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Abstract

Multiple Object Tracking (MOT) is a rapidly developing
research field that targets precise and reliable tracking of ob-
jects. Unfortunately, most available MOT datasets typically
contain short video clips only, disregarding the indispensable
requirement for adequately capturing substantial long-term
variations in real-world scenarios. Long-term MOT poses
unique challenges due to changes in both the objects and
the environment, which remain relatively unexplored. To fill
the gap, we propose a time-lapse image dataset inspired by
the growth monitoring of strawberries, dubbed The Growing
Strawberries Dataset (GSD). The data was captured hourly
by six cameras, covering a span of 16 months in 2021 and
2022. During this time, it encompassed a total of 24 plants
in two separate greenhouses. The changes in appearance,
weight, and position during the ripening process, along with
variations in the illumination during data collection, distin-
guish the task from previous MOT research. These practical
issues resulted in a drastic performance downgrade in the
track identification and association tasks of state-of-the-art
MOT algorithms. We believe The Growing Strawberries
will provide a platform for evaluating such long-term MOT
tasks and inspire future research. The dataset is available
at https://doi.org/10.4121/e3b31ece-cc88-
4638-be10-8ccdd4c5f2f7.v1.

1. Introduction
Multiple Object Tracking (MOT) is an exciting Com-

puter Vision topic with wide applications in autonomous

driving [25, 37], traffic monitoring [30, 34], video surveil-

lance [32, 41], etc. While these studies mainly focused on

video clips of a few minutes or even shorter [14, 23, 43, 67],

consistent tracking over a longer period also has signifi-

cant implications in real-world contexts. The supervision

of cultivation and livestock [20, 24, 54, 66], the progression

assessment of lesions and wounds [3, 10, 11, 29, 58], and

Figure 1. An example subsequence of image segments from GSD,

depicting the growth over five days. We can notice dramatic ap-

pearance changes and gradual enlargement during the development.

In addition, even though the segments are selected to minimize

lightness variations, slight differences in segment brightness may

still be discernible due to the shifting angles of sunlight.

the microscopic scrutiny of cells [2, 42] serve as intriguing

illustrations of this pragmatic scenario. However, there is a

lack of research on MOT algorithms applied for long-term

purposes, particularly when the intrinsic properties of ob-

jects are also simultaneously developing. Furthermore, using

a lower capture frequency over extended periods [11, 54, 66]

leads to a substantial information loss, thereby heightening

the challenges in accurate object tracking. Therefore, there

is a pronounced need for a realistic dataset to bridge the

gap between current MOT algorithms and their effective

application over prolonged periods, so as to facilitate the

advancement of effective methods.

The tracking of biological development processes exem-

plifies a prominent long-term MOT challenge within this

particular context [38, 39, 65, 68]. For instance, accurate

growth monitoring of fruits and vegetables over time is a

key ingredient to successful horticulture. Recent studies

have demonstrated that images are feasible non-destructive

tools to evaluate the status and quality of fruits [19, 26, 70].

Keeping track of the growth helps in planning harvest sched-

ules, so as to achieve the peak quality and nutritional value

of crops. To follow the growth of individual fruits through

visual observations, automated image processing is required.

We chose strawberries for our research because their 3-7 day

life cycle allows for tracking noticeable appearance changes

while maintaining a reasonable frame rate. In addition, the

natural growth and horticulture activities also introduce ob-

ject movements along frames.
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In this paper, we introduce the first in-the-wild biological

development monitoring dataset, The Growing Strawberries
Dataset (GSD). The videos of GSD consist of time-lapse

images of strawberry cultivation in six spots at two differ-

ent greenhouses during the growing season in 2021 and

2022 respectively. The longitudinal observations of straw-

berries over their growth are supportive for ripeness assess-

ment, yield prediction, and harvest planning for efficient

supply [9, 50]. Unlike the trajectory tracking of common

moving objects, GSD involves long-term tracking of devel-

oping objects under a low frame rate, which introduces the

two following unique challenges to the MOT task.

Appearance changes result from the biological growth

of strawberries and include changes in color, shape, and size,

as depicted in Fig. 1. These are common properties when a

biological object is developing over time, yet limited MOT

research has taken these issues into concern. Unlike pedes-

trians or vehicles that remain visually consistent throughout

short videos, strawberries undergo continuous changes in ap-

pearance during long-term tracking. Additionally, the visual

appearances of strawberries are more similar to each other

than those of the traffic participants, which are more colorful

and varied. The in-frame discrimination and across-frame

association result in challenges for the appearance descrip-

tors, particularly when also confronting dynamic lighting

situations and overnight intervals.

