ROBOTS AT THE CONSTRUCTION SITE

AN ADJUSTED BUSINESS MODEL FOR CONSTRUCTION COMPANIES

Graduation research

Master Management in the Built Environment Liselotte Hoogewerf 6th of October 2017

Graduation committee

Design and Construction Management Prof.dr.ir. J.W.F. (Hans) Wamelink

Delft Centre for Entrepreneurship Dr.ir. V.E. (Victor) Scholten

External examiner Ir. A.W. (Nol) Hermkens

Graduation company

Heijmans BV Innovation manager Ir. J. (Jurre) van der Ven

CONTENT

- A. Research proposal
- B. Literature study
- C. Methodology
- D. Practice
- E. Synthese & Design
- F. Conclusions

NTRODUCTION

STATUS OF THE INDUSTRY

The construction industry:

- One of the oldest professions
- Largest economic sector
 - 9,6 11,4 % GDP (Deloitte, 2016)
- Conservative and traditional
 - Methods have harldy changed

STATUS OF THE INDUSTRY

- Unfamiliar with R&D of robotics and automation
- Difficult due to
 - Unstructured work
 - Heavy objects
 - Low level of standardistation
 - Medium level of prefabrication
 - Nummerous involved actors

INTRODUCTION

NEED FOR CHANGE

Ę

- Increasing real estate demand
 - Urbanisation
- Lack of workforces
 - Recession
 - Dangerous & unhealthy
 - Aging of world's population

NTRODUCTION

NEED FOR CHANGE

Ę

Increasing real estate demand

170

- Urbanisation
- Lack of workforces
 - Recession
 - Dangerous & unhealthy
 - Aging of world's population
- Low productivity

POTENTIAL TECHNOLOGICAL TRENDS

R&D start focusing on automation and robots

Ę

- Construction phase:
 - Robotics
 - Drones
 - 3D printers
- Proven technologies in other industries

PROBLEM ANALYSIS

Innovation is possible when

- Need-based feasibility
 - Will increase over the years
- Technical feasibility
 - Technology is proven
- Economic feasibility
 - Must be proven

'Technology by itself has no single objective value. The economic value of technology remains latent until it is commercialized in some way via a business model' – Chesbrough (2010)

PROBLEM STATEMENT

Ē

How can **Dutch construction companies** adjust their **business model** in order to make **robots** at the **construction site** possible?

DEFINITION OF A ROBOT

- No consensus about the definition.
- A robot is a smart, multitasking machine, controlled by a computer which is attached to a movable physical body, which (semi) automatically performs jobs and can react to its environment based on given data, calculations and own observations.

フ BOTS: STATE OF. THE AR

16

STATE OF THE ART

Ę

- Ist Generation
 - Focus: Manupulation
- 2nd Generation robots
 - Focus: Perception & Navigation

Ę

BOTS: STATE FTHE AR

STATE OF THE ART

Ē

STATE OF THE ART

Ļ

Construction robots

- Limited robots developed for construction
- Second-generation robots
 - Heavy, repetitive work in an accurate way
 - Relatively simple singular tasks
 - Impossible in unstructured environments

EMPLOYABILITY OF ROBOTS

Off-site robots

- Industrial manufacturing robots for prefabrication
 - Highly accurate production
 - Completely finished (Piping, wiring, sockets)

EMPLOYABILITY OF ROBOTS

On-site robots

Ę

- 200 on-site robots developed
- Only a few robots for sale
- Hardly applied in the Netherlands

Construction tasks
Assembly
Building skeleton erection
Coating of fire protection on steel
Concrete distribution
Earthwork
Interior finishing (painting, plastering, tiling)
Lifting heavy elements
Masonry
Removal of old coating
Road paving
Surface finishing (concrete, tile-setting)
Welding
Window glass mounting

(Bock, 2006; Bulusu, 2015; Elattar, 2008; Abderrahim & Balaguer, 2008)

ADVANTAGEOUS

- Ensure production capacity and deal with the workforce shortages
- Improve productivity and efficiency
- Improvement of safety and health of construction workers
- Improve quality and accuracy of the buildings
- Shift to mass customization
- Increase sustainability

BOTS: STATE FTHE AR

CRITICAL POINTS OF ROBOTS

Critical points differ and are not corresponding

- Increasing unemployment
- Shift in jobs low educated to high educated employees
- Higher use of electricity and new occuring problems
- Liability is not established yet
- Lack of legislation can delay the construction process

ROBOTIZED INDUSTRIES

Industrial robots

Service robots

INTRODUCTION

- 156.000 Dutch companies
- 80 % one-man businesses, mainly focused on one field
- Appr. 500 small companies are part of the 12 largest
- Large companies operate in multiple fields
- Seven out of ten companies are focusing on residential construction

