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Abstract. Traditional retrieval models such as BM25 or language mod-
els have been engineered based on search heuristics that later have been
formalized into axioms. The axiomatic approach to information retrieval
(IR) has shown that the effectiveness of a retrieval method is connected
to its fulfillment of axioms. This approach enabled researchers to identify
shortcomings in existing approaches and “fix” them. With the new wave
of neural net based approaches to IR, a theoretical analysis of those re-
trieval models is no longer feasible, as they potentially contain millions
of parameters. In this paper, we propose a pipeline to create diagnostic
datasets for IR, each engineered to fulfill one axiom. We execute our
pipeline on the recently released large-scale question answering dataset
WikiPassageQA (which contains over 4000 topics) and create diagnostic
datasets for four axioms. We empirically validate to what extent well-
known deep IR models are able to realize the axiomatic pattern under-
lying the datasets. Our evaluation shows that there is indeed a positive
relation between the performance of neural approaches on diagnostic
datasets and their retrieval effectiveness. Based on these findings, we ar-
gue that diagnostic datasets grounded in axioms are a good approach to
diagnosing neural IR models.

1 Introduction

Over the past few years, deep learning approaches have been increasingly applied
to IR tasks [28]. At the same time, the IR community has identified a number
of issues [7,8,28], hindering the kind of progress seen in other research areas
such as natural language processing (NLP) and computer vision. Overall, our
community lacks adequately large-scale public datasets for training (an exception
is the recently released WikiPassageQA [6]), shared public code repositories of
neural IR models (although some progress has been recently made [11,21]) and
approaches to interpret and analyze neural IR models (here, [5] is an exception).

In this paper, we focus our attention on the last issue—the analysis of neu-
ral IR models. While many neural models have been proposed, few have turned
out to outperform properly tuned BM25 or language modeling baselines. Tra-
ditional retrieval models have been engineered based on search heuristics that
later have been formalized into axioms—formal constraints that should be ful-
filled by a good model—which enable us to analytically investigate to what
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extent retrieval models fulfill them [13,15,16,14]. This analytical approach en-
abled researchers to identify shortcomings in existing retrieval models and “fix”
them [18,1,12,27,4,30], in order to achieve higher retrieval effectiveness. Ideally,
we employ a similar axiomatic approach to diagnose & fix neural IR models in
order to reap the benefits deep learning has offered in other fields. However, as
these models may contain millions of parameters [28], this is not possible.

Instead, we propose a pipeline for the creation of diagnostic datasets for
IR, each engineered to fulfill one axiom. This approach follows the tradition
in NLP and computer vision where dataset creation for diagnostic purposes is
well-known—consider for instance bAbI [44] for automatic text understanding &
reasoning, adversarial examples for SQUAD [22], a popular reading comprehension
dataset, and CLEVR [23], a dataset for language & visual reasoning.

We execute our pipeline for four axioms on the answer-passage retrieval
dataset WikiPassageQA [6] which contains more than 4,000 topics. It has been
shown to be a difficult dataset for a range of neural models. We empirically
validate to what extent four well-known deep IR models are able to realize the
axiomatic patterns underlying the datasets. We find that, indeed, there is a pos-
itive relation between the performance of neural approaches on the diagnostic
datasets and their retrieval effectiveness.

We believe these findings to be more insightful for IR researchers to im-
prove neural models than, for instance, the probing of neural net layers via NLP
tasks [5] or simply evaluating deep models with a range of metrics on standard
test collections. The main contribution of our work is to showcase that a
transformation from an analytical axiom to a diagnostic dataset is possible and
offers us a new tool to diagnose retrieval models that are too complex to be
analyzed theoretically.