Irregular movements can be caused by horticulture op-

erations or other human activities. They exhibit occasional

co-occurrence with the strawberries’ incremental movements

from natural weight increase. For example, the natural in-

crease in fruit weight or deliberate repositioning by horti-

culturalists can lead to changes in fruit positions. Human

intervention can introduce unexpected occurrences like sud-

den object movements or camera view occlusions. Addi-

tionally, harvested fruits may permanently vanish from sight.

Since the data is captured hourly, movements could lead

to abrupt changes, e.g. position jumps or switches, which

make many location changes of GSD objects non-linear and

irregular. This characteristic from practice calls for research

of discontinuous or interrupted videos, which has not been

thoroughly investigated, whilst the joint effect with the ap-

pearance change still calls for more effective MOT solutions.

The main contributions of our work are: 1) We established

GSD, a long-term MOT dataset that used six cameras to

track the growth of 12 plants of strawberries in 2021 and

2022 in two different greenhouses. 2) We quantitatively

compared GSD with one popular MOT dataset, MOT20, and

proposed a unique MOT scenario: the temporal tracking of

biologically developing objects in a sparse and long-term

data collection. 3) We benchmarked the performance of

five MOT algorithms to prove the challenges brought by our

proposed scenario. 4) We visualized the importance of GSD
from a realistic perspective. In all, our results evidence the

limitations of state-of-the-art MOT algorithms for such a

long-term MOT task, which highlights the emergence and

necessity of proposing GSD.

2. Related Work
In this section, we briefly review popular object-tracking

and temporal datasets that promote algorithm development

and their limitations on scenarios, in order to highlight the

uniqueness and importance of the GSD. Secondly, we sum-

marize the concepts of state-of-the-art MOT algorithms and

explain our method for evaluating the GSD.

2.1. Image Datasets for Multiple-Object Tracking

Datasets for MOT predominantly focus on trajectory

tracking. Many of the recent tasks of the MOT Challenge
[44] are motivated by surveillance and autonomous driving.

Thus, they mostly focus on the tracking of pedestrians, vehi-

cles, passengers, etc. [18, 23, 43]. For instance, MOT20 [15]

is a widely-used and representative MOT dataset and is ex-

tensively utilized by various algorithms as a benchmark to

assess their performance. The majority of the sequences

are short videos with 10-30 frames per second and lasting

for a few minutes [14]. New challenges mainly originate

from a higher amount and density of objects in emerging

datasets [15, 56, 60]. However, there are limited changes in

the characteristics of research scenarios. For instance, popu-

lar research objects such as pedestrians or vehicles are often

characterized by regular or predictable movement patterns.

As a result, a greater diversity of datasets is required to facil-

itate the generalization of MOT in broader domains [14, 67].

The majority of long-term temporal image datasets are

used for substantial-scale change detection, e.g. the progress

monitoring of construction, deforestation, urbanization, or

animal migrations [17, 45, 47, 57, 64]. One of the shared

goals is to track the temporal changes of large and (mostly-

)static objects or of a comprehensive overview of objects.

Therefore, the main concern in these studies is the pattern

differences across images. On the other hand, these datasets

have limited potential to motivate the development of MOT

algorithms due to the restricted spatial movements of objects.

2.2. Image Datasets for Plant Science

Image datasets are vital for plant science. Sequential im-

ages are a practical data type to accomplish non-destructive

tests and continuous growth monitoring. The majority of

plant science research involving non-destructive testing of

images is carried out within controlled and calibrated labo-

ratory settings [40, 48, 70]. However, for fruits that do not

ripen after harvest, it becomes impractical to rely on lab data

for recording status updates during their growth. Existing

in-field datasets primarily focus on one-shot fruit detection

and lack information on the ripening progress due to limited

object appearance changes over a short period [21,33,49,69].
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Moreover, hyper-spectrum images (HSI) play a valuable role

in plant studies by developing numerical indicators and train-

ing machine-learning models [21, 28, 70]. Yet, integrating

these images into agriculture practices is resource-intensive,

given the already costly nature of HSI data collection. There-

fore, we advocate for a more practical solution: an integrated

temporal dataset merging images in the visual and near-

infrared spectrum. The scarcity of non-visual images further

emphasizes the need for such a comprehensive dataset.

