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Lay Summary
In many situations, when we have a group of people, they all form opinions on a subject. Everyone in a popu-
lation influences each others opinion. Naturally, people how the opinion of children are influenced by other
children differs from how adults influence their opinions. Between different age groups there are all kind of
different interactions.

This thesis aims to model how such opinions evolve and influence each other over time. First We assume
an individual can either have a negative or positive opinion on a subject. To model this, we use the Ising
model, originally developed for the description of magnetism in metals. We model opinion changes as ran-
dom processes influenced by the opinion of other individuals in the population. We divide the population
into subgroups of people who interact similarly. In this thesis, we prove that if we make the total group of
people larger and larger, this random process becomes a deterministic process. Just like when you flip a coin
infinitely many times, you end up with heads 50% of the time. We then determine how the different popu-
lations influence each other’s opinions. Understanding group opinion dynamics can help explain the spread
of misinformation on social media, the emergence and disappearance of political parties, or how companies
can predict or start trends.

Summary
In this thesis we show we can model population opinion dynamics, where we split the population into a
general number of N groups. For this we first used a variant of the Ising model, used to describe magnetism
in metals, for the opinions. We found that we could describe the opinion model using the Hamiltonian given
by:

H(σ) =
N∑

j=1

∑
σi |i∈I j

σi [β1 j mn(σ)1ρ1 +·· ·+βN j mn(σ)NρN ]

We used this Hamiltonian to determine the flip rate of the opinions given by:

q j i = e−β∆H .

.
We used this flip rate to describe the opinion model as a Markov process. We proved that this Markov

process converges to the deterministic solution of the N-dimensional system of differential equations given
by: { d x⃗

d t
x(0) = x0,

where F (⃗x) is the N-dimensional vector given by:

F (⃗x) =

 (1−x1)eΓN − (1+xN )e−Γ1

...
(1−xN )eΓN − (1+xN )e−ΓN


Depending on the strength of F (⃗x) we see different behavior in the limiting ordinary differential equation.
We did local bifurcation analysis on the two-dimensional system around the origin. For the two-dimensional
model we found that the following conditions hold the system undergoes an Hopf bifurcation at (0,0)

α11 +α22 = 2,

(α11 −α22)2 +α12α21 < 0.

Finally we showed that the findings of the bifurcation analysis were correct by performing numerical analysis
for a three different systems.
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1
Introduction

The analysis of opinion dynamics is a field of study which gets increasingly more important in the modern
era. With the internet people get connected and influence one another more than ever before. Understand-
ing the evolution of the opinion of different groups of people in society helps us predict the next social media
hit or fashion trend. Naturally this is very useful information for companies. But, it is also important for gov-
ernments to understand population dynamics. It can be used to predict and stop the spread of fake news and
propaganda.

To help develop a model for opinion dynamics we take a look at a model from statistical physics. Ferromag-
nets are a class of metals, with the special property that they can become magnetic, even in the absence of an
external magnetic field. This phenomenon can be explained using the quantum mechanical descriptions of
atoms. Each electron in each atom of the metal has a small magnetic field within it. This magnetic field can
be in two directions: up or down. In the initial state of the metal, all the electrons within it are pointing in
random directions, giving a mean zero magnetic field(Because opposite spins cancel each other out). When
the metal is put into an external magnetic field, all the electrons will align with this magnetic field. After turn-
ing off the external magnetic field the electrons will stay in this aligned position, causing them to create their
own magnetic field and therefore causing the metal to become magnetic.

In the twenties of the twentieth century a mathematical model to describe the behavior of the interacting
spins in the ferromagnets was developed. It was developed by Ersnt Ising under the supervision of Wilhelm
Lenz. The former being the inspiration of the name of the so-called Ising model. In the Ising model, each
electron is assigned one of the values -1 or +1, representing the up or down state respectively. These spins(or
electrons) are positioned on a lattice, with each spin only interacting with its nearest neighbors. Neighboring
spins with the same direction have a low energy and neighboring spins with opposite directions have a high
energy. The total energy of the system is given by the following Hamiltonian:

H =− ∑
〈i , j〉

Ji jσiσ j −
∑

j
h jσ j (1.1)

Here the sums are taken over all pairs of neighboring electrons in the model,σ j represents the state of the
spin, the electron interaction coefficient is given by Ji j and the effect of an external magnetic field is given
by h j . In this thesis we will only look at situations without an external magnetic field. Thus, from now on we
will set h j = 0. This version of the model is shown in Figure 1.1 In this version of the model particles are only
influenced by adjacent particles. The next assumption we make is that the model is location independent,
i.e., each particles influences every other particle.

Later on in the twentieth century Pierre Curie and Pierre Weiss developed a simplification of the Ising
model, called the Curie-Weiss model. This mathematical model is a mean-field approximation, which as-
sumes that the interaction between the spins are symmetric and that the behavior of each spin is influenced
by the mean behavior of all the other spins in the system. This system is shown in Figure 1.2 and has the
following Hamiltonian:

1
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Figure 1.1: Schematic view of the Ising Model, where each particle only interacts with its direct neighbour.

H(σ) =− β

N

N∑
i , j=1

σiσ j −
N∑

j=1
h jσ j (1.2)

The Curie-Weiss model assumes that all electrons in the system interact with each other in the same manner.
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Figure 1.2: Schematic view of the Ising model, where each particle is only influenced by the mean field of the entire population.

This is of course not always applicable. For this we introduce our model which is the main subject matter of
this thesis: The N-population Curie-Weiss model. This model assumes that all the electrons in the system
are dividable in N populations. Each population i has a set of interaction factors {βi j } j=1,..n for its interaction
with all the populations. This model is shown in Figure 1.3. The Hamiltonian of one of these populations is
given by:

H(I j ) =−
n j∑

i=1
σ j i

N∑
k=1

βk jµ(σk )ρk (1.3)

In this equation, σ j i represents the spin of the i-th electron in population I j , n j represents the size of
population I j , βk j represents the influence of population Ik on populations I j , µ(x) is the mean function and
ρk is the proportion of population Ik of the total population.
You can find that model lies somewhere in between the Curie-Weiss and Ising model. When we have N = 1
populations we just get the Curie-Weiss model and when we take that there are only populations of size 1, we
get a Ising model if we say that only neighboring populations have a βi j ̸= 0.

Now that we have defined the model we can go back to the subject of population opinion dynamics with
an example. Suppose we have research the opinion of a population of 100.000 people on a social media trend
over time. Each person in the population has either a positive or a negative opinion on the social media trend.
Let’s divide this total population in to three groups. The first group consists only of children, the second group
are the young adults, and the final group contains the people over 30 years old.
Now suppose there is a new social media app on the market. Initially a few people in the young adult group
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Figure 1.3: Schematic view of the 2-dimensional Ising model where each particle is only influenced by the mean field of each of the two
populations.

use the app. So, they have a positive opinion about the app. The other groups don’t know about the app yet,
so their opinion will be negative. The new app starts spreading within the young adult group and peoples
opinion start changing to positive. Then the young brothers and sisters of the young adult group start using
the app, so the app spreads to the children group. Now also the opinion in the children group starts flipping to
positive. Some of the parents of these children see their children using the app and start using it themselves.
But it doesn’t really spread within in the 30+ group, because the 30+’ers don’t have time to talk about the app
with other people.
Finally the young adults start noticing the 30+’ers using the app. The young adults stop using the app, be-
cause it’s not cool anymore since there are parents on it. This starts the rapid flip to a negative opinion in
the young adult group. For social media companies it is really important to know what causes the flips of the
opinions of the groups. If they can predict why and when the happen they can act on them.

Let’s continue back to the subject of this paper. The opinions of the populations are the spins, the effect
between and within the populations are the interaction coefficients, the flips of the populations are phase
transitions. Our model can be used to predict those big changes of opinions of the groups. This example
shows the importance of studying the phase transitions. It also show that expanding our model to arbitrary
N group, is important. The more groups the better you can describe the real situation. For example we could
expand the model to separate between sociological generations, like: generation X, the babyboomers, the
millennials etc.

