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Forewords 
 
 
This thesis presents the comparative study of the three different dynamic analysis 
methods (quasi-static, frequency-domain, time-domain), with respect to the dynamic 
analysis of the Yme MOPUstor platform.  
 
The initiation of this thesis is Allseas engineering project. As a major contractor in the 
oil and gas industry, Allseas group is seeking a transformation and tries to redefine 
herself in the platform decommissioning business. With the new built platform 
installation / decommissioning and pipe-lay vessel Pioneering Spirit, Allseas group is 
well prepared to execute her first decommissioning project, the decommissioning of 
the Yme MOPUstor platform. The Yme MOPUstor is a production jack up platform, 
located in the North Sea. It was built and installed in 2010. However, due to its 
obvious dynamic defects, this platform is abandoned and will be decommissioned in 
2015. 
 
After the abandon of the platform, several institutions were invited to investigate the 
dynamic behavior of the Yme MOPUstor. However, different conclusions are given 
by using different dynamic analysis methods. For the purpose of the 
decommissioning, it is inevitable to judge those existing studies and carry out a new 
dynamic analysis. Therefore, this thesis is motivated by this important and interesting 
challenge. 
 
This comparative study is carried out in four aspects: the linear versus non-linear, 
the quasi-static versus dynamic, the stochastic versus deterministic and the 
efficiency. The comparative study is first demonstrated on some sample models to 
illustrate the fundamental differences. Then, the dynamic analyses of the Yme 
MOPUstor for the given sea states by using different methods are analyzed and 
compared.  
 
In addition of the comparative study, a new dynamic analysis method, the higher 
order frequency domain method (HFD), is developed and verified.  This new method 
is believed to significantly improve both the accuracy and the efficiency of the 
traditional methods. Besides, the HFD method also provides an approach to better 
understanding the fundamental differences between the traditional quasi-static, 
frequency domain and time-domain methods. 
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1.0 INTRODUCTION 

 
This chapter provides an overview of the thesis, highlighting why, what and how the 
research work is presented in this thesis. It describes the background and explains 
the motivation for pursuing this research. In addition, it provides an overview of the 
thesis’s objectives as well as the conclusion. Finally, the structure of the thesis is 
also presented in this chapter. 
 

 
1.1 Background: The Yme MOPUstor 
 
 
 

This thesis is inspired by the challenges in the Yme MOPUstor’s dynamic analysis. 
The Yme MOPUstor is a Mobile Offshore Production Unit with a subsea storage 
tank, located in the Yme oil field, North Sea. [1] It was built in 2010, and will be 
terminated and removed in the September of 2015, due to its dynamic defects. In 
this section, the background and a brief description of the Yme MOPU platform are 
presented respectively. 
 
To begin with, the background of the Yme MOPUstor is introduced. The Yme 
MOPUstor was expected to serve as a production platform for the Yme oil field [1]. 
The Yme field is located in the Egersund basin in the North Sea, approximately 110 
km offshore in the Norwegian Continental Shelf. The Yme field was initially 
developed by Statoil and then abandoned due to the low oil price. In 2010, the 
Canadian energy giant, Talisman Energy Norge As, made an agreement with 
Norwegian Administration to restart the oil production of the Yme Oil field.  
 
After being granted permission to redevelop the Yme field, Talisman Energy Norge 
AS has awarded a contract to Single Buoy Moorings Inc. for the development of a 
production unit for the Yme Project.  Single Buoy Mooring Inc. proposed a MOPUstor 
concept as the production unit of the Yme oil field. The Yme MOPUstor is designed 
by SBM- GustoMSC and built in Abu Dhabi in 2010.  
 
However, large motions occurred immediately after the installation of the Yme 
MOPUstor. Those large motions greatly affect the normal production activity. In July 
2012, after the cracks were discovered at the grouted base of the MOPU’s legs, 
Talisman evacuated all personnel from the facility. In March 2013, Talisman reached 
an agreement with Allseas engineering B.V. to terminate work on the production unit, 
including the decommissioning activities.   
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The decommissioning operation will be executed as follows. First, several bumpers 
and enforcement structures will be installed between the caisson and the MOPU in 
order to protect the caisson during the decommissioning operation.  Second, an 
internal support platform and its associate structures will be installed at each leg as 
the support of a leg cutting machine. Third, within an allowed sea state, the 
Pioneering Spirit, Allseas’s specialized decommissioning vessel will catch and hold 
the MOPU. Meanwhile, a cutting machine will be lifted down inside each leg to the 
pre-installed internal support platform to cut the legs. Finally, after all legs are cut, 
the cutting machines will be lifted out from the legs and the Pioneering Spirit will take 
the whole MOPU out from its installed location, as demonstrated in figure 1.1. 
 

 
Figure 1.1 a demonstration of the decommissioning operation of the Yme MOPUstor 

 
In addition, the structural characteristics and site condition of the Yme MOPUstor are 
described. A graphical representation of the Yme MOPU platform is shown in figure 
1.2. According to the SBM’s design report [2], the Yme MOPUstor is a platform 
design integrating well support, production, storage and self-installation. Overall 
speaking, the MOPUstor consists of two major parts: the substructure part and the 
jack-up production deck (or MOPU). 

 
Figure 1.2 the graphical representation of the YME MOPUstor from ref [2] 
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The substructure part includes a subsea storage tank, a caisson (5.25m diameter) 
and columns and bracings that support the MOPU’s legs. The storage tank is used 
for the oil storage and also provides the foundation for the entire platform. Well 
conductors including wellheads and risers are supported by a tubular caisson. The 
caisson protects the well conductors and risers from wave loading and provides the 
lateral and vertical support that is required. The caisson is designed as free-
standing. After the MOPU has been installed, it provides a horizontal support to the 
caisson but is not fix connected. 
 
The MOPU supports the process modules and the accommodation and provides the 
storage of consumables. The hull is of a typical self-floating, plated construction. As 
shown in Figure 1.3, The MOPU is outfitted with three circular legs (3.5m diameter), 
each leg is provided with a jacking system. The jacking systems lower the legs, lift 
the hull to the elevated position and, in the final position, lock the hull relative to the 
legs. The hydraulic system is not active after installation. 
 

 
Figure 1.3 the dimensions of the Yme MOPUstor 
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The table 1.1 shows a summary of the structural characteristics and the site 
condition of the Yme MOPUstor. As listed in the table 1.1, the overall dimension of 
the Yme MOPUstor is 71.9m x 54m x 7.0m and the total mass of the MOPU is 

approximately 1.29 × 107 kg. The site’s mean water depth is approximately 93.0m. 
The highest maximum wave within the return period of 100 years is estimated to be 
27.5m. 
 
 

Table 1.1 the structural characteristics and the site condition of the Yme 
MOPUstor 

MOPU 

Overall length 71.9m 

Overall Wide 54.0m 

Overall depth 7.0m 

Overall mass 1.29 × 107 kg 

Characteristics of legs number: 3 

length: 102.2 m 

type: plane tubular 

outside diameter: 3.5 m 

wall thickness: 75-115 mm 

material: NVE690 typical 

Substructure 

Characteristics of caisson type: plain tubular 

inside diameter: 5.15 m 

length: 107.1 m 

wall thickness: 40-90 mm 

material: NVE40 typical 

Site Condition 

Water depth (MSL) 93.0 m 

Storm surge and tide (100 

yr return) 

1.03 m 

Airgap above MSL 24.5 m 

Max wave height (100 yr 

return) 

27.5 m 

Associated wave period 14.0 s 

Wind velocity (1 minute, 

100 yr return) 

42.8 m/s 

Current velocity at surface 

(10 yr return) 

0.90 m/s 

Current velocity at seabed 

(10 yr return) 

0.40 m/s 
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1.2 Motivation 
 

 
This thesis is motivated by the importance of the Yme MOPUstor’s dynamic analysis, 
for the judgement of the existing dynamic analysis studies and its further applications 
in the decommissioning operation. 
 
The dynamic analysis of the Yme MOPUstor is a challenge. The inappropriate 
dynamic analysis in the SBM’s design report results in the abandon of the platform 
and a billion-dollar loss [1]. After the abandon of the platform, several institutions 
were invited by Talisman Energy to investigate the dynamic behaviour of the Yme 
MOPUstor. Their studies have shown that, the dynamic behaviour of the Yme 
MOPUstor is dominated by three modes, e.g. Surge, Sway and Yaw, of which 
natural periods are around 6-7 seconds. Those natural periods are coincident with 
the common periods of waves in the Yme Oil field and thus the resonance occurred. 
Table 1.2 shows the maximum displacement with the return period of 100 years, 
estimated by Atkins (UK), DNV and SBM respectively.  
 
 

Table1.2 The maximum displacement within return period of 100years 

Institution  Methods The 
maximum 
displacement 

Corresponding  
Hs 

Corresponding 
Tp 

Wave 
direction 

DNV[3] Time-
domain 

0.5m 12m 12.2sec 30deg or 
150deg 

Atkins[4] Frequency-
domain 

1m 6.03m 7.03sec 90deg 

SBM- 
GustoMSC 
[2]* 

Quasi-
static 

0.632m Hmax=27.4m Tass=14.80sec 135deg 

*In SBM report, the deterministic quasi-static method is adopted, hence Hmax and 
Tass, instead of Hs and Tp are presented 

 
As observed from the table 1.2, there are large differences between the maximum 
displacement estimated by different institutions.  Those differences are so critical 
that the different conclusions are come out on the safety aspect of the platform. 
Therefore, in order to judge the validation of those results, it is highly interesting and 
necessary to perform a comparative study of those different dynamic analysis 
methods for their applications on the Yme MOPUstor platform. 
 
In addition, dynamic analysis is also critical to the decommissioning operation. First, 
to design all the associated components used in decommissioning operation 
(bumpers, internal platforms, cut machines etc), the design load case need to be 
determined. For example, in order to design the bumpers used in caisson’s 
protection, the relative motion between the caisson and the MOPU need to be 
estimated. Second, after those associated components installed, the dynamic 
behaviour of the Yme MOPUstor may change and hence needs to be re-checked for 
the safety reason.  Therefore, the dynamic analysis is inevitable for the purposes of 
the modification and decommissioning of the Yme MOPUstor. 
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Furthermore, as discussed in this thesis, all existing dynamic methods are imperfect 
in nature. Attempts have been made on the creation of a new possible method to 
improve both the accuracy and the efficiency of dynamic analysis. Besides, this new 
possible method may also provide us a better understanding of the traditional 
methods. Those attempts can be treated as a scientific study and this study may be 
applied in future. 
 
In conclusion, this thesis is motivated by three questions: 
 

(1) Previous studies have provided different result estimated by different dynamic 
analysis methods. How should we judge the validation and application of 
those results? 
 

(2) For the purposes of the modification and decommissioning of the Yme 
MOPUstor, how should we perform a new dynamic analysis and what 
methods should we select? 
 

(3) Could we create a new method to improve both the accuracy and the 
efficiency of dynamic analysis, such as non-linear frequency-domain 
methods? By comparison with these methods, could we have a better 
understanding of those traditional methods? 
 
 

1.3 Objectives of the thesis 
 
 
The main objective of this thesis is to perform a comparative study of quasi-static 
(QS), frequency-domain (FD) and time-domain (TD) dynamic analysis methods, 
based on their applications on the Yme MOPUstor platform. This comparative study 
mainly focuses on four aspects: the issue of quasi-static vs. dynamic analysis, the 
issue of nonlinearity, the issue of stochastic versus deterministic and the efficiency.  
In this comparative study, the differences between these methods are analysed both 
qualitatively and quantitatively.  
 
In additions, a recommendation should be given for engineering practise. Two 
extreme sea cases have pre-determined by previous studies [6], representing the 
resonant condition and the extreme wave condition. The practise studies of the Yme 
MOPU’s dynamic analysis will be based on these two given sea states. 
 
Finally, an attempt should be given for the improvement of the existing method. The 
attempt will focus on the improvement of the traditional frequency-domain method. 
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1.4 Work scope and Conclusion 
 
 
The comparative study is first demonstrated on some sample models to illustrate the 
fundamental differences, as given in Chapter 4. Then, the dynamic analyses of the 
Yme MOPUstor for the given sea states by using different methods are analyzed and 
compared. The conclusion and practise advice with respect of the dynamic analysis 
of the Yme MOOPUstor are given in section 6.5. 
 
In addition of the comparative study, a new dynamic analysis method, the higher 
order frequency domain method (HFD), is created and verified.  This new method is 
believed to improve both the accuracy and the efficiency of the traditional methods. 
Besides, the HFD method also provides an approach to better understanding the 
fundamental differences between the traditional QS, FD and TD methods. This 
method is given in Chapter 3. 
 
 
1.5 Structure of the thesis 
 
 

The structure of the thesis is presented in Figure 1.3. 
 

 
 

Figure 1.3 the structure of the thesis 
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Chapter 2 reviews the basic theoretical knowledge of the traditional dynamic analysis 
methods which includes the mathematical model, quasi-static (QS) method, 
frequency-domain (FD) and time-domain (TD) method. 
 
 In Chapter 3, the new dynamic analysis method, higher order frequency domain 
(HFD) method is presented. This new method has been demonstrated on both single 
degree of freedom (SDOF) and multi degree of freedom (MDOF) system. Besides, 
the techniques on the non-linear term treatment and the computation improvement 
are also presented in this chapter. Finally, the verifications on SDOF system are also 
provided. 
 
Chapter 4 provides a comparative study on the fundamental difference between 
quasi-static, time-domain and time-domain methods. This analysis is mainly 
demonstrated on a SDOF system and focus on four aspects: quasi-static vs 
dynamic, linearized vs. nonlinear drag force, and free surface treatment. Compared 
with the new created HFD method, some fundamental differences can be well 
explained, especially the amplitude change and the frequency-shift caused by the 
non-linear terms. 
 
Chapter 5 presents the methodology for the comparative study on the Yme 
MOPUstor platform, which includes the general procedures, the calibrated FEM 
model of the Yme MOPUstor and the environmental condition used for the 
comparative study. 
 
In Chapter 6, the comparative study on the Yme MOPUstor platform is performed by 
using DNV SesamTM and their results have been analyzed step by step 
quantitatively. The conclusion and the practise advices are given in this Chapter. 
 
Chapter 7 gives an outlook on the prospective research on the improvement of the 
dynamic analysis methods. Several methods are presented, which are direct 
spectrum conversion method, harmonic balance method and Volterra Series 
method. 
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2.0 REVIEWS OF THE TRADITIONAL DYNAMIC ANALYSIS METHODS  

 
 

This chapter reviews the traditional dynamic analysis methods presented in the 
comparative study. The general knowledge of the physical model and the dynamic 
analysis is introduced first and then analysis philosophies of quasi-static, frequency-
domain and time-domain methods are presented respectively. Finally, a summary is 
provided at the end of this chapter. 
 
 

2.1 General 
 
 

In this section, the general knowledge of the hydro-structural dynamic system is 
presented and the concepts of the coupled and decoupled hydro-structural model 
are introduced respectively. As mentioned later in this chapter, the decoupled hydro-
structural model is adopted throughout this comparative study. In the end, the quasi-
static, the frequency-domain and the time-domain methods are selected for this 
comparative study, with reasons. 
 
In order to study the structural dynamic behavior quantitatively, the physical model of 
the Yme MOPUstor is built and spatial discretized. In this study, the MOPUstor is 
modelled as a linearized structure with the non-linear hydrodynamic forces.  The 
general force equilibrium equation of such kind of model [5] can be expressed as, 
 

In symbol form, 
 

𝑴𝑠𝑹̈ + 𝑪𝑠𝑹̇ + 𝑲𝑹 = 𝑭𝒔(𝑡, 𝑹̈, 𝑹̇) 
 

(2.1) 
 
 
Where, 
 

𝑡 represents the time. 𝑛 is the total number of the degrees of freedom. 
 

𝑹  represents the global degree of freedom and the global degree of freedom 
component 𝑟𝑖 represents a displacement component of one node in one direction. 
The 𝑟𝑖 is located at (𝑥𝑖, 𝑦𝑖, 𝑧𝑖).  
 

𝑹 =

[
 
 
 
 
𝑟1
𝑟2
⋮
𝑟𝑛−1
𝑟𝑛 ]
 
 
 
 

 

(2.2) 
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𝑀𝑠  represents the structural mass matrix and 𝑚𝑖,𝑖  represents mass corresponding 

the global degree of freedom 𝑟𝑖 from the structure. 
 

𝑀𝑠 =

[
 
 
 
 
 
𝑚𝑆1,1 0

0 𝑚𝑆2,2
⋯

0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
𝑚𝑆𝑛−1,𝑛−1 0

0 𝑚𝑆𝑛,𝑛]
 
 
 
 
 

 

(2.3) 
 
𝐾 represents the structural stiffness matrix and 𝑘𝑖,𝑗   represents the linear stiffness 

between the global degree of freedom 𝑖 and the global degree of freedom j. 
 

𝐾 =

[
 
 
 
 
𝑘1,1 𝑘1,2
𝑘2,1 𝑘2,2

⋯
𝑘1,𝑛−1 𝑘1,𝑛
𝑘2,𝑛−1 𝑘2,𝑛

⋮ ⋱ ⋮
𝑘𝑛−1,1 𝑘𝑛−1,2
𝑘𝑛,1 𝑘𝑛,2

⋯
𝑘𝑛−1,𝑛−1 𝑘𝑛−1,𝑛
𝑘𝑛,𝑛−1 𝑘𝑛,𝑛 ]

 
 
 
 

 

(2.4) 
𝐶𝑠 represents the structural damping matrix, and  𝑐𝑖𝑗 represents the linear damping 

between the global degree of freedom I and the global degree of freedom j.  
 

𝐶𝑠 =

[
 
 
 
 
𝑐𝑠1,1 𝑐𝑠1,2
𝑐𝑠2,1 𝑐𝑠2,2

⋯
𝑐𝑠1,𝑛−1 𝑐𝑠1,𝑛
𝑐𝑠2,𝑛−1 𝑐𝑠2,𝑛

⋮ ⋱ ⋮
𝑐𝑠𝑛−1,1 𝑐𝑠𝑛−1,2
𝑐𝑠𝑛,1 𝑐𝑠𝑛,2

⋯
𝑐𝑠𝑛−1,𝑛−1 𝑐𝑠𝑛−1,𝑛
𝑐𝑠𝑛,𝑛−1 𝑐𝑠𝑛,𝑛 ]

 
 
 
 

 

(2.5) 
𝐹𝑠(𝑡, 𝑹̈, 𝑹̇)  represents the structural external force vector, and 𝑓𝑠𝑖  represents the 

external force on the displacement  𝑟𝑖 . The structural external force accounts for 
Weight and buoyancy, Wind forces, Hydrodynamic forces (slender member) and 
other loads. 
 

𝑭𝒔(𝑡, 𝑹̈, 𝑹̇) =

[
 
 
 
 
 
𝑓𝑠1
𝑓𝑠2
⋮

𝑓𝑠𝑛−1
𝑓𝑠𝑛 ]

 
 
 
 
 

 

(2.6) 
 
Previous studies [6] have shown that the dynamic motion is dominantly contributed 
by the hydrodynamic forces. Therefore, for the purpose of dynamic study, only 
hydrodynamic forces are considered in this thesis.  
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Hydrodynamic forces on slender structure can be estimated by Morison’s equation 
[7]. The wave force dF, on a slender cylindrical element with diameter D and length 
ds is estimated as, 
 

𝑑𝑭 = {

𝑑𝑓𝑥
𝑑𝑓𝑦
𝑑𝑓𝑧

} = {
1

2
𝜌𝐶𝐷𝐷(𝑣𝑛 − 𝑟𝑛) [

𝑣𝑥,𝑛 − 𝑟̇𝑥,𝑛
𝑣𝑦,𝑛 − 𝑟̇𝑦,𝑛
𝑣𝑧,𝑛 − 𝑟̇𝑧,𝑛

] + 𝜌
𝜋

4
𝐷2𝐶𝑀 [

𝑎𝑥,𝑛 − 𝑟̈𝑥,𝑛
𝑎𝑦,𝑛 − 𝑟̈𝑦,𝑛
𝑎𝑧,𝑛 − 𝑟̈𝑧,𝑛

]} 𝑑𝑠 

(2.7) 
Where, 

 𝑑𝑭 or {

𝑑𝑓𝑥
𝑑𝑓𝑦
𝑑𝑓𝑧

}  is the wave force vector, 𝜌 is the density of water, 𝐶𝑀  is the mass 

coefficient and 𝐶𝐷  is the drag coefficient, [

𝑟̈𝑥,𝑛
𝑟̈𝑦,𝑛
𝑟̈𝑧,𝑛

]and [

𝑟̇𝑥,𝑛
𝑟̇𝑦,𝑛
𝑟̇𝑧,𝑛

] are the acceleration and 

velocity vector of the slender element, [

𝑎𝑥,𝑛
𝑎𝑦,𝑛
𝑎𝑧,𝑛

] is the water particle acceleration normal 

to the slender element component in each direction, and 𝑣𝑛  or [

𝑣𝑥,𝑛
𝑣𝑦,𝑛
𝑣𝑧,𝑛

] is the water 

particle velocity normal to the slender element in each direction. 
 
A graphical representation of the water particle velocity normal to the slender 
member is given in figure 2.1. 

 
Figure 2.1 a graphical representation of water particle velocity normal to the slender 
element 
 
Implement (2.7) into (2.1), the component 𝑓𝑠𝑖 of the structural external force vector 

𝑭𝒔(𝑡, 𝑹̈, 𝑹̇) we obtain, 
 

𝑓𝑠𝑖 = 𝛼1,𝑖|𝑣𝑛 − 𝑟̇𝑛|(𝑣𝑛𝑖 − 𝑟𝑛̇𝑖) + 𝛼2,𝑖(𝑣𝑛̇𝑖 − 𝑟𝑛̈𝑖) 

(2.8) 
 

Where, for convenience, 𝛼1,𝑖 , and 𝛼2,𝑖  are denoted as the drag and inertia term 

coefficient of the displacement 𝑖  respsectively, where 𝛼1,𝑖 =
1

2
𝜌𝐶𝐷𝐷  and 𝛼2,𝑖 =

𝜌
𝜋

4
𝐷2𝐶𝑀 

 

As observed from (2.9), the external force 𝑓𝑖 depends on both the water particle’s 
motion and the structural motion, which leads to an implicit form of the model. In 
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engineering practice, this coupled hydrodynamic forces’ model usually is 
approximated as the decoupled hydrodynamic force plus two correction terms on the 
mass and damping matrix of the structure. In mathematics, this approximation can 
be expressed as,  
 

𝑓𝑠𝑖 = 𝛼1,𝑖|𝑣𝑛 − 𝑟̇𝑛|(𝑣𝑖 − 𝑟̇𝑖) + 𝛼2,𝑖(𝑣̇𝑖 − 𝑟̈𝑖) ≈ 𝛼1,𝑖|𝑣𝑛|𝑣𝑖 + 𝛼2,𝑖𝑣̇𝑖 − 𝑐𝑑𝑙𝑖𝑟̇𝑖 − 𝛼2,𝑖𝑟̈𝑖 

(2.9) 
 

Where, the term 𝑐𝑑𝑙 is the equivalent hydrodynamic damping. 
 
Substitute (2.9) into (2.1) and (2.2), the decoupled physical model can now be 
expressed in an explicit form, 
 
 

𝑴𝑹̈ + 𝑪𝑹̇ + 𝑲𝑹 = 𝑭(𝑡) 
 

(2.10) 
 

Where, the terms 𝑴,𝑪 are the mass matrix and the damping matrix including the 
hydrodynamic effects. Compared with 𝑴𝑺, 𝑪𝒔, 𝑴,𝑪 includes the term 𝛼2,𝑖𝑟̈𝑖 and 𝑐𝑑𝑙𝑖𝑟̇𝑖 

in equation (2.9) 
 

The DNV offshore specialized software Sesam-GenieTM, is used for this comparative 
study. The mechanism of this software is illustrated in figure 2.2. Sesam-GenieTM 
adopts different packages for the hydrodynamic force and the structure calculation: 
Package WajacTM is used for the hydrodynamic forces’ calculations and package 
SestraTM is used for structural responses’ calculations.  
 

 
Figure 2.2 an illustration of the DNV-GenieTM analysis procedures 

 
 
Due to the limitation of software used in this comparative study, the decoupled 
hydro-structural model (2.10), instead of the coupled model, is adopted throughout 
the study.  
 
 
To perform a dynamic analysis on the hydro-structural model, six analysis methods 
are recommended by DNV [8], which are, 
 
A: Stochastic non-linear dynamic (Time-domain methods) 
B: Deterministic non-linear dynamic 
C: Stochastic linear dynamic (Frequency-domain methods) 
D: Deterministic non-linear static (Quasi-static methods) 
E: Stochastic linear static 
F: Deterministic linear static 
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However, none of those dynamic analysis methods is perfect in nature. Overall 
speaking, those methods are all facing the dilemma between the accuracy and the 
efficiency. A higher efficiency is compensated by the simplification of the method, 
which results in the sacrifice of the accuracy.  
 
Among these methods, method A, C and D are selected in this comparative study for 
following reasons: 
 

(1) The method A, C and D are the most commonly used in the dynamic analysis. 
The studies carried out by DNV, Atkins and SBM are performed by the 
method A, C and D respectively. By performing the comparative study on 
those three methods, the validation of the previous studies can be easily 
judged. 
 

(2) The comparative study between method A, C and D are believed to be most 
representative. There are three major differences between these six 
recommended methods: stochastic vs. deterministic; non-linear vs. linear; 
static vs. dynamic. Those differences can be fully reflected in this comparative 
study. 

 
(3) The DNV-GenieTM, the software used in this comparative study is initially built 

based on the A, C and D methods. By adopting these three methods, the 
comparative study can be performed conveniently. 
 
 

To sum up, the decoupled hydro-structural model is adopted in this comparative 
study. Three dynamic analysis methods, quasi-static method, frequency-domain 
method and time-domain method are selected for the comparison. In remaining part 
of this chapter, the analysis philosophy of QS, FD, and TD methods will be 
introduced respectively. 
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2.2 Quasi-static method (QS) 
 
 
In this section, the analysis philosophy of the quasi-static method is presented, the 
basic idea of quasi-static method, the concepts of the external loads and the inertia 
loads are introduced respectively. 
 
2.2.1 Basic idea 
 
To understand the quasi-static method, the basic forms of the dynamic and static 
analysis need to be presented first. For a dynamic analysis, as demonstrated in 
(2.11), the system can be expressed as follow, 
 

𝑴𝑹̈ + 𝑪𝑹̇ + 𝑲𝑹 = 𝑭(𝑡) 
 

(2.10) 
 

For a static analysis, no acceleration and velocity terms are involved. Hence, a static 

analysis only consists of two parts: the restoring force 𝑲𝑹 (represents the structural 
deformation) and the external load 𝑭, expressed as, 
 

𝑲𝑹𝒔𝒕𝒂𝒕𝒊𝒄 = 𝑭𝒔𝒕𝒂𝒕𝒊𝒄 
(2.11) 

 
The basic idea of quasi-static dynamic analysis methods is to estimate the dynamic 
motion as an extension of the static status. Through this treatment, the dynamic 
analysis is represented by a static analysis, and hence can be solved easier and 
faster. Therefore, quasi-static method is commonly used in basic design and initial 
dynamic estimation.  
 
To fulfill this idea, the equation (2.11) is represented by a static analysis. 
 

𝑲𝑹𝒒𝒔 = 𝑭𝒒𝒔 

(2.12) 
 
Where, the terms 𝑹𝒒𝒔 and 𝑭𝒒𝒔 are the equivalent static displacement and external 

force vector, which reflect the dynamic effect.  
 
Implement (2.12) into (2.10), the equivalent external force vector 𝑭𝒒𝒔 is estimated in 

such way that it contains the effect of true external force 𝑭(𝑡) and dynamic-induced 

terms 𝑴𝑹̈ + 𝑪𝑹̇. A typical estimation of 𝑭𝒒𝒔 is given as follows [8], 

 
𝑭𝒒𝒔 = 𝑭𝒎𝒂𝒙 − 𝑭𝐼 

(2.13) 
 

Where, the term 𝑭𝒎𝒂𝒙  is the extreme external load; the term 𝑭𝐼  is the maximum 
“inertia load” which will acted on the COG of the platform. Figure 2.3 presents a 
demonstration of the load distribution for the quasi-static analysis.  
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In the remaining part of this section, the calculation procedures of 𝑭𝒎𝒂𝒙  and 𝑭𝐼 are 
presented separately.  
 

 
Figure 2.3 the demonstration of the load distribution of the quasi-static analysis 

 

2.2.2 The maximum external force 𝑭𝒎𝒂𝒙  calculation 
 
For the quasi-static analysis, or deterministic non-linear static analysis according to 
ref [8], the calculation of the external force vector  𝑭(𝑡)  is represented by an 
equivalent single wave load, instead of the true stochastic wave load. A higher order 
wave, stokes 5th waves are recommended in this calculation and the status when the 
reaction force is maximum is selected. The conversion and calculation methods are 
widely studied and presented in Appendix I. 
 

The characteristics of the maximum external force  𝑭𝒎𝒂𝒙  calculation are highlighted 
as follows. 
 

(1) Hydrodynamic nonlinearities are included in this calculation, which are the 
wave non-linearity, non-linear drag forces and the true free surface treatments.  
 

(2) Because the real stochastic force calculation is represented by equivalent 
single wave load, thus there are deviations between true hydrodynamic loads 
and single wave loads. 
 

(3) This calculation is very fast. 
 
 

2.2.3 The inertia force 𝑭𝐼 calculation 
 
 
Instead of involving complex real-time dynamic calculation, quasi-static approach 
estimates the inertia-induced load via dynamic amplitude factor (DAF). The 

estimation of the inertia force 𝑭𝐼  is given as following equation [8] 
 

𝑭𝐼 = 𝑄𝐴(𝐷𝐴𝐹 − 1) 
(2.14) 
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Where, the term 𝑄𝐴 is the amplitude of the base shear force Q, as demonstrated in 
figure 2.3  
 

𝑄𝐴 =
1

2
(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) 

(2.15) 
 

Where, the 𝑄𝑚𝑎𝑥  and 𝑄𝑚𝑖𝑛  are the maximum and minimum base shear force 
throughout the analysis. 
 
The dynamic amplitude factor (DAF) refers to the ratio of the maximum dynamic 
response to the maximum static response. Several techniques can be applied to 
estimate the DAF’s value. Among those, the simplified DAF estimation method is 
generally recommended [8]. 
 
The basic idea of this simplified DAF estimation method is to simplify the hydro-
structural model into a SDOF system with one frequency excitation. Therefore, DAF 
is calculated for each natural period of the jack up structure [8]: 
 

𝐷𝐴𝐹 =
1

√[1 − (
𝑇0
𝑇 )

2

]

2

+ (2𝜉
𝑇0
𝑇 )

2

 

 
(2.16) 

Where  

𝑇0= natural period 

𝑇= period of variable load 
𝜉=damping ratio 
 
The simplified DAF can also be estimated with a stochastic excitation. Waves are 
stochastic in nature. The DAF estimation with single frequency may fail to be 
representative and hence it is reasonable to include the stochastic excitation into the 
dynamic estimation.  
 
Holding the SDOF system assumption, the DAF is estimated as follows. 
 

𝐷𝐴𝐹𝑠 =
∆𝑠𝑖𝑔,𝑑𝑦𝑛𝑎𝑚𝑖𝑐

∆𝑠𝑖𝑔,𝑠𝑡𝑎𝑡𝑖𝑐 
=
2√∫ 𝐻𝑑𝑦𝑛

2 (𝜔)𝑆(𝜔)𝑑𝜔
∞

0

2√∫ 𝐻𝑠𝑡𝑎𝑡𝑖𝑐
2 (𝜔)𝑆(𝜔)𝑑𝜔

∞

0

 

 
(2.17) 

 
Where: 
∆𝑠𝑖𝑔,𝑑𝑦𝑛𝑎𝑚𝑖𝑐, ∆𝑠𝑖𝑔,𝑠𝑡𝑎𝑡𝑖𝑐 are the significant displacement from the dynamic analysis and 

the static analysis. 𝐻𝑑𝑦𝑛(𝜔), 𝐻𝑠𝑡𝑎𝑡𝑖𝑐(𝜔) are the transfer functions for the dynamic and 

the static analysis.  
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The transfer function for dynamic analysis is given as  
 

𝐻𝑑𝑦𝑛(𝜔) =
1

√(𝐾 −𝑀𝜔2)2 +𝜔2𝐶2
 

(2.18) 
 
The transfer function for static analysis is given as 
 

𝐻𝑠𝑡𝑎𝑡𝑖𝑐(𝜔) =
1

𝐾
 

(2.19) 
 

Where, the equivalent stiffness 𝐾 is estimated from topside’s mass 𝑀 and natural 
period 𝑇0, given as 
 

𝐾 = 𝑀
4𝜋2

𝑇0
2  

(2.20) 
 

The equivalent damping 𝐶 estimated from damping ratio 𝜉, is given as 
 

𝐶 = 2𝜉√𝐾𝑀 
(2.21) 

 
In the dynamic analysis of the Yme MOPUstor, the damping ratio is estimated as 3%. 
 

The characteristics of the inertia force 𝑭𝐼 calculation are highlighted as follows. 
 

(1) The calculation of the inertia force is estimated via the global performance of 
the platform. This calculation is quite fast and acceptable when the dynamic 
influence is not sensitive. 

 
(2) For resonant condition, where inertia load is very sensitive to dynamic 

properties of platform, DAF estimation can be always too conservative 
compared with real situation. 
 

(3) The inertia load is estimated only according to the COG of the platform. This 
estimation is so rough that cannot reflect the real load distribution of the 
inertia effect. 
 

(4) The phase shift between inertia load and wave load is not considered in the 
inertia load estimation. Therefore, the inertia load may overestimate the load 
situation. 
 

(5) As a “static” inertia load, this method is unsuitable for fatigue calculation. 
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2.3 Frequency-domain Method (FD) 
 
 

In this section, the analysis philosophy of the FD method is presented, the basic idea 
of the FD method and its application on the decoupled hydro-structural model are 
introduced respectively. 
 
2.3.1 Basic idea: excitation, response and transfer function 
 
 
The basic idea of the frequency-domain methods is to separate the real motion of 
the displacement into a series of discretized harmonic motions. By linearizing the 
total system, the relation between wave and displacement can be established for 
each harmonic component, with respect to its amplitude and phase shifts 
 
The objective considered in the frequency-domain methods can be identified as 
figure 2.4. 

 
Figure 2.4 representation of a system 

 
Where, these terminologies can be defined as follows, 
 

(1) System: the physical and mathematical model of the interaction 
(2) Excitation: the input of the system 
(3) Response: the output of the system 

 
The traditional frequency domain is defined in the field of a linear system. The 
characteristics of a linear system are highlighted as follows. 
 

(1) No non-linear term can be involved in the system. 
(2) The principle of superposition: the excitation component at a specific 

frequency only influences the response at same frequency.  
(3) For the component at a specific frequency, the response amplitude is 

proportional to the force amplitude and the phase shift is not dependent on 
the force amplitude. 

 
These dynamic characteristics can be represented as a complex transfer 

function𝐻(𝜔) . A transfer function is defined as the harmonic response due to 
harmonic excitation of unit excitation, e.g. 
 

If the excitation component 𝑓 at frequency 𝜔𝑖𝑖 is given as, 
 

𝑓(𝑡) = 𝐴𝑓ii
cos (𝜔𝑖𝑖𝑡 + 𝜃𝑖𝑖) 

(2.22) 
 
Where  𝐴𝑓ii

 , 𝜔𝑖𝑖  and 𝜃𝑖𝑖  are the amplitude, frequency and initial phase of this 

excitation component.  
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Then, the response 𝑟 will be, 
 

𝑟𝑖 = 𝐴𝑟𝑖𝑖Re{|𝐻(ω𝑖𝑖)|e
𝑖(𝜔𝑖𝑖𝑡+𝛿𝑖𝑖+𝜃𝑖𝑖)} = 𝐴𝑟𝑖𝑖|𝐻(ωii)| cos(𝜔𝑖𝑖𝑡 + 𝛿𝑖𝑖 + 𝜃𝑖𝑖) 

(2.23) 
 

Where transfer function 𝐻(ωi) is defined as  
The real part of transfer function H :𝐻𝑟(ω𝑖𝑖) ;  
The imagine part of transfer function H :𝐻𝑖(ωii) ; 

The amplitude of transfer function H : |𝐻(ω𝑖𝑖)| = √𝐻𝑟(ω𝑖𝑖)2 + 𝐻𝑖(ω𝑖𝑖)2  

The phase shift of transfer function 𝛿(ω𝑖𝑖) = 𝑎𝑡𝑎𝑛(
𝐻𝑖(ω𝑖𝑖)

𝐻𝑟(ω𝑖𝑖)
) 

 
2.3.2 The analysis methodology on the decoupled hydro-structural model 
 
For the FD analysis of the Yme MOPUstor’s model, the system can be identified as 
figure 2.5, 
 

 
 

Figure 2.5 identification of the decoupled hydro-structural system in FD analysis 
 
The discretized stochastic wave is presented as, 
 

𝜂 = ∑𝐴𝑖𝑖 cos(𝜔𝑖𝑖𝑡 + 𝜃𝑖𝑖)

𝑚

𝑖𝑖=1

 

 
(2.24) 

 
Where, 𝜂 is the surface elevation at origin, 𝐴𝑖𝑖 , 𝜔𝑖𝑖, 𝜃𝑖𝑖 is the amplitude, frequency and 
initial phase angle at the frequency component 𝑖𝑖 , m is the total number of the 
dicretization. 
 
