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Abstract

Direct Simulation Monte Carlo (DSMC) is a widely applied numerical technique to simulate rarefied gas flows. For flows around

immersed moving objects, the use of body fitted meshes is inefficient, whereas published methods using cut-cells in a fixed

background mesh have important limitations. We present a novel cut-cell algorithm, which allows for accurate DSMC simulations

around arbitrarily shaped moving objects. The molecule-surface interaction occurs exactly at the instantaneous collision point on

the moving body surface, and accounts for its instantaneous velocity, thus precisely imposing the desired boundary conditions. A

simple algorithm to calculate the effective volume of cut cells is presented and shown to converge linearly with grid refinement. The

potential and efficiency of method is demonstrated by calculating rarefied gas flow drag forces on steady and moving immersed

spheres. The obtained results are in excellent agreement with results obtained with a body-fitted mesh, and with analytical

approximations for high-Knudsen number flows.
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1. Introduction

The Direct Simulation Monte Carlo (DSMC) is a well-

established, discrete particle based, numerical method for the

computation of rarefied gas flows (Bird, 1994). It is widely

applied in fields such as aerospace engineering and Micro-

Electro-Mechanical Systems (MEMS), where the rarefaction is

important due to low pressures and small dimensions, respec-

tively (Oran et al., 1998; Hong et al., 2008; Akhlaghi et al.,

2012).

Compared to possible alternatives, such as Molecular Dy-

namics (Frenkel and Smit, 2002), multiple-particle collision dy-

namics (Gompper et al., 2009), dissipative particle dynamics

(Hoogerbrugge and Koelman, 1992) and Lattice Boltzmann

(Chen and Doolen, 1998), DSMC has grown to be the most

widely applied and validated method for simulating gas flows
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in the rarefied regime, i.e. the transition regime between con-

tinuum flow and free molecular flow.

In conventional DSMC simulations, the flow domain is dis-

cretized into a number of fixed shape grid cells, wherein the

simulated gas molecules can move freely. The grid cells are

used exclusively in process of randomly selecting pairs of gas

molecules as collision partners, and for calculating average

flow properties. When the walls of solid objects contribute as

part of the flow boundaries, boundary conditions at those walls

are imposed by prescribing appropriate molecule-wall collision

laws. Here, the object walls may (i) be approximated by stair-

cases with local grid refinement (Bird, 1994; Zabelok et al.,

2015), (ii) coincide with grid cell faces (requiring the use of

non-Cartesian, body fitted meshes to accommodate complexly

shaped immersed bodies), or (iii) cut through grid cells.

The first approach can be seen as a special case of the co-

incided grid with an additional staircase approximation to the

walls. The last approach has been called the cut-cell method
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(Zhang and Schwartzentruber, 2012; Burt et al., 2012). It is

somewhat similar to the so-called immersed boundary method

(IBM), proposed by Peskin (Peskin, 2002) to impose bound-

ary conditions on the walls of immersed objects in continuum

based flow simulations. However, whereas in IBM fictitious ex-

ternal forces, localized near the boundary, have to be imposed

to satisfy boundary conditions, in DSMC cut-cell methods such

fictitious forces are not needed, as the boundary conditions are

imposed explicitly and exactly through the molecule-wall colli-

sion laws. On the other hand, the cell effective volume has to

be computed for the cut cells in order to achieve the correct

molecular collision probabilities.

The cut-cell method is particularly advantageous over the

use of body fitted meshes when the immersed object moves

with respect to the grid, e.g. when studying gas flows in MEMS

with oscillating parts, or Brownian aerosol particle movement

in gas flows. In such situations, the use of body fitted meshes

would require body fitted grids to be regenerated at each time

step, which is computationally inefficient.

For simply shaped moving immersed objects, of which the

surface is limited to flat planes aligned with the cell faces, the

cut-cell method has been demonstrated for applications with

1-D moving piston (Rader et al., 2011) and turbomolecular

pumps (Versluis et al., 2009). The cut-cell method has also

been demonstrated for applications with 2-D static immersed

bodies (Lo et al., 2014).

For complexly shaped 3-D immersed objects, two main ap-

proaches for cut-cell DSMC simulations have been proposed

(Zhang and Schwartzentruber, 2012; Burt et al., 2012), which

mainly differ by the way in which the immersed solid object

surfaces are represented numerically. Both approaches make

use of random markers to distinguish between the inside and

outside of the immersed object.