In this thesis we will derive a time evolution of the N-populations Curie-Weiss model. We start this in Chapter
2, by introducing some necessarily foundational mathematics. In Chapter 3 we develop the 2-dimensional
mean-field Ising model and show its convergence to a two-dimensional system of ordinary differential equa-
tions. In Chapter 4 we build upon this and expand the model and the convergence to a general number N. In
Chapter 5 we will analyze the local bifurcations at the equilibrium point at the origin of the two- and three-
dimensional model. Then in Chapter 6, we will discuss the results. Finally in Chapter 7 we will show the
conclusion.





2
Markov processes and generators

In this chapter we will introduce the reader to some relevant background theory, which is necessary to un-
derstand the results shown in the report. In the first section we will discuss Markov processes, generators and
other related concepts. In the second section of this chapter we will give two theorems used in this thesis.

2.1. Markov processes and Generators
Let’s look at a discrete time process {Xn}∞n=1. Now let us assume that each state Xm depends solely on its
previous state Xm−1. This kind of process is called a Markov process. A formal definition is given by[5]:

Definition 2.1 (Markov Process). Let X = {Xn} be a stochastic process for n = 1,2,3, ..., with state space S. We
say that X is a discrete-time Markov process if for all n:

P(Xn |Xn−1, Xn−2, ..., X1) =P(Xn |Xn−1) (2.1)

We want to extend the discrete time Markov process to a continuous time Markov process. For this we
introduce the concept called the holding time. This is the time it takes for a system in state A to jump to any
other state. The holding time is exponentially distributed with rate λA . This rate is given by:

λA = ∑
B∈S\{A}

w(A → B) (2.2)

Where the sum goes over all possible states. Here w(i → j ) is the flip rate from state i to state j , given by[5]:

w(A → B) = ∂P(X t = B |X0 = A)

∂t
(2.3)

This allows us toe define the continuous time Markov Process.

Definition 2.2 (Continuous-Time Markov Process). Let x(t ) be a stochastic process with state space S. This
process is called Markov if for all for all 0 < s < t , we have:

P(x(t + s)|x(r ) ∀r ≤ t ) =P(x(t + s)|x(t )) (2.4)

We say that a Markov Process is time-homogeneous if:

P(x(t + s) = B |x(t ) = A) =P(x(t ) = B |x(0) = A) (2.5)

We then denote this probability by p AB (t ).
Next up we will introduce the master equations. This theorem allows us to say something about the time-
dynamics of the system.

Theorem 2.1 (Master Equation). Suppose we have a continuous time Markov process X with state space S. Let
P A(t ) the probability that the system is in state A at time t , then the following holds:

dP A(t )

d t
= ∑

B∈S\{A}
w(B → A)PB (t )−w(A → B)P A(t ).

5



6 2. Markov processes and generators

Each Markov process has a corresponding semigroup. We say that a Markov process X = {X (t )} corre-
sponds to a semigroup {T (t )} on the function space Cb(x) if for all f ∈ L, s, t ≥ 0 and all x in the state space of
X , we have: [2]

E[ f (X (t + s))|X (t ) = x] = T (s) f (x) (2.6)

The generator of a semigroup {T (t )} on L is the operator L with domain D(L ) for which this limit exists is
defined by: [2]

L f = lim
t→0

(T (t ) f − f ). (2.7)

Using the definitions of the generator and semigroup we can use the following lemma to find the generator
of the Markov Process:

Lemma 2.2. For the generator L corresponding to the time-homogeneous Markov process X is given by:

L f (A) = ∑
B∈S\{A}

w(A → B)( f (B)− f (A))

Proof of Lemma 2.2. Let {T (t )}t≤0 be the semigroup corresponding to the markov process X with state space
S, then:

T (t ) f (A) := Ei ( f (X t )) = E( f (X t )|X0 = A), (2.8)

Using the definition of the generator we can find the statement we set out to prove:

L f (A) = lim
t→0

T (t ) f (A)− f (A)

t

= lim
t→0

E( f (X t )|X0 = A)− f (A)

t

= lim
t→0

∑
B∈S P(X t = B |X0 = A) f (B)− f (A)

t

Substituting
∑

B∈S P (X t = B |X0 = A) = 1 in this equation gives:

L f (A) = lim
t→0

∑
B∈S P(X t = B |X0 = A)

t
( f (B)− f (A)).

Now, using that f (B)− f (A) = 0 if B = A, we get:

L f (A) = lim
t→0

∑
B∈S\{A}P(X t = B |X0 = A)

t
( f (B)− f (A))

We know that P (X0 = B |X0 = A) = 0 if B ̸= A. Adding this into the fraction gives:

L f (A) = lim
t→0

∑
B∈S\{A}P(X t = B |X0 = A)−P (X0 = B |X0 = A)

t
( f (B)− f (A))

Now when we move the limit inside of the sum, we get a partial derivative:

L f (A) = ∑
B∈S\{A}

∂P(X t = B |X0 = A)

∂t

∣∣∣∣
t=0

( f (B)− f (A))

Finally using Equation 2.3, this partial derivative is the flip rate and we get:

L f (A) = ∑
B∈S\{A}

w(A → B)( f (B)− f (A))

Finally, if B = A, then f (B)− f (A) = 0, so we get:

L f (A) = ∑
B∈S\A

w(A → B)( f (B)− f (A)).
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Now we have defined all the terms associated with the Markov Process, we would like the introduce a final
theorem. This theorem shows that we can use the convergence of generators to prove the convergence of the
corresponding Markov process .

Theorem 2.3. Let En be a discrete spaces and define the map ηn : En → RN . Let Xn be a Markov process on En

with generator (An ,D(An)) on Cb(En). Let Y be a Markov process on RN with generator (A,D(A)) on Cb(RN ).
Set Yn = ηn(Xn) and suppose:

a) Yn(0) → Y (0) (2.9)

b) ∀ f ∈D(A) : lim
n

sup
x∈En

∣∣An( f ◦ηn)(x)− A f (ηn(x))
∣∣= 0 (2.10)

Then for all t Yn(t ) converges to Y (t ) in distribution. [2]

2.2. Other Theorems
Theorem 2.4 (Taylor’s Theorem[1]). If f :RN →R is a real-valued function of class C 2 on the open set contain-
ing the line segment L from x⃗ to x⃗ + h⃗, then there exists a point θ ∈ L such that:

f
(⃗
x + h⃗

)
= f (⃗x)+

N∑
i=1

∂

∂i
f (⃗x)hi + 1

2
h⃗T H⃗ f (θ)⃗h,

where H⃗ f is the Hessian matrix given by :

H⃗ f =


∂2 f
∂x2

1
. . . ∂2 f

∂x1∂xN

...
. . .

...
∂2 f

∂xN∂x1
. . . ∂2 f

∂x2
N

 .

[4]

Definition 2.3 (Bifurcation value). Suppose we have system of ordinary differential equations given by:

˙⃗x = f⃗ (⃗x,µ), (2.11)

depending on a parameter µ ∈ R. A value of µ0 ∈ R is called a bifurcation value if the vector field f⃗ (⃗x,µ) is
structurally unstable at µ=µ0. [7]

Theorem 2.5 (Saddle-Node Bifurcation). Suppose we have the system given by Equation 2.11. Suppose f (x0,µ0) =
0 and that the N ×N matrix A ≡ D f (x0,µ0) has a simple eigenvalue λ= 0 with eigenvector v and that AT has
an eigenvector w corresponding to the eigenvalue λ= 0. If the following conditions are satisfied:

w⃗T f⃗µ(x0,µ0) ̸= 0, w⃗T D2 f⃗ (x0,µ0)(v⃗ , v⃗) ̸= 0. (2.12)

Then depending on the signs in Equation 2.12 there are no equilibrium points of the system near x0 when
µ<µ0, there are two equilibrium points of the system near x0 when µ>µ0 and the system experiences a saddle-
node bifurcation as µ passes through the bifurcation value µ=µ0. [7]