2.3. Algorithms for Multiple-Object Tracking

Online MOT algorithms aim to perform real-time track-

ing of multiple objects in video sequences by continuously

updating object identities and associations. Tracking-by-

detection is the most widely-used strategy in achieving

online MOT [1, 16, 59]. The strategy enhances the algo-

rithms’ adaptability and robustness, enabling them to easily

accommodate and perform well in diverse scenarios. In ad-

dition, it has less reliance on high FPS of data collection

than strategies building end-to-end detector-trackers such

as [4], which exhibits a higher potential for successful adap-

tation and utilization in long-term MOT problems. Offline

MOT solvers are also powerful tools as they utilize batches

of frames [8, 52, 61]. Since the computation effort grows

tremendously on larger datasets 1, it is out of the scope of

the context of our dataset. Thus, online MOT algorithms are

more applicable in GSD.

Algorithms following the tracking-by-detection strategy

consist of two stages: i) applying object detection models

and ii) associating bbox across frames. Research towards

better (near-)real-time performance mainly focuses on en-

forcing the associating algorithm or a better interconnection

between the two stages [59]. Generally, the association step

concerns two criteria [56]: i) The trajectory and motion of
objects. Many MOT algorithms are developed based on the

Simple online and Real-time Tracking (SORT) algorithm, in

which a Kalman filter framework is applied to analyze the

velocity vectors [6, 12, 71]. The utilization of inertia mea-

surement is a widely recognized approach for expeditiously

handling the MOT task. Nevertheless, researchers argue

that trajectories of spatially close objects are difficult to be

distinguished [61]. ii) The appearance of objects. Deep

learning techniques are usually applied to encode the appear-

ance information of targets [13, 59, 61, 62]. Field-specific

object properties are often integrated to enhance associa-

tion performance [11, 52]. Particularly, when the frames

are discontinuous or when the objects are occluded, appear-

ance features are crucial in re-identifying and associating the

tracklets to achieve consistent global tracking [55, 72–75].

Nevertheless, the sparsity of the image collection for GSD in-

dicates a longer interval between frames, which exacerbates

the existing complexity of the task.

1An example on GSD is demonstrated in the supplementary materials.

14cm

View from OCN Camera

RGB

OCN

View from RGB Camera

Hanging 
Stripe

Heating
pipe

Planting 
Basket

16.9°

Figure 2. Detailed setup in the greenhouse in 2021. The left photo

shows the positions of the white stripes, the planting baskets, and

the heating pipe, which were all placed in parallel. The distance

from the edge of the white stripes to the camera lens was 93cm.

The RGB camera was placed 10 cm to the left of the OCN camera

of each pair, as shown on the top right. The elevation angle of both

cameras is 16.9°. Sample images from RGB-1 and OCN-1 are

shown in the bottom right. Identical strawberries are color-coded.

The setup is similar in 2022 with slightly varied dimensions.

3. The Growing Strawberries Dataset

We aimed to create a dataset about prolonged object track-

ing in a real-world setting for the purpose of long-term MOT.

The growth of strawberries is a good example of a natural

biological development process. Appearance changes and

irregular movements happen during this ripening process.

Such dynamics reveal special characteristics that are also

shared among all kinds of agricultural crops.

To this end, we used six cameras (three RGB + three OCN
2) to track the growth of 12 Favori plants over 30 weeks

in 2021 and 32 weeks in 2022, in two greenhouses with

different cultivation setups in The Netherlands. The cameras

were paired in three sets, denoted as RGB/OCN-1/2/3. They

captured time-lapse images in the greenhouse, such that

videos of the entire ripening process were archived. We

provide human-annotated bboxes for every strawberry, at all

growth stages, and identities for corresponding trajectories.

3.1. Data Collection Setup

Since the ripening lasts around 7-14 days, we used hourly

images for growth monitoring, such that a complete track of

the plant is ensured with circa 100 observations. The straw-

berries were cultivated in planting baskets that hung from

the ceiling. A heating pipe was hung beneath each planting

basket. The cameras were attached to the heating pipe on

the opposite side of the strawberry plant. Fig. 2 illustrates

the detailed setup of the cameras in the greenhouse.

Both cameras faced the plants from parallel perspectives,

where the OCN images were taken with a large view overlap

with the RGB ones to provide hyper-spectral information.