The discretized external force is presented as, 
 

𝑓𝑖 = ∑𝐴𝑓𝑖𝑖𝑖
cos (𝜔𝑖𝑖𝑡 + 𝛿𝑓𝑖𝑖𝑖

+ 𝜃𝑖𝑖)

𝑚

𝑖𝑖=1

 

 
(2.25) 

 
Where, 𝑓𝑖 is the external force at displacement 𝑖, 𝐴𝑓𝑖𝑖𝑖

, 𝛿𝑓𝑖𝑖𝑖
 is the amplitude, shifted 

phase angle at the frequency component 𝑖𝑖 
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The discretized displacement 𝑟𝑖 is presented as, 
 

𝑟𝑖 = ∑𝐴𝑟𝑖𝑖𝑖
cos (𝜔𝑖𝑖𝑡 + 𝛿𝑟𝑖𝑖𝑖

+ 𝜃𝑖𝑖)

𝑚

𝑖𝑖=1

 

(2.26) 
 
Where, 𝑟𝑖 is the ith displacement, 𝐴𝑟𝑖𝑖𝑖

, 𝛿𝑟𝑖𝑖𝑖
 is the amplitude, shifted phase angle at 

the frequency component 𝑖𝑖 
 
The current-induced response is calculated separately at static analysis. 
 
 
As observed in figure 2.5, the FD dynamic analysis on Yme MOPUstor can be 
divided into two steps. 
 

(1) Step I: Wave 𝜂  to External load 𝑓 calculation, two non-linearity sources are 
involved in this calculation: drag force and wave-varying elevation. 
 

(2) Step II: External load 𝑓 to Structure response 𝑟𝑖 calculation, no non-linearity 
source is involved in this calculation 

 
In Step I, the hydrodynamic non-linearity needs to be linearized before the 
calculation. For the free surface linearization, a constant surface elevation, instead of 
the time-varying elevation, is assumed in this calculation. For the drag force 
linearization, two methods are generally proposed [8]. 
 
Method I linearized the drag term with respect to the reference wave height 𝐻𝑟𝑒𝑓 [10], 

expressed as, 
 

𝛼1|𝑣𝑛𝑖|𝒗𝑛𝑖 ≈ 𝛼1 |𝑣𝑛,𝑚𝑎𝑥𝑖| 𝒗𝑛𝑖 

(2.27) 
 
Where 
 𝒗𝑛𝑖   is the undisturbed velocity of the fluid normal to the member for the 

displacement 𝑟𝑖, as discussed in section 2.1. 

 |𝑣𝑛,𝑚𝑎𝑥𝑖| is the absolute value of the maximum velocity of the fluid normal to the 

member of the displacement 𝑟𝑖 during one cycle of a wave with the reference wave 
height 𝐻𝑟𝑒𝑓. 

 
Method II linearized the drag term based on the study of Leon.E.Borgman [11], 
expressed as, 
 

𝛼1|𝑣𝑛𝑖|𝒗𝑛𝑖 ≈ 𝛼1𝜎𝑢√
8

𝜋
𝒗𝑛𝑖 

(2.28) 
Where 𝜎𝑢 is the standard deviation of the regular sinusoidal velocity. 
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In this comparative study, two methods will be analyzed. 
 
In Step II, the calculation is quite straightward. The direct harmonic response method 
or the modal superposition methods may be used in this calculation [12].  
 
By connecting these two steps, the transfer function 𝐻𝑖(𝜔𝑖𝑖) directly from wave to 
structure response is established. In practice, this transfer function is calculated with 
respect to a certain reference wave height 𝐻𝑟𝑒𝑓  and then applied for all the sea 

states. 
 

𝐻𝑖(𝜔𝑖𝑖) = 𝐻𝑖𝑖(ωii) + 𝒋𝐻𝑖𝑟(ωii) 

(2.29) 
 
Where 𝐻𝑖𝑖(ωii) and 𝐻𝑖𝑟(ωii) are defined as 

 

{
 
 

 
 √𝐻𝑖𝑟(ωii)

2 +𝐻𝑖𝑖(ωii)
2 =

𝐴𝑟𝑖𝑖𝑖
𝐴𝑖𝑖

𝑎𝑡𝑎𝑛 (
𝐻𝑖𝑖(ωii)

𝐻𝑖𝑟(ωii)
) = 𝛿𝑟𝑖𝑖𝑖

(ωii)

 

(2.30) 
 
In hydrodynamics, the ratio of the response amplitude 𝐴𝑟𝑖𝑖𝑖

 to the wave amplitude 𝐴𝑖𝑖 

is referred to the response amplitude operator (RAO), where RAO is a function of the 
wave’s frequency. 
 

𝑅𝐴𝑂𝑖(𝜔𝑖𝑖) =
𝐴𝑟𝑖𝑖𝑖
𝐴𝑖𝑖

= √𝐻𝑖𝑟(ωii)
2 + 𝐻𝑖𝑖(ωii)

2 

(2.31) 
 
By performing the spectrum and statistics analysis, the maximum value of the 
response within return period can be estimated. Two statistics analysis methods, the 
long-term statistics method and the short-term statistics method are proposed in this 
thesis. More details are attached in Appendix II. 
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The procedures of the frequency-domain calculation can be summarized in figure 2.6. 
 

 
 

Figure 2.6 the procedures of the frequency-domain dynamic analysis method 
 
 
The characteristics of the frequency-domain methods can be highlighted as follows. 
 

(1) As a “real” dynamic analysis, the accurate load distribution can be established. 
 

(2) Non-linear terms are linearized in this calculation, such as the free surface 
variation, the drag force. These linearizations induce uncertainties. 
 

(3) The FD calculation is quite fast. Following the principle of superposition, the 
transfer functions only need to be calculated once, and then can be easily 
applied to all the sea states.  
 

(4) Suitable for both fatigue and extreme value predication. 
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2.4 Time-domain Method (TD) 
 
 

In this section, the analysis philosophy of the time-domain method is presented. The 
basic ideas of the TD method, Newmark-beta algorithm and its analysis methodology 
on the decoupled hydro-structural model are introduced respectively. 

 
2.4.1 Basic idea: Discretized time and status 

 
The idea of time-domain calculation is based on the time discretization. The first step 
of time-domain is to discretize the continuous motions into the status at the 
discretized time points. Three concepts, continuous status, time step and discretized 
status are denoted here. 

 
(1) Continuous status is referred to the status (the force, wave and displacement 

etc.) in the continuous time history t, e.g. 
 

𝑡 → 𝜂(𝑡), 𝑓𝑖(𝑡), 𝑟𝑖(𝑡), 𝑟̇𝑖(𝑡), 𝑟̈𝑖(𝑡), …  
(2.32) 

 
(2) Discretized status is referred to the status (the force, wave and displacement 

etc.) in the discretized time point 𝑡𝑗, e.g. 

 

𝑡𝑗 → 𝜂(𝑡𝑗), 𝑓𝑖(𝑡𝑗), 𝑟𝑖(𝑡𝑗), 𝑟̇𝑖(𝑡𝑗), 𝑟̈𝑖(𝑡𝑗), …  

(2.35) 
 

(3) Time step is referred to the time gap between time point, e.g. 
 

Δ𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗 

(2.36) 
 
As time being discretized, the basic idea of time-domain is based on the discretized 
time status: the discretized status at time point 𝑡𝑗 is calculated based on the status at 

previous time point 𝑡𝑗−1 . Such kinds of iteration are performed for each time point till 

the end, and thus the motions in discretized time history are obtained. 
 
For the time-domain calculation, fully hydrodynamic forces are calculated directly at 
each time point, while the structural response is calculated by using numerical 
algorithm. 
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2.4.2 Numerical algorithm 
 
The iteration calculations are executed by applying the numerical algorithms, among 
which the Newmark-beta method is the most commonly used in Structural dynamics 
[12] [13]. 
 
The Newmark-beta method is based on the Taylor expansion of velocity and 
acceleration at one time step. As, shown in eqn (5.18), for one response, the status 
at time point 𝑡𝑗+1 is approximated by its Taylor expansion at time point 𝑡𝑗, 

 

𝑟𝑖𝑗+1 = 𝑟𝑖𝑗 + Δ𝑡𝑗𝑟𝑖𝑗̇ +
Δ𝑡𝑗

2

2
𝑟𝑖𝑗̈ +

Δ𝑡𝑗
3

6
𝑟𝑖𝑗⃛ + 𝑂(4) 

(2.37) 
 

𝑟𝑖̇𝑗+1 = 𝑟𝑖𝑗̇ + Δ𝑡𝑗𝑟𝑖𝑗̈ +
Δ𝑡𝑗

2

2
𝑟𝑖𝑗⃛ + 𝑂(3) 

(2.38) 
 
Where 𝑟𝑖𝑗+1, 𝑟𝑖̇𝑗+1 The displacement 𝑟𝑖  and velocity 𝑟𝑖̇  at time point 

𝑡𝑗+1 respectively 

 𝑟𝑖𝑗 , 𝑟𝑖𝑗̇, 𝑟𝑖𝑗̈, 𝑟𝑖𝑗⃛ The displacement 𝑟𝑖, velocity 𝑟𝑖̇, acceleration 𝑟𝑖̈ and 
jerk 𝑟𝑖⃛ of response at 𝑡𝑗 respectively. 

 𝑂(3), 𝑂(4) The term with order higher than 3,4 
 

Among those, the higher order term effects are estimated as a weight of the jerk 
term, as shown below, 
 

𝑟𝑖𝑗+1 = 𝑟𝑖𝑗 + Δ𝑡𝑗𝑟𝑖𝑗̇ +
Δ𝑡𝑗

2

2
𝑟𝑖𝑗̈ +

Δ𝑡𝑗
3

6
𝑟𝑖𝑗⃛ + 𝑂(4) ≈ 𝑟𝑖𝑗 + Δ𝑡𝑗𝑟𝑖𝑗̇ +

Δ𝑡𝑗
2

2
𝑟𝑖𝑗̈ + 𝛽

Δ𝑡𝑗
3

6
𝑟𝑖𝑗⃛ 

 
(2.39) 

 

𝑟𝑖̇𝑗+1 = 𝑟𝑖𝑗̇ + Δ𝑡𝑗𝑟𝑖𝑗̈ +
Δ𝑡𝑗

2

2
𝑟𝑖𝑗⃛ + 𝑂(3) ≈ 𝑟𝑖𝑗̇ + Δ𝑡𝑗𝑟𝑖𝑗̈ +

Δ𝑡𝑗
2

2
𝛾𝑟𝑖𝑗⃛ 

(2.40) 
 
Where the jerk term is estimated as, 
 

𝑟𝑖𝑗⃛ =
𝑟𝑖𝑗+1̈ − 𝑟𝑖𝑗̈
Δ𝑡𝑗

 

(2.40) 
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Table 2.1 shows the possible combinations of the 𝛾 and 𝛽 values. Among those, the 
linear acceleration method is adopted in this comparative study. 
 

Table 2.1. the possible values of 𝜸 and 𝜷 

Method 𝜸 𝜷 

Central difference method 0.5 0 

Fox-Goodwin method 0.5 1/12 

Linear acceleration method 0.5 1/6 

Constant average acceleration method 0.5 1/4 

 
Furthermore, the selection of time step is important. The time step needs to be set 
small enough to reflect the motion at certain frequency [14].  It is recommended to be 
1/25 of the interesting frequency [14]. 
 
 
2.4.3 The analysis methodology on the decoupled hydro-structural model 
 
 
Similar to the frequency-domain calculation, the TD analysis of the decoupled hydro-
structural model is divided into three steps. 
 

(1) Step I: discretized external load calculations (Fully non-linear Morison’s 
equation) 

 
(2) Step II: discretized structural response calculations (Newmark-beta method) 

 
(3) Step III: post-processing 

 
Step I and Step II have been well explained in the previous section, while step III is 
analyzed statistically. A study has been carried out on the goodness of fit of several 
possible statistics methods in extreme value predication [14]. In this study, the 
generalized extreme distribution model is adopted and explained in Appendix II. 

 
To sum up, the characteristics of the time-domain methods can be highlighted as 
follows. 

 
(1) Most accurate method in principle: involved all the non-linearity and dynamic 

effect. 
 

(2) Most time-consuming 
 

(3) Complicated post-processing, may be sensitive to the selected time-step 
 

(4) Facing the convergence problem and may effected by the transition motion 
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2.5 Summary 
 
In this chapter, the decoupled hydro-structural model is introduced and adopted as 
the reference model in the comparative study 
 

𝑴𝑹̈ + 𝑪𝑹̇ + 𝑲𝑹 = 𝑭(𝑡) 
 
Three general accepted methods are selected in this comparative study 

(1) Stochastic non-linear dynamic (Time-domain methods) 
(2) Stochastic linear dynamic (Frequency-domain methods) 
(3) Deterministic non-linear static (Quasi-static methods) 

 
Quasi-static method is a common method used for the determination of the extreme 
response. So-called quasi-static, as its name, treats the dynamic analysis as an 
extension of the static analysis. The inertia-induced load is estimated as the static 
load via so-called dynamic amplitude factor or DAF. DAF is the ratio of the maximum 
dynamic response to the maximum static response. Several techniques can be 
applied to estimate DAF, such simplified DAF method.  
 
Frequency-domain (FD) approach is another commonly used method in the dynamic 
analysis regarding its advantages. Instead of considering the motions as a quasi-
static status or in time-history, FD approach treats the motions as a series of 
harmonic motions. The conventional “frequency-domain” or frequency-domain 
method for linearized system, each component of the excitations has only one 
corresponding response with the same frequency, following the principle of 
superposition. Frequency-domain is generally used in fatigue limit state analysis and 
may be applied in ultimate analysis. 
 
Time-domain approach is the most accurate and most complex method in structural 
dynamic calculation. The mechanism of time-domain is based on the iteration over 
time steps, e.g. status (excitations and their corresponding response ) at the current 
time point is calculated based on the status at the previous time point. Such 
iterations is performed numerically till the end. Time-domain is the most widely 
applied but most time consumed. 
 
The details of the post-processing are attached in Appendix II. 
 
A brief summary of the characteristics of those three methods is presented in table 
2.2. 
 

Table 2.2 the characterizes of quasi-static, frequency-domain and time-domain methods 

Method External Force  Dynamic  Post Processing Time 
Consuming drag force inertia 

Force 
free 
surface 
treatment 

Quasi-
static 

Non-
linear 

Accurate Non-linear Estimated No need Very fast 

Frequency
-domain 

linearized Accurate Linearized Accurate Rayleigh 
distribution 

fast 

Time-
domain 

Non-
linear 

Accurate Non-linear Numerical Generalized 
extreme value 
distribution 

Very slow 



36 
 

3.0 HIGHER ORDER FREQUENCY DOMAIN METHOD (HFD) 

 

This chapter presents, a new dynamic analysis method, the higher order frequency 
domain (HFD) method. It is begun with the polynomial approximation of the non-
linear term and then the applications on both SDOF and MDOF system. The 
techniques on the computation improvement are also provided in this chapter. This 
new method has been applied on both SDOF and MDOF system.  
 
 
3.1 Overview 
 
 
As discussed in Chapter 2, all of the traditional dynamic analysis methods are 
imperfect in nature, facing the dilemma between the accuracy and the efficiency. In 
this study, the investigations have been carried out on the improvement of the 
traditional methods, especially the frequency domain method. For this reason, the 
higher order frequency domain (HFD) method is created.  
 
The basic idea of the higher order frequency domain (HFD) method is to 
approximate the non-linear terms as the higher order polynomial functions, and 
calculate those higher order terms by using the higher order transfer functions.   
 

Taking an example of a cubic excitation, if we have a harmonic input 𝑓 with the 

amplitude of A and the frequency of 𝜔, the cubic excitation 𝑓3 can be treated as a 
linear summation of four complex terms. Then the non-linear problem is converted 
into a linear problem. 
 

 
 Three characteristics of the higher order frequency domain method are highlighted 
as follows. With those characteristics, the HFD method may be served as another 
dynamic analysis option in the future. 
 

(1) The analysis of the HFD method is limited to the decoupled hydro-structural 
model. 

 
(2) The drag-forces and the free surface elevations are approximated as the 

higher order polynomial functions. 
 

(3) The phenomenon of the frequency-shifts can be predicted in the HFD method. 
 
In additions, some differences between the traditional dynamic analysis methods can 
be explained by the HFD methods qualitatively and quantitatively, especially the 
influence of linearization in the traditional frequency-domain method. Those 
differences will be discussed in Chapter 4 and Chapter 6. 
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3.2 The approximation of the non-linear terms 
 
 
To begin with, the issue of non-linear terms’ approximation is discussed. 
 
The core of the HFD method is the non-linear terms’ approximation.  As mentioned 
in previous section, the non-linear terms, the drag-forces and the free surface 
elevation, are approximated as some polynomial functions. Hence, the results from 
the HFD method are valid only if those polynomial functions’ approximation are 
representative. Therefore, those approximations are significantly important and need 
to be discussed first. 
 
In this section, the polynomial approximation of the drag term and the free surface 
elevation effect are discussed respectively. 
 
 

3.2.1 The polynomial approximation of the drag term 𝑣|𝑣| 
 
 
As presented in the Chapter 2, the decoupled hydrodynamic force on each element 
can be expressed as follow, 
 

𝑑𝑭 = 𝛼1|𝑣𝑛|𝒗𝑛 + 𝛼2𝒗̇𝑛 
(3.1) 

 

Where the 𝑑𝑭 is the external force vector in x,y,z, direction, 𝒗𝑛 is the fluid’s velocity 
vector normal to the element in x,y,z direction. 𝛼1 and 𝛼2 are the simplified drag and 
inertia coefficients respectively, as indicated in equation (2.9). 
 
As observed from (3.1), the non-linearity of the hydrodynamic forces comes from the 
quadratic drag term in the Morison’s equation. Although the drag term is normally 
called “quadratic”, the drag term is actually the influence by those infinite higher 
order terms, due to the presents of the absolute value operation. 
 
For the purpose of the approximation, the drag term is approximated as a polynomial 
function with finite order terms, as shown in equation (3.2) and equation (3.3). Here, 
due to the symmetry of the absolute terms, only odd terms exist in this 
approximation. 

𝑑𝑭 ≈ 𝛼1(𝑝1 + 𝑝3𝑣𝑛
2 + 𝑝5𝑣𝑛

4 + 𝑝7𝑣𝑛
6 +⋯)𝒗𝑛 + 𝛼2𝒗̇𝑛 

(3.2) 
 
Or  

|𝑣𝑛|𝑣𝑛 = (𝒗𝑛 ∙ 𝒗𝑛)𝑣𝑛 ≈ (𝑝1 + 𝑝3𝑣𝑛
2 + 𝑝5𝑣𝑛

4 + 𝑝7𝑣𝑛
6 +⋯)𝑣𝑛 

(3.3) 
 

This approximation is carried out in such way: The values of the absolute term |𝑣𝑛| 
are discretized by the step of 0.001m/s, within a certain range. The polynomial 
functions with a certain order accuracy are adopted to fit those discretized value. 
Those curve fittings are performed by using MatlabTM curve fitting toolbox with the 
maximum likelihood function method (MLE). 
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Table.3.1 shows the accuracy of the curve fittings with different fitting ranges and 
different fitting orders. As observed from the table 3.1, both the fitting range and the 
fitting order affect the accuracy. The validation of a longer fitting range is 
compensated by the reduction of the overall accuracy. Besides, the resolution of the 
fitting for a certain range is improved by the increase of the fitting order. 
 

Table3.1.Root mean squared error (RMSE) for different fitting ranges and 
different fitting orders 

Order\Range +/-5m/s +/-10m/s +/-15m/s +/-20m/s +/-25m/s 

1st order fitting 1.4463 2.8896 4.3333 5.7764 7.2198 

3rd order fitting 0.3618 0.7226 1.0836 1.4443 1.8051 

5th order fitting 0.1811 0.3615 0.542 0.7224 0.9027 

7th order fitting 0.1133 0.226 0.3388 0.4516 0.5643 

 
The 3rd order fitting within +/-20m/s fitting range is recommended with reasons. First, 
the typical range of the fluid’s velocity in hydrodynamic calculation is within +/- 20 
m/s.  Second, as observed in table 3.1, compared with the 1st order fitting (linearized 
drag force), the 3rd order fitting improves the accuracy of 75%, the 5th order fitting 
improves the accuracy of 87.5%. The amount of computation increased significantly 
from 3rd order fitting to 5th order fitting. Therefore, the 3rd order fitting is 
recommended. 
 
For the 3rd order fitting within +/-20m/s fitting range, the coefficients of this 
approximation are estimated as, (within 95% confidence) 
 

𝑝1 = 6.25 (6.234, 6.266) 
 

𝑝3 = 0.03646 (0.0364,0.03652) 
(3.4) 

Or 
 

|𝑣𝑛|𝑣𝑛 ≈ 6.25𝑣𝑛 + 0.03646𝑣𝑛
3 

(3.5) 
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Figure 3.1 shows the plot of the |𝑣𝑛|𝑣𝑛, the 1st order approximation, and the 3rd order 
approximation. From the plot, it is observed that the 3rd order approximation 
significantly improves the accuracy of the curve fitting compared with linear fitting. 
The 3rd order approximation is believed to be accurate enough for the engineering 
applications. 
 

 
Figure 3.1 the plot of the |𝑣𝑛|𝑣𝑛, linear, cubic and fifth approximation. 

 
 
To sum up, the total Morison’s force within +/- 20m/s can be approximated as a 
linear term plus a cubic term, expressed as, 
 

𝑑𝑭 ≈ 𝛼1(6.25 + 0.03646𝑣𝑛
2)𝒗𝑛 + 𝛼2𝒗̇𝑛 = (6.25𝛼1𝒗𝑛 + 𝛼2𝒗̇𝑛) + 0.03646𝛼1(𝒗𝑛 ∙ 𝒗𝑛)𝒗𝑛 

 
(3.6) 

 

𝑑𝑭 ≈ 𝑑𝑭(1) + 𝑑𝑭(3) 
 

(3.7) 
 

Where 𝑑𝑭(1)refers to the linear part of the force, 𝑑𝑭(3) refers to the cubic part of the 
force. 
 
Previous studies has shown some similar approaches [15]. However, this 
approximation is developed independently in this study and is different from the other 
methods, in principle.  
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3.2.2 Free surface elevation approximation 
 
 
The approximation of the free surface elevation effect is difficult. First, the nodes 
effects by the free surface elevation are varying stochastically due to the stochastics 
wave loads. Second, the magnitude of the free surface-induced wave loads is 
difficult to be expressed. Therefore, the effect of the free surface elevation can only 
be roughly estimated. 
 
The studies by X.Y.Zheng and C.Y.Liaw [15] propose a quadratic approximation of 
free surface elevation. By using the knowledge of Taylor series expansion, the 
inundation force due to varying free surface elevation can be represented by a 
'concentrated load', acting on the structure at the mean water level. Their studies 
focus on the legs along the vertical direction and the directing spectrum calculation, 
instead of the higher order transfer function. 
 
In this approximation, the z=0 is set at the mean water level for convenience. The 
inundation force due to varying free surface elevation is expanded into 3D-frame and 
can be expressed as, 
 

𝑭𝒆𝒊 = ∫ 𝒇(𝑠)𝑑𝑠
𝑠𝜂

0

= ∫ 𝒇(
1

𝑝𝑧
𝑧)
1

𝑝𝑧
𝑑𝑧

𝜂

0

 

 
(3.8) 

 
Where Fei is the inundation force vector, 𝑠𝜂 and 𝜂 are the surface elevation along the 

member direction and z-direction respectively,  𝒇 is the Morison’s force, 𝑝𝑧  is the 
projection of member length s into z-axis. E.g 
 

𝑧 = 𝑝𝑧𝑠 
 

(3.9) 
 
Applying the Taylor expansion into (3.8) at z=0, we have 
 

𝑭𝒆𝒊 = ∫ 𝒇(
1

𝑝𝑧
𝑧)
1

𝑝𝑧
𝑑𝑧

𝜂

0

≈ 0 + 𝒇(0)
1

𝑝𝑧
𝜂 +

𝜕𝒇(0)

𝜕𝑧

1

𝑝𝑧

𝜂2

2
+⋯ 

 
(3.10) 
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As observed in equation (3.8), the effect of the inundation force is approximated as a 
polynomial ‘concentrated’ load acted on the mean water level. However, the study by 
X.Y.Zheng and C.Y.Liaw [15] , only gives the correction on the total force, without 
consideration of the load distribution. Therefore, besides this concentrated force, a 
correction term on moment also needs to be applied at same location, as shown in 
figure 3.2. 

 
Figure 3.2 the graphic representation of the approximation of the free surface effect 

 
The moment effect of the inundation forces about the mean water level can be 
presented as, 
 

𝑴𝒆𝒊 = ∫ 𝒇(𝑠) × 𝒏𝑠𝑠 𝑑𝑠
𝑠𝜂

0

= ∫ 𝒇(
1

𝑝𝑧
𝑧) × 𝒏𝑠

𝑧

𝑝𝑧2
𝑑𝑧

𝜂

0

 

 
(3.11) 

 

Where, the term 𝑴𝒆𝒊 is the moment of the inundation force about the mean water 
level, 𝒏𝑠 is the unit direction along the member element. 
 
Applying the Taylor expansion into (3.11) at z=0, we have 
 

𝑴𝒆𝒊 = ∫ 𝒇(
1

𝑝𝑧
𝑧) × 𝒏𝑠

𝑧

𝑝𝑧2
𝑑𝑧

𝜂

0

≈ 0 + 0 + 𝒇(0) × 𝒏𝑠
𝜂2

2𝑝𝑧
2 +⋯ 

 
(3.12) 

 
As discussed in section 3.2.1, the Morison force can be approximated as a linear 

term 𝒇𝟏(𝑠) plus a cubic term 𝒇𝟑(𝑠), express as  
 

𝒇(𝑠) ≈ 𝒇(𝟏)(𝑠) + 𝒇(𝟑)(𝑠) 
 

(3.13) 
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Based on the study in previous section, the cubic effect inside the drag term is far 
more smaller than the linear effect inside the drag term. Therefore, the interaction 
between and cubic part in drag force and the higher order part in the free surface 
effect are in a level higher than 5th order and hence can be ignored. 
 
Substitute (3.9) into (3.11) and (3.12), ignoring the term higher than 3rd order, we 
have 
 

𝑭𝒆𝒊 ≈ (𝒇
(𝟏)(0) + 𝒇(𝟑)(0))

1

𝑝𝑧
𝜂 +

𝜕

𝜕𝑧
(𝒇(𝟏)(0) + 𝒇(𝟑)(0))

1

𝑝𝑧

𝜂2

2
+⋯

≈ 𝒇(𝟏)(0)
1

𝑝𝑧
𝜂 +

𝜕𝒇(𝟏)(0)

𝜕𝑧

1

𝑝𝑧

𝜂2

2
 

(3.14) 
 

𝑴𝒆𝒊 ≈ 0 + 0 + (𝒇
(𝟏)(0) + 𝒇(𝟑)(0)) × 𝒏𝑠

𝜂2

2𝑝𝑧
2 +⋯ ≈ 𝒇

(𝟏)(0) × 𝒏𝑠
𝜂2

2𝑝𝑧
2 

(3.15) 
 

The term “
𝜕𝒇𝟏(0)

𝜕𝑧

1

𝑝𝑧

𝜂2

2
” in equation (3.14) is debatable for the 1st order stochastic wave. 

The 1st order stochastic wave, as used in this study is based on the superposition of 
the Airy waves, in which there is no definition for the waves above the mean water 

level. Therefore, the term “
𝜕𝒇𝟏(0)

𝜕𝑧
”, in principle, cannot be defined within the 1st order 

accuracy. The higher order wave theory, such as the 2nd order stochastic wave 
model, can induce the expression of this derivation. In this study, this derivation term 
will not be introduced, and hence the estimation of those inundation effects is limited 
to the 2nd order accuracy. 
 
To handle the discontinuity of the velocity’s profile, the wheeler wave treatment may 
be adopted here. As introduced in Appendix I, the wheeler stretched treatment [7] 
calculates wave kinematics at the mean water level at the true surface and its 
corresponding distribution down to the seabed is stretched accordingly. Therefore, 
there is no discontinuity occurs between the velocity above and below the MSL. 
 
Assume a vertical pipe is fixed at seabed and extended into a level far beyond the 
mean water level. Then the hydrodynamic load on it can be expressed as, 
 

𝐹 = ∫ 𝑓 (
𝑧 − 𝜂

1 +
𝜂
𝑑

)𝑑𝑧
𝜂

−𝑑

= ∫ 𝑓(
𝑧 − 𝜂

1 +
𝜂
𝑑

)𝑑𝑧
0

−𝑑

+∫ 𝑓(
𝑧 − 𝜂

1 +
𝜂
𝑑

)𝑑𝑧
𝜂

0

 

(3.16) 
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For application in offshore industry, the wave elevation 𝜂 is relative small to the water 

depth d. Therefore, the Taylor expansion is applied to approximate the term “ 
𝑧−𝜂

1+
𝜂

𝑑

 ”, 

expressed as, 
 

𝑧 − 𝜂

1 +
𝜂
𝑑

= (𝑧 − 𝜂)
1

1 +
𝜂
𝑑

≈ (𝑧 − 𝜂)(1 −
𝜂

𝑑
+ (
𝜂

𝑑
)
2

− (
𝜂

𝑑
)
3

+⋯) 

(3.17) 
 
With the Taylor expansion at z=0, then the equation (3.16) can be rewritten as, 
 

𝐹 = ∫ 𝑓 (
𝑧 − 𝜂

1 +
𝜂
𝑑

)𝑑𝑧
𝜂

−𝑑

≈ ∫ 𝑓 ((𝑧 − 𝜂)(1 −
𝜂

𝑑
+ (
𝜂

𝑑
)
2

− (
𝜂

𝑑
)
3

+⋯))𝑑𝑧
0

−𝑑

+ 𝑓 ((0 − 𝜂)(1 −
𝜂

𝑑
+ (
𝜂

𝑑
)
2

− (
𝜂

𝑑
)
3

+⋯))𝜂 

(3.18) 
 
 
The verifications of the free surface elevation’s approximation are difficult. A 3D 
model needs to be built and a serious sensitivity study needs to be carried out. A 
simple verification are given in chapter 4. 
 
To sum up, the effect of the free surface elevation can be approximated as a 
concentrated force and a concentrated moment at the mean water level. Combining 
the cubic approximation of the drag term, the concentrated force and the moments 
are given as, 
 

𝑭𝒆𝒊 ≈ 𝒇
(𝟏)(0)

1

𝑝𝑧
𝜂 + 0(2) → 𝑭𝒆𝒊

(𝟐) 

(3.19) 
 

𝑴𝒆𝒊 = 𝒇
(𝟏)(0) × 𝒏𝑠

𝜂2

2𝑝𝑧
2 + 0(4) → 𝟎 

(3.20) 
  



44 
 

3.3 The application on SDOF system 
 
 
In this section, the application of the HFD method on the single degree of freedom 
(SDOF) system is presented. In this application, the effect of the drag term is 
presented in this system, while the effect of the free surface elevation is not 
considered. 
 
For the better understanding, the following situation is assumed. As presented in 

figure 3.3, a pipe with a total mass of m0 is horizontally fixed on a frame inside the 
water and perpendicular to the 2D wave. The interaction between pipe and frame 

can be represented by an equivalent stiffness k and an equivalent dampingc0. The 
spectrum of the waves is assumed to be 𝑆𝜂𝜂(𝜔) and the velocity profile of the current 

is 𝑢𝑐(𝑧), with same direction of the waves. The coordinate of the system is fixed at 
sea bed, aligned perpendicular to the pipe. The mean sea level is z=d. The location 
of pipe is 𝑧 = 𝑧𝑝, 𝑥 = 𝑥𝑝 

 
Figure 3.3 the graphic representation of the assumed SDOF system 

 
The problem described above can be indentified as a SDOF system, expressed as 
 

𝑚0𝑥̈ + 𝑐0𝑥̇ + 𝑘𝑥 = 𝛼1|𝑣 − 𝑥̇|(𝑣 − 𝑥̇) + 𝛼2(𝑣̇ − 𝑥̈) 
 
 

 
𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝛼1|𝑣|𝑣 + 𝛼2𝑣̇ 

(3.21) 
 

Where 𝑟̈, 𝑟̇  and 𝑟  is the acceleration, velocity and displacement of the pipe in x 
direction. α1 𝑎𝑛𝑑 𝛼2  are the coefficients for the drag and inertia force, which are 
assumed to be constant. v and 𝑣̇ are the horizontal velocity and acceleration of the 
incoming water at (𝑥𝑝, 𝑧𝑝).  

 
With the decoupled hydro-structural model being established, the next action is to 
convert the fluid information 𝑆𝜂𝜂(𝜔) and 𝑢𝑐(𝑧) into the fluid’s velocity v. 
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For the 1st order stochastic wave [8], the horizontal velocity 𝑣 at pipe location (𝑥𝑝, 𝑧𝑝) 

is modelled as 
 

𝑣 = ∑𝐴𝑎,𝑖𝑖𝜔𝑖𝑖

𝑚

𝑖𝑖=1

cosh 𝑘𝑖𝑖𝑧𝑝

sinh 𝑘𝑖𝑖𝑑
cos(𝜔𝑖𝑡 − 𝑘𝑖𝑖𝑥𝑝 + 𝜙𝑖𝑖) 

(3.22) 
Where, 
𝐴𝑎,𝑖𝑖  The amplitude of the wave component ii, e.g. 𝐴𝑎,𝑖𝑖=√2𝑆𝜂𝜂(𝜔𝑖)Δ𝜔𝑖 

𝜔𝑖𝑖 The angular frequency of the wave component ii 

𝑘𝑖𝑖 The wave number of the wave component ii, e.g.  
𝜔𝑖𝑖

2 = 𝑔𝑘𝑖𝑖𝑡𝑎𝑛ℎ(𝑘𝑖𝑖𝑑) 
 

𝜙𝑖𝑖 Random phase, uniformly distributed between 0 and 2𝜋 
Δ𝜔𝑖 frequency band width associated with ω 

ii, i.e. Δ𝜔𝑖 = (𝜔𝑖+1  −  𝜔𝑖) 
𝑚  The total number of the discretized frequencies 

 
Convert (3.22) into the complex form, we have 
 

𝑣(𝑡) = ∑
𝐴𝑎,𝑖𝑖
2
𝜔𝑖𝑖

𝑚

𝑖𝑖=1

cosh 𝑘𝑖𝑖𝑧𝑝

sinh 𝑘𝑖𝑖𝑑
(𝑒𝒋(𝜔𝑖𝑡−𝑘𝑖𝑖𝑥𝑝+𝜙𝑖𝑖) + 𝑒−𝒋(𝜔𝑖𝑡−𝑘𝑖𝑖𝑥𝑝+𝜙𝑖𝑖))

= ∑
𝐴𝑎,𝑖𝑖
2
𝜔𝑖𝑖

𝑚

𝑖𝑖=1

cosh 𝑘𝑖𝑖𝑧𝑝

sinh 𝑘𝑖𝑖𝑑
𝑒−𝒋𝑘𝑖𝑖𝑥𝑝𝑒𝒋(𝜔𝑖𝑡+𝜙𝑖𝑖)

+∑
𝐴𝑎,𝑖𝑖
2
(−𝜔𝑖𝑖)

𝑚

𝑖𝑖=1

cosh(−𝑘𝑖𝑖𝑧𝑝)

sinh(−𝑘𝑖𝑖𝑑)
𝑒−𝒋(−𝑘𝑖𝑖)𝑥𝑝𝑒𝒋((−𝜔𝑖)𝑡+(−𝜙𝑖𝑖)) 

(3.23) 
 

From the knowledge of ocean waves, we know the surface elevation 𝜂 at origin (0, d) 
is  
 

𝜂 = ∑𝐴𝑎,𝑖𝑖cos (𝜔𝑖𝑡 + 𝜙𝑖𝑖)

𝑚

𝑖𝑖=1

= ∑
𝐴𝑎,𝑖𝑖
2
e𝒋(𝜔𝑖𝑡+𝜙𝑖𝑖) 

𝑚

𝑖𝑖=1

+∑
𝐴𝑎,𝑖𝑖
2
e𝒋(−𝜔𝑖𝑡−𝜙𝑖𝑖) 

𝑚

𝑖𝑖=1

 

(3.24) 
 
As observed from equation (3.23) (3.24),  the transfer function from the wave 
elevation to the fluid’s velocity component, 𝐻𝑤(𝜔, 𝑥, 𝑧),  can be defined for non-zero 
frequency component, expressed as  
 

𝐻𝑤(𝜔, 𝑥, 𝑧) = 𝜔
cosh 𝑘𝑧

sinh 𝑘𝑑
𝑒−𝒋𝑘𝑖𝑖𝑥, 𝜔 ≠ 0 

(3.25) 
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Then (3.23) can be rewritten as , 
 

𝑣(𝑡) = ∑𝐻𝑤(𝜔𝑖𝑖, 𝑥𝑝, 𝑧𝑝)
𝐴𝑎,𝑖𝑖
2
𝑒𝒋(𝜔𝑖𝑡+𝜙𝑖𝑖)

𝑚

𝑖𝑖=1

+∑𝐻𝑤(−𝜔𝑖𝑖, 𝑥𝑝, 𝑧𝑝)
𝐴𝑎,𝑖𝑖
2
𝑒𝒋((−𝜔𝑖)𝑡+(−𝜙𝑖𝑖))

𝑚

𝑖𝑖=1

 

(3.26) 
 
 

Hence, for each harmonic component 𝜂𝑖𝑖  of wave elevation, the corresponding 
horizontal velocity at pipe’s location will be, 
 

𝑣𝑖𝑖(𝑡) = 𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡 = 𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡 

(3.27) 
 

Where 𝐻𝑤,𝑝(𝜔𝑖𝑖) = 𝐻𝑤(𝜔𝑖𝑖, 𝑥𝑝, 𝑧𝑝) →  the transfer function from the wave to the 

velocity at pipe' s location,  𝐴𝑖𝑖 =
𝐴𝑎,𝑖𝑖

2
𝑒𝒋𝜙𝑖𝑖 

 

𝑣𝑖𝑖(𝑡) is the iith component of total velocity at pipe with amplitude 𝑉𝑖𝑖 and frequency 
𝜔𝑖𝑖, e.g. 
 

