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Abstract 34 

This paper formulates an analytical calculation model for predicting the cracking behavior of 35 

reinforced concrete ties to provide more consistent crack width calculation methods for large-36 

scale concrete structures in which large bar diameters and covers are used. The calculation 37 

model was derived based on the physical behavior of reinforced concrete ties reported from 38 

experiments and finite element analyses in the literature. The derivations led to a second order 39 

differential equation for the slip that accounts for the 3D effects of internal cracking by using a 40 

proper bond-slip law. The second order differential equation for the slip was solved completely 41 

analytically, resulting in a closed-form solution in the case of lightly loaded members and in a 42 

non-closed-form solution in the case of heavily loaded members. Finally, the paper provides a 43 

solution strategy to facilitate a practical and applicable method for predicting the complete 44 

cracking response. Comparison with experimental and finite element results in the literature 45 

demonstrated the ability of the calculation model to predict crack widths and crack spacing 46 

consistently and on the conservative side regardless of the bar diameter and cover.  47 

 48 

Keywords 49 

Crack widths, crack distances, analytical calculation model, bond-slip, RC ties, large-scale 50 

concrete structures.  51 

  52 
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1. Introduction 53 

Predicting the cracking behavior of reinforced concrete (RC) structures consistently and 54 

accurately is not straightforward. This is reflected in the many approaches proposed in the 55 

literature (Borosnyói and Balázs 2005). Formulas based on empirical, semi-empirical, elastic 56 

analysis, and even fracture mechanics have all been proposed. Mechanical calculation models 57 

based on the internal cracking behavior of RC ties have also recently been proposed (Fantilli et 58 

al. 2007, Debernardi and Taliano 2016, Kaklauskas 2017).  59 

 60 

The study presented in this paper is part of an ongoing research project with the overall 61 

objective of improving crack width calculation methods for the large-scale concrete structures 62 

planned for the coastal highway route - in Norway. The Norwegian Public Roads 63 

Administration (NPRA) recommends that the design of such structures should follow the 64 

guidelines provided in N400 (NPRA 2015), which state that the crack width calculation methods 65 

should be in accordance with the provisions in Eurocode 2 (EC2) (CEN 2004). However, Tan et 66 

al. (2018a) showed that the crack width formulas recommended by EC2 and the fib Model Code 67 

2010 (MC2010) (fib 2013) predict the cracking behavior of structural elements inconsistently, 68 

particularly in cases of large covers and bar diameters. The analytical calculation model 69 

presented in this paper was based on solving the second order differential equation (SODE) for 70 

the slip when applying a bond-slip law first proposed by Eligehausen et al. (1983) and later 71 

adopted by MC2010. Other authors in the literature have used a similar approach (e.g. Russo 72 

and Romano 1992, Balász 1993, Debernardi and Taliano 2016), an approach which has 73 

recently been acknowledged in the state-of-the-art French research project CEOS.fr (2016) as 74 

an alternative way of calculating crack widths for large RC members. The main drawback in 75 

using this approach until now was the analytically complex solution of the SODE for the slip, 76 

thus resorting to numerical solution techniques instead and by that reducing the practical 77 

applicability of the approach. Moreover, the background of the SODE for the slip was never 78 

properly elaborated.  79 

 80 

The aim of this research was to provide more realistic and consistent surface crack width 81 

calculation methods for large-scale concrete structures, where large covers in combination with 82 
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large bar diameters in several layers and bundles are typically used, by deriving and solving the 83 

SODE for the slip completely analytically. First, the SODE for the slip was derived. Then, the 84 

SODE for the slip was solved analytically, after which a solution strategy for determining the 85 

complete cracking response was developed for the purposes of practical application. Finally, the 86 

application was demonstrated by comparing analytical predictions with experimental and finite 87 

element (FE) results reported in the literature.  88 

 89 

The analytical model was derived using the concept of axisymmetry and applies first and 90 

foremost to such conditions. However, it will be shown that the model also has the ability to 91 

predict the cracking behavior of RC ties that deviate from such conditions by transforming an 92 

arbitrary cross section into an equivalent axisymmetric cross section. Moreover, predicting 93 

realistic and consistent surface crack widths is an important part of the structural design, and it 94 

might also be relevant for the aesthetics of a structure (Leonhardt 1988). On the other hand it is 95 

often argued that the crack width at the reinforcement appears more relevant in terms of 96 

durability. Predicting the latter, though, becomes rather complicated and was not addressed in 97 

this study.  98 

 99 

2. The physical behavior of RC ties 100 

A typical deformation configuration of RC ties according to several experimental studies 101 

reported in the literature (Watstein and Mathey 1959, Broms 1968, Husain and Ferguson 1968, 102 

Yannopoulos 1989, Beeby 2004 and Borosnyói and Snóbli 2010) is depicted in Fig. 1(a). Note 103 

that the crack width at the interface between concrete and steel  is considerably smaller 104 

than that on the concrete surface , which according to Goto (1972) and Tammo and 105 

Thelanderrson (2009) is due to the rib interaction between concrete and steel. This causes the 106 

concrete to crack internally, which allows it to follow the displacement field of steel at the 107 

interface almost completely. This reported physical behavior formed the basis for ignoring the 108 

crack width at the interface in the FE model of Tan et al. (2018c). This imposed equal 109 

longitudinal displacements for concrete and steel at the interface as shown in Fig. 1(b), in which 110 

it should be noted that the crack width  applies to the concrete surface only. The FE model 111 

was validated against the classical experiments of Bresler and Bertero (1968) and Yannopoulos 112 
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(1989), where comparison of steel strains, the development of crack widths and the mean crack 113 

spacing showed good agreement. Furthermore, the FE model was also used to analyze 114 

cylindrical RC ties to better understand the cracking behavior. It was observed that the bond 115 

transfer at the interface caused radial displacements of the concrete, which in turn increased 116 

hoop stresses and strains. This resulted in internal splitting cracks and inclined cracks, depicted 117 

respectively as circles and straight lines in Fig. 1(b), when the principal stresses exceeded the 118 

tensile strength of the concrete. Moreover, deriving local bond-slip curves at different positions 119 

over the bar length showed that such curves include the effect that internal splitting and inclined 120 

cracks had on reducing the bond transfer. In other words, the local bond-slip curve describes 121 

how the 3D behavior of an RC tie affects the bond transfer. This shows that a single local bond-122 

slip curve is sufficient to describe the mean bond transfer at the interface between concrete and 123 

steel for an arbitrary RC tie.  124 

 125 

3. The mechanical crack width calculation model 126 

3.1 Main assumptions 127 

The analytical calculation model was derived based on the physical behavior of RC ties 128 

discussed in the previous section. However, some simplifications were made, and at first the 129 

concept of axisymmetry was also used for simplicity. Firstly, concrete and steel were both 130 

treated as elastic materials. Secondly, the nonlinearity of the internal cracking of the confining 131 

concrete was accounted for by lumping this behavior to the interface between the materials 132 

using a bond-slip law, i.e. claiming that the three sections in Fig. 2(a), (b) and (c) are statically 133 

equivalent. Note that a physical slip  occurs at the interface in Fig. 2(b) and (c) as a result of 134 

treating concrete and steel as elastic materials. This means that the total slip  in the statically 135 

equivalent section in Fig. 2(c) is composed of two parts: the slip at the interface  caused by the 136 

formation of internal inclined cracks and the elastic deformations of the concrete caused by axial 137 

and shear deformations in the cover . This also conforms to the definition of slip in fib bulletin 138 

