robustness. Additionally, these studies
could investigate how varying robustness metrics might impact the overall performance of the RBPM.

Exploring alternative approaches to robust optimization also holds potential. For example, future stud-
ies could also examine alternative robust optimization approaches, either by tailoring the robustness
metric to better align with stakeholder preferences or by testing different heuristics for robust network
generation. This would allow for analysis of performance across both high and low demand clusters,
potentially leading to a more refined method tailored to high-demand environments.

Moreover, enhancing the RBPM with adaptive strategies would be valuable. Although pipelines are
inherently fixed once installed, planning over a 30-year horizon may allow for some level of flexibil-
ity. Using cluster analysis of scenario-optimized networks could help identify potential points where
adaptive decisions are feasible. This approach would enable decision-makers to defer certain pipeline
investments, allowing time to respond to evolving hydrogen demand and make strategic decisions later
as circumstances become clearer.

Another important area for investigation is the cost function. Examining how changes in capital and op-
erational expenses over time influence the RBPM and IDPMwould offer a more nuanced understanding
of cost dynamics. Key considerations include the impact of high initial investment costs, and the pro-
portional influence of operational costs. Additionally, future studies should consider uncertainties in
long-term construction costs, such as potential greenhouse gas penalties or cost reductions through
economies of scale. A more nuanced understanding of these factors would refine the cost function and
enhance the understanding and performance of the RBPM and IDPM over time.

Finally, developing an intuitive decision-making interface would enable a better examination of trade-
offs among various objectives and interpretations of robustness, improving both the accessibility and
practicality of the RBPM. Future studies could test this interface with actual users to enhance the usabil-
ity of the RBPM. Additional features, such as natural gas pipeline reassignments and considerations
for water crossings, would further increase its relevance in practical, real-world applications.
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B
Visual Inspection European Ports

A visual study is conducted to search for physical characteristics of industrial ports. This study is done
by visually inspecting the biggest industrial ports according to a report by Deloitte (2023). All pictures
presented are screenshots made by Google Maps (Google, 2024). Below the Ports are depicted in
a large format. The conclusion of the visual inspection and small figures of the ports of Rotterdam,
Duisburg, Antwerp, and Dusseldorf are presented in Chapter 2.

Figure B.1: Port of Rotterdam

Figure B.2: Port of Duisburg
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Figure B.3: Port of Antwerp

Figure B.4: Port of Dusseldorf



C
Additional derivation cost function

This appendix includes additional information and arguments for the cost function derivation. The
additional derivation of the cost function is presented in Section C.1.

C.1. Diameter as function of capacity
As the attentive reader might have noticed, the costs in equation 4.8 are calculated as a function
of the diameter. However, the ONLT method optimizes the capacity of the pipeline (Heijnen et al.,
2019). The relation between the capacity of a pipeline depends on various parameters where pressure,
temperature and friction parameters are very important as we are talking about the speed at which the
hydrogen can be transported from node i to node j.

The capacity qij in kg H2/day of one pipeline is given by the fluid flow equation (Khan et al., 2021);

qij = 1.1494 ∗ 10−3

(
Tb

Pb

)[
P 2
1 − P 2

2

GTf lij ∗ 10−3Zf

]0.5
(dij ∗ 103)2.5 ∗ 0.0834 (C.1)

where the capacity of the pipeline in kg H2/day is given as a function of the length lij of one pipe in m,
dij the inside diameter of the pipe in m, the absolute in- and outlet pressure P1, P2, and other constants
that are named and defined in the table below.

Table C.1: Pipeline Parameters and Constants

Symbol Name Unit Value Source
lij Pipeline length m Variable
dij Pipeline diameter m Variable
P1 Inlet pressure kPa 7000 Hammond et al. (2024)
P2 Outlet pressure kPa 3500 Hammond et al. (2024)
G Specific gravity - 0.0696 Khan et al. (2021)
Pb Base pressure kPa 101.352 Khan et al. (2021)
Tb Base temperature K 288.700 Khan et al. (2021)
Tf Average flowing temperature of gas K 288.15 Khan et al. (2021)
Z Compressibility factor at average temperature and pressure - 1.031 Khan et al. (2021)
f Friction factor - 0.0094 Khan et al. (2021)