𝑣(𝑡) = ∑𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

= ∑𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

 

(3.28) 
 

The index of frequencies 𝜔𝑖𝑖 have been modified to involve the negative frequencies’ 
component and the current profile. Thus, the total number of frequencies are 
doubled. The current’s velocity can be treated as a harmonic input with a zero-
frequency,e.g. 
 

𝑢𝑐(𝑧𝑝) = 𝑉0𝑒
𝒋0𝑡 

(3.29) 
 
Where 𝑢𝑐(𝑧) is the velocity of current at pipe. Thus, 𝐻𝑤(𝜔, 𝑥, 𝑧)  at 𝜔 = 0 is defined 
based on the profile of the current. 
 

𝐻𝑤(0, 𝑥, 𝑧) =
𝑢𝑐(𝑧)

𝑢𝑐(𝑧 = 𝑑)
 

(3.30) 
 

𝐴0 = 𝑢𝑐(𝑧 = 𝑑) 
(3.31) 
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With the fluid’s velocity defined, its corresponding fluid’s acceleration can also be 
defined as, 

v(t)̇ = ∑ 𝒋𝜔𝑖𝑖𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

= ∑ 𝒋𝜔𝑖𝑖𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

 

(3.32) 
 
Thus the decoupled SDOF governing equation (3.21) can be rewritten as, 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1 |∑ 𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

| (∑𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

) + 𝛼2 (∑ 𝒋𝜔𝑖𝑖𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

) 

(3.33) 
 
Or  

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1 |∑𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

| (∑𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

)

+ 𝛼2 (∑ 𝒋𝜔𝑖𝑖𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

) 

(3.34) 
 
Substitute the drag term’s approximaton(3.5) into (3.33), the equation (3.33) can be 
rewritten as  
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1 [𝑝1∑𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

+ 𝑝3 (∑𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

)

3

] + 𝛼2 (∑ 𝒋𝜔𝑖𝑖𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

) 

(3.35) 
 
Expand 3rd order term in right hand side of (3.35),  we obtain the system, which 
consists of the linear and cubic excitations, 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = ∑(𝛼1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2)𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

+ 𝛼1𝑝3∑∑ ∑ 𝑉𝑖𝑖𝑉𝑗𝑗𝑉𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

2𝑚

𝑘𝑘=0

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

 

(3.36) 
 
The structure is assumed to be linear, thus the dynamic response of the structural 
follows the principle of the superpoistion. Therefore, the total response 𝑟(𝑡) can be 
treated as superposition of two parts: the resposne component due the linear part of 
the external force and the response component due the cubic part of the external 
force. 
 

𝑟(𝑡) = 𝑟1(𝑡) + 𝑟2(𝑡) 
(3.37) 

 

Where, 𝑟(𝑡) is the total response, 𝑟1(𝑡) is the response due to the linear part of the 
exitation, 𝑟2(𝑡) is the respone due to the cubic part of the exciation. 
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The response component 𝑟1(𝑡) is calculated form the linear part of the excitation, 
 

𝑟1(𝑡) = ∑(𝛼1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2)𝐻𝑠(𝜔𝑖𝑖)𝑉𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

 

(3.38) 
 
Or  
 

𝑟1(𝑡) = ∑(𝛼1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2)𝐻𝑠(𝜔𝑖𝑖)(𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡)

2𝑚

𝑖𝑖=0

 

(3.39) 
 

Where 𝐻𝑠(𝜔𝑖𝑖) is the structural transfer function of the SDOF system, well known as 
 

𝐻𝑠(𝜔𝑖𝑖) =
1

(𝑘 − 𝑚𝜔𝑖𝑖2) + 𝒋𝜔𝑖𝑖𝑐
 

(3.40) 
 

For this system, the 1st order transfer function 𝐻1(𝜔𝑖𝑖 ) from the wave to the 
structural responses can be defined as, 
 

𝐻1(𝜔𝑖𝑖 ) = (𝛼1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2)𝐻𝑠(𝜔𝑖𝑖)𝐻𝑤,𝑝(𝜔𝑖𝑖) 

(3.41) 
 

𝑟1(𝑡) = ∑𝐻1(𝜔𝑖𝑖 )𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=1

 

(3.42) 
 

The response component 𝑟2(𝑡)  is calculated from the cubic excitations. Each 

component of the cubic excitation 𝑉𝑖𝑖𝑉𝑗𝑗𝑉𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡 can be treated as a linear 

excitation with the amplitude of (𝑉𝑖𝑖𝑉𝑗𝑗𝑉𝑘𝑘) and the frequency of (𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘). 

The relations between the excitation and the response thus can be calculated via the 
traditional frequency domain knowledge, expressed as 
 

𝑟2(𝑡) = ∑ 𝛼1𝑝3𝐻𝑠(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)𝑉𝑖𝑖𝑉𝑗𝑗𝑉𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

2𝑚

𝑖𝑖=0

 

(3.43) 
 
  



49 
 

Or  

𝑟2(𝑡) = ∑ ∑ ∑ 𝛼1𝑝3𝐻𝑠(𝜔𝑖𝑖 + 𝜔𝑗𝑗

2𝑚

𝑘𝑘=0

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

+ 𝜔𝑘𝑘)𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐻𝑤,𝑝(𝜔𝑗𝑗)𝐻𝑤,𝑝(𝜔𝑘𝑘)(𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡)  

 
(3.44) 

 
In (3.44), the relations between the fluids and structural responses are estalished for 
the cubic excitaton. Here, the 3rd transfer function 𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘) can be defined as  

 

𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘) = 𝛼1𝑝3𝐻𝑠(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)𝐻𝑤,𝑝(𝜔𝑖𝑖)𝐻𝑤,𝑝(𝜔𝑗𝑗)𝐻𝑤,𝑝(𝜔𝑘𝑘) 

(3.45) 
 
Thus,  

𝑟2(𝑡) = ∑ ∑ ∑ 𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)(𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡)

2𝑚

𝑘𝑘=0

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

 

(3.46) 
 
As observed from (3.46), the arrangement of 𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘 doesn’t affect the value of 

𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘).  

 

To sum up, the total response 𝑟(𝑡) is given as , 
 

𝑟(𝑡) = 𝑟1(𝑡) + 𝑟2(𝑡)

= ∑𝐻1(𝜔𝑖𝑖 )𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=1

+∑ ∑ ∑ 𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)(𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡)

2𝑚

𝑘𝑘=0

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

 

(3.47) 
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3.4 The application on MDOF system 
 
 
In this section, the application of the HFD method is exteneded to the multidegree of 
system in 3D space. In this application, the effects of the non-linear drag force and 
the free surface elevation are included in this application. 
 
As introduced in Chapter 2, the 3D decoupled hydro-structural model is presented as 
follow, 
 

[
 
 
 
 
𝑚1,1 0

0 𝑚2,2
⋯

0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝑚𝑛−1,𝑛−1 0

0 𝑚𝑛,𝑛]
 
 
 
 

[
 
 
 
 
𝑟1̈
𝑟2̈
⋮
𝑟𝑛−1̈
𝑟𝑛̈ ]
 
 
 
 

+

[
 
 
 
 
𝑐1,1 𝑐1,2
𝑐2,1 𝑐2,2

⋯
𝑐1,𝑛−1 𝑐1,𝑛
𝑐2,𝑛−1 𝑐2,𝑛

⋮ ⋱ ⋮
𝑐𝑛−1,1 𝑐𝑛−1,2
𝑐𝑛,1 𝑐𝑛,2

⋯
𝑐𝑛−1,𝑛−1 𝑐𝑛−1,𝑛
𝑐𝑛,𝑛−1 𝑐𝑛,𝑛 ]

 
 
 
 

[
 
 
 
 
𝑟̇1
𝑟̇2
⋮
𝑟̇𝑛−1
𝑟̇𝑛 ]
 
 
 
 

+

[
 
 
 
 
𝑘1,1 𝑘1,2
𝑘2,1 𝑘2,2

⋯
𝑘1,𝑛−1 𝑘1,𝑛
𝑘2,𝑛−1 𝑘2,𝑛

⋮ ⋱ ⋮
𝑘𝑛−1,1 𝑘𝑛−1,2
𝑘𝑛,1 𝑘𝑛,2

⋯
𝑘𝑛−1,𝑛−1 𝑘𝑛−1,𝑛
𝑘𝑛,𝑛−1 𝑘𝑛,𝑛 ]

 
 
 
 

[
 
 
 
 
𝑟1
𝑟2
⋮
𝑟𝑛−1
𝑟𝑛 ]
 
 
 
 

=

[
 
 
 
 
𝑓1
𝑓2
⋮

𝑓𝑛−1
𝑓𝑛 ]
 
 
 
 

 

(3.48) 
 
Where the relevant symbols have been defined in Chapter 2. 
 
Similar to the SDOF’s applcation, the calculaton procedure consists of two steps. 
 

(1) Step I: The calculation of the transfer functions from the fluids to the 
hydrodynamic forces 

 
(2) Step II: The calculation of the transfer funcitons from the hydrodynamic forces 

to the strcutural responses. 
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3.4.1 Step I: The calculation of the transfer functions from the fluids to the 
hydrodynamic forces 

 
 
The transfer functions from the fluids to the hydrodynamic forces consist of two 
parts: the transfer functions of these Morison’s forces and the transfer functions of 
these varying surface induced forces. These calculations will be demonstrated 
respectively. 
 
To begin with, the fluids properties need to be studied. For a structure in the 3D 
frame [16], the potential function ϕ𝑖𝑖(𝑥, 𝑦, 𝑧, 𝑡)  of a harmonic incoming wave 

𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡can be expressed as follow,  

 

ϕ𝑖𝑖(𝑥, 𝑦, 𝑧, 𝑡) = Φ(𝜔𝑖𝑖, 𝑥, 𝑦, 𝑧)𝐴𝑖𝑖𝑒
𝒋𝜔𝑖𝑖𝑡 

(3.49) 
 
Where, including the current profile as the zero-frequency component, expressed as 
 

Φ(𝜔, 𝑥, 𝑦, 𝑧) = −𝒋
𝑔

2𝜔

cosh 𝑘𝑧

cosh 𝑘𝑑
𝑒−𝒋𝑘(𝑥𝑐𝑜𝑠𝜃𝑤+𝑦𝑠𝑖𝑛𝜃𝑤), 𝜔 ≠ 0 

(3.50) 
 

Φ(0, 𝑥, 𝑦, 𝑧) = (
𝑢𝑐(𝑧)

𝑢𝑐(𝑧 = 𝑑)
cos 𝜃𝑐 𝑥 +

𝑢𝑐(𝑧)

𝑢𝑐(𝑧 = 𝑑)
sin 𝜃𝑐 𝑦), 𝜔 = 0 

(3.51) 
 

Where, 𝜃𝑤 is the direction of the incoming wave with respect to the x-coordinate. 𝜃𝑐 
is the direction of the current with respect to the x-coordinate. Hence, the velocity at 
point (𝑥, 𝑦, 𝑧) is  
 

{
  
 

  
 𝑢𝑥,𝑖𝑖 =

𝜕𝜙𝑖𝑖
𝜕𝑥

=
𝜕Φ

𝜕𝑥
(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡

𝑢𝑦,𝑖𝑖 =
𝜕𝜙𝑖𝑖
𝜕𝑦

=
𝜕Φ

𝜕𝑥
(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡

𝑢𝑧,𝑖𝑖 =
𝜕𝜙𝑖𝑖
𝜕𝑧

==
𝜕Φ

𝜕𝑧
(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡

 

 
(3.52) 
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Combining the velocity at each frequency, the total velocity in 3D frame can be 
expressed as, 

{
 
 
 
 

 
 
 
 𝑢𝑥 = ∑

𝜕𝜙𝑖𝑖
𝜕𝑥

2𝑚

𝑖𝑖=0

= ∑
𝜕Φ

𝜕𝑥
(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

,

 𝑢𝑦 = ∑
𝜕𝜙𝑖𝑖
𝜕𝑦

2𝑚

𝑖𝑖=0

= ∑
𝜕Φ

𝜕𝑦
(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

,

𝑢𝑧 = ∑
𝜕𝜙𝑖𝑖
𝜕𝑧

2𝑚

𝑖𝑖=0

= ∑
𝜕Φ

𝜕𝑧
(𝜔𝑖𝑖)𝐴𝑖𝑖𝑒

𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

 

(3.53) 
 
With the velocity being defined, the 3D Morison’s force in frequency-domain needs to 
be determined. As presented in figure 3.4, for a structural beam member with 

segment (𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌), its normal direction 𝒏𝑠 is  
 

𝒏𝑠 =
𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌

𝑑𝑠
 

(3.54) 
Where 

𝑑𝒔 = (𝑑𝑥 𝑑𝑦, 𝑑𝑧) 
 

𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 
 

𝒗 = (𝑢𝑥 𝑢𝑦, 𝑢𝑧) 

(3.55) 
 

The velocity component 𝒗𝑡 in tangential direction is expressed as follow, 
 

𝒗𝒕 =
𝒗 ∗ 𝒅𝒔

𝑑𝑠2
(𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌) =

𝑢𝑥𝑑𝑥 + 𝑢𝑦𝑑𝑦 + 𝑢𝑧𝑑𝑧

𝑑𝑠2
(𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌) 

 
(3.56) 

 

Thus, the velocity component 𝑣𝑛 in normal direction is  
 

𝒗𝒏 = 𝒗 − 𝒗𝒕 
(3.57) 

 

Substitute (3.50), (3.51) into (3.52), we have 
 

𝒗𝒏 = 𝑢𝑥𝒊 + 𝑢𝑦𝒋 + 𝑢𝑧𝒌 −
𝑢𝑥𝑑𝑥 + 𝑢𝑦𝑑𝑦 + 𝑢𝑧𝑑𝑧

𝑑𝑠2
(𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌)

= (𝑢𝑥 −
𝑢𝑥𝑑𝑥 + 𝑢𝑦𝑑𝑦 + 𝑢𝑧𝑑𝑧

𝑑𝑠2
𝑑𝑥) 𝒊 + (𝑢𝑦 −

𝑢𝑥𝑑𝑥 + 𝑢𝑦𝑑𝑦 + 𝑢𝑧𝑑𝑧

𝑑𝑠2
𝑑𝑦) 𝒋

+ (𝑢𝑧 −
𝑢𝑥𝑑𝑥 + 𝑢𝑦𝑑𝑦 + 𝑢𝑧𝑑𝑧

𝑑𝑠2
𝑑𝑧)𝒌 

 (3.58) 
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Figure 3.4 a graphical representation of the water particle velocity normal to the 
slender element 
 
Substitute (3.52) into (3.58), we have 
 

𝒗𝒏(𝒕) = ∑((
𝜕Φ

𝜕𝑥
(𝜔𝑖𝑖) −

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑥 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑦 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑧

𝑑𝑠2
𝑑𝑥) 𝒊

𝟐𝒎

𝒊𝒊=𝟎

+ (
𝜕Φ

𝜕𝑦
(𝜔𝑖𝑖) −

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑥 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑦 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑧

𝑑𝑠2
𝑑𝑦) 𝒋

+ (
𝜕Φ

𝜕𝑧
(𝜔𝑖𝑖) −

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑥 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑦 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑧

𝑑𝑠2
𝑑𝑧)𝒌)𝐴𝑖𝑖𝑒

𝑗𝜔𝑖𝑖𝑡 

(3.59) 
 
Rewritten (3.59) via the transfer function from the fluids into velocities, we have 
 

𝒗𝒏(𝒕) = ∑(𝐻𝑣𝑛,𝑥(𝜔𝑖𝑖)𝒊 + 𝐻𝑣𝑛,𝑦(𝜔𝑖𝑖)𝒋 + 𝐻𝑣𝑛,𝑧(𝜔𝑖𝑖)𝒌)𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡

𝟐𝒎

𝒊𝒊=𝟎

 

(3.60) 
 
Where, the transfer functions are defined as  
 

𝐻𝑣𝑛,𝑥(𝜔𝑖𝑖) =
𝜕Φ

𝜕𝑥
(𝜔𝑖𝑖) −

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑥 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑦 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑧

𝑑𝑠2
𝑑𝑥 

 

𝐻𝑣𝑛,𝑦(𝜔𝑖𝑖) =
𝜕Φ

𝜕𝑦
(𝜔𝑖𝑖) −

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑥 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑦 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑧

𝑑𝑠2
𝑑𝑦 

 

𝐻𝑣𝑛,𝑧(𝜔𝑖𝑖) =
𝜕Φ

𝜕𝑧
(𝜔𝑖𝑖) −

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑥 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑦 +

𝜕Φ
𝜕𝑥
(𝜔𝑖𝑖)𝑑𝑧

𝑑𝑠2
𝑑𝑧 

(3.61) 
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As the normal velocity being defined, the cubic approximation of the Morison’s force 
can be rewritten as 
 

𝒇𝒔 = 𝛼1,𝑠|𝒗𝒏|𝒗𝒏 + 𝛼2,𝑠𝒗𝒏̇ ≈ 𝛼1,𝑠𝑝3(𝒗𝒏 ∙ 𝒗𝒏) ∙ 𝒗𝒏 + (𝛼1,𝑠𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑠)𝒗𝒏̇

≈ 𝛼1,𝑠𝑝3∑∑ (𝐻𝑣𝑛,𝑥(𝜔𝑖𝑖)𝐻𝑣𝑛,𝑥(𝜔𝑗𝑗) + 𝐻𝑣𝑛,𝑦(𝜔𝑖𝑖)𝐻𝑣𝑛,𝑦(𝜔𝑗𝑗)

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

+ 𝐻𝑣𝑛,𝑧(𝜔𝑖𝑖)𝐻𝑣𝑛,𝑧(𝜔𝑗𝑗))𝐴𝑖𝑖𝐴𝑗𝑗𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡)∑(𝐻𝑣𝑛,𝑥(𝜔𝑘𝑘)𝒊 + 𝐻𝑣𝑛,𝑦(𝜔𝑘𝑘)𝒋

𝟐𝒎

𝒊𝒊=𝟎

+ 𝐻𝑣𝑛,𝑧(𝜔𝑘𝑘)𝒌)𝐴𝑘𝑘𝑒
𝑗𝜔𝑘𝑘𝑡

+∑(𝛼1,𝑠𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑠)(𝐻𝑣𝑛,𝑥(𝜔𝑖𝑖)𝒊 + 𝐻𝑣𝑛,𝑦(𝜔𝑖𝑖)𝒋 + 𝐻𝑣𝑛,𝑧(𝜔𝑖𝑖)𝒌)𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡

𝟐𝒎

𝒊𝒊=𝟎

 

 
(3.62) 

 
Or in the form of the components in each direction, 
 
 

𝒇𝒔,𝒙 = 𝛼1,𝑠𝑝3∑∑ 𝐻𝑣𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐴𝑖𝑖𝐴𝑗𝑗𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

∑ 𝐻𝑣𝑛,𝑥(𝜔𝑘𝑘)𝐴𝑘𝑘𝑒
𝑗𝜔𝑘𝑘𝑡

2𝑚

𝑘𝑘=0

+∑(𝛼1,𝑠𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑠)𝐻𝑣𝑛,𝑥(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡 

 

𝒇𝒔,𝒚 = 𝛼1,𝑠𝑝3∑∑ 𝐻𝑣𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐴𝑖𝑖𝐴𝑗𝑗𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

∑ 𝐻𝑣𝑛,𝑦(𝜔𝑘𝑘)𝐴𝑘𝑘𝑒
𝑗𝜔𝑘𝑘𝑡

2𝑚

𝑘𝑘=0

+∑(𝛼1,𝑠𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑠)𝐻𝑣𝑛,𝑦(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡 

 

𝒇𝒔,𝒛 = 𝛼1,𝑠𝑝3∑∑ 𝐻𝑣𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐴𝑖𝑖𝐴𝑗𝑗𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

∑ 𝐻𝑣𝑛,𝑧(𝜔𝑘𝑘)𝐴𝑘𝑘𝑒
𝑗𝜔𝑘𝑘𝑡

2𝑚

𝑘𝑘=0

+∑(𝛼1,𝑠𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑠)𝐻𝑣𝑛,𝑧(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡 

 

(3.63) 
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Where, 𝐻𝑣𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗) is defined as, 

 

𝐻𝑣𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗) = 𝐻𝑣𝑛,𝑥(𝜔𝑖𝑖)𝐻𝑣𝑛,𝑥(𝜔𝑗𝑗) + 𝐻𝑣𝑛,𝑦(𝜔𝑖𝑖)𝐻𝑣𝑛,𝑦(𝜔𝑗𝑗) + 𝐻𝑣𝑛,𝑧(𝜔𝑖𝑖)𝐻𝑣𝑛,𝑧(𝜔𝑗𝑗) 

 
(3.64) 

 
Substitute equation (3.63) into the decoupled hydro-structural model, we have the 
components of the external force vector. 
 
 

𝑓𝑠,𝑖 = 𝛼1,𝑖𝑝3∑∑ 𝐻𝑣𝑛,𝑖(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐴𝑖𝑖𝐴𝑗𝑗𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

∑ 𝐻𝑣𝑛,𝑖(𝜔𝑘𝑘)𝐴𝑘𝑘𝑒
𝑗𝜔𝑘𝑘𝑡

2𝑚

𝑘𝑘=0

+∑(𝛼1,𝑖𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑖)𝐻𝑣𝑛,𝑖(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡

= 𝛼1,𝑖𝑝3∑∑ ∑ 𝐻𝑣𝑛,𝑖(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑖(𝜔𝑘𝑘)𝐴𝑖𝑖𝐴𝑗𝑗𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡𝐴𝑘𝑘𝑒

𝑗𝜔𝑘𝑘𝑡

2𝑚

𝑘𝑘=0

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

+∑(𝛼1,𝑖𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑖)𝐻𝑣𝑛,𝑖(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡 

(3.65) 
 
 
In addition of the Morison’s equation, the equivalent concentrated force of the 
varying free surface correction for the 1st order stochastic wave are calculated as  
 

𝐹𝑒𝑖𝑖0
= ∑(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡

1

𝑝𝑧𝑖0
𝜂𝑖0 

 
(3.66) 

 

Where 𝒊𝟎 refer to the nodes which is located at mean water level,  
 
𝑝𝑧𝑖0

 is the projection coefficient, the 𝜂𝑖0 is the surface elevation at node 𝑖0 , where 

𝜼𝒊𝟎  can be expressed as, 

 

𝜂 = ∑𝐴𝑎,𝑖𝑖cos (𝜔𝑖𝑖𝑡 + 𝜙𝑖𝑖 − 𝑘𝑖𝑖(𝑥0𝑐𝑜𝑠𝜃𝑤 + 𝑦0𝑠𝑖𝑛𝜃𝑤))

𝑚

𝑖𝑖=1

= ∑𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡 

2𝑚

𝑖𝑖=0

 

 
(3.67) 
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Where 𝑥0, 𝑦0  refers to the coordinate of the node i0, where the location transfer 
function 𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑖𝑖) is defined as 

 

𝐻𝜂𝑖0
(𝑥0, 𝑦0, 𝜔𝑖𝑖) = 𝑒

−𝒋𝑘𝑖𝑖(𝑥𝑐𝑜𝑠𝜃𝑤+𝑦𝑠𝑖𝑛𝜃𝑤), 𝑓𝑜𝑟 𝜔𝑖𝑖 ≠ 0 

(3.68) 
 

𝐻𝜂𝑖0
(𝑥0, 𝑦0, 𝜔𝑖𝑖) = 0, 𝑓𝑜𝑟 𝜔𝑖𝑖 = 0 

(3.69) 
 
To, sum up, the 𝐹𝑒𝑖𝑖0

 at node 𝑖0 can be expressed as, 

 
 

𝐹𝑒𝑖𝑖0
= ∑(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)

2𝑚

𝑖𝑖=0

𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡

1

𝑝𝑧𝑖0
∑𝐻𝜂𝑖0

(𝑥0, 𝑦0, 𝜔𝑖𝑖)𝐴𝑖𝑖𝑒
𝑗𝜔𝑖𝑖𝑡 

2𝑚

𝑖𝑖=0

= ∑∑(𝛼1,𝑖0𝑝1

2𝑚

𝑖𝑖=0

2𝑚

𝑖𝑖=0

+ 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)
1

𝑝𝑧𝑖0
𝐴𝑖𝑖𝑒

𝑗𝜔𝑖𝑖𝑡𝐴𝑗𝑗𝑒
𝑗𝜔𝑗𝑗𝑡 

(3.70) 
 
Till now, the transfer functions from the fluids to the hydrodynamic forces have been 
well defined. 
 
 
3.4.2 Step II: The calculation of the transfer funcitons from the hydrodynamic forces 

to the strcutural responses 
 
 
Similarly to the SDOF system, now the structural response of the MDOF system can 
be divided into three parts: the responses due to the linear excitation, the responses 
due to the quadratic excitation and the responses due to the cubic excitation. 
 
 

𝑹(𝑡) = 𝑹(1)(𝑡) + 𝑹(2)(𝑡) + 𝑹(3)(𝑡) 
 

(3.71) 
Where, 
 

The term 𝑹(1) refers to the structural responses due to the linear excitations. These 
linear excitations are mainly contributed by the inertia forces and the linear part of 
the drag force’s cubic approximations. 
 

The term 𝑹(2)  refers to the structural responses due to the quadratic excitations. 
These quadratic excitations are mainly contributed by the quadratic approximation of 
varying surface-induced forces. 
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The term 𝑹(3) refers to the structural responses due to the cubic excitations. Those 
cubic excitations are mainly contributed by the cubic part of the drag force’s cubic 
approximations. 
In the remaining part of this section, the calculation of the structural 

responses 𝑅1 𝑎𝑛𝑑 𝑅3  will be presented first. Then the calculation of 𝑅2 is provided. 
 

For the structural responses due to the linear excitations  𝑹(1), 
 

𝑀𝑹(1)̈ + 𝐶𝑹(1)̇ + 𝐾𝑹(1) = 𝑭(1) = ∑

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛,2(𝜔𝑖𝑖)[𝛼1,2𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,2]

⋮
𝐻𝑣𝑛,𝑛(𝜔𝑖𝑖)[𝛼1,𝑛𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑛]]

 
 
 
 

𝐴𝑖𝑖  𝑒
𝒋𝜔𝑖𝑖𝑡

2𝑚

𝑖𝑖=0

 

 

(3.72) 
  

 For the structural responses due to the cubic excitations  𝑹(3), 
 

𝑀𝑹(3)̈ + 𝐶𝑹(3)̇ + 𝐾𝑹(3) = 𝑭(3)

= ∑ ∑ ∑

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑛𝑝3]]

 
 
 
 

𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

2𝑚

𝑘𝑘=0

2𝑚

𝑗𝑗=0

2𝑚

𝑖𝑖=0

 

 
(3.73) 

 
The left hand side of those equations represents the linear structure. It is well known 
that, the structural responses of the linear structure follow the principle of 

superposition. For the structural responses due to the linear excitations   𝑹(1)  with 

frequency 𝜔𝑖𝑖,  we have 
 

𝑀𝑹(1)̈ + 𝐶𝑹(1)̇ + 𝐾𝑹(1) = (−𝑀𝜔𝑖𝑖 
2 + 𝒋𝜔𝑖𝑖𝐶 + 𝐾)

[
 
 
 
 
 
𝑅(1)1,𝑖𝑖

𝑅(1)2,𝑖𝑖
⋮

𝑅(1)𝑛−1,𝑖𝑖

𝑅(1)𝑛,𝑖𝑖 ]
 
 
 
 
 

𝑒𝒋𝜔𝑖𝑖𝑡 

 
(3.74) 

 

Where the term 𝑅(1)𝑛−1,𝑖𝑖 represents the amplitude of the displacement 𝑟𝑖 under the 

excitation’s frequency 𝜔𝑖𝑖.  
 
S(𝜔𝑖𝑖) is denoted as  
 

−𝑀𝜔𝑖𝑖
2 + 𝒋𝜔𝑖𝑖𝐶 + 𝐾 = S(𝜔𝑖𝑖) 

 
(3.75) 
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Thus, for each excitation’s frequency 𝜔𝑖𝑖, the structural responses due to the linear 
excitations  𝑅1 can be rewritten as, 
 

S(𝜔𝑖𝑖)

[
 
 
 
 
 
𝑅(1)1,𝑖𝑖

𝑅(1)2,𝑖𝑖
⋮

𝑅(1)𝑛−1,𝑖𝑖

𝑅(1)𝑛,𝑖𝑖 ]
 
 
 
 
 

𝑒𝒋𝜔𝑖𝑖𝑡 =

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]]

 
 
 
 

𝐴𝑖𝑖 𝑒
𝒋𝜔𝑖𝑖𝑡 

 
(3.76) 

 

Hence, the explicit form of the 𝑹(1) can be obtained, 
 

[
 
 
 
 
 
𝑅(1)1,𝑖𝑖

𝑅(1)2,𝑖𝑖
⋮

𝑅(1)𝑛−1,𝑖𝑖

𝑅(1)𝑛,𝑖𝑖 ]
 
 
 
 
 

= S−1(𝜔𝑖𝑖)

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]]

 
 
 
 

𝐴𝑖𝑖 

 
(3.77) 

 
To sum up, the 1st order transfer function 𝐻1,𝑖(𝜔𝑖𝑖) from the fluids to the structural 

responses for each displacement 𝑖 can be defined as  
 

[

𝐻1,1(𝜔𝑖𝑖)

𝐻1,2(𝜔𝑖𝑖)
⋮

𝐻1,𝑛(𝜔𝑖𝑖)

] = S−1(𝜔𝑖𝑖)

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]]

 
 
 
 

 

 
(3.78) 

 

For the structural responses due to the cubic excitations  𝑹(3), for each frequency 
combination𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘, 

 

S(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)

[
 
 
 
 
 
𝑅(3)1,𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑅(3)2,𝑖𝑖,𝑗𝑗,𝑘𝑘
⋮

𝑅(3)𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑅(3)𝑛−1,𝑖𝑖,𝑗𝑗,𝑘𝑘]
 
 
 
 
 

𝑒𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

=

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑠𝑝3]]

 
 
 
 

𝐴𝑖𝑖  𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡 

 
(3.79) 
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Hence, the explicit form of the 𝑹(3) can be obtained, 
 

[
 
 
 
 
 
𝑅(3)1,𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑅(3)2,𝑖𝑖,𝑗𝑗,𝑘𝑘
⋮

𝑅(3)𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑅(3)𝑛−1,𝑖𝑖,𝑗𝑗,𝑘𝑘]
 
 
 
 
 

= S−1(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑠𝑝3]]

 
 
 
 

𝐴𝑖𝑖  𝐴𝑗𝑗𝐴𝑘𝑘 

 
(3.80) 

 
 
To sum up, the 3rd order transfer function 𝐻3,𝑖(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘) from the fluids to the 

structural responses for each displacement 𝑖 can be defined as  
 

[
 
 
 
 
𝐻3,1(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)

𝐻3,2(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)

⋮
𝐻3,𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)]

 
 
 
 

= S−1(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑠𝑝3]]

 
 
 
 

 

 
(3.81) 

 
Modal analysis techniques can be applied to improve the computing efficiency 

of S−1(𝜔). Denote the eigenvectors [Φ] and corresponding eigenvalues [𝜆2], we have 
 

[𝚽]𝑻[𝑴][𝚽] = [𝑰] 
 

[𝚽]𝑻[𝑲][𝚽] = [𝝀𝟐] 
 

[𝐑] = [𝚽][𝑹∗] 
 

(3.82) 
Where [𝑹∗] are the response in the model coordinate. 
 
The damping matrix [𝑪] is assumed to be Rayleigh damping, the damping term thus 
can be treated as additional part of mass and stiffness matrix.  
 