2 Related Work

Axiomatic approach to IR Fang et al.’s [13] seminal work introduced six
retrieval constraints (later coined axioms [15]) that a reasonable retrieval func-
tion should satisfy. Formalizing retrieval heuristics into constraints—e.g. given
a single-term query w and two equally long documents, the retrieval score of the
document with a higher frequency of w should be ranked higher (also known as
constraint TFC1)—enabled the authors to analytically evaluate a number of ex-
isting retrieval functions. The main assumption of the work—the effectiveness
of retrieval functions is connected to their fulfillment of retrieval constraints—
was empirically validated. Fang et al. [14] also proposed the use of perturbed
document collections to gather further insights on retrieval functions fulfilling
the same set of axioms. This approach has not been followed-up upon in works
other than [31].

Apart from the diagnosis of existing functions, Fang et al. derived novel re-
trieval functions based on their initial set of constraints [15] and later extended
their list of axioms from purely term-matching to semantic-matching based con-
straints [16,12]. Others have contributed query term proximity [42,18], document
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length normalization [27] and query term discrimination [1] constraints, consis-
tently showing that traditional models improve when slightly altered to satisfy
those constraints. While most of the more than twenty existing axioms have
been designed for standard retrieval models, a number of axioms have been pro-
posed for more specialized cases, such as statistical translation models [24] and
pseudo-relevance feedback [3,4,30].

Lastly, we point to two works closest to ours. Hagen et al. [18] explored the
re-ranking of a given result list based on the aggregated re-ranking preferences of
twenty-three axioms. Similar to our work, this application of axioms to an actual
result list (instead of “hypothetical” documents containing one or two different
query terms used in the analytic evaluation of retrieval functions) requires the
extension and relaxation of axioms. Pang et al. [35] investigated differences in
neural IR models and learning to rank approaches with hand-crafted features.
Through a manual error analysis, weaknesses in deep IR models were identified
and connected to retrieval constraints.

Neural IR models By now, deep learning has become the mainstay in a num-
ber of research fields, yielding impressive improvements on long-standing tasks.
The information retrieval community has also seen a large number of proposed
neural IR models, which can be categorized as interaction-based, representation-
based or a hybrid between the two [17], based on the manner they model the
query and document. While interaction-based neural approaches (e.g., Deep-
Match [26], DRMM [17], MatchPyramid [36], ANMM [45]) use the local interac-
tions between the query and document as input to the deep net, representation-
based approaches (e.g., DSSM [20], C-DSSM [39], ARC-I [19]) strive to cre-
ate good representations of the query and the document separately; hybrid ap-
proaches such as Duet [29], ARC-II [19] and MVLSTM [43] incorporate both
an interaction- and representation-based component. Despite the motivation for
representation-based approaches and the need for semantics over syntax match-
ing, a recent comparative study [32] has shown the deep interaction-based ap-
proaches to clearly outperform the representation-based approaches in terms
of retrieval effectiveness. Whereas most interaction- and representation-based
approaches compute relevance at the document level, Fan et al. [10] recently
proposed a hierarchical neural matching model (HiNT) which employs a local
matching layer and global decision layer, to capture relevance signals at the pas-
sage and document level which compete with each other. Another recent work
has achieved state-of-the-art performance by creating a neural pseudo relevance
feedback framework (NPRF) that can be used with existing neural IR models
as building blocks [25].

While many works have presented novel neural approaches, few works have
focused on diagnosing neural IR models. While studies such as the one conducted
in [32] enable us to empirically determine which type of approach performs
better, they can only provide relatively coarse-grained insights (in this case:
interaction-based performs better than representation-based). In contrast, Cohen
et al. [5] recently proposed to probe neural retrieval models by training them,



4 Daniël Rennings, Felipe Moraes, and Claudia Hauff

and then using each layer’s weights as input to a classifier for different types of
NLP tasks (sentiment analysis, POS tagging, etc). The performance on those
tasks provides insights into the kind of information that each layer captures.
While this is indeed useful to realize, it does not provide an immediate insight
into how to improve an existing neural approach. It is also quite labor-intensive
as this probing is not model agnostic—in contrast to our work.