For this analysis, it is assumed that there are no height elevations affecting the pipeline. The inlet and
outlet pressures are considered to be 70 bar (7000 kPa) and 35 bar (3500 kPa) respectively, this is
consistent with what other sources have used as pressure differences. However, in this model the
pipeline lengths are smaller than that of the other papers, therefore it is likely that the real pressure
drop is lower. While it is acknowledged that Tf , Z, and f are not constant, and depend on the pipeline
material and size, the values for the average flowing temperature of the gas (Tf ), the compressibility
factor (Z), and the friction factor (f ) are adopted from the study by Khan et al. (2021). In that study
they approached these factors for a 100km hydrogen pipeline.

Next, equation 4.8 is transcribed into C.4 that is used in the model to calculate the cost function using
4.5.
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let

a0 = 0.9590 ∗ 10−4 (C.2)

a1 =

[
P 2
1 − P 2

2

GTfZf

]0.5
(C.3)

then the diameter can be defined as a function of the capacity and the length, the two outcomes of the
ONLT model.

D(lij , qij) =

[
qij l

0.5
ij Pb

a0a1Tb

]−2.5

(C.4)

In this thesis a standard wall thickness of 0.0 mm is assumed. This is not realistic and when the planning
method will be implemented in a real case study, the wall thickness should be altered.



D
Heursitics and Flow diagrams

D.1. Pseudo code: Robust Network heuristics
D.1.1. Robust scenario based topology
S ta r t w i th f u l l s t e i ne r network ( road network )
Assign occurrence a t t r i b u t e to edges using the S scenar io −opt imized

networks
Delete the edges wi th occurrence of zero
FOR edge in network

Set edge capac i t y to maximum capac i t y o f edge over a l l S

%−−−Remove cycles −−−−
Ind i ca t e cyc les i n network
WHILE cyc les i n network

Remove edge wi th lowest occurrence i n cyc le
Add removed ’edges capac i t y to o ther edges i n cyc le
I nd i ca t e cyc les i n network

%−−−Remove loose ends−−−
FOR node in network

IF node degree = 1 and node i s a s t e i ne r node
Remove edge ( node , neighbor )

D.1.2. ML-RBPM topology
Approximate G a minimum leng th s t e i ne r t r ee wi th the NetworX s t e i ne r t r ee

a lgo r i t hm * t h a t connects the te rm ina l nodes

Assign capac i t y to G as i f the maximum demand of a l l t e rm ina l nodes should
be f a c i l i t a t e d

*uses the distance network heuristic (Kou et al., 1981) (see section Theoretic Framework)

D.1.3. Robust capacitated graph heuristic

S ta r t w i th G a robust topo logy t ree wi th max capac i ty , and S demand
scenar ios

Ca lcu la te robustness value (RV) G f o r the S demand scenar ios ( should be
opt ima l )

FOR edge in G:
WHILE RV stays the same and edge capac i t y > 0 :

Lower the edge capac i t y w i th increment_capac i ty
Reca lcu la te RV
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IF RV changes :
Add increment_capac i ty to edge_capacity

D.1.4. Backtracking robust network implementation
Start with Robust Network RN derived from robust optimization, and demand scenario for three timesteps
for analysis scenario. A implemented network N1, N2, N3 is derived for timestep 1, 2, and 3.

FOR each t imestep t
FOR each node n wi th demand( t ) :

Der ive path n to s ink i n RN
FOR each edge in path n to s ink i n RN:

IF edge not i n N_t
Add edge to N_t w i th capac i t y o f edge in RN

IF NOT path n to s ink i n RN:
Generate MCStT wi th RN and demand( t ) as i npu t
Der ive path n to s ink i n MCStT
FOR each edge in path n to s ink i n MCStT :

Add or update capac i t y o f RN wi th capac i t y MCStT

D.2. Flow diagram demand scenario
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Figure D.1: Flow diagram of the demand scenario generation



E
Details on production capacity

distribution

The production capacity range per process is an important variable as it determines the production
capacity of the plants in the IPC configuration and thereby the maximum hydrogen demand. The
production capacity range per process is derived from the Neuwirth et al. (2022b) German industrial
plants database. The representation of the different German industrial processes in the database
can be seen in figure E.1. As one can see some processes have only a count of 3, however due to
time limitations this database is used to estimate the production capacity distribution. This range of
production capacity per process can be seen in figure E.2.