Theorem 2.6 (Transcritical Bifurcation). Suppose we have the system given by Equation 2.11. Suppose f (x0,µ0) =
0 and that the N ×N matrix A ≡ D f (x0,µ0) has a simple eigenvalue λ= 0 with eigenvector v and that AT has
an eigenvector w corresponding to the eigenvalue λ= 0. If the following conditions are satisfied:

w⃗T f⃗µ(x0,µ0) = 0, (2.13)

w⃗T D f⃗µ(x0,µ0)v⃗ ̸= 0, (2.14)

w⃗T D2 f⃗ (x0,µ0)(v⃗ , v⃗) ̸= 0, (2.15)

then the system experiences a transcritical bifurcation at x0 as the parameter µ passes through the bifurcation
value µ = µ0. At the transcritical bifurcation two branches of equilibria intersect and exchange stability. So
for µ < µ0 we could say equilibrium one is stable and equilibrium 2 is unstable, then for µ > µ0, we have
equilibrium one is unstable and equilibrium 2 is stable. [7]
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Theorem 2.7 (Hopf-Bifurcation). Suppose we have the system given by Equation 2.11. Suppose f (x0,µ0) = 0
and that D f (x0,µ0) has a pair of pure imaginary eigenvalues and no other eigenvalues with zero real part.
Suppose the following condition holds:

d

dµ

[ℜ(λµ)
]
µ=µ0

̸= 0. (2.16)

Then the system undergoes a Hopf bifurcation at x = x0 as the parameter µ passes through µ0. [7]



3
The 2-dimensional mean-field Ising model

In this chapter we analyze the mean-field Ising model with two populations (N = 2). This will serve as the
foundation for studying the general N population model. The goal of this chapter is to show the convergence
of the two-dimensional mean-field Ising model to a 2-dimensional system of ordinary differential equations.
In Section 3.1 we will introduce the model and its mathematical description using an example from pop-
ulation opinion dynamics. In the subsequent section, we we prove the convergence of its generator to the
generator of a two-dimensional system of ordinary differential equations.

3.1. Description of the Model
To introduce the model, we will use an example of opinion dynamics. Suppose we have a group of n indi-
viduals, who all have an opinion on a subject. That opinion can be either positive or negative. Our goal is
to model how these individuals influence each other’s opinions. Figure 3.1 gives a schematic view of a group
of n = 121 individuals with either a positive or negative opinion, denoted with a plus or minus respectively.
Each individual in the system influence each other. We begin by introducing a few simplifications to get to
the desired model.
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Figure 3.1: Schematic overview of a model with 121 individuals. A plus represents and individual with a positive opinion and a minus
represents an individual with a negative opinion.

The first simplification we want to make is to assume that the location of the individuals does not matter. Two
individuals on opposite sides of the grid have the same influence on one another as two adjacent individuals.
Secondly we divide the individuals in two groups. Let’s say we have a group of young adults and a group of
children. We assume the interactions in the model are characterized by four coefficients. The intra- and inter
population coefficients, i.e: The effects of the group of children on the group of young adults, the effect of
the group of children on other children, the effect of the group of young adults on the group of children and

9
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the effect of the group of young adults on other young adults. A schematic view of this model is shown in
Figure 3.2.
Finally we introduce the mean-field approximation. This states that instead of each individual influencing
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Figure 3.2: Schematic view of the two-population model. A plus represents and individual with a positive opinion and a minus repre-
sents an individual with a negative opinion. The model is divided in a group of children and a group of young adults in red and blue
respectively.

each and every other individual, each individual is only influenced by the mean of each of the two popu-
lations. This is the two-population mean-field Ising model. Figure 3.3 gives a schematic view of the final
version of this model.
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Figure 3.3: Schematic view of the two-population Mean-Field Ising model. A plus represents and individual with a positive opinion and
a minus represents an individual with a negative opinion. The model is divided in a group of children and a group of young adults in red
and blue respectively. The interaction coefficients are shown by the arrows.

We will now introduce the mathematical notation corresponding to the model. To describe the opinion of
our n individuals over time we introduce a sequence of random variablesσ= {σ1σ2 . . . ,σn}. As the individuals
can either have a positive or negative opinion, each random variable takes values in the state space of E =
{−1,+1}. The total state space of the population σ is therefore given by Ω = E n = {−1,+1}n . To split the
individuals into two populations we will introduce two index sets I1 and I2. If the index of an individual is part
of I1, that individual is part of population 1, conversely if the index of an individual is part of I2 that individual
is part of population 2. Obviously we then have that I1 ∩ I2 = ∅ and I1 ∪ I2 = {1, . . . ,n}, since an individual
is part of exactly one population. The sizes of the populations are given by n1 = card(I1) and n2 = card(I2).
Subsequently the size of the total population is given by n = card(σ) = n1+n2. We assume ρ1,ρ2 > 0, meaning
both populations are non-empty. This gives that the proportion of the populations in respect to the total
population are given by ρ1 = n1

n and ρ2 = n2
n . We denote the total population with individual j’s opinion

flipped by σ j .
Because we are using a mean-field model, we need to define the mean. For this we introduce the mean
function µ(σ):



3.1. Description of the Model 11

Definition 3.1 (Mean Function). Let I j be the index set of j-th sub population of total populationσ, then mean
function µ : E n j → [−1,1] is defined by:

µ(σi , i ∈ I j ) = 1

n j

∑
i∈I j

σi . (3.1)

The 2-dimensional mean vector of the system mn is given by: mn(σ0) =
(
µ(σi , i ∈ I1)
µ(σi , i ∈ I2)

)
=

(
mn(σ)1

mn(σ)2

)
.

Next up we look at the Hamiltonian of the system. The Hamiltonian for the Mean-Field Ising model is
given by[3]:

H(σ) =−β
n∑

i=1
σiµ(σ). (3.2)

Here β is the interaction coefficient. We adjust this Hamiltonian, by splitting it up to two populations.
This gives us the Hamiltonian for the two-population mean-field Ising model, given by:

H(σ) =−
[ ∑
σi |i∈I1

σi
[
β11mn(σ)1ρ1 +β21mn(σ)2ρ2

]+ ∑
σi |i∈I2

σi
[
β12mn(σ)1ρ1 +β22mn(σ)2ρ2

]]
. (3.3)

Here β11, β12, β21 and β22 denote the effect of population 1 on itself, population 1 on population 2, popula-
tion 2 on population 1 and population 2 on itself, as shown in in Figure 3.3.

We can use the Hamiltonian of the system the determine the energy change when the opinion of an indi-
vidual in the model flips. This change of energy can be used to find the flip rate of an individual in the model.
The energy change when individual σi flips is given by:

∆Ei = H(σi )−H(σ),

=
{

2σi
[
β11mn(σ)1ρ1 +β21mn(σ)2ρ2

]
if i ∈ I1,

2σi
[
β12mn(σ)1ρ1 +β22mn(σ)2ρ2

]
if i ∈ I2.

Before we can go any further, we define the flip rate of a single spin in the model. For this we apply the
Master equation from Theorem 2.1 on the model:

dP (σ, t )

d t
=

n∑
i

(w(σi →σ)P (σi , t )−w(σ→σi )P (σ, t )), (3.4)

=
N∑

j=1

∑
σi |i∈I j

(w(σi →σ)P (σi , t )−w(σ→σi )P (σ, t )). (3.5)

We know that in equilibrium the probability of the state is proportional to the Boltzmann distribution[6],
i.e., Peq (σ, t ) ∝ e−H(σ). Here we can use the energy difference described in the Equation 3.4. Plugging the
probability in equilibrium in the master equation gives us the following condition:

w(σ→σi )

w(σi →σ)
= Peq (σi )

Peq (σ)
= e−β(H(σi )−H(σ)) = e−β∆Ei . (3.6)

We make the following choice of definition for the flip rate, which satisfies this condition:

w(σ→σi ) = e−
β∆Ei

2 (3.7)

=
{

e−σi {β11mn (σ)1ρ1+β21mn (σ)2ρ2} if i ∈ I1,
e−σi {β12mn (σ)1ρ1+β22mn (σ)2ρ2} if i ∈ I2.