[𝑪] = 𝛽1[𝑴] + 𝛽2[𝑲] 
 

(3.83) 
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Thus, the model for the responses due to the linear excitations 𝑹(1), can be rewritten 
as 
 

[Φ]T[−𝜔2(1 + 𝛽1)[M] + (1 + 𝛽2)[K]][Φ]

[
 
 
 
 
 𝑅

(1)∗ 1,𝑖𝑖

𝑅(1)
∗
2,𝑖𝑖

⋮

𝑅(1)
∗
𝑛−1,𝑖𝑖

𝑅(1)
∗
𝑛,𝑖𝑖 ]

 
 
 
 
 

= [Φ]T

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛,2(𝜔𝑖𝑖)[𝛼1,2𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,2]

⋮
𝐻𝑣𝑛,𝑛(𝜔𝑖𝑖)[𝛼1,𝑛𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑛]]

 
 
 
 

𝐴𝑖𝑖 

 

(3.84) 
 

[−𝜔2(1 + 𝛽1)[I] + (1 + 𝛽2)[λ
2]]

[
 
 
 
 
 𝑅

(1)∗ 1,𝑖𝑖

𝑅(1)
∗
2,𝑖𝑖

⋮

𝑅(1)
∗
𝑛−1,𝑖𝑖

𝑅(1)
∗
𝑛,𝑖𝑖 ]

 
 
 
 
 

= [Φ]T

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛,2(𝜔𝑖𝑖)[𝛼1,2𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,2]

⋮
𝐻𝑣𝑛,𝑛(𝜔𝑖𝑖)[𝛼1,𝑛𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑛]]

 
 
 
 

𝐴𝑖𝑖 

 
(3.85) 

 
 
 

Hence, the explicit form of the 𝑹(1)
∗
 can be obtained, 

 

[
 
 
 
 
𝑅 1,𝑖𝑖
𝑅2,𝑖𝑖
⋮

𝑅𝑛−1,𝑖𝑖
𝑅𝑛,𝑖𝑖 ]

 
 
 
 

= [Φ] [−𝜔2(1 + 𝛽1)[I]+ (1 + 𝛽2) [λ
2
]]
−1

[Φ]T

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛,2(𝜔𝑖𝑖)[𝛼1,2𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,2]

⋮
𝐻𝑣𝑛,𝑛(𝜔𝑖𝑖)[𝛼1,𝑛𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑛]]

 
 
 
 

𝐴𝑖𝑖 

 

(3.86) 
In expanded form, 
 

[
 
 
 
 
𝑅∗ 1,𝑖𝑖
𝑅∗2,𝑖𝑖
⋮

𝑅∗𝑛−1,𝑖𝑖
𝑅∗𝑛,𝑖𝑖 ]

 
 
 
 

= [Φ]

[
 
 
 
 
 
 
 

1

−𝜔2(1 + 𝛽1) + (1 + 𝛽2)λ1
2 0 0 0

0
0

1

−𝜔2(1 + 𝛽1) + (1 + 𝛽2)λ2
2 0

0 ⋱

0
0

0 0 0
1

−𝜔2(1 + 𝛽1) + (1 + 𝛽2)λ𝑛
2]
 
 
 
 
 
 
 

[Φ]T

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛,2(𝜔𝑖𝑖)[𝛼1,2𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,2]

⋮
𝐻𝑣𝑛,𝑛(𝜔𝑖𝑖)[𝛼1,𝑛𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑛]]

 
 
 
 

𝐴𝑖𝑖 

 
(3.87) 
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Thus the 1st order frequency response function can be rewritten as  
 

[

𝐻1,1(𝜔𝑖𝑖)

𝐻1,2(𝜔𝑖𝑖)

⋮
𝐻1,𝑛(𝜔𝑖𝑖)

]

= [Φ]

[
 
 
 
 
 
 
 

1

−𝜔2(1 + 𝛽1) + (1 + 𝛽2)λ1
2 0 0 0

0
0

1

−𝜔2(1 + 𝛽1) + (1 + 𝛽2)λ2
2 0

0 ⋱

0
0

0 0 0
1

−𝜔2(1 + 𝛽1) + (1 + 𝛽2)λ𝑛
2]
 
 
 
 
 
 
 

[Φ]T

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖)[𝛼1,1𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,1]

𝐻𝑣𝑛,2(𝜔𝑖𝑖)[𝛼1,2𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,2]

⋮
𝐻𝑣𝑛,𝑛(𝜔𝑖𝑖)[𝛼1,𝑛𝑝1 + 𝒋𝜔𝑖𝑖𝛼2,𝑛]]

 
 
 
 

 

 

(3.88) 
 
Similarly, the 3rd order frequency response function can be rewritten as  
 

[
 
 
 
 
𝐻3,1(𝜔𝑖𝑖 , 𝜔𝑗𝑗 , 𝜔𝑘𝑘)

𝐻3,2(𝜔𝑖𝑖 , 𝜔𝑗𝑗 , 𝜔𝑘𝑘)

⋮
𝐻3,𝑛(𝜔𝑖𝑖 , 𝜔𝑗𝑗 , 𝜔𝑘𝑘)]

 
 
 
 

= [Φ]

[
 
 
 
 
 
 
 

1

−(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)2(1 + 𝛽1) + (1 + 𝛽2)λ1
2 0 0 0

0
0

1

−(𝜔𝑖𝑖 +𝜔𝑗𝑗 + 𝜔𝑘𝑘)2(1 + 𝛽1) + (1 + 𝛽2)λ2
2 0

0 ⋱

0
0

0 0 0
1

−(𝜔𝑖𝑖 +𝜔𝑗𝑗 +𝜔𝑘𝑘)2(1 + 𝛽1) + (1 + 𝛽2)λ𝑛
2
]
 
 
 
 
 
 
 

[Φ]T

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖 , 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖 , 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖 , 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑠𝑝3]]

 
 
 
 

 

 
(3.89) 

 
To now, the 1st order and 3rd order transfer function are obtained. 
 
For the 2nd transfer function, the nodes at the mean water level need to be identified 
before the calculation. This identification process can be represented an operator (𝑖) 
, 
 

𝛿(𝑖) = {
1, 𝑖𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑚𝑒𝑎𝑛 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 

       0, 𝑖𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑚𝑒𝑎𝑛 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙
 

 
(3.90) 

 

Then the structural responses due to the quadratic excitations  𝑹(2) are expressed 
as, 
 

𝑀𝑹(2)̈ + 𝐶𝑹(2)̇ + 𝐾𝑹(2) = 𝑭(2)

= ∑ ∑

[
 
 
 
 
 
 
 𝛿(1)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)

1

𝑝𝑧𝑖0

𝛿(2)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)
1

𝑝𝑧𝑖0
⋮

𝛿(𝑛)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)
1

𝑝𝑧𝑖0]
 
 
 
 
 
 
 

2𝑚

𝑗𝑗=0

𝐴𝑖𝑖𝐴𝑗𝑗  𝑒
𝒋(𝜔𝑖𝑖+𝜔𝑗𝑗)𝑡

2𝑚

𝑖𝑖=0

 

 
(3.91) 
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Similar to the calculation of the 1st order and 3rd order transfer functions, the 2nd 
transfer function for those selected displacements can be expressed as,  
 

[
 
 
 
 
𝐻2,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)

𝐻2,2(𝜔𝑖𝑖, 𝜔𝑗𝑗)

⋮
𝐻2,𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)]

 
 
 
 

= S−1(𝜔𝑖𝑖 +𝜔𝑗𝑗

+𝜔𝑘𝑘)

[
 
 
 
 
 
 
 𝛿(1)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)

1

𝑝𝑧𝑖0

𝛿(2)
(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(

𝑥0, 𝑦0, 𝜔𝑗𝑗)
1

𝑝𝑧𝑖0
⋮

𝛿(3)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(
𝑥0, 𝑦0, 𝜔𝑗𝑗)

1

𝑝𝑧𝑖0]
 
 
 
 
 
 
 

 

(3.92) 

[
 
 
 
 
𝐻2,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)

𝐻2,2(𝜔𝑖𝑖, 𝜔𝑗𝑗)

⋮
𝐻2,𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)]

 
 
 
 

= [Φ]

[
 
 
 
 
 
 
 

1

−(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)2(1 + 𝛽1) + (1 + 𝛽2)λ1
2 0 0 0

0
0

1

−(𝜔𝑖𝑖 +𝜔𝑗𝑗 + 𝜔𝑘𝑘)
2(1 + 𝛽1) + (1 + 𝛽2)λ2

2 0

0 ⋱

0
0

0 0 0
1

−(𝜔𝑖𝑖 +𝜔𝑗𝑗 + 𝜔𝑘𝑘)
2(1 + 𝛽1) + (1 + 𝛽2)λ𝑛

2
]
 
 
 
 
 
 
 

 

[Φ]T

[
 
 
 
 
 
 
 𝛿(1)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)

1

𝑝𝑧𝑖0

𝛿(2)
(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)

1

𝑝𝑧𝑖0
⋮

𝛿(3)(𝛼1,𝑖0𝑝1 + 𝑗𝜔𝑖𝑖𝛼2,𝑖0)𝐻𝑣𝑛,𝑖0(𝜔𝑖𝑖)𝐻𝜂𝑖0(𝑥0, 𝑦0, 𝜔𝑗𝑗)
1

𝑝𝑧𝑖0]
 
 
 
 
 
 
 

 

 

(3.93) 
 
Till now the 2nd order transfer function is defined. 
 
To sum up, in this section, the 1st order, 2nd order and 3rd order transfer function from 
the fluids to the structural responses are derived for the multi degree of freedom 
system. The total procedure consists of two steps. 
 
The step I is the transformation from the wave and current information to the 
hydrodynamic loads. This step includes the 3D potential functions of the fluid’s 
accelerations and velocities, Morison’s force conversion and free surface-induced 
force. 
 
The step II is the calculation from external force vector to the structural displacement 
vector. This step includes the calculation of the 1st order transfer functions (induced 
by the inertia and linear part of the drag force), the 2nd order transfer functions 
(induced by free surface induced force) and the 3rd order transfer functions (induced 
by the cubic part of the drag force). 
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3.5 The techniques on the improvement of the computation efficiency 
 
 
The orders of the transfer function greatly affect the efficiency of the computation. 
Taking the 3rd order transfer function as an example, the number of the 3rd order 
transfer functions need to be calculated depends on the number of discrete 
frequencies. However, a large number of discrete frequencies may result in an 
extremely large amount of the 3rd order transfer functions. 
 
To estimate the computation time, first, the properties of the 3rd order transfer 
function need to be studied. The total number of the 3rd transfer function need to be 
calculated for m discretized frequencies are, 
 

𝑁3 = (2𝑚 + 1) ∗ (2𝑚 + 1) ∗ (2𝑚 + 1) 
(3.94) 

 
As observed from (3.94), the total number of the 3rd transfer function may become 
incredible large with a fine discretization of the wave spectrum. Taking 60 discretized 
frequencies as an example, then the N3 will equal 1,771,561 (assuming 30s for each 
calculation, then the total time will be 2years!), which is totally unacceptable for 
computer calculation.  
 
Therefore, three techniques are proposed to improve the calculation efficiency, 
which are 
 

(1) The symmetry properties of the transfer functions 
(2) Pre-assessment of the transfer functions 
(3) Frequency re-discretization for the higher order transfer functions 

 
These techniques will be presented respectively. 
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3.5.1 The symmetry properties of the transfer functions 
 
 
From the equations (3.63) (3.79),   it is clear that the 3rd transfer functions have the 
following property. 
 

𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘) = 𝐻3(𝜔𝑗𝑗, 𝜔𝑖𝑖, 𝜔𝑘𝑘) 

(3.95) 
 
In addition, the response will be in real space if the excitation is in real space. Then 

the transfer function set with negative and positive of same frequency value 𝜔𝑖𝑖 +
𝜔𝑗𝑗 + 𝜔𝑘𝑘, will be, 

 

𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝑗(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

+ 𝐻3(−𝜔𝑖𝑖, −𝜔𝑗𝑗, −𝜔𝑘𝑘)𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
−𝑗(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

→ |𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)|𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘 cos [(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)𝑡

+ 𝑎𝑛𝑔𝑙𝑒 (𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘))] 

 
(3.96) 

 
In imagine part, 
 

𝐼𝑚[𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘)𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
𝑗(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡

+ 𝐻3(−𝜔𝑖𝑖, −𝜔𝑗𝑗 , −𝜔𝑘𝑘)𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘𝑒
−𝑗(𝜔𝑖𝑖+𝜔𝑗𝑗+𝜔𝑘𝑘)𝑡] = 0 

 
(3.97) 

To sum up, 
 

𝐻3(𝜔𝑖𝑖, 𝜔𝑗𝑗 , 𝜔𝑘𝑘) = 𝐻3(−𝜔𝑖𝑖, −𝜔𝑗𝑗, −𝜔𝑘𝑘) 

 
(3.98) 

 
 

Thus, if N discrete frequencies are adopted for FD calculation, the total number 𝑁3 of 
the 3rd order transfer function need to be calculated will be reduced to 
 

𝑁3 =
[(𝐶2𝑛

2 + 𝐶2𝑛
1 )𝐶2𝑛

1 ]

2
= 2𝑛3 + 𝑛2 

(3.99) 
 

If n=60, then the 𝑁3 will be, 
 

𝑁3 = 435,600 
 
The amount of the computation has reduced 75.4% (2years to 30days).  
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3.5.2 Pre-assessment of the transfer functions 
 
 
The properties of the symmetry still cannot reduce the amount of the computation to 
a satisfied level and hence the technique of the pre-assessment is proposed. 
 
The basic idea of the pre-assessment technique is to judge the priorities of the 3rd 
order transfer function before the massive calculation. By only selecting these 
transfer functions, which are the most important for the result, the total amount of the 
computation can be greatly reduced. 
 
As observed from the equation (3.80), the complex amplitude of the responses due 
to the cubic excitation are given as, 
 
 

[
 
 
 
 
 
𝑅(3)1,𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑅(3)2,𝑖𝑖,𝑗𝑗,𝑘𝑘
⋮

𝑅(3)𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑅(3)𝑛−1,𝑖𝑖,𝑗𝑗,𝑘𝑘]
 
 
 
 
 

= 𝑆−1(𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘)

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑠𝑝3]]

 
 
 
 

𝐴𝑖𝑖 𝐴𝑗𝑗𝐴𝑘𝑘 

(3.100) 
 
As observed, those responses’ amplitudes are dominated by two factors which are, 
 
(1) Dynamic effect, which is represented by the structural part of the (3.100). 

 

S−1(𝜔𝑖𝑖 +𝜔𝑗𝑗 + 𝜔𝑘𝑘) 

(3.101) 
 
The dynamic effect will be significant around the dominated natural periods 
 

(2) The external excitation part, which is represented by the hydrodynamic part of the 
(3.100) 
 

[
 
 
 
 
𝐻𝑣𝑛,1(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,1(𝜔𝑘𝑘)[𝛼1,1𝑝3]

𝐻𝑣𝑛2(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,2(𝜔𝑘𝑘)[𝛼1,2𝑝3]

⋮
𝐻𝑣𝑛𝑛(𝜔𝑖𝑖, 𝜔𝑗𝑗)𝐻𝑣𝑛,𝑛(𝜔𝑘𝑘)[𝛼1,𝑠𝑝3]]

 
 
 
 

𝐴𝑖𝑖  𝐴𝑗𝑗𝐴𝑘𝑘 

(3.102) 
 
This part will be significant only around the highest amplitudes. 
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Therefore, based on those two factors, the properties of the 3rd order transfer 
functions can be determined.  
 
In practice, the amplitudes 𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘 and the frequencies 𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘 of all of the 

3rd order transfer functions are pre-calculated. Then these transfer functions with the 
highest priorities can be selected, based on two criteria, 
 
(1) For the responses of which the frequency 𝜔𝑖𝑖 + 𝜔𝑗𝑗 + 𝜔𝑘𝑘 are within the certain 

range around the natural periods. 
 

(2) For the responses of which the amplitude 𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘 are above a certain value. 

 
By performing this selection, the amount of the computation can be significantly 
reduced, while the accuracy of the results can be guaranteed.  
 
 
3.5.3 Frequency re-discretization for the higher order transfer functions 
 
 
These discretized frequencies used for the 3rd order transfer functions can be 
different from the frequencies used for these 1st order and 2nd order transfer 
functions’ calculations. As indicated in equation (3.65), the total structural responses 
can be divided into the responses due to the linear, quadratic and cubic part of the 
approximation. According to the principle of superposition, the response calculations 
of these three parts are independent to each other. Because of this property, the 
calculation of the 3rd order transfer functions can be isolated from the other transfer 
functions. Therefore, a new frequency discretization may be applied for the higher 
order transfer function calculations. 
 
An analysis strategy can be that, a fine frequency discretization may be applied for 
these linear transfer function calculations, while a rough frequency discretization may 
be applied for these cubic transfer function calculations. 
 
Still taking the example of n=60, the number of new discretization may be reduced to 
20, and thus the total number of the 3rd order transfer function need to be calculated 
will be 
 

𝑁3 =
[(𝐶2𝑛

2 + 𝐶2𝑛
1 )𝐶2𝑛

1 ]

2
= 2𝑛3 + 𝑛2 = 16,400 

(3.103) 
 
The amount of the computation has reduced 96.3% ( 30 days to 1.13 days).  
 
Till now, these three techniques for the improvement of the computation speed are 
introduced. These techniques may be combined to reduce the total computation time 
to a quite short time, which makes the higher order frequency domain method be 
very competitive, compared with those traditional dynamic analysis methods. 
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4.0 THE COMPARATIVE STUDY ON SIMPLE MODELS 

 
 
This chapter presents the qualitative study of the differences between the quasi-
static, frequency-domain and time-domain methods. The study mainly focus on three 
aspects (linearized vs nonlinear drag force, free surface treatment and the dynamic 
vs quasi-static) and these studies are demonstrated on some simple models. For the 
purpose of better understanding, the differences in these three aspects will be 
enlarged and analyzed by comparing with the HFD method qualitatively and 
quantitatively. 
 
 
4.1 Overview 
 
 
As mentioned in section 2.1, the traditional dynamic analysis methods presented in 
this study can be cataloged as, 
 
(1) Time-domain method (Stochastic non-linear dynamic) 
(2) Frequency-domain method (Stochastic linear dynamic) 
(3) Quasi-static method (Deterministic non-linear static) 
 
The major considerations [8] between these methods can be identified as, 
 dynamic versus (quasi) static analysis 
 stochastic versus deterministic analysis 
 non-linear versus linear analysis 
 
The issue of the dynamic versus (quasi) static analysis refers to the treatment of the 
dynamic effect in the analysis. As discussed in Chapter 2, for the ultimate limit state 
analysis, the dynamic status may be represented by a static status, which is more 
convenient for the analysis. Hence, the study on this aspect mainly focuses on the 
fluids and the validation of the static representation. 
 
The issue of the stochastic versus deterministic analysis refers to the treatment of 
the real stochastic effect in the analysis. The real excitations of the fluids are 
stochastic in nature. For practice, those stochastic excitations may be represented 
by a single-frequency excitation. Hence, the study on this aspect mainly focuses on 
the validation of this simplification.  
 
The issue of the non-linear versus linear analysis refers to the validation of the 
linearization of the non-linear terms in the analysis. The study on this aspect consists 
of two major parts: the linearization of the drag term and the free surface treatment. 
The analysis of those two parts will be demonstrated respectively. 
 
In addition of those aspects, for engineering practice, the efficiency of the dynamic 
analysis is also a critical issue. The efficiency constraints the applications of the 
dynamic analysis in engineering practice. For example, the time-domain is the most 
accurate method in principle. However, its large time-computation, may result in the 
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delay of those urgent projects. The study on the issue of the efficiency focuses on 
the comparison between the accuracy and the time consuming. 
Among those aspects, the issue of the stochastic versus deterministic analysis and 
the efficiency is not presented in this simple analysis and will be analysis 
quantitatively in Chapter 7. The issues of dynamic versus quasi-static, linearization 
of the drag force are demonstrated on a SDOF system. The issue of the free surface 
treatment will be demonstrated on a single vertical beam, with the self –code “hydro” 
program. 
 
In summary, the simple comparative analysis on four aspects are presented in this 
study,  
 

(1) Linear versus non-linear drag force 
(2) Free surface treatment 
(3) Dynamic versus quasi-static analysis 

 
Throughout this study, the time-domain method is assumed to be the reference 
method, because it is the most accurate methods in principle. The studies on these 
four aspects are based on this assumption and presented respectively. Besides, the 
HFD method is served as an analytical approach to explain the differences between 
different methods.  
 
 
4.2 Nonlinear vs. linear drag term 
 
 
As mentioned by DNV, the linearization of the drag term introduces uncertainties [8]. 
However, DNV doesn’t mention what kinds of these uncertainties are. The purpose 
of the study in this section is to identify and analysis these “uncertainties” in order to 
have a deeper understanding of the effect of the linearization. In summary, two 
issues are checked in this study, 
 

(1) The validation of the linearization 
(2) The validation of the methods for the linearization 

 
To begin with, the system for study is carried out. A simple single degree of system 
is capable of reflecting the effect of drag-term and thus is adopted as the model. This 
SDOF system for study is assumed, and presented as follows. 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1|𝑣|𝑣 
(4.1) 

 

Where, 𝑚 represents the mass of the system, 𝑐 represents the damping coefficient 
of the system and k represents the stiffness of the system. 𝛼1 represents the drag 
coefficient. (Inertia term is irrelevant to this study and thus not presented here) 
 

The term 𝑣 represents the velocity of the fluids. The velocity of the fluids, instead of 
the wave elevations and current’s profile is controlled as the excitation of the system.  
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The dynamic analysis of this SDOF system is given in three methods: the time-
domain method, the traditional frequency-domain method and the higher order 
frequency-domain method. The time-domain method is the most accurate method in 
principle and hence it is carried out as the reference. The traditional frequency-
domain linearized the drag-term, and thus can be used for investigating the 
linearization’s effect.  Finally, the analysis by the higher order frequency domain 
method is provided to explain the underlying causes of the deviation by using the 
drags’ linearization. The expressions for these three models are, 
 
The model for the time domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1|𝑣|𝑣 
(4.2) 

 
The model for the traditional frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1𝐶𝑙𝑖𝑛𝑒𝑎𝑟𝑣 
(4.3) 

 

Where 𝐶𝑙𝑖𝑛𝑒𝑎𝑟 is the coefficient of linearization. 
 
The model for the higher order frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1(𝑝1𝑣 + 𝑝3𝑣
3) 

(4.4) 
 

Where 𝑝1 and 𝑝3 are the linear and cubic coefficients. 
 
 
4.2.1 The validation of the linearization   
 
 
The studies of the validation of the linearization are carried out in three situations, 
with reasons: 
 

(1) A single sinusoidal excitation (single wave) 
(2) A single sinusoidal excitation plus a constant current (wave-current interaction) 
(3) Multi- sinusoidal excitation (multi-wave interaction) 

 
These studies are carried out respectively 
 
For a single sinusoidal excitation, the velocity is assumed as follow, 
 

𝑣 = 𝑉0 cos(𝜔𝑡) 
(4.5) 

 

Where 𝑉0 and 𝜔 are the amplitude and frequency of this excitation. 
 
Substitute (4.5) into (4.3) (4.4), the model for the time-domain, the frequency-domain 
and the higher order frequency-domain methods are expressed as, 
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The model for the time domain method (Newmark-beta method) 

  
𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1|𝑉0cos (𝜔𝑡)|𝑉0 cos(𝜔𝑡) 

(4.6) 
 
The model for the traditional frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1𝐶𝑙𝑖𝑛𝑒𝑎𝑟𝑉0 𝑐𝑜𝑠(𝜔𝑡) 
(4.7) 

 
The model for the higher order frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1(𝑝1𝑉0 𝑐𝑜𝑠(𝜔𝑡) + 𝑝3(𝑉0 𝑐𝑜𝑠(𝜔𝑡))
3) 

(4.8) 
 
Expand (4.8), we have, 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1𝑝1𝑉0 𝑐𝑜𝑠(𝜔𝑡) + 𝛼1𝑝3𝑉0
3 (
1

4
cos(3𝜔𝑡) +

3

4
cos(𝜔𝑡)) 

 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = (𝛼1𝑝1𝑉0 +
3

4
𝛼1𝑝3𝑉0

3) cos(𝜔𝑡) +
1

4
𝛼1𝑝3𝑉0

3 cos(3𝜔𝑡) 

(4.9) 
 
Compare the (4.9) with (4.7), two distinctions are observed. 
 

(1) The force component at the original frequency 𝜔 is not linearly proportional to 

the amplitude of the excitation 𝑉0, due to the present of the term 𝑉0
3. 

 

(2) Besides, the force at the original frequency  𝜔 . The force component 

  
1

4
𝛼1𝑝3𝑉0

3 cos(3𝜔𝑡) at a new frequency 3𝜔  is also generated by these 

excitations. 
 
The first distinction announces the feasibility’s limitation of the traditional frequency-
domain method. As mentioned in Chapter 2, the common procedure used in the 
traditional frequency-domain method is to calculate the transfer functions with a 
reference wave height, and then apply these transfer functions to all the sea states 
for the dynamic analysis. However, as shown in the figure 4.1, due to the present of 

the cubic order term  
3

4
𝛼1𝑝3𝑉0

3 , the accuracy of this method may be significantly 

reduced, with the increase of the 𝑉0. When the 𝑉0 increases from 0m/s to the 10m/s, 

the 
3

4
𝛼1𝑝3𝑉0

3  approximately increased 100 units. For the range of 𝑉0 from 15m/s to 

25m/s, the 
3

4
𝛼1𝑝3𝑉0

3  approximately increased 400 units, 400 % of those from 0m/s to 

10m/s. Therefore, a single set of the transfer functions for multi sea states’ 
calculation may fail to be representative. 
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This defect can be somehow partly compensated by the iteration of the linearization. 
As proposed in ref [19], the drag-term in one loop may be linearized based on the 
standard deviation of the velocity calculated from the previous loop. By using these 
iteration procedures, the transfer functions for each sea state are optimized and thus 
a reasonable result may be obtained [19]. This linearization method will be further 
discussed in the section 4.2.2. 
 

 
 

Figure 4.1 the plot of 𝑉0 versus 𝑝1𝑉0 +
3

4
𝑝3𝑉0

3 (𝑝1, 𝑝2 are optimized for +-20m/s range) 

 
The second distinction announces the most important difference between the 
linearized and the non-linear drag terms. Due to the non-linearity, the effect of the 
excitation will interact with itself, and the total energy will be leaked to another 
frequency. As indicated in equation (4.9), the frequency of the term 
1

4
𝛼1𝑝3𝑉0

3 cos(3𝜔𝑡)  is different from the excitation  𝑉0 cos(𝜔𝑡) .  This effect is 

fundamentally unpredictable for the linearized system, in which the excitations and 
responses are kept in same frequency. 
 
The frequency leak property of the system results in two effects. First, the energy at 

the original frequency 𝜔  will be also leaked into the new frequencies and hence 
reduced. Second, the force component at the new frequency 3𝜔  has different 

dynamic effect with the component at original frequency 𝜔. 
 
A typical phenomenon caused by the frequency leak is the higher order resonance. 
The force component at new frequency may trigger the resonance, while the force at 
original frequency will not. A demonstration is given as follows. 
 
The coefficients are assumed for this SDOF system: m=100kg, c=20N.m/sec, 

k=100N/m, 𝛼1 = 1. The amplitude and frequency of the excitation are 𝑉0 = 5𝑚/𝑠 
and 𝜔 = 0.333𝑟𝑎𝑑/𝑠, expressed as follows, 
 

100𝑟̈ + 20𝑟̇ + 100𝑟 = |5𝑐𝑜𝑠 (0.333𝑡)|5 𝑐𝑜𝑠(0.333𝑡) 
(4.10) 
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The natural frequency of the system equals 3 times the excitation’s frequency  
 

𝜔0 = √
𝑘

𝑚
= √

100

100
=
1𝑟𝑎𝑑

𝑠
= 3𝜔 

(4.11) 
 
This equals three times the excitation’s frequency. 
 
Based on the theory mentioned above, the higher order resonant will be triggered in 
this case. In order to calibrate the coefficients for the linearization, the mass m is first 
tuned to 0.001kg and 1kg to minimize the dynamic effect. 
 

When the mass equals 0.001kg, the linearization coefficient 𝐶𝑙𝑖𝑛𝑒𝑎𝑟 is calibrated to 
4.8997, as shown in figure 4.2. The natural frequency for this system is 316.228 
rad/s. As observed from the plot, the motion from TD, FD and HFD matches each 
other quite well. 
 
 

 
Figure 4.2. the plot of the displacement versus the time by the TD, FD and HFD 
methods (m=0.001kg) 
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To verify the validation of the linearization, the mass is tuned to 1kg, while this 

linearization coefficient is not changed (𝐶𝑙𝑖𝑛𝑒𝑎𝑟 = 4.8997). The natural frequency is 10 
rad/s for this system and the plot of the displacement versus time is shown in the 
figure 4.3.  
 

 
 

Figure 4.3. the plot of the displacement versus the time by the TD, FD and HFD 
methods (m=1kg) 
 
As demonstrated in figure 4.2 and figure 4.3, the responses from the time-domain, 
the frequency domain and the higher order frequency domain is quite close to each 
other, independent from the structure. Therefore, it can be conclusion that, this 
linearization system is calibrated. 
 
With the linearization being optimized, the mass is then tuned to 100kg to trigger the 
resonant. Figure 4.4 shows the plot of the displacement versus time, when m=100kg. 
As observed from figure 4.4, there is a clear difference occurs between the methods 
with linearized and non-linear drag term. Compared with figure 4.1 and figure 4.2, it 
can be concluded that this difference is induced by the dynamic effect. For further 

identification, the linear coefficient 𝑝1  is set to be zero, and a new plot of the 
displacement versus time is made, as shown in figure 4.5. It is clear that the motion’s 
shapes are dominated by the cubic part of the force. Therefore, the existence of the 
higher order resonance is verified and predicted. 
 



74 
 

 
Figure 4.4. the plot of the displacement versus the time by the TD, FD and HFD 
methods (m=100kg) 
 
In addition of this higher order resonant phenomenon, the linearization of the drag 
term may also overestimate the response, when the original frequency is coincident 
to the natural frequency of the system. As predicated previously, the energy at the 

original frequency 𝜔 will be also leaked to the new frequencies. Thus the energy at 
the original frequency 𝜔 will be reduced. However, for the optimized linearization of 
drag term the energy 𝜔 at higher order frequencies are compensated by the energy 
at the original frequency 𝜔, expressed as, 
 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝜔 + 𝐸3𝜔 +⋯ , 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝜔 , 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛  
(4.12) 

 

Where, 𝐸𝑡𝑜𝑡𝑎𝑙 , 𝐸𝜔 𝑎𝑛𝑑 𝐸3𝜔  are the total energy and energy at frequency 𝜔 𝑎𝑛𝑑 3𝜔 
respectively. 
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Therefore, when the excitation frequency 𝜔  equals the structural natural 
frequency 𝜔0, the total energy will contribute the resonant, while the only part of the 
total energy will be trigged in reality. This phenomenon results in the overestimation 
of the result from the traditional frequency-domain method. 
 

 
Figure 4.5. the plot of the displacement versus the time with only cubic part of the 
HFD methods (m=100kg) 
 
To verify this prediction, the mass of the system is tuned into 900.18kg and then the 

natural frequency equals 𝜔0 = √
100

900.18
= 0.3333𝑟𝑎𝑑/𝑠𝑒𝑐, which is the same as the 

excitation. The figure 4.6 shows the plot of displacement versus time. It can be 
observed from the figure 4.6 that the amplitude of the motion calculated by FD 
method is larger than those from the time-domain and the higher frequency-domain 
methods. To avoid the special case effect, figure 4.7 shows another case, which 
natural frequency equals to the excitation. In summary, it is reasonable to conclude 
this assumption is valid. 
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Figure 4.6. the plot of the displacement versus the time with the TD, FD and HFD 
methods(m=900.18kg) 
 

 
Figure 4.7. the plot of the displacement versus the time (m=20kg , c=50N*s/m , 
k=5.5544N/m) 
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In conclusion, from the basic study of the single sinusoidal excitation on the issue of 
the linearized versus non-linear drag term, two characteristics are listed as follows. 
 

(1) The response component at the original frequency ω is not linearly 
proportional to the amplitude of the excitation. The application of one global 
set of the transfer functions may fail to be representative. 

(2) The energy at the original frequency ω will be leaked to a new frequency, 
which may case higher order resonance. Besides, the optimized FD method 
may overestimate the response when the system is a status of the resonance 

at 𝜔. 
 
The next situation to be studied is the wave-current interaction. In this case, the 
fluid’s velocity is assumed to be a single sinusoidal function plus a constant current, 
expressed as, 
 

𝑉 = 𝑉0𝑐𝑜 𝑠(𝜔𝑡) + 𝑉𝑐𝑢𝑟 
(4.13) 

 

Where 𝑉𝑐𝑢𝑟 is the fluid of the current, which is assumed to be constant during the 
motion. 
 
Thus the models for the TD, FD and HFD method then become, 
 
The model for the time domain method (Newmark-beta method) 

  
𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1|𝑉0 cos(𝜔𝑡) + 𝑉𝑐𝑢𝑟|(𝑉0 cos(𝜔𝑡) + 𝑉𝑐𝑢𝑟) 

(4.14) 
 
The model for the traditional frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1𝐶𝑙𝑖𝑛𝑒𝑎𝑟𝑉0 𝑐𝑜𝑠(𝜔𝑡) + 𝛼1𝐶𝑙𝑖𝑛𝑒𝑎𝑟𝑉𝑐𝑢𝑟 
(4.15) 

 
The model for the higher order frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1(𝑝1(𝑉0 𝑐𝑜𝑠(𝜔𝑡) + 𝑉𝑐𝑢𝑟) + 𝑝3(𝑉0 𝑐𝑜𝑠(𝜔𝑡) + 𝑉𝑐𝑢𝑟)
3) 

(4.16) 
 
Expand (4.16), we have, 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = (𝛼1𝑝1𝑉0 cos(𝜔𝑡) + 𝛼1𝑝1𝑉𝑐𝑢𝑟)
+ (𝛼1𝑝3𝑉0

3 cos(𝜔𝑡)3 + 3𝛼1𝑝3𝑉0
2 cos(𝜔𝑡)2 𝑉𝑐𝑢𝑟 + 3𝛼1𝑝3𝑉0 cos(𝜔𝑡) 𝑉𝑐𝑢𝑟

2

+ 𝛼1𝑝3𝑉𝑐𝑢𝑟
3 ) 

 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1 (𝑝1𝑉0 +
3𝑝3𝑉0

3

4
+ 3𝑉0𝑝3𝑉𝑐𝑢𝑟

2 ) cos(𝜔𝑡) +
3𝛼1𝑝3𝑉0

2𝑉𝑐𝑢𝑟
2

cos(2𝜔𝑡)

+
𝛼1𝑝3𝑉0

3

4
cos(3𝜔𝑡) + 𝛼1(𝑝1𝑉𝑐𝑢𝑟 +

3𝑝3𝑉0
2𝑉𝑐𝑢𝑟
2

+ 𝑝3𝑉𝑐𝑢𝑟
3 ) 

(4.17) 
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Compare the (4.15) with (4.17), two distinctions are observed, which cannot be 
predicted by the traditional frequency-domain method fundamentally. 
 

(1) The constant force component is not only depended on the current’s velocity 

𝑉𝑐𝑢𝑟, but also depended on the amplitude of the varying motions 𝑉0 
 

(2) Besides the increase of the constant force component, the current and 
varying motion also interact with each other, with the change of the energy at 

the original frequency 𝜔 and the energy at the new frequency 2𝜔 
 
To identify the existence of these two distinctions, another two numerical 
experiments have been made. The first numerical experiment is aimed to identify the 
change of the constant force with the increase of the amplitude of the sinusoidal 

excitation 𝑉0. The second numerical experiment is aimed to identify the existence of 

the responses at the frequency 2𝜔, which is caused by the wave-current interaction. 
 
Those numerical experiments are based on the following assumption of the SDOF 
system, 

100𝑟̈ + 20𝑟̇ + 100𝑟 = |𝑉0𝑐𝑜 𝑠(0.1𝑡) + 3|(𝑉0𝑐𝑜 𝑠(0.1𝑡) + 3) 
(4.18) 

 

Where the m=100, c=20 k=100, the 𝜔 = 0.1𝑟𝑎𝑑/𝑠 and 𝑉𝑐𝑢𝑟 = 3𝑚/𝑠, compared with 
(4.14). 
 
The first numerical experiment is carried out on the measurement of the average 

displacement for a period of the 24 ∗
2𝜋

𝜔
= 215.424 𝑠𝑒𝑐, with the increase of the 𝑉0.  

Figure 4.8 shows the plot of the average displacement versus 𝑉0. As shown in this 
figure, the average displacement of the TD increased quadratically, same as the 
prediction by the HFD method. It can be concluded that the first distinction is 
identified. (Still, the deviation can be observed between the TD and HFD’s prediction. 
This is because; the 3rd order approximation can only hold the overall accuracy with 
in a velocity range. More details have been discussed in Chapter 3) 
 

 
Figure 4.8 the plot of the average displacement versus 𝑉0 
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Figure 4.9 the plot of the displacement versus time for eqn.(4.18) 

 
The second numerical experiment is to identify the responses at the second order 

frequency 2𝜔 . The following system is assumed in this numerical experiment, 
 

100𝑟̈ + 20𝑟̇ + 100𝑟 = |9𝑐𝑜 𝑠(0.8𝑡) + 3|(9𝑐𝑜 𝑠(0.8𝑡) + 3) 
(4.19) 

 
The motions of this system are generated by using the time-domain and the higher 
order frequency-domain respectively. The figure 4.10 shows the plot of the 
displacement versus time. As observed, the motion from the time domain can be 
accurately reflected by the motions from the higher order frequency domain. To 
identify the motion’s component at different frequencies, Fast Fourier transform (FFT) 
is used in this analysis to separate those motion’s components.  Figure 4.10 shows 
the amplitude- frequency plot of the motions. It can be clearly observed from the 

figure that there is motion’s component at the frequency 2𝜔 = 2 ∗ 0.8 = 1.6𝑅𝑎𝑑/𝑠. 
And this motion can be accurately predicted by the higher frequency-domain method. 

 
Figure 4.10 the FFT analysis of the motion 
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In conclusion, from the study of the single wave-current interaction on the non-linear 
drag term, two characteristics are listed as follows. 
 

(1) The static response will increase quadratically with respect to the increase of 
the amplitude of the single-frequency excitation. 
 

(2) The motion at a new frequency 2𝜔   is generated by the wave-current 
interaction. 