10 (2000). Assuming that the slip at the interface is equivalent to the deformation caused by 139 

internal inclined cracks implies in reality that the crack width at the interface can be ignored in 140 

the calculation model, so that the resulting crack width applies to the concrete surface. 141 

Furthermore, can be ignored ( ) because the concrete is 142 
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assumed to be exposed to heavy internal cracking as described in the previous section. Finally, 143 

the displacement field depicted in Fig. 3, which shows the deformed configuration of an arbitrary 144 

section in an RC tie subjected to loading at the rebar ends, can be assumed to apply for an 145 

arbitrary statically equivalent section.  146 

 147 

The continuum concept (Irgens 2008) is hereafter used to formulate the compatibility, material 148 

laws and equilibrium for concrete and steel.  149 

 150 

3.2 Equations for concrete  151 

3.2.1 General equations  152 

The SODE for the concrete displacements was derived by using the cylindrical coordinates and 153 

the displacement field depicted in Fig. 3. Concrete strains at the interface  and the specimen 154 

surface  were assumed to be related as  155 

 156 

  (1) 

 157 

in which  158 

 159 

 
 

(2) 

and 160 

 
 

(3) 

 161 

where  and  are differential displacements at the interface and at the specimen surface 162 

respectively. Note that the inequality in Eq. (1) is because the concrete strains at the specimen 163 

surface cannot exceed the concrete strains at the interface as a consequence of force being 164 

applied at the steel bar ends. The maximum longitudinal displacement of the concrete cover 165 

relative to the concrete interface is  166 

 167 
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  (4) 

 168 

Moreover, longitudinal concrete displacements can be formulated as  169 

 170 

  (5) 

 171 

in which  is a shape function describing the variation in longitudinal displacements over the 172 

section and over the bar length. It was chosen to satisfy the following boundary conditions:  173 

 174 

 

 

 

(6) 

 175 

where  and  are the radial coordinates of respectively the interface and the specimen 176 

surface. It should be noted that Fig. 3 omits radial displacements for the concrete, while in the 177 

case of axisymmetry displacements in the hoop direction are non-existent. Omitting radial 178 

displacements contradicts the physical behavior of RC ties discussed previously, but using a 179 

bond-slip law , with  denoting the bond stress, will take into account the 3D-effects that are 180 

excluded when radial displacements for the concrete are omitted. This means that Eq. (5) 181 

suffices in describing the displacement field for concrete. Now, using Green strains for small 182 

displacements yield the following non-zero components in the strain tensor for concrete:  183 

 184 

 
 

(7) 

 185 

 
 

(8) 

 186 

where  and  are longitudinal strains and engineering shear strains respectively. 187 

Consequently, Eq. (7) and (8), and ignoring , yield the following 188 

non-zero components for the stress tensor:  189 

 190 
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  (9) 

 191 

 
 

(10) 

 192 

where  and  are respectively the normal and the shear stresses, while  is the 193 

 Considering equilibrium for the concrete in Fig. 2(c) yields 194 

 195 
 

 
(11) 

 196 

where  is the bond stress dependent on the slip at the interface , and  is the total 197 

perimeter surrounding the steel bars in a cross section. The concrete force resultant can be 198 

formulated as  199 

 200 

 
 

(12) 

 201 

where  is the concrete area.  202 

 203 

Finally, inserting Eq. (12), (9), (7), (4), (1), (2) and (3) in Eq. (11) successively yields  204 

  205 

 

 

 

(13) 

 206 

which is the SODE for the longitudinal concrete displacements at the interface.  207 

 208 

3.2.2 Simplified equations 209 

An analytical solution of Eq. (13) is possible in the case of axisymmetry if both  and  are 210 

known. In most practical situations, however, this is not the case. A practical approach to Eq. 211 

(13) would therefore be to redefine Eq. (1) as  212 
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 213 

  (14) 

 214 

in which  215 

 216 

 
 

(15) 

 217 

are mean concrete strains and  are mean displacements over the section, see Fig. 3, which 218 

in this particular case simplifies the shape function to 219 

 220 

  (16) 

 221 

Note that  in Eq. (14) is now assumed constant. Edwards and Picard (1972) were the first to 222 

introduce the concept of Eq. (14). This was later investigated more thoroughly by conducting 223 

nonlinear finite element analysis (NLFEA) on cylindrical RC ties in Tan et al. (2018b). It was 224 

concluded that although the shape function , first defined in Eq. (5) varied with respect to both 225 

 and -coordinates over the bar length, the ratio in Eq. (14) remained more or less constant 226 

over the bar length except for a small region close to the loaded end. Actually, it was observed 227 

that a constant value of  over the entire bar length seemed reasonable independent of 228 

geometry and load level. The physical interpretation of Eq. (15) is that plane sections that do not 229 

remain plane are implicitly accounted for in determining the equilibrium. Now, replacing  with 230 

 in Eq. (13) and inserting Eq. (14) and (16) simplifies the SODE for the longitudinal concrete 231 

displacements at the interface to 232 

  233 

 
 

(17) 

 234 

3.3 Equations for steel  235 
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Longitudinal displacements for steel were assumed uniform over its radius. And since the 236 

was ignored and axisymmetry applied for circular steel rebars 237 

means that Eq. (18) 238 

 239 

  (18) 

 240 

suffices in describing the displacement field for steel. The following normal strain was thus the 241 

only non-zero component in the strain tensor when Green strains for small deformations were 242 

applied: 243 

 244 

 
 

(19) 

 245 

was ignored ( ) as the lateral effects it had on bond 246 

were assumed to be included in the bond-slip curve. This led to the following normal stress 247 

being the only non-zero component in the stress tensor: 248 

 249 

  (20) 

 250 

where  The equilibrium of steel in Fig. 2(c) yields  251 

 252 

 
 

(21) 

 253 

Furthermore, the steel force resultant was obtained as  254 

 255 

 
 

(22) 

 256 

when inserting Eq. (20) and (19) successively. Finally, inserting Eq. (22) in (21) yields 257 

 258 
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(23) 