(3.8)

Here we have absorbed the Boltzmann coefficient β into the interaction coefficient. We would like to split
this into a flip rate for each population. This results in:

q1i = e−σi {β11mn (σ)1ρ1+β21mn (σ)2ρ2} = e−σiΓ1 ,

and

q2i = e−σi {β12mn (σ)1ρ1+β22mn (σ)2ρ2} = e−σiΓ2 .
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Here q1i and q2i are the flip rates for particles in populations 1 and 2 respectively. We introduced the terms
Γ1 and Γ2 for convenience. Those are given by:

Γ1 =β11mn(σ)1ρ1 +β21mn(σ)2ρ2,

and

Γ2 =β12mn(σ)1ρ1 +β22mn(σ)2ρ2.

Now that we have defined the flip rate, we can find the generator of σ using Lemma 2.2:

Ln f (σ) = ∑
j ̸=i

w(Si → S j )( f (S j )− f (Si )). (3.9)

In our model w(Si → S j ) = 0, if S j ̸= Sk
i for some k = 1, . . . ,n, where Sk

i denotes population Si with the k-th
individual flipped. So we get:

Ln f (σ) =
n∑

i=1
w(σ→σi )( f (σi )− f (σ)). (3.10)

We can split this sum up in a sum for each populations, giving us:

Ln f (σ) = ∑
i∈I1

w(σ→σi )( f (σi )− f (σ)), (3.11)

+ ∑
i∈I2

w(σ→σi )( f (σi )− f (σ)). (3.12)

Finally we can insert the definition for the flip rate for each population giving us:

Ln f (σ) = ∑
i∈I1

q1i ( f (σi )− f (σ)), (3.13)

+ ∑
i∈I2

q2i ( f (σi )− f (σ)). (3.14)

3.2. Convergence of the generators
Now we have found the generator of our system. We want to show that when taking the limit the system
converges in probability to a two-dimensional system of ordinary differential equations. First we will give
this system with its generator. Then we will show that the generator of the two-dimensional mean-field Ising
model converges to the generator of the two-dimensional system of ordinary differential equations.
We start by showing the two-dimensional ordinary differential equation with its generator. Let x(t ) be the
solution to the two-dimensional ordinary differential equation given by:{ d x⃗

d t = F (x),
x(0) = x0.

(3.15)

where F (⃗x) is the vector given by:

F (⃗x) =
(
(1−x1)eΓ1 − (1+x1)e−Γ1 ,
(1−x2)eΓ2 − (1+x2)e−Γ2 .

)
(3.16)

The generator A working on f (x(t )) is can be found using the definition of the infinitesimal generator
and corresponds to the semigroup {T (t )} with T (t ) f (s) = f (s + t ). This gives us:

A f (s) = lim
t→0

T (t ) f (s)− f (s)

t
, (3.17)

= lim
t→0

f (s + t )− f (s)

t
, (3.18)

= d f

d t
, (3.19)

= 〈∇ f ,
d x

d t
〉 = 〈∇ f ,F (x)〉 . (3.20)

Where in the last step we used the chain rule.
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Proposition 3.1. The stochastic process given by t 7→ mn(t ) is a process with generator An given by:

An( f ◦mn(σ)) = ρ1n (1+mn(σ)1)

2
e−Γ1

(
f (mn(σ)− 2

ρ1n
ê1)− f (mn(σ))

)
, (3.21)

+ ρ1n (1−mn(σ)1)

2
eΓ1

(
f (mn(σ)+ 2

ρ1n
ê1)− f (mn(σ))

)
,

+ ρ2n (1+mn(σ)2)

2
e−Γ2

(
f (mn(σ))− 2

ρ2n
ê2)− f (mn(σ))

)
,

+ ρ2n (1−mn(σ)2)

2
eΓ2

(
f (mn(σ)+ 2

ρ2n
ê2)− f (mn(σ)))

)
.

Proof. Let the generator An work on the function f ◦mn(σ):

An( f ◦mn(σ)) = ∑
i∈I1

q2i

(
f (mn(σi ))− f (mn(σ))

)
,

+ ∑
i∈I2

q1i

(
f (mn(σi ))− f (mn(σ))

)
.

Next up we want to rewrite the term mn(σi ). For this we first introduces the unit vectors ê1 =
(
1
0

)
and ê2 =

(
0
1

)
.

We now look at the definition of mn and plug in σi . This gives us:

mn(σi ) =
(
µ(σi

j , j ∈ I2)

µ(σi
j , j ∈ I1)

)
.

If i ∈ I1, then µ(σi
j , j ∈ I2) = µ(σ j , j ∈ I2). Similarly if i ∈ I2, then µ(σi

j , j ∈ I1) = µ(σ j , j ∈ I1). Now let’s have a

look what happens to µ(σi
j , j ∈ I1) if i ∈ I1. We get:

µ(σi
j , j ∈ I1) = 1

n1

[ ∑
j∈I1| j ̸=i

σ j −σi

]
, (3.22)

= 1

n1

[ ∑
j∈I1

σ j −2σi

]
, (3.23)

=µ(σ j , j ∈ I1)−2
σi

n1
. (3.24)

We get a similar result for the situation the flipped individual is in population 2. This allows us to write:

mn(σi ) =
{

mn(σ)−2σi
n1

e1, if i ∈ I1,
mn(σ)−2σ1

n2
e2, if i ∈ I2.

Substituting this result into our expression for the generator gives us:

An( f ◦mn(σ)) = ∑
i∈I1

e−σiΓ1

(
f (mn(σ)− 2σi

n1
e1)− f (mn(σ))

)
,

+ ∑
i∈I2

e−σiΓ2

(
f (mn(σ)− 2σi

n2
e2)− f (mn(σ))

)
.

Next, we split the sums over the populations into two parts, a sum over all individuals with a positive opinion
and a sum over all individuals with a negative opinion. This allows to substitute all value of −1 or +1 for all
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the σ1 terms. This gives us:

An( f ◦mn(σ)) = ∑
i∈I1|σi=1

e−Γ1

(
f (mn(σ)− 2

n1
ê1)− f (mn(σ))

)
,

+ ∑
i∈I1|σi=−1

eΓ1

(
f (mn(σ)+ 2

n1
ê1)− f (mn(σ))

)
,

+ ∑
i∈I2|σi=1

e−Γ2

(
f (mn(σ)− 2

n2
ê2)− f (mn(σ))

)
,

+ ∑
i∈I2|σi=−1

eΓ2

(
f (mn(σ)+ 2

n2
ê2)− f (mn(σ))

)
.

Now all the terms over which we sum have vanished and we only sum over one. We can rewrite this sum
as an expression including the mn . We know that each sum is the number of positive or negative particles in
each populations. We will look at the definition of the mean function µ to find this expression:

µ(σ) = 1

n

n∑
i
=σi ,

= 1

n

{
n∑

i |σi=−1
−1

n∑
i |σi=1

1

}
,

= 1

n

{
n+−n−}

.

Here n+ and n− denote the number of positive and negative individuals in the model in population respec-
tively. Using n+ = n −n− we can get the following expressing expressions for n+ and n−:

n+ = ∑
i |σi=1

1 = n
{
1+µ(σ)

}
2

, (3.25)

n− = ∑
i |σi=−1

1 = n
{
1−µ(σ)

}
2

. (3.26)

Substituting this into the expression for the generator gives:

An( f ◦mn(σ)) = ρ1n (1+mn(σ)1)

2
e−Γ1

(
f (mn(σ)− 2

ρ1n
ê1)− f (mn(σ))

)
,

+ ρ1n (1−mn(σ)1)

2
eΓ1

(
f (mn(σ)+ 2

ρ1n
ê1)− f (mn(σ))

)
,

+ ρ2n (1+mn(σ)2)

2
e−Γ2

(
f (mn(σ))− 2

ρ2n
ê2)− f (mn(σ))

)
,

+ ρ2n (1−mn(σ)2)

2
eΓ2

(
f (mn(σ)+ 2

ρ2n
ê2)− f (mn(σ)))

)
.

Now we have found the generator of the model, we can introduce the final proposition which shows the
convergence of the models.