2The channels are: Orange/615nm, Cyan/490nm, Near-Infrared/808nm.
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Figure 3. The upper row lists five image samples taken by RGB-3 . The capture time is indicated in the title. The 1st - 4th images depict the

normal changing pattern of sunlight during the day. We use the 4th image from a different date because the dawn and dusk were not captured

every day. The 5th image shows how the view might be blocked due to human activities. The plot beneath each photo is the corresponding

color spectrum from R/G/B channels respectively. The x-axes indicate the color value (encoded as 0-255). The y-axes are the power of the

color spectrum with a shared amplitude. The color-coded rectangles illustrate the ground-truth (GT) bbox and trajectory annotations.

On average, 28 strawberry fruits from 4 plants were moni-

tored by one RGB camera. We index all three RGB cameras

as RGB-1,2,3. Fig. 3 shows the annotations of an example

image sequence taken by camera RGB-3.

3.2. Ground-Truth Annotation

The trajectory annotations of the strawberries consist of

bboxes with track identifiers (track IDs). Flowers of straw-

berries and paper tags for identifying fruits with further mea-

surement results were annotated into different categories and

were excluded from the benchmark experiments. Hereafter,

we use the word “strawberry” referring to only the fruits.

The annotation was accomplished by drawing and mark-

ing bbox and track IDs. To remain consistent in labels, the

first round of annotation was performed by a single person.

Subsequently, two separate reviewers performed a manual

check on the annotations to ensure accuracy and to mitigate

potential labeling errors or personal biases. In this way, we

guarantee accurate annotations. For an example, please see

Fig. 3 and further in the supplementary materials.

All the images are 4000×3000 pixels. Due to the continu-

ous data collection spanning the entire day, the illumination

conditions exhibited significant and periodic variations. We

therefore set up a brightness threshold and defined a subset

specifically for the following benchmarking experiments.

Day images. The RGB images that were taken under nor-

mal lighting conditions are the majority share of the growth

tracking task. Examples are as depicted in the left three pho-

tos in Fig. 3. We call this subset the “day images". Quantita-

tively, they were defined as the images with luminance (Y) 3

higher than 50. As is illustrated by the first three columns in

Fig. 3, when the zenith angle of the sun changes during the

day, the color spectrum of the photo shifts. This is a practical

challenge brought by the in-the-wild data collection, which

also aggravates the variation of object appearances.

3Luma, calculated according to ITU-R BT.601 standard [7].

Table 1. Statistical overview of the RGB images of GSD. The

2nd column lists the duration of data collection. The 3rd and 4th

columns note the amounts of all images and the images used in the

benchmarking studies respectively. The last two columns present

the total number of bboxes and trajectories. An overview of the

OCN images is presented in the supplementary materials.

Camera Period
Total

img

Anno.

img

Total

bbox

Total

track

RGB-1
Apr 23 -

Nov 9, 2021
4786 2823 67957 492

RGB-2
Apr 23 -

Nov 9, 2021
4785 2638 64434 392

RGB-3
Jun 29 -

Nov 9, 2021
3181 1761 70641 431

RGB-1
Feb 22 -

Oct 3, 2022
5128 3369 93439 540

RGB-2
Feb 22 -

Oct 3, 2022
4699 3062 117291 872

RGB-3
Feb 22 -

Oct 3, 2022
5156 3330 109946 754

Remainder images. The annotations are available for

all frames until most strawberries became invisible when

the view became very dark or when the camera was oc-

cluded by human activities (e.g. the 5th photo Fig. 3). We

defined the subset “darker images" as the photos that were

taken under insufficient daylight (i.e. image brightness ≤
50) but the strawberries were still visible to be annotated, for

example, the 4th photo in Fig. 3. Nevertheless, without addi-

tional brightness normalization, darker images degraded the

performance of the detection models. Considering that the

number of darker images was limited (at most once during

dawn and/or dusk), we excluded them in the benchmarking

experiments to keep a fair performance comparison.
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Figure 4. Quantitative comparisons of GSD-2021-RGB-1 and MOT20-01, using the GT annotations. The 1st spectrum shows the distribution

of object colors, posed by the Hue value averaged from the center 50% area of the bboxes. The 2nd plot illustrates the distribution of overall

object movements, using the IoU as a metric. The 3rd plot presents the standard deviations of the bbox IoU of each trajectory.