 
The study on the multi-wave interaction is similar to the study on the single-wave and 
the wave-current interaction. In this study, the excitation with two sinusoidal motions 
is assumed, expressed as, 
 

𝑉 = 𝑉1 cos(𝜔1𝑡) + 𝑉2 cos(𝜔2𝑡) 
(4.20) 

 
Then the model for the TD, FD and HFD methods can be rewritten as, 
 
The model for the time domain method (Newmark-beta method) 

  
𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1|𝑉1 cos(𝜔1𝑡) + 𝑉2 cos(𝜔2𝑡)|(𝑉1 cos(𝜔1𝑡) + 𝑉2 cos(𝜔2𝑡)) 

(4.21) 
 

The model for the traditional frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1𝐶𝑙𝑖𝑛𝑒𝑎𝑟𝑉1 cos(𝜔1𝑡) + 𝛼1𝐶𝑙𝑖𝑛𝑒𝑎𝑟𝑉2 cos(𝜔2𝑡) 
(4.22) 

 
The model for the higher order frequency domain method 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝛼1(𝑝1(𝑉1 cos(𝜔1𝑡) + 𝑉2 cos(𝜔2𝑡)) + 𝑝3(𝑉1 cos(𝜔1𝑡) + 𝑉2 cos(𝜔2𝑡))
3)

= 𝛼1 [
1

4
𝐴2
3 𝑐𝑜𝑠(3𝜔2𝑡) +

1

4
𝐴1
3 𝑐𝑜𝑠(3𝜔1𝑡) +

3

2
𝑐𝑜𝑠(𝜔2𝑡) 𝐴1

2𝐴2

+
3

4
𝑐𝑜𝑠(𝜔2𝑡) 𝐴2

3 +
3

4
𝐴1
2𝐴2 𝑐𝑜𝑠(𝑡(2𝜔1 + 𝜔2)) +

3

4
𝐴1
3 𝑐𝑜𝑠(𝜔1𝑡)

+
3

2
𝐴1𝐴2

2 𝑐𝑜𝑠(𝜔1𝑡) +
3

4
𝐴1
2𝐴2𝑐𝑜𝑠(𝑡(2𝜔1 − 𝜔2)) +

3

4
𝐴1𝐴2

2 𝑐𝑜𝑠(𝑡(𝜔1 + 2𝜔2))

+
3

4
𝐴1𝐴2

2 𝑐𝑜𝑠(𝑡(𝜔1 − 2𝜔2))] 

(4.23) 
 
As predicted by the HFD method, the motions are generated at following frequencies, 
 

(1) Self-induced part:  𝜔1 , 𝜔2 , 3𝜔1 , 3𝜔2 
 

(2) Interaction-induced part:  𝜔1 + (𝜔2 − 𝜔2),  𝜔2 + (𝜔1 + 𝜔1), 𝜔1 + 2𝜔2,  2𝜔1 + 𝜔2,
|𝜔1 − 2𝜔2|, |𝜔2 − 2𝜔1| 
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These interaction-induced parts can be divided into two groups: The high frequency 
group, which contains  𝜔1 + 2𝜔2, 2𝜔1 +𝜔2 , and the low frequency group, which 

contains |𝜔1 − 2𝜔2|, |𝜔2 − 2𝜔1|.  
 

A FFT analysis for the system with excitations for 𝜔1 = 0.9
𝑟𝑎𝑑

𝑠
𝑎𝑛𝑑  𝜔2 = 1.4

𝑟𝑎𝑑

𝑠
; 𝑉1 =

𝑉2 =
5𝑚

𝑠
  is plotted in figure 4.11.  As identified in the plot, the motions at the 

frequencies of both self-induced part and interaction-induced part exist and are 
predicted.  However, the cubic drag’s approximation underestimates some higher 
order response component. 

 
Figure 4.11 the plot of the FFT analysis for the system (4.16) 

 
The waves are always given in the form of the spectrum and the non-linearity of the 
drag-force will lead to a shift of spectrum, and hence the resonance may be triggered, 
though the main band of the excitation’s spectrum is beyond the region of the 
resonance. This phenomenon is similar to the second order slow drift force for 
floating structure. A demonstration is given in the figure 4.12, presents the 2nd order 
spectrum shift for a FPSO [20].   

 
Figure 4.12 a demonstration of the spectrum shift for 2nd low-frequency interaction 

ref. [20] 
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4.2.2 The validation of the linearization method   
 
 
From the previous section, it is concluded that the method of drag’s linearization is 
conditionally valid. However, the traditional frequency-domain method is still 
generally used in the industry, because of its convenient and its conditionally 
accurate prediction. Therefore, the studies have been carried out to maximize the 
accuracy of the traditional frequency-domain method by proposing different 
linearization methods. 
 
As mentioned in Chapter 2, two methods are recommended for the linearization [8]. 
Method I linearizes the drag term with respect to the reference wave height 𝐻𝑟𝑒𝑓 [10]. 

Method II linearizes the drag term with respect to its motion’s deviations, and thus an 
optimization iteration is performed. 
 
The first methods has been widely studied [19]. The previous studies have shown 
that the first method usually underestimates the motion of the drag forces.  
 
The second linearization method, however, need to be carefully checked. Several 
studies [8][19] have been carried out on the accuracy of the second linearization 
method and they claimed that a reasonable result may be given for the initial design 
of the stinger [19]. However, those studies haven’t provided a theoretically 
investigation on the validation of this linearization method.  
 
The original study by Leon.E.Borgman [21] proposed a method for the spectrum 
assembly for the Morison type hydrodynamic force with the Gaussian distribution of 
the fluid’s velocity. The hydrodynamic force model used in this study is, 
 

Φ(x, y, z, t) = 𝑐𝑉|𝑉| + 𝑘
𝜕𝑉

𝜕𝑡
 

(4.24) 
 
Where c and k is the drag and inertia coefficients respectively. If the velocity and 
acceleration is Gaussian distributed with zero-mean value, then the auto-spectrum of 

Φ(x, y, z, t) will be, 
 

𝑆𝜙𝜙(𝑓) =
𝑐2𝜎4

𝜋
{
8𝑆𝑣𝑣(𝑓)

𝜎2
+
4[𝑆𝑣𝑣(𝑓)]

∗3

3𝜎6
+⋯} + 𝑘2𝑆𝐴𝐴(𝑓) 

(4.25) 
 

Leon. E. Bergman has shown that the corresponding correlation coefficient 𝜌 has 
only maximum 15% deviation for the linear approximation, while only maximum 1.1% 
deviation for the cubic approximation. 
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Therefore, an approach for the drag term’s linearization based on Borgman’s study is 
widely proposed by the offshore industry, expressed as, 
 

|𝑣𝑛𝑖|𝒗𝑛𝑖 ≈ 𝜎𝑢√
8

𝜋
𝒗𝑛𝑖 

(4.26) 
 
However, three challenges have been pointed out for this linearization. 
 

(1) The original study by Borgman assumed that no-current is involved in fluid’s 
velocity. Hence, it is invalid to apply this linearization when the current is 
presented. 

 
(2) The original study by Borgman only showed the relation between the 

spectrum of the fluid’s velocity and the spectrum of Φ(x, y, z, t). This mean the 

factor 𝜎𝑢√
8

𝜋
 only refers to the amplitude’s ratio, without the any consideration 

of the phase shift between the fluid’s velocity and Φ(x, y, z, t). Therefore, this 
linearization method may overestimate the motion in 1st order. 
 

(3) The original study by Borgman only pointed out there is a highly correlation 

between the fluid’s velocity and  Φ(x, y, z, t) . There’s no improvement in 
mathematics on how the deviation could be for this 1st order and 3rd 
approximation in real-simulation. This linearization method induces 
uncertainties. 

 
A new method of the drag’s linearization is proposed in this study to include the 
effect of current. This new method is based on an approximation of the Morison’s 
equation, expressed as, 
 

Φ = 𝑐|𝑉 + 𝐶𝑐𝑢𝑟|(𝑉 + 𝐶𝑐𝑢𝑟) + 𝑘
𝜕𝑉

𝜕𝑡
≈ 𝑐(𝑉|𝑉| + 2𝐶𝑐𝑢𝑟|𝑉| + 𝐶𝑐𝑢𝑟

2 ) + 𝑘
𝜕𝑉

𝜕𝑡
 

(4.27) 
 
Based on this approximation, the method can be proposed as 

 

|𝑣𝑛 + 𝑣𝑐𝑢𝑟|(𝑣𝑛 + 𝑣𝑐𝑢𝑟) ≈ |𝑣𝑐𝑢𝑟|𝑣𝑐𝑢𝑟 +√
8

𝜋
𝜎𝑢𝑣𝑐𝑢𝑟 + 𝜎𝑢√

8

𝜋
𝑣𝑛 

(4.28) 
 

Where 𝑣𝑛 is the fluid’s velocity with zero-mean value, the 𝑣𝑛 is the constant velocity 
of current. 
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This linearization may include the effect of the current with certain simplification. As 
observed from the (4.22), the average force increased with the increase of the 
standard deviation of the fluid’s velocity. The derivation procedure is attached in 
Appendix IV. And, due to the limitation of the study, the verification and sensitivity 
study may be carried out in the future. 
 
 
The derivation of the explicit form of the optimized linearization coefficient is still a 
challenge. However, if we assumed such explicit form exists, the deviation of the 
linearization itself still introduces unignorable deviation, with the increase of the wave 
amplitude. The figure 4.11 shows the root mean squared error of 1st and 3rd fitting for 
the drag term approximation. As shown in this figure, the error of the linear 
approximation increases rapidly, compared with the 3rd order fitting. This figure 
indicates, the linearization itself, has the fundamentally defect, which cannot be 
compensated by any linearization method. 
 

 
Figure 4.13 the root mean squared error for optimized 1st and 3rd order fitting 
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4.3 Varying free water surface effect 
 
 
The analysis of the free surface effect is difficult. As mentioned in Chapter.3, the 
region that suffers wave loads is varying and the magnitude of wave load is difficult 
to be quantified. Therefore, the analysis of the free surface effect cannot be carried 
out on a SDOF system, similar to the analysis of the drag term’s effect. Thus an 
alternative approach for the analysis needs to be proposed. 
 
Therefore a MDOF system is assumed in this analysis. As shown in the figure 4.14, 
a vertical pipe is fixed at the seabed. The pipe is long enough to carry all the wave 
loads. The diameter of the pipe is set to 3.5m and the water depth is 94.03m, same 
as the legs of the Yme MOPUstor. The inertia coefficient is assumed to be 2 and the 
drag coefficient is assumed to be 0, to avoid the non-linear effect of the drag term. 
The coordinate of this system is set at the mean water level (MSL). 
 

 
Figure 4.14 the graphical representation of the system 

 
The total wave load of this system can be expressed as, 
 

𝐹 = ∫ 𝑓(𝑧)𝑑𝑧
𝜂

−𝑑

 

(4.29) 
 
As observed in equation (4.23), two non-linearity factors can be identified from this 

calculation. First, the fluid’s velocity in the calculation of the term “𝑓(𝑧)” will introduce 
non-linearity, because the fluid’s velocity above the mean water level cannot be 
described in linear wave theory. Second, the upper bound of this integral is varying 
with the wave’s motion, and thus this integral cannot be solved symbolically.  Hence, 
those two factors need to be linearized before a linear analysis. 
 
Therefore, the study of the linearization in the free surface treatment will focus on 
two aspects.  
 

(1) The validation of the linear wave’s approximation of the fluids above MSL 
 

(2) The validation of the constant wave surface elevation assumption 
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There are two free surface treatment methods proposed for the linear wave’s 
approximation of the fluids above MSL, which are the extrapolated wave treatment 
and the wheeler stretched wave treatment. The extrapolated treatment [7] assumes 
wave kinematic above mean sea level (z=0) constant and equal to the value at z=0 
in wave crests, while extrapolated treatment uses airy wave kinematic up to surface 
elevation in wave toughs. The wheeler stretched treatment [7] calculates wave 
kinematics at the mean water level at the true surface and its corresponding 
distribution down to the seabed is stretched accordingly. 
 
Figure 4.15 shows a graphical representation of both the extrapolated wave 
treatment and the wheeler stretched wave treatment.   

 
Figure 4.15 the graphical representation of the extrapolated Airy theory and the 

wheeler stretched airy theory, modified from ref [7]. 
 
In addition of the linear waves’ approximation, the varying free surface itself also 
needs to be linearized, for the purpose of the analysis in the traditional frequency-
domain method. As mentioned in Chapter 2, for the traditional frequency-domain 
analysis, a reference wave height is pre-assumed to determine a constant water 
elevation. The members below this level are assumed to be always submerged, 
hence the wave loads are only calculated on the structural member below this level. 
 
As predicted by the HFD method in Chapter 3, the non-linear effect of the varying 
free surface can approximated to be quadratic. Therefore, a constant water surface 
elevation may neglect this quadratic order effect, and thus results in the deviation, 
with respect to both its extreme value and dynamic effect. 
 
To analysis the effects of those two kinds of linearization, four cases are selected in 
this study with reasons. These are, 
 

(1) The total wave load calculated by Stokes-V wave theory  
(2) The total wave load calculated by using the extrapolated wave treatment 
(3) The total wave load calculated by using the wheeler stretched airy wave 

treatment 
(4) The total wave load calculated by using zero-elevation 
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Among those four cases, the total wave load calculated by Stokes-V wave theory is 
the most accurate theoretically and hence set as the reference. The total wave load 
calculated by using the extrapolated wave treatment and the wheeler stretched wave 
treatment are used to analysis the validation of the linear wave’s approximation of 
the fluids above MSL. Also, this analysis can be used to assess the accuracy of 
those two methods. Besides, the total wave load calculated by using zero-wave 
elevation is used to analysis the validation of the constant wave surface elevation 
approximation. 
 
The calculation of the wave load is carried out by the self-coded hydrodynamic 
analysis program, “hydro”. The “hydro” is coded in MatlabTM and capable to calculate 
hydrodynamic loads in time-domain.  There are two advantages of the “hydro”. First, 
the “hydro” is coded based on the hydrodynamic knowledge and seriously verified. 
Thus, the result from “hydro” is believed to be accurate. Second, the hydro is a self-
coded program, while the most commercial hydrodynamic calculation programs are 
packaged and protected by the laws. This property makes the possible to modify the 
algorithm of the “hydro”, especially for cases with the zero elevation assumption. 
More details of the “hydro” are attached in Appendix I. 
 
The FFT analysis technique is applied in this study to separate the motion in different 
frequencies. This analysis technique can provide us a fundamental understanding of 
the non-linearity’ influence, especially on the issue of the amplitude and frequency’s 
shift. 
 
To avoid the multi-wave interaction, the single regular waves are applied as the 
excitation. In order to link the study to the analysis of the Yme MOPUstor, the 
periods of the waves in this study are selected to be 7sec and 14.5sec, which 
represent the resonant and extreme wave conditions of the Yme MOPUstor, as 
shown in Chapter 5.  
 
The first step of this non-linear analysis is to identify the frequencies component of 
the wave load. Figure 4.16 -Figure 4.19 shows the plots of the FFT analysis for four 
different sea states. Four characterizes can be observed from these plots. First, the 

component at the original frequency of the wave 𝜔 unquestionably dominates the 
wave load. Second, the besides the force component at 𝜔, the force component at 
quadratic frequency 2𝜔 is generated. This force component increases significantly, 
with the increase of the wave height. Third, with the increase of the wave height, the 
force’s components at the higher order frequencies are observable in the wave load 
calculated by the Stokes V theory. But those components cannot be predicted by 
other methods. Fourth, the wave load calculated by both the extrapolation wave 
treatment and the wheeler stretched wave treatment can predict this quadratic effect 
of the non-linearity, while the zero wave elevation cannot. Therefore, it can be 
conclude that the quadratic interaction, as predicted by the HFD methods, exists in 
this numerical experiment. The non-linearity is mainly contributed by the quadratic 
interaction. 
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With the frequencies’ component identified, the next step is to investigate the 
quantitative relation between the wave height and the force components at different 
frequencies. In this investigation, the two quadratic approximation methods proposed 
in Chapter 3 are carried out here. Figure 4.20-4.23 shows the plot of the wave height 
versus the component’s amplitude for the linear and quadratic components. As 

observed from these figures, for the force’s component at its original frequency 𝜔, its 
amplitude increases linearly with respect to the increase of the wave height. This 
relation can be accurately predicted by all the methods. For the force component at 

quadratic frequency 2𝜔 , the amplitude increases non-linearly with respect the 
increase of the wave height. This relation can be predicted by both the extrapolation 
wave treatment and the wheeler stretched wave treatment, among which the 
extrapolation treatment shows a better result. This conclusion contradicts to the 
traditional conclusion that wheeler extrapolation gives a better approximation [9].  
 
In additions, as observed in figure 4.21 and figure 4.23, the two varying surface 
methods proposed in the HFD methods show a good predication for these two load 

cases. Therefore, the force component at frequency 2𝜔 can be concluded that, its 
amplitude increases qudratically with respect to the increase of the wave height. 
 
A dilemma is being faced for the selection of the reference wave height in the 
traditional frequency-domain methods (constant elevation). On one hand, the 
extreme value of the wave load predicted by the FD method is smaller than these in 
reality. This can be compensated by the increase of the reference wave height. On 
the hand, if the reference wave height is tuned to an optimized value to hold the real 

extreme value, the force component at the original frequency 𝜔 will be overestimated 
and hence the dynamic effect is distorted.  
 
A recommendation is given for the application of the traditional frequency-domain 
method. If the analysis is not sensitive to the dynamic effect, the reference wave 
height should be increased compensate these quadratic forces. If the system is 
sensitive to the dynamic effect, then the reference wave height need to be tuned to 
be small enough to avoid the overestimation of the motion. 
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Figure 4.16. the plot of the FFT analysis for H=1m, T=7sec (Sample Frequency 
100Hz) 
 

 
 

 
Figure 4.17 the plot of the FFT analysis for H=10m, T=7sec (Sample Frequency 
100Hz) 
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Figure 4.18 the plot of the FFT analysis for H=1m T=14.5sec (Sample Frequency 
100Hz) 

 
 

 
Figure 4.19 the plot of the FFT analysis for H=10m T=14.5sec (Sample Frequency 
100Hz) 

 
 
 
 
 
 
 
 
 
 



91 
 

 
Figure 4.20 the plot of the amplitude at ω versus wave height for T=7sec 

 
 
 

 
 

Figure 4.21 the plot of the amplitude at ω versus wave height for T=7sec 
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Figure 4.22 the plot for the amplitude at ω versus the wave height for T=14.5sec 

 
 

 
Figure 4.23 the plot for the amplitude at 2ω versus the wave height for T=14.5sec 
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4.4 Dynamic versus quasi-static analysis 
 
 
This section presents the study on the issue of the dynamic versus quasi-static 
analysis. As mentioned previously, for the ultimate limit state analysis, the true 
dynamic status is sometime represented by an equivalent static status. Thus the 
study in this section mainly focuses on the validation of this representation. 
 
To analysis the representation of the quasi-static method, two situations have been 
carried out, from the simple to the complex. These are, 
 

(1) A SDOF system with the single-frequency excitation 
(2) A SDOF system with the multi-frequency excitation 

 
In this section, the studies on these two situations are carried out respectively. To 
analysis the differences between the real dynamic analysis and the quasi-static 
analysis, the calculations in both methods are presented and compared. The 
reasons of the deviations are identified and analyzed both qualitatively and 
quantitatively. 
 
The study on a SDOF system with a single-frequency excitation is carried out first. A 
SDOF system is assumed and presented as follow. 
 

𝑚𝑟̈ + 𝑐𝑟̇ + 𝑘𝑟 = 𝑓 
(4.30) 

 

Where, 𝑚 represents the mass of the system, 𝑐 represents the damping coefficient 
of the system and k represents the stiffness of the system. In this study, a 
hypothetical excitation, f, is used for this system.  
 
The accurate “real” dynamic motion can be calculated via the transfer function. The 

transfer function of this system 𝐻1 can be expressed as, 
 

𝐻1 =
1

(𝑘 − 𝑚𝜔2) + 𝒋𝜔𝑐
 

(4.31) 
 
If the f is a single sinusoidal harmonic excitation, expressed as 
 

𝑓 = 𝐹𝑐𝑜𝑠(𝜔𝑡) 
(4.32) 

 

Where F and 𝜔 are the amplitude and frequency of the excitation f respectively. 
 
Then the response r can be given in an explicit form, expressed as 
 

𝑟 = 𝑅𝑒 [
𝐹𝑒𝒋𝜔𝑡

(𝑘 − 𝑚𝜔2) + 𝒋𝜔𝑐
] 

 (4.33) 
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For comparison, the equation (4.25) can be rewritten into the static form with only 
stiffness term and external force involved, expressed as, 
 

𝐾𝑟 = 𝑓 − (𝑚𝑟̈ + 𝑐𝑟̇) = 𝑅𝑒 [
𝐾𝐹𝑒𝒋𝜔𝑡

(𝑘 − 𝑚𝜔2) + 𝒋𝜔𝑐
] 

(4.34) 
 
Therefore, the “extreme value” of the response r can be expressed as, 
 

𝑅 = 𝑅𝑒 [
𝐹

(𝑘 − 𝑚𝜔2) + 𝒋𝜔𝑐
] =

𝐹

√(𝑘 − 𝑚𝜔2)2 + (𝜔𝑐)2
cos (atan (

𝜔𝑐

𝑘 − 𝑚𝜔2
)) 

(4.35) 
 
In contrast, the quasi-static analysis defined an equivalent static status which 
represents the real dynamic situation, via the dynamic amplitude factor (DAF), 
expressed as, 
 

𝐾𝑅𝑒 = 𝐷𝐴𝐹 ∗ 𝐹 = 𝐹𝐼 + 𝐹 
(4.36) 

 

Where F is the equivalent static external force and 𝐹𝐼 is the equivalent inertia force, 
where  𝐹𝐼 = (𝐷𝐴𝐹 − 1)𝐹. DAF is the dynamic amplification factor, which is defined as, 
 

𝐷𝐴𝐹 =
𝐾

√(𝑘 −𝑚𝜔2)2 + (𝜔𝑐)2
 

(4.37) 
 
Therefore, the equivalent “static” extreme response of the system can be obtained 
as,  
 

𝑅𝑒 =
𝐹

√(𝑘 −𝑚𝜔2)2 + (𝜔𝑐)2
 

(4.38) 
 
Compare the (4.35) with (4.38), it can be identified that there is a phase shift term 

“ cos (atan (
𝜔𝑐

𝑘−𝑚𝜔2
)) ” exists in the real dynamic analysis, while the quasi-static 

analysis not. This existence of this phase shift has shown that the maximum external 
load and the maximum inertia load may not occur at the same time, while this 
phenomenon is not considered in the quasi-static analysis. Therefore, the quasi-
static analysis may result in the overestimation of the extreme condition, expressed 
as 
 

𝑅 ≤ 𝑅𝑒 
(4.39) 
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With the deviation factor identified, the next question is how this factor effects the 
representation of the quasi-static method. Rewrite the phase shift term, we have, 
 

cos (atan (
𝜔𝑐

𝑘 − 𝑚𝜔2
)) = 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

1

𝑘

𝜔𝑐

1 − (
𝜔
𝜔0
)2
)) 

(4.40) 
 
As observed from the equation (4.40), the value of this phase shift is dominated by 

two terms “
1

1−(
𝜔

𝜔0
)2

” and “
𝜔𝑐

𝑘
”. The term “

𝜔𝑐

𝑘
”, is usually small for offshore platform. 

Taking the Yme MOPUstor as an example, with the topside’s mass of 12900te and 

the natural period of 7sec, and damping ratio of 3%, the value of the term “
𝑐

𝑘
” is 

approximately 0.1130. Then the value of the term “
𝜔𝑐

𝑘
” is around 0.0473-0.1420 for 

the wave period of 5sec – 15sec, which has almost no effect on the total deviation. 
 

The value of the term “
1

1−(
𝜔

𝜔0
)2

”  is quite sensitive to the wave’s period. The Figure 

4.24 shows a plot of the frequency shift versus 𝜔 for the mass of 12900te and the 
natural period of 7sec.  As shown in the figure, when the excitation’s frequency is 

beyond the region of the natural frequency of the structure, the value of the “
1

1−(
𝜔

𝜔0
)2

” 

is quite small and hence the quasi-static analysis is believed to be representative. 
However, when the wave’s frequency is close to the natural frequency of the 

structure, the value of "
1

1−(
𝜔

𝜔0
)2

”  may be infinity large, then there will be an almost 90 

degree shift between the maximum external force and the maximum inertia force. 
The analysis by the quasi-static method will be highly overestimated and then fails to 
be representative. 
 

 
Figure 4.24 the plot of the phase shift versus excitation's frequency ω for the mass of 
12900te and the natural period of 7sec 
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In addition of the study with the single-frequency excitation, the study of the SDOF 
system with the multi-frequency excitation is also important. As well discussed in the 
previous chapter, the real excitation of the offshore condition is stochastic in nature, 
which means the excitation component at different frequencies will contribute 
different dynamic effects. In the quasi-static analysis, however, only one DAF 
coefficient is applied to the estimate the inertia load. Thus it is critical to select a 
proper DAF estimation approach, in order to maximize the accuracy in a quasi-static 
analysis. The representation of DAF value for multi-frequency excitation is 
unavoidable to be checked. 
 
As recommended [8], two methods are general proposed for the jack-up analysis, 
the simplified DAF method and the stochastic DAF method. The simplified DAF is 
calculated based on the peak frequency of the spectrum and the stochastic DAF is 
calculated as a balance of the response components at all the frequencies. Both 
methods are used in analysis of the Yme MOPUstor without further investigation. 
Therefore, in this study, both methods need to be analyzed fundamentally. 
 
With all these considerations, a numerical experiment is carried out on a linear 
SDOF system. For the purpose of comparison and validation, this experiment is to 
calculation the extreme displacement with return period of 3hrs by three methods 
with different wave’s characteristics: 
 

(1) Simplified DAF  
(2) Stochastic DAF 
(3) Frequency-domain (True Dynamic) 

 
The coefficients of this SDOF represent a simplified status of the Yme MOPUstor. 
Thus the mass, damping and stiffness coefficients for the SDOF system is assumed 
to be 12900te, 1.14E+06 Ns/m and 1.01E+07 N/m (calculated from (2.20) (2.21), 
based on 7sec natural period, 3% damping ratio). However, it should be clear this 
experiment is only intended for a more realistic study of the dynamic versus quasi-
static method. The results have no representation of the real dynamic analysis of the 
Yme MOPUstor. 
 
The external load is defined to be the linearized total external wave load in y 
direction with the wave direction of 90deg. The spectrum external total load f is 
calculated in the traditional frequency domain method, expressed as 
 

𝑆𝑓𝑓(𝜔) = 𝑆𝜂𝜂(𝐻𝑠, 𝑇𝑝, 𝛾, 𝜔)𝑅𝐴𝑂𝑓 
2(𝜔) 

(4.41) 
 

Where 𝑆𝑓𝑓(𝜔) is the spectrum of the force. 𝑅𝐴𝑂𝑓 
2(𝜔) refers to the transfer functions 

from the wave to the total wave load of the Yme MOPUstor in Y-direction. These 
transfer function is calculated from SesamTM-Wajac, for the purpose of the 
demonstration. The FEM model for calculation is given in Chapter 5. 𝑆𝜂𝜂(𝜔) refers to 

the Jonswap spectrum of the waves. In this calculation, the significant wave height 

𝐻𝑠  is assumed to be 5m and the enhance peak factor 𝛾 is assumed to be 3, for 
convenience.  
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To begin with, for the quasi-static calculation by the simplified and stochastic DAF 
method, the extreme value of the f within 3hrs is determined statically, based on the 
Rayleigh distribution, which are, 
 

𝑓𝑚𝑎𝑥,3ℎ𝑟𝑠 = √2𝑀𝑓0 ln (
3𝑥3600𝑠𝑒𝑐

𝑇𝑓,𝑥
) 

(4.42) 
 
Where, the terms  𝑇𝑓,𝑥, 𝑀𝑓0 𝑎𝑛𝑑 𝑀𝑓2  are the mean zero-crossing period, zeroth 

moment and second moment of the force spectrum, as introduced in Appendix II. 
 
The simplified DAF and stochastic DAF are calculated based on the structural and 
hydrodynamic property of this SDOF system. The peak frequency of the wave 
spectrum is adopted as the reference frequency of simplified DAF calculation, based 
on the equation (2.18). The calculation of the stochastic DAF value is based on the 
force spectrum, expressed as, 
 

𝑆𝐷𝐴𝐹 = √
∫𝐻𝑑𝑦𝑛(𝜔)2𝑆𝑓𝑓(𝜔)𝑑𝜔

∫𝐻𝑠𝑡𝑎𝑡𝑖𝑐(𝜔)2𝑆𝑓𝑓(𝜔)𝑑𝜔
 

(4.43) 
 
Where 𝐻𝑑𝑦𝑛(𝜔)  is the dynamic transfer function of the SDOF system, same as 

𝐻1(ω) in the equation (3.35), 𝐻𝑠𝑡𝑎𝑡𝑖𝑐(𝜔) is the static transfer function, which equals 
1/K. 
 
Hence, the extreme displacement in 3hrs predicted by the simplified and stochastic 
DAF method can be expressed as, 
 

𝑟𝐷𝐴𝐹 =
𝐷𝐴𝐹 ∙ 𝑓𝑚𝑎𝑥,3ℎ𝑟𝑠

𝐾
 

(4.44) 
 
 

𝑟𝑆𝐷𝐴𝐹 =
𝑆𝐷𝐴𝐹 ∙ 𝑓𝑚𝑎𝑥,3ℎ𝑟𝑠

𝐾
 

(4.45) 
 
 

Where, 𝑟𝐷𝐴𝐹  and 𝑟𝑆𝐷𝐴𝐹  are the extreme responses predicted by the simplified and 
stochastic DAF method respectively. 
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With these quasi-static methods defined, the extreme value from true dynamic 
calculation is performed by the traditional frequency-domain method. The expression 
of the responses spectrum is expressed as 
 

𝑆𝑟𝑟(𝜔) = 𝐻𝑑𝑦𝑛
2 (𝜔) ∗ 𝑆𝑓𝑓(𝜔) 

(4.46) 
 

𝑟𝑚𝑎𝑥,3ℎ𝑟𝑠 = √2𝑀𝑟0 ln (
3𝑥3600𝑠𝑒𝑐

𝑇𝑟,𝑥
) 

(4.47) 
 
Where, the terms  𝑇𝑟,𝑥,𝑀𝑟0 𝑎𝑛𝑑 𝑀𝑟2  are the mean zero-crossing period, zeroth 

moment and second moment of the response spectrum 𝑆𝑟𝑟(𝜔). 
 
Figure 4.25 shows the plot of the wave peak frequency 𝑇𝑝  versus the extreme 

displacements predicted by these three methods. Three characteristics can be 
clearly observed from this plot. First, the stochastic DAF method accurately predicts 
the extreme displacement of the real dynamic analysis, while the simplified method 
cannot.  Second, the simplified method overestimates the displacement in resonant 
zone, underestimates the displacement in non-resonant zone. Third the extreme 
displacements calculated by both the simplified DAF and the stochastic DAF are 
overestimated, as predicted previously.  
 

 
Figure 4.25 the extreme displacement of the SDOF system in 3hrs  
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The reason causes the unrepresentative of the simplified DAF method is that, in 
reality, the energy is distributed along frequencies for the stochastic wave. For the 
simplified DAF calculation, however, the total energy is concentrated in the peak 
frequency of the spectrum. Some energy will be split into the resonant region for the 
stochastic wave in non-resonant condition so that the actual dynamic effect is 
increased. In opposite, some energy will be split beyond the resonant zone for 
random wave in resonant condition so that the actual dynamic effect is decreased. 
These phenomenon cannot be predicted by only peak frequency of the spectrum, 
and thus results in the unrepresentative of the simplified DAF method. 
 
In addition of those differences, the representation of the SDOF model for a MDOF 
system is also debatable. First, the MDOF system usually has several dominate 
natural periods, which cannot be reflected by a SDOF model. Taking the example of 
the Yme MOPUstor, as mentioned, there are three dominated natural periods for this 
platform, which are sway, surge and yaw. These three natural periods may have a 
combination effect on the global dynamic behavior. However, the DAF calculation 
based on SDOF assumption can only introduce the dynamic effect for one single 
natural period, and hence fails to be representative.  Second, the actual inertia load 
distribution cannot be reflected by the DAF estimation. This part will be further 
discussed in Chapter 6. 
 
To sum up, in the study of the dynamic versus the quasi-static analysis, the 

conclusion can be summarized as follows. 
 

(1) In real dynamic situation, there may be a phase shift between the maximum 
external load and the maximum response. This frequency shift cannot be 
considered in the quasi-static analysis. Therefor the quasi-static analysis may 
overestimate the motion. 

 
(2) The quasi-static analysis based on stochastic DAF is believed to be more 

accurate than the quasi-static analysis based on the simplified DAF. The 
analysis based on the simplified DAF may underestimate the motion for non-
resonant condition. It also may overestimate the motion for the resonant 
condition. 
 

(3) The representation of the SDOF model for a MDOF system is debatable. This 
simplification may cannot reflect the real dynamic effect and load distribution. 
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5.0 METHODOLOGY FOR THE COMPARATIVE STUDY 

 
 
5.1 General  
 
 
This chapter presents the methodology for the comparative study on the Yme 
MOPUstor platform. As mentioned previously, this comparative study focuses on the 
ultimate limit state check. There, the analyses are carried out to determine the 
extreme responses in 3hrs simulation for two given sea states, as shown in Table 
5.1. These two sea states are selected based on the study of Atkins [4]. The load 
case 1 represents the resonant condition of the platform, which gives the maximum 
dynamic effect. The load case 2 represents the extreme wave condition of the 
platform, which gives the maximum wave loads. 
 

Table 5.1. the selected environmental conditions for this comparative study 

Environmental Condition 𝐻𝑠(𝑚) 𝑇𝑝 (sec) 𝐻𝑚𝑎𝑥(𝑚) 𝑇𝑎𝑠𝑠(𝑠𝑒𝑐) Wave direction 

Load Case 1 6.03 7.03 11.43 7.1 90 deg 

Load Case 2 14.2 15.9 24.58 14.58 90 deg 

 
The dynamic analysis methods applied in this comparative study are, 
 

 The quasi-static analysis method 

 The traditional frequency domain analysis method 

 The time-domain analysis method  
 
The dynamic analyses of all these three methods are performed by the DNV 
software, SesamTM-GenieTM. The SesamTM-GenieTM is a package of software for the 
design and analysis of the offshore structures, integrating the concept modelling, 
FEM mesh, static and dynamic analysis and the result evaluation, as shown in figure 
5.1.  
 
 
 
 
 
 

Figure 5.1 the calculation procedure of the SesamTM-GenieTM 
 

As observed in figure 5.1, each function of the SesamTM-GenieTM is performed by an 
independent sub-program. However, the integral interface of the SesamTM-GenieTM 
is only limited to the quasi-static analysis and no package for the post-processing is 
contained in the SesamTM-GenieTM. Therefore, the dynamic analysis in this 
comparative study is executed with each package independently and a self-made 
post-processing program. 
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To sum up, the configuration of the dynamic analysis methods in this study is 
summarized in table 5.2. 
 

Table 5.2. the configuration of the dynamic analysis methods 

 Quasi-static Frequency-domain Time-domain 

SesamTM - 
GenieTM 

interface 
The FEM model of the Yme MOPUstor 

SesamTM - 
WajacTM 

The maximum 
single wave load  

Fully non-linear 
stochastic wave 

Linearized drag force 
and constant elevation 
(𝐻𝑟𝑒𝑓 = 1𝑚) 

SesamTM - 
SestraTM + 
XtractTM 

SDAF (based on 
natural period of 
7sec) 

Explicit Newmark-beta 
method (time step 

∆𝑡 = 0.25𝑠𝑒𝑐) 

Structural transfer 
function  

Self-code in 
MatlabTM 

No-need Generalized extreme 
value distribution 

Rayleigh distribution 

 
This comparative study will focus on four aspects, which are 

(1) The effect of the linearized versus non-linear 
(2) The effect of the dynamic versus quasi-static analysis 
(3) The effect of the stochastic versus deterministic 
(4) Efficiency 

 
The study of the non-linearity is mainly based on the spectrum analysis of the 
external force and the responses between the frequency-domain method and the 
time-domain method. To control variables, the dynamic analysis with only the drag 
coefficient presented and only the inertia coefficient presented are also performed 
respectively in study. Since the structure is linearized, the dynamic analysis follows 
the principle of superposition, and hence these separated studies are believed to be 
representative. The non-linearities involved these separated dynamic analyses are 
identified in the table 5.3 respectively. 
 