While in the IR community, the diagnosing of deep nets is in its infancy,
the computer vision and NLP communities have proposed a number of differ-
ent manners to open up this black box that a typical deep net is. The 20 bAbI

tasks [44] were developed specifically to diagnose text understanding and reason-
ing systems, while Jia and Liang [22] proposed an adversarial evaluation scheme
of the SQUAD dataset by inserting distracting sentences into text passages (and
as a result all evaluated models dropped sharply in their accuracy). CLEVR [23], a
dataset for language and visual reasoning, consists of a large number of rendered
images (constructed from a limited universe of objects and relationships) and
automatically generated questions.

Here, we propose to bring the approach of diagnostic dataset creation into
the IR community, based on well-established axioms.

3 Creating Diagnostic Datasets

Out of the more than twenty IR axioms proposed by now, we have selected four
among those in [13,40,14], and converted them for our purpose of diagnostic
dataset creation. Two of the axioms (TFC1 and M-TDC) were selected as they
capture a fair amount of relevance, while being present in existing datasets—
including the one we work with. Combined, TFC1 and M-TDC essentially represent
the TF-IDF statistic, a pervasive component in most IR models [48,49,6,9]. A
third axiom (TFC2) constraints the difference in scores between pairs of docu-
ments instead of individual documents. We include TFC2 to show our method-
ology can handle such axioms as well. Finally, we selected the LNC2 axiom to
showcase how we can generate a diagnostic dataset from an existing corpus
through creating artificial data when extracting a diagnostic dataset does not
yield enough data points.

We now describe the axioms we consider and propose (1) an extension of each
axiom in order to match realistic queries and documents3, and, (2) a relaxation
of extended axioms such that the strictly defined query and document relations
are relaxed to enable selection and generation of sufficient amounts of data.
Whereas step (1) allows us to move from one- or two-term queries to arbitrary
query lengths and from two- or three-document instances to any number of
documents, step (2) allows us to make use of query/document pairings that
approximately fulfill a particular relationship.

3 For completeness, we note that we did not observe a single instance of query-
document pairs or triplets in our WikiPassageQA corpus that satisfies any of the
four original (non-extended, non-relaxed) axioms considered here.
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Finally, a note on notation: we refer to an original axiom as Axiom; its ex-
tended and relaxed variant is referred to as Axiom.

3.1 TFC1: extension and relaxation

The TFC1 axiom [13] favours documents with more occurrences of a query term
and is formally defined as follows: let q = {w} be a single-term query and
d1 and d2 be two documents of equal length, i.e. |d1| = |d2|. Further, let
c(w,d) be the count of term w in document d and S(q,d) be the retrieval
status value a retrieval function assigns to d, given q. TFC1 then states that if
c(w,d1) > c(w,d2) holds, S(q,d1) > S(q,d2) should hold as well.

We now extend this axiom to multiple-term queries and relax it to incorporate
documents of approximately the same length, resulting in TFC1. Formally: let
q = {w1, w2, ..w|q|} be a multi-term query and |di| ≈ |dj|, i.e. |di| − |dj| ≤
|δTFC1|. Here, δTFC1 is an adjustable parameter that may be set according to the
document corpus and retrieval task. Additionally, we relax the constraint that
di must have a larger count for every query term than dj. We now require
c(w,di) ≥ c(w,dj) ∀w ∈ q and

∑
w∈q c(w,di) >

∑
w∈q c(w,dj), i.e. there is at

least one query term with a higher term count in di. If this relaxed constraint
is fulfilled, then TFC1 states that S(q,di) > S(q,dj).

3.2 TFC2: extension and relaxation

Axiom TFC2 [13] encapsulates the intuition that an increase in retrieval status
value due to an increase in term count becomes smaller as the absolute term
count increases. Formally, the axiom considers the case of q = {w} and |d1| =
|d2| = |d3|. If c(w,d1) > 0, c(w,d2)− c(w,d1) = 1 and c(w,d3)− c(w,d2) = 1
(i.e. the absolute term count of w in d1 is smallest and in d3 is largest), then
S(q,d2)− S(q,d1) > S(q,d3)− S(q,d2).