 259 

which is the SODE for the steel displacements.  260 

 261 

3.4 Compatibility 262 

The slip was defined in terms of the displacement field depicted in Fig. 3 as  263 

 264 

  (24) 

 265 

Differentiating Eq. (24) once and inserting Eq. (2) and (19) provides the first derivative of the slip 266 

as  267 

 268 

  
 

(25) 

 269 

3.5 The second order differential equation for the slip 270 

Inserting Eq. (23) in (17) provides 271 

 272 

 
 

(26) 

 273 

where  274 

 275 

  (27) 

 276 

 
 

(28) 

 277 

and 278 

 279 
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(29) 

 280 

Inserting Eq. (25) and (23) successively in Eq. (26) yields the SODE for the slip as  281 

 282 

 
 

(30) 

 283 

where 284 

 285 

 
 

(31) 

 286 

By introducing  287 

 288 

 
 

(32) 

 289 

where  and  is respectively the mean and the maximum bond stress around the 290 

circumference of a steel bar in an arbitrary cross section, and further multiplying  in Eq. (30) by 291 

 from Eq. (32) takes into account the bond stress  not being constant around the 292 

circumference of the steel bar in non-axisymmetric cases, e.g. when the cover to the steel 293 

surface varies in a cross section as depicted in Fig. 2(d). In practice, this implies taking the 294 

distance between rebars into account, a parameter acknowledged by the research of Gergely 295 

and Lutz (1968) to be significant for the crack width. This means that the solution of Eq. (30) 296 

with  multiplied by  from Eq. (32) involves transforming a cross section with an arbitrary 297 

geometry into a circular cross section with a radius  such that the area  remains the same.  298 

 299 

The analytical solution of Eq. (30) depends on the choice of the bond-slip law and a variety of 300 

choices can be found in the literature (Rehm 1961, Nilson 1972, Martin 1973, Dörr 1978, Mirza 301 
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and Houde 1979, Hong and Park 2012). In this study, the local bond-slip law recommended by 302 

MC2010 was used: 303 

 304 

 
 

(33) 

 305 

Eq. (33) and its parameters were originally derived on the basis of pull-out tests of relatively 306 

short specimens, in which the concrete was in compression, thus differing considerably from the 307 

stress conditions in RC ties where the concrete is in tension (Pedziwiatr 2008). However, the 308 

investigation by Tan et al. (2018c) showed that Eq. (33) could be applied to represent the mean 309 

bond transfer over the specimen length by using the predefined parameters , 310 

 and  when comparing it to the local bond-slip curves obtained from the FE 311 

analysis of several RC ties, see Fig. 4. Bond-slip curves proposed by other authors are also 312 

shown in the same figure. This means that inserting Eq. (33) in Eq. (30) finally yields the SODE 313 

 314 

 
 

(34) 

 315 

Note that Eq. (34) has been derived and will be solved using the simplified equations for 316 

concrete.  317 

 318 

4. The analytical crack width calculation model  319 

4.1 General solutions 320 

4.1.1 The slip  321 

Eq. (34) is a non-linear homogenous SODE and can be solved analytically, by successively 322 

defining the second term as a function of the slip , moving it to the other side of the equal 323 

sign, multiplying both sides with the first derivative of the slip , applying the chain rule on the 324 

left-hand side of the equal sign and the substitution rule on the right-hand side, and 325 

subsequently integrating once, the first derivative of the slip is provided as  326 

 327 
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(35) 

 328 

where  is an integration constant and  329 

 330 

  (36) 

and  331 

  (37) 

 332 

Only the negative sign is included in Eq. (35) for compatibility with Eq. (25). Separating the 333 

variables in Eq. (35) and integrating on both sides yields  334 

 335 

 
 

(38) 

 336 

where  is an integration constant. The integral can now be solved using the method proposed 337 

by Russo et al. (1990) and Russo and Romano (1992), where the binomial in Eq. (38) is 338 

developed as an infinite series of functions in accordance with , and 339 

then integrating each term. This results in two different general solutions that converge at 340 

distinct intervals  341 

 342 

 
 

(39) 

 343 

and  344 

 345 

 
 

(40) 

 346 

where  and  are integration constants, and  347 
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 348 

 
 

(41) 

 349 

while  350 

 351 

 
 

(42) 

 352 

is the value discerning Eq. (39) from (40). Note that the general solutions in Eq. (39) and (40) 353 

imply that the longitudinal coordinate  is a function of the slip value  as a consequence of 354 

splitting the variables in Eq. (35).  355 

 356 

4.1.2 Strains  357 

Successively inserting Eq. (2) and (19) in Eq. (26), integrating once, and applying  and 358 

 at the loaded end, i.e. at , yields  359 

 360 

  (43) 

 361 

Inserting Eq. (35) and (43) in Eq. (25) yields the steel strains  362 

 363 

 
 

(44) 

 364 

while, inserting Eq. (44) in (43) provides the concrete strains  365 

 366 

 
 

(45) 

 367 

4.2 Boundary conditions 368 
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Boundary conditions must be established before calculating particular solutions. These are 369 

established by considering the concepts of comparatively lightly loaded members (CLLM) and 370 

comparatively heavily loaded members (CHLM) depicted in Fig. 5. Russo and Romano (1992) 371 

were the first to introduce these concepts, which were later acknowledged by fib bulletin 10 372 

(2000). Briefly summarized, the main difference is that steel and concrete strains become 373 

compatible, , at a certain distance  from the loaded end in the case of CLLM, while the 374 

strains remain incompatible, , over the entire bar length in the case of CHLM. This further 375 

implies, in accordance with Eq. (24), that the slip becomes zero at distance  from the loaded 376 

end in the case of CLLM and at the symmetry section  in the case of CHLM. This yields the 377 

following boundary conditions in the case of CLLM behavior:  378 

 379 

 

 

(46) 

 380 

at , and in the case of CHLM behavior: 381 

 382 

 

 

(47) 

 383 

at .  384 

 385 

4.3 Comparatively lightly loaded members (CLLM) 386 

Applying the boundary conditions in Eq. (46) for Eq. (35) yields  387 

 388 

  (48) 

 389 

Inserting Eq. (48) in (38), integrating once and applying the boundary conditions in Eq. (46) 390 

again yields the expression for the slip in the case of CLLM behavior 391 

 392 
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(49) 

 393 

Inserting Eq. (48) in (44) and acknowledging that  at , provides the maximum slip at 394 

the loaded end as  395 

 396 

 

 

(50) 

 397 

Furthermore, inserting Eq. (50) in (49) for  yields the transfer length as  398 

 399 

 

 

 

(51) 

 400 

Note that the transfer length increases with increasing steel strains  at the loaded 401 

end. Expressions for the steel and concrete strains can be finally obtained by inserting Eq. (49) 402 

in respectively Eq. (44) and (45) 403 

 404 

 
 

(52) 

 405 

 
 

(53) 