Table 5.3. the nonlinearity identification of the separated dynamic analysis 

Method Inertia Drag 

Frequency 
domain 

Constant elevation Constant elevation + Linearized drag 
force 

Time domain Varying elevation with the 
wheeler treatment 

Varying elevation with the wheeler 
treatment + non-linear drag force 

 
The study of the dynamic versus the quasi-static analysis is carried out on the inertia 
loads comparison between the quasi-static analysis and the frequency domain 
analysis. To control variables, however, the DAF in this part of the study will be 
estimated by the linearized wave load to synchronize the frequency domain method. 
Both the magnitude and the distribution of these loads are analysed in this study. 
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The study of the stochastic versus deterministic consists of two parts. The first part 
focuses on the representation of the single wave load, with respect to the real 
stochastic wave load. The second part of this study focuses on the representation of 
the design wave load method, which is used to reconstruct a load distribution when 
the response is maximized. 
 
 
5.2 FEM model for the comparative study 
 
 
The structural model of Yme MOPUstor used in study is the global FEM model of 
Yme MOPUstor provided by Atkins Ltd, as shown in the figure 5.2. 

 
Figure 5.2. Overview of the Atkins’s Model 

 
The Atkins’s model is a simplified linear elastic beam model of the Yme MOPUstor. 
The storage tank is not modelled directly. Instead, the local flexibility of the tank is 
accounted for in the supports of tower. All the relative geometries and connections 
have been modelled and verified by Atkins [4] based on the basic properties of the 
Yme MOPUstor.  
 
The coordinate system is set at the seabed level of the model. The x-direction is set 
to be the caisson to forward legs direction, and then the starboard side and port 
board side’s legs can be defined as figure 5.3. 

 

 
Figure 5.3 Nomenclature of the Yme MOPUstor 
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Three interest elevation levels (or EIs) for the legs’ responses are highlighted. Those 
are the level at bottom of the legs: EI 39.9m, the level at the top of the legs: EI 
119.4m and the level at the cut level: EI 100.125, as shown in Figure 5.4. 
 

 
Figure 5.4 elevations of interest leg section’s locations 

 

The total mass of the MOPU is 1.29 × 107 kg, the model stiffness has been tuned so 
that the natural periods of the three main modes (Surge, Sway and Yaw, see Figure 
2.5 below) closely match those measured, as listed in table 5.4 
 

 
Figure 5.5 the graphical representation of the global modes. 

 
The damping coefficients of the Yme MOPUstor are estimated based on the ratio of 
critical damping. A study on damping term has been carried out by Atkins two years 
ago [34]. The total damping consists of four major components: structural damping, 
viscous damping, radiation damping and wind damping. According to Atkins’s 
studies, the total is estimated as 3% of critical damping for each mode. 
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Due the misalignment between axial force and deformed legs, second order effect 

exists. The second order effect, or 𝑃 − Δ effect will provide an extra bending moment 
on the legs. In Atkins model the 𝑃 − Δ effect is modelled as a negative spring at the 
location of jack-houses. 
 
In conclusion, with all relative characteristics properly modelled, it is reasonable to 
assume the Atkins’s model has capable of reflecting the dynamic response 
properties of the real Yme MOPUstor and thus is valid to be adopted as this model 
for the comparative study. 
 

Table.5.4 Natural period of platform (measured) and model 

Mode Natural Period 
(SesamTM Model) (Sec) 

Natural Period 
(Measured) (Sec) 

Sway 6.97 7.1 

Surge 6.53 6.7 

Yaw 5.15 5.3 

 
Several reference responses are selected for this comparison. First, the 
displacement at the top of the legs and the caisson are selected as the references, 
since they directly reflect the total deformation of the Yme MOPUstor platform and 
the relative movement between the caisson and the topside. Furthermore, in order to 
inspect the inner interaction of each leg, the total shear forces and bending moments 
at the base of each leg are also chosen. The table.5.5 and figure 5.6 show the 
corresponding result type of the nodes or element extracted from SesamTM model.  
 

Table 5.5 Result used as reference response 

Type Number Output Component Comment 

Shear Force and 
Bending Moment at 
base level (EL39.9m) 

Element 
200 

Displacement: 
Translational 
Component in global 
coordinate: 
TX, TY, TZ (Unit: m) 

Caisson 

Element 
1405 

Starboard leg 

Element 
1580 

Portside Leg 

Element 
3224 

Forward Leg 

 
Displacement at top 
level (EL119.4m) 

Node 
102 

Element average 
sectional force (G-
Force) 
Axial Force: NXX (Unit: 
N) 
Shear Force in local y 
and z direction: NXY, 
NXZ (Unit: N) 
Torsional Moment: 
MXX(Unit: Nm) 
Bending moment in 
local y and z direction: 
MXY, MXZ (unit: Nm) 

Caisson 

Node 
864 

Starboard leg 

Node 
870 

Portside Leg 

Node 
1612 

Node (32.7,9,117.5) 
close to gravity 
center of the topside  

Node 
2070 

Forward Leg 
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The table.5.5 and figure 5.6 show the corresponding result type of the nodes or 
element extracted from SesamTM model. 
 

  
Figure 5.6. Example of a set of reference response in SesamTM Xtract GUI 

 
  

EL119.4m 

EL39.9m 
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6.0 RESULT AND ANALYSIS  

 
 

This chapter presents the results and analyses of the comparative study with respect 
to the dynamic analysis of the Yme MOPUstor platform. As mentioned in Chapter 5, 
the comparative study is carried out between the quasi-static method, frequency-
domain method and time-domain method, in four aspects. 
 
These aspects are the effect of the non-linearity (drag term and free surface 
elevation), the issue of the dynamic versus the quasi-static, the issue of the 
deterministic versus the stochastic and the efficiency. The results and analyses on 
these four aspects are carried out respectively. A table of conclusion and practice 
advice is also provided in this chapter. 
 
 
6.1 The effect of the non-linearity 
 
 
To begin with, the result and analysis of the non-linearity is carried out. This study 
focuses on the difference between the frequency domain and the time domain 
method. This analysis in this section consists of two parts. 
 

(1) Free surface treatment 
(2) Linearized versus non-linear drag term 

 

For a better understanding, a qualitative analysis of these two non-linearity factors 
are carried out first. Then, the spectrums of the total external force in Y direction 
(sample frequency 2Hz) are used to identify and analysis these effects quantitatively. 
 
The non-linearity effect of the drag-force term is evaluated first. The influence of the 
drag force can be estimated by the Keulegan–Carpenter number. A higher KC-
number indicates a higher influence of the drag force term. According to ref. [9], 
section 6.6.1.5, the KC-number in the stochastic wave can be defined as  
 

𝐾𝑐 =
𝑇𝑉𝑚𝑎𝑥
𝐷

≅
𝑇𝑧𝑉𝑚𝑎𝑥
𝐷

 

(6.1) 
 

Where 𝑇𝑧 = 2𝜋√
𝑀0

𝑀2
, 𝑉𝑚𝑎𝑥 = √2𝑀2ln (

3ℎ𝑟

𝑇𝑧
),  𝑀𝑜 , 𝑀2 are the zeroth and second moment 

of the wave spectrum, D is the diameter of the legs. 
 

Table 6.1. corresponding KC-number of all the load cases 

Load Case Hs (m) Tp (sec) Diameter (m) KC-Number 

1 6.03 7.03 3.5 1.41 

2 14.2 15.9 3.5 8.99 

 
Table.6.1 shows the corresponding KC-number for each load case. According to ref 
[6], section 6.7.2, KC=3 can be treated as a threshold of the drag force’s influence. 
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Hence the load case 1 satisfies the KC criteria for the linearized calculation, while 
the drag force’s influences in the load case 2 are significant. 
 

Second, the non-linearity effect of the free surface elevation is evaluated. As 
indicated in ref [6], section 3.2.1, the steepness can be used to determine how 
strong the free surface elevation effects are, in a specific conditions. A higher 
steepness indicates a higher non-linearity of varying wave elevation. According to ref 
[6], section 3.5.3, the significant steepness of a sea state can be defined as, 
 

𝑆𝑚02 =
2𝜋

𝑔

𝐻𝑠
𝑇𝑧2
=
2

𝜋𝑔

𝑀2

√𝑀0
 

(6.2) 
 

Where the term "𝑆𝑚02” is defined to be the average steepness.  
 
Table.6.2 shows the significant steepness of each load case. From table.6.2, it is 
obvious that the steepness in the extreme wave conditions is four orders higher than 
these in the “resonant” conditions. Hence, it can be predicted that the non-linear 
effect of the varying free surface should be much stronger in the load case 2 than the 
load case 1. 
 

Table 6.2. the corresponding steepness for all the load cases 

Load Case Hs(m) Tp(sec) D (m) Significant Steepness 

1 6.03 7.03 3.5 9.8E-08 

2 14.2 15.9 3.5 2.2E-04 

 
In summary, the pre-assessment of the drag and steepness’ influence has shown 
that the non-linear effect in the load case 2 is much stronger than these in the load 
case 1. Therefore, it should be observed larger deviation for the analysis of the load 
case 2 than the load case 1 by the traditional frequency domain method. 
 
With all the non-linearity factors pre-assessed, the next step is to analysis the 
spectrum of the total external force in Y direction. As discussed in Chapter 4, the 
nonlinear effect of the varying free surface elevation can be approximated to be 
quadratic and the nonlinear effect of the drag term can be approximated to be cubic. 
Therefore, the frequency shifts should be observed in the spectrum plot. These shifts 
should consist of two parts: the frequency shift due to the varying free surface 
elevation and the frequency shift due to the non-linear drag force. To identify the 
influence of these two parts, the analyses with only the drag term presented and only 
the inertia term presented are also performed respectively. Table 6.3 shows the 
identification of the non-linearity contained in each analysis. 
 

Table 6.3. the identification of the non-linearity contained in each analysis 

Method Inertia Drag 

Frequency 
domain 

Constant elevation 
Constant elevation + Linearized drag 

force 

Time domain 
Varying elevation with the 

wheeler treatment 
Varying elevation with the wheeler 
treatment + non-linear drag force 
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The analysis of the varying free surface elevation is carried out first. Figure 6.1-
Figure 6.2 show the spectrum of the external force in Y-direction with only the inertia 
term presented for the load case 1 and the load case 2 respectively. As marked in 
these figures (marked by the blue circles), two trends of the frequency shifts 
occurred in these figures. One trend occurs at the region lower than the main 
frequency band. These frequency shifts represents the substraction part of the 
original frequency. The other trend occurs at the region higher than the main 
frequency band. These frequency shifts represent the summation part of the original 
frequency. Besides with the increase of the wave height (from LC1 to LC2), these 
trends become more observable.  
 
In addition, the extreme values predicted by the time-domain method and the 
frequency-domain methods also provide some information. Table 6.4 shows the 3hrs 
extreme value predicted by the time-domain method and the frequency-domain 
method respectively. As observed from the table 6.4, however, there is no decrease 
of the accuracy of the load case 1 compared with the accuracy of the load case 2 
with respect to the extreme value.  
 

Table 6.4. the 3hrs extreme value predicted by the time-domain and the 
frequency domain method with only the inertia term presented 

Method 
LC 1 LC 2 

3hrs extreme 
value 

Error 3hrs extreme 
value 

Error 

Time – domain 3.89𝑀𝑁 -- 19.3𝑀𝑁 -- 

Frequency - domain 3.25𝑀𝑁 16.5% 16.8𝑀𝑁 12.95% 

 
Therefore, it can be concluded that the frequency shift caused by the varying wave 
elevation can be identified in the spectrum. However, the varying wave elevation 
effect with respect to the extreme value is not clear for the dynamic analysis of the 
Yme MOPUstor. 
 
With the effect of the varying free surface elevation analysed, the next step is to 
analysis the effect of the non-linear drag force. Figure 6.3 - 6.4 show the spectrum of 
the total external force in Y direction with only the drag term presented for the load 
case 1 and the load case 2 respectively.  As marked in these plots (the drag force 
marked by the dark circles and the varying free surface effect marked by the blue 
circles), the non-linearity effect are significant. Three characters can be clearly 
observed in those figures. First, it is quite clear that the frequency-domain severely 
underestimated the drag force. Second, due to the present of the non-linearity drag 
force, two significant frequency shifts occur at the low frequency region and the high 
frequency region, which cannot be observed in the figure 6.1 and the figure 6.2. 
Third, the effect of the varying wave surface can still be observed in the figure 6.3 
and figure 6.4, as marked by the blue circles. 
 

Table 6.5. The 3hrs extreme value predicted by the time-domain and the 
frequency domain method with only the drag term presented. 

Method 
LC 1 LC 2 

3hrs extreme value Error 3hrs extreme value Error 

Time – domain 2.387𝑀𝑁 -- 19.3𝑀𝑁 -- 

Frequency - domain 0.884𝑀𝑁 62% 0.910𝑀𝑁 94% 
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Table 6.5 shows the 3hrs extreme value predicted by the time-domain and the 
frequency domain method with only the drag term presented. The drag force of 
current is added to the extreme value separately. It can be clearly observed from the 
table that the linearized drag term significantly underestimates the result and with the 
increase of the drag effect (or KC-number), this underestimation has become even 
worse (62% to 94%).   
 
Therefore, it can be concluded that the frequency shift caused by the drag force can 
be identified in the spectrum. And the linearization of the drag force in this calculation 
thus may be invalid. 
 
Finally, the spectrum of the total force with both the drag and the inertia force are 
presented. Figure 6.5- figure 6.6 show the spectrum of the total external force in Y 
direction for the load case 1 and the load case 2 respectively.  As observed from 
these two plots, due to the superposition of the drag forces and the inertia forces, the 
spectrum at peak frequency have been enhanced and the non-linearity effect has 
been reduced. However, the superposition of the drag forces and inertia force is not 
the simple summation. As indicated in the Morison equation, there is a 90 degrees 
phase shift between the inertia force and the drag force.  Therefore, this phase shift 
will result in a moderate extreme value, instead of the simple summation. Table 6.6 
shows the 3hrs extreme value with both drag and inertia term presented. As shown 
in the table, the deviations of the frequency domain method are moderate, with in a 
certain range. Also, the deviation of the frequency domain method increases, with 
the increase of the wave height. The extreme topside’s displacement in 3hrs 
simulation has verified this prediction, as shown in table 6.7. 
 

Table 6.6. the 3hrs extreme value predicted by the time-domain and the 
frequency domain method with both the drag term and the inertia term 
presented. 

Method 
LC 1 LC 2 

3hrs extreme value Error 3hrs extreme value Error 

Time – domain 4.09𝑀𝑁 -- 24.5𝑀𝑁 -- 

Frequency - domain 3.22𝑀𝑁 6% 17.4𝑀𝑁 29% 

   
 

Table 6.7. the 3hrs extreme topsides’ displacement predicted by the time-
domain and the frequency domain method with both the drag term and the 
inertia term presented. 

Method 

LC 1 LC 2 

3hrs extreme 
value 

Error 3hrs extreme 
value 

Error 

Time – domain 0.7436 -- 0.9469  -- 

Frequency - domain 0.8051 -8.27% 0.5577 41.10% 
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Figure 6.1. the density spectrum of the total external force in Y direction (inertia only) 
for the LC 1 (Sample Frequency 3Hz) 
 

 
Figure 6.2. the density spectrum of the total external force in Y direction (inertia only) 
for the LC 2 (Sample Frequency 3Hz) 
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Figure 6.3. The density spectrum of the total external force in Y direction (drag only) 
for the LC 1 (Sample Frequency 3Hz) 

 
 

 
Figure 6.4. The density spectrum of the total external force in Y direction (drag only) 
for the LC 2 (Sample Frequency 3Hz) 
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Figure 6.5. The density spectrum of the total external force in Y direction (drag and 
inertia) for the LC1 (Sample Frequency 3Hz) 
 

 
Figure 6.6. The density spectrum of the total external force in Y direction (drag and 
inertia) for LC 2 (Sample Frequency 3Hz) 
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6.2 The dynamic versus the quasi-static 
 
 
As discussed in Chapter 4, the study of the dynamic versus the quasi-static will focus 
on two aspects: 
 

(1) The validation of DAF on SDOF system 
(2) The representation of SDOF system for MDOF system 

 
Based on these two principles, the analysis is carried out by comparing the inertia 
load when the displacement of the CoG is the maximum in 3hrs, estimated by 
different methods. To control variables, the wave load used in DAF estimation is 
linearized, and thus only the issue of dynamic versus the quasi-static is involved in 
this analysis. Therefore, the analysis result in this section does not represent the real 
quasi-static analysis of the platform. 
 
For the study on the validation of DAF estimation on SDOF system, the SDOF used 
in this analysis is the simplified model of the Yme MOPUstor based on the natural 
period of 7sec and the topsides’ mass of 129000te, expressed as 
 

1.29 × 107𝑟̈ + 1.14 × 106𝑟̇ + 1.01 × 107𝑟 = 𝐹 
(6.3) 

 
Where r is the hypothesis displacement, F is the total wave load in Y direction.  
 
The calculation procedure for the simplified DAF(DAF), stochastic DAF (SDAF) and 
the frequency-domain method are introduced in the Chapter 4. The calculation of the 
inertia loads for the multi degree of system (MDOF) is based on the linear time-
domain method, introduced in Appendix III. 
  

Table 6.8 the inertia loads estimated by the simplified DAF(DAF), the 
stochastic DAF (SDAF) and the frequency-domain method (SDOF and MDOF) 
(Unit: MN) 

Load Case 
SDOF MDOF 

DAF SDAF FD FD 

LC 1 29.30MN 17.85MN 16.5MN 8.60MN 

LC 2 3.972MN 9.378MN 8.6MN 7.52MN 

 
As observed from table 6.8, as predicted in Chapter 4, the DAF method 
overestimates the inertia load, due to the lack of the frequency shift. The stochastic 
DAF method, however, provides a reasonable result compared with the FD’s result 
for the SDOF system. Therefore, the stochastic DAF method is believed to be valid 
for the SDOF system. 
 
For the issue of SDOF’s representation, however, the results are not very 
satisfactory. By comparing the FD calculated in SDOF and MDOF system, it can be 
clearly observed that the inertia load has been overestimated, while the total extreme 
external load are the same. Therefore, the representation of a SDOF system in the 
Yme MOPUstor’s dynamic analysis is debatable. 
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In additions, the load distribution of the Yme MOPUstor also cannot be fully 
reconstructed by the DAF method. As shown in figure 5.5, the three dominated 
modes of the Yme MOPUstor can only approximately be treated as the Surge, Sway 
and Yaw shapes. Taking the Sway shape as an example, the real “Sway” mode of 
the platform is an combination of the true Sway and the true Yaw’s motion. This 
shape is so complex that it cannot be represented by a single inertia load at centre. 
Therefore, the deviation occurs between the quasi-static analysis and the real motion, 
with respect to the SDOF representation. 
 
 
6.3 The deterministic versus the stochastic 
 
 
The study of the stochastic versus deterministic is carried out in two aspects: 
 

(1) The representation of a single wave load with respect to the external force 
 

(2) The representation of a single wave load with respect to the maximum 
response 

 
The study on the representation of a single wave load with respect to the external 
force is carried out first. As mentioned in Chapter 5, the table 6.9 shows the 
maximum wave heights with their associated wave periods for each load case. (The 
conversion approach is attached in Appendix I) In this study, the wave loads of both 
the stochastic waves and the single wave are calculated and compared, with respect 
to its extreme value. 
 

Table 6.9 the selected environmental conditions for this comparative study 

Environmental 
Condition 

𝑯𝒔(𝒎) 𝑻𝒑 (𝐬𝐞𝐜) 𝜸 𝑯𝒎𝒂𝒙(𝒎) 𝑻𝒂𝒔𝒔(𝒔𝒆𝒄) Wave 
direction 

LC 1 6.03 7.03 5 11.43 7.1 90 deg 

LC 2 14.2 15.9 3.3 24.58 14.58 90 deg 

 
Table 6.10 shows the 3hrs- extreme external force predicted by the stochastic waves 
and the single wave for each load case. As observed from the table, the result from 
the single wave is quite close to the result from the stochastic. However the accuracy 
of single wave load in the load case 1 is higher than those in the load case 2. This 
may be caused by the wide band spectrum for the load case 2. Therefore, it can be 
concluded that, with respect to the total extreme value, the single wave load is 
representative for these two load cases.  
 

Table 6.10 the extreme total wave load  in 3hrs simulation 

Method 
LC 1 LC 2 

3hrs extreme load Error 3hrs extreme load Error 

Stochastic wave 4.09𝑀𝑁 -- 24.5𝑀𝑁 -- 

Single wave 4.50𝑀𝑁 10.0% 24.2𝑀𝑁 -1.22% 

 
However, with respect to the extreme overturning moment, the single wave load 
method results in a large deviation. Table 6.11 shows the extreme overturning 
moment predicted by the single wave and the stochastic wave method. As observed 
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from table 6.11, the deviations of the single wave load are significant. This 
phenomenon indicates the load distribution of the single wave load may fail to be 
representative. 
 

Table 6.11 the extreme overturning moment in 3hrs simulation 

Method 
LC 1 LC 2 

3hrs extreme load Error 3hrs extreme load Error 

Stochastic wave 244.96𝑀𝑁𝑚 -- 294.25𝑀𝑁𝑚 -- 

Single wave 411.17𝑀𝑁 68% 1411.4𝑀𝑁𝑚 380% 

 
Due to the limitation of this study, this representation of this analysis is limited. The 
validation of single wave load for these load cases doesn’t mean it is general 
applicable for the sea state. A sensitivity study of this effect should be presented in 
future. 
 
With the representation of a single wave load with respect to the external force 
analysed, the next step is to analysis the representation of a single wave load with 
respect to the maximum response. To control variables, this analysis is carried out 
only in the frequency domain methods. 
 
The study is based on the static load reconstruction when the topside’s displacement 
is maxima for a 3hrs simulation.  Two methods are adopted in this load 
reconstruction: the design wave method and the linear time-domain method. The 
design wave method is to reconstruct the load distribution via the equivalent single 
wave at the peak frequency of the response’s spectrum. The linear time domain 
method, on the other hand is to reconstruct the load distribution via a pseudo sea 
state. More details of these two methods are attached in Appendix III.  
 
The load case 1 is used and the maximum horizontal displacement of the top level of 
the forward leg (EL119.14m) is adopted to perform the comparative study, because 
the linearized method is only valid in the load case 1. The goodness of converted 
loads will be judged based on two criteria: total static wave load in Y direction and 
total inertia loads on three translational direction (Global X,Y,Z direction).The static 
load in Y-direction is calculated by applying the RAO of total shear force and 
overturning moment calculated in WajacTM. 
 
For regular wave load conversion method, the result based on short-term based 
approach is listed in table 6.12.  
 

Table 6.12 the conversed regular wave 

Short-term Sea state 
Statistical 
extreme 
response 

 

Hs Tp Wave 
direction 

Y-
displacement 

Peak 
frequency in 
response 
spectrum 

Corresponding 
RAO 

Wave 
Height 
H 

6.03m 7.03sec 90deg 1.1109m 0.902Rad/s 0.599 1.852m 
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Thus the equivalent single wave has a wave height of 2.008m and frequency of 
0.902Rad/s. Its corresponding static wave load and inertia load are shown in the 
table 6.13 
 

Table 6.13 the load of the conversed regular wave 

Conversed Wave Maximum Wave load Inertia Load 

Wave 
Height H 

Wave 
Frequency w 

Total Shear 
force (Y) 

Overturning 
Moment (Y) 

FX FY FZ 

1.852m 0.902Rad/s 1.087MN 1.300MNm 1.83MN 8.41MN 0.15MN 

 
For linear time-domain method, four load cases have been generated. Their 
maximum horizontal displacements are listed in the table 6.14  
 

Table 6.14 the load cases based on linear time domain method 

Load Case 

Maximum Total horizontal Response Maximum Component 
Reponses(m)  

Total 
horizontal 
response 
(m) 

Correspondin
g Time Point 
Tmax 

Error 
** 

X-
direction(error)** 

Y-
direction(error)*
* 

1 1.121 3151.4sec 1.1% 4.70x10-3(-8%) 1.13 (1%) 

2 1.060 7577.6sec -4.5% 4.62x10-3(-9.7%) 1.06 (-4.5%) 

3 1.084 3296.8sec -2.3% 4.34x10-3(-15.2%) 1.09(-2.3%) 

4 1.081 3794.8sec -2.5% 4.77x10-3(-6.9%) 1.08 (-2.5%) 

Statistical 
value 

1.109 N/A N/A 5.12 x10-3 
 

1.11 

 
*: Different from component of the maximum total horizontal displacement 
**: Error compared with statistical value. 
 
As known in the table 6.14, the maximum response in 3hrs simulation is stable and 
their values are quite close to extreme value based on statistical analysis. Another 
three cases are generated for further inspection, listed in table 6.15 
 

Table 6.15 the load cases based on linear time domain method (extra) 

Load Case 

Maximum Total horizontal 
Displacement 

Maximum Component Reponses  

Total 
horizontal 
response 

Corresponding 
Time Point Tmax 

X-direction Y-direction 

5 1.0807 1066sec 4.304 x10-3 m 1.0806m 

6 1.0492 2776sec 4.314 x10-3 m 1.0492m 

7 0.9038 6918.6sec 4.290 x10-3 m 0.9038m 

 
  



117 
 

It is interesting to observe that the relative deviation between each load case is 
rather small, while small but constant deviation between simulated response and 
statistical value occurs. A possible reason is that the Rayleigh distribution is just 
approximation curve fit to the real response distribution, and the Rayleigh distribution 
may overestimate the actual response within tolerable range. Another reason such 
as frequency discretion may also contribute the deviation. It can be conclude the 
error of simulation is acceptable and the simulation is valid for load conversion. 
 
 
The static and inertia load for load case 1 - 4 is list in table 6.16. 
 

Table 6.16 the static and inertia load for the load case 1 - 4 

 
Load 
Case 

Wave load Inertia Load 

Total Shear 
force (Y) 

Overturning 
Moment (Y) 

FX FY FZ 

1 0.3MN 1.28MNm 0.040MN 9.25MN -2.14 x10
-4

MN 

2 0.5MN 1.35MNm 0.039MN 8.43MN -5.69 x10
-4

MN 

3 1.23MN 1.01MNm 0.022MN 8.02MN -4.91 x10
-5

MN 

4 -0.25MN 0.0221MNm 0.037MN 8.2MN -2.07 x10
-4

MN 

 
In order to make a comparison between two methods, load from linear time-
domain method is linear scaled to the statistical value, as shown in table 6.17 
 

Table 6.17 the comparison between the single wave method and the linear time 
domain method 

 
Load Case 

Wave load Inertia Load 

Total Shear force 
(Y) 

Overturning Moment 
(Y) 

FX FY 

1 0.3MN 1.27MNm 0.040MN 9.15MN 

2 0.5MN 1.41MNm 0.040MN 8.83MN 

3 1.26MN 1.03MNm 0.023MN 8.21MN 

4 -0.25MN 0.023MNm 0.038MN 8.4MN 

Single Wave -0.1MN 1.41MNm 0.031MN 9.10MN 

 
The inertia load shows its stable properties for different load cases. The inertia load 
in Y-direction contributes most and is within the range of 8.2-9.2MN. However, the 
single wave method may overestimate inertia load in X-direction compared with the 
linear time domain simulation. In contrast, the static wave load varies a lot for 
different load cases. This is indicated the stochastic intrinsic quality of the structural 
response: that the different distribution of the static wave load and the inertia load 
will lead to same response for the horizontal displacement at the top of the forward 
leg.  
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Nevertheless, a high caution should be paid to the single wave conversion method, 
though it shows a really good case in this calculation. The Yme MOPUstor is 
dominated by three dynamic modes: surge, yaw and sway, which mean the RAO of 
the response, will have three peaks, instead of one. Combining with the wave 
spectrum (especially for wide band spectrum), the response spectrum may be wide 
band, or even has multi-peaks. In this case, the assumption for the peak frequency 
equivalent in the single wave conversion method will be invalid, and its 
corresponding result will fail to be representative. Besides, the regular wave 
conversion method is invalid for the non-linear load combination. Therefore, the 
regular wave conversion and the linear-time domain method are recommended to be 
performed at same time for one load conversion.  
 
In conclusion, the single wave representation shows its validation in this numerical 
experiment. The validation of this method is limited to the band width of the spectrum. 
Therefore, a pre-assessment needs to be carried out before its engineering practise. 
 
 
6.4 The efficiency 
 
 
The efficiency is a balance between the time-consuming and the accuracy. As 
mentioned before, all the dynamic analysis methods are imperfect in nature. On one 
hand, some methods give quite accurate results, but its time-consuming is 
unacceptable for a commercial project. On other hand, the time-consuming of the 
analysis by some methods is acceptable for engineering practise, but its analysis 
results can only be considered to be representative, under a certain condition, within 
certain accuracy. There, in this section, the study on efficiency consists of two topics: 
the time-consuming and the accuracy. 
 
The time-consuming for each analysis are listed in the table 6.18, and the results of 
the 3hrs extreme responses are shown in table 6.19 – table 6.21. The responses at 
the local coordinates have been converted into the global coordinate. Due to the 
involvement of the negative spring, the fake shear forces are generated at the 
bottom of the legs. However, these fake shear forces are generated for the results by 
all the methods, and hence are not considered here. 
 

Table 6.18 the time-consuming for each analysis 

 SesamTM 
WajacTM 

SesamTM 
SestraTM 

Comments 

Load case 1 

Quasi-static ≈37sec ≈8sec 
For one load 

case 

Frequency-
domain 

22sec 1251sec 
Applicable for 
all load cases 

Time domain 29102sec 116460sec 
For one load 

case 

Load case 2 

Quasi-static ≈37sec ≈8sec 
For one load 

case 

Frequency-
domain 

22sec 1251sec 
Applicable for 
all load cases 

Time domain 1818sec 50514sec 
For one load 

case 
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As observed in table 6.18, the time-domain method is the most time-consuming 
method among the all the dynamic analysis methods. Hence, because of its large 
time consuming, it is impossible to run all the dynamic analysis cases by using the 
time-domain method. The time-consuming of the frequency domain method and the 
quasi-static method are relatively small. With respect to one load case analysis, the 
quasi-static analysis is faster than the frequency-domain analysis. However, with 
respect to the complete sea states analysis, the frequency domain method is 
believed to be faster. To sum up, the quasi-static method or frequency-domain 
method are recommended to be performed initially before the time-domain analysis. 
 
In addition, the issue of the accuracy also needs to be contained into the 
consideration. Ae mentioned previously, the time-domain method is believed to be 
the most accurate in principle and thus set to be the reference. As observed from 
table 6.19 - 6.21, for the load case 1 analysis, the frequency domain’s results are 
more accurate. This is consistent with the prediction that the frequency domain is 
more accurate in the resonant zone [6]. For the load case 2 analysis, the quasi-
static’s analysis results are more accurate. This is consistent with the prediction that 
the quasi-static is more accurate in the extreme wave condition [6]. 
 
However, this conclusion is not generally applicable to all the dynamic analysis 
cases. For the dynamic analysis of the Yme MOPUstor, the dynamic effect is not 
significant at the extreme wave condition, vice versa, as discussed in section 6.1. 
For the cases which the natural period is coincident with period of the extreme wave 
condition, both the frequency-domain method and the quasi-static method fail to be 
representative. Only the time-domain method is available in these cases. Therefore, 
as recommended in section 6.1, the non-linearity needs to be pre-assessed for the 
selection for a proper dynamic analysis method.  
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Table 6.19 The maximum displacement in Y-direction (3hrs, Unit: meter) 

The topside’s CoG (node: 1612) 

 Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 0.7367 0.8051 2.4896 1.5599 

Load case 2 0.9469 0.5325 0.7658 1.3092 

The top of the forward leg (node: 2070) 

 Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 1.009 1.1109 2.8844 1.7950 

Load case 2 1.3298 0.6346 0.7972 1.4344 

The top of the caisson (node: 102) 

 Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 0.5637 0.5062 2.0850 1.3273 

Load case 2 0.8892 0.5055 0.7875 1.2302 

The top of the starboard leg (node: 864) 

 Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 0.6806 0.6886 2.3885 1.4981 

Load case 2 0.8423 0.5094 0.7808 1.2929 

The top of the portside leg (node: 870) 

 Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 0.6775 0.6880 2.3669 1.4744 

Load case 2 0.8412 0.5093 0.7576 1.2698 
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Table 6.20 The maximum shear force in Y direction (3hrs, Unit: MN) 

The base of the caisson (Element:200) 

  Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 2.601 2.655 7.342 4.473 

Load case 2 6.588 4.953 1.231 2.908 

The base of the starboard leg (Element:1405) 

  Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 2.500 2.852 9.181 5.535 

Load case 2 4.170 2.982 1.413 3.549 

The base of the portside leg (Element: 1580) 

  Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 2.780 2.803 9.471 5.842 

Load case 2 4.610 2.980 1.724 3.854 

The base of the forward leg (Element: 3224) 

  Time-
domain 

Frequency-
domain 

Quasi-static 
(DAF) 

Quasi-static 
(SDAF) 

Load case 1 4.108 3.138 11.002 6.704 

Load case 2 5.188 3.063 1.845 4.359 
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Table 6.21 The overturning moment about X direction (3hrs, Unit: MNm) 

The base of the caisson (Element:200) 

  
Time-

domain 
Frequency-

domain 
Quasi-static 

(DAF) 
Quasi-static 

(SDAF) 

Load case 1 126.31 150.55 430.77 262.40 

Load case 2 218.41 160.19 72.07 170.54 

The base of the starboard leg (Element:1405) 

  
Time-

domain 
Frequency-

domain 
Quasi-static 

(DAF) 
Quasi-static 

(SDAF) 

Load case 1 92.20 107.69 333.06 260.26 

Load case 2 131.1 87.23 52.94 129.15 

The base of the portside leg (Element: 1580) 

  
Time-

domain 
Frequency-

domain 
Quasi-static 

(DAF) 
Quasi-static 

(SDAF) 

Load case 1 97.15 111.92 336.68 206.36 

Load case 2 136.6 88.76 59.05 135.26 

The base of the forward leg (Element: 3224) 

  
Time-

domain 
Frequency-

domain 
Quasi-static 

(DAF) 
Quasi-static 

(SDAF) 

Load case 1 148.2 169.22 406.70 247.83 

Load case 2 187.6 111.34 68.23 161.14 
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6.5 Conclusion and practise advise 
 
 

Table 6.22. The conclusion and the practise advise 

Load Cases 
Load Case 1 

(Resonant Condition) 
Load Case 2 

(Extreme Wave Condition) 

Linear 
versus 

nonlinear 

Drag 
force 
effect 

Inertia Dominated; 
Drag’s linearization strongly 
underestimates the drag force 
but has no fatal effect on the 
accuracy. 

Non-inertia Dominated; 
Drag’s linearization strongly 
underestimates the drag 
force and has fatal effect on 
the accuracy 

Free 
surface 
effect 

The free surface effect is not 
significant; 
For the linearized calculation, 
the constant elevation should 
be tuned close to the mean 
water level to avoid 
overestimation on the dynamic 
effect. 

The free surface effect is 
significant;  
For the linearized 
calculation, the linearized 
calculation will 
underestimate the result. 

Quasi-static versus 
dynamic 

Sensitive to the dynamic 
effect; 
 
A large phase shift occurs 
between the external load and 
the inertia load. Thus the 
quasi-static analysis will highly 
overestimate the result.  

Not very sensitive to the 
dynamic effect; 
The quasi-static analysis 
provides a reasonable 
result. However, due to the 
band of the wave spectrum, 
parts of the energy are 
presented in resonant zone. 
Hence the stochastic DAF 
estimation, instead of the 
simplified DAF estimation, 
provides a better result. 

Deterministic versus 
stochastic 

The stochastic load case can 
be reasonably represented by 
a deterministic load case.  

The stochastic extreme 
wave load can be 
represented by a 
deterministic single wave 
load 

Efficiency 
Quasi-static and FD methods are much faster than the TD 
method. 

Practise advice 

The load case at the resonant 
condition can be solved by the 
time domain method or the 
frequency-domain method. 
The reference wave height 
needs to set to be 1m to 
reflect the true dynamic effect. 
The design wave conversion 
method is valid for this load 
case. 

The load case at the 
extreme wave condition can 
be solved by the quasi-
static method or the time-
domain method. The 
stochastic DAF method 
provides a better result. 
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7.0 FURTHER STUDY 

 
 
As pointed out previously, the biggest challenge with respect to the improvement of 
the frequency-domain method’s efficiency is the non-linearity. The issues of the 
stochastic excitation and the dynamic can be perfectly handled by the frequency-
domain method. And the time-consuming of the time-domain methods is acceptable. 
However, the traditional frequency-domain method fails to serve when the non-
linearities are significant. Therefore, several attempts have been made to include the 
non-linearity into this efficient method. 
 
