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Hydrodynamische interactie tussen vloeistofstroming en oscillerende slanke cilinders
door M. Shafiee-Far

De mensheid zou beter af zijn wanneer ieder zich aan de volgende twee regels zou houden - hier
letterlijk vertaald uit de originele bronnen:
"Ik geef de voorkeur aan verhoging van kennis boven intensievere aanbidding”
(Profeet Mohammed (sws))
"De mate van iemands superioriteit staat in verhouding tot zijn kennis en wijsheid"
(Imam Ali Ibn Abi-Talib (as))

Hoewel we het vijftig-jarige bestaan van de offshore technologie vieren, is de offshore industrie
nog jong!

Hoewel er veel theoretisch en experimenteel onderzoek is gedaan teneinde de vragen omtrent
hydrodynamische interactie te beantwoorden, blijft het probleem onopgelost. De situatie kan
vergeleken worden met een leger arbeiders die bezig zijn in het duister een muur te bouwen.
Hoewel iedere arbeider zijn best doet, wordt er een onverwachte vorm zichtbaar wanneer het licht
wordt.

De meeste studies gewijd aan de interactie tussen een vloeistof en vaste materie richten zich op
specifieke gevallen van interactie, met een eigen mathematische en fysische wijze van modellering.
Er is een meer algemene benadering nodig.

Directe analyses van de data (onafhankelijk van een bepaald belastingmodel) laten zien dat een
correct belastingmodel om de hydrodynamische kracht ten gevolge van interactie te voorspellen
alle snelheidscomponenten en combinaties van snelheden moet bevatten; de aanname van
onafhankelijke snelheidsvelden kan niet tot een juiste oplossing leiden.

Een vergelijking tussen computersimulaties van hydrodynamische krachten en gemeten waarden
laat zien dat een model gebaseerd op het concept van relatieve snelheid de hydrodynamische
interactie van een cilinder met een gecombineerd snelheidsveld veel beter beschrijft dari een model
gebaseerd op het concept van onathankelijke snelheidsvelden.

In een gecombineerd snelheidsveld is er geen enkele parameter waarmee de hydrodynamische
coéfficiénten gecorreleerd zouden kunnen worden zonder de behoefte aan andere parameters.
Dimensieloze parameters gebaseerd op de relatieve snelheid meer beter geschikt om
hydrodynamische coéfficiénten weer te geven dan de parameters die zijn gerelateerd aan
individuele componenten van stroming en beweging.

Bij dynamische analyses van offshore constructies worden, ter wille van een efficiénte
berekeningswijze, lineaire belastingmodellen verkozen boven niet-lineaire modellen. Het
meenemen van niet-lineariteiten verbetert het resultaat niet altijd. Onder de meeste
stromingscondities kan een gelineariseerde versie van het relatieve snelheden model de krachten
in de richting van de stroming even nauwkeurig beschrijven als een niet-lineaire versie.

Jeder onderzoek roept onherroepelijk evenveel of meer vragen op dan het beantwoordst.
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Hydrodynamic Interaction Between Fluid Flow and Oscillating Slender Cylinders
by M. Shafiee-Far

. Mankind would be better off if everyone abided by the following two statements - translated here
as translations of the original quotations:
“I cherish increases of knowledge over the increase of worship”
[Prophet Mohammed (sws)’
“Your supremacy over others is in proportion to the extent of your knowledge and wisdom™
[Imam Ali Ibn Abi-Talib (as)]

. Though we are celebrating the 50th anniversary of offshore technology, the offshore industry is stil]
young!

. Although many theoretical and experimental investigations have been undertaken to try to resolve
the hydrodynamic interaction issue, the problem remains unsolved. The situation may be compared
to having an army of workers laying bricks to build a wall in darkness. Even though each worker
has done his best, an unexpected form is discovered when it becomes light.

. Most of the studies on fluid-structure interaction have been targeted on some specific interactior
situation with its own mathematical and physical model representation. A more general view has
been needed.

. Direct analyses of the data (regardless of any load model) have shown that a proper load model foi
predicting the hydrodynamic interaction force in a combined flow field must include all velocity
components and combinations of velocities; the assumption of independent flow fields cannot leac
to a proper solution.

. Comparing computer simulations of the hydrodynamic forces with recorded measurements ha:
shown that a model based on the relative velocity concept can describe the hydrodynamic interactio:
of a cylinder with a combined flow field much better than one which uses the independent flov
fields concept.

. In a combined flow field, there is no single parameter with which the hydrodynamic coefficient:
may be correlated without the need for other parameters. Nondimensional parameters based on tht
relative velocity are more appropriate than those related to the individual flow and motiol
components to represent the hydrodynamic coefficients.

. For computational efficiency, linear load models are preferred over nonlinear models in dynamic
analyses of offshore structures. The inclusion of nonlinearity does not always improve the result
A linearised form of the relative velocity model may predict the inline forces as accurately as th:
nonlinear form in most flow conditions.

. Any study inevitably raises as many or more questions than it answers.
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SUMMARY

Slender cylindrical members are crucial elements of many types of offshore structure (fixed,
compliant and floating) as well as important independent parts of various offshore systems (e.g.
risers, cables, umbilicals, wires). Such slender cylindrical members experience excitation as well
as reaction forces caused by the movement of the structure as a whole which results from the
action of hydrodynamic forces due to waves and current. These forces obviously depend on the
fluid properties and flow conditions in the ambient environment, as well as on the geometry and
orientation of the cylinder itself. Even when the ambient environment is at rest, the cylinder will
nonetheless experience hydrodynamic (reaction) forces when it moves through the fluid. The
excitation and reaction forces constitute complex nonlincar hydrodynamic phenomena.

The general case of (large) oscillations of a cylinder through a non-stationary fluid is
consequently a very complex nonlinear interaction problem between the hydrodynamic and the
mechanical aspects of the problem. That is, the structural response of the cylinder (i.e. its
motions) to the loading experienced intcracts with the forcing mechanisms to change the loading
and thereby in turn change the cylinder motions.

The present work was carried out as a part of an ongoing study of hydrodynamic interaction of
slender cylinders conducted by the Workgroup Offshore Technology of the Delft University of
Technology. Tests have been carried out to study flow-structure interaction experimentally by
oscillating a vertical cylinder in the cross-flow and in-line direction in combination with a steady
flow and/or waves. The objective has been to improve the knowledge of the total interaction
between the kinematics of the ambient flow on the one hand, and non-stationary slender marine
structures on the other. A special objective has been to investigate the validity of Morison
equalion extensions for combined flow conditions and to establish the governing parameters. A
{inal objective has been to provide the force coefficients for the most appropriate load models.
Ideally, this study sought a universal formulation for hydrodynamic interaction which:

- Remains valid for simple as well as complex flow conditions.
- Contains coefficients which can be related to easily determined dimensionless parameters.
- Has stable valucs of these coefficients for all conditions.

Various existing and postulated load models have been examined within the present work. These
models are mostly extensions of the Morison equation based on two well-known ideas: the
independent flow fields approach (absolute velocity model) and the relative velocity approach.
Furthermore, lincarised forms of the extended Morison equation have been evaluated to
determine their validity, too.

First the behaviour of the measured in-line forces against various combinations of variables has
been studied to see what the data themsclves without any recourse to a force model indicate. The
statistical values of the measured forces were used for this purpose. The results imply that a
proper load model for predicting the hydrodynamic interaction force in a combined flow field
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must include all velocity components and combinations of velocities; the assumption of
independent flow fields cannot lead to a proper solution.

Even though load models based on the independent flow fields approach were considered
improper solutions in the light of direct observations from the data, some extensions of the
Morison equation based on this approach have nevertheless been examined. As expected, the
results show that these models do not form appropriate load models for a combined flow field.
In contrast, models based on the relative velocity approach give a much better quality of fit; they
have relatively stable coefficients and the coefficient values resemble those for simpler test cases.

Attempts have also been made to examine linearised forms of the Morison equation for use with
various flow fields. The hydrodynamic coefficients for such linearised forms have been
determined directly from the data. It has been found that a postulated linear form of the
generalised Morison equation based on the relative velocity approach fits as well as (or even
better than) the quadratic form.

Evidence has been produced which supports that a universal load model in which the force
coefficients depend on some general dimensionless parameters is indeed possible. Both the
relative velocity extension of the Morison equation and the linear version of this model satisfy
the criteria for a universal model in the flow conditions considered. The results strongly suggest
that the linear version of the relative velocity form of the Morison equation extension is
applicable to all test cases reported in this dissertation. Besides the quality of fit, this linear
model has the following advantages:

- In contrast to common practice in linearised solutions, there is no need for approximation or
simplification.

- The velocity terms involved are easy to estimate.

- Since it is linear in application, it simplifies a dynamic analysis of offshore structures.




SAMENVATTING

Slanke cilinders zijn uiterst belangrijke elementen van vele typen offshore constructies (vast,
mecgevend en drijvend) alsmede kritieke onafhankelijke onderdelen van verschillende offshore
systemen (voorbeelden zijn opkomers (risers), kabels, draden en navelstreng (umbilical)). Zulke
slanke cilinders ondervinden excitatickrachten van stroom en golven, en reactiekrachten als
gevolg van de bewegingen van de constructie door de vloeistof; de bewegingen worden op hun
beurt weer veroorzaakt door de stroom- en golfkrachten.

Deze krachten hangen af van de eigenschappen van de vioeistof en de stromingscondities aan de
ene kant, en de vorm, afmetingen en oriéntatie van de cilinder aan de andere kant. Zelfs als de
vloeistof in rust is zal de cilinder (reactie) krachten ondervinden als die zich door de vioeistof
beweegt. De excitatie- en reactickrachten zijn het resultaat van gecompliceerde niet-lincairc
hydrodynamische verschijnselen.

Het algemene geval van (grote) oscillaties van cilinders in een niet-stationaire vloeistof is daarom
een ingewikkeld niet-lineair interactie probleem tussen de hydrodynamische en de mechanische
aspecten van het probleem. De responsie van de cilinder (zijn bewegingen) op de ondervonden
krachten beinvloedt de optredende verschijnselen met als gevolg dat de excitatickrachten
veranderen, waardoor vervolgens weer de bewegingen veranderen.

Het hier gepresenteerde werk is cen onderdeel van een doorlopend onderzoek aan de Technische
Universiteit van Delft naar de hydrodynamische krachten op slanke cilinders uitgevoerd door de
Werkgroep Offshore Technologie. Om de interacties tussen het stromingsveld en de constructie
te onderzocken zijn er proeven uitgevoerd waarbij een cilinder werd geoscilleerd in
verschillende combinaties van stroming en golven. Het doel van het onderzoek was het
verbeteren van het inzicht in de interacties tussen de kinematica van het stromingveld en niet-
stationaire slanke offshore constructics. Hierbij is specifiek gekeken naar de geldigheid van
uitbreidingen van de “Morison vergelijking” voor gecombineerde stromingscondities en het
vaststellen van de belangrijkste parameters daarvoor. Er is daarnaast geprobeerd om voor de best
toepasbare belastingmodellen de bijbchorende coéfficiénten te bepalen. Idealiter zou deze studie
een universele formulering moeten geven voor de hydrodynamische interactie die:
- geldig is voor zowel simpele als voor complexe stromingscondities;
- coéfficiénten bevat die beschreven kunnen worden door eenvoudig te bepalen dimensieloze
parametcrs.
- stabicle waarden heeft van deze coéfficiénten voor alle condities.

In dit werk zijn verscheidene bestaande en voorgestelde belastingmodellen onderzocht. De
modellen zijn meestal uitbreidingen van de ‘Morison vergelijking’, die gebaseerd zijn op één van
de twee welbekende ideeén: de onafhankelijke stromingsveld aanpak (‘het absolute
snelheidsmodel’) en de relatieve stromingsveld aanpak (‘het relatieve snetheidsmodel™).
Daarnaast zijn ook gelineariseerde vormen van uitbreidingen van de *Morison vergelijking’
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bekeken om hun geldigheid te bepalen.

Allereerst zijn, zonder gebruik te maken van enig belastingmodel, de gemeten krachten
vergeleken met verschillende combinaties van variabelen, met als doel de kenmerken van een
(universeel) belastingmodel uit de data te destilleren. Hiervoor zijn de statistische waarden van
de gemeten krachten gebruikt. Uit de resultaten blijkt dat alle snelheidscomponenten en
combinaties van snelheden meegenomen moeten worden in een correct model. De aanname van
een absoluut snelheidsmodel kan daardoor niet tot een goede oplossing leiden.

Desondanks zijn enkele uitbreidingen van de ‘Morison vergelijking’ bekeken die op deze aanpak
zijn gebaseerd. Uit vergelijking met de metingen is nogmaals gebleken dat dergelijke
belastingmodellen niet goed blijkbaar zijn. Daar staat tegenover dat de belastingmodellen die
gebaseerd zijn op het relatieve snelheidsmodel de hydrodynamische interactiekrachten in een
gecombineerd stromingsveld veel beter kunnen beschrijven. De waarden van de bijbehorende
coéfficiénten zijn veel stabieler en komen overeen met de waarden voor enkelvoudige /
elementaire stromingsgevallen.

Daarnaast is er geprobeerd om gelineariseerde uitdrukkingen van de ‘Morison vergelijking’ te
vinden voor verschillende stromingscondities. De bijbehorende hydrodynamische coéfficiénten
zijn direct bepaald uit de metingen. Het is gebleken dat een zelf ontwikkelde lineaire vorm van
de generaliseerde ‘Morison vergelijking’ uitgedrukt in de relatieve snelheid daarbij een even
goede (zo niet betere) benadering geeft dan een niet-lineaire uitdrukking. Verder wordt het in dit
werk aannemelijk gemaakt dat er inderdaad een universeel belastingmodel geformuleerd kan
worden met coéfficiénten die athankelijk zijn van algemene dimensieloze parameters. Zo'n
model kan gebaseerd zijn op een van de volgende algemene belastingmodellen:

1. De niet-lineaire vorm van een uitbreiding van de ‘Morison vergelijking’ uitgedrukt in
relatieve snelheiden;

2. De lineaire vorm van een uitbreiding van de ‘Morison vergelijking’, uitgedrukt in relatieve
snelheiden.

Uit de resultaten blijkt dat een lineaire vorm van de ‘Morison vergelijking’, mits gebascerd op
het relatieve snelheidsmodel, goed te gebruiken is in alle gevallen die beschreven zijn in deze
dissertatie. Naast een goede weergave van de optredende krachten heeft het lineaire
belastingmodel de volgende voordelen:

- een benadering van het belastingmodel door middel van gelineariseerde oplossingen zoals te
doen gebruikelijk is is niet meer nodig;

- de snelheidsafhankelijke termen in het model zijn eenvoudig af te schatten;

- met een belastingmodel dat in zijn toepassingen lineair is, wordt een dynamische analyse van
een offshore constructie een stuk minder complex.

xii
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CHAPTER 1

General Introduction

As offshore structures are installed continually in deeper water and more severe environmental
conditions, an improved understanding of the interaction of waves and current with these
structures remains important as:

- theoretical calculations become more advanced requiring better data and models;

- there is a greater need to demonstrate safety and reliability, again requiring more complete and
accurate models;

- costs are to be reduced and one way of achieving that is through the application of better
technology.

Analysis for design of these structures requires integration of hydrodynamics and structural
mechanics and innovative use of theoretical and experimental techniques.

Offshore structures are usually composed of cylinders; in particular, slender cylinders are
essential elements in a great variety of offshore applications and systems. For example, they are
found as structural elements in fixed steel offshore structures and jack-up platforms; as pipes
(conductors) protecting oil and gas wells from the environment; as conduits for fluid or gas
transfer (risers) with fixed and floating production systems and offshore mining installations; as
lines (anchor lines) for the positioning of floating vessels; as electrical or hydraulic lines (cables,
umbilicals) for the transmission of power or data.

The behaviour of slender cylinders in the marine environment depends on three elements:

- the hydrodynamic interaction between the cylinder and the ambient flow,

- the properties of the mechanical system that is formed by the cylinder,

- the applicable boundary conditions at both its ends - the structure to which it is connected or
from which it is suspended.

A seemingly infinite number of individual studies of some aspect of wave-current-structure
interaction has already been carried out. Essentially all of these studies, however, have been
targeted on some specific interaction situation with its own mathematical and physical model
representation. The present work takes a more general view; a universal approach applicable to
all types of waves-current interaction with a non-rigid slender circular cylinder has been sought.

The present work was carried out as a part of an ongoing study of hydrodynamic interaction of
slender cylinders conducted by the Workgroup Offshore Technology of the Delft University of
Technology. Tests have been carried out to study flow-structure interaction experimentally by




oscillating a vertical cylinder in the cross-flow and in-line dircction with a steady flow and/or
waves. The objective is to increase the detailed knowledge of the total interaction between the
hydrodynamics (wave and current) on the one hand, and slender marine structures on the other.

1.1 Total Problem Survey

A cylinder experiences hydrodynamic (excitation) forces in a direction perpendicular to its
longitudinal axis due to the action of current and/or waves. These forces obviously depend on
the fluid properties and flow conditions in the ambient environment, as well as on the gecometry
and orientation of the cylinder itself. Even when the ambient environment is at rest the cylinder
will nonetheless experience hydrodynamic (reaction) forces when it moves through the fluid. The
excitation and reaction forces constitute a complex nonlinear hydrodynamic problem.

The dynamic behaviour of the long and slender cylinder mechanical system is similarly a
complex nonlinear problem, even when the time varying excitation is fully known. It is
influenced by factors such as the large displacements involved, the internal and external fluid
pressure, the (variable) mass flow through a pipe and the coupling between axial and torsional
deflections.

The general case of cylinder (large) motion through a non-stationary fluid is consequently a very
complex nonlinear interaction problem between the hydrodynamic and the mechanical aspects
of the problem. That is, the structural response of the cylinder (i.e., its motions) to the loading
experienced interacts with the forcing mechanisms to change the loading and thereby in turn
change the cylinder motions.

Numerous theoretical and experimental investigations have been undertaken to try and resolve
the interaction issue above. However, overall it remains an ill-understood problem. Most
researchers and practitioners consider the hydrodynamic interaction problem to be by far the
most important issue. This is an important reason for attempting to understand hydrodynamic
interaction first.

A comprehensive literature study has already revealed that understanding of the mechanical
behaviour as well as fluid-structure interaction are still relatively limited, see Shafiee-Far (1994a,
1994b, 1994c). There is a large body of literature reporting theoretical and experimental
investigations into one or more aspects of fluid-structure interaction.

The experimental programs reported in the literature refer almost without exception to laboratory
investigations, which are severely hampered by the impossibility to reproduce Reynolds numbers
at model scale and the significant practical problems encountered when subjecting long and
slender cylinders to conditions in the laboratory scales that reproduce realistic field conditions.
Therefore such programs have generally focused on one of two approaches: on the study of
particular aspects of the problem only, or on the determination of empirical coefficients in
pragmatic force models that are valid for a restricted set of circumstances.




1.2 Objective of the Present Work

On the basis of the above background it was further concluded that much of the physics of
viscous fluid flow and vortex shedding is still poorly understood and that it would not be realistic
to expect that major progress could be made using a theoretical approach. Thus the only way to
attempt to make meaningful progress in the relatively near term is to conduct a systematic series
of laboratory experiments with a segment of a cylinder. This segment would need to be subjected
to known and controlled motions while the hydrodynamic forces in two orthogonal directions
would be measured. In this manner a data bank of hydrodynamic force measurements would be
set up. This data could be used in a variety of ways such as:

- to analyse the data to detect relationships between the many variables involved;

- to determine the most appropriate of the existing loading models that have been derived
theoretically or postulated on the basis of previous experiments for a given set of
circumstances;

- to test the adequacy of existing or new force models by comparing computer simulations
of the hydrodynamic forces with the recorded measurements.

[deally, this study sought a universal formulation for hydrodynamic interaction which:

- Remains valid for simple as well as complex flow conditions.
- Contains coefficients which can be related to easily determined dimensionless parameters.
- Has stable values of these coefficients for all conditions.

During 1993 and the early part of 1994 a systematic series of experiments was planned. These
were carried out in the Ship Hydromechanics Laboratory of the Faculty of Mechanical
Engineering and Marine Technology in the summer and early fall of 1994. The experiments
comprised tests with a vertical cylinder, both stationary and subject to forced oscillations, in
periodic and random waves with and without current which was simulated by translating the
cylinder through the fluid. A list of test cases is given in table 1.

1.3 Outline of the Dissertation

While tests have been carried out by oscillating the cylinder in both the in-line and transverse
directions, only results for the in-linc oscillation tests are included in the present dissertation.
Additionally, the author’s work has concentrated on the investigation of the in-line force
components. However, some results for the transverse force are presented where they are
relevant to the discussion.

This dissertation has been organized into 11 chapters. The introductory material thus far
comprises the first chapter. The contents of the following chapters are briefly summarized below.

In chapter 2 the physical problem of hydrodynamic interaction is discussed and the significant
parameters are reviewed. This discussion gives a general idea about the existing problems and
the required experiments.



A survey of various load models and techniques for determination of the force coefficients is
provided in chapter 3. Through this, criteria for evaluation of the load models are discussed.

Chapter 4 contains a description of the laboratory systems and the experimental program, as well
as the data processing techniques and important formulations used in the subsequent sections.

A number of tests were carried out to establish base cases for situations when other motions
were also included. Results of these single mode tests are presented in chapter S.

Chapters 6 through 9 concern the experimental data analysis and associated results for the

following multi mode tests, respectively:

- in-line oscillation while towing the cylinder

towing the cylinder in waves
in-line Cylinder Oscillation in Waves

¢

in-line Oscillation While Towing in Waves

Chapter 10 investigates a universal force model by comparing the results from previous chapters.
The main results of the entire work and the conclusions reached, are presented in chapter 11.

Flow Conditions

Cylinder Oscillations

None In-line Transverse
Still water —_ yes yes
Current only yes yes yes
Regular waves only yes yes yes
Regular waves plus current yes yes yes
Irregular waves only yes yes yes
Irregular waves plus current yes yes yes

Table 1 Overview of Flow Conditions and Cylinder Oscillations Considered in

Laboratory Experiments




researchers have proposed approximate solutions of the coupled system of equations using

CHAPTER 2

The Physical Problem

The state of understanding and the assumptions and uncertainties that are associated with the
prediction of the behaviour of slender marine structures have been reviewed in three previous
reports by the author, Shafiee-Far (1994a,b,c). The interaction of the fluid and the structure
results in a three-dimensional problem even for a vertical cylinder in a unidirectional wave and
current field. Analyses of the interaction of waves with currents and the interaction of the
modified wave-current combination with slender structures require relevant observations and
experiments as well as different mathematical approaches that are applicable to some or all of
these physical circumstances. The present analytical, experimental, and operational knowledge
is still inadequate to describe the complex realities of fluid loading and dynamic response of
slender structures.

From both design and operational points of view, the prediction of forces acting on the slender
cylinders is important, just as prediction of the resultant shape and motions of the cylinder are
important. It is well known that the motion of the cylinder can significantly alter the flow pattern
and amplify the vortex-induced forces. The most important areas for improvement of the
representation of hydrodynamic interaction may be considered as follows:

- Proper description of hydrodynamic forces as incrtia, drag and lift force components on a
single cylinder cross-section. In this sense, an appropriate (either existing or new) load model
is to be adopted for description of the hydrodynamic intcraction.

- Coupling between in-line and crosswise motion. Slender cylinders may undergo oscillations
in the in-line and transverse directions. The magnitude of transverse oscillation can be such
that ignoring them may yield unconservative estimates of the associated structural loads. The
interaction problem can be solved by including vortex-induced forces in the equations
governing the motion of the structure, Sarpkaya and Isaacson (1981), Kaplan et al. (1981).
The inclusion of these forces results in coupled differential equations. A number of

various techniques. These approximations often neglect the effect of the coupling between the
in-line and transverse oscillations. However, the results associated with the uncoupled
equations can be significantly different from those associated with the coupled equations, see
Ghanem and Spanos (1992).

Characterization of vortex-induced vibration and three-dimensional effects. Developing a
general vortex-induced vibration analysis procedure is needed for representing the wide range
of vibration behaviour associated with long, slender cylinders in a current and/or waves.



2.1 Hydrodynamic Interaction

Since slender cylinders have a large dynamic response to hydrodynamic forces associated with
vortex shedding, a complete description of the hydrodynamic interaction must include the effects
of this response. This is usually included by using an extension of the Morison equation. Two
well-known extensions of the Morison equation are based upon the concepts of:

- Independent flow fields (absolute velocity approach)
- Relative flow field (relative velocity approach)

The independent flow fields approach assumes the total force to be a superposition of two
unrelated flows, one due to the fluid action on a fixed cylinder, and the other due to the cylinder
motion contributions in still water. In the relative velocity approach, the fluid velocity is replaced
by the relative velocity between the fluid and the structure. The validity and suitability of each
of these extensions has not been examined adequately, however.

The measured data in this study has made it possible to study the validity of existing as well as
other postulated load models under a relatively wide range of flow conditions.

2.2 Vortex-Induced Vibration and 3D Effects

The concepts presented above are two-dimensional. If a long slender cylinder is considered, the
three-dimensional nature of the waves and current and of the cylinder motion cannot necessarily
be completely described by a two-dimensional analysis. Some significant areas are addressed
below.

Vortex shedding from even a stationary cylinder is not uniform along the span. The flow itself
no longer behaves purely two-dimensionally at higher Reynolds numbers. Vortices are then shed
in cells. The three-dimensionality of vortex shedding can be characterized by a spanwisc
correlation length which corresponds to a length of the cell. The cell length depends on many
parameters such as Reynolds number, turbulence and shear in the ambient flow, cylinder surface
roughness, and cylinder vibration, see e.g. Pantazopoulos (1994),

A vortex-induced vibration analysis procedure has three essential components: a structural
model, a flow model (which interacts in some way with the structural model), and a solution
technique. For the flow model, the ideal is to solve the Navier-Stokes equations in the presence
of the body motion. Theoretical and/or numerical solutions of the Navier-Stokes equations are
only available for simplified cases or very low Reynolds numbers, and one has to resort to
physical experiments instead to obtain the data required.

There is a class of "wake-oscillator" models between direct Navier-Stokes solutions and physical
experiments in which the behaviour of the vortex wake is represented as a nonlinear Van der Pol
or Rayleigh oscillator, Hartlen and Currie (1970), Skop and Griffin (1973), Iwan and Blevins
(1974). However, most of these models are phenomenological descriptions that do not stem from
the underlying physics, Sarpkaya (1979), and therefore need to be calibrated against experimental
data. Thus, experimental results could be used directly as the hydrodynamic input to a general




vortex-induced prediction scheme, or indirectly through a wake-oscillator model.

The quasi-steady assumption is frequently used to derive the fluid dynamic forces on an
oscillating cylinder for subsequent use in vortex-induced vibration analyses of slender cylinders.
The principle of the quasi-steady assumption is that it enables the dynamic fluid forces acting on
an oscillating body to be calculated from static forces measured on a stationary body, with the
two bodies having otherwise identical conditions. It is assumed that the effect of the oscillating
body on the dynamic fluid forces is solely to modify the incident flow velocity vector. A typical
example of using the quasi-steady assumption is illustrated in figure 2.1, where it is desired to
calculate the dynamic forces on the body in the x and y-directions. If the body is only allowed
to oscillate normal to the flow, with velocity y, then the resultant velocity will be

Vi = (V2 + )", inclined at angle & = tan’'(y/V) to the original vector V. The quasi-steady
assumption assumes that magnitude of F| and F;, do not change as the cylinder oscillates, but are
merely inclined by a continuously changing angle o relative to their original direction.

Although it is well accepted, and physically reasonable, this assumption of quasi-steady statc is
only considered to be valid for high values of nondimensional flow velocity (reduced velocity)
V/fD'. This approach seems less appropriate for low reduced velocity values, Price et al. (1988).
[tis less known how the error associated with the assumption varies with reduced velocity. More
research is required to establish when and where a quasi-steady flow assumption is or is not
valid.

While all above-mentioned problems are very important for the total hydrodynamic interaction
with slender cylinders, the present work is limited to two-dimensional interaction problems.

2.3 Significant Parameters

Modelling a slender cylinder behaviour is dependent on a number of empirical parameters such
as Strouhal number, correlation length, and force coefficients. These parameters are dependent
on other flow parameters such as Reynolds number, surface roughness, Keulegan-Carpenter
number, and turbulence intensity. No single test can provide measurements and data for all the
parameters involved in hydrodynamic interaction. Most tests provide data for a few parameters,
disregarding the effect of others. Selection, interpretation, and evaluation of test data are critical
to hydrodynamic interaction of slender marine cylinders.

The in-line hydrodynamic force per unit length acting on an element of a smooth vertical circular
cylinder oscillating in a wave plus (uniform) current flow field depends on the following
independent parameters:

F=¢. D p v, dzgV,HT,4T) 1

in which ¢ = time, D = diameter of the cylinder, p = density of the fluid, v = kinematic viscosity
of the fluid, d = water depth, z = elevation of the element below the water surface,
& = acceleration due to gravity, V' = current velocity, / = wave height, 7, = (intrinsic) wave
period, 4 = amplitude of cylinder displacement, 7, = period of cylinder oscillation.

"All notations are listed at the end of the main text of the disscrtation
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Note that there are several other parameters that are used in describing a two-dimensional
progressive wave such as: wave length A, wave frequency w, and wave number k. However these
parameters are interrelated and the independent quantities that are neccssary and sufficient to
characterise the wave motion are H, d, T and g, Sarpkaya and Isaacson (1981). All other
quantities are related to these four independent variables in a manner prescribed by a particular
wave theory. For example, the wave length A depends on 7', d and g. Thus, g may be replaced
by A in equation 2.1,

The amplitude of wave-induced water particle velocity ,, and the amplitude of cylinder velocity
x,, may also be used to describe the hydrodynamic force due to the combined flow field. Since
u,, 1s a function of elevation, z can be replaced by u,, in equation 2.1 provided that the force
concept is considered in a “deep” location where the free surface effects can be neglected.
Similarly, the amplitude of cylinder velocity %, is a function of 4 and 7, and may be exchanged
with 4 in equation 2.1. Using these parameters, the hydrodynamic force may be expressed as the
following general function:

F=¢@ D, pv,d V,H T, A u,T,x,) (22)

The eftect of accelerations of the wave field and the cylinder oscillations are incorporated
through the velocity and time parameters. Thus, the dependent variable F is a function of 12
independent variables. Using the Buckingham Pi theorem, in a mass-length-time system, this
forms nine (=12-3) independent nondimensional quantities so that the normalised hydrodynamic
force per unit length may be expressed in the form of a function of nine nondimensional
parameters:

£yt Lomp 2md HOE vD T Vo 23)
pD (Vel)* TW’TW’ AT A )u’um’ v D D

where:

Vel = acharacteristic velocity for the combined flow field which needs to be defined

v7,, TJ/T, = dimensionless time

nD/A = diffraction parameter

2md/A = relative depth, kd

H/A = wave steepness

X,/ U, = dimensionless velocity

VDIv = Reynolds number based on current velocity (Re)

u, /D = Keulegan-Carpenter number based on wave parameters (KC,)

VT,/D = reduced velocity - velocity of the steady flow relative to velocity due to the

oscillation of the cylinder (V7,)

The diffraction effect is not significant for a small diameter cylinder. Therefore, the dependence
on the diffraction parameter may be neglected. For linear wave theory, the dependence of force
on wave steepness H/A may be waived. Note that the remaining dimensionless parameters are
not unique. For example, any two of these quantities may be combined to form a new one;
specially the following dimensionless parameters should be mentioned:

u,D /v, %,D/v = Reynolds number based on orbital velocity and oscillatory velocity,
respectively;




x,T, /D = Keulegan-Carpenter number based on oscillation parameters (KC, );
VT, /D = reduced velocity - velocity of the steady flow in comparison with flow due to
the wave (Vr,).

Besides, there are many possibilities regarding the definitions of the Keulegan-Carpenter number
and the Reynolds number. Some possible KC and Re definitions for combined flow fields arc
presented and discussed in the associated chapters.

One must introduce characteristic values for time, length and velocity (r,, D and U, respectively)
to extend the dimensional numbers to irregular waves. Among these parameters are the Reynolds
number Re = U, D/v and the Keulegan-Carpenter number KC = U, 1,/D. Formulations for these
dimensional parameters are given when the associated results are discussed.

2.4 Laboratory Data Requirements

Many model tests have been conducted to investigate a particular aspect of the hydrodynamic
interaction problem or satisfy the needs of a specific numerical or analytical model. Most of these
tests were carried out with the objective of establishing empirical coefficients under a narrow
range of conditions. Since the objective of the present work was to cover all possible conditions
and to cover wide ranges of relevant parameters, an extensive test programme was required.

Experiments for complicated circumstances such as the hydrodynamic interaction of slender
cylinders should start with simplified cases and be extended to more complex ones. The
following combinations may be required to investigate the matter adequately:

- Current-structure interaction
- Wave-structure interaction
- Wave-current-structure interaction

These different phases of the investigation and the possibility of experiments - using available
facilities within the university - for each of these combinations have been reviewed in Shafiee-
IFar (1995a). Table 3.1 gives a list (matrix) of various experiments that may be carried out to
achieve the objectives of the study. However, only combinations of waves and/or currents with
forced oscillations were carried out which include the shaded part of table 3.1.

2.5 Typical Data Ranges

Typical cross sections for slender cylinders vary for different types of cylinders. There is a large
variation of cross sections even for a particular type such as risers or mooring lines. Also, thesc
structures are used in different water depths and various sea states. Thus, the ranges of {low
parameters are very wide.

Since combinations of the relevant parameters are very important for comparison of experimental
data and real situations, a complete test programme must include a wide range of such
combinations. To provide an impression of ranges of the dimensionless parameters in the real
offshore environment, figure 2.2 shows combinations of thesc parameters for a 60 cm riser in 300




m water depth and various sea states.

However, there are some practical restrictions - such as capacity limitations of wave generator,
oscillator and force transducers - that restrict the realisable combinations of independent
variables. The force transducers only give proper information when the loading stays within
acceptable limits. It is only possible to generate certain combinations of wave height and period.
The possible simultancous combinations of dimensionless parameters for various test cases are
given in Shafiee-Far (1995a), appendix IV. Such combinations for the test case of in-line
oscillation plus current are illustrated in figure 2.3. Considering the possibilities of variables, it
appeared that practical data ranges could be achieved except for Reynolds number. The physical
limitation of the experimental facilities permits only subcritical - and for some cases critical -

flow conditions.

Cylinder Motion

Test Current Waves Forced Free
Cases In-line Cross In-line Cross
flow flow
no no
no no
no no
yes no
no yes
yes yes
no no
no no
no no
yes yes
no no
no no
yes yes
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Figure 2.1 Explanation of the quasi-steady assumption
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Figure 2.2 An example of combinations of Dimensionless parameters, a
D=60 cm riser in 300 m water depth and various sea states
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Figure 2.3 Nondimensional parameter ranges for in-line oscillation plus
current that are possible with the experimental facilities used




CHAPTER 3

Load Models

Slender cylinder hydrodynamics involves complex interaction between the kinematics of the
ambient flow, which may lead to flow separation and the development of vortices, and the
response of the cylinder. A load model for such structures must be able to describe this special
interaction between the hydrodynamic forces and the response of the structure itself. This is very
important both for a coefficient model (Morison equation) and a direct solution of the basic
equations (Navier-Stokes). Further, dealing with resonant phenomena can be important for lock-
in vibrations where vortices are shed from the structure with a frequency near a natural frequency
of the structure.