The first approach (Zhang and Schwartzentruber, 2012;

Burt et al., 2012) represents the approximate shape of

the immersed surface by small contiguous triangular facets.

Molecules interact with these facets during the molecular

streaming step in the DSMC algorithm. In this approach,

the facet size determines the accuracy by which the surface,

and thus the location of the boundary, is being represented,

whereas the grid size determines the resolution of the flow field

simulations. The effective volume of cut cells, which is needed

during the molecule-molecule collision step of the algorithm,

is computed either by polyhedral decomposition utilizing the

facets and the cell faces, or by Monte Carlo random markers.

Shrestha et al. (2015) have applied the latter to a 3-D moving

object, and simulated the Brownian motion of a spherical par-

ticle immersed in a rarefied gas. It is stated that the random

marker based approach is easy to implement but computation-

ally expensive.

The second approach (Burt et al., 2012) uses an analytical

expression for the immersed surface shape as an input. This

shape is subsequently approximated by planar faces, which

are determined by finding the two smallest possible cuboids

which respectively contain all random points inside, and out-

side, of the immersed object. This method may result in gaps

between the faces, which become significant when the ratio of

the surface curvature radius to the cell size is small.

Summarizing the present state-of-art, there is a clear need

for a computationally efficient DSMC cut-cell algorithms that al-

low for an accurate, gap-free representation of immersed sur-

faces and the cell effective volumes. In the present work, we

present, demonstrate and validate such an algorithm.

Compared to earlier cut-cell methods, (i) our algorithm uti-

lizes an exact analytical representation of the immersed sur-

face for computing the DSMC particle streaming step and thus

the particle-surface interaction. Therefore, this step does not

rely on a triangulated surface representation and does not

leave gaps between approximated surface elements; (ii) in our

algorithm both the flow resolution and the accuracy of the cut-

cell effective volume scale with cell size; (iii) the molecules col-

lide and interact exactly at the instantaneous location of the

moving surface; (iv) our algorithm avoids the use of expen-

sive Monte Carlo methods in calculating the effective volume

of cut cells. Thus, like IBM methods in continuum flow simula-

tions, our method explicitly imposes the correct boundary con-
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Figure 1: An immersed sphere in a fixed grid (clipped).

ditions exactly at the instantaneous location of the analytically

expressed moving surface. On the other hand, our method is

limited to geometries of which the surface can be expressed

by analytical expressions. Also, the current implementation of

our method does not take into account the possibility of the oc-

currence of split cells, i.e. cells which are divided into multiple

independent regions by the immersed object. Rather, we only

focus on objects of which the local curvature is larger than the

local cell size.

2. Cut-cell algorithm in DSMC

For the sake of simplicity, a perfect sphere is selected as an

immersed object for the illustration of the algorithm. Later we

will discuss more complex body shapes.

Figure 1 shows an immersed sphere in a fixed Cartesian

grid. In DSMC, there are two main steps for gas molecular

dynamics: 1) the molecular streaming step and 2) the molec-

ular collision step, which are decoupled from each other at

each time step as the essential assumption of the method.

For an immersed body with a pre-known and analytically ex-

pressed shape, the interaction of the particles with the im-

mersed boundary is calculated exactly at the landing point of

the particle on the analytically expressed boundary, as shown

later in section 3.4. On the other hand, the intermolecular col-

lision step requires computation of the cell volume for a cor-

rect collision probability between two simulated molecules in a

cell. Equation (1) (Bird, 1994) shows this probability P and the

Figure 2: (a) A grid cell intersected by an immersed sphere and (b) polyhe-

dra generated using intersecting points. The latter is only used for effective

volume calculation in determining particle-particle collisions, not for surface

reconstruction in calculating particle-surface interactions.

empty volume of the occupied cell is required as the denomi-

nator:

P = FNσT cr∆t/Vc (1)

Here, FN is the number of real molecules that is represented

by one simulated molecule, σT is the total collision cross-

section, cr is the relative velocity between the two molecules,

∆t is the time step and Vc is the empty volume of the cell.

When an immersed boundary intersects the grid cells, the

cut cells are partially overlapped by the immersed body and

therefore the overlap volume should be subtracted from the

original cell volume to provide an effective empty volume Vc

and thus correct collision probability.