Proposition 3.2. The Markov process given by t 7→ mn(σ(t )) with mn(σ(0)) → x0 converges to x(t ) the solution
to the two-dimensional differential equation given by Equation 3.15

Proof. Using the generator we found in Proposition 3.1, We can apply theorem 2.3, to show the convergence
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of the generators. Suppose mn(σ(t )) → x⃗(t ) as n goes to infinity we then have:

lim
n→∞An f (⃗x) = lim

n→∞
ρ1n (1+x1)

2
e−Γ1

(
f (⃗x − 2

ρ1n
x̂1)− f (⃗x)

)
,

+ lim
n→∞

ρ1n (1−x1)

2
eΓ1

(
f (⃗x + 2

ρ1n
x̂1)− f (⃗x)

)
,

+ lim
n→∞

ρ2n (1+x2)

2
e−Γ2

(
f (⃗x − 2

ρ2n
x̂2)− f (⃗x)

)
,

+ lim
n→∞

ρ2n (1−x2)

2
eΓ2

(
f (⃗x + 2

ρ2n
x̂2)− f (⃗x)

)
.

Now since f ∈ C 2 we can apply the Theorem 2.4. For this we will first only look at the part f (⃗x − 2
ρ1n x̂1). We

know that there exists a θ1 ∈ L1, where L1 is the path between x⃗ and x⃗ − 2
ρ1n , such that:

f (⃗x − 2

ρ1n
x̂1) = f (⃗x)− 2

ρ1n

∂

∂x1
f (⃗x)+ 1

2

4

ρ2
1n2

∂2

∂x2
1

f (θ).

We can get similar results for f (⃗x + 2
ρ1n x̂1), f (⃗x − 2

ρ2n x̂2) and f (⃗x + 2
ρ2n x̂2), which corresponding θ2, θ3 and θ4

in paths L2, L3 and L4 respectively. Substituting these results into our limit gives:

lim
n→∞An f (⃗x) = lim

n→∞
ρ1n (1+x1)

2
e−Γ1

(
f (⃗x)− 2

ρ1n

∂

∂x1
f (⃗x)+ 2

ρ2
1n2

∂2

∂x2
1

f (θ1)− f (⃗x)

)
,

+ lim
n→∞

ρ1n (1−x1)

2
eΓ1

(
f (⃗x)+ 2

ρ1n

∂

∂x1
f (⃗x)+ 2

ρ2
1n2

∂2

∂x2
1

f (θ2)− f (⃗x)

)
,

+ lim
n→∞

ρ2n (1+x2)

2
e−Γ2

(
f (⃗x)− 2

ρ2n

∂

∂x2
f (⃗x)+ 2

ρ2
2n2

∂2

∂x2
2

f (θ3)− f (⃗x)

)
,

+ lim
n→∞

ρ2n (1−x2)

2
eΓ2

(
f (⃗x)+ 2

ρ2n

∂

∂x2
f (⃗x)+ 2

ρ2
2n2

∂2

∂x2
2

f (θ4)− f (⃗x)

)
.

If we now, cancel out the f (⃗x) parts and move the limits and the components nρ1
2 and nρ2

2 to inside the
brackets we get:

lim
n→∞An f (⃗x) = (1+x1)e−Γ1

(
− ∂

∂x1
f (⃗x)+ lim

n→∞
1

ρ1n

∂ f (θ1)

∂x2
1

)
,

+ (1−x1)eΓ1

(
∂

∂x1
f (⃗x)+ lim

n→∞
1

ρ1n

∂ f (θ2)

∂x2
1

)
,

+ (1+x2)e−Γ2

(
− ∂

∂x2
f (⃗x)+ lim

n→∞
1

ρ2n

∂ f (θ3)

∂x2
2

)
,

+ (1−x2)eΓ2

(
∂

∂x2
f (⃗x)+ lim

n→∞
1

ρ2n

∂ f (θ4)

∂x2
2

)
.

Now since 1
n goes to zero as n goes to infinity we get:

lim
n→∞An f (⃗x) =−(1+x1)e−Γ1

∂ f

∂x1
+ (1−x1)eΓ1

∂ f

∂x1
− (1+x2)e−Γ2

∂ f

∂x2
+ (1−x2)eΓ2

∂ f

∂x2
.

Rewriting this gives us what we wanted to show:

lim
n→∞An f (⃗x) =<

[
∂ f
∂x1
∂ f
∂x2

]
,

[
(1−x1)eΓ1 − (1+x1)e−Γ1

(1−x2)eΓ2 − (1+x2)e−Γ2

]
>,

=<∇ f ,F >=A f .
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Using this we clearly see that:

lim
n

sup
x∈En

∣∣An( f ◦mn)(x)−A f (mn(x))
∣∣= 0 (3.27)

We have now shown that as n goes to infinity and mn(t ) goes to xt we have that the generator An converges
to the generator A . Therefore by Theorem 2.3, the two-population Mean-Field Ising model converges to
two-dimensional system of Ordinary Differential equations described by Equation 3.15



4
The N-dimensional mean-field Ising model

In this chapter we will expand the framework, we created in Chapter 2 to discuss the two-population Mean-
Field Ising model, to create an analysis of the "general N"-population Mean-Field Ising model. In the first
section of this chapter we will give a quick introduction to the model and will make some alterations and
additions to the mathematical notation introduced in Chapter 2. In the second section of this chapter we will
proof the convergence of the model to a N-dimensional system of Ordinary Differential Equations.

4.1. Description of the Model
When describing the N-Population Mean-Field Ising model, we will make similar steps as before in the N = 2
case. We again have a group of n individuals who can have either a negative or a positive opinion on a subject.
We again make the same simplifications as before. We have a Mean-Field and location independent model.
Where in the N = 2 case, we split the populations into two groups, now we split the population into a general
number N groups. Figure 4.1 gives an schematic overview for a three-population Mean-Field Ising model.
We expanded our model to a general N, so we can split the total population on different criteria. We could for
example split the total population into three ages groups: children, young adults and 30+’ers.

To achieve our goal, we need to make some alterations to the mathematical notation introduced with the
two-dimensional model. We again introduce a sequence of n random variables σ= {σ1, . . . ,σn} representing
the individuals in the total population. Each individual has a state space E = {−1,+1} and the entire popu-
lation has total state space Ω = {−1,+1}n . Now we diverge from the two-population model. We introduce N
index sets I1, . . . , IN , to split the total population. All the indices for individuals in Population j are stored in
index set I j for al j = 1, . . . , N . Again we have chosen the populations such that each individual is in exactly
one population. This gives the two requirements for the index sets:

∏N
j=1 i j =∅ and

⋃N
j=1 I j = {1, . . . ,n}. For

each population j the the population size n j is given by n j = card(I j ) and the proportion out of the total

population ρ j is given by ρ j = n j

n . Here we have chosen ρ j such that limn→∞
n j

n = ρ j > 0, meaning that the

populations are non-empty. Obviously this gives
∑N

j=1 n j = n and
∑N

j=1ρ j = 1. As before we denote the k-th

individual in the total population being flipped by σk .

The mean function defined for the two-population model can also be applied to the N-population model,
allowing us to define the N-dimensional mean vector mn(σ) of the model by:

mn(σ) =

µ (σi , i ∈ I1)
...

µ (σi , i ∈ IN )

=

 mn(σ)1
...

mn(σ)N

 . (4.1)

For the N-dimensional model we also store all the population fractions in a N-dimensional vector given by:

ρ =

ρ1
...
ρN

 . (4.2)

17
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Figure 4.1: Schematic view of the 2-population Mean-Field Ising model. A plus represents and individual with a positive opinion and
a minus represents an individual with a negative opinion. The model is divided in population 1 and population 2 in red and blue
respectively. The interaction coefficients are shown by the arrows.

Now to find the flipping rate of the system we again look at the Hamiltonian. We can continue from
Equation 3.2, and split it up for N populations giving:

H(σ) =−
N∑

j=1

∑
σi |i∈I j

σi [β1 j mn(σ)1ρ1 +·· ·+βN j mn(σ)NρN ]. (4.3)

Here β j k is the interaction coefficient denoting the effect of population j on population k. All the interaction
coefficients are stored in the interaction matrix C , which is a N ×N matrix given by:

C =

β11 . . . β1N
...

. . .
...

βN 1 . . . βN N

 . (4.4)

We now again look at the energy difference when a individual flips and we see:

∆Ei = H(σi )−H(σ) (4.5)

=


2σi [β11mn(σ)1ρ1 +·· ·+βN 1mn(σ)NρN ], if i ∈ I1,

...
2σi [β1N mn(σ)1ρ1 +·· ·+βN N mn(σ)NρN ], if i ∈ IN .