Trajectory annotations. Overall, the trajectories of

strawberries have an average length of 152 bboxes, yet it

ranges from 2 to 600+ bboxes. The extra-long tracks resulted

from slower growths under cool temperatures. In fact, there

is still a notable proportion of tracks that last less than 20

segments, which are mostly incompatible with the natural

growth cycle of strawberries. Two major reasons for these

short tracks are: i) the back-layer ones only started to be

visible after re-position practices from humans because the

strawberries grew in dense clusters; ii) the growths were only

partially monitored because the size increases of strawberries

might squeeze the others out or into the frames.

3.3. Data Characterization

Compared to pedestrian-focused datasets such as the

MOT20, GSD objects usually are more similar looking to one

another, whilst they have more evident appearance changes

over frames. In addition, larger and more irregular move-

ments are observed in GSD trajectories.

Fig. 4 presents comparisons of the color and movement

distribution of the sequence GSD-2021-RGB-1 (shorten as

RGB-1 in the following text) and MOT20-01. The 1st subplot

shows the hue value, calculated from the HSV color space

[35], of all bboxes. Here, RGB-1 shows a higher degree of

monotonicity among the observations compared to MOT20-
01, which also indicates larger challenges to the feature

extractors. Nevertheless, for the same GSD object, the color

keeps changing due to its biological development over the

time span, together with the illumination condition. An

example is shown in Fig. 5.

We measured the object movements by the Intersection

of Union (IoU) of observations in adjacent frames because a

large proportion of MOT algorithms consider a sequential

matching of objects by including more and more frames in

analysis. Followingly, larger movements are indicated from

the left of the x-axis in the 2nd subplot. As Fig. 4 shows, the

movements of GSD objects are more spread out, whilst the

MOT20 objects exhibit slower movements, holding a mini-

mum IoU of 0.8. Moreover, there are a few bboxes that have

minimal intersections with its previous observation, which

introduces extraordinary challenges to the inertia measure-

ment and the association algorithms. We also calculated the

standard deviation (std.) of the IoU of each trajectory. The

value indicates the irregularity of how each object moves. As

the 3rd subplot shows, such irregularity in RGB-1 is higher

in magnitude.

4. Benchmark Studies

Since GSD has a large number of high-resolution images,

we primarily restricted our attention to lighter, online solvers.

In addition, we applied GMTracker [27] on a small subset to

exemplify the performance with an offline solver 4.

We assessed the performance of the four MOT algorithms

to demonstrate the challenges presented by GSD: i) Byte-

Track [71] that performs an Intersection of Union (IoU)

analysis after applying the Kalman filter as SORT does;

ii) Observation-Centric SORT (OC-SORT) [12] that is en-

hanced against noised and non-linear movements; iii) Deep-

SORT [62] that introduces appearance descriptions to iden-

tify objects before applying the matching by movements; iv)

StrongSORT [16] that improves the movement measurement

and its balance with the appearance features. On top of the

original settings, we altered the appearance-cost parame-

ter (λ) of StrongSORT to introduce different emphases for

appearance and motion information in the association stage.

Since all the algorithms share the tracking-by-detection

strategy, we present our experiments from three aspects:

the overall MOT performance of the four algorithms (and

variations), detection-stage impact, and tracking-stage influ-

ence. Drawing upon the results, we explore the potential

implications stemming from the distinctive characteristics

of the GSD, which we contend represent challenges within

biological development tracking applications.

4Our justification for using the subset is provided in the appendix.
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4.1. Application of MOT algorithms on GSD
By dividing the subsets by cameras, we first trained three

YOLOX-x models with a “leave-one-camera-out" cross-

validation strategy. We employed the detections on the test

set for the MOT performance evaluation. We conducted

all experiments using the daytime subset of GSD-2021 to

ensure that darkness-related distractions were avoided, thus

enabling a more equitable comparison. We reduced the IoU

threshold to 0.1 in the association stages, due to the different

object movement patterns as indicated in Fig. 4. We indepen-

dently developed autoencoders to serve as the appearance

descriptors for DeepSORT and StrongSORT. Detailed param-

eter settings and searching are noted in the supplementary.

We evaluated the overall performance by the widely-

known MOT criteria: the Higher Order Tracking Accu-

racy (HOTA) [36] and the Multi-Object Tracking Accuracy

(MOTA) [5]. The performance of track identification is

described by accuracy (AssA), recall (AssRe), precision (As-

sPr), and the balanced criterion IDF1 [51]. We counted the

number of identity switches (IDS) and the interruptions of

trajectories (Fragmentation/FM) and divided the values by

the amount of ground-truth (GT) tracks to compare with

other datasets, e.g. MOT20 or MOT17. They are noted as

“IDS/Tr" and “FM/Tr" respectively.