2.1. Overlap volume computation algorithm

Figure 2 shows a grid cell that is intersected by an immersed

sphere. In this example, there are four intersected edges from

the cell. Nevertheless, in other cases with different number of

intersected edges the computation of overlap volume follows

the same algorithm summarized below:

1. Find all the intersected edges of the cell and compute

the coordinates of the intersecting points at each edge,

namely A, B, C and D in Figure 2.

2. Generate polyhedra using A, B, C, D, V1, V2, V3 and V4

as vertices. Since A, B, C and D are not necessarily on
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Figure 3: Immersed sphere (left) and red blood cell (right) reproduced from

contours of 50% overlap. The color map shows the overlap fraction of each

grid cell.

the same plane, there are more than one possible polyhe-

dra from the configuration depending on either using AC

or BD as one of the edges of the polyhedron.

3. Each of the possible polyhedra is decomposed into a

number of pyramids by connecting its faces with the cen-

ter of volume. Then the volume of each pyramid is com-

puted and summed up to yield the volume of each initial

polyhedron.

4. In this example, since a sphere is a convex body, the max-

imum volume from the above possible polyhedra could

serve as the best approximation for the overlap volume.

However, to be more general, we use an average over

the maximum and minimum as a good approximation, as

shown later in this section.

In this example, the grid resolution is defined byN = d/∆x,

where d is the sphere diameter and ∆x is the cell size. Figure

3 (left) shows an immersed sphere reproduced by the contour

of 50% overlap using the average volume of the polyhedra at

N = 16, which renders an excellent spherical surface. The

color map on the surface indicates how the boundary cells are

intersected by the sphere surface.

Since it is the effective volume of the boundary cells that

directly contributes to the molecular collision probability, the

relative error in the reconstructed sphere volume is defined as,

εrel =

VIB −
∑

all cells

Voverlap∑
boundary cells

Voverlap
(2)

Here, VIB is the actual volume of the immersed body,

Voverlap is the calculated overlap volume of each cell includ-
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Figure 4: Relative error in the computed overlap volume against different grid

resolutions for the sphere (circles) and the red blood cell (squares).

ing the ones that are completely enclosed by the sphere and

Voverlap, boundary is the overlap volume of a partially over-

lapped boundary cell.

Figure 4 shows εrel for different grid resolutions. The relative

error in the computed overlap volume decreases linearly with

increasing N .

In order to illustrate that the same algorithm works for any

other arbitrary shape, a red blood cell shaped body is chosen

as a second example. The shape can be expressed by Equa-

tion (3) (Evans and Fung, 1972) and is plotted in Figure 5.

z(r) = 1/2

√
1 − (

r

R
)2 (C0 + C2(

r

R
)2 + C4(

r

R
)4) (3)

Here, R is 3.91 µm, C0 is 0.81 µm, C2 is 7.83 µm and C4 is

−4.31 µm. The major diameter of the red blood cell is d = 2R

and again the grid resolution is defined as N = d/∆x.

Figure 3 (right) shows a red blood cell reproduced by the

contour of 50% overlap at N = 16, which agrees well with the

shape shown in Figure 5. εrel is again defined by Equation (2).

To study the sensitivity of the method to the alignment of the

body with the grid, the immersed red blood cell is tilted at dif-

ferent angles θ with respect to the background grid, as shown

in Figure 3 (right). Figure 4 shows εrel against different grid

resolutions. The results for θ = 0◦, 15◦ and 30◦ are very close

to each other and they all converge linearly in N . Since the

resolution is defined based on the major diameter d, the mi-
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Figure 5: Red blood cell shape expressed by Equation (3) (a quarter is clipped

out).

nor axis is relatively poorly resolved, which explains the higher

relative errors compared to that of the sphere.

Thus it is concluded that the presented algorithm works for

any arbitrarily shaped immersed objects and εrel converges

with order 1 for the grid refinement N .

3. Validation with drag computation

The above overlap volume calculation algorithm has been

implemented into an open source DSMC solver ”dsmcFoam”

in OpenFOAM (Scanlon et al., 2010) and the drag exerted on

an immersed sphere in a creeping flow is computed for rarefied

gas flows with Knudsen number larger than 0.2. The result

is then validated by comparing with the drag computed from

the conventional DSMC with a body-fitted grid, and with the

analytical approximations.