The calculation of the magnitude of the external hydrodynamic forces may vary depending upon
the character of the flow and the type of structure present. Suitable numerical solutions for the
viscous flow around slender structural components are highly desirable. In these solutions,
besides the possibility of direct evaluation of the acting pressure, the motions of the components
could be considered as well. This allows for an integrated numerical treatment of the
fluid-structure interaction problem. A numerical solution of the time dependent Navier-Stokes
equations coupled with the response of the structure would provide the complete solution.
However, the direct integration of the Navier-Stokes equation is not currently feasible due to the
large computational effort needed, see Sarpkaya (1989), Moe (1992) and Sarpkaya (1993).
Therefore, various approximations need to be made to obtain useful solutions. The objective in
formulating approximate mathematical models is to try to find the simplest set of equations of
motions whose solutions reflect observed behaviour with an acceptable degree of accuracy. In
particular, if the equations are too complex and contain many empirical coefficients then doing
enough experiments to compute the values of the coefficients for some wide range conditions
will be difficult. On the other hand, if the equations are too simple, they probably cannot describe
the observed behaviour adequately.

Various mathematical models proposed for the forces acting on cylinders in oscillatory flow are
described in the remainder of this chapter.

3.1 Morison Equation and Improvements

Most studies of fluid forces on small bodies that act in-line with an oscillating flow use the
Morison approach. Load models for slender marine structures based on the Morison equation are
2D coefficient models. This model is valid for a single length element and can be extended to
3D flow using a strip method. The in-line fluid forces are considered to be the sum of an inertia
force and a drag force. The inertia force is duc to fluid acceleration and the drag force is
associated with velocity, either relative or absolute depending upon the investigator’s preference



it seems.
The Morison equation for a fixed cylinder may be written as:

F=05pC, A ulul +pchﬂ (3.1
’ dt
in which C,, and C}, are drag and inertia coefficients, 4, represents the projected frontal area; V,
the displaced volume of the structure; and u, the velocity of the ambient flow. Velocities and
accelerations are components in the plane normal to the cylinder axis.

The Morison equation with inclusion of velocity and acceleration terms from the cylinder itself,
describes the in-line force perpendicular to the member. Transverse forces can be included in a
similar way. If the proper fluid velocity and appropriate hydrodynamic coefficients can be
correctly determined, the use of the Morison equation will yield good results. However, this
equation has been subject of a great deal of discussion about appropriate values for its two
coefficients. Furthermore, the importance of roughness, rotation of the velocity vector,
orientation of the cylinder, spanwise coherence, currents, a free surface, etc., still remains
disputed even though a vast amount of experimental work has been published over the past
decades.

Since the Morison equation is an approximate solution to a complex problem, many attempts
have been made either to improve or to modify the equation, see for example, Barnouin et al.
(1979), Sarpkaya and Isaacson (1981), Vugts and Bouquet (1985).

3.2 Modified Forms of Morison Equation

Besides the use of the Morison equation for fixed structures in waves, some further extensions
of this mathematical model have been used for other flow conditions such as combinations of a
current and/or structural oscillations. Particular applications arise when considering the forces
on elements of a flexible line structure and when vibrations occur on a fixed platform.

In spite of the differences in the two representative cases of relative motion described above, the
usual procedure in offshore engineering is to employ the basic form of the Morison equation for
relative motion as the appropriate model representing each case. There are a number of
fundamental questions about the correctness of such a representation, but only limited
investigations have been made to find out whether such a model is valid under different practical
conditions.

If a rigid cylinder is oscillated in otherwise still water, the in-line component of the fluid force
acting on the cylinder can be written as:

1 . T .
F= -CDO(—2-pD) l£]x - C, (p:Dz)x (3.2)
in which x and ¥ are the velocity and acceleration of the cylinder, C, is the added-mass

coefficient and C,,, is the drag coefficient for an oscillating cylinder in still water. The reaction
force here is taken as the external fluid force experienced by the oscillating cylinder; the inertia

14




of the cylinder itself due to its acceleration is not included in the reaction forces. Note that the
drag coefficient, C),,, for an oscillating cylinder is defined independently from the drag
coefficient for waves past a fixed cylinder.

The added-mass coefficient is generally assumed to be related to the inertia coefficient by:

c,, =C, +1 (3.3)

The above relation is correct for circular cylinders. Lighthill (1986) explained this relation by
introducing Froude-Krylov force component corresponding to the pressure gradient generated
by the oscillatory flow. In the present work it will also be assumed that the added-mass and
inertia coefficients are related by equation 3.3 in general, even though the definitude of the
relationship in the coexisting flow fields will be investigated.

If the cylinder is free to respond or forced to oscillate in an oscillatory flow then some
combination of equation 3.1 and 3.2 can be used to approximate the in-line force. As cited in the
previous chapter there are two well-known extensions of the Morison equation for these cascs;
the independent flow field and the relative velocity approach.

The basic assumption of the independent flow fields model is that the wave force acting on an
oscillating cylinder is the sum of forces resulting from two independent flow fields: a far field
force due to the wave motion and relatively unaffected by the cylinder oscillation and a near field
force resulting from the cylinder motion in still water. This gives the in-line force per unit length
as:

F= +CD(%pD)\u|u —CDU(%pD)Ix']x‘ +CM(p§D 2 -CA(p§D ¢ (3.4)

In the alternative solution using a relative velocity approach, it is assumed that the drag term in
equation 3.4 depends on the relative velocity between the fluid and the body, resulting in an in-
line force per unit length given by:

F = cDr(%pD)lu—xﬂ (u =) + cMr(p%D %) —cAr(p;D oY (3.5
In this equation the inertia coefficient is separated from the added mass coefficient. Assuming
the relation given in equation 3.3 to be valid for a combined flow field, i.e.:

Chp =C, * 1 (3.6)

the relative velocity model given in equation 3.5 may be written in an alternative form as:
_ 1 . . . T . . T 9 . 7
F= CD,(;pD)|u—x| (=) + €y, (PP = (€, - Dp-DH# (3.7
This model requires two fewer coefficients than equation 3.4 to determine the fluid force. The

value of Cy,, used in this case should be based on the amplitude of relative motion rather than the
fluid or structural motion alone.

For a structure free to oscillate in the presence of waves and current, the Morison equation may
be modified as:
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Other forms of equation 3.8 may be proposed as before and have been used in the past.

Beside these modified Morison equations, a number of postulated load models have been used
in this study. These models for each flow condition are presented in the relevant chapter where
that flow condition is studied.

3.3 Harmonic Analysis Models

Harmonic analyses may be carried out to determine Fourier components of the hydrodynamic
force on a slender cylinder. If a cylinder oscillation x(#) at the frequency £, is given by:

x() =4 sin(2 f, 1) (3.9)

then the in-line force may be expressed by a Fourier series having frequencies equal to multiples
of the oscillation frequency. Each force component has an amplitude and a phase angle
associated with it; thus one may model the in-line force as:

F= Zﬁmsin(Znnqu(bM) (3.10)
n=1

For the case of a cylinder oscillating in still water, analysis of the data has shown that the time

variant hydrodynamic force could be represented well by only the first and the second

components; higher components had little influence on the accuracy of the results. Thus, for the

pure cylinder oscillation in still water the in-line force may be represented by:

F=F, sinQ@nuf,t+$ )+F sin(4nf,t+¢ G.11)

)
02
where £ is the amplitude of the hydrodynamic force component and ¢, is a phase angle. ¥ can

be normalised by the dynamic pressure head factor %pDu,’ to obtain the associated force
coefficient:

~ A

F F
c - Fu c -t (3.12)

dhi 2 dh2 2
05pDu, 0.5pDu,

One may instead nondimensionalise F in different ways, for example:

Fol
G.13)

Coni™ 2.
0.25TpD’4u,

If the cylinder oscillation is combined with a current (or the cylinder’s steady motion), both the
Strouhal frequency and the oscillation frequency are introduced in the wake. Depending on the
amplitude and frequency of the cylinder oscillations, the wake response may be locked-in where
the cylinder motion controls the shedding process and the Strouhal frequency disappears.
However, the forces on the cylinder will generally have components at both the Strouhal and
body oscillation frequencies. Thus, one may model the in-line force as:




F=F +Y F sin@munf,t+,)+y, F, sin@mnfr+d, ) (3.14)
n=1 n=1

F,, is the magnitude of the mean drag force, F is the magnitude of the oscillating in-line force

at the Strouhal frequency f, and ¢, is a corresponding phase angle. Each of the force components
can be nondimensionalised in different manners to obtain the appropriate force coefficients.

Applications of the harmonic analysis approach and the examination of various force coefficients
for various test conditions are given in later chapters where results for different flow conditions
are presented.

3.4 Lift Force Models

Vortex shedding causes an additional force acting on the cylinder in a direction perpendicular
to the flow direction. This force component is called the lift force or transverse force. The lift
force is strongly correlated to the development of the flow field around the cylinder and can
induce substantial transverse vibration.

Many investigators have studied the lift force acting on a cylinder in a uniform flow and a recent
summary of this work is given by Blevins (1990). The lift force is due to vortex shedding with
the frequency of the shedding of pairs of vortices given by

sV
=27 (3.15)

. D
where S is the Strouhal number and V is the current velocity. A harmonic function with

frequency f, is often used to model the transverse force per unit length as:
1 . i
F, = ;pVZDCLsm(Zﬂ:fvt) (3.16)

Here C, is a lift coefficient and t is the time in seconds. Many efforts have been directed toward
determining the lift coefficients for different geometric and flow conditions.

The lift force also exists in oscillatory flow due to vortex shedding. A very simple model for the
lift force would be to use the result from steady flow given by equation (3.16) with the maximum
fluid velocity, u,,, replacing the current velocity, so that:

1 2 .
F,o= EpumDClen(Zthvt) 3G.17
McConnell and Park (1982) proposed an alternative model for the lift force based on experiments
in which a rigid cylinder was oscillated in otherwise still water. This model assumes that the lift

force is proportional to the square of the instantaneous velocity rather than w,2 This results in
the lift force being given by:

1 )
F, - ~2—pu2DCLsm(2ﬂ?fvt) (3.18)

Thus, with an oscillatory fluid motion given by u = u,, sin 2nf,, where f, is the forced oscillation
frequency, the lift force is given by:



F, = %p (u, sin27f,t)* DC, sin(2 Tf, 1) (319

In this model, the frequency components of F, occur at f,, f, - 2f,, and f, + 2f,. The results of
experiments by McConnell and Park also showed a strong tendency for the vortex shedding
frequency to assume integer multiples of the oscillation frequency, i.e. £, /f,=n.

In another formulation, the lift force is represented in terms of its Fourier components; see
Chakrabarti et al. (1976). In this case, the lift force is expressed by a Fourier series having
frequencies equal to multiples of the wave frequency. Each force component has a lift coefficient
and a phase angle associated with it:

N
F,=A ulY C, cos@mnfi+d) (3.20)
n=1 "

In which N is the number of Fourier components, C,, and ¢, are the nth lift coefficient and
corresponding phase angle, respectively.

Using equation 3.16 as a basis, Bearman et al. (1984) have proposed yet another model that is
arevision of an earlier model by Verley (1982).This mode! has not been considered in the present
work, which instead focuses on the simple lift force models given above. It must be noted that
these models are empirical and that it is very difficult to state conclusively which model is the
best one.

Although simple lift models have been used in this study, applications of these models have been
extended to the complicated flow conditions such as:

a. fixed cylinders in waves plus current
b. oscillating cylinders in waves
c. oscillating cylinders in wave plus current

Studies on the lift force where waves and currents co-exist are rare, and as far as the author is
aware no study concerning the lift force for oscillating cylinders in wave plus current flow
condition has been reported.

3.5 Coefficient Determination Techniques
Various methods have been suggested to determine force coefficients for load models described
in the previous sections. From these suggested methods, two methods are commonly used to
determine force coefficients for the Morison equation:
1) Least Squares Method: a least square fitting of the two coefficients to the force over the
full length of the measurement,
2) Fourier averaged method: drag and inertia coefficients are related to the first two Fourier

coefficients at the fundamental oscillatory frequency.

Formulations for these and otlier practical methods are summarised in appendix 1.
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3.6 Model Evaluation Criteria

The following criteria have been applied to compare and to evaluate the validity and suitability
of various load models in this work:

- Observation from the data itself
- Quality of fit of load models to data
- Stability of the coefficients

3.6.1 Direct Observations from the Data

Before trying various load models, the data themselves were observed and studied to see what
insight they might yield. To do this, various characteristic forces such as the mean (steady) force
and the root mean square of the total measured force were considered. A large number of
different checks have been carried out. For example, the RMS value of the in-line forces for all
test runs has been plotted against various variables to reveal the presence or absence of
dependency.

3.6.2 Quality of Fit of Load Models

The quality of fit of load models to data has been another criterion to assess the validity and
suitability of various load models. Each of the load models has been used with the input-output
data pairs from each of the test runs. The goodness-of-fit parameter, €, given by equation 3.21
has been used in this work to evaluate the quality of the fit of each model to the data.

rms (Fmea.v B Fqu) [E (Fmea.r B Fcu1)2 }1/2

= (3.21)
rms (F .. YF,)

where:

Fyewn  1s the measured force (corrected for cylinder acceleration)

I,  isthe force calculated by the model.

This parameter which has already been used by other investigators, e.g., Sarpkaya (1976) and
Stansby et al (1983), is the root mean square error of the force as determined from a load model
compared with the measured force; this is normalised by the root mean square of the measured
force. The lower this parameter value, the better the quality of the fit. Each test run and each load
model will result in a value of €. Statistical information of these € values will then allow
comparison of various load models to assess their validity.

3.6.3 Stability of the Coefficients

Even though most of the load models (with appropriate coefficients) can reproduce the measured
hydrodynamic force in a more or less reasonable manner, the scattering in the coefficients
obtained may differ from one model to another. Thus, scattering in the coefficients is used as an
additional criterion to assess suitability of the load models.
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CHAPTER 4

Laboratory Experiments

A forced oscillation of a vertical cylinder in various flow fields was used to model the vibration
of a slender cylinder in waves and current. A wide range of variables in all possible flow
situations was required. Especially it was considered important to investigate the hydrodynamic
interaction for a lock-in condition. These requirements dictated a large number of test runs.

This chapter provides an overall review of the experimental and data processing methods by
which the results were obtained. A detailed description of the laboratory experiments may be
found in a separate report, Shafiee-Far (1995b). The topics covered include: test facilitics,
experimental set up, test program, experimental procedures, measuring tcchniques and
preliminary data processing methods.

4.1 Test Facilities
4.1.1 Test Cylinder

The experiments were executed using the test cylinder shown in figure 4.1, which has been
manufactured by Marintek (Trondheim, Norway). Force transducers measured the hydrodynamic
forces on each of the four rings, in two perpendicular directions. Because of shallow
submergence resulting from top-end cylinder mounting above the water surface, the upper ring
(No. 4) was not used during the experiments. The cylinder is 60 mm in diameter and each ring
in the cylinder could represent an element of a full scale slender cylinder.

The force transducers gave a signal by means of a series of strain gages connected in a
Wheatstone Bridge. A rubber skin was used to prevent the flow of water into the cylinder. The
force transducers were individually calibrated before installation of the cylinder. Details of the
calibration programme may be found in Shafiee-Far (1995b). Later calibrations and other checks
were carried out in a more direct way to make sure that all transducers were working correctly.

The natural frequency of the cylinder as a whole was determined in air and in water by tapping
it with a hammer. It was 31.66 Hz in air and 25.3 Hz in water. The natural frequencics
dctermined for the measuring rings were more than 190 Hz, far above the frequencies of the
measured forces.

4.1.2 Towing Tank

Experiments for this study were carried out in the Towing Tank 11 of the Ship Hydromechanics
Laboratory of the Marine Technology Department, shown schematically in Fig. 4.2. The tank is
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85 mlong, 2.75 m wide and 1.25 m deep. Both regular and irregular waves can be generated by
a hydraulic wave generator. Waves are damped by a wave damping beach opposite to the wave
generator. The beach type is a wooden parabolic arc structure with transverse ribs.

The carriage of the towing tank moves on wheels on rails on top of the tank and can handle
towing speeds up to 3 m/s. Although a maximum speed of 1.5 nV/s was used for a few cases, the
towing speed was often less than 1 m/s.

4.1.3 Measuring Probes

The waves were measured by a two-wire conductance wave probe, as normally used in this
towing tank. The wave meter was mounted in front of the cylinder so that its record was not
affected by the cylinder oscillation.

An electromagnetic velocity meter (EMS) from the Civil Engineering Laboratory of Fluid
Mechanics was used to record simultaneous horizontal velocity components in the x and y
directions. The calibration factors for this probe are not linear; the recorded signals should be
corrected using a given formula to find the velocities in m/s.

4.2 Test Set-up

The cylinder is rigidly fixed to the oscillator as a vertical cantilever. Two different configurations
were implemented for mounting the cylinder and instruments during the experiments, one for the
transverse and the other for the in-line oscillation tests.

Figure 4.3 shows the configuration which was implemented for the in-line oscillation tests in still
water and waves. Figure 4.4 shows two pictures taken from this experimental set-up in the
towing tank, one of the cylinder and the other of the wave probe and the velocity metre.

4.3 Data Recording

Data from the various test runs were recorded in digital form using ASYST software - a data
acquisition package.

The following independent (input) variables have been recorded, when executing the model tests
in the towing tank:

- Towing speed, ¥ (m/s), in the x direction;
- Oscillation period, 7, (s), in the x or y direction;
- Oscillation amplitude, 4 (m), in the x or y direction.

The directions were as follows:

- x along the tank, positive toward the wave-maker;
- y perpendicular to this to the left when facing the wave generator.

The wave period, T,, (s), and wave height were set for each test run in waves. Wave elevations
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were recorded using the wave probe.
In addition, the following output signals were measured as digital time series:

- The forces in the x and y directions on each transducer.
- A reference signal which relates all signals to the oscillatory motion of the cylinder.
- Flow velocities in the x and y directions.

The six measured forces were denoted Fx1, Fyl, Fx2, Fy2, Fx3 and Fy3 respectively. Since the
velocity-metre was mounted on the oscillator for the transverse oscillation tests (in still water and
in waves), the recorded velocities for these tests are as follows:

Vx = towing velocity + horizontal water particle velocity due (o waves
Vy = £ cylinder oscillation velocity

For other test runs, the velocity-metre was fixed on the carriage. Thus the recorded in-line
velocity is again the sum of the towing velocity and the water particle velocity due to waves.
A MS-Dos computer was used to record the various signals. The time duration for each run in
still water and in regular waves was 20 seconds. This was 150-300 seconds for tests in irregular
waves. The sample interval for all test runs except runs in irregular waves was 0.02 seconds. The
water temperature was 20-21 degrees Celsius during the experiments.

4.4 Testing Procedure

The variables and their values to be used in the experiments have been reviewed in Shafice-Far
(1995a) where the choice of variables and environments is summarized. The test programme
involved various flow conditions; the intention was to include all possible combinations of
cylinder and fluid motions.

The acceleration of the cylinder introduced an extra force component in the data signals that must
be climinated in order to obtain force signals that represent the hydrodynamic interaction force
only. This was achieved by oscillating the cylinder in air. The results could be used to determinc
the mass of each ring, and using the reference signal, subtracting the calculated mass inertia force
from the measured signal data is rather easy.

Towing the cylinder was used to simulate a current. The standard runs of towing the cylinder in
still water were done with various towing speeds. These were followed by oscillation of the
cylinder in still water; thesc runs presented the pure oscillation test case. The ratio of oscillation
amplitude to cylinder diameter (4/D) was chosen as 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5 and for some
tests 4 and 4.5. so that a wide range of the Keulegan-Carpenter numbers could be covered. For
each of these ratios, the oscillation frequency was changed.

Transverse oscillation while towing the cylinder was the next test case. For each A4/D ratio, the
towing speed and then the oscillation frequency were changed so that a full matrix of
independent variables was generated. This resulted in a combination of flow parameters of
practical intercst.




Next, waves were added to the flow field to have the test case of transverse oscillation while
towing the cylinder in waves. In order to decrease the number of runs, only three regular waves
were generated for the test runs with waves. These have been denoted as H1, H2 and I13; the
other variables have been changed for each of these waves. The characteristics of these waves
were as follows:

wave period, T, wave height, H
H1 1.0 s =10 cm
12 15 s =12 cm
H3 2.0 s =18 cm

After each test, the water in the tank was allowed to settle until there was no visible movement
of the surface. Recording was started after more than 10 waves had passed the cylinder, and
continued for 20 seconds for the regular waves. The sampling interval was 20 ms.

For the in-line oscillation tests, the testing procedure was the same as for the transverse
oscillation tests described above.

A number of test runs with irregular waves were also carried out for both transverse and in-line
oscillations. The generated irregular waves, denoted as H4, had a defined spectrum with Hs=10
cm, T =1.7 s and mean zero-crossing period Ty, = 1.2 s. The maximum recording period was 300
seconds due to computer limitations.

A standard run with V=1 m/s was carried out before starting the planned runs each day. Some
runs were repeated during the experiments to detect calibration factors’ changes and equipment
deterioration.

4.5 On-line Data Control

Before the analysis of the experiment data, the data had to be evaluated first because the signals
possibly contained non-relevant information, or had to be transformed to other coordinates. The
instrumentation on the carriage and the data acquisition program made the on-line data analysis
possible. Significant representative data were displayed on the computer screen as a check during
each experiment; many test runs were repeated in the course of the experiments. Besides, some
additional runs were processed to check the suitability of the signals, see Shafiee-Far (1995b)
appendix [.

Some zero tests were performed during the experiment. In a zero test the signals were recorded,
while the equipment was switched on, but the cylinder was standing still in calm water. The
objective of these tests was to check if the signals were constant, and to estimate the zero points
of the signals.

4.6 Tests Carried Out

All possible combinations of flow condition and cylinder oscillation have been included in this
work. Having three independent motions - current (towing), cylinder oscillation, and waves - a
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comprehensive combination of flow conditions was gained.

In total, some 907 test runs were carried out for both transverse and in-line directions (including
33 runs for the cylinder oscillation in air). A list of all test runs is given in appendix II; the test
runs for a specific series have been grouped together in this list. Table 4.1 gives the number of
test runs for each test series.

Flow Conditions Cylinder Oscillation
None In-line Transverse

Air - 33 -

Still water - 31 54
Current only 43 107 211
Waves only (regular and irregular) 30 85 38
Waves (regular and irregular) plus 16 158 102
current

Table 4.1 Number of Test Runs for Each Test Series
4.7 Data Ranges Achieved

As already mentioned, one objective of the present study was to cover a wide range of
nondimensional parameters. However, there were some practical limitations on the combinations
of independent variables - Reynolds number, Keulegan-Carpenter number and reduced velocity -
used in the tests. The range of variable values in the present experiments was just a part of the
desired ranges of values, see figure 4.5. Nonetheless, the model size and available facilities
allowed coverage of a wide range of Keulegan-Carpenter numbers and reduced velocities.

The physical limitations of the experimental facility permitted only subcritical flow conditions,
i.e., the Reynolds number could never exceed 1.3*10°. The following comments relate to the low
Reynolds numbers in these tests:

1. Many full scale cases involving hydrodynamic interaction and lock-in vibrations of slender
cylinders do oceur in a subcritical flow regime.

2. Some previous investigations have shown that the lock-in behaviour - which is the most
important part of many hydrodynamic interaction studies - is not much different under
critical and subcritical Reynolds numbers, see Moe et. al (1994).

3. While the Reynolds number still falls short of practical values in many cases, it is higher
than those realized by most other investigators.

The independent variables in an individual test are: the towing speed, oscillation frequency and
amplitude, as well as the wave height and period. The ranges of these variables in the
experiments were as follows:




and 0.05 to 1.50 m/s
and 0.50 to 2.00 Hz
and 0.03 to 0275m
and 1.00 to 2.50 s
and 0.07 to 018 m

Towing speed:
Oscillation frequency:
Oscillation amplitude:
Wave period:

Wave height

SO o oo

These yielded a wide range of derived parameter values. These are given for each test case in the
later chapters.

4.8 Data Correction

A principal factor in experimental investigations is the dependence of measured quantitics on the
experimental conditions; all measured values depend on experimental factors such as aspect ratio,
end condition, blockage ratio, presence of free surface, and so on. Because of this situation,
several researchers have spent a great deal of effort on attempts to quantify the effects of these
experimental factors. This is a desirable research goal in itself, but not one that is directly
connected with the basic problem of hydrodynamic interaction. Various factors affecting the
accuracy of the results are discussed below.

4.8.1 Various System Effects

The test cylinder itself is rigidly fixed to the oscillator. With a view to the measurement of forces,
it is important that the cylinder does not oscillate in its natural frequency. The first natural
frequency of the whole cylinder in water was 25.3 Hz. Because the maximum excitation
frequency was 2 Hz, thus much smaller than the natural frequency of the cylinder, the cylinder
responds quasi-statically.

The stiffness of the cylinder is important for two further reasons: to keep the flow-field two-
dimensional, the deflection of the cylinder must be very small. Second, if the cylinder is too
flexible, the phase between the different force-transducers will be different. By structural analysis
it was shown that the maximum deflection would be about 0.3 mm; this can be neglected.

Since giving the cylinder an exact rotational orientation was rather difficult, all data should be
recalculated if a significant rotation error was detected. The orientation of the cylinder was
adjusted by means of the measured forces by carrying out several runs for both transverse and
in-line tests. A varying towing speed and no oscillation was used in these runs. It was found that
the rotation errors cause such minor errors in the measured forces that they could be neglected
in the data analysis; the maximum error was less than 1%.

4.8.2 Flow Considerations
4.8.2.1 End Effects
Many experiments have shown that disturbances in the flow along the cylinder due to the

proximity of the cylinder ends, the free surface, or test tank walls can affect test results. Two
methods have been used to ensure two-dimensional flow conditions: 1) providing a sufficiently

26




long cylinder - where the force measurements are taken far from the ends, and 2) the addition of
end plates.

Since the measuring rings of the cylinder are very short (15mm), the three-dimensional effect
could not be a problem in this work. However, an end plate was used during transverse
oscillations in still water to prevent a possible end effect. Using such a device for tests in waves
was not possible. Nonetheless, the dummy parts of the cylinder were relatively long (at least 5
diameters) to reduce the end effect.

One can check the possibility of some influence of the water surface near the upper transducer
(no. 3) and the end of the cylinder near the lower transducer (no. 1) by comparing the data from
of all three transducers in a single run. The measured force on the middle ring (no. 2) can be used
for analysis of most test runs.

4.8.2.2 Free-surface Effects

A cylinder in flowing water or a cylinder moving in still water generates a wake on the water
surface which disturbs the pressure field in the immediate vicinity of the cylinder and the water
surface. This pressure disturbance leads to an additional force acting locally on the cylinder. This
additional wake force will, of course, act only near the water surface and will have its greatest
influence on a vertical cylinder. However, one might expect its effect to be greatest in a steady
flow situation rather than in waves.

For neglecting the free-surface effect, Bishop and Hassan (1964) have used the criterion that the
maxirnum Froude number be much less than unity,

Fr - max
ghmiu

where V., is the maximum flow (towing) velocity, g is the acceleration due to gravity, and
h,;, is the minimum depth of submergence of the model.

The Fr,,,, value was 0.375 in the experiment by Bishop and Hassan; they argued that it was
sufficiently low. In the present experiment, the Fr,,,, value was less than 0.32 for ring No. 2 in
most test runs. This justifies neglecting the effect of the free-surface. It is more than 0.375 for
some tests in which the free-surface effect cannot be neglected.

The effect of free-surface wake on the measured forces has been examined for the current only
test case in the following chapter. The result shows that this effect for the lower ring is negligible
while it is considerable for the upper ring. The data for this upper ring have not been used in this
study, however. On the other hand, the free-surface effect is less for the oscillatory flow which
form the bulk of the test runs in this study.

4.8.2.3 Blockage Effects

Due to the presence of the walls of the channel around the model, the force coefficients measured
on a cylinder model in a finite body of water are different from the values expected in an infinite
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water body; this is referred to as the "blockage effect." Empirical blockage corrections are
applied to the measured forces and these corrections depend on the equivalent blocking ratio
D/B, or the ratio of the cylinder diameter to the transverse dimension of the test facility. In the
present experiment, the blocking ratio was only of the order of 2.2 percent and so no correction
was needed.

4.8.3 Equipment Deterioration and Long Term Stability

Calibration factors may change during the experiment due to equipment deterioration - especially
the rubber skin condition. Since the time interval between the first and the last run was several
weeks, the possibility of such an influence on the measured data was realistic. This was checked
carrying out some standard runs before conducting tests each day. The results of these runs
showed only a minor change in the average recorded force acting on rings in each case, see
Shafiee-Far (1995b).

4.8.4 Mass Forces

The acceleration of the cylinder and the measuring element itself introduces an extra force
component in the forced oscillation tests. This force must be subtracted from the recorded forces
to obtain force signals that represent only the hydrodynamic interaction forces. This was done
by using the results from the cylinder oscillations in air for a variety of amplitudes and
frequencies.

There are two ways to eliminate the inertia forces of the ring from the measured signals:
1. The mass of the ring could be determined from the runs in air, and assuming that the

cylinder oscillation during the experiments in water is a "nice" single harmonic, subtracting
the mass force from the measured signals is easy:

Fmasx - mring N a(t)

=F - F

hyrodynamic measured mass

2. One could subtract the signals from the runs in air directly from the recorded signal of a run
in water. Here the frequencies and amplitude must be the same for both runs.

Since the setting of the oscillation frequencies could not be done precisely, the first method had
to be applied here.

4.9 Preliminary Data Processing

As mentioned in section 4.3, hydrodynamic force components in the x and y direction, cylinder
motion trace, wave elevation and velocity signals were sampled at 20 ms intervals (50 Hz). The
software used to record the data stored the data in binary format.

The first step in data processing was to translate the binary data to ASCIT and spreadsheet forms;
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this was accomplished with a program within the data acquisition package. The ASCII files were

then played back through a digital lowpass filter to remove unwanted frequencies higher than 8
Hz.

Beside the above initial data processing, some small programs were written to automate further
processing such as calibrating velocity signals, removal of ring mass forces, and spectral and
statistical analysis. These provided spectra, standard deviation, maxima/minima of force and
velocity signals. This is useful information in itself and further served the purpose of quality
control.
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Figure 4.1 Marintek Test Cylinder
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Figure 4.4 Pictures of the Cylinder and Instruments in Experimental Set-up
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CHAPTER §

Single Mode Tests

A number of single mode tests were carried out to establish base cases for situations when other
motions were also included. Results of these basic tests are presented here. In addition to the
scientific benefit of this data, the single mode tests were a valuable way of monitoring the
performance of the experimental apparatus and systems in the water.

5.1 Towed Cylinder in Still Water

Towing was used to simulate currents in the laboratory; the cylinder was towed with different
speeds along the tank. Since the aim here was to produce results for a fixed cylinder in currents,
the term ‘current” will be used to describe the towing of the cylinder in still water.

5.1.1 Specific Load Model Forms

Vortices are shed from a cylinder towed in still water or a fixed cylinder in a current. These are
shed at the Strouhal frequency £, given by the relation:

Stv
5= G
The Strouhal number S/ is essentially a nondimensional frequency approximately equal to 0.2
over the range of subcritical Reynolds numbers. Due to the vortex shedding, the cylinder
experiences an oscillating [ift force at the frequency of shedding, an oscillating drag force at
twice the frequency of shedding, and a mean drag force. Thus, drag and lift forces per unit length
are given as:

F=F, +F sin(4nf,( +}) (5.2)

F,=F, sin@nf,t +{) (3

where F),,and F/; are the magnitudes of the oscillating Strouhal drag and lift forces respectively,
F ) 1s the magnitude of the mean drag force and ¢ and ¥ are corresponding phase angles. There
is a relation between ¢ and Y, however. Each of the force components can be
nondimensionalised in the usual manner by the dynamic pressure head factor Y2pDV? to give the
associated force coefficients. Thus, the mean and oscillatory drag cocfficients are:

FL)m

CDm - 05pDV2 (54)




F
c,, = —=2— (5.5)
0.5pDV?

and the lift coefficient is:

N

FL
c, = —Lt— (5.6)
0.5pDV?

5.1.2 Specific Processing Methods

Data processing for towing only runs was relatively straightforward. After initial data reduction -
transferring data to a separate processing program and lowpass filtering as described in section
4.9 - a spectral analysis was performed on each time record of the transverse force component
(1000 points) to determine the shedding frequency. A power spectrum for a typical force trace
in the transverse direction (lift force) is shown in figure 5.1 in which the peak in the spectrum
is associated with the shedding frequency. The obtained shedding frequency for each test run was
then used to calculate the Strouhal number related to that test run.

The magnitudes of the mean drag coefficient C),,, oscillating drag coefficient C,,, and the
oscillating lift coefficient C; were estimated from the time traces. To compute the oscillating
drag coefficient C),,, first the mean drag force was subtracted from the force record in the x
direction. Then, the least squares method was used to fit the model to the data using the shedding
frequency obtained from the spectral analysis. The lift force coefficient C, was calculated using
the first Fourier series component of the transverse force.

5.1.3 Results

The average Strouhal number calculated from 43 stationary runs was found to be 0.191, with a
standard deviation of less than 2.5%.

The estimated mean drag coefficients C,,, from the 43 tests approximate a normal distribution,
with a mean of 1.11 and a standard deviation of 0.044 for ring no. 1. The calculated C,,,, values
for the middle ring (ring no. 2) are slightly higher. A reason for these differences could be the
free surface effect considered in appendix I1I.

Figure 5.2 shows C,,, versus Reynolds number for these pure-current tests. The lines in this
figure are third order polynomial regression lines through data points which have been
determined by a least squares method. Such lines in this and most of the following figures are
added to show the behaviour of the data more clearly. The obtained mean drag values C,,,, are
in relatively good agreement with those published in the literature, e.g. Schlichting (1968); this
information does serve as a check of the experimental set-up. The estimated oscillating drag
coefficients C),, can be grouped and approximated as a normal distribution; this has a much
larger spread than that for the mean drag coefficient. Table 5.1 summarizes results for the in-line
force coefficients.
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St ("I)ml Cl)vl C/ dm2 CI)\Z
Mean 0.191 1.112 0.076 1.204 0.076
STD 0.005 0.044 0.024 0.025 0.023

Table 5.1 Summary of Results for Only-Current Runs

Although there exists a lot of lift force coefficient data in the public literature, however, the
degree of scattering in these data is very high. A complete understanding of the assumptions and
limitations inherent to each particular data set is required to compile these data. The reported data
sets seem to depend on many different factors two of the more important being instrumentation
design and end effects.

In figure 5.3, the rms lift force coefficient C,,,, is plotted versus Re and shows a comparison
between the present results and two other experiments reported. These are included here even
though lift is not the main topic of this dissertation.

The lift force coefficient values are much lower than values for the mean drag force coefficients
and higher than the oscillatory drag coefficients.

5.2 Forced Oscillation Tests

Forced oscillation tests are often used in the laboratory to model oscillatory flow around fixed
cylinders. A kinematically identical flow may be achieved by oscillating the cylinder rather than
by oscillating the ambient flow. The forces in the two situations differ because the Froude-
Krylov force is zero for the oscillating cylinder. Forced oscillation tests are also used to model
hydrodynamic interaction of oscillation and displacement response of the small elements that
form flexible cylinders. This approach is based on the philosophy that a short element of a long
flexible cylinder may be modelled as a rigid cylinder. The challenge is the accurate modelling
of the hydrodynamic interaction of such short elements.

In the present study, the degenerate tests of oscillating the cylinder in still water can be seen as
a calibration and to give an indication of the value of the data obtained. Moreover, these tests will
be used as a reference for further steps where complex flow conditions are involved.