We define TFC2 for multi-term queries and documents of approximately the
same length. Formally, we consider q = {w1, w2, ..w|q|} and |di| ≈ |dj| ≈ |dk|,
i.e. maxda,db∈{di,dj,dk}(|da| − |db|) ≤ |δTFC2|. Every document has to contain at
least one query term and the differences in term count are no longer restricted
to be exactly 1. This leads to the constraints

∑
w∈q c(w,dk) >

∑
w∈q c(w,dj) >∑

w∈q c(w,di) > 0 and c(w,dj) − c(w,di) = c(w,dk) − c(w,dj) ∀w ∈ q. The
latter constraint does not mean that the difference has to be the same for every
query term, instead we enforce this equality in term count difference on a term
level. If these constraints hold, then according to TFC2, S(q,dj) − S(q,di) >
S(q,dk)− S(q,dj).

3.3 M-TDC: extension and relaxation

The TDC axiom was originally proposed by Fang et al. [13] to favour documents
with more occurrences of less popular query terms in the collection. Shi et al.
modified the TDC axiom to M-TDC [40] to fix undesired behavior in some cases.
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Formally, M-TDC is defined as follows. Let q = {w1, w2} be a two-term query
and assume |d1| = |d2|, c(w1,d1) = c(w2,d2) and c(w2,d1) = c(w1,d2). If
idf(w1) ≥ idf(w2)—i.e. w1 is rarer in the corpus than w2—and c(w1,d1) ≥
c(w1,d2), then S(q,d1) ≥ S(q,d2).

We define M-TDC for multi-term queries q = {w1, w2, ..w|q|} and pairs of
documents di,dj that (i) differ in at least one count of a query term, (ii) have
the same total count of query terms (sum of term frequencies), and, (iii) have
approximately the same length, i.e. |di| − |dj| ≤ |δM-TDC|.

For a query-doc-doc triplet to be included in our axiomatic dataset with
retrieval score preference S(q,di) ≥ S(q,dj), all query terms for which c(w, di) 6=
c(w, dj) need to appear at least once in a valid query term pair. We evaluate all
possible query term pairs (with wa 6= wb) and consider a query term pair to be
valid when the following conditions hold: (i) idf(wa) ≥ idf(wb), (ii) c(wa,di) =
c(wb,dj) and c(wb,di) = c(wa,dj), (iii) c(wa,di) > c(wa,dj), and (iv) c(wa,q) ≥
c(wb,q).

3.4 LNC2: extension and relaxation

The LNC2 [14] axiom prescribes that over-penalizing long documents should be
avoided: if a document is replicated k times, its retrieval status value should not
be lower than that of its un-replicated variant. The axiom was defined under the
assumption that redundancy is not an issue, which we also follow here. Formally
the axiom is defined as follows: let q = {wq}, c(wq,d1) > 0, k > 1, k ∈ N,
|d1| = k × |d2|, and for ∀w ∈ d1, c(w,d1) = k × c(w,d2). If those constraints
are met, S(q,d1) ≥ S(q,d2) should hold. This axiom can simply be extended
to LNC2 by defining q for multi-term queries and documents di and dj. No
additional relaxation is required.