4.2. Assessing Comprehensive MOT Performance

The performance metrics are summarized in Tab. 2. In

general, the algorithms exhibited inferior performances on

GSD-2021 compared to their achievements on MOT20. No-

tably, compared to more comprehensive metrics such as

HOTA and MOTA, all the criteria related to the evaluation

of bbox association and trajectory identifications, e.g. IDF1

and AssA, indicate intense performance drops from their

original benchmarks. The performance downgrade came

with exaggerated frequencies of ID switches and trajectory

interruptions. The numbers suggest that the GSD tracks have

a relatively higher discontinuity as per the MOT algorithms,

which could be caused by the increasing changes during the

prolonged data collection. The results further evidence that

GSD introduces a more challenging task than MOT20 for the

state-of-the-art MOT methods.

As shown in Tab. 2, ByteTrack performed the best in

terms of HOTA, and OC-SORT was better in limiting the

switching of track IDs. When adjusting the parameter λ in

StrongSORT to increase the emphasis on motion over ap-

pearance matching, notable improvements in overall perfor-

mance were observed. Hence, associating bounding boxes

based on inertia measurements is proved to be relatively

more applicable in this case. Nevertheless, we also notice

that, whilst shifting the focus to object movements lessened

the IDS/Tr, it also led to higher FM/Tr. It indicates that the

current appearance-based methods need to be improved to

handle data collected at such a sparse frequency.

Upon a dedicated processing time of 112 hours, GM-

Tracker associated the first 750 frames of RGB-1 . Notably,

apart from the training process that already required substan-

tial time and computational memory resources, it devoted

over 2 hours to processing some of the frames, with a maxi-

mum time of 7498 seconds for a single frame. As evident in

Tab. 2, the end-to-end network’s performance matched the

other benchmarks, yet was achieved by significantly more

intensive use of resources [31, 46]. Hence, we remain our

focus on the lighter solvers in subsequent discussions.

4.3. Analyzing Detection Performance and Impact

To verify the attainable optimal solution of the object-

detection stage, we evaluated two state-of-the-art object de-

tection methods on GSD, the anchor-based detector Faster

R-CNN and the anchor-free detector YOLOX-x, following

the “leave-one-camera-out" strategy. The Average Precision

(AP) obtained by both models is noted in Tab. 3.

Due to limitations from the volume and properties of the

training data, the detection performances were not so compet-

itive as the private models that were specifically trained for

the pedestrian-tracking challenges [16]. However, under a

single-category setting, both detectors’ performances aligned

with the published detections of the MOT20 testing set [15]

and their respective model developers’ benchmarks [22, 63].

Although these performances are not directly comparable

due to the differences in the validating datasets, we argue

that the difficulty level of the object detection task on GSD
is not significantly higher than other datasets. Therefore, the

main challenge brought by GSD lies in the association stage,

which is also the main task of MOT.

Moreover, for a fair comparison of algorithm perfor-

mances on GSD, we also utilized the metrics obtained from

the public MOT20 detection sets (provided on the MOT20

website [31, 46] As shown in Tab. 2, the MOTA scores

achieved using the public MOT20 detections are even lower

than the results obtained on GSD. This divergence can be

attributed to the limited accuracy of the public detection set.

Nevertheless, even when emphasizing track identification

metrics like HOTA and IDF1, substantial differences persist.

Additionally, the algorithms’ IDS/Tr and FM/Tr on GSD are

still significantly higher compared to those on MOT20.

4.4. Decoupling Association from Prior Stages

To compare the specific accuracy of track association

regardless of the detection performance, we benchmarked

StrongSORT on GT bbox from GSD-2021 and MOT20. For

validation, we used RGB-1 and MOT20-01 as examples. As

shown in Tab. 4, both MOTA were boosted due to the perfect-

detection assumption. However, the improvements in HOTA

and IDF1 on RGB-1 experiment were not so significant as

those in the MOT20-01 experiment. Furthermore, noticeable

gaps in performance are observed in IDS/Tr and FM/Tr.
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Table 2. Performance metrics of the four original and two tailored MOT algorithms on the daytime subset of GSD-2021 (*the GMTracker was

only applied on the first 750 frames of GSD-2021-RGB-1 ). The results are compared with the performance metrics of the same algorithms

implemented on the MOT20 test set, using the results with private detections in [12] and [16] and the results with public detections on the