 406 

One application of the particular solutions obtained could be in the case of two consecutive 407 

cracks formed with a considerable distance between them. This means that a certain region, 408 

 remains undisturbed as depicted in Fig. 5(a) and (b). This situation occurs typically in 409 

the so-called crack formation stage, in which the applied member load is relatively low and the 410 

distance between two consecutive cracks formed is relatively large.  411 

 412 
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4.4 Comparatively heavily loaded members (CHLM) 413 

4.4.1 Particular solutions  414 

Applying the boundary conditions in Eq. (47) in (35) yields  415 

 416 

  (54) 

 417 

Acknowledging from Eq. (35) and Fig. 5 that  is a real function yields 418 

 419 

  (55) 

 420 

This means that the general solutions of Eq. (39) and (40) apply in the case of CHLM because 421 

. Now, inserting Eq. (35) in (25) and applying  and  at the loaded 422 

end, i.e. at , yields  423 

 424 

 
 

(56) 

 425 

Furthermore, Eq. (55) and (56) imply that the maximum slip at the loaded end must satisfy  426 

 427 

 

 

(57) 

 428 

Inserting Eq. (56) in (42) and acknowledging that Eq. (37) is a positive value provides  429 

 430 

 

 

(58) 

 431 

Now, applying the first condition in Eq. (47) to (39) yields  432 

 433 



19 
 

 
 

(59) 

 434 

Moreover, applying  at  for Eq. (40) yields that  can be expressed with binomial 435 

coefficients as 436 

 437 

 
 

(60) 

 438 

The particular solutions of Eq. (39) and (40) are now obtained using the integration constants in 439 

Eq. (56), (59) and (60). It should be noted, however, that the integration constants in Eq. (56) 440 

and (60) depend on the slip at the loaded end , so they must be obtained iteratively. This can 441 

be done conveniently by considering the two cases shown in Fig. 6.  442 

 443 

4.4.2 Case 1  444 

The first case involves solving Eq. (39) with respect to the slip at the loaded end in its interval 445 

when  in accordance with Fig. 6(a). Inserting Eq. (59) in (39) and applying  at 446 

 provides the function  447 

 448 

 
 

(61) 

 449 

which is valid for the interval  450 

 451 

 

 

(62) 

 452 

when acknowledging that  in Eq. (39) is given by Eq. (58).  453 

 454 

4.4.3 Case 2  455 
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Case 2 is where , which means that the solution for the slip  depends on both Eq. (39) 456 

and (40) due to the validity of the equations at its respective intervals, see Fig. 6(b). In other 457 

words, Eq. (39) is valid for slip values below  while Eq. (40) is valid for slip values above . 458 

Now, accepting that Eq. (39) is valid for the slip value  at the location  459 

provides  460 

 461 

 
 

(63) 

 462 

Similarly, accepting that Eq. (40) is valid for the slip value  at the location  463 

and inserting Eq. (60) provides 464 

 465 

 

 

 

 

(64) 

 466 

Note that  is an infinitesimal value for the slip, while  and  are infinitesimal values 467 

along the bar length in accordance with Fig. 6(b). Subtracting Eq. (64) from (63) provides the 468 

function  469 

 470 

 
 

 

(65) 

 471 

where  472 

 473 

 
 

(66) 
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 474 

 

 

(67) 

 475 

 

 

(68) 

 476 

and . Eq. (65) is valid for  477 

 478 

 

 

(69) 

 479 

when acknowledging that  in Eq. (40) is given by Eq. (58).  480 

 481 

4.4.4 Solution strategy  482 

Russo and Romano (1992) give a convenient way of determining whether Case 1 or Case 2 483 

governs by calculating Eq. (61) for a value of  close to the upper limit value in Eq. (62), e.g. as 484 

 Case 1 governs if the value calculated is negative. Case 2 governs if the 485 

value calculated is positive since the nature of Eq. (61) invokes that  must increase to satisfy 486 

Eq. (61), which implies that Eq. (69) governs.  487 

 488 

Newton-Raphson iterations are used to calculate the value of  effectively after determining 489 

whether Case 1 or 2 governs 490 

 491 

 
 

(70) 

 492 
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where index  represents the number of iterations and index  represents the function in Eq. (61) 493 

for Case 1 or Eq. (65) for Case 2. Furthermore, it is suggested that an initial value of 494 

 is used for Case 1 or  is used for Case 2 to start the iterations in 495 

Eq. (70). The iterated value , however, should never exceed Eq. (57) due to the 496 

requirement of Eq. (55). Convergence is achieved when , at which  is a 497 

chosen tolerance value. Note that the derivatives of the functions in Eq. (61) and (65) are 498 

needed to solve Eq. (70) and are provided in Appendix A. Once the value of  is obtained, the 499 

particular solutions of Eq. (39) and (40) are used to obtain the corresponding  values for the 500 

slip  along the bar length. In summary, CHLM involves determining whether Case 1 or 2 501 

governs using Eq. (61) before the slip at the loaded end  is calculated using Eq. (70).  502 

 503 

4.4.5 Strains  504 

The strain distributions for steel and concrete were obtained by using Eq. (44) and (45) 505 

respectively. Moreover, inserting Eq. (45) in (15), and acknowledging that the maximum 506 

concrete strains will occur at the symmetry section, i.e. where the slip , provides the 507 

maximum mean concrete strains as 508 

 509 

 
 

(71) 

 510 

The violation of Eq. (71) implies that a crack has formed at the symmetry section, meaning a 511 

new member with length  exists and that the CHLM response should be determined for the 512 

newly formed member.  513 

 514 

4.5 Conditions at crack formation  515 

The conditions at crack formation are shown in Fig. 7, where the transfer length increases with 516 

increasing load as highlighted for Eq. (51). The steel strain at the loaded end needed to extend 517 

the transfer length to the symmetry section is obtained by inserting  in Eq. (51) so that  518 

 519 
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(72) 

 520 

Furthermore, the maximum mean concrete strain at the end of the transfer length  is obtained 521 

by inserting Eq. (53) in (15) at  so that  522 

 523 

 
 

(73) 

 524 

It is assumed that a crack forms when , which means that the corresponding steel 525 

strain at the loaded end is  526 

 527 

 
 

(74) 

 528 

So inserting Eq. (74) in (51) yields the distance from the loaded end at which a new crack can 529 

form or, expressed more rigorously, the crack spacing  530 

 531 

 

 

 

(75) 

 532 

Eq. (72) to (75) are conceptually visualized in Fig. 7, providing two different conditions for the 533 

cracking response of a member. The continuous lines represent the steel strains, while the 534 

dashed lines represent the corresponding concrete strains. Note that the concrete strain for  535 

in Fig. 7(a) is unrealistic since the concrete tensile strength is exceeded. It is only included to 536 

elucidate the physical concept of Eq. (72). Condition 1 implies that a crack forms at a distance 537 

from the loaded end shorter than half the member length, i.e. , meaning that 538 

. This further implies that the cracking response of the member is governed by CLLM 539 

behavior as long , while CHLM behavior governs the cracking response as soon as 540 