3.1. Computational setup

For the following simulations, a sphere with diameter d

is located at the center of a (10d)3 cubic domain with free

stream boundary conditions at two opposite planes, and pe-

riodic boundary conditions at the rest of boundaries. The sim-

ulated gas is argon of which the molecular properties are taken

from Bird (1994) with the variable hard sphere (VHS) collision

model.

The direct input parameters are:

1. sphere diameter: d = 2R = 5.0 · 10−7 m

2. grid size: ∆x = d
N , 8 ≤ N ≤ 19

3. domain size: L = 10 × d = 5.0 · 10−6 µm

4. number of cells: Ncells = 103 ·N3

5. number of DSMC particles: Nparticles > 10 ·Ncells

6. temperature: T = 300 K

7. pressure: P = 3.13 · 103 ∼ 5.0 · 104 Pa

8. reference viscosity: µref = 2.12 · 10−5 kg m−1 s−1 at

Tref = 273.15 K

9. viscosity index: ω = 0.81

10. free stream gas velocity: u = 40 ∼ 1.25 m s−1

The derived parameters are:

1. mean thermal velocity: cm =
√

8kbT
πm = 398.75 m s−1

2. mean free path: λ = 2µ
cmρ

= 2µkbT
cmm

· 1
P = 1.43 · 10−7 ∼

2.29 · 10−6 m

3. viscosity: µ = µref ( T
Tref

)ω = 2.29 · 10−5 kg m−1 s−1

4. Knudsen number: Kn = λ
R = 2µkbT

cmmR
· 1
P = 0.28 ∼ 9.18

5. Reynolds number: Re = uρR
µ = Rm

µkbT
· (u · P ) = 0.022

where kb is the Boltzmann constant, m is the gas molecular

mass and ρ is the gas density. The mean free path is cal-

culated in the same way as Phillips (1975) in order to keep

consistency. In all the simulations we fulfill the common DSMC

criteria, i.e. time step ∆t < 1
8λ/cm, ∆x < 1

3λ and each cell

contains on average at least 10 DSMC molecules to ensure a

well resolved simulation (Garcia and Wagner, 2000; Sun et al.,

2011). The gas in the domain at time t = 0 is initialized with

the mass-averaged velocity of u.

A fully diffusive boundary condition has been employed at

the sphere surface as it is the most commonly used boundary

condition in literature. The drag force is directly computed at

each time step from the momentum difference of the reflected

molecules before and after the reflection. The drag force Fd

exerted on the sphere is normalized by the Stokes drag as

F ?d =
Fd

FStokes
=

Fd
6πµRu

(4)

We verified that the calculated drag values at consecutive

time steps in our simulations are nearly uncorrelated, with the

autocorrelation function dropping to values below 10−2 at t =

∆t. We took the viscous diffusion time tµ =
(L

2 )2ρ

µ as an

estimate for the time needed for the flow to reach quasi-steady

state. And the drag is computed by averaging over 10, 000 time

steps, starting from t = 4 × tµ.

5

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight

wenjiejin
Highlight



 Kn 

10 0 10 1

 F
d*
 /

 F
* d

, 
P

h
ill

ip
s

 

0

0.2

0.4

0.6

0.8

1

1.2

Phillips

Takata et al

DSMC  Kn 

10 0 10 1

 F
d*
 

10 -1

10 0

Figure 6: Drag force on a sphere as a function of Knudsen number, for the

cut-cell DSMC simulations compared to analytical approximations by Phillips

(1975) and Takata et al. (1993). The DSMC data with Kn = 0.28 is av-

eraged over 400, 000 time steps; Kn = 0.57 is averaged over 50, 000 time

steps; while the rest are averaged over 10, 000 time steps. Main panel: Forces

are normalized by the corresponding analytical approximations from Phillips

(1975), plotted on a log-lin scale. Inset: Forces are normalized by the Stokes

drag and plotted on a log-log scale.

3.2. Kn dependence

First,Kn is varied by changing the pressure of the gas while

keeping Re constant by changing the free stream velocity ac-

cordingly.

F ?d values for a sphere simulated with the cut-cell method

at different Kn are shown in Figure 6, compared with the an-

alytical approximations from Phillips (1975) and Takata et al.

(1993). All the error bars in the figures of this paper indi-

cate 95% confidence intervals based on the standard devia-

tion of mean. The drag force predicted by our DSMC simu-

lation agrees well with the analytical results for all the shown

Knudsen numbers.