3.5 From Axiom to dataset

Having defined extended and relaxed variants of our axioms, we now describe
how to obtain a diagnostic dataset for each. Given a corpus with standard pre-
processing applied, we determine the number of instances the (i) original axiom,
(ii) relaxed axiom and (iii) relaxed & extended axiom can be found in it. As the
axioms are defined over retrieval status values (instead of relevance labels), we
do not require relevance judgments and thus, almost any dataset is suitable as
source dataset. We can sample queries and document pairs/triplets from such a
dataset at will; we keep those in our diagnostic datasets that satisfy our axioms.
Due to the very restrictive nature of the original axioms, we expect few instances
that fulfill their conditions to be found in most existing corpora. In the case of
the extended axiom LNC2, we expect only spam documents to satisfy the axiom.
For this axiom we move beyond extracting instances from a given corpus and
artificially create instances instead by appending each selected document in the
dataset k− 1 times to itself for a set of values k > 1. Figure 1 shows a graphical
overview of our pipeline, with examples from WikiPassageQA.
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Fig. 1: Overview of the diagnostic dataset creation pipeline. In italics, we show
an example for the TFC2 axiom as extracted from question 1317 on passages from
Wikipedia document 283 in the WikiPassageQA dataset, and refer to appended
documents as an example of artificial data (for LNC2).

3.6 Evaluating IR models

The evaluation through diagnostic datasets as presented in this work is model-
agnostic. Given a trained and tuned model, we record the fraction of diagnostic
dataset instances that the model scores according to the axiomatic preferences.
Thus, a model that is able to rank all instances correctly achieves an axiomatic
score of 1.0. In line with past works on axiomatic approaches to IR, we expect
there to be a positive correlation between models’ retrieval effectiveness and
their axiomatic scores.

4 Experiments

We now introduce the corpus we use for our study in more detail, then discuss
details of the diagnostic datasets created from this corpus. Subsequently, we
introduce the employed retrieval models and finally explore to what extent our
traditional baselines and neural IR models satisfy the constraints encapsulated
in the diagnostic datasets and how this relates to their retrieval effectiveness.

4.1 WikiPassageQA

We empirically validate our diagnostic dataset creation pipeline on the answer
passage retrieval dataset WikiPassageQA [6]. As it contains thousands of topics,
it is a suitably large dataset for the training of neural models.

The dataset consists of 861 Wikipedia documents, split into passages of six
sentences each, yielding 50, 477 unique passages in total—each containing 135.2
words on average. Crowd-workers created a total of 4, 154 questions. For example,
for the Wikipedia document on Granite4 the created questions include:

4 https://en.wikipedia.org/wiki/Granite

https://en.wikipedia.org/wiki/Granite
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– What is the occurrence of granite?
– How does weathering affect granite?
– What are the geochemical origins of granite?

The questions contain 9.5 terms on average (minimum 25, maximum 39). The
binary passage-level relevance judgments were also sourced from the same crowd-
workers and later validated by a subsequent mechanical turk verification poll.
On average, there are 1.7 relevant passages per question6.

The corpus has been developed for the answer passage retrieval task: given
a query (the question) and a Wikipedia document (more concretely, all passages
making up that document), rank the passages such that those containing the
answer to the question are ranked on top. WikiPassageQA has been released
with a pre-defined train/dev/test split that we maintain in our work.

As in [6], we employ mean average precision (MAP), mean reciprocal rank
(MRR) and precision at k documents (P@k) to report retrieval effectiveness.
As noted earlier, in terms of axiomatic performance, we report the fraction of
precedence constraints each model satisfies.

In terms of pre-processing, we apply stemming7 but not stopword removal,
as the latter may actually remove informative terms from the text such as the
question words what and why.

4.2 Diagnostic datasets

Given the nature of our corpus, we do not need to randomly sample document
pairs or triplets. Instead, we consider all possible pairs or triplets (depending
on the axiom in question) of passages within a single Wikipedia document and
the respective questions and keep those instances in our diagnostic datasets
that satisfy our extended and relaxed axiomatic constraints—once more, keeping
in place the train/dev/test split of the original corpus. Since the Wikipedia
documents are already split into six-sentence passages, we do not manually set a
threshold (δ) of allowed document length differences for this corpus and instead
accept all passage pairs/triplets as sufficiently similar in length.