. Condition 2 implies that a crack can form only at the symmetry section, , 541 
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because . This means that a CLLM behavior governs the cracking response of the 542 

member as long , while CHLM behaviour governs the cracking response as soon 543 

. The physical interpretation of Condition 1 is that cracking can form at any location 544 

beyond  due to the unrestricted length of the member, while Condition 2 means that cracking 545 

can form only at the symmetry section due to the limited length of the member. Appendix B 546 

provides guidelines for determining which condition applies and whether CLLM or CHLM 547 

behavior governs the cracking response based on the a priori loading and the mechanical 548 

properties of the RC tie. For design purposes, however, only Condition 1 is relevant for 549 

determining the cracking response.  550 

 551 

4.6 The crack width  552 

Finally, the crack width is obtained as  553 

 554 

 
 

(76) 

 555 

Inserting Eq. (15), (44) and (45) in Eq. (76) yields  556 

 557 

 
 

(77) 

 558 

In summary, the crack width is a function of the applied load , the transfer length , 559 

and the slip at the loaded end . For design purposes, i.e. Condition 1, the crack width is 560 

determined by calculating  and , which in the case of CLLM behavior is obtained by the 561 

closed-form solutions in Eq. (50) and (51). A solution strategy is provided in subsection 4.4.4 to 562 

calculate  efficiently in the case of CHLM behavior, but here  is replaced with , where  563 

is the crack spacing obtained using the closed-form solution in Eq. (75). Note that the crack 564 

width obtained  applies to the face at the loaded rebar end, i.e. as depicted in Fig. 1. This 565 

means that the calculation model conservatively assumes that a crack has been formed before 566 

loading, which allows for predicting crack widths regardless of the load level.   567 
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 568 

4.7 Comparison with equivalent calculation models  569 

The calculation model described was evaluated against the equivalent models proposed by 570 

Russo and Romano (1992), Balász (1993) and Debernardi and Taliano (2016). The models are 571 

equivalent in the sense that the SODE for the slip, i.e. Eq. (34), is solved. However, some 572 

significant differences should be highlighted. The models of Balász (1993) and Debernardi and 573 

Taliano (2016) neglect the elastic shear deformation over the cover, i.e. they assume  in 574 

Eq. (14). Another significant difference in Debernardi and Taliano (2016) is that the bond stress 575 

distribution over the bar length is altered locally by using a linear descending branch close to the 576 

primary crack, which complicates the solution of Eq. (34). These authors assume that internal 577 

inclined cracks form in this region and continue to form towards the symmetry section as the 578 

load increases. The FE analysis by Lutz (1970) and by Tan et al. (2018c) on RC ties show that 579 

a build-up of bond stresses occurs close to a primary crack and that the peak of the bond stress 580 

distribution tends to move towards the symmetry section as the load increases, as assumed by 581 

Debernardi and Taliano (2016). However, this physical phenomenon is a consequence not of 582 

internal inclined cracks, but of internal splitting cracks forming close to the primary crack, which 583 

is reflected by the characteristic bond-slip curves at  in Fig. 4. In fact, the FE analysis 584 

showed that internal inclined cracks also formed beyond the bond stress distribution peak, 585 

which means they cannot occur in direct conjunction with the descending branch alone. This 586 

also means that a single bond-slip curve should suffice to represent the mean local bond-slip 587 

behavior over the bar length, as shown in Fig. 4 and discussed in Section 2, and should already 588 

include the total effect of both internal splitting and internal inclined cracks have on reducing the 589 

bond transfer.  590 

 591 

The calculation model presented in this paper was particularly inspired by the work of Russo 592 

and Romano (1992). However, there are some significant differences: (i) a primary crack is 593 

assumed to form when, , implying that concrete stresses are unevenly distributed even 594 

at the zero-slip section in accordance with the observations in Fantilli et al. (2008) and Tan et al. 595 

(2018b); (ii) the influence of the distance between steel bars can be accounted for by Eq. (32); 596 

and (iii) a completely analytical solution strategy is provided to solve Eq. (34) for practical 597 
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applications. In addition, the derivations using continuum mechanics formulation yield a 598 

mechanically sound model that describes how the 3D behavior of RC ties can be simplified into 599 

a 1D model when using a proper bond-slip law. However, the main advantage of the model 600 

presented in this paper, and that of Russo and Romano (1992), is that Eq. (34) is solved 601 

completely analytically, in contrast to Balász (1993) and Debernardi and Taliano (2016), who 602 

only provide analytical solutions in the case of CLLM behavior.  603 

 604 

Using the bond-slip curve recommended by Tan et al. (2018c) implies that the bond stresses 605 

should be related to the deformations in the outer surface of the concrete rather than at the 606 

steel-concrete interface, which contradicts the compatibility in Eq. (24). However, the elastic 607 

shear deformation over the cover is normally considered to be negligible, although it does seem 608 

to affect the elastic stress and strain distribution (Braam 1990, Tan et al. 2018b). This justifies 609 

the combined use of the chosen bond-slip curve, the compatibility in Eq. (24), and the concept 610 

of  in Eq. (14).  611 

 612 

5. Application 613 

5.1 Comparison with axisymmetric RC ties 614 

5.1.1 General 615 

This section compares strains and crack widths obtained analytically with the classical 616 

experiments of Bresler and Bertero (1968) and Yannopoulos (1989), and the FE analysis of Tan 617 

et al. (2018c) on cylindrical RC ties concentrically reinforced with a steel bar loaded at the steel 618 

bar ends. The bond-slip parameters, ,  and  were chosen, 619 

while  was adopted in accordance with Tan et al. (2018b). The factor  was chosen 620 

due to axisymmetry. The infinite series used for calculating the response in the case of CHLM 621 

behavior was truncated after  terms, while the parameters  and  were 622 

chosen in accordance with Russo and Romano (1992).  623 

 624 

5.1.2 Comparison with experimental data 625 

Bresler and Bertero (1968) measured the strain distribution over the bar length by mounting 626 

several strain gauges in a groove cut along the center of several reinforcing steel bars. The 627 
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reinforcing steel bars were first cut longitudinally into two halves, after which the groove was 628 

milled along the center of the two parts. After mounting the strain gauges in this groove, the two 629 

halves were tack-welded together to minimize the impact on the exterior of the reinforcing bars. 630 

The specimen investigated  406.4 mm (16 in) long and 152.4 mm 631 

(6 in) in diameter concentrically reinforced with a 28.7 mm (1.13 in) deformed steel bar. The 632 

length of the specimen was chosen as twice the mean crack spacing of 203.2 mm (8 in) 633 

obtained from pilot studies conducted on 1829 mm (72 in) long RC ties with similar sectional 634 

properties. A notch was cut around the circumference at mid-length to induce cracking here. 635 