5.2.1 Load Model Forms

In this study, both the Morison equation and harmonic analysis methods were used to model the
hydrodynamic forces on the cylinder oscillating in still water. The Motison equation for pure
cylinder oscillation is given in equation 3.2, The harmonic mode! here could be as equation 3.9
with the coefficient given in equations 3.11. If only the first component of the harmonic model
given in equation 3.10 is used, the load model for the in-line force may be written as:

Frime = 05PDCpuysin@nf s+ ) (5.7)

inline

This is a drag form harmonic model. If the coefficient C, given in equation 3.13 is applied, onc
may write a harmonic model in an inertia form as:
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2
D C, pt, sin2ufr+d ) (5.8)

inline = p

It should be noted that there are two unknown parameters in above harmonic models, i.e. a
coefficient (C,), or C,;) and a phase angle.

Since a linear form of the Morison equation is usually used for frequency domain dynamic
analysis of offshore structures, such a linear form of the Morison equation has also been
examined as a separate load model in this study. Using only the first term in the Fourier
expansion of ||, a linear form of the Morison equation may be written as:

i) = 2y (5.9)
3n

m

1 8 . . T oo
F=-C,(=pD)—x_ x-C, (p—D (5.10)
D‘(zp ) P A,(P4 )X
The result of this model is compared with the original form.

Table 5.2 summarizes all load models evaluated for hydrodynamic interaction of oscillating
cylinders is still water.

Load Model Equation Code

Morison equation | x Model 1
F=-Co-pD [l -C, (07 D%

Harmonic model i Model I1

(drag form) F=05pDC, %, sinQ27f,t+$,)

Harmonic model ) Model 111

(inertia form) F = p nf CATx“m Sin (an;t + d)o)

Linearised Morison . g - Model IV
. _ .. 2\

equation F = =Cpy(PD) =%, 3 ~Cy(p- D)

Table 5.2 List of Lead Models Studied for Forced Oscillation Tests
5.2.2 Data Range

The cylinder was oscillated with various amplitudes and frequencies; this led to the parameter
ranges given in table 5.3. The Re, and KC, value combinations are plotted in figure 5.4.
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Parameter Definition Range
Amplitude:Diameter Ratio A/D 05 - 4.0
Max. Oscillatory Velocity X, =247 f, 0.09 - 1.01 m/s
Reynolds Number Re,=x, D/v 5300 - 60300
Keulegan-Carpenter Number KC,=x,T./D 31 - 253
Frequency parameter B=Re/KC,=D*/T N 1680 - 7200

Table 5.3 Experimental Variable Ranges
5.2.3 Analysis Procedure

The analysis of the pure oscillation data consisted of initial data reduction followed by carrying
out a FFT to determine the exact external oscillation frequency. Then, the inertia forces of the
test rings were subtracted from the in-line force time trace. This was followed by statistical
analysis of the data. The following force values were obtained: mean, standard deviation,
maximum over recording time and average of maxima from each cycle. Spectral analysis of the
signals was carried out for all runs as well.

Oscillating the cylinder at the frequency f, the oscillating velocity  and the acceleration ¥ are
given by:

x = 4sinQ2Tf 1)
X= AQ2TS )cos(2Tf, 1) (5.11)
X =-AQ2nf, ) sin(2 nf, 1)

The cylinder oscillating velocity and acceleration were calculated using the recorded signal for
the cylinder motion x.

Harmonic analyses were performed to determine Fourier components of the hydrodynamic
forces. Results of these analyses were used to compute the in-line force coefficients for the load
models given in table 5.2. Reference sine and cosine waveforms were created using the external
oscillation frequency; then these were used to calculate the magnitudes of the force coefficients
as explained in appendix I.

Morison Equation, Model I
Both Fourier analysis and least squares technique were used to calculate the drag and inertia
coefficients in the Morison equation. The coefficients for first harmonic components were used
to compute the Fourier-averaged force coefficients of the Morison equation, see appendix I.
B 3n a,
c, ==

tn_ 4 (5.12)
8 0.5pDx]

37




b
C,~—t (5.13)
0.25pTD %,

Besides above method, the in-line Morison equation force coefficients were also computed using
a weighted least squares fit over the complete time segment, see appendix I. The velocity
required in this analysis was obtained by taking the derivative of the displacement signal.

Models Il and 111

The amplitudes of in-line forces were used to compute C),, and C,; in equations 5.7 and 5.8,
model II and 1II. The phase angle of the in-line force with respect to the externally imposed
oscillating motion was calculated as the difference between the phase angle of the force and the
phase angle of the motion.

Model IV
Only a least squares method was used to compute drag and inertia coefficients for the linear form
of the Morison equation.

5.2.4 Results and Discussion
5.2.4.1 Force Coefficients

Comparisons between the coefficients obtained from the least squares fit and the Fourier-
averaged coefficients have shown that both methods yield approximately the same C, values.
The C,, values differed slightly as shown in figure 5.5. Such a slight difference between drag
coefficients obtained from the two methods is comparable with the theoretical relationship
between them, see appendix I. Darg coefficients obtained from the least squares method will
present and discussed for the present test case as well as for other test cases .

The drag and inertia coefficients are varied with the Keulegan-Carpenter number as shown in
figure 5.6. Variations of C;, and C, versus the Reynolds number Re,, are illustrated in figure 5.7.
These figures show, within the range of Re, and KC, values encountered, that C;, and C, depend
mainly on XC,.

Dependency of the force coefficients C,);, and C,; (in models II and III) on KC are shown in
figure 5.8. Both coefficients exhibit good correlation with KC, and the degree of scattering
around trend lines is relatively low. The value of C,); decreases with increasing KC, while the
value of C,, increases. The low scatter in the force coefficients for model II and HI concurs with
earlier observations for the maximum force coefficient, C,, .= F,. /0.5 pD u,?, or for the RMS
force coefficient C,,,= F,,,/0.5 pDu,,?, see e.g., Bishop (1979), Stansby et al. 1983 and Bearman
1988.

Since the full force trace is needed in a structural analysis, the magnitude of the phase angle has
to be determined. The behaviour of the phase angle is illustrated in figure 5.9; increasing KC,
generally results in a decrease in the phase angle. This observation is completely logical due to
the fact that at low KC, values the inertia force is dominant so that ¢, ~ 180°, and at high XC,
values the drag force is dominant and ¢, = 90°; in intermediate KC range (drag-inertia
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dominated region) there is a gradual transition.

The results for the linear form of the Morison equation, model 1V, are presented in figure 5.10.
The C)), and C,, values in this figure have been calculated using a weighted least squares method
similar to that used to obtain the original Morison equation coefficients. Comparing figures 5.10
and 5.6, one can observe that the drag coefficients for both models are similar. The average C,,
/ C)yratio is 1.07 with a standard deviation of less than 3%. This suggests that using only the first
term in the Fourier expansion of |x| will estimate the drag force quite well. The added mass
coefficients C; and C, are identical - as expected - for the two models.

5.2.4.2 Load Model Fitting

Each of the load models given in table 5.2 was used with the input-output data pairs of each of
the test runs. As discussed in the preceding section, each of these models has its own distinct set
of coefficients. The goodness-of-fit parameter, €, given by equation 3.21 was used to evaluate
the quality of fit of each model to the data. The lower this parameter value, the better the quality
of the fit.

The € values for each model were ranked and grouped into histograms. Table 5.4 lists the
calculated mean and standard deviation (STD) value of the € distributions using the load models.
Since the load models II and III result in identical € values by definition, only € values for model
IT are given in this table. The fourth and the fifth column in this table show the cumulative
distribution of €, i.e. the percentage of runs for which €<0.15 and € <0.2 for each computational
model. Sarpkaya (1976) found that the € value for the Morison equation ranged from 2 to 20
percent with a representative value being on the order of 10 to 12 percent. The representative
value for € is 12 percent for the original Morison equation in the present tests; the € values for
the other models are slightly lower.

Figure 5.11 shows the results for the load models from table 5.2. The cumulative percentage of
the 31 test runs is plotted against € here. High curve values indicate that relatively more of the
test runs fitted the chosen model well.

Taking all the information in table 5.4 and figure 5.11 together, one can conclude that all models
fit the measured data roughly well; the harmonic load model gives the best fit. The linear form
of the Morison equation gives a result similar to that for the harmonic load model and
(surprisingly) the quality of fit for this model is better than for the original form of the Morison
equation.

Fit quality € value Percentage of runs with:
Load Model Mean STD €<0.15 €<02
Model | 0.120 0.047 76.0% 100%
Models IT & 111 0.108 0.039 92.0% 100%
Model IV 0.104 0.039 88.0% 100%

Table 5.4 Forced Oscillation Tests, Model Fitting Statistics
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5.3 Fixed Cylinder in Regular Waves

The same test set up as before was used to conduct a number of tests for the condition of a fixed
cylinder in regular waves. The still water depth was kept constant at 1.05 m. The test cylinder
was fixed in a cantilever form and the hydrodynamic forces on two rings were recorded in both
in-line and transverse directions.

5.3.1 Load Model Forms

The small amplitude wave theory was used to calculate wave kinematics. The potential function
of the incident wave is written as:

b = 8H coshlks) . (5.14)
2w cosh(kd)

where 6 = kx - w! is the wave phase angle.
The displacement of the water surface 1) is written as:

n- gcose (5.15)

The orbital velocity u and acceleration  of a fluid particle are written as:

- TH cosh(ks) cosB (5.16)
T sinh(kd)
;- 27° H cosh(ks) sin® (5.17)

72 sinh(kd)

The mathematical formulations used to estimate the hydrodynamic force in the in-line direction
are similar to the cylinder oscillation test case except that here the inertia coefficient C,, is used
instead of the added mass coefficient C,. These formulations are given in table 5.5.

5.3.2 Data Range

The nondimensional parameters on which the hydrodynamic force coefficients depend are mainly
the Keulegan-Carpenter number KC and the Reynolds number Re. Due to limitations of the
wave-maker and the tank, generating waves of large amplitude was impossible; the maximum
attainable XC number was less than 10.

Two independent variables were the period and amplitude of the waves. Hydrodynamic forces
at two different elevations were recorded. Thus, there were two sets of nondimensional
parameters for each test run. The ranges of the nondimensional parameters of the experiments
are given in table 5.6.
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Load Model Equation Code

Morison equation . n Model 1
F= CD(EPD) laafua+ CM(P:D )i

Harmonic model - Model 11

(drag form) F=05pDCpu,sinuft+d,)

Harmonic model ) : Model III

(inertia form) F=p nD Crtd,, sinQuft+ )

Linearised Morison I g - Model IV

ti F=C,(=pD)—u_u+C, (p=DYu
equation D,(2P ) ol M,(P4 )
Table 5.5 List of Load Models for Purc Wave Tests
Parameter Definition Range

Keulegan-Carpenter KC, (=u,T,/D) 23 - 96

Number

Reynolds Number Re, (= u, D/V) 8300 - 17400

Table 5.6 Parameter Ranges for Pure Wave Tests
5.3.3 Analysis Procedure

The analysis procedure was similar to that for the previous tests. After data reduction, the exact
amplitude and period of the waves were determined using a FFT analysis. Then the horizontal
water particle velocities and accelerations were computed using linear wave theory. The force
coefficients for the Morison equation and its linearised form, model IV, were computed using
the least squares technique. The coefficients for the harmonic load models were determined using
results of a harmonic analysis.

5.3.4 Results and Discussion
5.3.4.1 Force Coefficients

The calculated hydrodynamic force coefficients using the original Morison equation are
discussed in this section. The results show that the coefficients obtained depend mainly on the
Keulegan-Carpenter number KC,,. The force coefficients are, therefore, shown as a function of
KC, in figure 5.12. The hydrodynamic forces were inertia dominated for all test runs in this
series. The obtained coefficients agree well with those reported for wave force measurements in
the literature, e.g. Chakrabarti (1980). The scatter in drag coefficients is more than in the inertia
coefficients; the average C), value is 1.05 with a standard deviation of 30% while the average
value for C,,is 1.6 with a standard deviation of 10%.




Comparing the results from forced oscillation tests and purc wave tests, one can observe that the
force coefficients from both tests have the same tendencies if plotted versus the Keulegan-
Carpenter number. However, the degree of scattering for drag coefficients from wave force
measurements is more than those from cylinder oscillation tests.

The effect of Reynolds number is not discussed in detail is this work; this would need another
experiment with a different experimental set-up and cylinders.

The coefficients C;,; and C, of the harmonic models II and 111 are shown in figures 5.13, as a
function of KC,. As seen from this figure, these total force coefficients turn out to be much more
stable than the drag and inertia coefficients for the Morison equation. The C,), decreases as the
KC, increases and tends to a value around 1.5 while the C,, increases with increasing KC,; this
also tends to a value around 1.5. However, these force coefficients do not give all the necessary
information about the hydrodynamic force, since the phase and the full force traces are usually
needed in structural analysis. Thus, the phase angle (¢, values) were determined from the
harmonic analysis results; they are plotted versus KC,, in figure 5.14. Just as for the total force
coefficients, the curve is also smooth and the ¢, data points show less scatter. Having the results
for the total force coefficients ( C,,, and/or C,,;) and the phase angle, computing the full force
trace is rather easy.

Figure 5.15 illustrates the variation of drag coefficient C,, against KC,, for the linearised form
of the Morison equation (model IV). The results show the same tendencies as C,, for the original
Morison equation in figure 5.12. Overall, the drag coefficients obtained from the linearised form
are slightly higher than the values for the original form; the average C,,/C,, ratio is about 1.05.

5.3.4.2 Load Model Fitting

The quality of fit of the load models to the data was evaluated using the same procedure as for
the previous test case. The statistics of the € values for each model were used for this purpose.
The final results of this evaluation are given in table 5.7. The cumulative probabilities of € for
each load model are given in figure 5.16. Considering all these results, one could draw the same
conclusion as for the forced oscillation tests; all load models fit the data pretty well, but the best
fit is obtained using the harmonic load model.

Comparing the fit quality between the forced oscillation tests and the wave tests, it is seen that
the € values for the wave tests are lower than those for in the forced oscillation tests. These
differences may be related to the vertical component of the orbital velocity; the strength of the
vortices formed in waves are lower than those in a corresponding purely two-dimensional flow.
In forced oscillation tests, the flow field around the cylinder is nearly two-dimensional and the
strengths of the vortices shed by the cylinder are relatively high. Another reason for such
differences in € values for the two test cases is that the wave tests are in the inertia dominated
range (KC,, < 10); for the same KC, range the forced oscillation tests give small € values as well.
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Fit quality € value Percentage of runs with:

Load model
Mean STD € <0.15 €<02
Model I 0.054 0.036 90.5% 95.2%
Model 1T & III 0.030 0.019 100.0% 100.0%
Model [V 0.055 0.046 88.1% 92.9%

Table 5.7 Fixed Cylinder in Waves, Model Fitting Statistics

3.4 Conclusions From the Single Mode Tests

The results of the single mode tests have been reported in this chapter. The original motivation
in conducting these experiments was to lay the basis for the multi-mode tests that are discussed
in the following chapters. The single mode tests support the following conclusions:

1.

The long term durability of the measuring devices was acceptable.

The drag coefficients obtained for the towed cylinder in still water agree well with those
reported in the literature. This indicates that the equipment worked correctly.

The added mass coefficient C, obtained by a least squares fitting to the data and by a
Fourier average method (sce appendix 1) are almost identical while the drag coefficient
C), values are slightly different; G, values using the Fourier average method are about
10% less than those using the least squares method.

Force coefficients for pure wave tests are in good agreement with those for forced
cylinder oscillation tests at a corresponding Keulegan-Carpenter number over the range
of KC - values over which the data extend (KC < 10). However, the degree of scattering
in drag coefficients obtained from wave tests is more than that obtained from forced
oscillation tests.

Overall, a harmonic load model fits the data as well as does the Morison equation if the
corresponding phase angle is determined correctly. Observations indicated that there is
a correlation between the phase angle and the Keulegan-Carpenter number.

A linear form of the Morison equation can also be used to reproduce the in-line force; the

computed signals fit the measured signals as closely as the original Morison equation
does, provided that the associated valuc of the linearised drag coefficient is used.

43




Power Spectrum of Fyl

1.6E-3 Run 40
1.4E-3
1.2E-3
1.0E-3
8.0E-4
6.0E-4
4.0E-4
2.0E4
0.0E+0

Power Spectral Density, N*/Hz

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Frequency, Hz

Figure 5.1 Towing the cylinder in still water, power spectrum of a typical transverse force
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Figure 5.3 Towing the cylinder in still water, lift force coefficient versus Re
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1.8

1.6 Cpn = 1.0398 Cpy
1.4 R’ = 0.876
12
1.0
0.8
0.6
0.4
0.2
0.0

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Cp (Fourier-averaged analysis method)

Cp, (least squares method)

12 Can = 1.0002 C,p
R* =098
0.8
0.6

0.4

C, (Fourier-averaged method)

0.2

0.0
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

C 4 (least squares method)
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Figure 5.9 Forced oscillation in still water, variation of phase angle, ¢, versus KC,,
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Figure 5.15 Fixed cylinder in waves, the linearised drag coetticient, €, plotted versus KC
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CHAPTER 6

In-line Oscillations in Uniform Flow

6.1 Introduction

This chapter will be devoted to the presentation and discussion of the results of the tests of in-line
harmonic oscillations of a cylinder in a uniform flow. Elements of offshore structures are often
exposed to flows which are a combination of an oscillatory flow (due to waves) and a mean flow
(due to current) around a stationary cylinder. The flow situation considered in this chapter is
complementary to this case, the difference being that in the present situation the cylinder is
oscillating. The flow situation discussed here is expected to have practical relevance to the
understanding of wave and current forces on offshore structures; however, the hydrodynamic
interaction between a fixed cylinder and a current superimposed on the waves will be discussed
more specially in the next chapter. Results for other multi-mode flow conditions will be
presented in subsequent chapters.

From a practical point of view, in-line oscillation of a cylinder in a current is important, partly
because of the superposition of waves with currents and partly because of the damaging vortex-
induced oscillations encountered in currents. Since from a kinematics point of view, the
phcnomenon is identical to that where the cylinder is subjected to a time-dependent flow
characterised by u = V - u,, cos wt, the evaluation of the forces might shed some light on the
combined effect of waves and currents on slender cylinders.

[t is ordinarily assumed that the Morison equation applies equally well to oscillatory flow with
a mean velocity and that the drag and inertia coefficients are independent of the current. This
would imply that drag and inertia coefficients are independent of vortex-shedding and its
attendant consequences. However, the shedding of the vortices by the current causes significant
changes in vortex motion and in both the drag and inertia cocfficients, compared with their no-
current values, see Sarpkaya and Isaacson (1981). The value of C;, and C,,may vary considerably
from one half of the wave cycle to the next because of the current induced biassing of the wake
and vortex formation. Also, neither set of coefficients may be identical to thosc obtained without
current. Thus, the hydrodynamic interaction of combined flows must be carefully examined in
the light of available data.

The purpose of this series of experiments is to examine the validity of existing load models and
to find a better description if possible. An additional purpose is to obtain useful force coefficient
values over a wide range of offshore conditions.
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6.2 Previous Work

Relatively few studies have been carried out on superposed oscillatorv and mean flow past a
fixed cylinder, or on a cylinder oscillating in-line with a current. An extensive review of the
previous investigations is given by Sarpkaya and Isaacson (1981). Here only the more recent and
most relevant investigations are briefly described.

Iwagaki et al. (1983) have carried out experiments with two relatively small vertical cantilevered
cylinders. The force coefficients were calculated by two approximate methods using the total
moment acting on the entire cantilever. They have plotted C,, and C,, versus various XC numbers
and claimed that a new KC number based on the relative displacement of the fluid correlates
quite well with the force coefficients.

Kato et al. (1983) have subjected a cylinder to a combined flow field by means of a carriage
which oscillated in either the in-line or the transverse direction while moving forward at a
constant speed. They have concluded that the drag coefficient increases with increasing
Vr=VT/D. This result is in contradiction to that obtained by Moe and Verley (1980) and Iwagaki
et al. (1983). An explanation for this apparent contradiction is that KC and V» were implicitly
linked by the experimental set-up and procedure used by Kato et al. (1983). This linking makes
it impossible to draw conclusions about the behaviour of the drag coefficient as a function of any
single parameter.

An extensive evaluation of the drag and inertia coefficients for an oscillating cylinder in steady
flow has been conducted by Koterayama (1984). The KC number was varied up to 100 and the
reduced velocity up to 60. It is concluded that the drag and inertia coefficients depend mainly on
the reduced velocity ¥ when Vr < 20 and weakly on the KC number for larger Vr. The fluid
forces in this experiment have been measured over a 6.7 diameter long portion of the test cylinder
which is not expected to clarify the individual effects of current, wave and cylinder motion on
force coefficients.

Sarpkaya and Storm (1985) have conducted experiments with cylinders moving at constant
velocity in a sinusoidally oscillating flow to determine the drag and inertia coefficients and to
examine the effect of wake biasing on the modified Morison equation. They have reported that
the drag coefficient decreases with increasing current for a given Reynolds number and
Keulegan-Carpenter number; the two-term Morison equation with force coefficients obtained
under no-current conditions is not applicable to the prediction of wave and current induced loads.

Low et al (1989) investigated the drag and inertia coefficients of an oscillating cylinder in a
steady current at large reduced velocity (up to 100). The experiments were conducted at Re
numbers, based on the current velocity, of 27 000 to 54 000 and at KC numbers of 2.5 to 15. It
is shown that the drag coefficient is dependent on the KC number even at large reduced
velocities. At small KC the C,, approaches its steady flow value of about 1.2. At large KC the C,,
is reduced. They found that a two-term Morison equation suffices to describe the force.

Although pragmatic approaches have been adopted in‘the foregoing investigations and useful
results have been produced by some of them, more laboratory and field investigations remain to
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be carried out for a better understanding and quantifying of these wave-current-structure
interactions.

6.3 Present Tests

Returning now to the present tests, the in-line oscillation while towing the cylinder in still water
is the first multi-mode test series in which the effects of a mean flow and an oscillatory flow are
combined. The flow situation is different from that of the pure cylinder oscillation tests; forces
on the oscillating cylinder obviously are modified by current action. Important parameters and
the data range for the present test series are summarized below.

6.3.1 Important Parameters

A general consideration of governing parameters for different flow conditions is given in section
2.3 where it is shown that the hydrodynamic forces depend on a Keulegan-Carpenter number,
a Reynolds number, and a parameter involving current velocity such as V/£,D or V/5,. The
dimensionless velocity, Vr =V/£,D, is the ratio of the length of the path travelled by a water
particle due to the current during one cycle of cylinder oscillation and the cylinder diameter and
referred to as the reduced velocity.

There are many possibilities for the definitions of the Keulegan-Carpenter number and the
Reynolds number in coexisting flow fields. A partial list of possible KC and Re definitions can
be given as follows:

a) in terms of maximum cylinder velocity, x,,, as:
x T x D
m m

KC - Re = (6.1)
a D 7] v

b) in terms of total velocity, x,+V, as:

R D
Gyt e - ™D

D o v

KC

ov

(6.2)

¢) By introducing suitable characteristic values of time, velocity, etc. in the Navier-Stokes

equation, Sarpkaya et al. (1984) have introduced Keulegan-Carpenter number and Reynolds
number definitions as:

i T
D

x D
ke, = a2, Re, = == 1+ (6.3)
x X

\Y

KCj represents the ratio of the maximum convective acceleration to the maximum local
acceleration.

d) Iwagaki ct al. (1983) tried to find a new definition for the Keulegan-Carpenter number so that
KC and V'r could be combined into one parameter. They found that the best expression for the
Keulegan-Carpenter number then was:




72
KC, = 21/D) f(Vﬂc’)dt \ V<x, (6.4)

t’ = Arccos(VIX )(2TY)

KC. = TVTID V>i,

The Reynolds numbers throughout these tests were subcritical. Force cocfficients due to a current
or a pure oscillatory flow show little dependence upon Reynolds numbers in this range. Thus,
the present results are suitable for investigating the influence of KC and Fr. In the present study,
an investigation was conducted to find more suitable nondimensional parameters by examining
the correlation of the data.

6.3.2 Tests Conducted and Data Range

An extensive experimental programme was conducted to achieve the objective of this test series,
see Shafiee-far (1995a). Tests involving in-line oscillations while towing the model cylinder
were carried out using different combinations of towing speed, ¥, oscillation period, 7, and
oscillation amplitude, 4. These independent parameters were varied over the following ranges:

A 30-270 mm
T,. 0.5-2sec.
V. 0.2-1m/s

flow

Parameter Definition Range
Amplitude:Diameter Ratio A/D 05- 45
Max. Oscillatory Velocity X, =247n f, 0.09 - 1.13 m/s
Reynolds Number based on current Re=V D/v 12000 - 60000
Reynolds Number based on oscillatory | Re,= %, D/v 5650 - 67900

Reynolds Number based on total flow

Re,,= (V +%,)D/v

17650 - 95900

Keulegan-Carpenter number, KC,=x,T/D 3.1 - 283
oscillatory flow

Keulegan-Carpenter number, total flow | KC,,=(x,,+V)T/D 48 - 533
Reduced velocity - Ve =VT /D 1.7 - 333
Velocity parameter Vix,, 0.17 - 6.0

Table 6.1 Ranges of Experimental Variables for In-line Oscillation Plus Current Tests
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The degenerate cases - for example with 4 = 0.0 - have already been discussed in chapter 5.
Figure 6.1 shows the parameter combinations covered for the in-line oscillation plus current tests.
These combinations led to the nondimensional parameter ranges given in table 6.1.

6.4 Load Models

Various load models which were thought to be applicable to the description of the hydrodynamic
forces on an oscillating cylinder in a current were formulated and the corresponding analysis
procedures were developed. These models are described below.

Simultaneous time series of cylinder motion and hydrodynamic forces make it possible to study
the validity and suitability of these load models. The measured forces are compared with
simulations based upon the various load models.

6.4.1 Harmonic Load Models

Similar to the harmonic load models formulated for single mode tests (sce sections 5.2.1, 5.3.1
and 3.3) the oscillatory component of the hydrodynamic force may be written in terms of
harmonic components. Assuming that the steady force component is only due to the steady
current, one may write the total (combined) force per unit length of an oscillating cylinder in a
steady current as:

N
F=05pDC, V>+0.5pDx.Y C, sin(not+d) (6.5)
n=1

n

6.4.2 Generalisation of Morison Equation

An extension of the Morison equation is usually used to describe hydrodynamic forces on slender
cylinders in combined flow ficlds. Eight different forms of Morison equation extensions have
already been evaluated by Shafice-far ct al. (1996). These extended forms are given in table 6.2.
Model I and II in this table are the relative and absolute velocity models, respectively, see Verley
and Johns (1983), Laya et al. (1984), Chakrabarti and Cotter (1984) and Bearman et al. (1992).

Models 111 to V are different postulates. Model I1I is another form of the relative velocity model.
Model 1V is a combined model in which the steady force component is separated from the total
force, and the oscillatory component is treated using a relative velocity approach. Model V is a
modified form with four force coefticients. Model VI is a linearised form of the independent flow
fields approach in which the oscillatory drag component is linearised using the Fourier series
expansion methods, Borgman (1972). Model VII is a linearised form of the relative velocity
model in which the drag component is written in a lincar form using expansion of the relative
velocity, Gudmestad and Connor (1983). Model VIII is another postulated and linearised form
of the relative velocity model.

6.4.3 Energy Balance Model

Barnouin et al. (1979) have examined a model based on energy balance consideration for pure
cylinder oscillation in still water. That load model was extended to a combined flow field using
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a relative flow concept which leads to:
F *%pD K, (V=) |(V-%)| +K,TpD(V -%)% (6.6)

where K, and K, are two constants to be calculated and 7 is a time scale of dissipation. T is taken
equal to the period, 7, for sinusoidal oscillations.

o

Models Equation

Model | ,

Relative Velocity F= %pD Cp, |V =2|(V-%) - p%— C,%
Model 11 . . D2
Absolute Velocity F= EpD Cpn Vi~ ;pDCDa [%]¥ - pnTCAaa’c’
Model I

1 N1k "
F :3pDCm(V—x)!x|—pTC”x

Model IV | . nD?

F :EpDCDMVI +—pDC, (V-%)|i|-p——C,, %

2 4
Model V | . | D2
. .. T v

F= ;pDCDm V- EPDCM Vi —;pDCm]x}x —pTC“x
Model VI e
Linearised Absolute F= %pD Cp, (V) - %pD Cm% g, %-p L C %
Velocity T
Model VII | 5
Linearised Relative F =P C,,(VB+x_cosP)(¥ -x)- p% C,x
Velocity

where sinf = V/ x,,

Model VIII

1 . L WD
F =;pDCm(V+xm)(V—x)—pTCMx

Table 6.2 List of Modified Morison Equation Forms
6.4.5 Lift Force

The lift force for a combined flow condition has not been studied extensively. There are
indications from previous works that a current can produce significant changes. Verley (1980),
Sarpkaya and Storm (1985), and Bearman and Obasaju (1989) have reported instances when a
small current produced major changes in the vortex shedding pattern.

When the cylinder is forced to oscillate in a current, the frequency ratio f, / f, (vortex shedding
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frequency / frequency of cylinder oscillation) and the amplitude parameter (¢ = A/D) play a very
important role in determining various fluid mechanics phenomena and the fluid forces acting on
the cylinder. At specific parameter combinations, £, / f, and A/D, the “lock-in” phenomenon can
be observed.

The Strouhal number (S7) is widely used to describe both steady and unsteady vortex shedding
phenomena. For a cylinder in a periodic fluid flow, the Strouhal number (St) is usually defined
as:

D
St=f“ .t
u fKC

m

(6.7)

where u,, is the maximum oscillatory velocity. This definition may be used for the Strouhal
number of an oscillating cylinder in a current but with different definitions for the Keulegan-
Carpenter number, for example:

LD,
St = - =
70X f,KC

o

f£,D /,
StIIV: . =
Vox, f, KC |

The following lift force coefficients have calculated studying transverse forces on the cylinder
oscillating in-line with a steady current.
F F
CLmax = * M CLVMJ = ——ﬁ—_ (6.8)
0.5pD(¥ +x )} 0.5pD(V +£,)*
The intent is to examine how vortex shedding and corresponding lift force observed in oscillatory
flow are modified by the presence of a current.

6.5 Results and Discussion

The results are presented and discussed in this section. First the indications from the data
themselves without regarding a load model are demonstrated. Results for evaluations of validity
and suitability of the in-line load models are presented after that. The last part deals with the lift
forces.

6.5.1 Direct Observations from the Data

Before trying modified forms of the Morison equation, the data were studied to see what insi ght
they might yield. The behaviour of the force on a measuring element for various combinations
of variable values was studied.

The following characteristic forces have been used for this evaluation:

1. F,.. the maximum of the measured force in each test run,
2. F,, the root mean square of the measured total force defined as:



Y F.. (6.9)

n

F _

rmsT

3. Fm, the mean (steady) force, and

4. F,,. theroot mean square of the oscillatory force component:

> Frews = Fu)’ 6.10
Frmo =0, = —n—— ( )

The values of these characteristic forces for all test runs have been plotted against various
variables to detect the presence (or absence) of dependency.

6.5.1.1 Maximum Values of the In-line Force

The variation of the maximum values of the in-line force as a function of various variables was
investigated. The first row in table 6.3 gives R? correlation coefficient values for linear regression
of data when various combinations of }2 %, and V - x,, are used as the independent variable. The
highest R? value is obtained when F,,, is plotted versus V?+2V ,, parameter.
6.5.1.2 RMS Values of the In-line Force

.« Was plotted against various combinations of V2 and x,° and V %,,. It was

me

The variation of F,,
found that F,,,, can also best be related to (V?+2V5%, ) for all test runs with different values of
steady velocity, oscillation frequency and oscillation amplitude, see figure 6.2. The second row
in table 6.3 gives R? correlation coefficient values for linear regression of data when this and
other combinations of /2, %,” and ¥ - %,, are used as the independent variable.

Results of four tests deviated significantly from the trend in figure 6.2. These four points are
associated with runs in which the oscillation frequency is close to the natural vortex shedding
frequency, the region where lock-in occurs. These four tests are still included in table 6.3 and
figure 6.2. Removing these points from the data gives a still better fit with a correlation
coefficient R*=0.96.

Figure 6.3 shows the variation of

I S 6.11)

0.5pD(V*+2Vx,)

Frms

as a function of KC,,. Despite the high correlation coefficient between F,,,, and (V?+2V%,) the
scatter in figure 6.3 is still large. The reason for such a result may be expiained as follows. The
contribution of F,,,,, variations for small £, values is not significant in overall correlation
between the two variables. However, even a small F,,,, may result in a large Cj.,,, value since
then the value of (V?+2V%,,) is small too.
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V2 _x.:’,,‘? V illl ( V+xlll)2 V2+2 Vxlll
o 0.49 0.19 0.84 0.85 0.87
Foir 0.69 0.10 0.77 0.82 0.93
Fm 0.79 0.02 0.54 0.89 0.94
Fru 0.28 0.41 0.92 0.86 0.71

Table 6.3 R’ Values for the Characteristic Forces Fitted to Different Velocity Components

6.5.1.3 Mean Drag Force

The variation of mean force, Fm, as a function of various variables was investigated as was done
above for the RMS values of the total forces. The third row of the values in table 6.3 gives the
calculated correlation coefficient R* values between Fm and various combinations of independent
variables such as V2, x,>and V- %,
Figure 6.4 shows how F'm varies as a function of (V? + 2V - %,). The mean drag force corrclates
well with the combined velocity. The dependence of the steady force on the oscillatory velocity
demonstrates that this force component depends on the cylinder oscillation velocity in addition
to the current velocity. One could conclude that the steady and oscillatory flows interact in
generating the force.

It has been reported in the literature that the mean force Fm normalised by the square of current
velocity V,
Fm

cp, = ——— (6.12)
0.5pDV?

exhibits large values and a high degree of scattering. €, values do not correspond to those
obtained under current-only conditions, Mercier (1973) and Verley (1980). Based on the above
observation, however, the mean drag force, Fm, could be normalised by (V°+2V, ) to get a new
drag coefficient:

c, =— tm (6.13)

0.5pD(V2+2¥x )

Figure 6.5 shows how C,,,,. varies as a function of the reduced velocity, V'r. The mean drag
coefficient, C),,,, obtained in this way is relatively stable, unless the reduced velocity, V7, is near
5. These jumps around Vr = 5 are associated with the ‘lock-in” phenomenon. This is the casc
when the vortex shedding frequency, £, is close to the forced oscillation frequency, f£,.

6.5.1.4 The RMS Values of the Oscillatory Force Component

The best linear fit for the oscillatory force component, F,,,,, was obtained by plotting it against
V- %, as shown in figure 6.6. As listed in table 6.3, the R? value for %, (not plotted here) is

relatively low; a high value would confirm an absolute velocity approach. The dependence of the
oscillatory force on the current velocity proves that the non-steady in-line force component
(associated with the cylinder oscillation) also depends on the current; there must be an interaction
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between the two flow fields. This should be included in the load model; the independent flow
field does not seem suitable for estimating the hydrodynamic force on an oscillating cylinder in
a current.

6.5.2 Fitting Load Models to Data

This section discusses the quality of fit of the various load models. The quality and interpretation
of the force coefficients obtained is treated in section 6.5.3.

The same procedure as described for single mode tests was used to evaluate the quality of fit of
the given load models. The results of this evaluation for the load models based on an extension
of the Morison equation may be found in Shafiee-far et al. (1996). It has been concluded that the
relative velocity model (two-term Morison equation) and a linearised form of this approach fit
the data better than the other modified forms of the Morison equation. Therefore, only results for
these two models along with the results for the harmonic load model (equation 6.5) and the
energy balance model (equation 6.6) are presented here.