For the LNC2 axiom, we have two options: we can either (1) add duplicated
documents to the test set only (which may be considered “unfair” to the neural
models as they have never seen this type of document in the training data) or
(2) we add duplicated documents to all (train/dev/test) splits. Here, we report
the axiomatic performance of our investigated models across both options.

In Table 1 we report the number of extracted diagnostic instances per axiom.
Let us first consider the three axioms (TFC1, TFC2 and M-TDC) based on data ex-
traction: depending on the axiom, we extract between 42K and 3.5M instances.

5 The question is define Hydroelectricity.
6 The corpus statistics reported here differ slightly from those reported in [6] as we

filtered out instances with empty question texts, duplicated questions and questions
appearing in both the training and test set.

7 We employed the nltk.stem.SnowballStemmer for the English language.
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One may question the need for the introduced relaxations that go beyond doc-
ument length relaxation. We incorporated those as document length relaxation
alone was insufficient for this corpus: as a concrete example, for TFC1 (when
extended and only with document length relaxation applied), we only found six
instances that could be extracted from WikiPassageQA.

Let us now consider LNC2, whose instances are not extracted from the corpus,
but instead require data generation based on the original corpus. We created
instances with k = {2, 3, 4} times the original content and maintain the original
labels (e.g. a passage that was labelled relevant in its original form is labelled
relevant in its artificial form as well, as supported by the LNC2 axiom). We only
considered passages up to 240 words in eventual length, due to experimental
constraints8, leading to a total of 10K and 100K instances respectively for the
two variants of LNC2. Note, that for LNC2All we train the neural models not only
on the original train split of WikiPassageQA, but add the generated instances to
the training data as well; this addition does not significantly alter the fraction
of relevant to non-relevant answer passages.

Table 1: Number of instances per axiom (TFC1, TFC2, M-TDC) extracted from
WikiPassageQA. For LNC2 we report the number of artificial diagnostic instances,
in two variants: the duplication of document content restricted to the test set
(LNC2Test) and across the train/dev/test sets (LNC2All).

TFC1 TFC2 M-TDC LNC2Test LNC2All

Parameters k = {2, 3, 4}, doc lenmax = 240

Train 2,758,223 837,838 33,509 0 82,785
Dev 376,902 50,772 3,958 0 10,485
Test 353,621 183,898 4,497 10,074 10,074

Total 3,488,746 1,072,508 41,964 10,074 103,344

4.3 Retrieval models

For our experiments we opted for the retrieval baselines BM25 and query like-
lihood with Dirichlet smoothing (QL) as implemented in the Indri toolkit [41]
(version 5.11) and four neural IR models as implemented in MatchZoo9 [11].

We tuned the hyper-parameters of BM25 and QL on the train and develop-
ment parts of WikiPassageQA, optimizing for MAP, resulting in the following
settings: k1 = 0.4, b = 0.1, k3 = 1 (BM25) and µ = 750 (QL).

For our neural models, we employed the MatchZoo retrieval toolkit which
has been employed in a number of prior studies, including [38,47,2]. MatchZoo

8 Concretely, we use the MatchZoo toolkit for our neural models and ran into issues
when the maximum document length was set to include longer passages, see also
https://github.com/faneshion/MatchZoo/issues/264.

9 Version https://github.com/NTMC-Community/MatchZoo/tree/e564565.

https://github.com/faneshion/MatchZoo/issues/264
https://github.com/NTMC-Community/MatchZoo/tree/e564565
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contains architecture configurations10 that have been optimized for the WikiQA

dataset [46], an open-domain question answering dataset, similar in spirit to
WikiPassageQA, though defined on the document, not passage level. Due to the
computational requirements of neural model training, we limited the maximum
query length and passage length to 20 and 240 terms respectively—as a result,
in more than 99% of all training instances the entire question and entire passage
was considered. We maintained the default MatchZoo configurations, including
learning rates and optimizers. All neural models were trained for 400 iterations.