The compressive strength, tensile strength, the concrete were 636 

reported as respectively , , and , 637 

the steel were reported as  638 

and  respectively. The reduction of the steel area due to the groove was 639 

taken into account in the analytical calculations by using the reported steel area 640 

, while the notch was taken into account by reducing the reported tensile 641 

strength by a factor of . This led to cracking at mid-length in the analytical calculations for 642 

higher load levels as shown in Fig. 8(a). It should be noted that the analytical steel strains 643 

represent the mean  of the experimental steel strains.  644 

 645 

The six specimens investigated by Yannopoulos (1989) were  in diameter concentrically 646 

reinforced with a  deformed steel bar and were  long. The length of the 647 

specimens was based on the mean crack spacing of 90 mm obtained from pilot studies 648 

conducted on 800 mm long RC ties with similar sectional properties and was chosen to prevent 649 

new cracks from forming between the loaded ends. The compressive strength, tensile strength, 650 

 were reported respectively as ,  and 651 

 were reported as  652 

and  respectively. The specimen length in the analytical calculations was chosen to 653 

be similar to that in the experiments. Fig. 8(b) shows the average crack width development at 654 

the loaded ends reported for the six specimens investigated. The analytical calculations 655 

predicted slightly larger crack widths. Nevertheless, the comparison shows good agreement.  656 

 657 
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5.1.3 Comparison with FE analysis 658 

Tan et al. (2018c) conducted NLFEA on four cylindrical RC ties denoted , , 659 

, and  using axisymmetric elements, with  and  respectively indicating steel bar 660 

diameter and cover. The concrete was given material properties corresponding to a concrete 661 

grade C35 in accordance with MC2010 and a non-linear fracture mechanics material model 662 

based on total strain formulation with rotating cracks. The crack bandwidth was chosen to be 663 

dependent on the total area of the finite elements in line with the smeared crack approach. The 664 

steel was chosen to have linear elastic material properties with 665 

 . Furthermore, interface elements were used to allow 666 

for radial separation but no physical slip, as depicted in Fig. 1(b). In summary, the approach 667 

implied smearing out internal inclined and splitting cracks that would have localized at the tip of 668 

each bar rib if they were modelled discretely. This was found to give good agreement in 669 

comparison with the steel strains, development of crack widths, and mean crack spacing 670 

observed in the experiments.  671 

 672 

Fig. 9 shows the comparison of steel strain distributions over the bar lengths at three different 673 

stress levels for the specimens, again noting that the analytical model predicts the mean of the 674 

experimental steel strains. The first stress level shows the CLLM behavior just before a crack 675 

forms at a certain distance from the loaded end, while the two higher stress levels show the 676 

CHLM behavior for specimen lengths similar to the crack spacing obtained in the FE analysis, 677 

see Table 1. Note that the strain distribution is shown for only half the specimen length due to 678 

symmetry. In general, the analytical calculations make conservative predictions of the CLLM 679 

behavior, which also is reflected in the comparison of the predicted crack spacing in Table 1. 680 

The table also shows that the analytical model predicts crack spacing consistently and on the 681 

conservative side regardless of the bar diameter and cover size. The conservative prediction of 682 

the crack spacing can be attributed to the bond-slip parameters chosen. Fig. 10 shows the 683 

development of crack widths in specimens with lengths similar to the FE analysis crack spacing 684 

in Table 1 and indicates that the analytical model makes quite accurate predictions of crack 685 

widths for a given specimen length.  686 

 687 
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Fig. 11 shows comparisons of the development of crack widths based on specimen lengths 688 

similar to the crack spacing predicted by the analytical model in Table 1. The analytical model 689 

yields Condition 2 and CHLM behavior in general, which allows for cracking at mid-length at 690 

higher load levels and occurs for all of the specimens except . The graphs also show 691 

that the analytical model predicts crack widths on the conservative side in general.  692 

 693 

5.2 Comparison with non-axisymmetric RC ties 694 

The French research project CEOS.fr (2016) conducted experiments on two identical quadratic 695 

RC ties identified as Ties 4 and 5 which were pulled in tension. The ties were 355 mm in width 696 

and height, had a length of 3200 mm, and were reinforced with eight 16 mm rebars. A concrete 697 

698 

529 MPa and 200000 MPa respectively. The cover to the rebars was 45 mm. Fig. 12(a) shows a 699 

comparison of the development of predicted crack widths with the maximum crack widths 700 

measured. The analytical calculations were based on using specimen lengths similar to the 701 

crack spacing predicted analytically in Table 2. The factor  was chosen for simplicity. The 702 

deviation between Tie 4 and Tie 5 in the maximum crack widths measured seems to be due to 703 

the difference in maximum crack spacing reported in Table 2. Nevertheless, the maximum crack 704 

spacing predictions were conservative, and the crack widths predicted show relatively good 705 

agreement with the maximum crack widths measured.  706 

 707 

Tan et al. (2018a) conducted experiments on eight quadratic RC ties identified as - - , where 708 

 represents the loading regime the RC tie was exposed to, either at the crack formation stage 709 

(F) or the stabilized cracking stage (S), while  and  represent the rebar diameter and cover 710 

respectively. The rebar diameter was either 20 mm or 32 mm, while the cover was either 40 mm 711 

or 90 mm. The ties were 400 mm in width and height, had a length of 3000 mm, and were 712 

reinforced with eight rebars. The concrete compressive and tensile strength were reported as 713 

74.3 MPa and 4.14 MPa respectively, while was reported as 27.4 MPa. 714 

T the steel were reported as 500 MPa and 200000 715 

MPa respectively. Fig. 12(b) shows the comparison of maximum crack widths measured  716 

and crack widths predicted  using the concept of modelling uncertainty, i.e. as . 717 
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The crack widths calculated were based on using specimen lengths similar to the crack spacing 718 

predicted analytically in Table 2. The factor  was again chosen for simplicity. Both the 719 

crack widths and the crack spacing predicted are on the conservative side except for F-32-90 720 

and S-32-90, in which the maximum crack widths predicted were slightly underestimated.  721 

 722 

6. Discussion  723 

The conservative predictions of the crack widths in Fig. 11 are due to the nature of Eq. (75), 724 

which, together with the predefined bond-slip parameters, provides an upper limit for the crack 725 

spacing or, expressed more rigorously, for the maximum crack spacing. This is equivalent to the 726 

concept of calculating the maximum crack widths according to the semi-empirical formulas in 727 