Companies	Revenue 2016 X 1.000.000	Operating field
BAM	7423	Infra, RE, Residential
Volker Wessels	4906	Infra, RE, Residential, Installations
Boskalis	3240	Infra, Civil, Offshore, Maritime
Van Oord	2579	Civil, Offshore
Heijmans	1979	Infra, Civil, RE, Residential, Utility
Strukton	1907	Infra, Civil, RE, Installations
TBI	1557	Infra, Residential, Utility, Technique
Dura Vermeer	1052	Infra, RE, Residential, Utility
Ballast Nedam	850	Infra, RE, Residential, Utility
Van Wijnen	693	RE, Residential, Utility
		(Cobouw, 2016)

25

CHANGING ROLE

- Traditionally active in execution phase
 - **Construction tasks**
- Shifted to construction management companies
 - Outsourcing activities
- More ground in the construction proces
 - Also developers
 - Integration of design and construction
 - To preserve own construction capacity

Contemporary contractor

NSTRUC OMPANIE

CONSTRUCTION METHODS

	Casting	Masonry	Wooden skeleton	Prefab elements	Prefab units
Preparation time	Medium	Short	Long	Long	Long
Construction site	Big	Medium	Small	Small	Small
Construction time	Medium	Long	Short	Super Short	Super short
Consumer- oriented	Low	High	Low	Medium	Medium
Equipment cost	Super high	Low	Low	High	High
Finishing	High	Low	Low	High	Super high
Labour intensity	Low	Super High	Medium	Low	Very low
Scale of the project	Big	Small , variation	Small	Big	Big
Weather dependency	Super high	Medium	Low	Low	Low

USINE S S MODELS OF \bigcirc

 \Box

DEFINITION

Ę

- No consensus
- Osterwalder and Pigneur (2010) will be used: 'A business model describes the rationale of how an organisation creates, delivers, and captures value'.

(Osterwalder & Pigneur, 2010)

BUSINESS MODEL OF CONSTRUCTION COMPANIES

- Project-based business
- No concensus about the level of the business model
- Neither about the definition and purpose of a BM
- 'Anything to Anyone business'
- No unique elements
- No generic business model

METHODOLOGY

RESEARCH METHODS

- Hybrid research
 - Empirical
 - Operational
- Literature review
- Explorative interviews
- Semi-structured interviews
 - Strategic level
- Focus group
- Selections
 - 3D concrete printing robot
 - 7 largest + 1 medium construction companies
 - Case study Dairy industry
- Framework
 - Business model canvas

DEFINITION

- Practice found it difficult to define business model
- About earnings & financial profitability (7/8)
 - 'The business model, is the way you earn money or?' Interviewee Company 3
- Complemented by
 - Value of the project of service
 - Explain how a company sustains
- One company which shows a implicit business model
- No corresponding internal definition (3/3)

USE

- Selection tool
- 'Focus means one thing: only do what you're good at!' -Company 5

(Pekuri, 2015, p. 54)

 7 large construction companies

Ē

- 1 medium construction company
- No generic model
- No unique elements

Value proposition

Row-houses

Ę

- Traditional vs prefab
- Used to focus on lowest-bid
- Nowadays best-price
- Flexible/Customer made
- Sustainable

Customer segment

- Internal client
 - Internal developer
- External client
 - External developer
 - Funds
 - Housing associations
 - Investors
 - Individuals
- User

- Buyer
- Tenant

Customer relationship

Clients

Ē

- Long-term
- Service department
- Users
 - Co-creation
 - Service department
- Contract
 - Design & Built
 - Design, Built & Maintain

Channels

Ē

- Tenders
- Procurements
- Selection procedures
- Internal relations
- Marketing
- Showrooms

Key Activities

Build

Ę

- Managing
- Maintenance
- Development
- 35 percent max. of construction tasks

Key Resources

- Human resources
 - Construction site personnel
 - Executive Technical Administrative personnel
- ICT

Ē

- Large construction companies:
 - Equipment service
 - Prefab factory

Key Partners

Ē

- Depends on construction method
- Suppliers
- Sub-contractors

Cost structure

Revenue streams

Construction

- Maintenance
- Development
- Asset sales

DAIRY INDUSTRY

Ļ

- Robots are implemented since the 90's
- Need for higher production
- Shortage of workforce
- Innovative industry
- Sector initiating both product & proces

Due to robotization:

- Replace humans by robot
- Save labour costs
- Higher efficiency
- Fall in production costs
- Increasing production
- Increase animal wellfare

EMPLOYABILITY

Ę

- Milking robot
- Feeding robot
- Calf feeding robot
- Manure robot
- Brush robot
- Application
- Neckless for the cow

	Purchase costs
Milking robot	€190000 - €300000
Feeding robot incl. 2 cars	€175000 - €275000
Calf feeding robot	€10000 - €15000
Manure robot	€12000 - €15000

CHANGE IN BUSINESS MODEL

Key Partners Additional party Lely	Key ActivitiesImage: Constraint of the second seco	Value Proposition		Customer Relationships Channels	Q Q	Customer Segments	
<i>Cost</i> <i>Structure</i> Mortgage has increas Maintenance increas Labour costs decreas	or more cows sed ed. ed	Till	Revenue Streams	Productivity h six-folded	as double	es or even	