Initially, we considered all neural models implemented in MatchZoo; however,
for a number of models (especially the models incorporating a representation-
based component such as CDSSM and MV-LSTM) we observed a significant
drop in retrieval effectiveness in the WikiPassageQA dataset compared to WikiQA

when relying on the pre-configured model architectures. As a concrete example,
MV-LSTM dropped in MAP from 0.62 in WikiQA to 0.22 in WikiPassageQA.
This lack of model robustness to the corpus is a well-known problem for neural
models. Since neural architecture search [50] is beyond the scope of our work, we
here consider the four best-performing models, which are all interaction-based,
in line with the findings reported in [32]. Concretely, the four models are:

– DRMM [17], an interaction-based model that employs a histogram represen-
tation of the similarity between a query and a document;

– aNMM [45], an attention based neural matching model, specifically designed
for ranking short text in an interaction-based fashion;

– Duet [29], a hybrid of an interaction-based and representation-based model:
it combines two separate deep neural networks, one employs a local repre-
sentation, and another employs distributed representations for matching the
query and the document;

– MatchPyramid [36], a hybrid model that mimics image recognition in its
text matching and employs a convolutional neural network.

4.4 Retrieval model performance

The main results of our study are shown in Table 2 where we present the mod-
els’ retrieval effectiveness on the original WikiPassageQA corpus as well as the
fraction of axiomatic instances each model ranks correctly.

Let us first consider the retrieval effectiveness of our models. As found in
several prior studies [37,34,17], and as already indicated in [6] with regard to the
WikiPassageQA dataset, neural models struggle to outperform decades-old re-
trieval baselines that contain just a handful of hyper-parameters (and recall that
we only report the best-performing neural models wrt. retrieval effectiveness).
Only DRMM and aNMM are able to significantly outperform the traditional
models, with an increase in MAP from 0.54 (QL) to 0.55 (DRMM) and 0.57
(aNMM) respectively. These results are not unexpected, as DRMM is consid-
ered to be one of the most competitive neural IR models to date [33], and DRMM

10 https://github.com/faneshion/MatchZoo/tree/e564565/examples/wikiqa/

config contains the configurations (learning rate, optimizer, etc.) per model.

https://github.com/faneshion/MatchZoo/tree/e564565/examples/wikiqa/config
https://github.com/faneshion/MatchZoo/tree/e564565/examples/wikiqa/config
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and aNMM are similar in the sense that they both model the interaction between
query terms and document terms to build a matching matrix [33]. Furthermore,
similar to [37] we find that DRMM outperforms MatchPyramid, and similar to
[21] we observe that MatchPyramid in turn outperforms Duet.

Moving on to the axiomatic performance of our models, we find both BM25
and QL to satisfy the precedence constraints of the vast majority of instances
across all four axioms: both models satisfy more than 90% of the M-TDC instances
and more than 70% of the TFC1 instances. The largest difference in percentage
of satisfied axiomatic instances can be found in TFC2 (BM25 satisfies 98% of in-
stances, QL only 63%), which can explained by the fact that QL with Dirichlet
smoothing employs a document length dependent smoothing component. Over-
all, the results are in line with our expectations: as QL and BM25 conditionally
satisfy all axioms according to their analytical analyses [13,14] they should sat-
isfy a large percentage of our extended and relaxed axiomatic instances as well.
However, these numbers do not reflect the (un)conditional fulfillment of BM25
and QL per original axiom on a one-to-one basis, for which one possible expla-
nation is our relaxation of the document length difference δ.