As pointed out in ref [39], the non-linearities involved in the Jack-up design can be 
cataloged as, 
 
Structural: 
1) Leg to hull interface 
2) Overall leg hull structure 

 P-Δ effect 
 Euler effect 

3) Leg to soil interface 
 

Environmental: 
4) Coupled Morison drag force calculation 
5) Wave elevation and crest kinematics 
6) Combination current-wave interaction 
 
In this thesis, the higher order frequency domain method is developed to involve 
some of environmental non-linearities, which are hydro-structure decoupled drag 
force, wave elevation and crest kinematics. However, it is still not enough. Taking an 
example of the Yme MOPUstor, for the decommissioning operation of the the Yme 
MOPUstor, one plan proposed is to install a stabilization tool in the cut leg as a 
temporary support, in case of the Pieter Schelte cannot lift the platform immediately. 
Figure 7.1 shows a graphical representation of the stabilization tool. This stabilization 
tool is functioned based on the fiction force, and thus the global force-deformation 
properties of it show significant non-linearity. This structural non-linearity cannot be 
considered by the HFD method. Therefore, some further studies need to be carried 
out. 
 
Several ideas have been inspired by the research work from the Aerospace industry 
and may be applicable for the hydro-structure models. These possible methods are, 
 

(1) Describing function method with the non-linear modal techniques[26] 
 

(2) Direct spectrum conversion method [14] 
 

(3) Volterra series [27] 
 

(4) Linearized structure with non-linear component [41] 
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Due to the limitation of this study, no further research work is carried out on those 
aspects. 
 

 
 

Figure 7.1. The graphical representation of the stabilization tool, from ref [40] 
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Appendix I: The hydrodynamic model and the program “Hydro” 
 
 
I.1. Mathematical Model of waves 
 

 

The knowledge of this section is mainly from ref [9]. 

 

Several wave models are applied to simulate a regular wave with a given height H 

and a given period T. The mathematical model of such regular wave is based on the 

potential theory with the non-viscous stationary assumption. 

 

The motion of the water particle in waves is assumed to be fully represented by the 

potential function 𝜙(𝑥, 𝑧) in 2-D frame as shown in figure I.1. Thus, the velocity of the 

water particle at (x,z) can be expressed as  

 

Velocity in x- direction 

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
(𝑥, 𝑧)   

(𝐼. 1) 

Velocity in z- direction 

𝑣𝑦 =
𝜕𝜙

𝜕𝑦
(𝑥, 𝑧) 

(𝐼. 2) 

 

 

  
Figure I.1 the 2-D frame for wave definition 

 

  

𝜁 
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The kinematic condition (A.3) and the dynamic condition (A.4), derived from 

conservation law and the boundary condition, fully determine the potential 

function𝜙(𝑥, 𝑧) . The perturbation theory (A.5) is applied to expand the potential 

function by the order of wave steepness and thus can be solved within a limited 

accuracy. 

 

(
𝜕𝜁

𝜕𝑡
+ ∇𝜙∇𝜁)

𝑧=𝜁
= (
𝜕𝜙

𝜕𝑧
)
𝑧=𝜁

 

(𝐼. 3) 

 

𝜁(𝑥, 𝑦, 𝑡) = −
1

𝑔
(
𝜕𝜙

𝜕𝑡
+
1

2
∇𝜙∇𝜙) 

(𝐼. 4) 

 

𝜁 = 𝜁1 + 𝜁2 +⋯ 

𝜙 = 𝜙1 + 𝜙2 +⋯ 

(𝐼. 5) 

 

Where,  𝜁  is the free-surface elevation of water and 𝜙  is the potential function. 

𝜁1, 𝜁2… ,𝜙1, 𝜙2, ..  are first, second.. order of surface elevation and potential function 

with respect to the steepness of wave. 

 

Many studies have been carried out for the solution of the wave governing equation. 

Among those, the airy wave, the Stokes wave and the conical wave are generally 

used in the engineering problems. The application range is indicated in the figure I.2 

from ref [9]. 

 
Figure I.2 Application range for different wave theory 
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As shown in the figure I.2, the airy wave is the simplest wave model and limited to 

infinitesimal wave height sea state. The Stokes’ wave is more applicable for the high 

steepness wave, while the conical wave model is usually considered in the shallow 

water case. 

In this section, the 5th order stokes wave and the airy wave model will be introduced. 

 

I.1.1. Airy wave model 
 

 

Airy wave is the simplest wave and the most commonly applied theory. Ignoring all 
higher order effect, the airy wave represents the regular wave’s elevation in a perfect 
sinusoidal form, 
 

𝜂 = 𝐴sin (𝜔𝑡 + 𝜑) 
(𝐼. 6) 

 

Where 𝜂𝑎 , 𝜔, 𝜑 is the wave’s amplitude (half of wave height H), the wave’s frequency 
and the initial phase.  
 
Applying the continuity equation and the kinematic boundary equation, the velocity 

potential 𝜙 is then obtained, 
 

𝜙 =
𝜔

𝑘
𝐴
cosh (𝑘𝑧)

sinh (𝑘ℎ)
sin (𝑘𝑥 − 𝜔𝑡) 

(𝐼. 7) 
 
Where h is the water depth and z is the water level (z is between 0 and negative 
water depth –h).  k is the wave number, which can be determined by the linear 
dispersion relation 
 

𝜔2 = 𝑔𝑘𝑡𝑎𝑛ℎ(𝑘ℎ) 
(𝐼. 8) 

 

The flow velocity component in a 2D frame 𝑈𝑥   (along the wave direction) and 
𝑈𝑧(along the water depth) is then calculated by 

𝑢𝑥 =
𝜕𝜙

𝜕𝑥
 𝑎𝑛𝑑 𝑢𝑧 =

𝜕𝜙

𝜕𝑧
  

(𝐼. 9) 
 
To interpolate the velocity above the still water level, two stretching methods are 
proposed [7]. 
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Extrapolated wave treatment assumes wave kinematic above mean sea level (z=0) 
constant and equal to the value at z=0 in wave crests, while the extrapolated wave 
treatment uses airy wave kinematic up to surface elevation in wave toughs, as 
shown in Figure I.3. The same rule is applied for the particle speed and the 
accelerations, i.e. the values at the mean sea surface, z = 0, is used for all z > 0.  
 

 
Figure I.3 Extrapolated airy wave theory 

 
An alternative method for the wave interpolation is called the stretched wave 
treatment (or wheeler modification). This method calculates wave kinematics at the 
mean water level at the true surface and its corresponding distribution down to the 
seabed is stretched accordingly, as illustrated in Figure I.4.  

 
Figure I.4 Stretched airy wave theory 

 
 
I.1.2. Stokes’s wave 
 
 
Stokes’s Wave theory is a more generalized wave theory which includes the higher 
order effects. With the involvement of the higher order steepness, the accuracy of 
Stokes’s wave increased. An airy wave thus can be treated as 1st order stokes wave. 
5th stokes waves theory is recommended for ultimate limit state check, according to 
DNV-RP-C104 and thus introduced here [8]. 
Two method of expressing the Stokes 5th wave exist in previous studies. Skjelbreia 
and Hendrickson (1961) first introduce an expression for the Stokes 5th wave and is 
widely adopted as the engineering standards. However, Fenton (1985) gives another 
expression of 5th order Stokes’ wave theory and demonstrates it is more accurate 
than Skjelbreia and Hendrickson’s theory. While theory of Skjelbreia and 
Hendrickson (1961) is used in Sesam system, theory of Fenton is illustrated and 
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adopted as the reference theory in “Hydro”. Its procedure can be summarized as 
follow, 
 
(1) Determine wavenumber k 

 

(
𝑘

𝑔
)
0.5

𝑈𝑐𝑢𝑟 −
2𝜋

𝜏(𝑔𝑘)
1
2

+ 𝐶0(𝑘𝑑) + (
𝑘𝐻

2
)𝐶2(𝑘𝑑) + (

𝑘𝐻

2
)
4

𝐶4(𝑘𝑑) = 0 

(𝐼. 10) 
 
Where k is wavenumber 
d is the water depth 
H is the wave height 
τ is the wave period 
Ucur is the velocity of current. 
Newton-Raphson method is used here to solve this implicit equation. 
 

(2) Surface Elevation 𝜂(𝑥, 𝑡) 

The surface elevation is given by, 
 

𝜂(𝑥, 𝑡) = 𝑑 + (∑𝜀𝑖
5

𝑖=1

∑𝐵𝑖𝑗𝑐𝑜𝑠𝑗𝑘(𝑥 − 𝑐𝑡))/𝑘 

𝑖

𝑗=1

, 𝑤ℎ𝑒𝑟𝑒 𝜀 =
𝑘𝐻

2
, 𝑐 =

2𝜋

𝑇𝑘
 

(𝐼. 11) 
 
Where the system coordinate is set at the seabed fixed with earth.  

 
(3) Velocity potential 𝜙(𝑥, 𝑦, 𝑡) 

 
The velocity potential is given by 

𝜙(𝑥, 𝑦, 𝑡) = 𝐶0 (
𝑔

𝑘3
)
0.5

∑𝜖𝑖
5

𝑖=1

∑𝐴𝑖𝑗cosh (𝑗𝑘𝑦)sin (𝑗𝑘(𝑥 − 𝑐𝑡))

𝑖

𝑗=1

 

(𝐼. 12) 
 
 

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
, 𝑣𝑧 =

𝜕𝜙

𝜕𝑦
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For matrix A and B, their values are given in figure 1.5 , where 𝑆 = sec 𝑘𝑑 . 

 
Figure I.5 Matrix A and B 

 
 

I.2.  Stochastic wave theory 
 

I.2.1. Wave Spectrum 
 
 
The wave in the real ocean are stochastic in nature, the simplification of the 
equivalent single wave thus  fails to reflect the real situation of forces acted on the 
offshore structure. Especially for the fatigue limit state design (FLS) and the ultimate 
limit state design (ULS), where dynamic effects, true surface level treatment, 
buoyancy and hydrodynamic damping, etc become significant, the simulation 
contains all those non-linearity provides the best prediction of “reality”.  
For the stochastic sea states, the wave’s motions may be generated on the basis of 
a wave spectrum. So-called “spectrum” is a measurement of how energy density is 
distributed among frequencies, as defined in (I.13). 
 

Sηη(ω)dω = E [
1

2
𝐴(𝜔)2] 

(𝐼. 13) 
 
The typical spectrums for the waves are like Jonswap spectrum and PM-spectrum. 
Jonswap spectrum is used to model the under-developed sea like the case in North 
Sea and Golf of Mexico, while the PM-spectrum is usually applied in the fully-
developed sea like the case in the pacific Ocean. 
The general spectrum for both Jonswap and PM spectrum can be expressed as 
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𝑆𝐽(𝜔) = 𝐴𝛾𝑆𝑝𝑚(𝜔)𝛾
exp (−0.5(

𝜔−𝜔𝑝
𝜎𝜔𝑝

)
2

 )
 

(𝐼. 14) 
 
Where  

𝑆𝑃𝑀(𝜔) =
5

16
𝐻𝑠
2𝜔𝑝

4𝜔−5exp (−
5

4
(
𝜔

𝜔𝑝
)

−4

) 

(𝐼. 15) 
 

Where 𝜔 =
2𝜋

𝑇𝑝
 is the angular spectral peak frequency. 𝑆𝑃𝑀(𝜔) is the PM spectrum, 𝛾 

is the non-dimensional peak shape parameter. 𝐴𝛾 = 1 − 0.287ln (𝛾) is a normalizing 

factor.  

For 𝛾 = 1, the general Jonswap spectrum reduces to the PM-spectrum. 
 
 
I.2.2. Stochastic wave generation 
 
 
Conventional stochastic wave generation treats the stochastics wave as a 
combination of the Airy waves. According to DNV-RP-C104, the waves may be 
simulated by the velocity potential on the form: 
 

𝜙 =∑𝐴𝑖
𝜔𝑖
𝑘𝑖

𝑀

𝑖=1

cosh (𝑘𝑖(𝑧 + ℎ))

sinh(𝑘ℎ)
cos (𝜔𝑖𝑡 − 𝑘𝑖𝑥 − 𝜙𝑖) 

 
(𝐼. 16) 

 
Possibly extended to more wave direction, where 
 

𝜙(𝑥, 𝑦, 𝑧) =velocity potential at location x, z and time t 

𝐴𝑖= amplitude of partial wave number i 

   =√2𝑆(𝜔𝑖)Δ𝜔𝑖 
ℎ= water depth 
𝜔𝑖=angular frequency of wave number i 

𝑘𝑖=wave number connected to 𝜔𝑖 through the dispersion relationship 
𝜙𝑖= random phase, uniformly distributed between 0 and 2𝜋 
Δ𝜔𝑖=frequency band width associated with 𝜔𝑖, i.e. (𝜔𝑖+1 − 𝜔𝑖) 
𝑆(𝜔)= wave spectrum 
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I.3.  Introduction to “Hydro” 
 
 
To further investigate the sea’s motion and engineering application, programme 

“hydro” has been coded and verified. The Highlights of “Hydro” are, 

(1) Quasi-static load calculation 

(2) Decoupled time-domain load calculation 

(3) Wave model in Calculation: Airy wave, 5th order Stokes’s wave, 1st order 

stochastic wave 

 
The wave base shear calculation of Yme’s SBM model has been performed in Hydro 

and SesamTM-Wajac. The direction of wave is assumed to be 60 deg, while same 

current profile as original SBM design report is set to be same direction as the waves. 

 

 

Load 

Case 

Hmax[m] Tass[s] Hydro[N] Wajac[N] Error 

1 4.796 6.439 9.53E+05 9.14E+05 4.218% 

2 5.710 7.025 1.43E+06 1.40E+06 2.378% 

3 7.488 8.045 2.40E+06 2.39E+06 0.622% 

4 9.236 8.935 3.30E+06 3.28E+06 0.721% 

5 10.101 9.344 3.71E+06 3.69E+06 0.687% 

6 10.948 9.728 4.10E+06 4.07E+06 0.698% 

7 11.790 10.095 4.44E+06 4.43E+06 0.089% 

8 12.639 10.452 4.83E+06 4.79E+06 0.913% 

9 14.322 11.126 5.52E+06 5.49E+06 0.652% 

10 15.990 11.756 6.24E+06 6.20E+06 0.632% 

11 17.655 12.353 6.99E+06 6.96E+06 0.442% 

12 19.307 12.918 7.84E+06 7.78E+06 0.735% 

13 20.935 13.452 8.76E+06 8.67E+06 0.977% 

14 22.540 13.958 9.69E+06 9.64E+06 0.531% 

15 24.075 14.425 1.07E+07 1.07E+07 0.302% 

16 24.303 14.494 1.09E+07 1.08E+07 0.833% 

17 23.863 14.362 1.06E+07 1.05E+07 0.553% 

18 22.081 13.815 9.44E+06 9.35E+06 0.931% 

19 20.357 13.265 8.39E+06 8.35E+06 0.499% 

Error Analysis for Load Case 1&2: There are two factors that cause the errors: 

(1) Different Wave Theory Selection (Fenton vs Skjelbreia & Hendrickson) 

(2)The wave height corresponding to associated wave is quite close to 

“breaking wave”. This may cause the deviation at that point. 

Table 2.7 Base Shear comparison between SesamTM-Wajac and Hydro 

 
More verifications for the hydro are attached in next section. 
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I.3.  The verification of “Hydro” 
 
 
All Verifications are carried out based on Hydrodynamics manual of Usfos [7]. The 
reference is based on the result from the Usfos calculation.  
 
A.1.  Current 

 
 

 X[N] Y[N] Z[N] 

Hydro -516.155 5160.986 -1548.277 

Usfos -515.778 5162.840 -1548.84 

Error(%) 0.07% -0.04% -0.04% 

 
A.2.  Airy wave kinematics-deep water 
 

 
 

 Depth Hydro[m/s] Usfos[m/s] Error 

Velocity 3 3.152 3.15 0.1% 

 -5 1.414 1.3643 3.6% 

 -10 0.6511 0.6571 -0.9% 

 -15 0.3341 0.2741 21.9% 

Acceleration 0 3.9561 3.8857 1.8% 

 -5 1.777 1.7357 2.4% 

 -10 0.8182 0.8143 0.5% 

 -15 0.4213 0.3857 9.2% 

Error Analysis: There will be two factors that cause the large error at z=-15m: (1) 
Usfos adopted deep water simplification equation for his calculation, while hydro 

adopted general equation. (2) The data for Usfos is measured from its original data 
plot by hand. That may lead to a large deviation for small value. 
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A.3. Airy wave kinematics-finite water depth 
 

 

 
 

 Depth Hydro[m/s] Usfos[m/s] Error 

Velocity 0 1.7347 1.7098 1.46% 

 -5 1.2662 1.2900 -1.84% 

 -10 0.9972 1.0039 -0.67% 

 -15 0.8401 0.8465 -0.76% 

 -20 0.7985 0.7960 0.31% 

Acceleration 0 2.2089 2.2096 -0.03% 

 -5 1.6229 1.6400 -1.04% 

 -10 1.2763 1.2782 -0.15% 

 -15 1.0638 1.0770 -1.23% 

 -20 0.9991 1.0135 -1.42% 

 
 
A.4. Extrapolated Airy Wave Kinematics-finite water depth 
 
 
Seafloor z=5.0m, Depth z=85m, Surface level z=90m. Wave Height H=18m, Wave 
period=14.0 seconds. 

 
Wave particle velocity and acceleration for z=81.5m (close to trough) 
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Wave particle velocity and acceleration for z=96m 

 
 

A.5.  Stretched Airy Wave Kinematics-finite water depth 
 
 

Seafloor z=5.0m, Depth z=85m, Surface level z=90m. Wave Height H=18m, Wave 
period=14.0 seconds. 

 

 
Wave particle velocity and acceleration for z=81.5m (close to trough) 
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Wave particle velocity and acceleration for z=96m 

 
A.6. Stokes wave kinematics –Wave height 30m 

 
 

 
 

 
Velocity (t=0s) – and acceleration (t=2.0s) profile 
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A.7. Stokes wave kinematics –Wave height 33 m 
 
 

 
 

 
Velocity (t = 0 s) - and acceleration (t = 2.0 s) profile 
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A.8. Wave forces oblique pipe, 20m depth – Airy deep water theory 
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A.9. Wave forces oblique pipe, 20 m depth – Airy finite depth theory 
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A.10. Wave and current forces oblique pipe, 20 m depth – Stokes theory 
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A.11. Wave forces vertical pipe, 70 m depth – Airy finite depth theory 
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A.13. Wave forces vertical pipe, 70 m depth – Stokes theory 
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A.14. Wave forces oblique pipe, 70 m depth – Stokes theory 
 

 

 
 
A.15. Wave forces oblique pipe, 70 m depth, diff. direction – Stokes theory 
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A.16. Wave forces horizontal pipe, 70 m depth – Airy theory 
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APPNEDIX II: Post-processing 
 
This appendix presents the post-processing method for the frequency domain 
method and the time domain method. 
 
 
II.1.  The frequency domain method  
 
 
As mentioned in Chapter 2, in hydromechanics, the amplitude of the transfer function 
|𝐻(ωi, βi)|  from the wave spectrum to the response is known as the Response 
Amplitude Operator (RAO). Here the equation is written as,  
 

𝑆𝜂𝜂(𝜔𝑖) ∗ 𝑅𝐴𝑂(ωi, βi)
2 = 𝑆𝑟𝑟(𝜔𝑖) 

(𝐼𝐼. 1) 
 

Where, 𝑆𝜂𝜂(𝜔𝑖) is the wave spectrum and 𝑆𝑟𝑟(𝜔𝑖) is the response spectrum. 

 
Several statistical techniques may be applied to determine the characteristic values 
of response [23]. 

The Nth spectral moment 𝑀𝑐 is given by 
 

𝑀𝑁 = ∫𝜔
𝑁𝑆𝜂𝜂(𝜔𝑖) ∗ 𝑅𝐴𝑂(ωi, βi)

2𝑑𝜔 

(𝐼𝐼. 2) 
 

The significant response of 𝑅𝑠 (double amplitude) is related to 0th spectral moment 
and given by 
 

𝑅𝑠 = 4√𝑀0 

(𝐼𝐼. 3) 
 

The mean zero- crossing period 𝑇𝑥  of the response is relate to zero order and 
second order of spectrum and given by 

𝑇𝑅 = 2𝜋√
𝑀0
𝑀2

 

(𝐼𝐼. 4) 
 
For N-years return period, the extreme response may be calculated based on short-

term distribution. First, the extreme short-term sea state (𝐻𝑠, 𝑇𝑝) is determined based 

on N years wave contour plot. Next, the largest response under determined sea 
state is calculated. 
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The accumulated distribution of narrow-band response’s maxima in a short-term sea 
state may be described by Rayleigh distribution 
 

𝐹𝑠(𝑟) = 𝐹𝑠(𝑟𝑎 ≤ 𝑟) = 1 − 𝑒
−(

𝑟2

2𝑀0
)
 

(𝐼𝐼. 5) 
 
Where 𝐹𝑠(𝑟)  is accumulative distribution under a short-term sea state, 𝑟𝑎  is the 
maxima of response 
 
For a 3hr short-term sea state, the most probable maximum response 𝑟𝑚𝑎𝑥,𝑠 may be 

defined as,  
 

𝐹𝑠(𝑟𝑚𝑎𝑥,𝑠) ≈ 1 −
1

𝑁
 

(𝐼𝐼. 6) 
 
Where N is the total number of response cycles during the 3hrs storm period, 
estimated by 
 

𝑁 ≈
3 × 3600𝑠𝑒𝑐

𝑇𝑋
 

(𝐼𝐼. 7) 
 
Thus,  

𝑟𝑚𝑎𝑥,𝑠 = √2𝑀0 ln(𝑁) 
(𝐼𝐼. 8) 

 
Alternatively, long-term distribution of response maxima may also be treated as a 
weighted combination of all short-term distributions based on the probability of such 
sea state happens in specific site, e.g. scatter diagram. According to Ref [23] section 
B5, the long-term accumulated distribution is given as, 
 

𝐹𝐿(𝑟) = 𝐹𝑠(𝑟𝑎 ≤ 𝑟) = 𝑇𝑟𝑙∬
𝑓(𝐻𝑠, 𝑇𝑝)𝐹𝑠(𝑟|𝐻𝑠, 𝑇𝑝)

𝑇𝑥(𝐻𝑠, 𝑇𝑝)
𝑑𝐻𝑠𝑑𝑇𝑝 

(𝐼𝐼. 9) 
 
Where 𝐻𝑠, 𝑇𝑝  is the significant wave height and peak frequency of short-term sea 

state, 𝑓(𝐻𝑠, 𝑇𝑝) is joint probability of sea state 𝑓(𝐻𝑠, 𝑇𝑝), which is defined as account 

number n of such sea state divided by the total number of cycles N in scatter 

diagram. 𝑇𝑟𝑙 is defined as  
 

𝑇𝑟𝑙 = [∬
𝑓(𝐻𝑠, 𝑇𝑝)

𝑇𝑟(𝐻𝑠, 𝑇𝑝)
𝑑𝐻𝑠𝑑𝑇𝑝 ]

−1

 

(𝐼𝐼. 10) 
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Within n years, the total number of response cycles 𝑁𝑛 in wave direction 𝛽 is given 
by 
 

𝑁𝑛 =
𝑛 ∙ 365 ∙ 24 ∙ 60 ∙ 60 ∙ 𝐹𝛽(𝛽)

∑ 𝑓(𝐻𝑠, 𝑇𝑝)𝑇𝑟(𝐻𝑠, 𝑇𝑝)𝑑𝐻𝑠𝑑𝑇𝑝
 

(𝐼𝐼. 11) 
 
Where 𝐹𝛽 is probability of wave occurs in direction 𝛽 within n years. 

 
Thus the long-term maximum response 𝑟𝑚𝑎𝑥,𝑙 is given by 

 

𝐹𝐿(𝑟𝑚𝑎𝑥,𝑙) ≈ 1 −
1

𝑁𝑛
 

(𝐼𝐼. 12) 
 

𝑟𝑚𝑎𝑥,𝑙 ≈ 𝐹𝐿
−1 (1 −

1

𝑁𝑛
) 

(𝐼𝐼. 13) 
 
Normally Weibull distribution may be applied to fit FL. However, Weibull distribution is 
just approximation to the real distribution and may fails to be representative in this 
case. Instead, Newton bisection method is used to approach 𝑟𝑚𝑎𝑥,𝑙 numerically within 

tolerable error (1e-8 in this case). 
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All process mentioned above can be summarized in one Flow Chart, shown as follow 
 
 
    

 
 

SESAM 

Global Model 
Transfer Function 

RAO 

Scatter Diagram 

(𝑯𝒔, 𝑻𝒑)𝒊
 

𝒇(𝑯𝒔, 𝑻𝒑) =
𝒏𝒊
𝑵

 

*Joint probability 

of sea-state 

Jonswap 
Spectrum  

With Gamma 

𝑆𝑅𝑅(𝜔) = 𝑅𝐴𝑂(𝜔)
2𝑆𝜂𝜂(𝜔) 

Response Spectrum 

Rayleigh Distribution 

𝐹𝑠(𝑟) = 1 − 𝑒
−
𝑟2

2𝑚0 

𝑚0 = Σ𝑅𝐴𝑂
2(𝜔)𝑆𝜂𝜂(𝜔)Δ𝜔 

𝑚2 = Σ𝜔
2𝑅𝐴𝑂2(𝜔)𝑆𝜂𝜂(𝜔)Δ𝜔 

𝑇𝑥 = 2𝜋√𝑚0/𝑚2 

𝐹𝑠(𝑅𝑠) = 1 −
𝑇𝑟

3600 ∗ 3
 

𝑅𝑠 = √2𝑚0ln (
3600 ∗ 3

𝑇𝑟
) 

Short-term distribution 

Where 

Short-term extreme value 𝑅𝑆  (Short-term approach) 

 
 

 

𝐹𝑙(𝑟) =

∑ ∑
𝑓(𝐻𝑠, 𝑇𝑝)𝐹𝑆(𝑟|𝐻𝑠, 𝑇𝑝)

𝑇𝑟(𝐻𝑠, 𝑇𝑝)
ΔHsΔTp𝑇𝑝𝐻𝑠

∑ ∑
𝑓(𝐻𝑠, 𝑇𝑝)
𝑇𝑟(𝐻𝑠, 𝑇𝑝)

ΔHsΔTp𝑇𝑝𝐻𝑠

 

𝐹𝑙(𝑅𝑙) = 1 −
1

𝑁𝑛
 

𝑅𝑙 = 𝐹𝑙
−1 (1 −

1

𝑁𝑛
)  (𝑁𝑒𝑤𝑡𝑜𝑛 𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑) 

*Long-term distribution (100-yrs return) 

 

Long-term Extreme Value 𝑅𝑙 

 

 

 Table II.1 Flow chat for the frequency domain method 

Structural damping 

=3% 

Reference wave 
height for WAJAC 

calculation  
 

Structural damping 
=3% 

Wave height for 

WAJAC calculation 
H=3; 

Based on 100yrs contour 

plot, 
Three resonant case 

Three conventional 
extreme Case 

 

Based on 100yrs contour 
plot, 

Three resonant case 
Three conventional 

extreme Case 

*Long-term 
Approach  

 
*Long-term 

Approach  

Short-term 

Approach  

 
Short-term 

Approach  
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II.2.  The time domain method 
 
 
The generalized extreme value (GEV) distribution is adopted for the extreme value 
prediction.  In statistics theory, the generalized extreme value (GEV) distribution is a 
family of the probability distributions developed for the extreme value prediction to 
combine the Gumbel, Fréchet and Weibull families.[37] It can be expressed as, 
 

𝐺𝐸𝑉:  𝐹(𝑥; 𝑘, 𝜇, 𝜎) =

{
 
 

 
 
exp{−(1 −

𝑘(𝑥 − 𝜇)

𝜎
)

1
𝑘

} , 𝑖𝑓 𝑘 ≠ 0

exp {−exp {−
(𝑥 − 𝜇)

𝜎
}} , 𝑖𝑓𝑘 = 0 

 

 
(II.14) 

 
The Gumbel distribution is a GEV distribution with k=0 and that the Weibull 

distribution is equal to a reversed GEV distribution with k=1/c, 𝜎 =
𝑎

𝑐
 and 𝜇 = −𝑎. 

 
The studies have shown that the Weibull fitting and Gumbell fitting can be used to 
predict the most probable extreme value [14]. As a general distribution, the GEV 
distribution includes Weibull and Gumbell distribution and is thus believed to provide 
a better fitting. 
 
 The WAFO toolbox is used to execute this fitting. This fitting is estimated by the 
maximum likelihood method (MLE) and the goodness of this fitting is verified by the 
P-P plot visually [23].  
 

For the extreme value prediction, the mean zero-crossing period 𝑇𝑚𝑒𝑎𝑛 is calculated 
from a specific time point to avoid the transition effect, by using rainflow accounting. 
The extreme value in 3hrs simulation is calculated by, 
 
 

𝐹(𝑥; 𝑘, 𝜇, 𝜎) = 1 −
1

𝑁
 

(II.15) 
Where, 
 

𝑁 =
3 × 3600

𝑇𝑚𝑒𝑎𝑛
 

(II.16) 
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  Responses in the time-space 

(3000sec) 

𝑇𝑚𝑒𝑎𝑛 
Mean zero-crossing period 

The maximum absolute 
value 𝑅𝑚𝑎𝑥 in each time 

loop𝑇𝑚𝑒𝑎𝑛 

 

𝑁 =
3 × 3600

𝑇𝑚𝑒𝑎𝑛
 

𝐺𝐸𝑉:  𝐹(𝑥; 𝑘, 𝜇, 𝜎)

=

{
 
 

 
 
exp {−(1 −

𝑘(𝑥 − 𝜇)

𝜎
)

1
𝑘

} , 𝑖𝑓 𝑘 ≠ 0

exp {− exp {−
(𝑥 − 𝜇)

𝜎
}} , 𝑖𝑓𝑘 = 0 

 

WAFO: GEV fitting 

 

 

𝑥 = 𝐹−1[1 −
1

𝑁
] 

The extreme value in 3hrs 
simulation 

 

Table II.2 Flow chat for the frequency domain method 
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APPENDIX III: the Static load conversion method for the frequency domain 
method 
 
 
For only segment of response, two methods are proposed to achieve the static load 
conversion. 
 
The design wave conversion method [24], which is commonly used in the Allseas 
vessel structure analysis is firstly introduced. The purpose of this method is to 
replace the stochastic wave excitation with one single regular wave. The statistical 
extreme response, which is determined in the Appendix II, is approximated to be 
only excited by the waves with the corresponding peak frequency in the stochastic 
wave spectrum. The single wave height is then obtained via dividing the statistical 
extreme response by the corresponding RAO. The statistical extreme value can be 
obtained from the short-term approach or the long-term approach, of which the 
largest contributing short-term sea state is used. Table III.1 shows the flow chart of 
this method. 
 
Alternatively, a new method combining the frequency-domain method and time-
domain method is developed for the extreme static load conversion and its flow chart 
is shown in table.III.2 As indicated previously, a set of stochastic incoming waves 
can be quantified as, 
 

𝜂 = Σ𝐴𝑖 cos(𝜔𝑖𝑡 + 𝜃𝑖) 
(𝐼𝐼𝐼. 1) 

 
Where 𝜂 is the surface elevation at origin, 𝜂𝑎,𝑖, 𝜔𝑖, 𝜃𝑖 is the amplitude frequency and 

initial phase angle of airy wave component 𝑖. 
 
With its corresponding linear response value r is 
 

𝑟 = Σ𝜂𝑎,𝑖|𝐻(ωi, βi)| cos(𝜔𝑖𝑡 + 𝛿𝑖 + 𝜃𝑖) 
(𝐼𝐼𝐼. 2) 

 

Where |𝐻(ωi, βi)|, 𝛿𝑖 are the amplitude and phase shift of transfer function for 
frequency 𝜔𝑖.  
 
For response type like horizontal displacement, total shear force or total bending 
moment, a non-linear expression may be assumed. Taking horizontal displacement 

Δℎ as an example,  
 

Δℎ = √Δ𝑥2 + Δ𝑦2 
(𝐼𝐼𝐼. 3) 

 

Δℎ = √(Σ𝜂𝑎,𝑖|𝐻𝑇𝑥(ωi, βi)| cos(𝜔𝑖𝑡 + 𝛿𝑇𝑋𝑖 + 𝜃𝑖))
2
+ (Σ𝜂𝑎,𝑖|𝐻𝑇𝑦(ωi, βi)| cos (𝜔𝑖𝑡 + 𝛿𝑇𝑦𝑖 + 𝜃𝑖))

2
 

 
(𝐼𝐼𝐼. 4) 
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For typical 3 hours storm waves, at a certain time point 𝑇𝑚𝑎𝑥, response r reaches its 
maximum value 𝑋𝑚𝑎𝑥 where 
 

𝑋𝑚𝑎𝑥 = 𝑋(𝑇𝑚𝑎𝑥) = 𝑀𝑎𝑥{𝑋(𝑡)}, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑡 ≤ 3ℎ𝑟𝑠 
(𝐼𝐼𝐼. 5) 

 

Once the 𝑇𝑚𝑎𝑥 is known, its corresponding load case is accessible. The dynamic 
system for the Yme MOPUstor’s global model can be expressed as  
 

𝑴𝑹̈ + 𝑪𝑹̇ + 𝑲𝑹 = 𝑭(𝑟̈, 𝑟̇, 𝑡) 
(𝐼𝐼𝐼. 6) 

 

Where 𝑹̈, 𝑹̇, 𝑹 is the acceleration, velocity and displacement vector. 𝑭(𝑟̈, 𝑟̇, 𝑡) is the 
external force.  For static analysis, only stiffness and external force involved. Thus 
the expression can be rewritten as  
 

𝑘𝑟 = 𝐹(𝑟̈, 𝑟̇, 𝑡) − 𝑐𝑟̇ − 𝑚𝑟̈ 
(𝐼𝐼𝐼. 7) 

 
For simplification, the effect of relative motion and damping can be neglected. First, 
the calculation of RAO is based on the decoupled model, thus involvement of relative 
motion after RAO calculation is illogical and may exacerbate the error. Second, the 
neglecting  of damping term may overestimate the result. Considering its relatively 
small damping ratio (3%) and its corresponding huge conversion task, it is rational to 
hold this simplification. Thus, the final expression for load conversion can be written 
as 
  

𝑘𝑟 ≈ 𝐹(𝑡) − 𝑚𝑟̈ 
(𝐼𝐼𝐼. 8) 

 

It is obvious that the conversed external load consists of static wave load part 𝐹(𝑡) 
and inertia load part 𝑚𝑟̈.  Static wave load part F(t) can be calculated based on 
Morrison equation, while inertia load part is calculated by  
 

𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = −𝑚𝑟̈ = −𝑚Σ𝜂𝑎,𝑖|𝐻𝑟̈(ωi, βi)| cos(𝜔𝑖𝑡 + 𝛿𝑟̈𝑖 + 𝜃𝑖) 

(𝐼𝐼𝐼. 9) 
 

Where 𝐻𝑟̈(ωi, βi) is the corresponding transfer function of acceleration on node, e.g. 
acceleration in x,y,z translation direction. 
 
A disadvantage of this approach is the involvement of uncertainty. The initial phases 
are generated randomly and thus different result will be obtained for each calculation. 
To reduce this uncertainty to lowest degree, several cases should been made to 
perform a comparison study. 
 