EC2 and MC2010. However, unlike EC2 and MC2010, Eq. (75) is not assumed to vary from 728 

once to twice this value. Furthermore, Figs. 8b) and 10 show the ability of the model to predict 729 

accurate crack widths given a specimen length. The observations in Figs. 8a) and 9 suggest 730 

that the analytical model can predict the mean behavior of experimental steel strains, which is a 731 

direct result of using just one local bond-slip curve to represent the bond transfer over the 732 

specimen length. This means that the effect internal inclined and splitting cracks has on 733 

reducing the bond transfer locally is smeared over the specimen length in the analytical model. 734 

The consequence of using only one local bond-slip curve is that the bond stresses reach their 735 

maximum at the cracked section ( ), which contradicts the physical behavior of RC ties 736 

discussed previously. This is due to the fact that the selected bond-slip curve causes bond 737 

stresses to increase with increasing slip as can be observed in Fig. 4. This is elucidated in Fig. 738 

13, which shows the corresponding bond stresses to the steel strains predicted in Fig. 9. One 739 

solution to this problem would be to use different bond-slip curves depending on the location 740 

over the specimen length, but this would substantially complicate the solutions to the analytical 741 

model. So, the use of just one local bond-slip curve provides a practical yet mechanically sound 742 

calculation model that has proven capable of predicting the development of crack widths and 743 

crack spacing consistently and on the conservative side, regardless of the mechanical 744 

properties and loading of the RC ties. Another advantage of using a bond-slip curve, as 745 

opposed to assuming a constant bond stress distribution e.g. in EC2 and MC2010, is that the 746 

mean bond stresses become dependent on the load level and the geometry of RC tie, thus 747 
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conforming to the theoretical observations made by Tan et al. (2018c). This should provide 748 

more realistic predictions of the crack spacing.  749 

 750 

Fig. 14 shows the corresponding concrete strains at the interface, , to the steel strains 751 

predicted in Fig. 9 at load levels 250 MPa and 400 MPa, whereas the dashed lines represent 752 

the resultant of concrete strains in a section according to Eq. (15), i.e. as . It is 753 

observed that both the concrete stresses at the interface and the resultants of concrete stresses 754 

increase with increasing load level. This is due to the increase of the bond transfer between the 755 

load levels of 250 MPa and 400 MPa as represented by the increase of the areas under the 756 

curves shown in Fig. 13. Furthermore, this would cause a crack to form at the zero-slip section 757 

even in the case of CHLM behavior if the mean concrete strains exceed the tensile strength of 758 

concrete, as shown in Fig. 11. This conforms to the discussions of transient cracking of RC ties 759 

addressed in fib bulletin No. 10 (fib 2000). This feature though, can easily be neglected in the 760 

calculation model for design situations as a conservative approach. The main reason for 761 

including  in Eq. (14) was to account for the fact that nonlinear strain profiles occur over the 762 

concrete cover (Tan 2018b), which is a mechanical improvement to the assumption of claiming 763 

that plane sections remain plane in RC ties as per (Saliger 1936, Balász 1993, CEN 2004, fib 764 

2013 and Debernadi and Taliano 2016). It can be shown though, that different values of  in 765 

general have limited effect on the crack width predictions.  766 

 767 

Fig. 12 shows that the analytical model presented can be applied to predict crack widths in non-768 

axisymmetric RC ties as well. In these calculations, simple assumptions were made such as 769 

that the whole concrete area contributed in tension  and choosing . This led to 770 

similar crack spacing predictions for RC ties with similar reinforcement ratios but different 771 

covers, which contradicts the experimental data in Table 2. It is well-known that the cover has a 772 

significant influence on crack spacing, and therefore crack widths, as reported by Broms (1968), 773 

Gergely and Lutz (1968), Caldentey et al. (2013) and Tan et al. (2018a). One approach to taking 774 

the cover into account could be to use the provisions in EC2 and MC2010 for calculating an 775 

effective reinforcement ratio, , to predict the cracking behavior.. This is 776 

exemplified in Table 3, which shows the crack spacing predictions when the effective height 777 
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surrounding the rebars, i.e. , is used to determine the effective 778 

reinforcement ratios. Comparison of specimens having similar geometrical reinforcement ratios, 779 

e.g. S-20-40 against S-20-90 and S-32-40 against S-32-90, shows that the crack spacing 780 

predictions increase for specimens having larger covers owing to the difference in effective 781 

reinforcement ratios. However, the increase in crack spacing predictions for specimens with 782 

larger covers is seen to be underestimated compared to the experimental evidence. This could 783 

also be related to assuming , which is questionable particularly for RC ties with 90 mm 784 

cover because the bond stress distribution surrounding the perimeter of the rebars is probably 785 

not uniform, as elucidated in Fig. 2(d). However, determining a proper value for  is not 786 

straightforward and requires further study, e.g. by conducting FE analysis of non-axisymmetric 787 

RC ties. Nevertheless, the model with the introduction of the factor  and an effective 788 

reinforcement ratio based on the cover size shows great potential in predicting the cracking 789 

behavior of non-axisymmetric RC ties as well.  790 

 791 

The calculation model using the simplified equations for concrete can predict crack widths both 792 

in the crack formation stage and the stabilized cracking stage through the concepts of CLLM 793 

and CHLM, and is as such different from the calculation methods recommended by EC2 and 794 

MC2010 which apply to the stabilized cracking stage only. Furthermore, assuming  not equal 795 

to one implies that the mean concrete strains over the section in general is different from the 796 

concrete strains at the interface further implying that the concrete stresses in each section are 797 

assumed unevenly distributed, even at the zero-slip section, a concept first introduced by 798 

Edwards and Picard (1972). This means that a crack forms when the resultant of concrete 799 

stresses at the zero-slip section is equal to the mean value of the tensile strength as pointed out 800 

for Eq. (74). Finally, using only one bond-slip curve means that bond stresses are different from 801 

null at the cracked section. These assumptions enabled a practical approach to solve the SODE 802 

for the slip.  803 

 804 

The model allows for treating problems such as imposed deformations, where the mechanical 805 

loading becomes directly dependent on the crack pattern or, expressed more rigorously, the 806 

stiffness of the member. Moreover, the authors of this paper are also currently working on the 807 
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application of the analytical model to more general cases, such as non-cylindrical RC ties, 808 

tensile zones in structural elements exposed to bending, and RC membrane elements exposed 809 

to biaxial stress states at which cracks form at a skew angle to an orthogonal reinforcement 810 

grid.  811 

 812 

7. Conclusions 813 

A new analytical crack width calculation model has been formulated to provide more consistent 814 

crack width calculations for large-scale concrete structures, where large covers and bar 815 

diameters are typically used. The calculation model was derived based on the uniaxial behavior 816 

of axisymmetric RC ties. Furthermore, the model includes the effect of internal cracking on the 817 

bond transfer, a non-uniform strain distribution over the concrete area and a non-uniform bond 818 

stress distribution surrounding the perimeter of the steel bar in non-axisymmetric cases. The 819 

latter accounts for the effect of steel bar spacing in practice.  820 

 821 

The SODE for the slip has been solved completely analytically, yielding closed-form solutions in 822 

the case of comparatively lightly loaded member (CLLM) behavior and non-closed-form 823 

solutions in the case of comparatively heavily loaded member (CHLM) behavior. One solution 824 

strategy and method for determining the complete cracking response has been provided for the 825 

purposes of facilitating a practical applicable calculation model, the lack of which has been the 826 

major drawback in using previous equivalent models. The comparison with experimental and 827 

finite element results in the literature shows that the calculation model predicts an average 828 

strain distribution based on using a single local bond-slip curve to represent the bond transfer. 829 