When we consider the axiomatic scores of our evaluated neural models we
observe a clear gap: while for TFC1 (i.e., documents with more query terms
should have higher retrieval scores) between 69-85% instances are satisfied, for
TFC2 (i.e., the increase in retrieval score becomes smaller as the absolute term
count increases) and M-TDC (i.e., documents with more occurrences of rare query
terms are favoured) this drops to at most 76%. When considering the LNC2 axiom,
we find that only aNMM is able to learn the underlying pattern to some degree
(38% of satisfied instances) without observing instances of duplicated documents
in training (LNC2Test); the remaining neural models correctly rank between 0
and 19% of instances. Once we include the diagnostic dataset instances in the
training regime (LNC2All) all models have learned to some degree that duplicated
document content should not be penalized, but still, none of the models is able
to satisfy even half of the diagnostic instances. Finally, we note that aNMM
achieves a higher retrieval effectiveness than QL, while QL outperforms aNMM
across all four diagnostic datasets. This is an indication that fulfillment of those
four axioms alone is not a perfect indicator of retrieval effectiveness—after all,
more than twenty have been proposed in the literature. We leave the evaluation of
additional axioms to future work. The correlation between retrieval effectiveness
in MAP and the average axiomatic score across all axioms is 0.44 (N = 6 retrieval
models); this is a positive trend, but not a significant one due to the overall low
number of models compared.

What we have gained are insights into the type of patterns our neural models
have (not) learned and can use those insights to “fix” the models, just like
the traditional IR models were fixed based on their axiomatic analyses. As an
example, we may want to train Duet on additional triplets, q,di,dj, for which
S(q,di) > S(q,dj) according to TFC1, as Duet currently performs worst on this
axiom across the evaluated models.
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Table 2: Overview of models’ retrieval effectiveness and fraction of fulfilled axiom
instances. 1/2/3/4 denote statistically significant improvements (Wilcoxon signed
rank test with p < 0.05) in retrieval effectiveness.

Retrieval effectiveness Performance per axiom

MAP MRR P@5 TFC1 TFC2 M-TDC LNC2Test LNC2All

1 BM25 0.523,4 0.603,4 0.183 0.73 0.98 1.00 0.80 0.80
2 QL 0.541,3,4 0.621,3,4 0.193 0.87 0.63 0.94 0.68 0.68

3 Duet 0.25 0.29 0.10 0.69 0.56 0.48 0.19 0.47
4 MatchPyramid 0.443 0.513 0.183 0.79 0.58 0.63 0.00 0.19
5 DRMM 0.551,2,3,4 0.641,2,3,4 0.201,2,3,4 0.84 0.60 0.76 0.05 0.12
6 aNMM 0.571,2,3,4 0.661,2,3,4 0.211,2,3,4 0.85 0.56 0.69 0.38 0.47

5 Conclusions

In this paper, we have proposed a novel approach to empirically analyze retrieval
models that is rooted in the axiomatic approach to IR. Today’s neural models,
with potentially millions of parameters are too complex for any kind of analytical
evaluation; instead, we take inspirations from the NLP and computer vision
communities and propose the use of model-agnostic diagnostic datasets in order
to determine what kind of search heuristics neural models are able to learn. We
have shown for four specific axioms how to extend and relax them, in order
to make them match realistic datasets. We have applied our diagnostic dataset
creation pipeline to the WikiPassageQA corpus and evaluated two traditional
baselines and four neural models. As a model’s axiomatic performance does not
require a labelled dataset (i.e., no relevance judgments are required), we can
apply our pipeline to almost any dataset containing queries and documents.

Our future work will extend this work in several directions: we will (i) inves-
tigate the impact of the adopted document length (δ) relaxation; (ii) extend and
relax additional axioms to enlarge our set of diagnostic datasets; (iii) empirically
evaluate a larger set of neural models and subsequently attempt to “fix” them
(through training data augmentation or the adaptation of their loss function);
ad (iv) evaluate a wider range of datasets in order to determine the impact of
the retrieval task on the models’ axiomatic performance.

Overall, we believe that the axiomatic approach to diagnosing neural IR
models presented in this work is a step forward to gaining valuable insights into
the black boxes that deep models are generally considered to be.
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