MOT20 challenge website. (**The performance of GMTracker was compared with its results on the MOT17 test set, using the metrics

claimed by [27]). The differences are indicated by red and teal texts that are noted at the top right of each value, representing performance

degrades and improves, respectively. ’Pvt’ and ’Pub’ indicate whether the gap is with benchmarks using the private or public detections (and

encoders if applicable). If one value is shown, it is compared with only the metrics claimed in the paper, obtained from private detections

(and encoders). In terms of StrongSORT, λ is the default weight on the appearance cost, and λ′ indicates an altered value.

MOT Algorithm HOTA MOTA IDF1 AssA AssRe AssPr IDS/Tr FM/Tr

ByteTrack 39.8
Pvt:-21.5
Pub:-16.6 70.7

Pvt:-7.1
Pub:+3.7 39.4

Pvt:-35.8
Pub:-30.8 25.6 29.3 70.0 5.2

Pvt:+4.2
Pub:+4.7 5.4

Pvt:+4.2
Pub:+4.0

OC-SORT 39.7
Pvt:-22.4
Pub:-14.6 68.5

Pvt:-7.0
Pub:+8.6 39.5

Pvt:-36.4
Pub:-27.5 25.9 29.4 72.5 4.5

Pvt:+3.8
Pub:+4.1 5.3

Pvt:+4.4
Pub:+3.4

DeepSORT 34.5-22.6 49.3-22.5 33.0-36.6 22.3 26.4 62.3 8.4 +7.3 5.4

StrongSORT(λ=0.98) 36.1-25.4 49.3-22.9 34.0-41.9 23.9 27.7 64.7 8.8 +7.9 5.1

StrongSORT(λ′=0.5) 38.5 59.9 35.8 25.4 27.9 76.8 6.2 5.8

StrongSORT(λ′=0.02) 38.6 60.4 35.8 25.5 27.9 77.7 6.0 5.9

GMTracker* 37.7 60.2 +4.0** 31.7-32.1** 22.2 23.2 85.0 20.3 +19.6** 3.8

Table 3. The first three rows show the AP of the detections of GSD
and the public MOT20 detections. All values are averaged over the

three test sets split by the “leave-one-camera-out" strategy. The lat-

ter two rows present the original mAP benchmark for comparison.

Model-Dataset Configuration AP

YOLOX-x on GSD 55.7

Faster R-CNN on GSD 55.8

Faster R-CNN on MOT20 [15] 57.6

Faster R-CNN on COCO [63] 40.2 (mAP)

YOLOX-x on COCO [22] 59.2 (mAP)

The influence of the parameter λ follows a similar pat-

tern as previously described – the emphasis on motion or

appearance results in a trade-off between IDS/Tr and FM/Tr.

Referring to the data characterization, the higher similarity

in appearances among the GSD objects and the dynamic

variation of them may contribute to the downgraded IDS/Tr

performance. Considering that the data was collected over

prolonged periods, the incorporation of appearance features

is expected to assist in consolidating the fragmented track-

lets, e.g. after human activity or overnight. Hence, it is

advisable to tailor the utilization of appearance matching in

MOT algorithms for scenarios involving sparse frame rates.

4.5. Evaluating Results from one Downstream
Application: Growth Curve of Strawberries

One contribution of GSD is its provision of valuable in-

formation for agriculture practices, enabling precise antici-

pation of crop growth. Since the natural ripening pattern of

strawberries is growing from green to red, we utilized the

A* channel from the CIELAB color space [53], which es-

sentially represents the levels of green or magenta. In Fig. 5,

the blue curve demonstrates a sample A* variation of the

object across frames. Marking associated observations with

colored dots and un-associated ones with empty dots, the

depicted process is fragmented into five segments by four

tracklets suggested by ByteTrack (due to the best HOTA in

Tab. 2), involving two IDS in tracklet #21 and #40. Notably,

during the crucial period when the strawberry underwent

the transition from green to red, which is a crucial factor in

determining the timing of harvest, ByteTrack was unable to

provide a thorough description of this transformation.