The comparisons demonstrate the ability of the calculation model to predict crack widths 830 

accurately given a member length. Finally, the model has proven capable of predicting crack 831 

spacing and crack widths consistently and in general on the conservative side regardless of the 832 

bar diameter and cover, even for non-axisymmetric RC ties.  833 
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Appendix A 839 

Function derivatives in the case of CHLM behavior for Case 1.  840 
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Function derivatives in the case of CHLM behavior for Case 2.  843 
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Appendix B 849 

A method for determining the complete cracking response, in which ,  and  are 850 

determined by Eq. (72), (74) and (75) respectively, while  is the steel strain at the loaded end. 851 

CLLM and CHLM are abbreviations for Comparatively Lightly Loaded Members and 852 

Comparatively Heavily Loaded Members respectively.  853 

  854 

  855 
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Tables 1 

Table 1. Comparison of crack spacing predicted with mean crack spacing reported in the 2 

experiments of Bresler and Bertero (1968) and Yannopoulos (1989), and the FE analysis of Tan 3 

et al. (2018c).  4 

 Experimental and FE analysis Predicted 

RC tie Mean [mm] Analytical [mm] 

Bresler and Bertero (1968) 203 301 

Yannopoulos (1989) 90 181 

    105 224 

   Tan et al. (2018c) 109 207 

 260 470 

  272 434 

 5 

Table 2. Comparison of crack spacing predicted with crack spacing reported in the experiments 6 

of CEOS.fr (2016) and Tan et al. (2018a).  7 

  Experimental  Predicted 

RC tie  Mean [mm]  Maximum [mm] Analytical [mm] 

Tie 4 CEOS.fr (2016) 160 257 370 

Tie 5  188 318 370 

S-20-40  163 250 422 

S-32-40 Tan et al. (2018a) 178 240 361 

S-20-90  217 290 422 

S-32-90  266 320 361 

 8 

 9 

 10 

 11 

 12 

 13 



2 
 

Table 3. Comparison of crack spacing reported in the experiments of Tan et al. (2018a) and 14 

crack spacing predicted using effective reinforcement ratios.  15 

 Experimental Predicted 

RC tie Mean [mm]  Maximum [mm] Analytical [mm] 

S-20-40 163 250 390 

S-32-40 178 240 342 

S-20-90 217 290 422 

S-32-90 266 320 361 

 16 

 17 

































This is an example created from parts of other articles, it is not designed to be read for sense. 

 
 

Figures 1 

 2 

Fig. 1(a) Typical deformation configuration of RC ties with deformed steel bars observed in 3 

experiments. (b) FE model with assumptions in accordance with Tan et al. (2018c) showing a 4 

typical deformation configuration and crack plot, where straight lines indicate inclined internal 5 

cracks and circles indicate internal splitting cracks.  6 

 7 

Figure 2(a) Internally cracked section typically observed in physical experiments. (b) The 8 

internal cracking behavior lumped as springs to the interface between concrete and steel. (c) 9 

Statically equivalent section using a bond-slip law for the springs. (d) Equivalent cross sections 10 

when using the second order differential equation for the slip. 11 

 12 

Figure 3. The displacement field of an arbitrary statically equivalent section. The section to the 13 

left hand side shows the undeformed configuration, while the section to the right hand side 14 

shows the deformed configuration for a load applied to the rebar end greater than zero.  15 

 16 

Figure 4. Local bond-slip curves according to Eq. (33) with adjusted parameters proposed by 17 

Russo and Romano (1992), Balász (1993), Debernardi and Taliano (2015) and Tan et al. 18 

(2018c) compared with theoretical local bond-slip curves obtained in the FE analysis of several 19 

RC ties at different positions over the bar length in Tan et al. (2018c).  20 

 21 

Figure 5(a) and (b) Strain and slip distribution in CLLM. (c) and (d) Strain and slip distribution in 22 

CHLM. 23 

 24 

Figure 6(a) Case 1: solution for the slip using Eq. (39), i.e. . (b) Case 2: solution for the 25 

slip using Eq. (39) for  and Eq. (40) for .  26 

 27 

Figure 7(a) Condition 1. (b) Condition 2.  28 

 29 



2 
 

Figure 8(a) Comparison of steel strains predicted with steel strains reported in the experiments 30 

of Bresler and Bertero (1968) over the bar length. (b) Comparison of crack widths predicted with 31 

crack widths reported in the experiments of Yannopoulos (1989) using similar specimen length 32 

 similar to that in the experiments.  33 

 34 

Figure 9. Comparison of steel strains predicted with steel strains reported over the bar length in 35 

the FE analysis of Tan et al. (2018c). (a) Specimen . (b) Specimen . (c) 36 

Specimen . (d) Specimen .  37 

 38 

Fig. 10. Comparison of crack widths predicted (in specimens with lengths similar to FE analysis 39 

mean crack spacing reported in Table 1) with crack widths reported in the FE analysis of Tan et 40 

al. (2018c). (a) Specimen , . (b) Specimen , . (c) 41 

Specimen , . (d) Specimen , . 42 

 43 

Fig. 11. Comparison of crack widths predicted (in specimens with lengths similar to crack 44 

spacing predicted in Table 1) with crack widths reported in the experiments of Yannopoulos 45 

(1989) and the FE analysis of Tan et al. (2018c). (a) Yannopoulos (1989) specimen, 46 

. (b) Specimen , . (c) Specimen , . (d) Specimen 47 

, . (e) Specimen , .  48 

 49 

Fig. 12. Comparison of crack widths predicted (in specimens with lengths similar to crack 50 

spacing predicted in Table 2) with crack widths reported in experiments. (a) CEOS.fr (2016). (b) 51 

Tan et al. (2018a).  52 

 53 

Fig. 13. Bond stresses corresponding to the steel strains predicted in Fig. 9. (a) Specimen 54 

. (b) Specimen . (c) Specimen . (d) Specimen . 55 

 56 

Fig. 14. Concrete strains corresponding to the steel strains predicted in Fig. 9. (a) Specimen 57 

. (b) Specimen . (c) Specimen . (d) Specimen .  58 

 59 