Before trying these models, an attempt was made to examine the effect of higher harmonic
components on the quality of fit of the harmonic load models. The following harmonic load
models were evaluated to examine the consequence of adding higher harmonic components:

- Harmonic model with the first component,
- Harmonic mode! with the first two components, and
- Harmonic model with the first three components.

The goodness-of-fit parameter, €, (see equation 3.21) was calculated for each test run and each
of the above harmonic load models. The 107 € values for each model were subsequently ranked
and grouped into histograms. Figure 6.7 shows the cumulative probabilities of € for these three
harmonic forms. High curve values indicate that relatively more of the test runs fitted the chosen
model well. As seen from this figure, adding higher harmonic components improves the quality
of fit of the models, but the improvement is not very significant beyond the second component.

6.5.2.1 Fitting Using Individual Run Coefficients

Figure 6.8 shows the results for the harmonic load model (with only the first component) and
other given load models. The cumulative percentage of the 107 test runs is plotted against € here.
Table 6.4 lists the statistics of the € using the given models. Note that the best possible
(individual) coefficient values for each run were used here. Taking all information in this table
and figure 6.8 together, one can conclude that all models but the energy balance model fit the
measured data equally well.

Both the relative velocity model (two-term Morison equation, model I) and a linearised form of

this approach (model VIII) give a reasonable fit; the relative velocity model gives a closer fit for
some runs while the linearised form fits better to others.
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Fit quality € value Percentage of|

| runs with: _ |
Load Mode Mean STD €<0.2
Harmonic mode! (the first component) 0.101 0.098 87.0%
Harmonic model (two components) 0.085 0.094 88.9%
Harmonic model (three components) 0.076 0.091 90.7%
Relative velocity Morison equation 0.105 0.080 88.7%
Linearised relative velocity Morison equation|  0.112 0.142 92.5%
Energy balance model 0.171 0.174 72.6%

Table 6.4 In-line Oscillation Plus Current Tests, Model Fitting Statistics
6.5.2.2 Fitting Using Smoothed Coefficients

The results shown in figure 6.8 and table 6.4 were obtained by using coefficients obtained
separately for each individual test run. This would never be done in practice. Using each model
with a smoothed coefficient value to predict the interaction force is much more realistic.

If the individually determined coefficients are only slightly scattered around the smoothed value,
then one would expect the computed results using this latter value to be about the same as with

the individual coefficients. More coefficient spreading will show up as a poorer fit when a
smoothed coefficient value is used.

This evaluation has been carried out for the three best equation models above. Figure 6.9 shows
the end results of this work with smoothed coefficients plotted in the same way as in figure 6.8.
Table 6.5 lists salient values for each model.

The lower rating of the harmonic model is consistent with the relatively large scatter of its
coefficients which are discussed below.

. . Percentage of
Fit quality € value o
Load Models runs with:
Mean STD € <02
Harmonic model (three components) 0.215 0.196 49.4%
Relative velocity Morison equation 0.175 0.162 68.9%
Linearised relative velocity Morison equation 0.151 0.090 74.5%

Table 6.5 Summary of Model Fitting Statistics with Smoothed Coefficients

6.5.3 Force Coefficient Values Obtained

The force fitting just discussed has yielded force coefficients. Their quality and interpretation are
discussed here.
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6.5.3.1 Harmonic Coefficients

Harmonic components of the in-line force are calculated with a harmonic analysis program.
Results for harmonic coefficients in equation 6.5, Cy,,, are plotted versus the Keulegan-Carpenter
number KC, and the reduced velocity Vr in figure 6.10 through 6.13 using contour maps. In these
plots, the contour lines represent lines of equal force coefficient magnitude. The numbers marked
on the contour lines are the values of the relevant coefficient. Each figure contains results for all
of the in-line oscillation plus current tests conducted, i.e. each figure represents data collected
for a total of 107 data points. A brief description of each contour plot is given below.

Mean Drag Coefficient: Results for the mean drag coefficients C,,,, are presented in figure 6.10.
The amplification of the mean drag in the region 5 < Vr <7 is clearly seen, with a C,,,, value of
about 2.8 for a KC, value of 3. Such an amplification of the mean drag in this region has already
been reported by Koterayama (1984). It should be noted that the amplification of the mean drag
for transverse cylinder oscillations (lock-in) does also occur in this region. However, one expects,
for transverse cylinder oscillations, the amplification of mean drag force in the in-line direction
happens at Vr =2.5.

The mean drag coefficient values for higher reduced velocity Vr and moderate KC, are in the
range of those for current-only tests. However, the mean drag coefficient values are much higher
than expected for Vr <15 and KC, > 9; the mean drag coefficient is apparently strongly affected
by the oscillatory flow in this area.

Oscillating Drag Coefficient of the First Harmonic: Contours of the oscillating drag coefficient
at the first harmonic, C,,,, are presented in figure 6.11. The magnitude of C 4,is large at low KC ;
it agrees with the values obtained from the oscillation-only tests when KC,> 11 and Vr < 12.
A high KC represents a high oscillatory velocity x,, and a high Vr is proportional to a high steady
velocity V. Thus, the observation from this figure shows that the steady velocity ¥ affects the
oscillatory force considerably. This observation agrees completely with those made earlier in
section 6.5.1. An oscillating drag coefficient normalised by a combination of two velocities ( X,
and V) may improve the results.

Oscillating Drag Coefficient of the Higher Harmonics: The results for the oscillating drag
coefficients for the second and the third harmonics (C,,; and C,,;) are presented in figures 6.12
and 6.13 respectively. The maximum C,, value is 1.7 for KC, = 3 and Vr = 8. The C,,, value
decreases by increasing KC, for a constant Vr; in general, it increases first and then decreases
with increasing V7 for a constant KC, . This suggests that the second harmonic also depends on
the steady current velocity V. The third harmonic results are presented here even though the
contribution of this component is universally negligible. A similar tendency as for C,, is
observed for C,,; values.

6.5.3.2 Modified Morison Equation Coefficients
Results for hydrodynamic force coefficients of the relative velocity Morison equation are

presented and discussed here. As in existing studies, first the variations of these coefficients
versus traditional nondimensioal parameters (KC and Vr) are discussed. This is followed by a
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presentation of the outcome of an attempt to find some better parameters for correlating the
hydrodynamic coefficients.

The drag coefficient for the relative velocity approach, C,,,, is plotted versus KC, in figure 6.14.
As shown in this figure, the drag coefficient C,, is affected by the current; for KC, < 9 the (),
value is larger with current than for the no-current case while for higher KC, values, it is smaller
than those for the no-current case. For example, the C,,, for KC,=25.1 and Vr = 12.5
(corresponding to V/%,, = 0.5) is approximately 38 percent smaller than that for the no-current
case. Comparing figure 6.14 and 5.6 it is clear that C),, is not equal to its no-current value and
strongly depends on KC, and Vr.

The €, values are re-plotted versus reduced velocity Vr and velocity ratio ¥/%,, in figures 6.15
and 6.16, respectively, to show the effect of a current in other ways. Figure 6.15 shows sharp
changes around ¥r =5 and KC, < 6.3 while values for KC, > 6.4 do not. This 'instability' near
Vr =5 is associated with the 'lock-in' phenomenon; the force frequency due to vortex shedding
is the same as the oscillation frequency. Considering figure 6.16, the C,, increases with
increasing velocity ratio for V/,, < 2, then it decreases with increasing V/%,,. For a higher
velocity ratio, the C,,, values approach the drag coefficient value for current-only tests.

Figures 6.17 and 6.18 show the inertia coefficient, C,, = C,,+1, for the same model plotted in
a way similar to figures 6.14 and 6.15. These figures show that C,,, depends on both XC, and Vr
and is strongly affected by the current. For small Vr values, C,,, is smaller than for the no-current
case for all KC, values; it increases with increasing Vr, and is larger than the no-current case for
Vr=25. Arelatively low value of C,,, in figure 6.18 occurs at about the same reduced velocity
value as is associated with the maximum of the C),, value in figure 6.15.

Suitable Parameters for Expressing Hydrodynamic Force Coefficients

Various proposed definitions given in section 6.3.1 as well as some new ones for Keulegan-
Carpenter number were examined to find more suitable parameters and to provide a better
representation of the current effect on hydrodynamic force coefficients. The results (for the drag
cocfficient) arranged by KC,,, KC;, KC, are shown in figures 6.19 through 6.21. 11t is clear from
these figures that the drag coefficient cannot be correlated with Keulegan-Carpenter number
alone without the need for an additional parameter involving the current velocity, e.g. reduced
velocity Vr or velocity ratio Vi,
There are some fundamental ideas which help to explain the phenomena observed. For values
of V7%, < 1 flow reversal occurs twice in each oscillation cycle. Thus, each cycle may be divided
into two parts: one part in which the cylinder is travelling with the flow and is faster than the
tflow and the other part in which the cylinder is travelling slower than or against the flow. For a
given value of V/x,, the higher the V' value, the greater the differences between the relative
distance travelled in each cycle. Looked at in another way, for a given V7, as KC, is decreased
(V7%,, increased), the relative distance travelled in both parts decreases. The lower the value of
V/x,, , the more nearly equal the two parts of the cycle. Note also that:

Vr
KC,

¥

X
m

From the foregoing, it is evident that the velocity ratio /%, is an important parameter for
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expressing the drag coefficients in a coexisting flow field.

The inertia coefficient C,,, is plotted versus KC,,, KG , K¢, in figure 6.22 through 6.24. The
degree of scattering in C,, exhibits similar behaviour to that for drag. The phenomenon is
relatively complex and the effect of current on the force coefficient cannot be explained simply
in terms of an increased Keulegan-Carpenter number.

A variety of forms of combined nondimensional parameters were tried in an attempt to improve
the correlation. The nondimensional parameter

KC,

K, =

vr? + VrKC o

results in a better correlation for the inertia coefficient as shown in figure 6.25. The concept of
this parameter came from considering the ratio of the inertia force to the steady drag force. Using
K 4~ the behaviour of C,, is quite similar to that for the inertia coefficients for the no-current test
case.

6.5.3.3 Lift Force Coefficients

As with single mode tests, a spectral analysis was carried out on each time record of the
transverse force component to determine the shedding frequency assuming that the peak in the
spectrum is associated with the shedding frequency. The obtained vortex shedding frequencies
for all runs were used to determine the Strouhal number as per equation 6.7 and an appropriate
definition for the Keulegan-Carpenter number as discussed after equation 6.7. It was found that
KC,, is a better parameter to define the vortex shedding frequency for co-existing flow fields.

The obtained f/f, ratio was plotted as function of K, for all test runs with different towing
velocity, oscillation frequency and oscillation amplitude in figure 6.26. From equation 6.7, it is
seen that a constant Strouhal number plots as a straight line. Two constant Strouhal number (St,,)
lines of 0.09 and 0.18 are drawn in this figure for reference. Two important facts can be observed
from this figure: First, the Strouhal number is bounded in the range from 0.09 to 0.18 for most
tests. The linear trend line fitted to the data is equal to St,,=0.125. Second, the vortex shedding
frequency f; increases with increasing values of the XC,, number.

ov

The calculated lift force coefficients, C, ., and C,,,,, are plotted against the reduced velocity Vr
in figures 6.27 and 6.28. As scen in the figures, the rms force coefficients exhibit the same
functional dependence as the maximum values. Both the peak lift coefficient, C,,,,, and the rms
lift force coefficient, C,,.., depend on the Keulegan-Carpenter number and the reduced velocity.
High coefficient values - as high as ), = 2.5 - were observed in the reduced velocity range
5 < Vr < 8 for small KC, values. However, the lift force coefficient values are small for large
values of the reduced velocity and Keulegan-Carpenter number; no peaks appear in the curve of
C e and C,,,, versus Vr at KC > 10.

Comparing with no-current case results, the present rms lift force coefficient is about half of that

for a no-current case, except in the reduced velocity range 5 < ¥» < 8 in which the C,,,,, values
for a co-existing flow field are larger than for no-current tests.

64




6.6 Conclusions from In-line Oscillation Plus Current Tests

The hydrodynamic forces acting on an oscillating cylinder in-line with a uniform flow have been
investigated experimentally. The suitability of different load models for describing
hydrodynamic interaction between an oscillating cylinder and a uniform flow have been
examined using the laboratory data. The main conclusions obtained are as follows:

1.

10.

Analysis of the data indicates that there is a distinct correlation between the constant
component of the drag force and the amplitude of the oscillatory flow velocity when the
cylinder is oscillating in-line with the flow direction. Also, there is an obvious correlation
between the oscillatory component of the drag force and the steady flow velocity. These tend
to refute the independent flow fields approach for the prediction of interaction forces.

Each of the computational load models was fitted to the measured data from 107 test runs
covering a wide range of KC and Vr values. The qualities of fit of these models are almost
the same, provided that each equation form used its own distinct set of coefficients.

. A harmonic load model (with the first two harmonic components) fits the data as well as does

a two-term form of the Morison equation, if the corresponding phase angle is determined
correctly. Observations indicate that higher harmonics give no significant improvement of
the results.

It is very obvious that significant errors can result from the indiscriminate use of
hydrodynamic coefficients in a different computational mode] than the one for which the
coefficients are determined.

In the light of conclusions 2 and 4, additional criteria must be used to select a 'best' form of
computational model. One such criterion can be the degree by which the coefficients are
consistent over wide ranges of dimensionless parameters. Another criterion may perform a
check on the computed forces using each selected model and corresponding but smoothed
coefficients. Both these criteria have been used in the present work.

Both the two-term relative velocity Morison equation and a linearised form of this equation
seem to satisfy these additional criteria well.

. The hydrodynamic coefficients for co-existing flow fields are not identical with those for no-

current tests; the drag and inertia coefficients are strongly affected by a current. The variation
of the force coefficients depends on both the Keulegan-Carpenter number and the velocity
ratio V/x,, (or the reduced velocity).

The frequency of the lift force (f,) in oscillatory flow plus current depends on KC,, (relative
velocity), and increases with increasing values of the KC,,, number.

The peak lift coefficient C,,,,, and the rms lift force coefficient C,,,, depend also on the
Keulegan-Carpenter number and the reduced velocity.

The rms lift force coefficients for in-line oscillations plus current are about half of those for

no-current tests, except in the reduced velocity range 5 < Vr < 8 in which the C,,,,, values
for the co-existing flow field are larger than for no-current tests.
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Figure 6.10 In-line oscillation Plus Current Tests, Contours of the Mean Drag
Coefficient C,,,

Figure 6.11 In-line Oscillation Plus Current Tests, Contours of Cui
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Figure 6.12 In-line Osciilation Plus Current Tests, Contours of C,

Figure 6.13

In-line Oscillation Plus Current, Contours of C,,
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Figure 6.14 In-line Oscillation plus current tests, C,,, plotted versus KC,,
lines: 3rd order polynomial regression line through the data points

o
1.8

16
14 X064
o

1.2

Cor

0.8

06 oeﬁ R’ = 0.6607

0.4
0.2

Vr

KC, = ©3.14 04.17 A6.28 012.57 %25.10

Figure 6.15 In-line oscillation plus current tests, C,,, plotted versus Vr; solid line:
3rd order polynomial regression line through the data for KC, — 6.28

1.8
1.6
14
1.2

Cor

0.8
0.6
0.4
0.2

0 1 2 3 4 5 6

Vi

m

Figure 6.16 In-line oscillation plus current tests, C plotted versus velocity ratio ¥/

m>

solid line: 3rd order polynomial regression line through the data

71



2.50

2.00

Cur

0 N 10 15 20 25 30
Kc,
+Vr =0.0 oVr=5 gVr=6.7 xVr = 11.7 @Vr = 16.7 AVr = 25

Figure 6.17 In-line oscillation plus current tests, C,,, plotted versus KC,,
lines: 3rd order polynomial regression line through the data points

25
© —_—— -
e o TF e
ac o AT 2 R? = 0.9696
1.5 A2
*x ~ * X
3 % -
oy \OQ _@__ /%g
da o X
o
0.5 ©
0
0 5 10 15 20 25 30 35
vr

OKC =314 QKC =47 AKC =63 XKC=126 +KC=157 =KC= 251

Figure 6.18 In-line oscillation plus current tests, C,,, plotted versus Vr; dash line:
3rd order polynomial regression line through the data for KC,, = 6.3

1.8
1.6

14 ® Oond
12 Q%Q

o 0 o°:;&> @ o o

o o

038 o, 0,°°® 0 &80 000
0.6 ®, o8
0.4 °o
02

0 10 20 30 40 50 60
KC,,

Figure 6.19 In-line oscillation plus current tests, C,,, plotted versus KC

oy

72




[+]
1.8
16
14 % g
12 8?’@‘&’3 o o
s %% o0 @B OQ>§° o
S o8 R K0 9 °
08 g ®» ©° ° 8 o $
& 00, 0°
0.6 &o o
0.4
02
0
0 50 100 150 200 250
KC,

Figure 6.20 In-line oscillation plus current tests, C,,, plotted versus KC;

1.8
1.6 °
1.4 o ° °<> R o
o
12 ® o % &°  of °
5 o © ¢ 9o ) o,
8 1 Q § oo Qoo ¢ ©
8 o © (]
08 o %0 50% N °
: °e %8 ° o ©° ° o
0.6 S 0,0 0 %50
o0 Lo
0.4
0.2
0
0 10 20 30 40 50 60 70 80 90 100
KC,
Figure 6.21 In-line oscillation plus current tests, C,,, plotted versus KC,
3
X
2.5 X %
X
X
2 X . X
X
N A x XX X X x
g 15 X X X X X
X& XX xx g X
X Ky o
! ,,g,%&*x x & Kox x xX
RTR
0.5 X
0
0 10 20 30 40 50 60

KC,,

Figure 6.22 In-line oscillation plus current tests, C',, plotted versus KC

ov




3
2.5 b 4 %
X
2 x X
% x , X
5. 1.5 : X X
ks %
1
ook
0.5 X
0
0 50 100 150 200 250
KC,
Figure 6.23 In-line oscillation plus current tests, C,,, plotted versus KC,
3
X
2.5 X %
'Y
2 » x X
X Xx X Xxo %yox X
2o1s 3K »*
© x % X,’%&x} Fex X %
XX p X X
1 XX x X oK X
L X X
0.5 X
0
] 10 20 30 40 50 60 70 80 % 100
KC,
Figure 6.24 In-line oscillation plus current, C,,, plotted versus KC,
3
X
25 7% X
2 X .
X x x x ¥ x
T 15
Q KK
Xl x X X
1 KXy
Phckrx
0.5 X
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

KC, /(Vr® + KC,* Vr)

Figure 6.25 In-line oscillation plus current tests, C,,, plotted versus K,

74




=]

Sl So
S = N W R L A A ® O

<
>

20 30 40 50 60

KC,,

Figure 6.26 In-line oscillation plus current tests, /,/f, plotted versus K

ov

3.00

2.50

2.00

1.50

C Limax

1.00

vr

©0KCo=3.1 (JKCo =4.7 pAKC0=6.3 xKCo=12.6 xKCo=18.9 ¢ KC0o=25.1

Figure 6.27 In-line oscillation plus current tests, peak lift force coefficient ' max plotted versus
Vr, lines: 3rd order polynomial regression line through the data points

1.20 —

1.00
0.80

A 2 _
0.60 RO o R = (1.3808
. KCo=126

Croms

R’ = 0.7551
KC,=63
4

0.40

0.20

0.00

Vr

©KCo=3.1 (JKCo =4.7 pAKC0=6.3 xKCo=12.6 xKCo=18.9 ¢KCo=25.1

Figure 6.28 In-line oscillation plus current tests, rms lift force coefficient Cmy plotted versus
Vr, lines: 3rd order polynomial regression line through the data points

75



76




CHAPTER 7

Towing the Cylinder in Waves

7.1 Introduction

The research on fluid forces in the combined flow field caused by co-existing waves and current
is scarce. Although considerable attention has been given to this subject, no consistent
understanding has developed yet.

The present chapter presents and discusses the results of the waves plus current tests. Since
slender marine structures are usually subjected to waves together with a current in an actual
environment, the results presented here are significant for the design of offshore structures.

To calculate the in-line forces on a fixed cylinder in a combined wave and current flow field the
Morison equation is normally used. From the view point of particle motion, however, it seems
clear that the situation of a cylinder in a wave field is very different from that in a wave and
current flow field. However, in some references and engineering practices, the value of the drag
coefficient in a wave and current field is considered the same as that in a wave field alone. This
may not be justified. It is necessary to determine the value of the associated coefficients based
on the motion mechanism in the combined wave and current field.

In this work, as in the previous chapters, the Morison equation will not be taken for granted.
7.2 Specific Details of the Wave and Current Flow Field

The present test series is a multi-mode test series which combines two previously considered
single mode tests, i.e. wave-only tests and current-only tests. However, the hydrodynamic
interaction of a cylinder in the combined waves and current flow field is totally different from
that for the single mode tests. The specific phenomena and flow situations for the present test

series are summarized in the following paragraphs.

7.2.1 Wave-Current Interaction

Due to interaction between waves and current, the characteristics of a wave are changed in the
presence of a current; especially the wave height and the wave length are modified. If the current
is in the direction of wave propagation, the wave slope decreases and its length increases. On the
other hand, if the current opposes the wave, the wave slope increases in magnitude and the wave
length shortens. This effect of wave-current interaction is usually neglected; an interactive term
in the description of the wave and current field is omitted; the resulting velocity field is simply
written as a linear superposition of wave and current terms.




The general problem of modelling wave-current interactions, either analytically or numerically,
is fraught with difficulties, see Thomas (1979). However, solutions for different flow conditions,
especially for the simple case of a wave propagating on a uniform in-line current, have been
implemented in the past, see e.g. Peregrine (1976) and Li and Kang (1992).

The physical interaction between waves and currents will not be considered in this study and is
not present in the experiments performed in this work where the cylinder is towed in waves
generated on water being at rest. Therefore, only knowledge of Doppler shift due to towing is
required to estimate the flow kinematics.

The flow condition for the present test case is illustrated in figure 7.1. The towing speed V is
positive when the carriage is towed with the (regular) wave, and negative when it opposes the
wave. The regular wave has an (intrinsic) frequency of w,,:

w2 = gk tanh kd 7.0

The wave frequency relative to the moving coordinate (carriage) - the so-called ‘encounter
frequency’ or ‘apparent wave frequency’ ,,, - is related to the intrinsic wave frequency through
the relationship:

W,y = @, +kV (7.2)

in which the last term is the Doppler shift. Then the dispersion relation in a frame of reference
moving with the carriage has the form:

-

(0  -kV)*= gktanh kd (7.3)

app

Thus, for a given wave (intrinsic) frequency w., it is possible to link & (and thus the wave length)
with the towing speed ¥ and to determine the apparent wave frequency.

A horizontal distance along the wave propagation x,, with respect to the moving coordinate
system is related to x by (see figure 7.1):

x, =x - Wt (7~4)

w

with x,, = x at t = 0. Using linear wave theory, the water surface elevation as observed in the
moving coordinate is given by:

n-= gcos(kxw - wn (7.5)

Combining equations 7.2, 7.4 and 7.5, one may obtain:

n-= %cos(kx - W 1) (7.6)

app
Superimposing the towing speed and wave particle velocity, the total velocity in the fixed frame
of reference is given as:

H © cosh k(z +d)
2 " sinhkd

u, = V+u =V +

r cos (kx - ®n 5} 7.7
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Figure 7.1 Definition sketch for towing the cylinder in regular waves

The amplitude of wave particle velocity becomes:

_ HO, coshkz+d) Hgk  coshk(z+d)

2 sinhkd  2(0_ -kV) coshkd

(7.8)

app

7.2.2 Orbital Velocity Effects

When compared with the earlier multi-mode test case (forced in-line oscillation in a current), the
oscillatory flow around a vertical cylinder in waves has a vertical component of the orbital
velocity and a horizontal component of the orbital velocity which varies along the cylinder axis.
Several investigations have been published on the effects of orbital flow when a cylinder is in
the plane of the particle velocity ellipse. However, the effects of orbital flow in a coexisting flow
field have not been investigated completely yet. Common practice is to neglect the orbital flow
effect and to assume that the cross flow principle is correct when the cylinder axis is in the plane
of the velocity ellipse, sce for example API (1993). The data for the present test series may make
it possible to study effects of the orbital velocity in a combined flow ficld.

7.2.3 Vortex Properties

There is an essential difference between the mechanisms of generating hydrodynamic forces in
the wave-current co-existing field and in the wave-only field. In the wave-only field, the water
particles move almost symmetrically in the phases of wave crest and wave trough, whereas these
movements are distinctly asymmetric in the co-existing field. Consequently, the development
and shedding of vortices become different from the wave-only field; they produce different
characteristics in the hydrodynamic forces, too.

7.2.4 Important Parameters

Just as for the in-line oscillation plus current test series, the governing nondimensional
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parameters are a Reynolds number, a Keulegan-Carpenter number, and a parameter involving
current velocity such as reduced velocity Vr = VT/D, or velocity ratio u,,/V. Various definitions
given in section 6.3.1 for these parameters may be used for the present test series by replacing
x,, with u,,:

KC, = -, Re, = -~ (7.9)
D v
T D
ke, = DT Re,, = L' DD (7.10)
D v
T D
ke, = I Ly, Re, = B2 Ly (7.11)
D u, v u,

Another form of Keulegan-Carpenter number is based upon the wave-current interaction concept

by using the apparent wave period, 7, = 27/w,,, as:
P ™ (7.12)
app D

According to theoretical analysis as well as experimental study, the water particle path in a wave
and current field is dependent on the ratio of the maximum horizontal velocity u,, due to wave
action to that of the steady flow, i.e. u,/V. When u,/V > 1, the maximum horizontal velocity due
to wave motion is larger than that of the steady flow, see figure 7.2a. When u,/V < 1, the
velocity of the steady current is larger than that of wave motion, see figure 7.2b.
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Figure 7.2 Pictures of Flow Pattern for a Combined Waves and Current Field (Ren and He
1986)
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7.2.5 Tests Conducted and Data Range

The present test series is a two-mode test case which combines the current-only tests and wave-
only tests. The cylinder was towed with different speeds in given waves. Table 7.1 gives the
nondimensional parameter ranges for the test case under consideration.

Parameter Definition Range
Reynolds number based on current Re=V D/ 12000 - 45000
Reynolds number based on oscillatory | Re,= u, D/v 5300 - 55000
flow
Reynolds number based on total flow Re,,= (V +u,)DN 19500 - 60760
Keulegan-Carpenter number, KC,=u,T/D 3.1 - 92
oscillatory flow
Keulegan-Carpenter number, total flow | KC,,= (u,+V)T/D 75 - 257
Reduced velocity Vr =VT/D 33 - 1875
Velocity ratio U,V 023 - 1.33

Table 7.1 Experimental Variable Ranges for Waves Plus Current Tests
7.3 Load Models

Based on the results of the previous test series, only a harmonic load model and two modified
forms of the Morison equation have been examined for the present test series. Even though these
models are similar to those given in section 6.4, they are summarized here with their specific
forms for the test series under consideration.

7.3.1 Harmonic Load Models
Just as the harmonic load model formulated for the in-line oscillation plus current tests (see

section 6.4.1) the hydrodynamic force on a cylinder in the combined wave and current flow field
may be written as:

N
F=05pDC, V?+05pDu.y C,, sin(nw,, t+®,) (7.13)
n=1

7.3.2 Generalisation of the Morison Equation
Two well-known extensions of the Morison equation in a waves plus current flow field are based
upon the independent flow fields approach and the relative (total) velocity approach. These

extensions may be written as:

F = CDm(épD)Vz +CDG(%pD)|u‘u +CMa(p;D2)u' (7.14)
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F= CD,(%pD)]V+u|(V+u)+CMr(p§D2)u' (7.15)

The inertia coefficients in the two models are expected to be equal, C,,,= C,,. However, different
symbols are used to test such a relation using the data.

7.3.3 Lift Force Model

One can similarly determine the lift force coefficients and vortex shedding frequency using
different models and techniques. It is interesting to observe the influence of current on the
maximum and the rms lift force coefficients:
F
. (7.16)
0.5pD(V+u )

Lmax

FY ms (7.17)

0.5pD(V +u )

Lrms

Two different definitions may be used for the Strouhal number of a combined wave plus current
flow field:

D
s NP (7.18)

1.D 1

V+u  f KC, |

s - (7.19)

wy

Another definition may also be proposed for Strouhal number by including the convective term
and using the apparent wave frequency f,,, = w,,/ 2 instead of £, in equation 7.19 as:
S (7.20)

app
14 tu fapp KCGPP

St

7.4 Analysis Procedure

The analysis procedure was similar to that for the waves-only tests. After data reduction, the
exact amplitude and period of the waves were determined using a FFT analysis. The wave probe
was installed on the carriage in such a way that the measured water surface elevation was the
instantaneous displacement of the water surface in the measuring point. In other words, the wave
elevation was measured in the moving coordinate system. Therefore, the frequencies obtained
by FFT analysis were the apparent frequencies and different from those set at the wave generator.

Applying linear wave theory, results of the FFT analysis were used to compute the horizontal
water particle velocities and accelerations. The force coefficients for the extended Morison
equation forms were computed using the least squares technique. The coefficients for the
harmonic load models were determined using results from the FFT analysis.
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The lift force frequencies were obtained through FFT analysis of the measured transverse forces.
7.5 Results and Discussion
7.5.1 Direct Observations from the Data

Behaviour of the measured in-line forces against various combinations of variable values was
studied to see what relationships between kinematics and forces would fit the data best. The
characteristic forces listed in section 6.5.1 were used for this purpose.

The variations of these characteristic forces as a function of various variables were investigated
as was done for the in-line oscillation plus current tests. Table 7.2 gives the values of the
calculated correlation coefficient R? between the characteristic forces and various combinations
of independent variables such as 12, u,? and V-u,,. These results are discussed in the following
paragraphs.

2 u,’ Vu,, V+u,)? | V+u? 2+ 2Vu, Vi+ Vu,,
F 0.60 0.16 0.90 0.93 0.80 0.95 0.85
For 0.68 0.08 0.91 0.93 0.85 0.92 0.88
Fm 0.77 0.10 0.86 0.91 0.90 0.93 0.91
F 0.56 0.24 0.93 0.89 0.76 0.85 0.78

Table 7.2 R’ Correlation Coefficient Values for Linear Regression of Characteristic Forces to
Different Velocity Components

7.5.1.1 Maximum Values of the In-line Force

The second row in table 7.2 gives R? correlation coefficient values for linear regression of
maximum values of the in-line force F,,,, when different combinations of V2, u,2 and V-u,, are
used as independent variables. As listed in this table, the best correlation can be obtained using
(V?+2V-u,) as independent variable, however, other combinations such as (V+u,)? also correlate

very well. Figure 7.3 shows how F,,,, varies as a function of (F* + 2V-u,)).

Using this observation, a maximum drag coefficient may be defined as:

F

~ max

Cpp = (7.21)
0.5pD(V*+2Vu )

Figure 7.4 shows the variation of C,,,,,. as a function of u_/V.

"

7.5.1.2 RMS Values of the In-line Force

Correlation coefficient values R* between root mean square values of the total in-line force _
and various variables are listed in the third row of table 7.2. As scen from this table F

rms{ iS
equally well related to (V+u,)* and (V? +2Vy, ) for all test runs. Figure 7.5 shows £, as a
function of (V+u,).
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7.5.1.3 Mean Drag Force

As listed in the third row of table 7.2, the best linear fit for the mean steady force component fm
is obtained by plotting it against (V° + 2V - u,), see figure 7.6. The R? value for F? is relatively
low; a high value would confirm an absolute velocity approach. The dependence of the steady
force on the oscillatory velocity proves that the steady in-line force component depends on
waves; there must be an interaction between the two flow fields. The independent flow field does
not seem a proper solution for estimating the hydrodynamic force on a cylinder in waves plus
current flow field.

Based on the above observation, the mean drag force Fm can be normalized by (V2+2Vu, ) to get
a mean drag coefficient:

B (7.22)

0.50D(V*+2Vu,)

CDmc
Values of C),,,. are plotted versus the velocity ratio u,/V in figure 7.7.
7.5.1.4 The RMS Values of the Oscillatory Force Component

The fourth row of the values in table 7.2 gives the calculated R? values between F,,, and various
combinations of independent variables. Figure 7.8 shows how F,,,, varies as a function of V- u,,.
Similar to the earlier test series (in-line oscillation plus current), the oscillatory force correlates
well with the product of the velocities indicating interaction between the steady and oscillatory
flows. The conclusion in section 7.5.1.3 is again confirmed.

7.5.2 Fitting the Load Models to Data

The quality of fit using various load models will be discussed in this section. The interpretation
of the force coefficients obtained is considered in the next section. The same procedure as
described for previous test cases was used to evaluate the quality of fit of the given load models.

7.5.2.1 Quality of Fit Using Individual Run Coefficients

It has been shown that only keeping the first two terms in the harmonic load model given in
equation 7.13 leads to a good approximation; more than 96% of signal variances are described
by the amplitudes of first two harmonics.

The goodness-of-fit parameter € (see equation 3.21) was calculated for each test run and each of
the load models for in-line forces given in sections 7.3.1 and 7.3.2. The cumulative probability
of € for these three load models is shown in figure 7.9. Table 7.3 lists the statistics for € using
the models. Note that the best possible (individual) coefficient values for each run were used
here. Taking all information in this table and figure 7.9 together, one can conclude that all three
load models fit the data pretty well and that these load models all seem suitable to describe
hydrodynamic forces on a fixed cylinder in a co-existing flow field if their individually obtained
coefficients are used.
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The variation of € is plotted versus the velocity ratio V/u,, in figure 7.10 to illustrate the effect
of this ratio on the quality of fit of the load models. As seen from this figure, € decreases as V/u,,
increases. Both extensions of the Morison equation do not fit to the data well when Viu, < 1.

However, this conclusion is not well-supported since the amount of data for ¥/ < 1 is

"

insufficient.
Fit quality € value Per:ﬁle::ﬁi :Of
Load Models Mean STD €<02
Absolute Velocity Model 0.072 ‘ 0.045 100.0%
Total (relative) Velocity Model 0.081 0.055 95.8%
Harmonic Model 0.082 0.058 91.7%

Table 7.3 Summary of Model Fitting Results with Individual Coefficients
7.5.2.2 Quality of Fit Using Smoothed Coefficients

Since in practice it is almost impossible to use coefficients separately obtained for each
individual test run, using each model with a smoothed coefficient value to predict the interaction
force is much more realistic. The load models have also been evaluated using smoothed
cocfficients. Even though harmonic load models are very sensitive to the phase angle values,
these values in equation 7.13 have not been smoothed in this evaluation.

Figure 7.11 shows the final results of this work with smoothed coefficients plotted in the same
way as in figure 7.9. Table 7.4 lists the statistical values of € for each model using the smoothed
coefficients. Considering information in this table and figure 7.11, one can conclude that the
relative velocity model gives better results than the two other models. This was expected in view
of the observations discussed earlier in section 7.5.1. The quality of fit for the harmonic load
model is low in comparison to the results obtained using ‘best’ individual coefficients. More
error shows up as a poorer fit when a smoothed coefficient value is used.