(4.6)

Similarly to the two-population mean-field Ising model we find the flip rate for the i-th individual in popula-
tion j qi j to be given by:

q j i = e−σiΓ j . (4.7)
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Where Γ j is given by:

Γ j =
N∑

i=1
βi j mn(σ)iρi . (4.8)

No we have found the flip rate of the N-dimensional model, we can define its generator:

Ln f (σ) =
N∑

j=1

∑
i∈I j

q j i

(
f (σi )− f (σ)

)
. (4.9)

4.2. Convergence of the generators
Now we have found the generator of our system. We want to show that when taking the limit the system
converges in probability to a N-dimensional system of ordinary differential equations. First we will give this
system with its generator. Then we will show that the generator of the N-dimensional mean-field Ising model
converges to the generator of the N-dimensional system of ordinary differential equations.

We start by showing the N-dimensional ordinary differential equation with its generator. Let x(t ) be the
solution to the N-dimensional ordinary differential equation given by:{ d x⃗

d t = F (x),
x(0) = x0.

(4.10)

where F (⃗x) is the vector given by:

F (⃗x) =

 (1−x1)eΓ1 − (1+x1)e−Γ1

...
(1−xN )eΓN − (1+xN )e−ΓN

 . (4.11)

The generator A working on f (x(t )) is can be found by using the definition of the infinitesimal generator
and corresponds to the semigroup {T (t )} with T (t ) f (s) = f (s + t ). This gives us:

A f (s) = lim
t→0

T (t ) f (s)− f (s)

t
, (4.12)

= lim
t→0

f (s + t )− f (s)

t
, (4.13)

= d f

d t
, (4.14)

= 〈∇ f ,
d x

d t
〉 = 〈∇ f ,F (x)〉 . (4.15)

Where in the last step we used the chain rule.

Proposition 4.1. The stochastic process given by t 7→ mn(t ) is a process with generator An given by:

An( f ◦mn(σ)) =
N∑

j=1

ρ j n
(
1+mn(σ) j

)
2

e−Γ j

(
f (mn(σ)− 2

ρ j n
ê j )− f (mn(σ))

)
, (4.16)

+
N∑

j=1

ρ j n
(
1−mn(σ) j

)
2

eΓ j

(
f (mn(σ)+ 2

ρ j n
ê j )− f (mn(σ))

)
.

Proof. Let the generator An work on f ◦mn(σ):

An( f ◦mn(σ)) =
N∑

j=1

∑
i∈I j

q j i

(
f (mn(σi ))− f (mn(σ))

)
.
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Next up we want to rewrite the term mn(σi ). For this we first introduce the N-dimensional unit vector ê j ,
which is zero except for its j-th index, where it has value one. Now we look at the definition of mn and plug in
σi . This gives us:

mn(σi ) =


µ(σi

j , j ∈ I1)
...

µ(σi
j , j ∈ IN )

 .

If i ∈ Ik , then µ(σi
j , j ∈ Il ) = µ(σ j , j ∈ Il ) for l ̸= k. Now let’s have a look what happens to µ(σi

j , j ∈ Ik ) if i ∈ Ik .
We get:

µ(σi
j , j ∈ Ik ) = 1

nk

[ ∑
j∈Ik | j ̸=i

σ j −σi

]
, (4.17)

= 1

nk

[ ∑
j∈Ik

σ j −2σi

]
, (4.18)

=µ(σ j , j ∈ Ik )−2
σi

nk
. (4.19)

This allows us to write:

mn(σi ) =


mn(σ)−2σi

n1
e1if i ∈ I1,

...
mn(σ)−2 σi

nN
eN if i ∈ IN .

Substituting this result into our expression for the generator gives us:

An( f ◦mn(σ)) =
N∑

j=1

∑
i∈I j

e−σiΓ j

(
f (mn(σ)− 2σi

n j
e j )− f (mn(σ))

)
.

Next up we split the sums over the populations into two parts, a sum over all individuals with a positive
opinion and a sum over all individuals with a negative opinion. This allows to substitute all value of −1 or +1
for all te σ1 terms. This gives us:

An( f ◦mn(σ)) =
N∑

j=1

∑
i∈I j |σi=1

e−Γ j

(
f (mn(σ)− 2

n j
ê j )− f (mn(σ))

)
,

+
N∑

j=1

∑
i∈I j |σi=−1

eΓ j

(
f (mn(σ)+ 2

n j
ê j )− f (mn(σ))

)
.

Now all the term over which we sum have vanished and we only sum over one. We can now substitute Equa-
tion 3.25:

An( f ◦mn(σ)) =
N∑

j=1

ρ j n
(
1+mn(σ) j

)
2

e−Γ j

(
f (mn(σ)− 2

ρ j n
ê j )− f (mn(σ))

)
,

+
N∑

j=1

ρ j n
(
1−mn(σ) j

)
2

eΓ j

(
f (mn(σ)+ 2

ρ j n
ê j )− f (mn(σ))

)
.

We have now find our desired expression for the generator. We can now apply theorem 2.3, to show the
convergence of the generators.

Proposition 4.2. The Markov process given by t 7→ mn(σ(t )) with mn(σ(0) → x0) converges to x(t ) the solution
of the N-dimensional differential equation given by Equation 4.10.
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Proof. Suppose mn(σ(t )) → x⃗(t ) as n goes to infinity we then have:

lim
n→∞An f (⃗x) =

N∑
j=1

lim
n→∞

ρ j n
(
1+x j

)
2

e−Γ j

(
f (⃗x − 2

ρ j n
x̂ j )− f (⃗x)

)
,

+
N∑

j=1
lim

n→∞
ρ j n

(
1−x j

)
2

eΓ j

(
f (⃗x + 2

ρ j n
x̂ j )− f (⃗x)

)
.

Now we want to apply the Theorem 2.4. For this we will first only look at the part f (⃗x − 2
ρ j n x̂1). We know that

there exists a θ1 ∈ L1, where L1 is the path between x⃗ and x⃗ − 2
ρ j n , such that:

f (⃗x − 2

ρ j n
x̂ j ) = f (⃗x)− 2

ρ j n

∂

∂x j
f (⃗x)+ 1

2

4

ρ2
j n2

∂2

∂x2
j

f (θ).

We can get similar results for f (⃗x + 2
ρ j n x̂1) with corresponding θ2 in path L2. Substituting these results into

our limit gives:

lim
n→∞An f (⃗x) =

N∑
j=1

lim
n→∞

ρ j n
(
1+x j

)
2

e−Γ j

(
f (⃗x)− 2

ρ j n

∂

∂x j
f (⃗x)+ 2

ρ2
j n2

∂2

∂x2
j

f (θ1)− f (⃗x)

)
,

+
N∑

j=1
lim

n→∞
ρ j n

(
1−x j

)
2

eΓ j

(
f (⃗x)+ 2

ρ j n

∂

∂x j
f (⃗x)+ 2

ρ2
j n2

∂2

∂x2
j

f (θ2)− f (⃗x)

)
.

If we now, cancel out the f (⃗x) parts and move the limits and the component
nρ1 j

2 to inside the brackets we
get:

lim
n→∞An f (⃗x) =

N∑
j=1

(
1+x j

)
e−Γ j

(
− ∂

∂x j
f (⃗x)+ lim

n→∞
1

ρ j n

∂ f (θ1)

∂x2
j

)
,

+
N∑

j=1

(
1−x j

)
eΓ j

(
∂

∂x j
f (⃗x)+ lim

n→∞
1

ρ j n

∂ f (θ2)

∂x2
j

)
.

Now since 1
n goes to zero as n goes to infinity we get:

lim
n→∞An f (⃗x) =

N∑
j=1

−(1+x j )e−Γ j
∂ f

∂x j
+ (1−x j )eΓ j

∂ f

∂x j
.

Rewriting this gives us what we wanted to show:

lim
n→∞An f (⃗x) =<

[
∂ f
∂x1
∂ f
∂x2

]
,

[
(1−x1)eΓ1 − (1+x1)e−Γ1

(1−x2)eΓ2 − (1+x2)e−Γ2

]
>,

=<∇ f ,F >=A f .