Figure E.1: Representation of the German industrial processes database by counts per process derived from Neuwirth et al.
(2022b).

For this thesis the production capacity distribution is chosen to be normally distributed; as it is likely
that the capacity of plans is more often average than high or low. In table E.1 the normal distribution
parameters that define the production capacity range per process can be found.
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Figure E.2: Range of production capacity of the German industry per process (Neuwirth et al., 2022b).

Table E.1: Production Capacity distribution as derived from the production data from Neuwirth et al. (2022b).

Process µ [Mton/year] σ

Aluminum, primary 0.04 0.01
Ammonia 0.20 0.11
Board and packaging paper 0.02 0.02
Casting 0.17 0.12
Cement/Clinker 0.21 0.11
Chemical pulp 0.05 0.04
Chlorine, diaphragm 0.12 0.13
Chlorine, membrane 0.04 0.03
Container glass 0.02 0.01
Flat glass 0.04 0.02
Graphic paper 0.04 0.05
Lime burning 0.03 0.06
Methanol 0.08 0.03
Olefins 0.24 0.14
Refinery 0.85 0.55
Rolling (hot) 0.20 0.25
Steel, primary 0.51 0.26
Tissue paper 0.01 0.01



F
Overview parameters RBPM
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Overview parameters RBPM
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Table G.1: Parameters for the RBPM method

Name Description

Cost function This cost function how the network is optimized

IPC parameters

IPC size Determines total area of the IPC

Grid size road network Determines the minimum length of edges between nodes

Number of industrial
plants

Number of industrial plants, plants that can transition to hydrogen each
decade

Number of extra plants Number of extra plants that will settle in the IPC given the settlement
probability

Number of supply nodes Number of supply nodes, is assumed to be 1

Location of the supply
node(s)

Determines the placement of the supply node, is now assumed to be
close to the open water, for safety and port logistical reasons

Cluster coefficient Fraction determining the amount of plants that belong to the same sub-
sector in a cluster

Demand range Uncertainty Parameter, that indicates the uncertainty between the cal-
culated potential demand, and the real demand.

Node parameters

Transition probability (low,
medium, high) pT

Uncertainty parameter, representing the chance of a plant transitioning
to hydrogen in a decade that has not yet transitioned. The transition
probability uncertainty range has three categories: low, medium, and
high. Indicates the likeliness of a process transitioning

Extra node probability Uncertainty Parameter, representing the business climate; probability
that a plant will settle in the IPC.

Production capacity Constant assigned to a node; indicating the production capacity of the
plant. This parameter linearly influences the potential hydrogen demand
of a node

Subsector Subsector that the plant belongs to, plants with the same subsector are
economically linked

Process Process that is executed by the plant

Decarbonization technol-
ogy

Hydrogen technology that can decarbonize the process

Specific Energy Coeffi-
cient (SEC)

The amount of energy needed to produce a ton of produce

Technology readiness
level (TRL)

How advanced the technology is from basic idea to commercially avail-
able



H
Overview configurations used in

experiments

H.1. Plant specifics of configuration proof of concept
Table H.1: Overview of the industrial nodes process specifics, production capacity and hydrogen potential from the example

IPC

Terminals Subsector Process Temperature Category SEC
(MWh/t)

TRL
(-)

Production Capacity
(Mton/year)

Hydrogen potential
(ton H2/day)

0 Iron and Steel Steel, primary High 1.89 8 0.61 260
1 Iron and Steel Steel, primary High 3.20 9 0.86 620
2 Iron and Steel Steel, primary High 3.20 9 0.32 230
3 Iron and Steel Steel, primary High 3.20 9 0.63 450
4 Non-ferrous metals Aluminum, primary casting High 0.60 9 0.01 2
5 Iron and Steel Steel, primary High 1.89 8 0.62 260
6 Refineries Refinery 0.59 9 1.12 150
7 Iron and Steel Steel, primary High 1.89 8 1.09 460
8 Iron and Steel Steel, primary High 1.89 8 0.55 230
9 Supply
10 Iron and Steel Steel, primary High 3.20 9 0.42 300
11 Refineries Refinery 0.59 9 1.03 140
12 Iron and Steel Steel, primary High 1.89 8 0.30 130