Fit quality € value Percentage of runs
Load Models with:
mean STD €<0.2
Absolute Velocity Model 0.137 0.093 86.4%
Total (relative) Velocity Model 0.109 0.069 87.5%
Harmonic Model 0.148 0.062 84.5%

Table 7.4 Summary of Model Fitting Results with Smoothed Coefficients

7.5.3 Force Coefficients

From the foregoing discussion it is noticed that both extended forms of the Morison equation
(with appropriate coefficients) could reproduce the measured hydrodynamic force. However, the
scattering in the obtained coefficients was greater for the absolute velocity model. Thus,
scattering in the coefficients may be used as an additional criterion to assess suitability of the
load models. The quality and interpretation of force coefficients for both extended forms of the
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Morison equation as well as lift force coefficients are discussed here.
7.5.3.1 Modified Morison Equation Coefficients
Absolute Velocity Model:

The extended form of Morison equation based on absolute velocities (see equation 7.14) has
three coefficients; i.e. the mean drag coefficient C),,, the oscillatory drag coefficient C,,, and the
inertia coefficient C,,,. Figure 7.12 shows the mean drag coefficient versus u,,/V. C),, has an
average value of C),,, = 1.1. This is comparable to the average value of the steady drag coefficient
obtained for current-only tests. For small u,, /V values, G,,, is smaller than the steady drag
coefficient for the current-only tests. C,,, increases when u,/V increases, approaching the current-
only coefficient values.

In figure 7.13, the oscillatory drag coefficient C),, is shown as a function of u,,/V; C,), exhibits
a significant scatter. As u,,/V increases from 0 (no waves), the value of C ,, jncreases,approaching
a value as high as 4.4 for u,,/V = 0.5 and then decreases for u,/V > 0.5, approaching the value of
1.5, which is slightly larger than that of the wave-only tests.

To compare C,,, with the oscillatory drag coefficients for wave-only tests, Cy,,and C,, are plotted
versus KC,, in figure 7.14. It is seen that the oscillatory drag coefTicient is significantly affected
by a current; C,,, values are generally much higher than C, values and there is more scatter in
Cl)u'

The inertia coefficient C,,, is plotted versus u,,/V in figure 7.15. As can be seen in this figure, the
scatter for C,,, is small compared with C,,, and C,,,decreases as u,,/V increases approaching a
value as low as 0.6. Figure 7.16 shows C,,, and G, (inertia coefficient for wave-only tests)
plotted versus KC,. The effect of current is to decrease the inertia coefficient (by about 50%)
when the absolute velocity model is employed as the load model.

From the above results one can conclude that neither the oscillatory drag coefficient C,,, nor the
inertia coefficient C,,, is identical to those obtained for waves-only tests. Furthermore, C,,,
exhibits large values which do not correspond to those obtained under no-current conditions.

Relative Velocity Model:

Extensive examination of force coefficients C),, and C,, in equation 7.16 with various
nondimensional parameters have shown that these coefficients correlate relatively well with the
velocity ratio u,,/V as shown in figures 7.17 and 7.18. As this ratio increases, C,, increases in the
region of small u,,/V (<0.8) then it decreases for u,,/V > 0.8. As expected, this is just opposite
to the trend for the inertia coefficient C,, in figure 7.18.

The C,, values are shown as a function of KC,, in figure 7.19. The results obtained under wave-
only conditions are also shown in this figure. It shows again that the drag coefficient (using a
relative velocity approach) for a cylinder in waves plus current flow field is affected by the
current. Overall, the drag coefficients (for relative velocity model) obtained from waves plus
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current tests are smaller than those from wave-only tests: C),, < C,,. This result is opposite to that
of the oscillatory drag coefficient for the absolute velocity model: C,,, > C,,. Such a result can
be expected; assuming C,),, < C),, (which is true for the present test series), C,,, should be smaller
than C,), due to the fact that (V+u,) > (V2 + u,2).

Since the inertia coefficients obtained from the relative velocity model C,,, are identical to those
obtained from the absolute velocity model, one may refer to figure 7.16 to compare C,, with C,,.

7.5.3.2 Lift Force Coefficients

The lift force acts on the cylinder in a combined waves plus current field perpendicularly to the
direction of the incident wave (and current).

An extensive examination of various nondimensional parameters has shown that the lift force
coefficients do not correlate well with any single nondimensional parameter. However, they
correlate roughly well with the total Reynolds number Re,,,. Since Re,, is a function of (F+u,)
in the present experiment, it can be argued that the lift force coefficients depend on the total
velocity. In figure 7.20, the lift force coefficients (C,,,., and C,,,..) are shown as a function of the
total Reynolds number Re,,. This figure shows that C,,,,, and C,,, are large when Re,,, is
between 30 000 and 40 000. The values of C,,.. and C,,,,. become smaller as Re,,, increases.

The relation between the maximum lift force coefficient C,,,.. and the maximum drag coefficient
Cmae 1s shown in figure 7.21. In general, the maximum drag coefficient is much larger than the
maximum lift force coefficient.

The frequency of the lift force has been calculated by carrying out a spectral analysis on the data.
In figure 7.22, the ratio of the frequency of the lift force £, to that of the incident wave £, is shown
as a function of KC,. The f/f,, exhibits a large scatter in this figure. However, the ratio of the lift
force frequency to the apparent wave frequency f, ,, exhibits less scatter if plotted versus KC,,
as shown in figure 7.23. In the small KC,, region (KC,,,, < 15), the ratio is 0.5 or 1 and becomes
2,3 and even 4 as KC,,, increases. This observation suggests that the apparent frequency has to

be used in the lift force computation for a fixed cylinder in a combined wave and current flow
field.

v

7.6 Conclusions
The following specific conclusions can be drawn from the above results and discussions:

1. Direct analysis of the data indicates that both the steady and the oscillatory components of
the measured hydrodynamic force depend on both the steady current velocity and the orbital
velocity. This suggests that the combined flow kinematics has to be used in modelling the
hydrodynamic forces on a fixed cylinder in a wave and current co-existing flow field. This
discredits the concept of an independent flow fields approach in which the total force is a

superposition of two independent forces caused by two unrelated flows, one due to the wave and one
due to the current.
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The use of Morison’s equation for the combined wave and current flow field is a speculative
extension of the original Morison equation which was formulated for a fixed cylinder in
waves only. It has been shown with the data from the present test series that the relative
velocity formulation can be applied to extend the Morison equation for a combined wave and
current flow field. However, the drag and inertia coefficients for the combined flow field are
significantly different from those from the waves-only test series. This implies that the
extension of the Morison equation is not simply a choice of a reference system alone; a totally
different set of coefficients would have to be used to reflect the effects due to the combination
of the two separate flows.

. In the light of conclusion 2, it is obvious that the engineering practice of using the coefficients

for regular waves only to describe hydrodynamic forces on a combined wave and current flow
field cannot be justified.

The hydrodynamic coefficients C),, and C,, (in the relative velocity model) for a cylinder in
a waves plus current flow field are strongly affected by the current. These coefficients depend
mainly on the velocity ratio u,/V or the reduced velocity Vr.

Overall, the drag coefficients obtained from waves plus current tests are smaller and the
inertia coefficients are larger than those from wave-only tests in the rage of Keulegan-
Carpenter number considered.

The maximum and the rms lift force coefficients (C,,,., and C,,,.) depend on the total
velocity. They are generally smaller than the in-line force coefficients, C,,,, and C)),,...
The frequency of the lift force depends on the nondimensional parameter KC,,,,. In the small
KC,,, region (KC,,, < 15), the ratio is 0.5 or 1 and becomes 2, 3 and even 4 as KC,,
increases.
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Figure 7.6 Fixed cylinder in waves plus current flow field, Fm plotted versus v+ 2Vu,
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CHAPTER 8

In-line Cylinder Oscillation in Waves

8.1 General

This chapter presents the results and discussion of the experiments with the in-line cylinder
oscillations in waves. Comparing with the earlier test cases, two acceleration terms are involved
in the present test series making it more complicated.

Accurate prediction of wave loads and responses of slender offshore structures are very important
for the design and operation of these structures in a natural environment. The present results have
practical application when considering the wave forces acting on a flexible cylinder such as a
riser and also when structural vibrations occur on a fixed platform.

For the flexible cylinders, the motion is fairly large and proportional with the incident fluid
particle motions, while for the vibratory motion of a fixed platform the structure’s motion is
much smaller than that of the surrounding fluid. Furthermore, for the vibratory case, the motion
occurs at a higher frequency than the wave motion, while for flexible cylinders both motions
generally include the same frequency band.

Beside the two above cases, the results of this test series may shed some light on the
understanding of the motion of a floating structure in waves. Both the water particles and the
structure are moving and the wave force and the hydrodynamic damping are very important for
calculating the motion, especially near the resonant frequencies.

The major reason for undertaking the experiments described in this chapter was the desire to
investigate the validity of existing mathematical models for hydrodynamic interaction of an
oscillating cylinder in waves as well as to provide appropriate force coefficients values for the
best mathematical model. The latter objective would contribute to accurate hydrodynamic force
evaluations on oscillating cylinders and to specifying the damping of vibrations of slender
offshore structures.

8.2 Specific Details of the Experiments

The present test series is a two-mode test in which there are two simultaneous accelerated
motions. Specific phenomena and test conditions for this test case are briefly discussed in the
following sections. All motions - of the water or of the cylinder - are considered to be sinusoidal
in this discussion.




8.2.1 Structure-Waves Interaction

When the structural motion is not negligible, fluid-structure interaction needs to be considered.
Several investigators have attempted to take into account the effect of structural flexibility in
force evaluation by modifying the original Morison equation to include interactive terms that
involve both the fluid and the structural velocities and accelerations. In this process it is usually
assumed that the interaction between the ambient fluid flow and the flow around the cylinder
resulting from the structural motion is linear, i.e. the resulting flow field kinematics are equal to
the algebraic difference between the kinematics of the incident fluid flow and the resulting
kinematics of the structure, both measured relative to a fixed axis system. However, as discussed
by Vugts (1979) and Chakrabarti (1987) among others, the validity of this assumption, which
determines the level of hydrodynamic drag damping, is questionable; it is still rather arbitrary
and should be interpreted as an entirely new empirical formula that needs separate verification.

8.2.2 Dynamic Analysis

The results of the present test series may be used in the dynamic analysis of slender offshore
structures by accounting for the hydrodynamic damping as well as the exciting forces. Giving
a brief description of the present methods used to account for damping in the dynamic analysis
of such structures would therefore seem appropriate here.

In the design of slender offshore structures, particularly in deep waters, dynamic response of the
entire structure to waves, currents and wave and/or current-induced vortex forces must be
considered. A dynamic analysis is particularly important for waves of moderate sea states since
these frequently occurring sea states may make the greatest contribution to fatigue damage.
When the sea state dominant frequency coincides with the structure natural frequency, the
magnification due to dynamic response will be greatest and will depend on the damping of the
system.

Dynamic analysis turns out to be complex because of the interactions of the sea, structure and
the foundation. Damping becomes more important when offshore structures are designed and
installed in deeper water because the natural frequencies of the structure approach the wave
frequencies.

The first essential step in a dynamic analysis is the formulation of an appropriate mathematical
model representing the structure by suitably defined mass, damping, and stiffness matrices
together with a mathematical model for the hydrodynamic excitation - usually a modified form
of Morison equation.

The equation of motion for a cylinder in-line with the direction of wave propagation may in
general be written as:

mx tex +kx = F(b) 8.1)

where m, ¢ and k are the mass, structural damping and stiffness.

The hydrodynamic damping in most investigations is derived from the modified Morison
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equation using the relative velocity formulation (equation 3.5).
. _ 1 P LS N LYY (8.2)
mx +cx +kx CD,(2 pD)|u-x|(u -x) + CM,(p4 DHu~-C, (p p DH¥
There are three approaches to solve this equation of motion:

1. Direct numerical solutions obtained by time-history integration (time domain simulation)
2. Linearisation of the equation to make possible a frequency domain solution
3. Static solutions obtained by neglecting the structural motion terms x and ¥

Examination and discussion of these solutions is beyond the present work. However, a linearised
form the equation is briefly examined here to see the effect of structural motion on the dynamic
analysis of slender offshore structures. Other extended forms of the Morison equation are
discussed in section 8.3.2.

If u,, >> x,,, as is usually the case for fixed structures, the drag term may be approximated as:
1 . . 1 .
;pDCDr(u -X)lu-x| = ;pDCDr[u[u[ -2|u|¥] (8.3)

Applying this approximation to equation 8.2 under the assumption that u_, >> %, collecting % and
¥ on the left-hand side and introducing the added mass per unit length m, = 0.25pnD*C,,, one
may write:

(m+m)+(c +pDC |u|)X +kx = 0.5pDC ulu| +0.25pnD*C, 4 (8.4)

The right-hand side of equation (8.4) is identical to the original Morison equation and thus the
effect of introducing a relative term into Morison equation has been to introduce the added mass
and the hydrodynamic damping on the left in equation 8.4. The hydrodynamic damping
coefficient then is pD C), [u|. A constant damping coefficient could be obtained by using the
average value of u=2u,/m, (if u(r) is sinusoidal).

It should be noted that even if the 2|u|* term in equation (8.3) is extremely small compared to
the u|u] term (that is u, >> ), it is still very important for responses near resonance as it is a
damping term, and at resonance damping provides the sole limitation to the response.

Linearising the nonlinear drag force and the use of the above form of Morison equation is a
common practice. Although this procedure may not violate the basic principles, uncertainty stems
partly from the linearisation and partly from the use of force coefficients derived from conditions
in which the behaviour of the cylinder is (quasi-) static rather than dynamic. The force
coefficients under static conditions are not the same as under dynamic conditions. The force
coefficients depend generally on the velocity ratio u,, /% in addition to other nondimensional
parameters. Existing analyses do not consider this, primarily because of lack of reliable data. This
procedure can lead to high damping values if the drag coefficient value for static conditions (C,)
is used.




8.2.3 Important Parameters

Since the present test series can be seen as a combination of two already considered degenerate
test cases of “fixed cylinder in waves” and “oscillating cylinder in still water,” all
nondimensional parameters for these cases are relevant here too. Due to the fact that the two
motions occur simultaneously in the present test series, considering any combination of
parameter sets of those two motions is also essential. Thus, beside those parameters for single
mode tests, the following additional nondimensional parameters have been studied:

a) in terms of total maximum velocity, %+ u,,, as:

(x,, tu )T (x,, *u,)D
P L ®9

The period T here could be either the wave period, T, or the cylinder oscillation period, 7,.

KC

b) in terms of the maximum relative velocity, (X - u),,,, as:

(ux) T, (u=%)__D
, = Re, = —=% (8.6)
D v
The relative velocity between two motions (% - u) is usually composed of two sinusoidal signals,
thus it is also a periodic function. A solution to determine the period of the relative motion 7, is

presented in appendix IV,

KC

¢) The sum of Keulegan-Carpenter numbers for degenerate cases, i.e.:

KC, = KC,+KC, =-I o M * (8.7)
D

8.2.4 Tests Conducted and Data Range

The variable values for this combined test series were chosen the same as those for the single
mode tests of “a fixed cylinder in waves” and “cylinder oscillation in still water.” This has
allowed direct comparison of the present test series with results of those degenerate tests. Various
load models can further be checked.

There are five independent variables in this test series:

- Cylinder motion amplitude and period, 4 and T,
- Wave height and period, H, T,,
- Phase differences between the two motions

Setting the first four variables for each test run was possible, while the phase difference between
the two motions was a random variable. Thus, the phase difference in each test run is not pre-
determined because the starter button of the measurement was pushed manually. However, in
order to study the effect of the phase difference, a number of test runs were carried out in which
the first four variables were constant but the phase difference had distinct (random) values.
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The influence of the phase difference on the in-line force is undeniably significant. To be
convinced, one should consider for instance a situation with u and x having the same amplitude
and same frequency. A phase difference of 180° can obviously lead to a relative velocity equal
to zero. In such a fictitious case, the water particle would in a horizontal direction seem to be
standing still relative to the cylinder; the cylinder would not experience any drag force. Ranges
of some relevant nondimensional parameters are given in table 8.1.

It is expected that the inertia coefficient should depend on a nondimensional parameter
proportional to an acceleration term. Thus, several possibilities may be tried leading to a suitable
parameter. One may express the maximum acceleration terms, i, and x,, by relating them to the
associated velocities as:

.27 . 27 .
U =—u and X =—X
m m m

(8.8)

Two approaches can lead to nondimensional forms of these accelerations. On the one hand,
multiplying the acceleration by a length and then dividing it by the square of a velocity is
possible. On the other hand, one could divide the acceleration by a length and multiply it by a
time squared. A partial list of the possible dimensionless parameters based on the above
approaches is given in table 8.2.

Parameter Definition Range
Amplitude:Diameter Ratio A/D 0.5 - 4.0
Max. Oscillatory Velocity X, =24n f, 0.09 - 0.75 m/s

Reynolds Number based on cylinder

1 e Re,= x D/v
oscillation ‘

5650 - 45260

Reynolds Number based on wave _ 8360 - 16720
. Re,=u, D/v
oscillatory flow

Reynolds Number based on total flow Re,.= (u, +x,)D/v 14 100 - 60 020

ow

Reynolds Number based on relative

. Re,= (u -%),,,. DIV 4870 - 59840
velocity
Keulegan-Carpenter number wave flow KC,=u,T,/D 23 - 93
Kel.xlegfm-Carpemer number, cylinder KC,=% T./D 31 - 251
oscillation
Keulegan-Carpenter number, total flow KC,=(u, +x)I,/D 44 - 333
Sum Keulegan-Carpenter numbers KCo=(u, T,+x,T,)/D 54 - 584
Keulggan-Carpenter number, relative KC. = (u-%),.T./D 34 - 971
velocity
Velocity parameter u, ! X, 026 - 2.6

Table 8.1 Experimental Variable Ranges for the In-line Oscillation in Waves
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Parameter K, K, K; K,=K, K; K, K-

Definition |x.D/,? | D5, | %,7./D | i, T/D |% DAu+s,Y | i, DAu,+x,) Vit +5,)T/D

Table 8.2 Nondimensional Parameter Proportional to Acceleration Terms of the Flows
8.3 Load Models
8.3.1 Morison Equation Generalisation

When a cylinder is moving in waves, the force and the motion are dependent upon the water
particle kinematics as well as the velocity and acceleration of the structure itself. In this case
several alternate forms of the modified Morison equation are used. As stated in section 3.2,
however, two extensions based on the concepts of the “independent flow fields” and the “relative
flow field” are well-known and are considered here. One of the objectives of the present test
series is to verify these forms.

The basic assumption of the independent flow fields approach is that the force acting in an
oscillating cylinder is the sum of the forces that would act on a fixed cylinder, which are the “far
field” effects, plus the fluid forces that the cylinder would experience if it were oscillating in still
water, which are the “near field” effects. A load model based on this approach is referred to as
the “absolute velocity” model and is written as:

D
4

The values of C,,, and G, used in this equation should be taken from the data for a fixed
cylinder in the same flow. Also, C,,, and C,, should be taken from data corresponding to a
cylinder oscillating in the still water at the amplitude of cylinder motion. Note that here C,,,, is
not equal to C,,+ 1 as they are related to two different flows.

2 2
F = %pDCDw|u[u +ep C, i —%pDcDoMx'— nf pC,, i (8.9)

However, the force coefficients in equation 8.9 may be calculated directly from the measured
data by applying the least squares method. The coefficients obtained are not necessarily identical
to those for the degenerate cases.

Alternatively, the drag force can be assumed to depend on the relative velocity between the fluid
and the body, resulting in an in-line fluid force given by:

2 2
F = 2 pDCy, [umsl(um) + T2 pCy i Tp(Cyy, 1S (8.10)

The value of the force coefficients C),, and C,, should be based on the amplitude of the relative
motion rather than on the fluid or structural motions alone. Thus, these coefficients may not
necessarily be equal to the stationary values. However, because of the lack of data in this area,
the hydrodynamic coefficients for the analysis of moving structures in waves are normally
chosen from studies on a fixed cylinder in waves or from an oscillating cylinder in still water.

8.3.2 Linearised Forms

Linear analysis is highly desirable in the study of the structural dynamics of offshore structures,
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if possible. Unfortunately, the force as expressed by extended forms of the Morison equation is
nonlinear with respect to the drag term. However, various techniques have been proposed to
linearise the drag term; the nonlinear terms are then expanded in a power series or in a Fourier
series.

The linearisation of the absolute velocity model is rather easy because each drag term may be
linearised separately similar to the linearisation for the single mode test cases, see in sections
5.2.1 and 5.3.1. This will lead to the following linear form of the absolute velocity model:
2 2
1 8 TD | 8 . ._TCD C % (811)

F o= a—pDCDW[?Eumu + 4 CMwlu ‘—ipDcDalﬁxmx 4 Aol

For the relative velocity model, if the wave velocity is much larger than the structural velocity,
as is often the case (u >> %), then the nonlinear terms of the relative velocity model can be
approximated as equation 8.3. Applying that approximation to the relative velocity gives:

nD?
4

Besides above technique for linearisation of the drag term (in a relative velocity approach),
various other linearisation techniques have been discussed in the literature; see for example
Blevins (1990), Leira (1987), Langley (1984), Gudmestad and Connor (1983), Malhotra and
Penzien (1970).

nD? .
2 pCMru—

F = %pDC [ulu) -2 ]ulx)+ p(C,, - ¥ (8.12)

3744

A linear form of the relative velocity may be obtained by linearising the drag term directly using
the same procedure as for degenerate cases:

2 2

1 8 . ... D . 1D .
F = ;pDCD,[;(u—x)max(u—x)+ 2 pCMﬂu-Tp(CMﬂ—l)x (8.13)

This linear solution does not require the assumption of u >> % However, the maximum of the
relative velocity is unknown and should be calculated using an iterative solution.

Also, another postulated linear form of the relative velocity model has been considered in the
present work. It can be expressed as:

2 . mD? .
pCMr5u7 4 p(CM,.sil)x (814)

F = %pD C s (5, )5y + 22
This is a linear model which requires only easily determined coefficient values.
8.3.3 Summary of the Tested Models
Table 8.3 summarizes five different load models evaluated within the present work.
8.3.4 Lift Force

Evaluation of the lift force is very complicated for the test series under consideration in which
two motions are involved. Lift force models are not discussed here and just as with other test
series, only the maximum and the RMS lift force coefficients are evaluated. However, for each
coefficient two different definitions may be introduced:
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Fy

C R (8.15)
Lmax? . \2
0.5pD(u, +x,)
_ ymax
Comask = 5 (8.16)
0.5pD(u ~x) 00
F
Cer:T = y"’” (8 1 7)
0.5pD(u,, +%,)
FY s
CersR = 2 (818)
0.5pD(u —x)
No Name Equation
I Relative
. . . TD? . 2 )
velocity F = %PDCD,|M‘X|(M -¥)+ 1:4 PCypti - nf P(Cy, ~DE
I Absolute .
. 1 D L1 . . TD? .
velocity F = ;PDCD.,MM *n4 PCypti —PDC), %] % - 2 PCat
111 Linearised
) . 1 8 ) . TD? . mD? .
relative velocity | F = 5PD C,,,,a—n(u*x),,..,(u X+ PC,pti - 7 PCam -
v Linearised
1 8 nD? L1 8 . . mD? .,
absolute F o= ;pDCl)wl:;_numu * Copitt ~PD Cl)ol3—nxm x- —4—me
velocity
\Y Postulated ) i D2
linear relative F = EPD Cp s, +3, )u-x) + PCypsti = . P(Cyy,s 1%
velocity

Table 8.3 Modified Morison Equation Forms Evaluated

8.4 Results and Discussion

8.4.1 Direct Observations from the Data

The statistical values of the force signals were used to find any linear relationship between these

values and the flow kinematics. Various combinations of u,2 and %,* as well as (u- x)

max

2 were

tried. The results of this evaluation have revealed that the relative velocity term (u-%) is a better

variable for estimating the hydrodynamic forces.

It was found that F,,, and F,

rms

can best be

related to (u - %), 2 for all test runs with different values of oscillation frequency, oscillation
amplitude and different waves as shown in figures 8.1 and 8.2, see also table 8.4.
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't”lz u”’Z i’llulll (xﬂl+ulll)2 '*Inz_‘_ Z'{!IIZ '*Ill2+ 2 illluﬂl (u _x )UHU(.7
o 047 | 036 0.75 0.74 0.65 0.68 0.82

F o 0.40 0.31 0.69 0.70 0.60 0.63 0.72
Table 8.4 R’ Correlation Coefficient Values for Linear Regression of Characteristic Forces to
Different Velocity Components

The importance of the velocity ratio can be seen in figures 8.3 and 8.4 where F,, and F,,, are
plotted versus ,/(4-%),,,.. These results show that even a small velocity change in one motion
may result in a significant change in the hydrodynamic forces.

Using results for the single mode tests of wave-only and oscillation-only (the same waves and

the same cylinder oscillations were used), it is possible to compare the sum of the maximum

measured forces for those tests, with the maximum measured force for the combined test series.

In figure 8.5, F,,,., is plotted versus F,,, where:

F,..s= Maximum measured force for wave-only tests + Maximum measured force for
oscillation-only tests.

This figure shows that the maximum in-line force values for the oscillating cylinder in waves are
not equal to the calculated maximum in-line force values based on the independent flow field
approach. F,,, is generally greater than F,,,_,.

The variation of the maximum transverse force Fy,,,, with various nondimensional parameters
is almost similar to that of the maximum in-line force. For example Fy, ... exhibits a good
correlation if plotted versus (u-%),,,, as shown in figure 8.6. The dependency of Fy,,,, on the
velocity ratio of u,/(u-%),,,, can be seen in figure 8.7; Fy,,,. decreases as this ratio increases.

8.4.2 Phase Difference Effect

As discussed earlier in section 8.2.4 the phase difference A® between two motions may have a
great effect on hydrodynamic interaction forces. To take into account the effect of A® during the
experiments, the cylinder motion and the waves were kept constant for 15 test runs. The phase
difference for these runs varies from - 180° to +180°. To present the results in a more convenient
way, F,,. has been plotted versus cos (A®) in fig 8.8. This figure shows how strongly the phase
differences may affect the hydrodynamic force.

The phase difference has an even stronger effect on the maximum transverse force £y, as
shown in figure 8.9. The possible variation around the mean value is +80%.

8.4.3 Suitability of the Load Models

8.4.3.1 Criteria

Appropriate coefficients have been determined for each load model, by minimizing the goodness-
of-fit parameters € (equation 3.21). However, the minimised values of € are different for each
load model. Just as for the previous test cases, statistics of € values have been used to evaluate
the load models.
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As discussed before, this criterion is not sufficient to ascertain the suitability of a model. A load
model used in a design process must be stable and have easily determined coefficients.
Therefore, the following additional criteria have been successively considered to evaluate the
suitability of the five models given in table 8.3:

- The goodness-of-fit parameter obtained with best individual coefficients
- Scattering in the force coefficients
- The goodness-of-fit parameter obtained with smoothed coefficients

The work and results corresponding to these three criteria are summarised in the following
paragraphs.

8.4.3.2 Quality of Fit Using Best Individual Coefficients

Using the input-output data pairs of each of the 66 test runs, each load model results in an €
value. Table 8.5 lists the calculated mean and standard deviation values for the € distributions
using the five models given. The fourth column in this table shows the percentage of runs for
which € < 0.20 for each computational model.

The cumulative percentage of € for each load model is plotted in figure 8.10. High curve values
indicate that relatively more of the test runs fitted the chosen model well.

Note that the results of model V are not plotted on figure 8.10 because it gives similar results to
model III. Indeed, for a given run, the expression of the force is almost the same. The only
difference is the coefficient used in the drag term.

All four remaining models seem to be of about equal quality; the four curves are too close to
assert that one model is better than another,

Fit quality € value PercenTage of
runs with:

Load Models

Mean STD €<0.2
I. Relative Velocity 0.123 0.049 96.9%
II. Absolute Velocity 0.119 0.060 93.9%
III. Linearised Relative Velocity 0.113 0.048 95.4%
IV. Linearised Absolute Velocity 0.108 0.044 96.9%
V. Postulated Linear Relative Velocity 0.113 0.048 95.4%

Table 8.5 Summary of Model Fitting Results with Best Individual Coefficients

8.4.3.3 Coefficient Stability

Though most of these models (with appropriate coefficients) could reproduce the measured
hydrodynamic force, the scattering in the obtained coefficients is greater for some computational
models than for others.
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The force coefficients for model I, III and V (all based on the relative velocity approach) show
a similar tendency if they are plotted versus an appropriate nondimensional parameter such as
KC.. Also, the force coefficients for model IT and I'V (based on the absolute velocity approach)
show corresponding behaviour. Thus, studying only the coefficient scattering in models I and II,
the relative velocity and the absolute velocity forms, respectively, is adequate.

The coefficients for model I and II will be presented and discussed in section 8.4 4. Considering
those results, one can notice greater coefficient scattering for the absolute velocity model.

8.4.3.4 Quality of Fit Using Smoothed Coefficients

The results shown in figure 8.10 and table 8.5 were obtained by using the best coefficients
separately calculated for each individual test run. In a design process, the main environmental
conditions are known and the required coefficients for Morison equation must be determined
consistent with those conditions. Using each model with a smoothed coefficient value to predict
the hydrodynamic forces is then much more realistic. Therefore, the individually obtained
coefficients were smoothed and used to determine new € values. This third criterion is, in turn,
an alternate approach to quantifying the second one discussed in section 8.4.3.1.

This evaluation has been carried out for the five given models; the best individual coefficients
obtained for the previous stage have been plotted against the relevant Keulegan-Carpenter
numbers (KC,, KC, and KC,,). Then, for each KC value, the smoothed coefficients were
determined. The € values resulting from the use of those smoothed coefficients have been
calculated for each run. Figure 8.11 shows the end results of this work with smoothed
coefficients plotted in the same way as figure 8.10. Table 8.6 lists the percentage of runs for
which € <0.20.

Fit quality € value Percentage of
runs with:

Load Models

Mean STD €<0.2
I. Relative Velocity 0.166 0.091 75.7%
I1. Absolute Velocity 0.248 0.307 66.6%
[II. Linearised Relative Velocity 0.167 0.103 78.8%
IV. Linearised Absolute Velocity 0.28 0.180 51.5%
V. Postulated Linear Relative Velocity 0.173 0.117 75.7%

Table 8.6 Summary of Model Fitting Results with Smoothed Coefficients

The results shown in table 8.5 reveal that Model II and IV provide higher € mean values (more
than 0.24) whereas model I, Ill and V give lower values (= 0.17). Taking the information in this
table and figure 8.11 together, it is obvious that models based on the relative velocity approach
give a better quality of fit; the linearised form of the absolute velocity model (model IV) is not
an adequate model.

Further Evaluation of the Absolute Velocity Approach:
As already mentioned, the absolute velocity form of Morison equation is based on an assumption
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that the flow consists of a superposition of two independent flow fields: a far field due to waves
and relatively unaffected by the structure motion and a near field resulting from the structure’s
motion. This theoretical split of the flow field comes down to assuming that C,,, and C,,,
correspond to a situation with a fixed cylinder in waves, i.e. C;, and C,, whereas C,,, and C,,,
correspond to an oscillating cylinder in still water. The validation of this assumption has been
studied by using degenerate coefficients for these cases in the absolute velocity model.

There are two possibilities to determine the coefficients for those two independent situations:
First, the literature provides many results, both for an oscillating cylinder in still water and for
a fixed cylinder in waves. However, using the results obtained for the present single mode cases
would be more consistent because they utilise the same experimental apparatus.

Figure 8.12 shows the cumulative percentage of € for the absolute velocity model when
degenerate case coefficients are used. The results of previous evaluations (using the best
individual coefficients and smoothed coefficients) are also included in this figure. Table 8.7
summarises the results.

Considering all these results, it is obvious that the fit obtained by using the absolute approach
with degenerate coefficients is quite bad. This tends to refute the original and basic assumption
of the absolute approach. The force due to the total flow field cannot be considered as the
superposition of force for two independent flow fields; on the contrary, it contains complex
interactions.

.. . Percentage of
‘ Fit quality € value runs with-
Coefficient Sets Used
Mean STD €<0.2
Best Individual 0.119 0.060 93.9%
Smoothed 0.248 0.307 66.6%
Degenerate 0.279 0.159 42.4%

Table 8.7 Summary of Model Fitting Results for the Independent Flow Fields Approach
with Various Sources of Coefficients

8.4.4 In-line Force Coefficients

The quality of fit of various load models has revealed that each model may produce the
hydrodynamic forces if appropriate coefficients are used. The feature and interpretation of force
coefficients for the given load models are discussed in the following paragraphs.

8.4.4.1 Relative Velocity Model (model I)

Many evaluations were carried out to investigate if a good correlation could be found between
the drag and inertia coefficients and the relevant nondimensional parameters.

Drag coefficient, Cp,

The drag coefficient for the relative velocity model (C),) should not depend on the phase
difference because this influence is clearly reflected in the relative velocity term (u - %). Initially,
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arelation between C,,, and KC,or KC,, was sought, but no obvious correlation was discovered.
However, as shown in figure 8.13, a better result was obtained when C,,, is plotted versus KC,
for fixed KC,, values. Considering the regression lines in this figure, one can observe that the
higher KC,, is, the higher C),, is. In other words, one would expect a higher drag coefficient for
a higher wave amplitude.

In the second stage, C,,, was plotted versus the combined nondimensional parameters such as
KC,, and KC,. Figures 8.14 and 8.15 show the dependency of C,,, on KC,, and KC,respectively.
Both dimensionless parameters KC,, and KC, show a good correlation with C ,,values. However,
using KC,,, is preferred because it has some advantages; the tendency of the coefficient is similar
to those of previous test cases and concerning practical application of the data, estimating KC
is rather easy compared with KC,.

ow

Beside trying the above nondimensional parameters, various combinations of them such as KC,
(= KC,+KC,) and KC, were also examined but no better results were obtained.

Inertia coefficient, C,,,

The same method was used to evaluate the inertia coefficient for the relative velocity model.
Figures 8.16 and 8.17 present C,,, versus KC,,, and KC,. The scattering of the inertia coefficient
C,; is much less than that for the drag coefficient; all values are between 1.18 and 2.14. The
inertia coefficient correlates well with the nondimensional accelerations given in table 8.2, in
particular with K, = #,, T,”/D, see figure 8.18. The inertia coefficient generally decreases as this
parameter increases.

Comparison of measured and calculated in-line forces:

Figures 8.19 compares measured and calculated force time histories (from the relative velocity
model) for randomly selected test runs. These examples indicate that the relative velocity model
can reproduce the hydrodynamic forces very well if the phase difference and the force
coefficients are chosen correctly.

8.4.4.2 Absolute Velocity Model (model IT)

The force coefficients of the absolute velocity model (C,,,, C,,, and G,,, ) should normally be
plotted versus corresponding Keulegan-Carpenter numbers, i.e. KC, and KC,. However, they are
plotted versus KC,,,, in order to make comparison of the results for these coefficients with those
for the relative velocity model possible.

The drag coefficient for wave flow, C,,,, is plotted versus KC,, in figure 8.20. One can notice
significant scattering in this figure; C,,,, varies from 0.3 to 2.9. The drag coefficient for cylinder

oscillation, C),,, exhibits a large scattering too as seen in figure 8.21; the coefficient value ranges
from 0.5 to 5.6.

Figure 8.22 presents the values of the inertia coefficient C,, plotted versus KC, . Here again,
there is scattering and C,,, varies from 0.84 to 2.20.

Comparing the drag force coefficients for the absolute velocity model with those for the
degenerate test series, one can observe very high coefficient values for this more complex
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condition; generally these do not resemble the degenerate case coefficient values.
8.4.5 Lift Force Coefficients

Before evaluating the lift force coefficients, it may be interesting to compare the measured in-line
forces with the transverse measured forces. This is done by comparing the maximum forces in
each direction as shown in figure 8.23. The maximum transverse force Fy,, is plotted versus the
maximum in-line force F),,, in this figure. A 45° line is included here for better comparing of the
forces; the data points near this line indicate that both forces are about equal. Even though the
maximum lift force Fy,,,, is greater than the maximum in-line force, F,, for some runs, overall

FYy,.. is smaller than F, .. Figure 8.24 shows ratios of Fy,,,, /F,,,. as a function of KC,,, The

X oW

ratios are typically less than unity. However, they are more than one for some runs especially
between 10 < KC,, < 15.