In this thesis, codes for both methods have been developed and results for the legs 
have been developed.  
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(𝐻𝑠 , 𝑇𝑝)1,2,3

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔
↔          (𝑅𝑠)1,2,3 

(𝐻𝑠, 𝑇𝑝)4,5,6

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔
↔          (𝑅𝑠)4,5,6 

(𝐻𝑠 , 𝑇𝑝)1,2,3 

(𝐻𝑠 , 𝑇𝑝)4,5,6 

Short-Term Statistics method 

Three resonant sea states 

Three conventional extreme 

states 

 
 

 

Short-Term Statistics method 
Three resonant sea states 

Three conventional extreme 

states 

 

 

𝐻𝑠 , 𝑇𝑝
𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔
↔          max [

𝑓(𝐻𝑠, 𝑇𝑝)𝐹𝑆(𝑟𝑙|𝐻𝑠, 𝑇𝑝)

𝑇𝑥(𝐻𝑠 , 𝑇𝑝)
] 

Long-Term Statistics method 
 

 

 

𝑇 = 2𝜋/𝜔𝑥𝑝 

T Determination 
 
Corresponding peak-frequency 𝑤𝑥𝑝 at response 

spectrum𝑆𝑅𝑅(𝑤) 
 

𝜔𝑥𝑝
𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔
↔          𝑅𝐴𝑂(𝜔𝑥𝑝  ) 

 𝐻 =
𝑅𝑚𝑎𝑥

𝑅𝐴𝑂(𝜔𝑥𝑝)
  

(𝑋 =  𝑋𝑙  𝑓𝑜𝑟 𝑙𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚, 𝑋 = 𝑋𝑠 𝑓𝑜𝑟 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚) 

H Determination 
 

 

Equivalent Regular Wave  
H,T 

Static-Load: 

 
Wave Theory=Stokes-5 

 
Maximum bending moment 
 

𝐹 = 𝑚𝑎 = 𝑚𝐻𝑎(𝜔𝑥𝑝) ∗ 𝐻 

Inertia-Load 

 

For each mass point at 
topsides 

Table.III.1 Flow chart for the regular wave load conversion 

𝑃 − Δ 𝐸𝑓𝑓𝑒𝑐𝑡 included as negative 

spring 
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SesamTM 
Model 

Response 
Transfer Function 

Hs 

Tp 
Gamma γ 

Wave Direction 𝛽 

Random 
Phase 𝜃𝑖 

𝜂 = Σ𝐴𝑖cos (𝜔𝑖𝑡 + 𝜃𝑖) 

√2𝑆𝜂𝜂(𝜔𝑖)𝑑𝜔 = 𝐸[𝐴𝑖  ] ≈ 𝐴𝑖 

Where 

 
 

𝑟 = Σ𝐴𝑖|𝐻(ωi, βi)|cos (𝜔𝑖𝑡 + 𝛿𝑖 + 𝜃𝑖) 
 

𝑇ℎ = √(Σ𝐴𝑖|𝐻𝑇𝑥(ωi, βi)|cos (𝜔𝑖𝑡 + 𝛿𝑇𝑋𝑖 + 𝜃𝑖))
2

+ (Σ𝐴𝑖|𝐻𝑇𝑦(ωi, βi)|cos (𝜔𝑖𝑡 + 𝛿𝑇𝑦𝑖 + 𝜃𝑖))
2

 

 

𝑅𝑚𝑎𝑥 = 𝑅(𝑇𝑚𝑎𝑥) = 𝑀𝑎𝑥{𝑅(𝑡)},
𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑡 ≤ 3ℎ𝑟𝑠 

 

 

Acceleration 
Transfer 
function 

𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = −𝑚𝑟̈

= −𝑚Σ𝐴𝑖|𝐻𝑟̈(ωi, βi)|cos (𝜔𝑖𝑡 + 𝛿𝑟̈𝑖
+ 𝜃𝑖) 

Inertia Load 
 

 

Static Load 

 

Morrison Equation 
 

Self-coded Hydro software 

Load Case Conversion 

Table.III.2 Flow chart for the linear time-domain load conversion 
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Appendix IV : The Morison’s equation modelling 
 
 

IV.1. Assumption Spectral Density of 𝝓 
 
 

L.E.Borgman (1965) has proposed an solution for the random hydrodynamic 
Morrison-type force [21], 

𝜙 = 𝑐𝑉0|𝑉0| + 𝑘
𝜕𝑉0
𝜕𝑡

 

(𝐼𝑉. 1) 
 
However, his result for wave-current present case is too complex to be used in 
engineering. Hence, in this paper one extra assumption will be adopted and the 
expression for the wave-current present case will be significantly simplified. 
 
In his original paper, four assumptions have been made here (Current is assumed in 
one direction with waves), 
 
1. V(x,y,z,t) and the sample-function derivative, 

 

𝐴0(𝑥, 𝑦, 𝑧, 𝑡) =
𝜕𝑉0(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
 

(𝐼𝑉. 2) 
 
Are two-component Gaussian stochastic process over the parameter space of all 
vectors of the form (x,y,z,t) 
 
2. The random variable, 𝑉0(𝑥0, 𝑦0, 𝑧0, 𝑡0)  and 𝐴(𝑥0, 𝑦0, 𝑧0, 𝑡0)  are independent, and 

have means 𝑚(𝑥0, 𝑦0, 𝑧0, 𝑡0)  and 0 respectively, and variances 

𝜎2(𝑥0, 𝑦0, 𝑧0, 𝑡0)and 𝜌2(𝑥0, 𝑦0, 𝑧0, 𝑡0) respectively. 
 

3.  

−𝐶𝑜𝑣[𝑉0(𝑥0, 𝑦0, 𝑧0, 𝑡0), 𝐴(𝑥0, 𝑦0, 𝑧0, 𝑡0)] = 𝐶𝑜𝑣[𝐴(𝑥0, 𝑦0, 𝑧0, 𝑡0), 𝑉0(𝑥0, 𝑦0, 𝑧0, 𝑡0)] 
 

(𝐼𝑉. 3) 
 
4.  

𝑉0(𝑥, 𝑦, 𝑧, 𝑡) = 𝑐
𝜕𝑉0(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
+ 𝑘𝐴(𝑥0, 𝑦0, 𝑧0, 𝑡0) 

(𝐼𝑉. 4) 
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In our case, the assumption (4) can be written as in term of the wave and the current 
separately.  
 

𝜙 = 𝑐(𝑉 + 𝐶𝑐𝑢𝑟)|𝑉 + 𝐶𝑐𝑢𝑟| + 𝑘
𝜕(𝑉 + 𝐶𝑐𝑢𝑟)

𝜕𝑡
 

 

𝜙 = 𝑐(𝑉2 + 2𝐶𝑐𝑢𝑟𝑉 + 𝐶𝑐𝑢𝑟
2 )𝑠𝑔𝑛(𝑉 + 𝐶𝑐𝑢𝑟) + 𝑘𝐴 

(𝐼𝑉. 5) 
 
In which, V presents the velocity of wave, its expectation value E(V)=0,  Variance 

Var(V)=𝜎2; 
Ccur presents the velocity of current, which is assumed to be constant. 
A presents the acceleration of fluid. 
 
5. Besides the existing four terms, a new assumption needs to be made. In our case, 

especially for Ultimate Limit State (ULS), the velocity amplitude of the wave are 
always much larger than the value of current. Hence, it is reasonable to assume, 
 

𝑠𝑔𝑛(𝑉 + 𝐶𝑐𝑢𝑟) ≈ 𝑠𝑔𝑛(𝑉) 
(𝐼𝑉. 6) 

 
Furthermore, for the ultimate limit state (ULS), this assumption is conservative and 
reasonable. This assumption defined the upper limit for cases in which current is in 
the same or opposite direction with waves.  
 

Then, 𝜙 can be rewritten as, 
 

𝜙 = 𝑐(𝑉|𝑉| + 2𝐶𝑐𝑢𝑟|𝑉| + 𝐶𝑐𝑢𝑟
2 𝑠𝑔𝑛(𝑉)) + 𝑘𝐴 

(𝐼𝑉. 7) 
 
In which, 

The term 𝑉|𝑉| presents the non-linear wave-wave interaction in drag term. 

The term 2𝐶𝑐𝑢𝑟|𝑉| presents the non-linear wave-current interaction in drag term.   
 
 

The term 𝐶𝑐𝑢𝑟
2 𝑠𝑔𝑛(𝑉) presents the current -current  interaction in drag term. In my 

calculation, this term will be treated as static force and be neglected from dynamic 
calculation for two reasons: First, the “sgn(V)” will lead to discontinuity in force 
history and cause a force shift (impulse force), which doesn’t exist in reality (the error 
induced by assumption (4)). Furthermore, this term is in order of 2 with respect to 
current’s velocity, which is quite small. 
 

Finally the dynamic part of 𝜙 can be simplified into  
 

𝜙 = 𝑐(𝑉|𝑉| + 2𝐶𝑐𝑢𝑟|𝑉|) + 𝑘𝐴 
(𝐼𝑉. 8) 

 
Plus static current load. 
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In the airy wave theory, the velocity and acceleration at position (x,y,z,t) in a wave 

with phase 𝜙, travelling in 𝜃𝑤𝑎𝑣𝑒- direction can be written as, 
 

{
 
 

 
 𝑉(𝑥, 𝑦, 𝑡) = 𝑎𝜔

cosh (𝑘𝑧)

sinh (𝑘𝑑)
cos (𝑘𝑥 − 𝜔𝑡 + 𝜙)

𝐴(𝑥, 𝑦, 𝑡) = 𝑎𝜔2
cosh (𝑘𝑧)

sinh (𝑘𝑑)
cos (𝑘𝑥 − 𝜔𝑡 + 𝜙)

 

 (2𝜋𝑓)2 = 𝑔𝑘𝑡𝑎𝑛ℎ(𝑘𝑑) 
(𝐼𝑉. 9) 

 
Where ω is the angular frequency and d is the water depth, k is the wave number. 
The initial phase angle φ is assumed to be a uniform random variable on (0,2π). 
Then V(x,y,z,t) and A(x,y,z,t) are independent by the orthogonality of the 
trigonometric functions and have zero expectation. This independence is preserved if 
the wave train is taken to be the sum of a large number of wavelets of this form, 
each with its own frequency, amplitude and independent random phase. An 
application of the central limit theorem, under certain reasonable regularity 
conditions, gives that V and A, in the limit, are jointly normal and the above 
properties continues to hold. 
 
IV.2. The covariance of φ1(x1,y1,z1,t1) and φ2(x2,y2,z2,t2) 
 
 
Here only the dynamics parts of φ can be considered, 
 

𝜙 = 𝑐(𝑉|𝑉| + 2𝐶𝑐𝑢𝑟|𝑉|) + 𝑘𝐴 
(𝐼𝑉. 10) 

 
Denote φ1, V1, A1 be the force , velocity and acceleration at (x1,y1,z1,t1) and denote 
φ2, V2, A2 be the force , velocity and acceleration at (x2,y2,z2,t2). Hence we have, 
 

𝜙1 = 𝑐1(𝑉1|𝑉1| + 2𝐶𝑐𝑢𝑟,1|𝑉1|) + 𝑘1𝐴1, 𝑎𝑡(𝑥1, 𝑦1, 𝑧1, 𝑡1) 
 

𝜙2 = 𝑐2(𝑉2|𝑉2| + 2𝐶𝑐𝑢𝑟,2|𝑉2|) + 𝑘2𝐴2, 𝑎𝑡(𝑥2, 𝑦2, 𝑧2, 𝑡2) 

(𝐼𝑉. 11) 
 
The covariance of φ1, φ2, will be, 
 

𝐶𝑜𝑣(𝜙1, 𝜙2) = 𝐸(𝜙1𝜙2)

= 𝐸{[𝑐1(𝑉1|𝑉1| + 2𝐶𝑐𝑢𝑟,1|𝑉1|) + 𝑘1𝐴1][𝑐2(𝑉2|𝑉2| + 2𝐶𝑐𝑢𝑟,2|𝑉2|) + 𝑘2𝐴2]}

= 2𝑐1𝑐2[𝑐𝑐𝑢𝑟,2 𝐸(𝑉1|𝑉1𝑉2|) + 𝑐𝑐𝑢𝑟,1 𝐸(𝑉2|𝑉1𝑉2|)]   (𝑎)   

+ 4𝑐1𝑐2𝑐𝑐𝑢𝑟,1 𝑐𝑐𝑢𝑟,2 𝐸[|𝑉1𝑉2|]    (𝑏)

+ 2[𝑘2𝑐1𝑐𝑐𝑢𝑟,1𝐸(𝐴2|𝑉1|) + 𝑘1𝑐2𝑐𝑐𝑢𝑟,2𝐸(𝐴1|𝑉2|)] (𝑐)

+ {𝑐1𝑐2𝐸(𝑉1𝑉2|𝑉1𝑉2|) + [𝑐1𝑘2𝐸(𝑉1|𝑉1|𝐴2) + 𝑐2𝑘1𝐸(𝑉2|𝑉2|𝐴1)]
+ 𝑘1𝑘2𝐸(𝐴1𝐴2)}  (𝑑) 

(𝐼𝑉. 12) 
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 Term 𝟐𝒄𝟏𝒄𝟐[𝒄𝒄𝒖𝒓,𝟐 𝑬(𝑽𝟏|𝑽𝟏𝑽𝟐|) + 𝒄𝒄𝒖𝒓,𝟏 𝑬(𝑽𝟐|𝑽𝟏𝑽𝟐|)]   (a) 

 
 

For 𝐸(𝑉1|𝑉1𝑉2|)  
 
We assumed two joint standard normal distribution function W1=V1/σ1  W2=V2/σ2 , so 
have  
 

𝐸(𝑉1|𝑉1𝑉2|) = 𝐸(𝑊1|𝑊1𝑊2|)𝜎1
2𝜎2 

(IV. 13) 
 
Denote,  
 

𝐺1(𝑟𝑤1𝑤2) = 𝐸(𝑊1|𝑊1𝑊2|), 𝑤ℎ𝑒𝑟𝑒𝑟𝑤1𝑤2 = 𝑐𝑜𝑣(𝑉1, 𝑉2)/𝜎1𝜎2  

(𝐼𝑉. 14) 
 
Applying Price’s theorem, We have 
 

𝜕

𝜕𝑟𝑤1𝑤2
𝐺1 = 𝐸 (

𝜕2(𝑊1|𝑊1𝑊2|)

𝜕𝑊1𝜕𝑊2
) = 𝐸(2|𝑊1|𝑠𝑔𝑛𝑊2) 

 
 

𝜕2

𝜕𝑟𝑤1𝑤2
2

𝐺1 = 𝐸 (
𝜕2(2|𝑊1|𝑠𝑔𝑛𝑊2)

𝜕𝑊1𝜕𝑊2
) = 𝐸(4𝑠𝑔𝑛(𝑊1)𝛿(𝑊2)) 

(IV. 15) 
 
 
Hence, 
 

 𝐺1
′′ = 𝐸(4𝑠𝑔𝑛(𝑊1)𝛿(𝑊2)) 

= ∫ ∫ 4𝑠𝑔𝑛(𝑊1)𝛿(𝑊2)
1

2𝜋√1 − 𝑟𝑤1𝑤2
2

∞

−∞

∞

−∞

exp [−
1

2(1 − 𝑟𝑤1𝑤2
2 )

(𝑊1
2 − 2𝑟𝑊1𝑊2

+𝑊2
2)] 𝑑𝑊1𝑑𝑊2 

= ∫ 4𝑠𝑔𝑛(𝑊1)
1

2𝜋√1 − 𝑟𝑤1𝑤2
2

 exp [−
1

2(1 − 𝑟𝑤1𝑤2
2 )

(𝑊1
2)] 𝑑𝑊1

∞

−∞

(𝐴𝑛𝑡𝑖𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) = 0 

(IV. 16) 
 
To sum up we have, 
 

{

𝐺1(0) = 0

𝐺1(0)
′ = 0

𝐺1(𝑟𝑤1𝑤2)
′′
= 0

 

(IV.17) 
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Thus, 𝐺1 = 0 
𝐸(𝑉1|𝑉1𝑉2|) = 0 

(𝐼𝑉. 18) 
Similarly,  

𝐸(𝑉2|𝑉1𝑉2|) = 0 
(𝐼𝑉. 19) 

 
The term 

2𝑐1𝑐2[𝑐𝑐𝑢𝑟,2 𝐸(𝑉1|𝑉1𝑉2|) + 𝑐𝑐𝑢𝑟,1 𝐸(𝑉2|𝑉1𝑉2|)]  = 0 

(𝐼𝑉. 20) 
 
 
Term 𝟒𝒄𝟏𝒄𝟐𝒄𝒄𝒖𝒓,𝟏 𝒄𝒄𝒖𝒓,𝟐 𝑬[|𝑽𝟏𝑽𝟐|]    (b) 

 
 
We denote,  
 

𝐸[|𝑉1𝑉2|] = 𝐸[|𝑊1𝑊2|]𝜎1𝜎2 
 

𝑤ℎ𝑒𝑟𝑒 𝑊 =
𝑉

𝜎
 

(𝐼𝑉. 21) 
 
Then, we assume a function G2 and denote G2 be  
 

𝐺2 = 𝐸[|𝑊1𝑊2|] 
(IV. 22) 

 
Applying Price’s Theorem  

𝜕

𝜕𝑟𝑤1𝑤2
𝐺2 = 𝐸 (

𝜕2(|𝑊1𝑊2|)

𝜕𝑊1𝜕𝑊2
) = 𝐸[𝑠𝑔𝑛(𝑊1)𝑠𝑔𝑛(𝑊2)] 

(𝐼𝑉. 23) 
 

𝜕2

𝜕𝑟𝑤1𝑤2
2

𝐺2 = 𝐸 (
𝜕2(𝑠𝑔𝑛(𝑊1)𝑠𝑔𝑛(𝑊2))

𝜕𝑊1𝜕𝑊2
) = 𝐸[2𝛿(𝑊1)2𝛿(𝑊2)] 

(𝐼𝑉. 24) 
 
 

𝜕2

𝜕𝑟𝑤1𝑤2
2

𝐺2 = 𝐸[2𝛿(𝑊1)2𝛿(𝑊2)]

= ∫ ∫ 2𝛿(𝑊1)2𝛿(𝑊2)
1

2𝜋√1 − 𝑟𝑤1𝑤2
2

∞

−∞

∞

−∞

exp [−
1

2(1 − 𝑟𝑤1𝑤2
2 )

(𝑊1
2

− 2𝑟𝑤1𝑤2𝑊1𝑊2 +𝑊2
2)] 𝑑𝑊1𝑑𝑊2 =

4

2𝜋√1 − 𝑟𝑤1𝑤2
2

 

(IV. 25) 
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In summary, we have 
 

𝜕2

𝜕𝑟𝑤1𝑤2
2

𝐺2 =
4

2𝜋√1 − 𝑟𝑤1𝑤2
2

 

 
𝐺2
′′(𝑜) = 0 

𝐺2(0) = 2/𝜋 
(𝐼𝑉. 26) 

 
It can be solved, 
 

𝐺(𝑟𝑤1𝑤2) =
2

𝜋
𝑟𝑤1𝑤2 arcsin(𝑟𝑤1𝑤2) +

2

𝜋
√1 − 𝑟𝑤1𝑤2  

(IV. 27) 
 
Thus, 
 

𝐸[|𝑉1𝑉2|] = (
2

𝜋
𝑟𝑤1𝑤2 arcsin(𝑟𝑤1𝑤2) +

2

𝜋
√1 − 𝑟𝑤1𝑤2)𝜎1𝜎2 

 
𝑤𝑒ℎ𝑟𝑒, 𝑟𝑤1𝑤2 = 𝑐𝑜𝑣(𝑉1, 𝑉2)/𝜎1𝜎2  

(IV. 28) 
 
 

Term 𝟐[𝒌𝟐𝒄𝟏𝒄𝒄𝒖𝒓,𝟏𝑬(𝑨𝟐|𝑽𝟏|) + 𝒌𝟏𝒄𝟐𝒄𝒄𝒖𝒓,𝟐𝑬(𝑨𝟏|𝑽𝟐|)]    (c) 

 
 
For 𝐸(𝐴2|𝑉1|) 
  

𝐸(𝐴2|𝑉1|) = 𝐸[|𝑉1|𝐸(𝐴2|𝑉1)] 
(IV. 29) 

 

As what we assumed, 𝑉1, 𝐴2 are jointly normal distributed, hence the distribution of 
(𝐴2|𝑉1) will be normal distributed as, 
 

𝐴2|𝑉1 ~ 𝑁[𝜇𝐴2 +
𝜎𝐴2
𝜎𝑉1

𝑟𝑉1𝐴2(𝜇𝑉1 − 𝜇𝐴2), (1 − 𝑟𝑉1𝐴2
2 )𝜎𝑉1

2 ] 

(IV. 30) 
 

𝐻𝑒𝑛𝑐𝑒, 𝐸(𝐴2|𝑉1) = (
𝜌2
𝜎1
) 𝜌𝑣𝑎 , 𝑤ℎ𝑒𝑟𝑒𝜌𝑣𝑎 = 𝑐𝑜𝑣(𝑉1, 𝐴2)/𝜎1𝜌1  

(IV.31) 
 
Thus,  

𝐸(𝐴2|𝑉1|) = 𝐸[|𝑉1|𝐸(𝐴2|𝑉1)] = 𝐸[|𝑉1|𝑉1] (
𝜌2
𝜎1
) 𝜌𝑣𝑎 

(IV. 32) 
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𝐸[|𝑉1|𝑉1] = 0 (𝐷𝑢𝑒 𝑡𝑜 𝑎𝑛𝑡𝑖 𝑠𝑦𝑚𝑚𝑒𝑡𝑖𝑐) 

(IV. 33) 
 
Therefore,  

2[𝑘2𝑐1𝑐𝑐𝑢𝑟,1𝐸(𝐴2|𝑉1|) + 𝑘1𝑐2𝑐𝑐𝑢𝑟,2𝐸(𝐴1|𝑉2|)] = 0 

(𝐼𝑉. 34) 
 
 

Term {𝒄𝟏𝒄𝟐𝑬(𝑽𝟏𝑽𝟐|𝑽𝟏𝑽𝟐|) + [𝒄𝟏𝒌𝟐𝑬(𝑽𝟏|𝑽𝟏|𝑨𝟐) + 𝒄𝟐𝒌𝟏𝑬(𝑽𝟐|𝑽𝟐|𝑨𝟏)] + 𝒌𝟏𝒌𝟐𝑬(𝑨𝟏𝑨𝟐)}   
(d) 
 
 
This term has been already proved by L.E.Brogman(1965). For unconstant 
coefficients, its original equation should be modified into 
 

{𝑐1𝑐2𝐸(𝑉1𝑉2|𝑉1𝑉2|) + [𝑐1𝑘2𝐸(𝑉1|𝑉1|𝐴2) + 𝑐2𝑘1𝐸(𝑉2|𝑉2|𝐴1)] + 𝑘1𝑘2𝐸(𝐴1𝐴2)} = 

𝑐1𝑐2𝜎1
2𝜎2
2

𝜋
[(2 + 4𝑟𝑣𝑣 

2) 𝑎𝑟𝑐𝑠𝑖𝑛(𝑟𝑣𝑣) + 6𝑟√1 − 𝑟𝑣𝑣 2] + √
8

𝜋
(𝑐1𝑘2𝜌2𝜎1

2𝑟𝑣𝑎 + 𝑐2𝑘1𝜌1𝜎2
2𝑟𝑎𝑣)

+ 𝑘2𝜌1𝜌2𝑟𝑎𝑎   
(IV. 35) 

 
Where,  

𝑟𝑣𝑣 =
𝐶𝑜𝑣(𝑉1, 𝑉2)

𝜎1𝜎2
 

𝑟𝑣𝑎 =
𝐶𝑜𝑣(𝑉1, 𝐴2)

𝜎1𝜌2 
 

𝑟𝑎𝑣 =
𝐶𝑜𝑣(𝐴1, 𝑉2)

𝜎2𝜌1 
 

𝑟𝑎𝑎 =
𝐶𝑜𝑣(𝐴1, 𝐴2)

𝜎2𝜌1 
   

 
Therefore, in summary, the covariance of φ1(x1,y1,z1,t1) and φ2(x2,y2,z2,t2) will be  
 

𝐶𝑜𝑣(𝜙1, 𝜙2) = 𝐸(𝜙1𝜙2) = 

4𝑐1𝑐2𝑐𝑐𝑢𝑟,1 𝑐𝑐𝑢𝑟,2 (
2

𝜋
𝑟𝑣𝑣 arcsin(𝑟𝑣𝑣) +

2

𝜋
√1 − 𝑟𝑣𝑣) 𝜎1𝜎2

+
𝑐1𝑐2𝜎1

2𝜎2
2

𝜋
[(2 + 4𝑟𝑣𝑣 

2) 𝑎𝑟𝑐𝑠𝑖𝑛(𝑟𝑣𝑣) + 6𝑟√1 − 𝑟𝑣𝑣 2]

+ √
8

𝜋
(𝑐1𝑘2𝜌2𝜎1

2𝑟𝑣𝑎 + 𝑐2𝑘1𝜌1𝜎2
2𝑟𝑎𝑣) + 𝑘

2𝜌1𝜌2𝑟𝑎𝑎   

(𝐼𝑉. 36) 
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Applying Taylor expansion into 𝐶𝑜𝑣(𝜙1, 𝜙2), we obtain  
 

𝐶𝑜𝑣(𝜙1, 𝜙2) ≈
8

𝜋
𝑐1𝑐2𝑐𝑐𝑢𝑟,1 𝑐𝑐𝑢𝑟,2 (1 +

𝑟𝑣𝑣 
2

2
+
𝑟𝑣𝑣 

4

24
+
𝑟𝑣𝑣 

6

80
+. . . ) 𝜎1𝜎2

+
𝑐1𝑐2𝜎1

2𝜎2
2

𝜋
[
8𝑟𝑣𝑣
1
+
4𝑟𝑣𝑣
3

3
+
𝑟𝑣𝑣
5

15
+. . ] + √

8

𝜋
(𝑐1𝑘2𝜌2𝜎1

2𝑟𝑣𝑎 + 𝑐2𝑘1𝜌1𝜎2
2𝑟𝑎𝑣)

+ 𝑘2𝜌1𝜌2𝑟𝑎𝑎  
(IV. 37) 

 
From term (b), it is clear that the error is related with both the wave and the current. 
Since 𝑟𝑣𝑣 ∈ [−1,1], for worse case (rvv=1) the error of the 4th approximation will be 
less than 1.7% regardless the ratio between σ and Ccur. For our assumption (The 
velocity of current is quite small compared with wave), a 3rd approximation is 
accurate enough, with error less than 1.1%. 
 
 
IV.3.  Spectral of φ1(x1,y1,z1,t1) and φ2(x2,y2,z2,t2) 
 
 
Form mathematics, auto-covariance 𝑅𝑋𝑋(𝜏)   and spectral density 𝑆𝑋𝑋(𝑓)   of a 
function can bilaterally converted via Fourier transformation.  
 

If ∫ |𝑝|𝑑𝑝 < ∞
∞

−∞
, 

• 𝑅𝑋𝑋(𝜏) = ∫ 𝑆𝑋𝑋(𝑓)𝑒
𝑖2𝜋𝑓𝜏∞

− ∞
𝑑𝑓  (Inverse Fourier Transformation) 

• 𝑆𝑋𝑋(𝑓) = ∫ 𝑅𝑋𝑋(𝜏)𝑒
−𝑖2𝜋𝑓𝜏∞

− ∞
𝑑𝜏   (Fourier Transformation) 

 
Thus  

𝑆𝜙1,𝜙2(𝑓) = ∫ 𝑅𝜙1,𝜙2(𝜏)𝑒
−𝑖2𝜋𝑓𝜏

∞

− ∞

𝑑𝜏 = ∫ 𝐶𝑜𝑣(𝜙1, 𝜙2)𝑒
−𝑖2𝜋𝑓𝜏

∞

− ∞

𝑑𝜏 

(IV. 38) 
 

𝑆𝜙1,𝜙2(𝑓) ≈
8

𝜋
𝑐1𝑐2𝑐𝑐𝑢𝑟,1 𝑐𝑐𝑢𝑟,2 (𝛿(𝑓) +

𝑆𝑣𝑣(𝑓)
∗2

2𝜎1
2𝜎2
2 +

𝑆𝑣𝑣(𝑓)
∗4

24𝜎1
4𝜎2
4 +

𝑆𝑣𝑣(𝑓)
∗6

80𝜎1
6𝜎2
6 +. . . ) 𝜎1𝜎2

+
𝑐1𝑐2𝜎1

2𝜎2
2

𝜋
[
8𝑆𝑣𝑣(𝑓)

𝜎1𝜎2
+
4𝑆𝑣𝑣(𝑓)

∗3

3𝜎1
3𝜎2
3 +

𝑆𝑣𝑣(𝑓)
∗5

15𝜎1
5𝜎2
5 +. . . ]

+ √
8

𝜋
(𝑐1𝑘2𝜎1𝑆𝑣1𝑎2(𝑓) + 𝑐2𝑘1𝜎2𝑆𝐴2𝑣1(𝑓)) + 𝑘

2𝑆𝑎𝑎(𝑓)  

(IV. 39) 
Where 

𝑆(𝑓)∗2 = ∫ 𝑆(𝑓 − 𝑔)𝑆(𝑔)𝑑𝑔
∞

−∞

 

𝑆(𝑓)∗𝑛 = ∫ 𝑆(𝑓 − 𝑔)𝑆(𝑔)(𝑛−1)∗𝑑𝑔
∞

−∞

 

 
Here 𝛿(𝑓) in 𝑆𝜙1,𝜙2(𝑓) presents a static value in the time-space. 



169 
 

 
Therefore, similar to the Method II, a new linearization method can be proposed from 
the (IV.39), expressed as, 
 

|𝑣 + 𝑐𝑐𝑢𝑟|(𝑣 + 𝑐𝑐𝑢𝑟) ≈ |𝑐𝑐𝑢𝑟|𝑐𝑐𝑢𝑟 +√
8

𝜋
𝜎𝑐𝑐𝑢𝑟 + 𝜎√

8

𝜋
𝑣 

 
(𝐼𝑉. 40) 

 
 
IV.4. Cross spectral function Svv, SVA, SAV and SAA 
 

 
According to L.E.Borgman(1965), the covariance between V1V2, V1A2, V2A1 and A1A2 
are, 
 
𝑅𝑉1𝑉2 = 𝐶𝑜𝑣(𝑉1, 𝑉2)

= 2∫ 𝑆𝜂𝜂(𝑓)(2𝜋𝑓)
2
cosh(𝑘𝑧1) cosh (𝑘𝑧2)

sinh2(𝑘𝑑)
cos [𝑘(𝑥2 − 𝑥1) − 2𝜋𝑓𝜏]𝑑𝑓

∞

0

 

𝑅𝑉1𝐴2 = 𝐶𝑜𝑣(𝑉1, 𝐴2)

= 2∫ 𝑆𝜂𝜂(𝑓)(2𝜋𝑓)
3
cosh(𝑘𝑧1) cosh (𝑘𝑧2)

sinh2(𝑘𝑑)
sin [𝑘(𝑥2 − 𝑥1) − 2𝜋𝑓𝜏]𝑑𝑓

∞

0

 

𝑅𝑉2𝐴1 = 𝐶𝑜𝑣(𝑉2, 𝐴1)

= −2∫ 𝑆𝜂𝜂(𝑓)(2𝜋𝑓)
3
cosh(𝑘𝑧1) cosh (𝑘𝑧2)

sinh2(𝑘𝑑)
sin [𝑘(𝑥2 − 𝑥1) − 2𝜋𝑓𝜏]𝑑𝑓

∞

0

 

𝑅𝐴1𝐴2 = 𝐶𝑜𝑣(𝐴1, 𝐴2)

= 2∫ 𝑆𝜂𝜂(𝑓)(2𝜋𝑓)
4
cosh(𝑘𝑧1) cosh (𝑘𝑧2)

sinh2(𝑘𝑑)
cos [𝑘(𝑥2 − 𝑥1) − 2𝜋𝑓𝜏]𝑑𝑓

∞

0

 

 
(𝐼𝑉. 41) 

 
It is clear that those “covariance”s  have same structure, hence a generalized 
function can be built. Taking V1V2 as an example, we have, 
 

𝑅𝑉1𝑉2 = 2∫ 𝑄(𝑓) cos[𝑘(𝑥2 − 𝑥1) − 2𝜋𝑓𝜏] 𝑑𝑓
∞

−∞

 

(𝐼𝑉. 42) 
 
Where, 

{
𝑄(𝑓) = 𝑆𝜂𝜂(𝑓)(2𝜋𝑓)

2
𝑐𝑜𝑠ℎ(𝑘𝑧1) cosh(𝑘𝑧2)

𝑠𝑖𝑛ℎ2(𝑘𝑑)
, 𝑖𝑓 𝑓 > 0

𝑄(𝑓) = 0, 𝑖𝑓 𝑓 < 0

 

(𝐼𝑉. 43) 
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𝑆𝑉1𝑉2(𝑓𝑐) = 2∫ 𝑄(𝑓) cos[𝑘(𝑥2 − 𝑥1) − 2𝜋𝑓𝜏] 𝑑𝑓𝑒
−𝑖2𝜋𝑓𝑐𝜏𝑑𝜏

∞

0

= 2∫ ∫ 𝑄(𝑓) cos[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏] 𝑑𝑓𝑐𝑜𝑠(2𝜋𝑓𝑐𝜏)𝑑𝜏
∞

−∞

∞

−∞

− 𝒊2∫ ∫ 𝑄(𝑓) 𝑐𝑜𝑠[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏] 𝑑𝑓𝑠𝑖𝑛(2𝜋𝑓𝑐𝜏)𝑑𝜏
∞

−∞

∞

−∞

, 𝑓𝑐 > 0 

(𝐼𝑉. 44) 
 
 

2∫ ∫ 𝑄(𝑓) cos[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏] 𝑑𝑓𝑐𝑜𝑠(2𝜋𝑓𝑐𝜏)𝑑𝜏
∞

0

∞

−∞

=2∫ ∫ 𝑄(𝑓) 𝑐𝑜𝑠[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏] 𝑐𝑜𝑠(2𝜋𝑓𝑐𝜏)𝑑𝜏𝑑𝑓
∞

−∞

∞

−∞

= 2∫ ∫ 𝑄(𝑓)
1

2
[𝑐𝑜𝑠[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏 + 2𝜋𝑓𝑐𝜏]

∞

−∞

∞

−∞

+ 𝑐𝑜𝑠(𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏 − 2𝜋𝑓𝑐𝜏)]𝑑𝜏𝑑𝑓

=𝑅𝑒 [∫ ∫ 𝑄(𝑓)𝑒[𝑘(𝑥1−𝑥2)−2𝜋𝑓𝜏]𝑖𝑑𝜏𝑒2𝜋𝑓𝑐𝜏𝑖𝑑𝑓
∞

−∞

∞

−∞

]

+ 𝑅𝑒 [∫ ∫ 𝑄(𝑓)𝑒[𝑘(𝑥1−𝑥2)−2𝜋𝑓𝜏]𝑖𝑑𝜏𝑒−2𝜋𝑓𝑐𝜏𝑖𝑑𝑓
∞

−∞

∞

−∞

]

= 𝑄(𝑓𝑐)cos (𝑘(𝑥1 − 𝑥2)) + 𝑄(−𝑓𝑐)cos (𝑘(−𝑓)(𝑥1 − 𝑥2))
= 𝑄(𝑓𝑐)cos (𝑘(𝑥1 − 𝑥2)) 

(IV. 45) 
 

2∫ ∫ 𝑄(𝑓) cos[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏] 𝑑𝑓𝑠𝑖𝑛(2𝜋𝑓𝑐𝜏)𝑑𝜏
∞

0

∞

−∞

=2∫ ∫ 𝑄(𝑓) 𝑐𝑜𝑠[𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏] 𝑠𝑖𝑛(2𝜋𝑓𝑐𝜏)𝑑𝜏𝑑𝑓
∞

−∞

∞

−∞

= 2∫ ∫ 𝑄(𝑓)
1

2
[𝑠𝑖𝑛(𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏 + 2𝜋𝑓𝑐𝜏)

∞

−∞

∞

−∞

− 𝑠𝑖𝑛(𝑘(𝑥1 − 𝑥2) − 2𝜋𝑓𝜏 − 2𝜋𝑓𝑐𝜏)]𝑑𝜏𝑑𝑓

= 𝐼𝑚 [∫ ∫ 𝑄(𝑓)𝑒[𝑘(𝑥1−𝑥2)−2𝜋𝑓𝜏]𝑖𝑑𝜏𝑒2𝜋𝑓𝑐𝜏𝑖𝑑𝑓
∞

−∞

∞

−∞

]

− 𝐼𝑚 [∫ ∫ 𝑄(𝑓)𝑒[𝑘(𝑥1−𝑥2)−2𝜋𝑓𝜏]𝑖𝑑𝜏𝑒−2𝜋𝑓𝑐𝜏𝑖𝑑𝑓
∞

−∞

∞

−∞

] = 0 

(𝐼𝑉. 46) 
 

𝑆𝑉1𝑉2(𝑓) = 𝑄(𝑓)cos (𝑘(𝑥1 − 𝑥2)) = 𝑆𝜂𝜂(𝑓)(2𝜋𝑓)
2
𝑐𝑜𝑠ℎ(𝑘𝑧1) cosh(𝑘𝑧2)

𝑠𝑖𝑛ℎ2(𝑘𝑑)
cos (𝑘(𝑥1 − 𝑥2)),

𝑓 > 0 
(𝐼𝑉. 47) 
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