H.2. Visual representation configurations experiment 1
For experiment 1, two clusters Iron and Steel and Paper and Pulp are compared over three layouts,
where for each cluster five configurations are generated. Below a visual representation of the configu-
rations is given.
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Figure H.1: Overview share of plants with low, medium, or high transition probability in the configurations used for experiment 1

Figure H.2: Overview of potential hydrogen demand categorized in plants having low, medium, or high transition probability in
the configurations used for experiment 1
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H.3. Visual representation configurations experiment 2
For experiment 2, 8 clusters with each 5 configurations for layout 0 and 1 are used. Below the config-
urations are depicted per layout by visually representing the distribution in transition probability count
and then the corresponding potential hydrogen demand.

Figure H.3: Overview share of plants with low, medium, or high transition probability in the configurations used for experiment
2, layout 0
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Figure H.4: Overview of potential hydrogen demand categorized in plants having low, medium, or high transition probability in
the configurations used for experiment 1, layout 0
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Figure H.5: Overview share of plants with low, medium, or high transition probability in the configurations used for experiment
2, layout 1
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Figure H.6: Overview of potential hydrogen demand categorized in plants having low, medium, or high transition probability in
the configurations used for experiment 1, layout 1

H.4. Full IPC Configuration characteristics table
Below an overview of all configurations used and their characteristics regarding placement of the supply
node, counts of low, medium, and high probability, the amount of industrial nodes with Technology
Readiness Level (TRL) below 6 and the potential future hydrogen demand per transition probability
category, and the total potential future hydrogen demand in the whole IPC configuration.

Table H.2: Table indicating the configuration specifics for all experiments, where each configuration is indicated as
layout_cluster_configuration.

Configuration Supply
Node

Amount of Plants Potential Demand [ton H2/day]

Low Medium High TRL
≤ 6

Low Medium High Total

0_Basic chemicals_0 6 1 3 8 1 38 146 967 1151
0_Basic chemicals_1 4 0 2 10 0 0 191 1027 1218
0_Basic chemicals_2 4 0 3 9 0 0 150 734 884

Continued on next page
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Configuration Supply
Node

Amount of Plants Potential Demand [ton H2/day]