The above comparisons show that the transverse force in a combined flow field is significant and
should not be neglected as a force on an element.

One objective has been to find, if possible, a correlation between the maximum lift force
coefficients, C, .., or C;,...x (see equations 8.15 and 8.16), and various nondimensional
parameters; this has not been successful. However, the maximum lift force coefficient C,
plotted versus KC,,, KC, and the velocity ratio u,/(u-%),.., in figures 8.25 through 8.27,
respectively. As seen from these figures, C,,,,..; scatters in the range of 0.25 to 2.7. Nevertheless,
the variation of C,,,.; with the velocity ratio of u,,/(u-%),,, is interesting (figure 8.27); the
maximum C;,,., values are concentrated around u,,/(u-%),,, = 0.5. This shows that the velocity
ratio is a significant parameter for the lift force in a combined flow field.

;18

Hiax

Figure 8.28 and 8.29 show the maximum lift force coefficient C,,,,., plotted versus KC, and the
velocity ratio u,/(4-X),,.. As seen from figure 8.29, the C,,,,., increases with increasing velocity
ratio. Comparing these figures with those corresponding to €., (figures 8.26 and 8.27) one
may conclude that C,,.., shows somewhat smaller scattering and is therefore a better coefficient
for representing the maximum lift force.

The rms lift force coefficient defined in equation 8.18, C,,,.., presents a better correlation if
plotted versus KC, as shown in figure 8.30. The coefficient value is less than 0.5 for most of the
test runs.

8.6 Conclusions

The main conclusions from the experiments with cylinder oscillations in waves are summarised
in the following paragraphs.

Important parameters
1. Nondimensional parameters based on the relative velocity (KC,, Re,) have been introduced.
These parameters are more appropriate than the independent parameters to study the

hydrodynamic forces.
2. The velocity ratio of the two motions is a very important parameter.
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3. A number of dimensionless parameters have been introduced to relate to the acceleration
terms of the flows. It has been found that correlation between K, = #,,T,”/D and the inertia
force coefficient is quite good.

4. The phase difference between the cylinder velocity and the horizontal water particle velocity
has a significant effect on the hydrodynamic forces.

In-line Forces

1. The characteristic in-line forces exhibit better correlation when plotted versus a relative
velocity term.

2. The maximum in-line force on the oscillating cylinder in waves is not equal to the sum of the
maximum in-line forces resulting from the cases of the oscillating cylinder in still water and
the fixed cylinder in waves. This tends to disprove the independent flow field approach.

3. Five extended forms of Morison equation have been considered: two result from the relative
velocity approach (model I and III), two result from the absolute velocity approach (model
1 and IV) and a further postulated form also based on the relative velocity approach (model
V). These models fit the measured data quite well if their own sets of coefficients are used.

4. Load models based on the independent flow field approach (absolute velocity models) are not
appropriate mathematical models to predict hydrodynamic forces for the following reasons:

® The basic assumption underlying the absolute form of the modified Morison equation does
not seem valid. Indeed, using degenerate coefficients corresponding to two independent
flow fields leads to a bad fitting. This remark tends to refute the theoretical background
of the absolute approach and thus the validity of models based on this approach, i.e. model
ITand IV.

® Model II and IV predict the measured forces much less consistently than the other models
when smoothed coefficients are used.

® A relatively larger scattering in the coefficients has been noticed for model 1T and IV.

5. Load models based on the relative velocity approach (Model I, 11T and V) are of about the
same quality.

6. Linearised forms of the relative velocity model predict the in-line forces as well as the
nonlinear form. Especially model V appears to be very interesting since it is linear in use and
contains well known velocity terms.

Transverse Forces

1. The lift force has the same range of value as the in-line force for intermediate KC,,,.

2. Relative flow parameters are appropriate to study the transverse force as well. Fy,,,. shows
good correlation with the velocity ratio u,/(4-X),,,..

3. Withrespect to the phase difference between the cylinder motion and the waves, the measured
variations of F, . around its mean value are very large (80%) and even greater than the
variations noted for the maximum in-line force F,,,..

4. Various maximum and rms lift force coefficients have been calculated by normalising the
measured transverse forces. The coefficient normalised by the relative velocity term (u - x ),
shows smaller scattering and is a better parameter for representing the lift force than other
possible choices.
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Figure 8.15 In-line cylinder oscillation in waves, drag coefficient for the relative
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Figure 8.17 In-line cylinder oscillation in waves, inertia coefficient for the relative
velocity model, C,,, versus KC,
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CHAPTER 9

In-line Cylinder Oscillation in Waves Plus Current Flow Field
9.1 General

A variety of offshore structures such as compliant and floating structures and slender members
of fixed offshore structures experience fluid loading as well as reaction forces caused by the
movement of the structure as a whole due to the action of hydrodynamic forces from waves and
current. Generally, the fluid-structure interaction for such structures has been studied either in
a steady flow (mostly) or in waves (barely). To the best of the author’s knowledge, a
comprehensive experiment including all motions has not been carried out before the present
work.

| The results of tests with in-line cylinder oscillations in waves while towing the cylinder are
| discussed in this chapter. The flow condition is similar to that of a cylinder oscillating in a

combined waves plus current flow field.

9.2 Specific Details of the Experiments

Waves

This test series is a combination of all previous test
cases associated with the three possible separate
flow conditions. These experiments occupy the
space shown in figure 9.1, while the single mode
tests fall along the axes and the combined tests Waves 4 Carrent
discussed earlier fall in one of the planes through &
two axes. Thus, the test series under consideration
is the most complicated test case within this work,
involving many parameters and phenomena.
Specific phenomena and test conditions are briefly Oscillation + Curreat
addressed in the following sections.

e‘\ Curr

Figure 9.1 The Tests Cases Studied

9.2.1 Wave-Current-Structure Interaction

The interaction between waves and current on the one hand and the oscillating (flexible or
floating) structures on the other hand is a very complex problem. Test results are scarce for such
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a flow condition. The forces and the motions are dependent upon the water particle kinematics
as well as the velocities and accelerations of the structure itself.

The waves-current, current-structure and waves-structure interactions have already been
discussed in the previous chapters. The problem of waves-current-structure interaction is of much
greater complexity, due to the fact that the role of various factors such as the orbital motion,
wake structure, relative motion, etc. is not obvious. For example, the combination of regular
waves and sinusoidal cylinder oscillations will result in a modulated relative motion in which
prediction of hydrodynamic forces is very difficult.

Schematically, waves-current-structure interaction involves the following stages:

1. Waves and current interaction results in a flow field in which the flow kinematics may be
assumed to be vectorial summation of the two separate flows (ignoring the physical
interaction between waves and currents).

2. The combined flow field will then initiate forces on the structure. Compliant and floating
structures and slender components such as risers respond to the action of the
hydrodynamic forces.

3. As a result of this response, fluid reaction forces are generated leading to interactions
between the motion and the loading.

In general, the process is iterative, since the interaction will change the structure’s motion and
hence the flow around the structure.

Many laboratory and field investigations remain to be carried out for a better understanding and
quantification of wave-current-structure interaction. This need has long been recognized but it
has not been possible to obtain systematic data over a broad range of parameters. The present
investigation was carried out to shed some light on wave-current-structure interaction, to
determine the forces acting on an oscillating cylinder in a co-existing waves plus current flow
field, and to examine the applicability of the Morison equation to the flow situation under
consideration.

9.2.2 Important Parameters

Investigation of the most important parameters is a significant task. As demonstrated in the
dimensional analysis in section 2.3, various nondimensional parameters may be considered.
Besides the earlier definitions, the following definitions for the Reynolds number, the Keulegan-
Carpenter number and the reduced velocity may be used:

V+u +x T V+u +x YD
owvo = ( . = 0’ Reawv = M‘“ . (9'1)
D v
P 9.2)
owvw D
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V(T +T,)
Vr,, =Vr,tVr, = — 5 (9.3)

In the forgoing relations the apparent wave period 7, = 2m/t,,, may be used instead of the true
incident wave period resulting in another set of Keulegan-Carpenter numbers and reduced

velocity.

Since the water particle path in a combined waves plus current field is dependent on the ratio of
the maximum horizontal velocity u,, due to wave action to that of the steady flow (y, /), this

ratio could be an important parameter. The ratio of the maximum cylinder velocity x,, to u,, is
also considered to be important. An additional velocity ratio may be defined as:
u_tx
v o= 9.4)
ratio V

which is the ratio of the maximum (total) oscillatory velocity to the steady velocity.

9.2.3 Tests Conducted

The present test series is a three-mode test case which combines all single- and two-mode tests.
The cylinder has been oscillated with different amplitudes and frequencies while towing with
different speeds in given waves. To make it possible to study each motion effect, the values of
various independent parameters were made to coincide with those of simpler tests discussed in
the earlier chapters.

There were five independent variables in these tests:
- Towing (current) velocity, V'

- Oscillation amplitude and period, A, and T,

- Wave height and period, H, and T,

The selected ranges of these variables were similar to those in the previous test cases. For each
oscillation amplitude, first the towing speed and then the oscillation frequency was changed in
various waves. In total, some 156 test runs were carried out for the present test series so that a
reasonably full matrix of independent variables was generated.

9.3 Load Models
9.3.1 In-line Force

Several extended forms of the Morison equation may be considered for the combined flow field
caused by co-existing waves, current and cylinder oscillations. However, only results for the
following forms are reported here:

Model I. The relative velocity model:

2 2
T . T
D pC, i - D

F - %pDCD’|V+uAi|(V+u~,€)+ o(C,, 1) ¥ (9.5)

4 4




Model II. A postulated linear version of this relative velocity model:

2 2

D . 7D .
pCypt —“Tp(cM,, ¥ (9.6)

F = —;—pDCDﬂ(V tu, X WV ru-x)+

Model III. A hybrid model in which the steady force component is related to the steady current
and the oscillatory force component is related to the relative oscillatory velocity:

nD

: . D’ .
F - Pt —“T p(C,, 1% (9.7)

1 N
pDC,, V? +;pDCDh]u “E[(u-¥) +

N

Model IV. An absolute velocity model in which the drag force is split into three components:

D* . _mD? .
n4 pCM“u-n—4—p(CMa—l)x (9.8)

F = %pDCDm V2+%pDCDWIu|u —%pDcno|x‘|x'+

Even though other extended forms have been evaluated in this study, their results are not reported
here because they did not satisfy the criteria for a suitable model.

9.3.2 Lift Force

The amplitude of the lift force on a unit length of an oscillating cylinder in a combined waves
plus current flow field may be written in a simple form - based on the relative velocity approach -
as:

Fy = 0.5pDC,(V +u-x) (9.9)

Since the lift force coefticients are generally presented for the maximum or root-mean-square
value of the lift force, only the maximum and rms lift force coefficient have been evaluated in
this work. However, various lift force coefticients may be obtained by normalising the maximum
or rms value of the lift force with various velocity combinations, such as:

Fy
i T (9.10)
0.5pD(V +u, +x Y
FY max
CLmaxR = (9] ] )

0.5pD(V +u —5)’

max

Fy
Crmr1 = ————————— (9.12)
, —
0.5pD(V +u, +%,)

Fy

Coroms = rms 9.13)
T 0spD(V tu,,, +%, Y
Fyrms
Cer:RI = (9 14)

0.5pD(V +u -x)’

max
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F
s 9.15)
0.5pD(V +u - %)’

rms

CerxRZ

9.4 Results and Discussion
9.4.1 Direct Observations from the Data

The characteristic forces described in section 6.5.1 have been used to examine the behaviour of
the force on a measuring element against various combinations of variables. Table 9.1 lists the
correlation coefficient R? between the characteristic forces and some velocity combinations.
These results are discussed for each characteristic force in the following paragraphs.

No. | R? F o Fo Fm Fo0
1 12 0.376 0.593 0.761 0.139
2 | %2 0.134 0.120 0.010 0.492
3 u,’ 0.079 0.057 0.031 0.074
4 | (V+x,y 0.635 0.364 | 30
5 V+u,) 0.462 0.823
6 | (u,+x, ) 0.167 0.000
7 | V2V, + 2%,u, 0.666
8 | V+Vi,+ 5, 0.713
9 | VP4 Vuvi, 0.738
10 | V+Vu,+i,u, 0.583

S| V2VR, 42V, 0.796
12 | V+2Vu,+2x,u, 0.653
13 | V+u,’+x,° 0.523
14 | (V+x,)+ u,,> 0.649
15 | (V+u, )+, 0.678
16 | G+ u, Y+ 12 0.483
17 | (Vi + Vi + u, %, 0.739
18 | (VP +2Vu,+2Vx, +2 u, %,

19 | (V+u, +x,)
20 w2V u, 2%, u,
21 | VP +u,+2Vx,

Table 9.1 R? Correlation Coefficient Values fbr Llricaf R
9.4.1.1 Maximum Value of the In-line Force

The third column of the values in table 9.1 gives the R? correlation coefficient values for Foe

As listed in this table, the best correlation can be obtained using (V?+2V u, +2Vx, + 2 u,x,) as
independent variable. Figure 9.2 shows how F, . varies as a function of this variable. This
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observation is quite interesting as it agrees with the earlier observations for other test cases. In
fact, it is a generalised form which can be used for the degenerate cases as well.

Using this observation, a maximum drag coefficient may be defined as:

F
c - max (9.16)

P 0.SpD (V22 Vu, 42V%, 2% u )

u_+x

Figure 9.3 shown the variation of C),,,,, as a function of the velocity ratio
9.4.1.2 RMS Values of the In-line Force

The values in the fourth column of table 9.1 are R? correlation coefficient values between the root
mean square values of the total in-line force, F,,,;, and various variable combinations. As seen
from this table and figure 9.4, the highest R* value is found if F,,, is plotted versus
(V*+Vx,+u,x,), line 8. There is also still a good correlation between F,,,, and

m

(V*+2Vx,+2Vu,+2 u, x,), line 18 and (V?+u,’+2V%,), line 21.
9.4.1.2 Mean Drag Force

The correlation coefficient values between the mean steady force component, Fm, and various
variables are listed in the fifth column of table 9.1. As listed in this column, the R? value for }*
(line 1) is lower than R? for some other combinations; the highest R? value has been obtained for
(V2 +V u,+V %,) (line 9), see also figure 9.5. The dependence of the steady force on the
oscillatory velocities demonstrates that the steady in-line force component depends on both
waves and the cylinder oscillation; there must be an interaction of the three flow fields. As with
earlier test cases, the independent flow field approach does not seem to offer a proper basis for
estimating the hydrodynamic force here.

If the mean drag force #m is normalised by the steady current velocity ¥ then the normally used
mean drag coefficient:

Fm

c. ="
0.5pDV?

Dm 9.17)

will exhibit large values which bear no resemblance to those obtained under current only
conditions. As shown in figure 9.6, C,,, increases as the V,,,, - the ratio between the total
oscillatory velocity (u,,+ %,,) and the steady current velocity ¥ - increases. One can observe a
large scatter in the C),, values in this figure.

Based on the above observation, however, a new mean drag coefficient may be introduced by
normalising Fm as:
F
Come = T (9.18)
0.5pD(V?+Vu, +Vx,)

Figure 9.6 also shows that the values of this new drag coefficient C,,,. correlate well with the
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velocity ratio V,,,,; C,,,. decreases as the velocity ratio increases.
9.4.1.2 The RMS Values of the Oscillatory Force Component

The sixth column in table 9.1 gives the calculated R? values between the rms values of the
oscillatory force component F,,,,, and the combinations of independent variables. The R? values
are fairly low for the velocity variables that exclude the steady current velocity component,
whereas better correlations are obtained against some combinations in which the steady current
component is included. This indicates that the oscillatory force component is also affected by the
stcady current; as expected, there is an interaction between the oscillatory flows and the steady
current.

The best correlation coefficient value is obtained if F,,,, is plotted versus the relative velocity
(V+u,+x,)* (line 19 in table 9.1) as shown in figure 9.7.

9.4.2 Load Models Evaluations

The observations just discussed indicate that there is an interaction among the three motions
(cylinder oscillation, waves and current) and that a load model for describing hydrodynamic
forces must include all components involved. Therefore, an extension of the Morison equation
based on the relative velocity approach seems to be a suitable model. However, the hybrid load
model and the absolute velocity model have also been evaluated. The evaluation procedure is the
same as for the earlier test cases.

Values of the goodness-of-fit parameter € have been used to evaluate the quality of fit of the four
load models given in section 9.3.1. The input-output data pairs of 156 test runs have been used
to calculate the values of € for each load model. Both best individual coefficients as well as the
smoothed coefficients have been used for the evaluation.

Individual Coefficients:

Table 9.2 lists the calculated mean and standard deviation values for the € distributions using the
best individual coefficients. This table also includes the percentage of runs for which € < 0.20
for each computational model.

The cumulative probability of € for the four load models is shown in figure 9.8. Having all
information in this figure and table 9.2, one can infer that all four load models fit the data well
if their individually obtained coefficients are used. The quality of fit of the extended Morison
equation based on the absolute velocity is slightly better than the others. However, having such
a result for the absolute velocity model can be expected; this model contains five coefficients
providing more curve fitting flexibility.

Although the model based on the absolute velocity as well as the hybrid model could reproduce
each measured hydrodynamic force, the scattering in the coefficients obtained with these models
is relatively great, especially for the absolute velocity model. The coefficients for these models
exhibit unrealistically large values that do not compare to those obtained for degenerate
conditions. The effect of such scattering in force coefficients will show up as a poorer fit when
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the individually determined coefficients are smoothed and used in the computational models. The
results of this latter evaluation are given in the following paragraph.

Model [ name Meanofe| STDofe | P(€<0.20)
value value
I Relative Velocity 0.12 0.06 88.89%
I Linearised Relative Velocity 0.101 0.056 96.73%
I Hybrid Model 0.130 0.094 86.93%
v Absolute Velocity 0.091 0.061 97.39%

Table 9.2 Summary of Model Fitting Results with Individual Coefficients

Smoothed Coefficients:

The individually obtained coefficients were smoothed and used in the computational models to
obtain a new series of € values. Figure 9.9 shows the cumulative percentage of € using smoothed
coefficients plotted in the same way as in figure 9.8. Table 9.3 summarises the statistical values
of €.

The results shown in table 9.3 and figure 9.9 reveal that the extended Morison equation based
on the relative velocity approach (Model 1) and especially the linear version of this model (model
II) now provide a much better fit than the others. The lower rating of the two other models is
consistent with the relatively large scatter of their coefficients. Finding the best quality of fit for
the linear relative velocity model is very significant since application of this model in dynamic
analysis of offshore structures is much more convenient than the use of the quadratic form.

The fact that models based on the relative velocity approach require only two force coefficients
is another advantage of these models. The behaviour of these coefficients as a function of various
nondimensional parameters is discussed in the following section.

Model { name Meanof e[| STDofe | P (e <0.20)
value value
I Relative Velocity 0.170 0.121 74.51%
II Linearised Relative Velocity 0.144 0.102 88.24%
1 Hybrid Model 0.289 0.399 64.71%
1\Y Absolute Velocity 0.396 0.611 59.48%

Table 9.3 Summary of Model Fitting Results with Smoothed Coefficients
9.4.3 In-line Force Coefficients
From the above evaluations it has been concluded that the two models based on the relative

velocity approach are the most suitable load models. The feature and interpretation of the force
coefficients for these models are discussed below.
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9.4.3.1 Relative Velocity Model (Model I)

Extensive analysis of the force coefficients in terms of this load model has been carried out to
seek a good correlation between the drag and inertia coefficients on the one hand and the relevant
nondimensional parameters on the other. The effect of phase differences between the two
oscillatory motions (wave and cylinder oscillation) could not be studied because the data were
too limited for that purpose. However, the phase difference should not affect the force
coefficients because this influence is already reflected in the relative velocity term (¥ + u - ).

Many attempts have been made to find a relation between the force coefficients (C,,, and C,,) and
various nondimensional parameters. The results of this investigation have revealed that there is
no single parameter with which the drag and inertia coefficients may be correlated without the
need for other parameters. However, the force coefficients correlate better with some parameters
than with others. The behaviour of the force coefficients versus the more promising parameters
is reported here.

The variations of C,,, and C}, plotted against the combined reduced velocity V7, values are
presented in figure 9.10. The solid line in each plot in figure 9.10 (and the following figures) is
a third order polynomial regression line which has been determined by a least squares method.
At low I'r,, values, the inertia coefficient is large; it decreases as V7, increases reaching its
minimum value for V7= 10. For Vr,, > 10, C,, increases as Vr,, increases. The inverse is true
for the drag coefficient; C)), is small at small Vr,, values, but rises for moderate Vr,,, values and
decreases again.

ow

Comparing the values of the hydrodynamic coefficients for the combined flow field with those
for a fixed cylinder in oscillatory flow, one will notice that, overall, the drag coefficient values
here are smaller and the inertia coefficient values are slightly higher than corresponding values
for the fixed cylinder.

In order to illustrate the effect of cylinder oscillations, the variations of the force coefficients ),
and Cy,, are re-plotted in figure 9.11 for various 4/D values. Considering the regression lines in
this figure, it is clear that for various 4/D the drag coefficients C,,, exhibit almost similar
behaviour versus V7, and that C,, decreases as 4/D increases for comparable data range, i.e.
Vr,,<20. This is just opposite for the inertia coefficient when ¥Vr < 12; afterwards C ,,decrcases
as A/D increases, as does C),,.

Figure 9.12 illustrates the behaviour of the force coefficients, ), and C,,, versus the velocity
ratio: V, ., = (u,, +%,)/ V. Both coefficients are fairly stable around the polynomial regression lines
in this figure. The reasonably good correlations between the force coefficients and the velocity
ratio V,,, indicate that this parameter is a significant variable for a flow field consisting of
combined waves, current and cylinder oscillation. The effect of A/D (which is proportional to
KC,) can be seen in figure 9.13; for the relationship of the hydrodynamic coefficients with 7,

v

increasing A/D generally increases C,,, and decreases | ,.

tion

Comparison of Measured and Calculated In-line Forces:
For the purpose of comparison, the measured and calculated (from the relative velocity model)
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force time histories are shown for randomly selected test runs in figures 9.14, using smoothed
coefficients. These examples show that the relative velocity model can reproduce the
hydrodynamic forces well if the flow kinematics and force coefticients are specified properly.
The model underpredicts some peaks, however.

9.4.3.2 Linear Relative Velocity Model (model II)

Figures 9.15 and 9.16 compare the force coefficients for the relative velocity model, C,,, and C,,,
_and those for the linear relative velocity model, C,,,,, Cy,,. As expected, the inertia coefficients
for both models are almost identical C,,, = C,,, and there is a linear relationship between the drag
coefficients; C,,, = 0.73C,,,. Because of these linear relationships, the behaviours of the force
coefficients as function of their nondimensional parameters are alike. Therefore, separate results
for the linear relative velocity model are not reported.

9.4.4 Lift Force Coefficients

The maximum lift force coefficient C,,,,.,is plotted versus the velocity ratio V,,,;, in figure 9.17.
At low values of the velocity ratio, C,,,.., is small, but rises sharply and peaks around V,,,, = 1,
then it drops to very small values for large velocity ratio values.

Figures 9.18 and 9.19 show the variation of C,,,,.;; and C,,,,..;» versus V... Comparing the results
for the maximum and the rms lift force coefficients, it is apparent that all coefficients show
similar behaviour if plotted versus V,,,,; the maxima occur around V,,,,~ 1. All have a relatively
large scatter, however.

9.5 Conclusions From the In-line Cylinder Oscillation in Waves Plus Current Tests

The test case under consideration is the most complex combination of structural motion and
conditions of fluid flow within this research work. The main objective of this study has been to
investigate the validity of Morison equation extensions to such combined flow conditions and
to introduce the governing parameters. An additional objective has been to provide the force
coefficients for the most appropriate load models. The data analysis for the present test series
resulted in the following specific conclusions:

Direct Observations from the Data

Direct analyses of the data (regardless of any load model) have shown that the statistical values
of the measured force components depend upon the combined velocity variables:

1. There is not a very good correlation between the steady component of the measured forces Fm
and the steady velocity component ¥?; correlations between Fm and the combined velocity
variables, e.g. (V?+Vu,+Vx,), are distinctly better.

2. Good correlations are obtained between F,,,, - the root mean square of the oscillatory

component of the in-line measured force - and velocity components that include the steady

current velocity. The highest correlation coefficient value R? is obtained if F.,, is plotted
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versus the maximum relative velocity squared, i.e. (V+u, +%, ).

3. The above conclusions and other observations imply that the proper load model for predicting
the hydrodynamic interaction force in the combined flow field must include all velocity
components; the independent flow field approach cannot lead to a proper solution.

Evaluations of the In-line Load Models

1. Though an assumption of the independent flow fields provides improper solutions in the light
of direct observations from the data, two extensions of the Morison equation based on this
approach (model III and 1V) have been examined. As expected, the results have shown that
these models do not form appropriate load models for the combined flow field; the .
coefficients for these models exhibit considerably more scatter than for the relative velocity
models I and II and require generally large values that do not resemble the coefficients for
degenerate flow conditions.

2. Two extensions of the Morison equation based on the relative velocity approach (model I and
IT) are more appropriate models for predicting the hydrodynamic interaction forces. Both
models have relatively stable coefficients and the values resemble those for the simpler flow
conditions. Model 1l is in applications a linear form of model I and the force histories
calculated with this model fit the measured force histories even better than the well-known
quadratic form of the relative velocity model.

Force Coefficients

|

| 1. There is a linear relationship between the drag coefficient for the quadratic relative velocity
C), and the drag coefficient for the linear relative velocity C,,, (C,,,= 0.73 C ). As expected,
the inertia coefficients for the two models are almost identical (C,,,~ C,,).

2. There is no single parameter with which the drag and inertia coefficients may be correlated
without the need for other parameters.

3. The ratio between total oscillatory velocity (u,+x,) and the steady velocity (V) is a very
significant parameter for an oscillating cylinder in a waves plus current flow field. Both the
drag and the inertia coefficients (C),, and C,,) are fairly stable when plotted versus this ratio.

u_ +x
m

4. Large drag coefficient values correspond to ¥, = ™ =1, whereas the inertia coefficient
14

values are then small.

5. The maximum and rms lift force coefficients show similar behaviour if plotted versus the

velocity ratio V. Peaks of the maximum and rms lift force coefficients also occur around
vV 1.

ratio”™
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CHAPTER 10

A Universal Force Model

10.1 Introduction

The complex problem of the hydrodynamic interaction between fluid flows and (oscillating)
slender cylinders has been studied for different flow conditions separately in the foregoing
chapters. For engineering practice, however, it is desirable to combine the separate solutions to
provide a universal answer. This chapter discusses the possibility of a universal force model for
estimating the hydrodynamic forces on vertical cylinders in combined flow conditions. The
results obtained for various flow conditions are compared.

10.2 Characteristics of a Universal Solution

A universal load model applicable to any flow condition should have the following
characteristics:

- Specialisation to simpler cases:
The parameters involved must allow the model to remain valid for special cases when the
flow conditions are simpler.

- bependent on common and universally applicable dimensionless parameters
The force coefficients should depend on some general nondimensional parameters. These
general parameters are also to be appropriate for the simpler cases by degenerating to the
similarly simplified nondimensional parameters.

- Fixed coefficients
The coefficients for the universal load model should be applicable for all conditions and
combinations of conditions; they should correlate well with the relevant dimensionless
parameters.

10.3 Promising Model Forms
The common conclusion from the results for the various combinations of single flow conditions
is that a model for estimating the hydrodynamic forces must include the total (relative) velocity.

Of the various models considered, two models were shown to have the most promise. These two
models are:

* An extension of the Morison equation based on the relative velocity approach:
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D nD?

2
F = %pDCD,|V+u—x'1(V+u—x‘)+ 7 pC,, 4 - 7 p(C,,, - % (10.1)
* A postulated linear form of this model:
2 2
F = %pDCD,/(V+um +X YV +u-x)+ nf pC,,, 1t —%p(cﬂm—l)i (10.2)

Both models satisfy the first criterion for a universal model; the associated velocity and
acceleration terms can simply be omitted for the degenerate cases. The degree to which other
criteria are met is discussed below by comparing the results obtained for various flow conditions.

10.4 Governing Parameters

As already discussed in preceding chapters, the force coefficients in a combined flow field
depend upon many dimensionless parameters. The goal here is to find some common parameters
that will be equally applicable to the general case of an oscillating cylinder in a wave-current
flow field and to the simpler flow conditions.

The results for the general test case discussed in chapter 9 have suggested that a form of
Keulegan-Carpenter number and a velocity ratio are the most important parameters. The
behaviour of the force coefficients expressed in terms of these parameters for all test cases
studied is surveyed in the following section.

10.5 Summary of Coefficients Obtained

In order to study the behaviour of the force coefficients - for all test cases - as a function of the
most relevant nondimensional parameters in a reasonably transparent manner, the results may
be compared in three stages:

1. Comparing results for test cases without a current, being:
- Cylinder oscillations in still water (O)
- Fixed cylinder in waves (W)
- Cylinder oscillations in waves (OW)

2. Comparing results for test cases with a current, being:
- Cylinder oscillations in current (OC)
- Fixed cylinder in waves and current (WC)
- Cylinder oscillations in waves and current (OWC)
3. Comparing results for all test cases collectively.
The most significant parameter for the tests without a current (O, W and OW) is a Keulegan-
Carpenter number, while additionally the ratio of the amplitude of (relative) oscillatory velocity

to the steady current V,,,, is important for the second category.

The force coefficients for the two chosen models are compared first to find the relation between
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the coefficients in these models. Then, the results for tests cases within each of the above
categories are compared in the subsequent sections.

10.5.1 Comparison of the Force Coefficients for the Two Models

The force coefficients for the linear version of the relative velocity model (equation 10.2) have
been determined for all test cases using the least squares technique. For the test series of cylinder
oscillations in still water and the fixed cylinder in waves, the drag coefficients obtained are
different from those for the linear form of the Morison equation in each single mode test (model
IV in tables 5.2 and 5.5) because a factor of 8/37 is included in the theoretical linearisation of
the original Morison equation. Thus, the drag coefficients from single mode tests (for model IV)
have been scaled to correspond to coefficients for the chosen linear load model of equation 10.2.

As shown in figure 10.1, there is a linear relationship between the drag coefficients for the two
chosen load models of equations 10.1 and 10.2, C),, = 0.79C,,,; the inertia coefficients are almost
identical, C,,, = C,, (the inertia coefficient values for the tests without waves are plotted as C +1
in this figure).

Having such linear relationships between the coefficients for the two models, it is only necessary
to discuss the results obtained for the relative velocity model.

10.5.2 Tests Without a Current

The combined Keulegan-Carpenter number of KC,, = KC, + KC,, can be used to compare the
results for tests in this category. The drag and inertia coefficients (C),, and C,,) for these tests are
plotted versus KC,,, in figure 10.2 in which the inertia coefficient C,,, is plotted as C, +1 for the
pure oscillation tests. Though there are irregularities in the variation of drag and inertia
coefficients with KC,,, the results for all three test series without current (O, W, OW) are
comparable; they show the same trend. Overall, the drag coefficients obtained from the tests with
cylinder oscillations in waves are smaller than those from the tests with a fixed cylinder in
waves or the tests with cylinder oscillations in still water. The reverse is true for the inertia
coefficients obtained from the combined flow field; they are larger than those from the single
mode tests. The differences between the families of force coefficients decrease as KC,,, increases,
by the way. Furthermore, this figure confirms the importance of the (combined) Keulegan-
Carpenter number for the flow conditions without a current.

10.5.3 Tests With a Current

When a current is added to a flow field, a nondimensional parameter involving current velocity
is required in addition to KC. As discussed in the preceding chapters, a reduced velocity or a

velocity ratio is a suitable additional dimensionless variable for flow conditions with a steady
current.

Figure 10.3 shows how the force coefficients correlate with the velocity ratio V,,,,, = (u,, + X, YV
for all three test cases with a current (OC, WC and OWC). The level of scattering for both force
coefficients is high, especially for the inertia coefficient. However, the force coefficients depend
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upon the Keulegan-Carpenter number in addition to the velocity ratio; therefore, such scattering
in C),, and C,,, values may be acceptable.

The drag and inertia coefficients obtained from the three test cases with a current are also plotted
versus the reduced velocity V7, = Vr, + Vr, in figure 10.4. A rapid change in coefficient values
is observed for the cylinder oscillation plus current tests when Vr,,, = 5. This is associated with
the lock-in phenomenon. There are no such rapid changes in C,,, values obtained from the
cylinder oscillation in a combined waves plus current flow field; the behaviour of the C)), curve
is relatively smooth. This observation suggests that the lock-in phenomenon may not occur for
the same reduced velocity range; the combination of two oscillatory motions (cylinder oscillation
and waves) changes the vortex shedding pattern.

As seen in figure 10.4, the correlation of the inertia coefficient values C,, with Vr,,, is relatively
better than that of C,, with V,,,,. The variation of C,,, with V¥, is just opposite to that of C,,
with Vr,,; when one is high, the other is low and vice versa.

10.5.4 Al Tests

In order to investigate the possibility of a universal load model, results from all tests are
presented in the same plot in figure 10.5. In this figure, a dimensionless parameter combining
the Keulegan-Carpenter numbers and the reduced velocities is used:

KC,. = KC_+KC_+Vr +Vr, (10.3)

Ic

Figure 10.5a shows the drag coefficient values obtained from all test runs as a function of KC,-.
Given the fact that only one dimensionless parameter is used in this figure, the results are
consistent for the different test cases. The regression lines for the various test series show only
small differences but there is a lot of scatter around the regression line(s), especially for low
values of KC;,. A similar outcome is observed for the inertia coefficient values in figure 10.5b.
The heavy solid line in each of these plots is a regression line through all data points regardless
of the type of test.

In addition to above comparisons, the force coefficients obtained from all tests are plotted versus
KC,, for various reduced velocity values (V7,,) in figure 10.6. The behaviour of the coefficients
with these two nondimensional parameters is very similar and meaningful; it appears that KC,,
and Vr,, are adequate to determine the force coefficients for all flow conditions studied in the
present work.

10. 6 Application of the Linear Universal Model

Substituting the linear universal model (equation 10.2) into the equation 8.1 gives a linearised
equation of motion:

nD? . mD? .
pC,, 4 —Tp(CMﬂ~l)x (10.4)

m¥ +cx +kx = —;—pDCDrI(VH;m X )V ru-¥)+

This can be rearranged as:
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2
nf PCypth (10.5)

m X +[c+%pDC (V+u, +x )X +kx = %pDCD,,(V*ru"l X )V +ru)+

where m, is total mass per unit length including the added mass

nD?

m,=m+p «

D (10.6)
Equation 10.5 is a linear equation with constant coefficients, although there is still a relatively
minor degree of iteration involved since the coefficient of the velocity dependent term on the left
hand side involves the maximum of the cylinder oscillating velocity %,, which in fact depends on
the solution of the equation of motion 10.5. However, this is significantly different from iteration
at each and every time step for the nonlinear relative velocity model 10.1.

It should be noted that other linearised solutions often involve time-dependent coefficients; in
practice these solutions are typically approximated by eliminating the time-dependent
coefficients.

The structural damping factor ¢ may be replaced by a quantity that is proportional to the
structural dimensionless damping factor £; ¢ = 2 m £, w,, where w, is the natural frequency of
the structure. One may then restate equation 10.5 in terms of a total damping &, as:

2
“i’ PCyt (10.7)

m, % +2mEW X +kx = %pDCD’,(Vwm +X )V +u) +

where £, is the sum of structural and fluid damping components:

g -gm , ConPPU T T (10.8)
ml

4m,w
n

The second term in equation 10.8 is the fluid damping; it increases with the amplitude of the
relative velocity.