3.3. Comparison with body-fitted mesh DSMC

In this section, F ?d calculated from the presented cut-cell

method is compared to that from DSMC with a conventional

body-fitted mesh. A typical body-fitted grid is shown in Fig-

ure 7. The sphere surface is meshed with triangular elements

which are inflated two layers outwards. The rest of flow domain

Figure 7: Body-fitted mesh for conventional DSMC

 N
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 F
d*
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Figure 8: Normalized drag force computed from DSMC with the cut-cell

method (red squares) and from the body-fitted grid (black circles), for Kn =

2.29.

is meshed with tetrahedron cells. For the body-fitted mesh we

define

N =
d√

Atet,surface
(5)

where Atet,surface is the area of the surface triangular ele-

ments.

A comparison between the body-fitted mesh results and the

cut-cell method results at Kn = 2.29 is shown in Figure 8.

Here, the total number of simulated molecules is kept the same

for different N , in order to render similar confidence intervals.

F ?d values from the cut-cell method show less grid dependency

than that from the body-fitted grid, probably due to the utiliza-

tion of the exact analytic surface for the bounce back of the

molecules.
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Figure 9: Transfer of the reference frame between the sphere and the flow

domain.

3.4. Stationary and moving sphere with immersed boundaries

In this section, the presented cut-cell method is demon-

strated with a fully three-dimensional moving immersed object.

A moving sphere with a predefined velocity ~u = −u · ~ex is sim-

ulated with the cut-cell method in a stationary gas, where ~ex is

the unit vector in the streamwise direction. The sphere veloc-

ity is constant during the simulation, assuming that the sphere

mass is infinitely large compared to that of the gas molecule.

The computed drag F ?d is compared with that from a steady

sphere in a moving flow with velocity +u · ~ex.

The computational domain is elongated in the stream-wise

direction by u · ttotal to allow the movement of the sphere,

where ttotal is the total simulation time. The sphere moves

over a distance −u · ∆t at each time step and the incom-

ing molecules need to be reflected at the exact, analytically

calculated, landing point Pcoll as shown in Figure 9. This is

achieved by switching back and forth between the steady ob-

server reference frame and the reference frame of the moving

sphere. First, the molecule streaming is calculated in the mov-

 N

8 10 12 14 16 18

 F
d*
 

0.235

0.24

0.245

Figure 10: Normalized drag force computed from DSMC with the cut-cell

method for a steady sphere (red squares) and for a moving sphere (black

diamonds), for Kn = 2.29.

ing sphere reference frame by adding a velocity −u to each

molecule’s thermal velocity ~cm. Since the sphere is steady

in its own reference frame, the calculation procedure of the

post reflection molecular velocities and positions is exactly the

same as that for a steady sphere. Subsequently, the veloci-

ties and positions of the molecules are transferred back to the

steady observer frame of reference by taking into account the

movement of sphere during ∆t.

The simulations are conducted at Kn = 2.29. Figure 10

shows the comparison of the scaled drag force F ?d between

the moving sphere and the steady sphere, both calculated with

the cut-cell method. The two results agree well with each other,

illustrating that this method works for a fully three-dimensional

immersed moving body.

4. Conclusion

A new cut-cell algorithm has been implemented and demon-

strated in conjunction with DSMC for simulating rarefied gas

flow around an immersed moving body. Based on the pre-

sented study, the following conclusions are drawn:

1. An analytically expressed surface is used to accurately

bounce back the molecules. The cut cell effective volume

is computed by representing the immersed boundary with
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the Lagrangian intersecting points and thus reconstruct-

ing all the possible polyhedra and take the mean aver-

age. It has been shown that for any arbitrary immersed

bodies, the relative error in the computed overlap volume

decreases linearly with the grid refinement.

2. The drag force on a sphere computed with the present

cut-cell method converges to the same value as that cal-

culated with a conventional body-fitted grid, both in good

agreement with approximate analytical solutions. How-

ever, with the cut-cell method grid-independent results are

obtained for coarser grids as compared to the body-fitted

grid method.

3. The drag on a moving sphere in a stagnant gas com-

puted with the cut-cell method agrees well with that of

a steady sphere in a flowing gas. Thus it is shown that

the present method can apply to fully three-dimensional

immersed moving bodies in a rarefied gas flow.
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