Low Medium High TRL
≤ 6

Low Medium High Total

0_Basic chemicals_3 6 0 1 11 1 0 160 695 856
0_Basic chemicals_4 4 1 0 11 1 16 0 2425 2441
0_Glass_0 4 0 1 11 4 0 13 538 551
0_Glass_1 4 0 0 12 5 0 0 836 836
0_Glass_2 6 0 0 12 4 0 0 1001 1001
0_Glass_3 6 0 0 12 5 0 0 390 390
0_Glass_4 4 0 1 11 7 0 25 265 289
0_Iron and Steel_0 4 0 2 10 1 0 160 2452 2612
0_Iron and Steel_1 6 1 0 11 1 65 0 2297 2362
0_Iron and Steel_2 4 1 0 11 1 64 0 1690 1754
0_Iron and Steel_3 6 0 0 12 2 0 0 3063 3063
0_Iron and Steel_4 6 0 0 12 1 0 0 2227 2227
0_Metal processing_0 6 0 0 12 2 0 0 415 415
0_Metal processing_1 4 0 0 12 4 0 0 479 479
0_Metal processing_2 6 0 0 12 8 0 0 668 668
0_Metal processing_3 4 1 0 11 2 67 0 580 647
0_Metal processing_4 4 0 0 12 3 0 0 847 847
0_Mineral processing_0 4 0 0 12 3 0 0 738 738
0_Mineral processing_1 6 0 2 10 3 0 13 384 397
0_Mineral processing_2 6 0 0 12 6 0 0 503 503
0_Mineral processing_3 4 0 0 12 5 0 0 292 292
0_Mineral processing_4 4 0 2 10 6 0 116 602 718
0_Non-ferrous metals_0 6 0 0 12 4 0 0 221 221
0_Non-ferrous metals_1 4 0 1 11 3 0 42 104 146
0_Non-ferrous metals_2 4 0 0 12 1 0 0 261 261
0_Non-ferrous metals_3 4 0 1 11 0 0 10 283 293
0_Non-ferrous metals_4 4 0 0 12 4 0 0 281 281
0_Pulp and paper_0 4 2 5 5 1 17 91 117 224
0_Pulp and paper_1 4 1 7 4 1 18 131 757 907
0_Pulp and paper_2 6 3 4 5 1 94 60 135 289
0_Pulp and paper_3 6 2 7 3 0 73 114 484 672
0_Pulp and paper_4 6 0 7 5 1 0 75 178 254
0_Refineries_0 4 0 1 11 0 0 114 1178 1292
0_Refineries_1 4 0 2 10 2 0 47 1039 1086
0_Refineries_2 6 0 0 12 1 0 0 1349 1349
0_Refineries_3 6 0 1 11 0 0 14 1223 1237
0_Refineries_4 6 0 2 10 2 0 27 657 684
1_Basic chemicals_0 8 0 5 7 1 0 418 2206 2624
1_Basic chemicals_1 3 0 2 10 0 0 174 1422 1596
1_Basic chemicals_2 3 0 3 9 0 0 236 794 1030
1_Basic chemicals_3 9 0 2 10 1 0 228 716 944
1_Basic chemicals_4 8 0 2 10 0 0 62 1806 1868
1_Glass_0 8 0 0 12 7 0 0 1148 1148
1_Glass_1 10 1 1 10 4 24 10 478 512
1_Glass_2 8 0 0 12 3 0 0 444 444
1_Glass_3 10 0 0 12 6 0 0 596 596
1_Glass_4 9 0 0 12 3 0 0 584 584
1_Iron and Steel_0 9 0 0 12 1 0 0 1861 1861
1_Iron and Steel_1 10 0 0 12 2 0 0 2244 2244
1_Iron and Steel_2 10 1 0 11 2 14 0 2400 2414
1_Iron and Steel_3 9 0 0 12 0 0 0 3240 3240
1_Iron and Steel_4 3 0 1 11 1 0 4 1834 1838

Continued on next page
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Configuration Supply
Node

Amount of Plants Potential Demand [ton H2/day]

Low Medium High TRL
≤ 6

Low Medium High Total

1_Metal processing_0 10 0 0 12 7 0 0 540 540
1_Metal processing_1 3 0 0 12 8 0 0 434 434
1_Metal processing_2 8 0 1 11 4 0 6 285 291
1_Metal processing_3 8 0 0 12 5 0 0 1086 1086
1_Metal processing_4 3 0 2 10 5 0 10 372 382
1_Mineral processing_0 9 0 2 10 7 0 26 391 417
1_Mineral processing_1 3 0 0 12 3 0 0 786 786
1_Mineral processing_2 9 0 0 12 4 0 0 715 715
1_Mineral processing_3 9 1 1 10 5 31 20 454 505
1_Mineral processing_4 8 0 0 12 2 0 0 1196 1196
1_Non-ferrous metals_0 9 1 1 10 2 36 7 510 554
1_Non-ferrous metals_1 9 1 0 11 5 25 0 271 296
1_Non-ferrous metals_2 9 0 2 10 3 0 15 303 318
1_Non-ferrous metals_3 9 0 1 11 2 0 24 559 582
1_Non-ferrous metals_4 10 0 1 11 3 0 20 368 388
1_Pulp and paper_0 8 2 6 4 0 119 87 647 853
1_Pulp and paper_1 10 4 4 4 2 282 56 281 618
1_Pulp and paper_2 8 0 8 4 2 0 183 232 415
1_Pulp and paper_3 8 1 7 4 0 64 102 611 778
1_Pulp and paper_4 9 3 4 5 1 100 81 344 525
1_Refineries_0 3 0 0 12 0 0 0 1895 1895
1_Refineries_1 8 0 1 11 2 0 8 1153 1161
1_Refineries_2 10 0 1 11 0 0 9 1892 1901
1_Refineries_3 3 0 2 10 2 0 137 918 1054
1_Refineries_4 3 0 0 12 2 0 0 1137 1137
2_Iron and Steel_0 2 0 0 12 1 0 0 2606 2606
2_Iron and Steel_1 5 0 1 11 3 0 28 3037 3065
2_Iron and Steel_2 5 0 0 12 2 0 0 2300 2300
2_Iron and Steel_3 2 0 0 12 2 0 0 2323 2323
2_Iron and Steel_4 1 0 0 12 3 0 0 2548 2548
2_Pulp and paper_0 1 0 8 4 0 0 86 254 340
2_Pulp and paper_1 2 3 4 5 2 99 33 208 339
2_Pulp and paper_2 5 3 5 4 1 111 46 146 302
2_Pulp and paper_3 1 2 6 4 1 97 100 253 450
2_Pulp and paper_4 1 1 8 3 1 66 99 162 326