As already said, equation 10.7 is a linear ordinary differential equation with constant coefficients.
It can be solved for the response of the structure by adopting an iterative procedure as follows:

Assume or estimate the maximum response value for the structure

Calculate the maximum structure velocity x,,,.

Determine the force coefficients from the available data.

Solve equation 10.7 exactly to determine the structural response.

Compare the calculated response to the estimated one. If the difference between these is
more than a desired value, then select a corrected maximum response value.

5. Repeat steps one through four until a good match for the response is reached.

SN =

10.6 Conclusions: Is a Universal Model Possible?

Evidence has been produced which supports that a universal load model in which the force
coefficients depend on some general dimensionless parameters is indeed possible.




The results strongly suggest that the linear version of the relative velocity extension of the
Morison equation is applicable to all test cases reported in this dissertation. This model, which
is linear in its practical application, predicts the hydrodynamic force as well as (or even better
than) the full quadratic relative velocity form.

The results further suggest that the appropriate nondimensional parameters for characterising the
force coefficients for a combined flow condition are:

1.
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A general Keulegan-Carpenter number which can be defined as:
um TW + x’m TO

KC =KC +KC =————— Or
ow 3 w D

Viu )T, +(V +5 )T
KC.=KC +KC +Vr +Vr ()T, LT
4 w 4 w D

The ratio between the (relative) oscillatory velocity and the steady current velocity,

X . .
defined as: v, = or a combined reduced velocity such as:
VT, +V T,
Ve =Vr +Vr, =—"—2
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CHAPTER 11

Conclusions and Recommendations

11.1 General

The present study was undertaken to improve the knowledge of total hydrodynamic interaction
between a fluid flow (wave and current) on the one hand and slender marine structures on the
other. The experimental work has been an attempt to fill some of the vast multi-dimensional
parameter space formed by the single mode cases of current only, waves only and oscillation
only.

The present experimental work has the following advantages compared to earlier studies:

- All possible flow conditions (that the available laboratory facilities allowed) have been
included.

- The same apparatus and test setup have been used for all test cases; any possible systematic
error is therefore common to all tests.

- Wide ranges of important dimensionless parameters have been covered.

The specific conclusions corresponding to various test cases have been presented at the end of
each relevant chapter. However, the essential overall conclusions of the work will be stated in
the next section.

11.2 Essential Conclusions

To the best of the author’s knowledge, the present work contains the only laboratory-scale results
for a combined flow field of waves-current-oscillation. In addition to the presentation of results
for the actual force coefficients, computational load models and models for the hydrodynamic
interaction forces for various test cases are evaluated against measurements.

It is hoped that these results, combined with other important ideas will help engineers to use the
available experimental data for estimating hydrodynamic interactions between slender cylinders
and a combined waves and current flow field.

11.2.1 Evaluations of the In-line Load Models

Various existing and postulated load models have been examined within the present work. These
models are mostly extensions of the Morison equation based on two well-known concepts: the
independent flow fields approach (absolute velocity model) and the relative velocity approach.
Furthermore, linearised forms of the extended Morison equation have been evaluated to
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determine the validity of such linearised forms. The results of these evaluations are summarised
in the following sections.

11.2.1.1 Absolute versus Relative Velocity Model

The suitability of load models based on the assumption of independent flow fields (absolute
velocity models) and relative velocity approaches have been evaluated using the following
criteria:

- Direct indications from the data
- Quality of fit of the load models
- Coefficient stability

The behaviour of the measured in-line forces against various combinations of variables has been
studied to see what the data themselves without any recourse to a force model indicate. The
statistical values of the measured forces were used for this purpose. The most important results
are as follows:

- The maximum in-line force on the oscillating cylinder in a combined flow field is not equal
to the sum of the maximum in-line forces caused by each degenerate flow field separately.

- There is a poor correlation between the steady component of the measured forces Fm and the
steady velocity component J2, while there are distinct correlations between Fin and combined
velocity variables that include the oscillatory velocities, u,, and x,,.

- Good correlations are obtained between the root mean square of the oscillatory component
of the in-line measured force, F,,,,, and velocities that include the steady current velocity.

- The three above observations imply that a proper load model for predicting hydrodynamic
interaction force in the combined flow field must include all velocity components. A model
based on the relative velocity concept can describe the hydrodynamic interaction of a cylinder
with a combined flow field; the independent flow field approach cannot lead to a proper
solution.

Even though load models based on the independent flow fields approach were considered
improper solutions in the light of direct observations from the data, some extensions of the
Morison equation based on this approach have nevertheless been examined. As expected, the
results show that these models do not form appropriate load models for a combined flow field
for the following reasons:

- The basic assumption made in establishing the absolute velocity form of the modified
Morison equation does not seem valid. Indeed, using degenerate coefficients corresponding
to two independent flow fields leads to a poor force prediction.

- The absolute velocity models predict the measured forces much less consistently than the
relative velocity models when smoothed coefficients are used.

- The force coefficients for the absolute velocity models exhibit more scatter and unusually
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large values that do not resemble values for simple flow conditions.

In contrast, models based on the relative velocity approach give a much better quality of fit; they
have relatively stable coefficients and the coefficient values resemble those for simpler test cases.
Another advantage of the relative velocity models is that one deals with fewer coefficients in
these models.

11.2.1.2 Linear versus Quadratic Form

Attempts have been made to examine linearised forms of the Morison equation for use with
various flow fields. The hydrodynamic coefficients for such linearised forms have been
determined directly from the data. It has been found that a postulated linear form of the
generalised Morison equation based on the relative velocity approach gives the same (or even
better) quality of fit as the quadratic form, if the associated value of the linearised drag
coefficient is used:

1 ) . TD? . mD? .
F = EpD C,,V+u, +xm)(V +y-x)+ 2 pCeru —Tp(CMI' -)x
where
V' = the steady current velocity,
u, 4 = instantaneous orbital velocity and acceleration,
u, = amplitude of orbital velocity,

X, ¥ = instantaneous cylinder velocity and acceleration,
. = amplitude of cylinder velocity,
Cpyrs Cygr = drag and inertia coefficients in the linearised model.

(o8

Besides the quality of fit, this linear relative velocity model has the following advantages:

- In contrast to common practice in linearised solutions, there is no need for approximation
or simplification.

- The velocity terms involved are easy to estimate.

- Since it is linear in application, it facilitates a dynamic analysis.

11.2.2 Possibility of a Universal Model

One objective of the present work has been to investigate the possibility of a universal load
model applicable to all possible flow conditions. This universal load model should degenerate
to simpler flow conditions and coefficients should be dependent on common and universal
dimensionless parameters. Furthermore, the hydrodynamic coefficients for such a model should
be stable and correlate well with the relevant parameters. The results presented here support the
possibility of such a universal load model in which the force coefficients depend on some general
dimensionless parameters. Both the relative velocity extension of the Morison equation and the
linear version of this model satisfy these criteria for a universal model in the flow conditions
considered. The results strongly suggest that the linear version of the relative velocity form of
the Morison equation extension is applicable to all test cases reported in this dissertation.




11.2.3 Hydrodynamic Coefficients

The following more specific results have been obtained from the present experimental study
concerning the hydrodynamic coefficients of the promising load models (relative velocity and
the linear relative velocity models):

- The results have shown that there is a linear relationship between the drag coefficients for the
two promising load models, C,,, = 0.78C,,, ; the inertia coefficients are almost identical,
CM/r = CMr‘

- The drag and inertia coefficients for a combined flow field are significantly different from
those for a simple flow field when plotted versus conventional dimensionless parameters. This
implies that the extension of the Morison equation is not an aspect of the choice of a reference
system alone; a different set of coefficients would have to be used to reflect the combination
of the two separate flow effects.

- Generally the drag coefficient for the relative velocity extension of the Morison equation is
somewhat smaller - in the rage of dimensionless parameters considered - than that for the
original Morison equation.

- Inthe light of the above conclusion, it is obvious that the engineering practice of using the
coefficients for regular waves to describe hydrodynamic forces from a combined waves and
current flow field cannot be justified.

- There is no single parameter with which the drag and inertia coefficients may be correlated
without the need for other parameters. However, the correlation between the force coefficients
and some parameters are better than with other parameters. The results suggest that the
appropriate nondimensional parameters for a combined flow condition might be a general
(total) Keulegan-Carpenter number KC,. and the velocity ratio V,,,;, (or the reduced velocity
Vr,.).

11.2.4 Transverse Force Coefficients

Due to time and space limitations, the transverse force has not been studied fully in this
dissertation. However, some results have been presented to demonstrate the significance of the
lift force in a combined flow field. The main conclusions of the transverse force analyses are
summarised below:

- The maximum lift force is of the same order of magnitude as the in-line force for intermediate
Keulegan-Carpenter numbers in a combined flow field.

- The frequency of the lift force £, in oscillatory flow plus current depends on the total (relative)
velocity, and increases with increasing (total) Keulegan-Carpenter number, KC

ov*

- Various maximum and rms lift force coefficients have been calculated by normalising the
measured transverse forces. For the test case of cylinder oscillation in waves, the coefficients
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normalised by the relative velocity term (4-x ), show less scatter than other normalisations.

- Both the peak lift coefficient C,,,,, and the rms lift force coefficient C,,,,, depend on both the
Keulegan-Carpenter number and the reduced velocity or the velocity ratio. They are generally
smaller than the corresponding in-line force cocfficients.

11.3 Recommendations for Future Work

There are several continuations of this work that can be of interest. The work should be
continued along two paths: First further analysis of the available data is required to investigate
the validity of the main conclusions presented here for other tested flow conditions, i.e. in-line
cylinder oscillation in irregular waves and transverse cylinder oscillation in waves and/or
current. Then, some new experiments are to be carried out to extend the range of the
dimensionless parameters and to include other flow and cylinder motion conditions.

11.3.1 Further Data Analysis

The test series matrix includes 17 different test cases ( 908 test runs) of which only seven cases
(503 test runs) have been studied for this dissertation. Table 11.1 shows particulars of the data
analysis performed. Not only should the remaining test series be analysed, some additional work
on the test series studied is also needed. For example, the lift force for in-line cylinder
oscillations has not been treated completely yet. Further information on the behaviour of the lift
force in the combined flow fields is very important.

Further parametric analysis of the coefficients obtained may yield a better means of presenting
these data in a more universal way. In the ideal case a coefficient such as Cj, could be plotted
against some universal parameter as a single curve.

Due to randomness of the sea, it is vital to analyse the data for the test series that include
irregular waves in order to investigate the suitability of results from regular waves for application
to more realistic flow conditions.

Flow Conditions Cylinder Oscillations
None In-line Transverse

In-line Lift Force
Still water Preliminary
Current only Preliminary
Regular waves only Preliminary
Regular waves plus current Preliminary
Irregular waves only Preliminary | Preliminary | Preliminary | Preliminary
Irregular waves plus current Preliminary | Preliminary | Preliminary | Preliminary

Table 11.1 Overview of Data Analysis




The results of transverse oscillation tests are very important for a better understanding of the
vortex induced vibration of slender cylinders in waves and current flow field. These data have
not been studied at all.

11.3.2 New Experiments

Even though a full matrix of experiment has been carried out, there are further improvements and
extensions that are possible. The experimental setup can be modified to enable newer and more
complete testing programmes. Some of the suggestions in the section that follows relate to
extending capabilities of the test apparatus.

11.3.2.1 Extending Nondimensional Parameter Ranges

As discussed in chapter 2, achieving a wider range of parameters in the present experimental
study was not possible; the experimental facilities permitted only subcritical - and for some cases
critical - flow conditions; higher oscillation frequencies - important for modeling the lock-in
phenomenon - were not possible, for example. Since combinations of the relevant parameters are
very important for comparison of experimental data and real situations, a complete test
programme must include a wider range of such combinations, see sections 2.5 and 4.7.

A new oscillator is needed to be able to model significant physical phenomena and to cover
wider ranges of governing parameters. General specifications of the oscillator needed have been
summarised in Shafiee-far (1995a).

11.3.2.2 Combined In-line and Transverse Oscillations

It is known that vortex shedding imposes two sets of oscillating forces on cylinders: an
oscillating transverse lift force at the vortex shedding frequency and a smaller oscillating in-line
drag force at twice the frequency of shedding. For a long slender cylinder, the predominant
response is in the transverse direction, but there is an oscillating response in the in-line direction
as well. The overall motion often resembles a figure eight, "8", when viewed in the axial
direction.

Attempts to carry out model scale forced-oscillation tests with combined in-line and transverse
oscillations are rare. However, it should not be difficult to design and construct an apparatus
capable of combined motions, preferably allowing both regular and irregular oscillations in both
directions. The test cylinder should be mounted vertically on the oscillator in such a way that the
cylinder can be oscillated in any arbitrary direction in the horizontal plane. The oscillator should
have the following specifications:

- high frequency (up to 3 Hz)
- simultaneous oscillations in the x and y directions

- regular and irregular oscillations

The oscillator should handle an appropriate combination of amplitude and frequency in order to
cover some interesting ranges of nondimensional parameters - including the lock-in condition.
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Notation and Symbols

Roman Letters

C LrmsR
Cl.rm.\Rl

Cl,nmR.’

C,,

C A

. Oscillation amplitude

: Towing tank width

. Structural damping

: Added mass coefficient

: Added mass coefficient (linearised Morison equation)

: Added mass coefficient in absolute velocity model (combined flow fields)

: Added mass coefficient due to cylinder oscillation in the combined flow fields

: Added-mass coefficient in relative velocity model (combined flow fields)

: Total added mass coefficient (from harmonic analysis)

. Drag coefficient

: Mean drag coefficient

: Oscillatory drag coefficient due to the cylinder oscillation in combined flow fields

: Drag coefficient in steady currents

: Oscillatory drag coefficient due to waves in the combined flow fields

: Total drag coefficient (from harmonic analysis)

: Drag coefficient (linearised Morison equation)

: Oscillating drag coefficient in relative velocity model

: Oscillating drag coefficient in linear version of relative velocity model

. Oscillatory drag coefficient in absolute velocity model

. Drag coefficient in hybrid model (equation 9.7)

: The nth added-mass coefficient in harmonic load model

: The nth drag coefficient in harmonic load model

: Lift force coefficient

: Peak lift force coefficient
-+ Peak lift force coefficient in a combined flow field (equations 8.15 and 9.10)
: Peak lift force coefficient in a combined flow field (equations 8.16 and 9.11)
: RMS lift force coefficient
-+ RMS lift force coefficient in a combined flow field (equations 8.17)

Cisr @ RMS lift force coefficient in a combined cylinder oscillation, waves and current flow

field, Fy,, normalised by (V+u,,+x,) (equation 9.12)

: RMS lift force coefficient in a combined cylinder oscillation, waves and current flow

Lrms12 +

field, Fy,., normalised by (V+u,,, +%,,.) (equation 9.13)

: RMS lift force coefficient in a combined cylinder oscillation and waves flow field,

Fy,,, normalised by (u-%),,,,” (equations 8.18)

: RMS lift force coefficient in a combined cylinder oscillation, waves and current flow

field, Fy,,, normalised by (V+u-x),... (equations 9.14)

: RMS lift force coefficient in a combined cylinder oscillation, waves and current flow

field, Fy,,, normalised by (V+u-%),,,> (equations 9.15)

. Inertia coefficient
. Inertia coefficient due to waves in the combined flow fields
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. Inertia coefficient in relative velocity model

. Inertia coefficient in linear version of relative velocity model
: Total inertia coefficient (from harmonic analysis)

: Inertia coefficient in absolute velocity model

. Inertia coefficient in hybrid model (equation 9.7)

: Water depth

: Cylinder diameter

: Maximum of the in-line measured force

: Root mean square of the total in-line measured force

: Mean of the in-line measured force

: Root mean square of the oscillatory component of the in-line measured force
: Maximum of the transverse measured force

. Root mean square of the transverse measured force

: Strouhal frequency

: Oscillation frequency

: Wave frequency

: Acceleration due to gravity

: Wave height

: Significant wave height

1 Wave number, structural stiffness

: Nondimensional parameter proportional to acceleration terms of cylinder oscillation

and waves (= uT,%/D)

: Keulegan-Carpenter number

: Keulegan-Carpenter number for waves (=u,,T,/D)

. Keulegan-Carpenter number for cylinder oscillations (=%,,7,/D)

: Keulegan-Carpenter number, total flow for current and oscillation (=(V+%,,)7./D)

: Keulegan-Carpenter number, total flow for current and waves (=(V + u,)T,/D)

: Sum of the Keulegan-Carpenter numbers for degenerate flows (=KC,+KC,,)

: Keulegan-Carpenter number for cylinder oscillations in waves and current flow field

owvo *

based on cylinder oscillation period (=(V+u,+%,)T./D)

. Keulegan-Carpenter number for cylinder oscillations in waves and current flow field

owvw -

based on wave period (=(V+u,,+x,)T,/D)

: Keulegan-Carpenter number, relative flow (=(u-%),,,. T./D)

: Keulegan-Carpenter number, total flow for oscillation and wave (=(u,+x,)T,/D)
: Combined Keulegan-Carpenter number (= KC,+KC,,+Vr +Vr,)

: Mass

: Added mass

: Reynolds number

: Reynolds number due to waves (=u, D/v)

¢ Reynolds number due to cylinder oscillation (=x,,D/v)

: Reynolds number due to total flow of oscillation and current (=(V+%,)D/v)

: Reynolds number due to total flow of oscillation, waves and current (=(V+u,,+%,)D/v)
: Reynolds number due to total flow of waves and current (=(V+u,)D/v)

: Reynolds number due to total flow of oscillation and waves (=(u,+ %,)D/v)

: Reynolds number, relative flow (=( u-x),,,, D/v)

: distance from the bed
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: Strouhal number for steady current, (= £, D/V)

: Strouhal number for oscillatory flow, (= f, D/x,,)

. Strouhal number for waves, (= f, D/u,,)

. Strouhal number for total flow - oscillatory flow plus steady current, (=f,DAV+x,,))

. Strouhal number for total flow - waves plus steady current, (= f, DAV+u,.))

. The square of the Pearson product moment correlation coefficient through data points,

see appendix V.

;. time

. Mean zerocrossing period

. Oscillation period

: Relative (motion) period

. Peak spectral period

: Wave period

: Velocity of ambient flow, water particle horizontal velocity due to waves

: Amplitude of water particle horizontal velocity due to waves

. Water particle horizontal acceleration due to waves

. Amplitude of water particle horizontal acceleration due to waves

. Towing speed or current velocity

: Ratio of the maximum (total) oscillatory velocity to the steady velocity (=(u,,+x,,)/V)
: Reduced velocity, (Vr = VT,/D or Vr = VT,/D)

: Reduced velocity of the steady flow in comparison with the cylinder oscillation
. Total reduced velocity (= Vr,+Vr,)

: Reduced velocity of the steady flow in comparison with flow due to the waves
: Cylinder motion

: Amplitude parameter, (4/D)

: Velocity of cylinder motion

: Acceleration of cylinder motion

: Maximum cylinder oscillatory velocity

: Maximum cylinder acceleration

: Vertical co-ordinate from mean still water level upward

Greek Letters

C €6 <O >3 N

app

e

. Frequency parameter, (=Re/KC = I /Tv, or =Re /KC, = ¥ /T,v)
: Goodness-of-fit parameter

. Wave surface elevation

: Wave phase angle (= kx - wt)

: Wave length

: Density of water

: Kinematic viscosity

: Phase angle, and potential function

: Phase angle

: Angular frequency (=21/T)

: Apparent wave angular frequency in a fixed frame of reference in waves plus

current flow field (w,,,=w,+kV)

: Natural frequency of structure




164

: Wave angular frequency (=271t/T,)
: Structural dimensionless damping factor
: Sum of structural and fluid damping components
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APPENDIX 1

Techniques for Determining the Hydrodynamic Coefficients

The determination of hydrodynamic forces on slender cylinders is commonly carried out using
the Morison equation, which requires the use of empirical drag and inertia coefficients. The
selection of these coefficients for use in hydrodynamic force calculations is an important concern
related to the design of offshore structures. Knowledge of these coefficients has developed over
the last decades from laboratory experiments and field tests.

In a typical investigation of fluid loading on a slender cylinder, the force on the cylinder, Fm, and
the ambient flow velocity and/or acceleration, v and &, are measured; then C,, and C,, in the
Morison equation are determined using a suitable method of analysis. Various methods have
been purposed and used in the past to estimate C,, and C,, values. However, the suitability of
these methods has not received enough attention.

A summary of methods of estimating C, and C,, values from regular and random waves is
given below.

I.1 Coefficients Determination Techniques from Regular Waves

From various suggested methods, two methods are commonly used to determine force
coefficients in waves or oscillatory flows. These methods are:

1. Least Squares Method: a least squares fitting of the two coefficients to the force;

2. Fourier averaged method: drag and inertia coefficients are related to the first two
Fourier coefficients at the fundamental oscillatory frequency.

I.1.1 Least Squares Method

The least squares method is the most popular method for estimating the constant force
coefficients Cp, and C,, by minimizing the square of the difference between the time series of
measured and predicted force. Considering the original Morison equation, the error term is:

nD? .
U

1
e = F, -F,=F, —ECDpDu}ut -Cyp
where F,, is the known measured force.

Squaring both sides of this equation and taking averages gives:

4 —
? pZC;u'Z—”f pC F i

- 2+
e - m

— 2
PDC u* - pDC,F, ulul + %npzD’cDCMu|u|u‘+"
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The simultaneous solution of these equations leads to the following relation:

2.S3S4—S2Ss c - 4 5,8, 8,8;

C =
D 2 M 2 2
pD 58,8, pnD S; ~8,8,

The error between the measured and the calculated forces - particularly in the neighbourhood
of the maximum forces - may be further minimised by choosing the square of the measured
forces as the weighting factor in the least-squares method:

2
e’ = F,(F, -F)

Then one can find the force coefficients from the following relations:

2 8,8, -8,8

_ 3w 4w 2w Sw
cp, - Y A
SiwSaw = S2w
c = 4 _S2wS3w hslwsiw
an2 SZZW —Sle4w
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where
SIW:F;u" 2
. S,, = Fnu’
S,, = Foululu 3
3 S, =F, i
S,, = F,ulu|

Above solutions for determining the force coefficients - for original Morison equation - can
also be used for the relative velocity form of the Morison equation provided that the velocity
term u is exchanged with the relative velocity term. However, these solutions are not
straightforward to determine the force coefficients for other forms of the Morison equation
(those have more than two terms). One may obtain force coefficients for those forms by
minimising the error term (e) using an iterative numerical process. Such a process has been
implemented in the present work for determining the force coefficient for various forms of
Morison equation extensions.

1.2 Fourier-averaged Coefficients

The Fourier-averaged drag and inertia coefficients over a period of time may be calculated by
multiplying both sides of the Morison equation once with # and once with & to yield:

T
2 fF(t)u(t)dt
Cp = T°
pD [lu|[u(e))dt
0
,
4 [F(Ou(r)dt
Y
C, = .
pmD? [Tu(n))dt
!

The force coefficients may also be estimated via individual Fourier-coefficient analysis. From
basic Fourier series theory a wave force F(t) can be represented as a series:

F(f)=a,+ Eancos(iT"'y ansin(z’;’")
n=1

n=1

where the coefficients ay, a, and b, are given by

1 T
a,=— [F(t)dt
T
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2 T
a,== IF(f)cos( Ydt
T o

21tnt)dt
T

2 7
b, == [F(t)sin(
T o

Provided that a, and b, are zero for n > 3, one may deduce C), and C,, for a cylinder in harmonic
oscillatory flow from a, and 5,

3T a]

C,= .

8 05pDu’

b

C = 1

" 025pnD%

where u, and §, are amplitude of water particle horizontal velocity and acceleration,
respectively.

The drag and inertia coefficients may also be determined based on equivalent energy
dissipation, see Otter (1992). It has been demonstrated analytically that the ratio of the drag
coefficient obtained by this method to one obtained via the least squares technique equals
27m2/256 = 1.041.

I.1.3 Other Suggested Methods

Besides the above methods other methods have also been suggested by various researchers.
Some of these methods are briefly explained below.

Bearman et al. (1985) have shown that the force and velocity signals could be well represented
by taking the first six Fourier components. Since the time average u(t)|u(t)|is zero the drag
and inertia coefficients can be evaluated from the following expressions:

¢ = 2Fu@
pD |u(t)]?

P OYT0)
pD ?|u(r)|?

Coefficients derived from these relationships provided a better fit to the force signal than those
from using just the first order components. C,, and C,, are calculated on a wave-by-wave basis
and are averaged over the length of the record.

Applying the fact that u|u|G is also theoretically zero over a wave cycle, Klopman and
Kostense (1990) have found the following relations:
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Najafian and Burros (1994) have introduced the ‘maximum correlation method’, a method that
predicts force coefficients with variances of the observed forces to be equal to those of
computed forces.

1.2 Coefficients Determination Techniques from Random Waves

In random waves, hydrodynamic coefficients have been determined on a wave-by-wave basis
as for regular waves or by analysis of the entire wave record. In the latter case, the relatively
long records of measured forces and water particle kinematics (in the order of 20 min) are
assumed to be samples of stationary random processes, Borgman (1972).

A number of methods exist for determination of the drag and inertia coefficients in random
waves. These methods may be classified into:

1. Those that provide a single pair of force coefficients for a given set of signals.
2. Those that provide variable coefficients.

Isaacson et al. (1991) have referred to the following methods for analysing random wave force
data:

Constant Coefficients:

. least squares fit of the force time series

. least squares fit of the force spectrum

. method of moments applied to the force probability distribution

. least squares fit of the peak force

. method of moments applied to the peak force probability distribution

. method of maximum likelihood applied to the peak force probability distribution

AN BN

Variable Coefficients:

7. least-squares fit on a wave-by-wave basis
8. cross-spectrum fitting

Some of these methods are based on specific assumptions such as a linearisation of the drag
force or a narrow-banded wave spectrum. The methods involving the force spectrum (2 and
8) are generally based on linearisation of the drag term in the Morison equation. On the other
hand the methods involving peak force probability distributions (5 and 6) generally assume that
the wave height follows a Rayleigh distribution, which is itself based on the assumption of a
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narrow-banded wave spectrum. Since the Rayleigh distribution may be suitable even for waves
which are not narrow-banded, this limitation may not be very severe. The remaining methods
(1, 3, 4 and 7) do not require either assumption.

Isaacson et al. (1991) have shown that the least squares fit of the entire time series is the most
reliable method with the least scatter in the estimated force coefficients.

Besides the methods mentioned above, there are a number of other methods. For example,
Bishop (1979) has developed an analysis technique which yields a mean square wave force
related to similar parameters for the wave kinematics:

F? = A%u*+B%4?

A and B contain the drag and inertia force coefficients:

4 = \[c pD

T
B=cC, p:Dz

The values of the force coefficients are obtained by least squares fitting to data sets.

174




APPENDIX I1
List of Test Runs

1. Towing the Cylinder in Calm Water

V(m/s) A(m) To (s) Tw (s) Hw Run Date
02 - - 43 24/6/1994
0.2 - - - - 460 10/8/1994
02 - - - - 904 8/8/1994
0.35 - - - - 44 24/6/1994
0.35 - - - - 227 11/7/1994
0.5 - - - - 36 24/6/1994
0.5 - - - - 40 24/6/1994
0.5 - - - - S11 19/7/1994
0.75 - - - - 41 24/6/1994
0.75 - - - - 228 11/7/1994

1 - - - - 37 24/6/1994
1 - - - - 38 24/6/1994
1 - - - - 39 24/6/1994
1 - - - - 79 27/6/1994
1 - - - - 194 29/6/1994
1 - - - - 195 29/6/1994
1 - - - - 196 29/6/1994
1 - - - - 230 11/7/1994
1 - - - - 231 11/7/1994
1 - - - - 241 12/7/1994
1 - - - - 264 13/7/1994
1 - - - - 325 14/7/1994
1 - - - - 415 15/7/1994
1 - - - - 441 10/8/1994
1 - - - - 442 10/8/1994
1 - - - - 461 11/8/1994
| - - - - 484 12/8/1994
1 - - - - 510 19/7/1994
1 - - - - 553 20/7/1994
1 - - - - 592 21/7/1994
1 - - - - 651 22/7/1994
1 - - - - 704 25/7/1994
1 - - - - 749 26/7/1994
1 - - - - 750 26/7/1994
1 - - - - 785 27/7/19%4
1 - - - - 814 28/7/1994
1 - - - - 822 29/7/1994
1 - - - - 858 1/8/1994
1 - - - - 867 2/8/1994
1 - - - - 875 2/8/1994
1 - - - - 880 3/8/1994
1 - - - - 887 4/8/1994
1 - - - - 903 8/8/1994
1 - - - - 916 9/8/1994
1.5 - - - - 42 24/6/1994
1.5 - - - - 229 11/7/1994




2. Fixed Cylinder in Waves

V(m/s) A (m) To (s) Tw (s) Hw Run date
- - - 1 H1 290 13/7
- - - 1 H1 587 20/7
- - - 1 H1 593 21/7
- - - 1 HI 689 2217
- - - 1 H1 705 2577
- - - 1 H1 876 2/8
- - - 1.5 H2 242 1277
- - - 1.5 H2 416 15/7
- - - 1.5 H2 566 20/7
- - - 1.5 H2 668 22/7
- - - 1.5 H2 756 26/7
- - - 1.5 H2 787 2717
- - - 1.5 H2 815 28/7
- - - 1.5 H2 828 29/7
- - - 1.5 H2 868" 2/8
- - - 2 H3 271 13/7
- - - 2 H3 351 14/7
- - - 2 H3 417 15/7
- - - 2 H3 537 19/7
- - - 2 H3 555 20/7
- - - 2 H3 630 21/7
- - - 2 H3 652 22/7
- - - 2 H3 716 25/7
- - - 2 H3 761 26/7
- - - 2 H3 771 26/7
- - - 2 H3 772 26/7
- - - 2 H3 840 29/7
- - - H4 456 10/8
- - - H4 881 3/8
- - - H4 929 9/8

3. Oscillation in Calm Water
A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 0.05 0.504 - - 80 27/6
0.5 0.05 0.505 - - 233 11/7
0.5 0.05 0.505 - - 234 /7
0.5 0.05 0.525 - - 46 24/6
0.5 0.05 0.571 - - 73 24/6
0.5 0.05 0.667 - - 265 13/7
0.5 0.05 0.672 - - 67 24/6
0.5 0.05 0.69 - - 47 24/6
0.5 0.05 0.807 - - 48 24/6
0.5 0.05 0.807 - - 61 24/6
0.5 0.05 1 - - 488 12/8
0.5 0.05 1 ~ - 267 13/7
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A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 0.05 1 - - 485 12/8
0.5 0.05 1.003 - - 49 24/6
0.5 0.05 1.394 - - 2 24/6
0.5 0.05 1.5 - - 269 13/7
0.5 0.05 2.136 - - 45 24/6
0.75 0.05 0.667 - - 448 10/8
0.75 0.05 1 - - 444 10/8
0.75 0.05 2 - - 443 10/8
1 0.05 0.566 - - 113 27/6
1 0.05 0.667 - - 326 14/7
1 0.05 0.667 - - 452 10/8
1 0.05 0.668 - - 106 27/6
1 0.05 0.821 - - 99 2716
1 0.05 1 - - 316 13/7
1 0.05 1 - - 466 11/8
1 0.05 1 - - 462 11/8
1 0.05 1.001 - - 92 27/6
1
1
1




4. Cylinder Oscillating in Longitudinal Direction

V (m/s) A (m) To (s) Tw (s) Hw Run Date
- 0.03 2 - - 512 19/7
- 0.03 1.5 - - 513 19/7
- 0.03 i - - 514 19/7
- 0.03 0.668 - - 520 19/7
- 0.03 0.5 - - 525 19/7
- 0.03 0.667 - - 554 20/7
- 0.06 0.667 - - 606 2177
- 0.06 1 - - 612 2117
- 0.06 1.5 - - 618 2177
- 0.06 2 - - 624 2177
- 0.06 1 - - 698 22/7
- 0.06 0.667 - - 706 2517
- 0.09 1.5 - - 711 25/7
- 0.09 1.5 - - 721 25/7
- 0.09 2 - - 729 2517
- 0.12 1 - - 751 26/7
- 0.12 1.5 - - 766 26/7
- 0.12 2 - - 781 26/7
- 0.15 2 - - 796 27/7
- 0.15 1.5 - - 809 27/7
- 0.18 2 - - 823 29/7
- 0.18 1.5 - - 832 29/7
- 0.18 1.25 - - 846 29/7
- 0.24 2 - - 850 29/7
- 0.21 2 - - 862 1/8
- 0.03 0.667 - - 888 4/8
- 0.06 0.667 - - 890 4/8
- 0.045 0.667 - - 906 8/8
- 0.045 1 - - 912 8/8
- 0.045 1.5 - - 917 9/8
- 0.045 2 - - 921 9/8

5. Towing the Cylinder in Waves (Regular and Irregular)

V(m/s) A (m) To (s) Tw (s) Hw Run date
0.05 - - 2 H3 272 13/7
0.05 - - 1.5 H2 243 12/7

0.2 - - 1 H1 291 13/7
0.2 - - H4 459 10/8
02 - - 2 H3 273 13/7
0.2 - - 1.5 H2 244 12/7
0.35 - - 2 H3 274 13/7
0.35 - - 1 HI1 292 13/7
0.35 - - 1.5 H2 245 12/7
0.5 - - 1 Hl 293 13/7
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A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 - - 2 H3 275 13/7
0.5 - - 1.5 H2 246 12/7
0.75 - - 1.5 H2 247 12/7
0.75 - - 2 H3 276 13/7
02 - - H4 898 5/8
0.2 - - H4 885 3/8
6. Transverse Oscillation while Translating the Cylinder
A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 0.2 0.504 - - 81 27/6
0.5 02 0.506 - - 235 11/7
0.5 0.2 0.571 - - 74 24/6
0.5 0.2 0.667 - - 500 12/8
0.5 0.2 0.672 - - 68 24/6
0.5 02 0.809 - - 62 24/6
0.5 0.2 1 - - 486 12/8
0.5 0.2 1 - - 493 12/8
0.5 0.2 1.003 - - 50 24/6
0.5 0.2 1.5 - - 499 12/8
0.5 0.2 2 - - 498 12/8
0.5 0.35 0.504 - - 82 27/6
0.5 0.35 0.506 - - 236 1177
0.5 0.35 0.571 - - 75 24/6
0.5 0.35 0.672 - - 69 24/6
0.5 0.35 0.809 - - 63 24/6
0.5 0.35 1.003 - - 51 24/6
0.5 0.35 1.394 - - 57 24/6
0.5 0.5 0.504 - - 83 27/6
0.5 0.5 0.506 - - 237 11/7
0.5 0.5 0.571 - - 76 24/6
0.5 0.5 0.667 - - 266 1377
0.5 0.5 0.672 - - 70 24/6
0.5 0.5 0.809 - - 64 24/6
0.5 0.5 1 - - 268 13/7
0.5 0.5 1 - - 487 12/8
0.5 0.5 1.003 - - 52 24/6
0.5 0.5 1.394 - - 58 24/6
0.5 0.5 1.5 - - 270 13/7
0.5 0.75 0.504 - - 84 27/6
0.5 0.75 0.506 - - 238 1177
0.5 0.75 0.568 - - 77 24/6
0.5 0.75 0.672 - - 71 24/6
0.5 0.75 0.809 - - 65 24/6
0.5 0.75 1.003 - - 53 24/6
0.5 0.75 1.394 - - 59 24/6
0.5 1 0.503 - - 85 27/6
0.5 1 0.568 - - 78 24/6