Using this we clearly see that:

lim
n

sup
x∈En

∣∣An( f ◦mn)(x)−A f (mn(x))
∣∣= 0 (4.20)

We have now shown that as n goes to infinity and mn(t ) goes to xt we have that the generator An converges
to the generator A . Therefore by Theorem 2.3, the N-population Mean-Field Ising model converges in prob-
ability to the N-dimensional system of Ordinary Differential equations described by Equation 4.10.





5
Local bifurcations of the model for two and

three populations

In this chapter we will be characterizing the two- and three-dimensional system of ordinary differential equa-
tions for when local bifurcations around the origin occur. In the first section we will be looking at the vector
F obtained in Chapter 4 and determining when bifurcations occur in the two-dimensional model. In the sec-
ond section of this chapter we will be doing analysis of the two-population model for a Hopf bifurcation. In
the third section of this chapter we will focus on the analysis of a Hopf bifurcation in the three-dimensional
model and in the fourth and final section we will do two numerical simulations of Hopf bifurcations in the
three-dimensional model. This chapter will solely focus on local bifurcations. Global bifurcations are outside
the scope of this thesis. We will first make some notation changes to the N-dimensional ordinary differential
equation given by: { d x⃗

d t = F (⃗x)
x(0) = x0,

(5.1)

where F (⃗x) is the N-dimensional vector given by:

F (⃗x) =

 (1−x1)eΓN − (1+xN )e−Γ1

...
(1−xN )eΓN − (1+xN )e−ΓN

 (5.2)

The change in notation we make, has to do with the interaction matrix β. For this we first diagonalize the
fraction vector ρ giving:

ρd = diag(ρ1,ρ2, . . . ,ρN ) =


ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...
0 0 . . . ρN

 (5.3)

We now define a new interaction matrix α, which includes the populations fractions ρ. α is defined by:

α= ρdβ=

 ρ1β11 . . . ρ1β1N
...

. . .
...

ρNβN 1 . . . ρNβN N

 (5.4)

This allows us to write Γ j as:

Γ j (⃗x) = x⃗Tαe j (5.5)
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The second change in notation we introduce is rewriting the vector F using the hyperbolic sine and cosine
given by:

cosh(x) = ex +e−x

2
(5.6)

and (5.7)

sinh(x) = ex −e−x

2
. (5.8)

Inserting these two equations into the definition of the vector F (⃗x) gives:

F (⃗x) =

 2sinh(Γ1)−2x1 cosh(Γ1)
...

2sinh(ΓN )−2xN cosh(ΓN )

 (5.9)

5.1. Bifurcations in the 2-dimensional Mean-Field Ising model
For the analysis of the bifurcation we will be looking at an example of a group of men population 1 and a
group of women population 2. We will be looking at the equilibrium point x0 = (0,0). This means that the
women and the men both have an average of 0 opinion on the subject. Meaning half of each group has an
positive opinion and half of each has an negative opinion on the subject. The two-population system of
ordinary differential equations discussed in this section is given by:{ d x⃗

d t = F (⃗x)
x(0) = x0

(5.10)

Where F (⃗x) is the two-dimensional vector given by:

F (⃗x) =
(
2sinh(Γ1)−2x1 cosh(Γ1)
2sinh(Γ2)−2x2 cosh(Γ2)

)
(5.11)

We start this chapter by showing that two types of bifurcations are not possible at x = (0,0).

Lemma 5.1. The two-dimensional system of differential equations given by Equation 5.10 cannot have the
following bifurcation types at (0,0): (a) A saddle-point bifurcation and (b) a transcritical bifurcation.

Proof. Suppose there is either a saddle-point of transcritical bifurcation at (0,0). Then by Theorem 2.5 and
Theorem 2.6, we have w t D2F |x=(0,0)(v, v) ̸= 0⃗. However if we look at D2F we get:

D2F =
(([

2α2
11 −4α11

]
v2

1 + [
2α2

21 −2α21
]

v2
2 + [4α11α21 −4α21] v1v2

)
sinh(Γ1)− (

2α2
11v2

1 +2α2
21v2

2 +4α11α21v1v2
)

x1 cosh(Γ1)([
2α2

22 −4α22
]

v2
1 + [

2α2
12 −2α12

]
v2

2 + [4α22α12 −4α12] v1v2
)

sinh(Γ2)− (
2α2

22v2
1 +2α2

12v2
2 +4α22α12v1v2

)
x2 cosh(Γ2)

)
.

Now substituting for x = (0,0) gives:

D2F |x=(0,0) =
(
0
0

)
. (5.12)

This is leads to a contradiction. So by contradiction we have shown there cannot be a saddle-point or trans-
critical bifurcation at (0,0).

Now we are going to take a look at the Hopf bifurcation, which indicates that limit cycles occur.

Lemma 5.2. The two-dimensional ordinary differential equation given by Equation 5.10 has a Hopf bifurca-
tion at (0,0) with bifurcation parameter µ=α11 if the following are true:

α11 +α22 = 2, (5.13)

(α11 −α22)2 +α12α21 < 0. (5.14)
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Proof. For this we will be using Theorem 2.7. The Jacobian of vector F at (0,0) is given by:

J (F (⃗x))|⃗x=(0,0) =
(
2α11 −2 2α21

2α12 2α22 −2

)
(5.15)

Now let us determine the eigenvalues of this matrix. Using det
(

J (F )|x=(0,0) −λI
)= 0 we get the equality:

λ2 + (4−2α22 −2α11)λ−4(α11 +α22 −α11α22 +α12α21 −1) (5.16)

Solving for λ using the quadratic formula gives:

λ± =α11 +α22 −2± 1

2

√
(4−α222−2α11)2 −16(α11 +α22 −α11α22 +α12α21 −1) (5.17)

We can simplify this equation to:

λ± =α11 +α22 −2±
√

(α11 −α22)2 +4α12α21 (5.18)

Now suppose α11 +α22 = 2 and (α11 −α22)2 +α12α21 < 0 hold. Substituting the former in Equation 5.18,
gives:

λ± = (α11 −α22)2 +α12α21 < 0 (5.19)

Now we get ℑ(λ) ̸= 0 and ℜ(λ) = 0. If we now take the derivative of the real part of the eigenvalues w.r.t. µ we
get:

d

dµ
[µ+α22]µ=µ0 = 1 (5.20)

This is not equal to zero, so by Theorem 2.7 there is a Hopf bifurcation at (0,0) as µ passes through µ0.

5.2. Numerical methods on the 2-dimensional Mean-Field Ising Model
To perform the numerical analysis of the 2-dimensional Mean-Field Ising model we want to construct an
interaction matrix which satisfies the conditions of Lemma 5.2.For this we start with a matrix A, which has a
conjugate pair of purely imaginary eigenvalue λ± =±ωi , with ω ∈R. This matrix is given by:

A =
(
ωi 0
0 −ωi

)
(5.21)

Next up we alter the matrix such that it only contains real numbers. This gives us:

Ar eal =
(

0 ω

−ω 0

)
(5.22)

Next we want to find the interaction matrix C , which Jacobian is equal to matrix Ar eal . This matrix is given
by:

C =
(

1 −ω
2

ω
2 1

)
(5.23)

This matrix satisfies the conditions of Lemma 5.2. We set α11 to be the bifurcation parameter, then the bifur-
cation value µ0 = 1. We see that for µ < µ0, ℜ(λ±) < 0, for µ > µ0, ℜ(λ±) > 0 and for µ = µ0, ℜ(λ±) = 0. Next
up we performed a numerical simulation on the two-dimensional system of ordinary differential equations
given by Equation 5.10, with interaction matrix C . For this we have chosen ω= 2. We used the forward differ-
ence method, with time-step d t = 10−5, for a total of two million steps. The simulation started close to (0,0)
at the point x = (0.1,−0.1) The results of the simulation are shown in figure 5.1. The simulation shows the
occurrence of a limit cycle, due to the Hopf bifurcation.
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(a) (b)

(c) (d)

Figure 5.1: (a) shows the evolution of the average opinion of population 1, (b) shows the evolution of the average opinion of population
2, (c) plots the average opinion of population 1 vs the average opinion of population 2. The start point of the simulation is shown in red
en the end point in green. (d) shows the check if a Hopf bifurcation is possible.