I
Additional results

In this section additional figures are presented. They are organized per experiment conducted in Chap-
ter 6.
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I.1. Extra figures experiment 1

Figure I.1: Comparison of implemented network length for ML-RBPM and RBPM at timestep 3 for clusters Iron and Steel and
Paper and Pulp for layout 0, 1, and 2.

I.1.1. Cumulative costs different methods
The three methods are compared per layout by looking at both cumulative costs, and relative costs. In
figure I.2, the cumulative costs (CC) average of the five configurations per cluster are depicted. It can be
seen that the IDPM performs differently compared with the other two methods. While CCIDPM (2035)
is lower compared to the other methods, especially for Iron and Steel clusters, the CCIDPM (2045) and
CCIDPM (2055) are often higher.
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Figure I.2: Cumulative costs comparison Minimum length robust backtracking (ML-RBPM), robust backtracking (RBPM), and
immediate demand planning methods (IDPM)

I.1.2. Comparison RN and ML-RN topologies
Below the different robust network generated for RBPM and ML-RBPM are given for the five configura-
tions for layout 2, for the Iron and Steel sector. It can be seen that if the supply node is located on the
right side of the water the RN has more similarities with the ML-RN than if the supply node is located to
the left side. Specifically, the pipeline network close to the supply node, which has the most capacity, is
more similar when the supply location is on the right side. Since high capacity pipelines are costly, the
costs for RBPM and ML-RBPM are more similar if the pipelines with high capacity are alike. In other
words, taking a detour with low capacity pipelines, is less costly than taking a detour with high capacity
pipelines.
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Figure I.3: Cumulative costs of the three methods per configuration and cluster for layout 2

Figure I.4: Topology comparison between ML-RN and RN for configuration 0 Iron and Steel layout 2
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Figure I.5: Topology comparison between ML-RN and RN for configuration 1 Iron and Steel layout 2

Figure I.6: Topology comparison between ML-RN and RN for configuration 2 Iron and Steel layout 2
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Figure I.7: Topology comparison between ML-RN and RN for configuration 3 Iron and Steel layout 2

Figure I.8: Topology comparison between ML-RN and RN for configuration 4 Iron and Steel layout 2

I.2. Extra figures Experiment 2
Below, the costs per decade of RBPM for each cluster is depicted in two boxplots. Figure I.9 shows the
costs per decade for RBPM CRBPM per cluster. It can be seen that the costs per decade differs per
configuration in a cluster. Especially for a cluster such as mineral processing there is a lot of difference
between configurations. This can be attributed to the technology readiness level (TRL) of the hydrogen
decarbonization technologies of the mineral processing processes.

The TRL of mineral processes is a TRL of below 6, as a consequence these processes cannot transition
to hydrogen in 2035. In mineral processing clusters at least 50% are mineral plants, and the other half is
picked randomly per configuration. When one configuration has a high share of low transition probability
or low TRL plants, this can result in many scenarios where the C(2035) is zero. This can be seen in
configuration 2, mineral processing in figure I.9, where more than 25% of the scenarios has zero costs
in 2035.
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Figure I.9: Cost per decade RBPM for layout 0. For each cluster, the costs per decade are depicted for each configuration



I.3. Extra figures Experiment 3 108

I.3. Extra figures Experiment 3

Figure I.10: Histogram indicating of the demand not facilitated per timestep each color represents the demand range related to
the analysis scenarios used. The experiment is conducted with higher uncertainty in the analysis scenarios compared to the

optimization scenarios. Notably, demand is unmet more frequently in scenarios with high demand uncertainty.
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