To evaluate the significance of performance deficiency

from the perspective of realistic, downstream applications,

i.e. tracking the biological development of objects, we set up

thresholds to define the “cherry-picked tracks" that record

relatively comprehensive monitoring of growth patterns. We

chose tracks based on more significant variations of the

object’s transition from green to red, determined by the

changes in the A* channel values in the CIELAB color space,

or simply select the tracks with longer lengths. These tracks

were considered “more important" ones as they provide more

complete information about the growing progress of the crop.

We implemented incremental thresholds to perform stricter

filtering of their importance.

Fig. 6 discusses the specific performance of ByteTrack,

the relatively more capable solution for GSD, on the different

filtered subsets of RGB-1 . As is depicted, the recall of track

association declined as the track became more comprehen-

sive about the biological development cycle. Simultaneously,

there were increases in IDS/Tr and FM/Tr. The track length

played a more significant role in the deterioration of perfor-

mance under this particular scenario.
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Table 4. Association-stage performance comparison of StrongSORT, with variations on the appearance-cost parameter λ, applied on the

ground-truth detections. We use G and M to represent GSD-RGB-1 and MOT20-01 respectively in this table. In all experiments, the

ground-truth locations of the bboxs were used, such that the algorithm performance was not influenced by the detection accuracy.

HOTA MOTA IDF1 IDS/Tr FM/Tr

Algorithm G M G M G M G M G M

StrongSORT(λ=0.98) 51.5 98.6 83.5 99.5 43.5 98.6 6.3 0.0 3.7 0.0

StrongSORT(λ′=0.5) 51.4 99.3 83.6 99.5 42.5 99.4 5.9 0.0 4.6 0.0

StrongSORT(λ′=0.02) 52.2 99.2 85.1 99.5 42.7 99.4 5.2 0.0 4.2 0.0

Figure 5. The color change of an example strawberry under the GT

trajectory and the ByteTrack results. The x-axis indicates the se-

quence of frames. The y-axes are for the average A* values (scales

on the left) and L* values (scales on the right) of the observations.

The blue and gray translucent strokes illustrate the value of the GT

annotations. The lines with filled dots are identified observations

by ByteTrack, which are color-coded to indicate each track ID. If

the object in one frame is not associated with any of the tracks, we

put an empty dot on the A* curve from GT.

Viewing from an application-oriented standpoint, the

growth-tracking task also targets monitoring pivotal stages

when fruits are ripening swiftly. Therefore, it is argued that

there is potential for advancing state-of-the-art MOT algo-

rithms, particularly in accurately identifying and associating

objects within similar biological development processes.

5. Conclusion
With this paper, we propose a fully-annotated dataset that

tracks the growth of in total of 3528 strawberries over 30

weeks in 2021 and 32 weeks in 2022 in two different green-

houses: The Growing Strawberries Dataset (GSD). It reveals

a unique Multiple-Object-Tracking (MOT) challenge – fol-

lowing biologically developing instances over a prolonged

period. In GSD, progressive appearance change and irregular

movements are captured from the longitudinal observations

of cultivation practices. For example, human interference

with the sparse frame rate introduced drastically non-linear

movement, which is challenging for many algorithms.

Figure 6. MOT performance change by selection criteria of trajec-

tory subsets, demonstrated by recall (1st column), ID switching (2nd

col.), and times of fragments (3rd col.) of tracklets. The first row

illustrates the impact on the performance metrics when the tracks

were filtered by different minimum lengths. Experiments for the

second row selected the tracks by the differences of the average A*

value of the last three and the first three bboxs.

We benchmarked the performance of four online MOT

algorithms on GSD. The obtained result metrics highlight the

need for advancing MOT methods, particularly in associating

the bounding-box association for long-term MOT tasks. The

tracking continuity was affected by both appearance changes

and diverse object motions, which also presented a trade-

off when fine-tuning StrongSORT. Furthermore, an offline

algorithm demonstrated the computational effort required to

handle a large dataset such as GSD, yet achieving similar

metrics. In summary, the results call for algorithms that

could improve track associations while utilizing the features

properly and efficiently.

Essentially, biological development is the principal prop-

erty that makes the GSD challenge unique, but it can also

provide insights for other long-term MOT tasks. For instance,

monitoring other processes with incremental changes, such

as cellular growth and corrosion expansion, etc. The infor-

mation provided by more than the visual spectrum is also

supportive of plant science [9, 50]. The GSD challenge high-

lights the need for reliable methods to handle in-the-wild data

imperfections. The inevitable real-world challenges point

out potential future research for robust data utilization.
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