5.3. Bifurcations of the 3-dimensional Mean-Field Ising model
In this section we will be discussing the three-dimensional Mean-field Ising, as derived in Chapter ??. This
system is given by: { d x⃗

d t = F (⃗x)
x(0) = x0

(5.24)

Where F (⃗x) is the three-dimensional vector given by:

F (⃗x) =
2sinh(Γ1)−2x1 cosh(Γ1)

2sinh(Γ2)−2x2 cosh(Γ2)
2sinh(Γ3)−2x3 cosh(Γ3)

 (5.25)

We will start by stating the conditions on when a Hopf bifurcation occurs.

Lemma 5.3. Let x(t ) be the solution of the three-dimensional system of ordinary differential equations given
by Equation 5.24. Let 3×3-matrix D be given by:

D =
2α11 −2 2α21 2α31

2α12 2α22 −2 2α32

2α13 2α23 2α33 −2

 . (5.26)

Suppose there is a choice of parameter µ and bifurcation value µ0such that:

d

dµ
[ℜ(λµ)]|µ=µ0 ̸= 0. (5.27)
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The system undergoes a Hopf-bifurcation at x = (0,0) as µ goes through µ0 if D has to eigenvalues of the form
λ=±ωi and one eigenvalue of the form λ= d, with w,d ∈R

Proof. Suppose D has eigenvalues and a bifurcation value as described in the lemma. By theorem 2.7 we
know that the Jacobian of vector F at x = (0,0) has to have a conjugate pair of pure imaginary eigenvalues and
a real eigenvalue. After long and cumbersome computations we have found the Jacobian of F at to be given
by:

J (F )|x0=(0,0) =
2α11 −2 2α21 2α31

2α12 2α22 −2 2α32

2α13 2α23 2α33 −2

 . (5.28)

. Clearly this is equal to D. So J (F )|x=(0,0) has the same eigenvalues of D . Therefore by Theorem 2.7, there is
an Hopf bifurcation at x = (0,0).

5.4. Numerical methods on the 3-dimensional Mean-Field Ising model

We want to construct a matrix which satisfies the conditions laid out in Lemma 5.3. For this we start with a
matrix A, which has a conjugate pair of pure imaginary eigenvalues λ± =±ωi and a real eigenvalue λr eal = a,
with a,ω ∈R. We construct this by making A a diagonal matrix with the eigenvalues on the diagonal:

A =
ωi 0 0

0 −ωi 0
0 0 a

 (5.29)

Next up we want this matrix to only contain real numbers, so we create the matrix Ar eal , with the same
eigenvalues given by:

Ar eal =
0 −ω 0
ω 0 0
0 0 a

 (5.30)

Clearly this matrix has the same eigenvalues. Next we want to find a interaction matrix C such that its Jacobian
at zero is equal to matrix A. This interaction matrix is given by:

C =
 1 ω

2 0
−ω

2 1
0 0 a

2 +1

 (5.31)

This matrix satisfies the conditions of Lemma 5.3. Next up we did a numerical analysis on the three-dimensional
system of ordinary differentials equations given by Equation 5.24 with the interaction matrix being C , where
we have chosen ω= 2 and a =−2. For this we used the forward difference methodwith a timestep d t = 10−5

for a total of two million steps. The simulation started at starting point x = (0.1,−0.2,0.07). The results of this
analysis are shown in Figure 5.2.
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(a) (b)

(c) (d)

Figure 5.2: (a) shows the evolution of the average opinion of population 1, (b) shows the evolution of the average opinion of population
2, (c) shows the evolution of the average opinion of population 3, (d) plots the average opinion of population 1 vs the average opinion of
population 2. The start point of the simulation is shown in red en the end point in green.

The figures show the occurrence of two periodic populations and one stable population. The Hopf bifur-
cation caused the occurrence of a limit cycle between two of the three populations, as expected.

Lastly we construct a third numerical simulation. We wanted to have a simulation where all three popula-
tions where oscillating. What we did was to let the third population act as a "carrier" population. We started
with an interaction matrix where two populations oscillate given by:

Cor i g i nal =
2 −3 0

3 2 0
0 0 1

 (5.32)

Then we switch the interaction factors α12 and α13. We also set the interaction factor α32 = 3. This caused
population 1 to influence population 2 through population 3. This gave us the interaction matrix C given by:

C =
2 0 −3

3 2 0
0 3 1

 . (5.33)

ext up we did a numerical analysis on the three-dimensional system of ordinary differentials equations given
by Equation 5.24 with the interaction matrix being C . For this we used the forward difference method with a
timestep d t = 10−5 for a total of two million steps. The simulation started at starting point x = (0.1,−0.2,0.07).
The results are shown in Figure 5.3. It shows that we succeeded in our goal to make all three populations
oscillate.
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(a) (b)

(c) (d)

Figure 5.3: (a) shows the evolution of the average opinion of population 1, (b) shows the evolution of the average opinion of population
2, (c) shows the evolution of the average opinion of population 3, (d) plots the average opinion of population 1 vs the average opinion of
population 2. The start point of the simulation is shown in red en the end point in green.





6
Discussion

The objective of the study in this paper was to extend the two-population mean-field Ising model to a general
N-population mean-field Ising model, with the aim to use it to model opinion dynamics. We proved that the
two- and N-population mean-field Ising model converge to systems of ordinary differential equations. This
result bridges the gap between a statistical process and a deterministic process.
We found that by created a new interaction matrix by taking the production of the old interaction matrix and
the population fractions. This shows that a big population can be modeled as a small population with a big
interaction coefficient and vice versa.
We characterized when Hopf bifurcations occur for the two- and three-dimensional models. This result is of
good use for the modeling of opinion dynamics. A Hopf bifurcation coincides with a big change in system
behavior. This could be used to model big changes in opinions to changes in society.
In this study we only focused on local bifurcation at x0 = (0,0). Further research should be done on other
equilibrium points and global bifurcations. This would allow us the predict the population dynamics even
better. The bifurcation analysis in this study was solely focused on the two- and three-dimensional models.
Further research should be done on bifurcations in the general N model.
When we defined the system, we excluded the external field. The effect of an external field should be re-
searched and whether the convergence from statistic model to deterministic model still happens.
One of the limitations of the model is the binary behavior of the opinions. Each individual could either have a
positive or negative opinion. In reality opinions are a lot more nuanced and a person could for example also
have a neutral opinion on a subject. Further research should be done on adding more opinion possibilities
to the model.
In the final section of Chapter 5 we showed that it is possible to have three populations oscillating at the same
time. The conjugate complex pair of eigenvalue of the Jacobian of this interaction matrix, has a non-zero
eigenvalue. Further research should be done what the conditions are for three populations to oscillate.
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7
Conclusion

The objective of the study in this paper was to analyze population dynamics, by expanding the two-population
mean-field Ising model to a general N-population mean-field Ising model and showing its convergence to
a system of ordinary differential equations. In Chapter 3, we defined the notation of the two-dimensional
mean-field Ising and showed its convergence to the two-dimensional system of ordinary differential equa-
tions given by Equation 3.15.
In Chapter 4 we expanded the notation of the two-dimension mean-field Ising model to the general N situa-
tion. Subsequently we showed the convergence of model the N-dimensional system of ordinary differential
equations given by Equation 4.10 using convergence of generators. In chapter 5 we showed that for the two-
dimensional model transcritical and sandle-node bifurcations are not possible at x0 = 0,0. We found that a
Hopf-bifurcation is possible for the three-dimensional model if the following requirements for the interac-
tions coefficients are met:

α11 +α22 = 2, (7.1)

(α11 −α22)2 +α12α21 < 0. (7.2)

With a numerical analysis using the forward difference method we showed that when these conditions are
met a limit cycle occurs close to x0.
For the three-dimensional model we gave the requirements needed for a Hopf bifurcation in Lemma 5.3.
Here we again performed a numerical analysis and again found limit cycles close to x0. We were also able to
construct a model were three population oscillate.
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