A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 1 0.809 - - 66 24/6
0.5 1 0.506 - - 239 1177
0.5 1 1.003 - - 54 24/6
0.5 1 1.394 - - 60 24/6
0.5 1.25 0.503 - - 86 27/6
0.5 1.25 1.003 - - 55 24/6
0.75 02 0.667 - - 449 10/8
0.75 0.2 1 - - 445 10/8
0.75 0.35 0.667 - - 450 10/8
0.75 0.35 1 - - 446 10/8
0.75 0.5 0.667 - - 451 10/8
0.75 0.5 1 - - 447 10/8
1 0.2 0.566 - - 114 27/6
1 0.2 0.667 - - 453 10/8
1 0.2 0.667 - - 327 14/7
1 0.2 0.668 - - 107 27/6
1 0.2 0.81 - - 100 27/6
1 0.2 1 - - 463 11/8
1 0.2 1 - - 317 13/7
1 0.2 1.001 - - 93 27/6
1 0.2 1.353 - - 88 27/6
1 02 1.5 - - 469 11/8
1 0.2 1.5 - - 307 13/7
1 0.2 2 - - 476 11/8
1 0.35 0.566 - - 115 27/6
1 0.35 0.667 - - 454 10/8
1 035 0.667 - - 328 14/7
1 0.35 0.668 - - 108 27/6
1 0.35 0.808 - - 101 27/6
1 0.35 1 - - 318 13/7
1 0.35 1 - - 464 11/8
i 0.35 1.001 - - 94 27/6
I 0.35 1.353 - - 89 27/6
1 0.35 1.5 - - 470 11/8
1 0.35 1.5 - - 308 13/7
1 0.5 0.571 - - 116 27/6
1 0.5 0.667 - - 329 14/7
1 0.5 0.667 - - 455 10/8
1 0.5 0.668 - - 109 27/6
1 0.5 0.823 - - 102 27/6
1 0.5 1 - - 465 11/8
t 0.5 f - - 319 1377
1 0.5 1.001 - - 95 27/6
1 0.5 1.353 - - 90 27/6
| 0.5 1.5 - - 309 1377
1 0.5 1.5 - - 471 11/8
1 0.5 2 - - 477 9/8
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A/D V(m/s) To (s) Tw (s) Hw Run date
1 0.75 0.552 - - 117 27/6
1 0.75 0.667 - - 330 1477
] 0.75 0.668 - - 110 27/6
1 0.75 0.808 - - 103 27/6
| 0.75 0.997 - - 96 27/6
1 0.75 1 - - 320 13/7
1 0.75 1.353 - - 91 27/6
1 0.75 1.5 - - 472 11/8
1 0.75 1.5 - - 310 13/7
1 1 0.565 - - 118 27/6
1 1 0.668 - - 111 27/6
1 1 0.808 - - 104 27/6
1 1 0.99 - - 97 27/6
1 1.25 0.565 - - 119 27/6
1 1.25 0.668 - - 112 27/6
1 1.25 0.808 - - 105 27/6
1 1.25 0.998 - - 98 27/6
1 1.5 0.569 - - 120 27/6

1.5 0.2 0.811 - - 136 28/6

1.5 0.2 1 - - 365 14/7

1.5 0.2 1.002 - - 129 28/6




A/D V(m/s) To (s) Tw (s) Hw Run date
1.5 1.25 1.001 - - 134 28/6
2 02 ! - - 391 15/7
2 0.2 1.005 - - 167 28/6
2 0.2 1.2 - - 161 28/6
2 0.2 1.388 - - 155 28/6
2 0.2 1.5 - - 395 1577
2 02 1.696 - - 149 28/6
2 035 1 - - 392 15/7
2 035 1.005 - - 168 28/6
2 0.35 1.2 - - 162 28/6
2 0.35 1.388 - - 156 28/6
2 0.35 1.5 - - 396 15/7
2 0.35 1.696 - - 150 28/6
2 0.5 I - - 393 15/7
2 0.5 1.005 - - 169 28/6
2 0.5 1.2 - - 163 28/6
2 0.5 1.388 - - 157 28/6
2 0.5 1.5 - - 397 15/7
2 0.5 1.696 - - 151 28/6
2 0.75 1.017 - - 170 28/6
2 0.75 1.2 - - 164 28/6
2 0.75 1.388 - - 158 28/6
2 0.75 1.696 - - 152 28/6
2 1 1.003 - - 171 28/6
2 1 12 - - 165 28/6
2 1 1.388 - - 159 28/6
2 1 1.696 - - 153 28/6
2 1.25 1.084 - - 172 28/6
25 0.2 1.201 - - 188 28/6
25 02 1.39 - - 181 28/6
25 02 1.5 - - 429 15/7
25 0.2 1.7 - - 174 28/6
2.5 0.35 1.201 - - 189 28/6
2.5 0.35 1.39 - - 182 28/6
2.5 0.35 1.5 - - 430 15/7
2.5 0.35 1.7 - - 175 28/6
25 0.5 1.201 - - 190 28/6
2.5 0.5 1.39 - - 183 28/6
2.5 0.5 1.5 - - 431 15/7
25 0.5 1.675 - - 176 28/6
2.5 0.75 1.201 - - 191 28/6
2.5 0.75 1.39 - - 184 28/6
2.5 0.75 1.5 - - 432 15/7
2.5 0.75 1.7 - - 177 28/6
2.5 1 1.201 - - 192 28/6
2.5 1 1.39 - - 185 28/6
2.5 1.25 1.201 - - 193 28/6

182




A/D V(m/s) To (s) Tw (s) Hw Run date
2.5 1 1.7 - - 178 28/6
2.5 1.25 1.39 - - 186 28/6
2.5 1.25 1.7 - - 179 28/6
3 0.2 1.5 - - 419 15/7
3 0.35 1.5 - - 420 15/7
3 0.5 1.5 - - 421 15/7
3 0.75 1.5 - - 422 1577
4 0.2 2 - - 480 9/8
4 0.35 2 - - 481 9/8
4 0.5 2 - - 482 9/8
4 0.75 2 - - 483 9/8
3 0.2 1.206 - - 216 29/6
3 0.2 1.392 - - 210 29/6
3 0.2 1.702 - - 204 29/6
3 0.2 1.996 - - 168 29/6
3 0.35 1.206 - - 217 29/6
3 0.35 1.397 - - 211 29/6
3 0.35 1.702 - - 205 29/6
3 0.35 1.996 - - 199 29/6
3 0.5 1.206 - - 218 29/6
3 0.5 1.397 - - 212 29/6
3 0.5 1.702 - - 206 29/6
3 0.5 1.996 - - 200 29/6
3 0.75 1.206 - - 219 29/6
3 0.75 1.397 - - 213 29/6
3 0.75 1.702 - - 207 29/6
3 0.75 1.996 - - 201 29/6
3 1 1.206 - - 220 29/6
3 1 1.397 - - 214 29/6
3 1 1.702 - - 208 29/6
3 1 1.996 - - 202 29/6
7. Transverse Oscillation in Waves (Regular and Irregular)
A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 - 0.666 1 Hl 294 13/7
0.5 - 1 1 H1 298 13/7
0.5 - 1.5 1 H1 302 13/7
0.5 0.05 0.667 1.5 H2 258 12/7
0.5 0.05 1 1.5 H2 253 12/7
0.5 0.05 1.5 1.5 H2 248 12/7
0.5 - 0.667 2 H3 286 13/7
0.5 0.05 1 2 H3 282 13/7
0.5 0.05 1.5 2 H3 277 13/7
0.5 - 0.667 H4 490 12/8
0.5 - 1 H4 489 12/8
0.5 - 1.5 H4 491 12/8
0.5 - 2 H4 492 12/8




A/D V(m/s) To (s) Tw (s) Hw Run date
| - 0.667 1 H1 331 14/7
1 - 1 I H1 321 13/7
1 - 1.5 1 HI 311 13/7
1 - 0.667 1.5 H2 336 14/7
l - 1 1.5 H2 340 1417
1 - 1.5 1.5 H2 344 14/7
1 - 0.667 2 H3 360 14/7
1 - 1 2 H3 356 14/7
1 . 1.5 2 H3 352 14/7
1 - 0.667 H4 457 10/8
1 - 1 H4 467 11/8
1 - 1.5 H4 473 11/8
1 - 2 H4 478 9/8
1.5 - 1 1 HI 382 14/7
1.5 - 1.5 1 H1 386 14/7
1.5 - 1 2 H3 369 14/7
1.5 - 1.5 2 H3 378 14/7
2 - 1 1.5 H2 398 15/7
2 - 1.5 1.5 H2 402 15/7
2 - 1 2 H3 410 15/7
2 - 1.5 2 H3 406 15/7
25 - 1.5 1.5 H3 433 15/7
3 - 1.5 2 H3 423 15/7
8. Transverse Oscillation in Waves while Towing
A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 0.2 0.666 1 H1 295 13/7
0.5 0.2 1 1 H1 299 13/7
0.5 0.2 1.5 1 HI 303 13/7
0.5 0.35 1.5 1 H1 304 1377
0.5 0.35 0.666 1 H1 296 1377
0.5 0.35 1 1 H1 300 1377
0.5 0.5 0.666 1 H1 297 13/7
0.5 0.5 ! 1 H1 301 13/7
0.5 0.5 1.5 1 H1 305 13/7
0.5 02 1 1.5 H2 254 12/7
0.5 0.2 1.5 1.5 H2 249 12/7
0.5 0.2 0.667 1.5 H2 259 12/7
0.5 0.35 1 1.5 H2 255 12/7
0.5 0.35 1.5 1.5 H2 250 12/7
0.5 0.35 0.667 1.5 H2 260 12/7
0.5 0.5 1 1.5 H2 256 12/7
0.5 0.5 0.667 1.5 H2 261 1277
0.5 0.5 1.5 1.5 H2 251 12/7
0.5 0.75 1.5 1.5 H2 252 12/7
0.5 0.75 1 1.5 H2 257 12/7
0.5 0.75 0.667 1.5 H2 262 12/7
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A/D V(m/s) To (s) Tw (s) Hw Run date
0.5 0.2 1.5 2 H3 278 13/7
0.5 0.2 1 2 H3 283 13/7
0.5 0.2 0.667 2 H3 287 13/7
0.5 035 1.5 2 H3 279 13/7
0.5 035 1 2 H3 284 13/7
0.5 0.35 0.667 2 H3 288 13/7
0.5 0.5 1.5 2 H3 280 13/7
0.5 0.5 1 2 H3 285 13/7
0.5 0.5 0.667 2 H3 289 13/7
0.5 0.75 1.5 2 H3 281 13/7
0.5 02 1.5 H4 496 12/8
0.5 0.2 2 H4 497 12/8
0.5 0.2 0.667 H4 495 12/8
0.5 0.2 1 H4 494 12/8
1 0.2 0.667 1 H1 332 14/7
! 02 1.5 1 H1 312 1377
1 0.2 1 1 HI 322 13/7
1 0.35 1.5 1 HI 313 13/7
1 0.35 1 1 H1 323 13/7
1 0.35 0.667 1 H1 333 14/7
1 0.5 1.5 1 HI 314 13/7
1 0.5 1 1 HI 324 13/7
1 0.5 0.667 1 HI 334 14/7
1 0.75 1.5 1 H1 315 13/7
1 0.75 0.667 i Hi 335 14/7
1 -0.2 1.5 1.5 H2 350 14/7
1 -0.35 1.5 1.5 H2 349 14/7
1 -0.5 1.5 1.5 H2 348 14/7
| 0.2 1.5 1.5 H2 345 14/7
1 0.2 1 1.5 H2 341 14/7
1 0.2 0.667 1.5 H2 337 14/7
1 0.35 1 1.5 H2 342 14/7
1 0.35 0.667 1.5 H2 338 14/7
1 0.35 1.5 15 H2 346 14/7
1 0.5 1.5 1.5 H2 347 14/7
1 0.5 0.667 1.5 H2 339 14/7
] 0.5 1 1.5 H2 343 14/7
1 02 1 2 H3 357 14/7
1 0.2 1.5 2 H3 353 14/7
1 0.2 0.667 2 H3 361 14/7
1 0.35 0.667 2 H3 362 14/7
1 0.35 1 2 H3 358 14/7
! 0.35 1.5 2 H3 354 14/7
1 0.5 1.5 2 H3 355 14/7
1 0.5 1 2 H3 359 14/7
1 0.5 0.667 2 H3 363 14/7
1




A/D V(m/s) To (s) Tw (s) Hw Run date
1 0.2 0.667 H4 458 10/8
1 0.2 1.5 H4 474 11/8

1.5 0.2 1.5 1 H1 387 14/7

1.5 0.2 1 1 HI 383 14/7

1.5 0.35 1.5 | H1 388 1477

1.5 0.35 1 1 HI 384 14/7

1.5 0.5 1 1 H! 385 14/7

1.5 0.5 1.5 | H1 389 14/7

1.5 0.2 1.5 2 H3 379 14/7

1.5 02 1 2 H3 370 14/7

1.5 0.35 1 2 H3 371 14/7

1.5 0.35 1.5 2 H3 380 14/7

1.5 0.5 1 2 H3 372 14/7

1.5 0.5 1.5 2 H3 381 14/7

1.5 0.75 1 2 H3 373 14/7
2 0.2 1 1.5 H2 399 15/7
2 0.2 1.5 1.5 H2 403 15/7
2 0.35 1.5 1.5 H2 404 15/7
2 0.35 1 1.5 H2 400 15/7
2 0.5 1 1.5 H2 401 15/7
2 0.5 1.5 1.5 H2 405 15/7
2 0.2 1.5 2 H3 407 15/7
2 0.2 1 2 H3 411 15/7
2 0.35 1 2 H3 412 15/7
2 0.35 1.5 2 H3 408 15/7
2 0.5 1 2 H3 413 15/7
2 0.5 1.5 2 H3 409 15/7

2.5 0.2 1.5 1.5 H3 434 15/7

2.5 0.35 15 1.5 H3 435 15/7

2.5 0.5 1.5 1.5 H3 436 1577
3 0.2 1.5 2 H3 424 15/7
3 0.35 1.5 2 H3 425 15/7
3 0.5 1.5 2 H3 426 15/7
3 0.75 1.5 2 H3 427 15/7

9. In-line Oscillation in Waves
V (m/s) A (m) To (s) Tw (s) Hw Run Date
- 0.03 0.5 1 H1 607 2177
- 0.03 1 1 H1 598 2177
- 0.03 1 1 HI 877 2/8
- 0.03 1.5 1 HI 594 2177
- 0.03 2 1 H1 590 20/7
- 0.03 2 1 Hl 588 20/7
- 0.03 0.5 1.5 H2 567 20/7
- 0.03 0.667 1.5 H2 571 20/7
- 0.03 1 1.5 H2 575 20/7
- 0.03 1.5 1.5 H2 579 20/7
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A/D V(m/s) To (s) Tw (s) Hw Run date
- 0.03 2 1.5 H2 583 20/7
- 0.03 0.5 2 H3 561 20/7
- 0.03 0.667 2 H3 556 20/7
- 0.03 1 2 H3 548 19/7
- 0.03 1.5 2 H3 543 19/7
- 0.03 2 2 H3 538 19/7
- 0.03 0.667 H4 889 4/8
- 0.03 1 H4 883 3/8
- 0.03 i.5 H4 884 3/8
- 0.03 2 H4 882 3/8
- 0.045 1 H4 932 9/8
- 0.045 1.5 H4 926 9/8
- 0.045 1.5 H4 930 9/8
- 0.045 2 H4 925 9/8
- 0.045 2 H4 931 9/8
- 0.06 0.667 1 H1 707 25/7
- 0.06 0.667 1 H! 664 22/7
- 0.06 0.668 1 Hi 703 22/7
- 0.06 1 1 H1 699 22/7
- 0.06 1.5 1 H1 694 22/7
- 0.06 2 1 H1 690 22/7
- 0.06 0.667 1.5 H2 669 22/7
- 0.06 0.995 1.5 H2 673 22/7
- 0.06 1 1.5 H2 677 22/7
- 0.06 15 1.5 H2 68! 22/7
- 0.06 2 1.5 H2 685 22/7
- 0.06 1.5 2 H3 660 2217
- 0.06 1.5 2 H3 653 22/7
- 0.06 2 2 H3 639 21/7
- 0.06 2 2 H3 640 2177
- 0.06 2 2 H3 632 21/7
- 0.06 2 2 H3 634 2177
- 0.06 2 2 H3 631 2177
- 0.06 2 2 H3 635 21/7
- 0.06 2 2 H3 636 21/7
- 0.06 2 2 H3 641 2177
- 0.06 2 2 H3 637 2177
- 0.06 2 2 H3 638 2177
- 0.06 2 2 H3 633 21/7
- 0.06 2 2 H3 642 2177
b 0.06 2 2 H3 644 2177
- 0.06 2 2 H3 645 2177
- 0.06 2 2 H3 643 21/7
- 0.06 0.667 H4 891 4/8
- 0.06 ] H4 892 4/8
- 0.06 1 H4 896 4/8
- 0.06 1.25 H4 895 4/8




A/D V{m/s) To (s) Tw (s) Hw Run date
- 0.06 1.5 H4 893 4/8

- 0.06 2 H4 901 5/8

- 0.06 2 H4 894 4/8

- 0.06 3 H4 905 8/8

- 0.09 1 1.5 H2 745 25/7

- 0.09 1.5 1.5 H2 741 2577

- 0.09 2 1.5 H2 737 2517

- 0.09 1 2 H3 717 25/7

- 0.09 1.5 2 H3 725 2577

- 0.09 2 2 H3 733 2577

- 0.12 1 1.5 H2 757 26/7

- 0.12 1.5 1.5 H2 777 26/7

- 0.12 2 1.5 H2 788 27/7

- 0.12 1 2 H3 762 26/7

- 0.12 1.5 2 H3 773 26/7

- 0.12 2 2 H3 792 2717

- 0.15 1.5 1.5 H2 816 28/7

- 0.15 2 1.5 H2 805 27/7

- 0.15 2 1.5 H2 820 28/7

- 0.15 2 2 H3 801 27/7

- 0.18 1.5 1.5 H2 837 29/7

- 0.18 2 1.5 H2 829 29/7

- 0.18 1.5 2 H3 841 29/7

- 0.18 2 2 H3 844 29/7

- 0.21 2 1.5 H2 869 2/8

- 0.21 2 2 H3 872 2/8

- 0.24 2 1.5 H2 859 1/8

- 0.24 2 2 H3 855 29/7

10. In-line Oscillation While Towing the Cylinder

V (m/s) A (m) To (s) Tw (s) Hw Run Date
0.5 0.03 0.5 - - 528 19/7
0.75 0.03 0.5 - - 529 19/7
0.35 0.03 0.5 - - 527 19/7
0.2 0.03 0.5 - - 526 19/7
0.35 0.03 0.668 - - 522 19/7
0.5 0.03 0.668 - - 523 19/7
0.75 0.03 0.668 - - 524 19/7
0.2 0.03 0.668 - - 521 19/7
0.75 0.03 1 - - 518 19/7
0.2 0.03 1 - - 515 19/7
0.35 0.03 1 - - 516 19/7
1 0.03 1 - - 519 19/7
0.5 0.03 1 - - 517 19/7
0.5 0.03 1.5 - - 532 19/7
0.35 0.03 1.5 - - 531 19/7
0.75 0.03 1.5 - - 533 19/7

188




V (m/s) A (m) To (s) Tw (s) Hw Run Date
0.2 0.03 1.5 - - 530 19/7
0.5 0.03 2 - - 536 19/7
0.2 0.03 2 - - 534 19/7
0.35 0.03 2 - - 535 1977
02 0.045 0.667 - - 907 8/8
0.2 0.045 0.667 - - 908 8/8
0.75 0.045 0.667 - - 911 8/8
0.5 0.045 0.667 - - 910 8/8

0.35 0.045 0.667 - - 909 8/8
0.35 0.045 1 - - 914 8/8
0.2 0.045 1 - - 913 8/8
0.5 0.045 1 - - 915 8/8
0.2 0.045 1.5 - - 918 9/8
0.35 0.045 1.5 - - 919 9/8
0.5 0.045 1.5 - - 920 9/8
0.35 0.045 2 - - 923 9/8
02 0.045 2 - - 922 9/8
0.5 0.045 2 - - 924 9/8
0.5 0.06 0.667 - - 609 21/7
0.35 0.06 0.667 - - 608 2177
0.2 0.06 0.667 - - 607 21/7




V (m/s) A (m) To (s) Tw (s) Hw Run Date
0.2 0.09 1.5 - - 712 2577
0.2 0.09 1.5 - - 722 25/7
0.5 0.09 2 - - 732 2517
0.35 0.09 2 - - 731 257
0.2 0.09 2 - - 730 25/7
0.5 0.12 1 - - 754 26/7
0.75 0.12 i - - 755 26/7
0.35 0.12 1 - - 753 26/7
0.2 0.12 1 - - 752 26/7
0.35 0.12 1.5 - - 768 26/7
0.5 0.12 1.5 - - 769 26/7
0.75 0.12 1.5 - - 770 26/7
0.2 0.12 1.5 - - 767 26/7
0.75 0.12 2 - - 786 27/7
0.35 0.12 2 - - 783 26/7
02 0.12 2 - - 782 26/7
0.5 0.12 2 - - 784 26/7
0.5 0.15 1.5 - - 812 2777
0.75 0.15 1.5 - - 813 2717
02 0.15 1.5 - - 810 2717
0.35 0.15 1.5 - - 811 2717
0.35 0.15 2 - - 798 2717
0.75 0.15 2 - - 800 27/7
0.2 0.15 2 - - 797 2711
0.5 0.15 2 - - 799 27/7
0.2 0.18 1.25 - - 847 29/7
0.5 0.18 1.25 - - 849 29/7
0.35 0.18 1.25 - - 848 29/7
0.5 0.18 1.5 - - 835 29/7
0.2 0.18 1.5 - - 833 29/7

0.75 0.18 1.5 - - 836 29/7
0.35 0.18 1.5 - - 834 29/7
035 0.18 2 - - 825 29/7
0.2 0.18 2 - - 824 29/7
0.5 0.18 2 - - 826 2977
0.75 0.18 2 - - 827 29/7
0.75 0.21 2 - - 866 1/8
0.2 0.21 2 - - 863 1/8
0.5 0.21 2 - - 865 1/8
0.35 0.21 2 - - 864 1/8
0.75 0.24 2 - - 854 29/7
0.5 0.24 2 - - 853 29/
0.2 0.24 2 - - 851 29/7
0.35 0.24 2 - - 852 29/7
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11. In-line Oscillation In Waves while Towing the Cylinder

V (m/s) A (m) To (s) Tw (s) Hw Run Date
0.2 0.03 0.5 1 H1 604 217
0.2 0.03 0.667 1 HI 601 2177
0.2 0.03 1 1 HI 599 21/7
0.2 0.03 1 1 Hl 878 2/8
0.2 0.03 1.5 1 H1 595 2177
0.2 0.03 2 1 HI 591 20/7
0.35 0.03 0.5 1 HI 605 2177
0.35 0.03 0.667 i Hi 602 2177
0.35 0.03 0.667 1 H! 600 2177
0.35 0.03 1 1 Hl 879 2/8
0.35 0.03 1 1 H1 597 21/7
0.35 0.03 1.5 1 H1 596 2177
0.75 0.03 2 1 H1 589 20/7
02 0.03 0.5 1.5 H2 568 20/7
0.2 0.03 0.667 1.5 H2 572 20/7
0.2 0.03 1 1.5 H2 576 20/7
02 0.03 1.5 1.5 H2 580 20/7
0.2 0.03 2 1.5 H2 584 20/7

i 0.35 0.03 0.5 1.5 H2 569 20/7
0.35 0.03 0.667 1.5 H2 573 20/7
0.35 0.03 1 1.5 H2 577 20/7
0.35 0.03 1.5 1.5 H2 581 20/7
0.35 0.03 2 1.5 H2 585 20/7
0.5 0.03 0.5 1.5 H2 570 20/7
0.5 0.03 0.667 1.5 H2 574 20/7
0.5 0.03 1 1.5 H2 578 20/7
Q.5 0.03 1.5 1.5 H2 582 20/7
0.5 0.03 2 1.5 H2 586 20/7
0.2 0.03 0.5 2 H3 562 20/7
0.2 0.03 0.667 2 H3 557 20/7
0.2 0.03 1 2 H3 549 19/7
0.2 0.03 1.5 2 H3 544 19/7
02 0.03 2 2 H3 539 19/7
0.35 0.03 0.5 2 H3 563 20/7
0.35 0.03 0.667 2 H3 558 20/7
0.35 0.03 1 2 H3 550 19/7
0.35 0.03 1.5 2 H3 545 19/7
0.35 0.03 2 2 H3 540 19/7
0.5 0.03 0.5 2 H3 564 20/7
0.5 0.03 0.667 2 H3 559 20/7
0.5 0.03 1 2 H3 551 19/7
0.5 0.03 1.5 2 H3 546 19/7
0.5 0.03 2 2 H3 541 19/7
0.75 0.03 0.5 2 H3 565 20/7
0.75 0.03 0.667 2 H3 560 20/7
0.75 0.03 1 2 H3 552 19/7




V (m/s) A (m) To (s) Tw (s) Hw Run Date
0.75 0.03 1.5 2 H3 547 19/7
0.75 0.03 2 2 H3 542 19/7
02 0.03 1.5 H4 886 3/8
0.2 0.045 1.5 H4 928 9/8
0.2 0.045 1.5 H4 934 9/8
02 0.045 2 H4 933 9/8
0.2 0.045 2 H4 927 9/8
02 0.06 0.667 1 HI 708 2517
0.2 0.06 0.667 1 H1 665 2277
0.2 0.06 1 1 HI 700 22/
0.2 0.06 1.5 1 H1 695 22/7

0.2 0.06 2 1 H1 691 22/7
0.35 0.06 0.667 1 H1 666 22/7
035 0.06 0.667 1 HI 709 2517
0.35 0.06 1 1 HI 701 22/7
0.35 0.06 1 1 H1 662 22/7
0.35 0.06 1.5 1 Hi 696 22/7
0.35 0.06 2 1 Ht 692 22/7
0.5 0.06 0.667 1 H1 667 22/7
0.5 0.06 0.667 1 HI 710 2517
0.5 0.06 1 1 HI 702 22/7
0.5 0.06 1 1 H1 663 22/7
0.5 0.06 1.5 1 H1 697 22/7
0.5 0.06 2 1 H1 693 22/7
02 0.06 0.667 1.5 H2 670 2277
0.2 0.06 0.995 1.5 H2 674 22/7
0.2 0.06 1 1.5 H2 678 2217
02 0.06 1.5 1.5 H2 682 22/7
0.2 0.06 2 1.5 H2 686 22/7
0.35 0.06 0.667 1.5 H2 671 22/7
0.35 0.06 0.995 I.5 H2 675 22/7
0.35 0.06 1 1.5 H2 679 22/7
0.35 0.06 1.5 1.5 H2 683 22/7
0.35 0.06 2 1.5 H2 687 22/7
0.5 0.06 0.667 1.5 H2 672 22/7
0.5 0.06 0.995 1.5 H2 676 22/7
0.5 0.06 1 1.5 H2 680 2277
0.5 0.06 1.5 1.5 H2 684 2217
0.5 0.06 2 1.5 H2 688 22/7
-0.35 0.06 1.5 2 H3 658 22/7
-0.2 0.06 1.5 2 H3 659 22/7
0.2 0.06 1 2 H3 661 22/7
02 0.06 2 2 H3 646 2177
0.35 0.06 2 2 H3 647 2177
0.5 0.06 2 2 H3 648 2177
0.75 0.06 2 2 H3 649 2177

1 0.06 2 2 H3 650 2177
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V (m/s) A (m) To (s) Tw (s) Hw Run Date
0.2 0.06 1 H4 897 4/8
0.2 0.06 1.5 H4 899 S/8
0.2 0.06 2 H4 900 5/8
0.2 0.06 3 H4 902 5/8
0.2 0.09 1 1.5 H2 746 2517
0.2 0.09 1.5 1.5 H2 742 25/7
0.2 0.09 2 1.5 H2 738 25/7
0.35 0.09 1 1.5 H2 747 2517
0.35 0.09 1.5 1.5 H2 743 2517
0.35 0.09 2 1.5 H2 739 25/7
0.5 0.09 I 1.5 H2 748 2577
0.5 0.09 1.5 1.5 H2 744 25/7
0.5 0.09 2 1.5 H2 740 25/7
0.2 0.09 1 H3 718 2577
0.2 0.09 1.5 H3 726 25/7
0.2 0.09 2 H3 734 2577
0.35 0.09 1 H3 719 2577
0.35 0.09 1.5 H3 727 25/7
0.35 0.09 2 H3 735 25/7
0.5 0.09 0.997 H3 720 2517
0.5 0.09 1.5 H3 728 25/7




V (m/s) A (m) To (s) Tw (s) Hw Run Date
02 0.15 2 2 H3 802 2717
0.35 0.15 2 2 H3 803 2717
0.5 0.15 2 2 H3 804 27/7
0.2 0.18 1.5 1.5 H2 838 29/7
0.2 0.18 2 1.5 H2 830 29/7
0.35 0.18 1.5 L5 H2 839 29/7
0.35 0.18 2 1.5 H2 831 29/7
0.2 0.18 1.5 2 H3 842 29/7
0.2 0.18 2 2 H3 845 29/7
0.35 0.18 1.5 2 H3 843 29/7
0.2 0.21 2 1.5 H2 870 2/8
0.35 0.21 2 1.5 H2 871 2/8
0.2 0.21 2 2 H3 873 2/8
0.35 0.21 2 2 H3 874 2/8
0.2 0.24 2 1.5 H2 860 1/8
0.35 0.24 2 1.5 H2 861 1/8
0.2 0.24 2 2 H3 856 29/7
0.35 0.24 2 2 H3 857 29/7
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APPENDIX III

Influence of Surface Wake

A current passing a vertical cylinder disturbs the pressure field around the cylinder and generates
a run-up at the “front” of the cylinder and a corresponding drawdown “behind” the cylinder
resulting in an additional drag force acting locally on the cylinder. This additional force will, of
course, act only near the water surface. For a cylinder of finite length, the wake pressure
distribution will also influence the three-dimensional flow pattern near the submerged cylinder
end. The influences of surface wakes on cylinder drag has been studied in the past, see, e.g.
Massie (1980) and Hogben (1974). Many investigators have worked with a surface piercing
cylinder of finite length upon which they have measured or calculated a total force as a function
of submerged length. However, in these investigations the wake pressure distribution will
influence the three-dimensional flow pattern and therefore the influences of submerged length
and pressure wake are combined.

In the present study, the hydrodynamic forces have been measured on two or three short
segments of a vertical cylinder. To examine the effect of the free surface wake, a simple model
given by Massie (1980) has been used. In this model it is assumed that the total force measured
on a segment is the sum of its form drag force and its surface wake drag:

F =F Lt F b

where: F,, is the surface wake force, a function of submergence, and F, is the form drag force.
This can also be expressed in terms of drag coefficients by dividing each term by 1/2pV?D
which then yields:

C,=C, +Cp

C,, depends on a submergence parameter, SP. This submergence parameter itself depends on
three independent variables, ¥, D, and z:

c,= K.SpP
f(Fr)
Sp = %
FrD2

Where K is a constant, Frg and Fr;, are submergence and diameter Froude numbers respectively:

Fr = 4

Massie (1980) has used a dimensionless submergence, z/D, and the diameter Froude number, Fr,,,
for tabulating the submergence parameter. Using the table and graph given in Massie (1980), the
submergence parameters, SP, are determined for the three rings of the cylinder, see table I11-1.
Assuming K=1.0, the results indicate that the effect of surface wakes on ring no. 1 is negligible
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while it is considerable on ring no. 3. Table III-2 lists measured and corrected drag coefficients
for the lower rings (no. 1 and no. 2) when V=1 m/s.

The difference between (averaged) measured mean drag coefficients of ring no.1 and ring no. 2
for V=1 m/s was 0.092. This is much more than the difference between SP values given in table
II1.1 for the same velocity. Having such a difference indicates that: either the constant K is more
than unity (K=2.14) or other factors have also affected the measured forces, e.g. end effects.

Even with K = 2.14, the influence of free surface on ring no.1 (which has been used in the
present work) is negligible for V< 0.5 m/s which form the bulk of the test runs.

Fr, 0.26 0.46 0.65 0.98 1.2 1.96
V m/s 0.20 0.35 0.50 0.75 1.0 1.5
SP values:
ring no. 3 - 0.008 0.065 0.131 0.155 0.09
ring no. 2 - - 0.027 0.060 0.087 0.077
ring no. 1 - - - 0.023 0.044 | 0.065
Table I1I-1 The values of the submergence parameter at different levels

Ring | Cy Cw Cp Cp/Cx

1 1.110 0.087 1.068 0.96

2 1.202 0.044 1.119 0.93

Table I1I-2 Measured and corrected mean drag coefficients, ¥=1 m/s
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APPENDIX IV
Determination of the Relative Period

The relative period is the period of the combined flow field resulting from the cylinder oscillation
in waves. The velocity of forced sinusoidal cylinder motion can be expressed as:

%(1)=4 w_sin(@ t-¢ )

And, the horizontal water particle velocity due to waves as:
u(t)=4 w_sin(w, t-¢ )

Then the relative Velocity is:
V, (0 =u(t) - X(1) =4 0, sin(o, t-$ )-4 w sin(w t-)

The relative period 7, is defined as the time interval for which the velocity in the combined flow
field reaches the same value, that is to say the time for which:

Vrel(t+Tr) = Vr(I)
So:
u(t+T) - X(t+T )= u(t)-x(t)

Using the following relationship:
sin(p) —sin(q) :25in(£’—;—q) cos(%)

one may write:
w, T, w7, w, T,

Yeos(w ¢+ -¢,) =0
2

24w, sin(

w, T,
) cos(w, ¢+ - -¢,)-24 w_ sin(

or in a simplified way:

ww Tl‘ . (‘)0 TV’
5 ) —g()sin(

f(t)sin( y=0

where £ (f) and g(t) are independent functions. This relationship should be satisfied for all t. Thus,
it is necessary that:




=nT
) 1
wo Tr
=n,m
2 2

where n,; and n, are the two lowest possible integers. Therefore, the relative period I' may be
calculated as:

T, =nT,

r

T, =n,tT,

»

This is in turn a definition of the least common multiple for two integers. To determine the relative
period, one needs to find the least common multiple of the periods of motion.
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APPENDIX V
Correlation Coefficients

In the present work, the R? correlation coefficient has been used to reflect the extent of a
linear relationship between two data sets as well as to evaluate the suitability of the regression
lines. The R? coefficient returns the square of the Pearson product moment correlation
coefficient through data points (in known y's and x's). The Pearson product moment

correlation coefficient, R, is a dimensionless index that ranges from -1.0 to 1.0 inclusive, i.e.
0<R?<«l.

The R? value can be interpreted as the proportion of the variance in y attributable to the
variance in x. The equation for the R value is:

o - nQ ) - D)

(n) x> )Y y*-()_»*

Note that the R? correlation coefficient is also the square of the normal correlation coefficient
(p) which is usually used to determine the relationship between two properties, i.e R* = p°.
The equation for this correlation coefficient is:

_ Cov(x,y)
Poy = 00
X y
where
-1 < P, < 1
and:
1 n
Covix,y) = =Y (x, 1) (¥,"1)

ni-t

1
N >

Thus one may convert the R” correlation coefficients obtained to the normal correlation
coefficients as:

o -

Since R? < 1, the normal correlation coefficients would be larger than the reported values for
R2.
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