47

ROBOT FEATURES

- 3D Concrete printing robot
 - Hardware (Automotive robot)
 - Software
 - Material: Mortar
- Printing elements
- Meets the Dutch regulations
- Thinner wall packages
- Less transportation/CO2
- Cheaper than other methods
- Complex forms

	Numbers	Unit
Construction time	200	mm/s
Lifespan	10	years
Maintenance/service	€35000	year
Operational workforces	2	employees
Price Mortar	€21500	dwelling
Robot (rent)	€800	day
Robot (sale)	€350000	robot

SYNTHESE & DESIGN

50

SYNTHESIS 20 ESIGN

0

- Current business model of construction companies
- Case study of Dairy farms
- Features of the chosen robot

SYNTHESIS

Ę

Ē

Current business model of construction companies

- No generic model
- All elements are merged
- Unchanged elements
- Elements that are assumed to change

SYNTHESIS

Input of other industry

- Key resources
 - Fewer employees or higher production
 - Increasing ICT knowledge
- Key activities
 - Heavy labour intense job to a manager/controller of data
- Key partners
 - Additional partner for the service/maintenance
- Cost structure
 - Production costs haven't been reduced
 - Labour cost reduced
- Revenue streams
 - Increased due to the higher productivity

SYNTHESIS

Input of chosen robot

- Print only walls
- Fastest construction method (75 % faster)
- Purchase of robot is €350.000
- Service costs are €35.000
- Only two workers are needed to operate
- Material is expensive but less needed
- Labour costs and material cost will reduce

SYNTHESIS & DESIGN

FOCUS GROUP

- 3 scenarios
 - Sub-contractor
 - External equipment dep.
 - Internal equipment dep.
- No influence
 - Own prefab
 - Amount of own carpenters
- Special design
- Extra ICT knowledge
- Re-educated employees
- Financial numbers are needed
- Small nuances in BM are important

SYNTHESIS & DESIGN

SYNTHESIS & DESIGN

..... input output

- First draft
- Focus group

57

FINAL ADJUSTED BUSINESS MODEL

3 Scenario's

- Sub-contractor
- External supplier
- Internal equipment dep.
 - Worst case
 - Best case

SYNTHESIS & DESIGN

SCENARIO 1

SCENARIO 2

SCENARIO 3 – Worst case

SCENARIO 3 – Best case Œ Â. Value Proposition **Key Partners Key Activities** Customer Customer Segments Relationships Client Sub-contractors Built Row-house Accompaniment Internal client Interior designer • Flexible design Architect Calculate Service department In-house development department Maintenance • Coordinate, Organize, Manage, Assembly / Struc Customer-oriented Long-term relationship companies Guide and Drive Collaboration External client Maintenance Carpenters/ Development Users service robot • External developer Engineering Buyers' guidance Funds Masons Constructor Maintenance Co-creation Housing Associations Painters Constultants Planning/Schedule Service department Individuals Plumber Demolition team Renovate/Restoration Contracts Roofers Investors Electricians Transformation Design & Built Tiler Facade builders Design, Built & Maintain Users Installer Buyers **Key Resources** Channels Tenants Suppliers • Equipment service Reinforcement Block/Limestn Collaborations/Network Roof ROBOT Information Evenings Brick Roof tile ICT Programs / BIM Internal relation Concrete Marketing/Showroom Sanitary Land positions Equipment Staircase Network Network Facade Prefab-concrete factory Selection procedures Floor Tenders/Procurement Foundation Human resources Frames Construction site personnel Installation Executive Technical Administrative Interior wall personnel Prefab factory Cost Structure **Revenue streams** • Asset sale prefab houses Direct Costs 74,7% Total costs Asset sale traditional houses General Construction Costs 16,1% Compared with traditional +3,7% +6,6% • Asset sale robotized houses Other Costs 9,2% Compared with prefab Revenue construction General Costs (5,2%) Revenue development Profit + Risk (3%) Revenue Maintenance CAR (0,5%) • Revenue transformation/restoration projects Aftercare (0,5%)

CONCLUSIONS

- It is not possible to design an generic business model for all the large companies
- 3 different scenarios
 - First is most promessing for practice
 - Third best case is financially most feasibile
- Robot will not competitive to traditional or prefab method
- Great urgency is needed

DISCUSSION

- Literature is not the similar to practice
- Definition of robot had to be adjusted (AI)
- Practice would rather invest and research masonry robots or finsihing robot, since they have a bigger (financial) share in the construction process.
- 3D Robot is best used in case of standardized row-houses
 - Optimized in prefabricated factories
- Research questions were defined with expactations of one general business model
- Case study is a complete different industry
 - Only a process innovation > project and process innovation
- First design optimistic
 - Only based on the features of the robot developer
- Higher urgency needed (before implementation)
 - Increase shortage of crafstmen
 - Prefab factories run out of capacity

DISCUSSION

- Higher production costs
 - Matching the expactations of dairy farms
 - Still financial feasible
- Robot developer as sub-contractor
 - Increase the competition
- Construction industry is conservative
 - Expect the sub-contractor to innovate

RECOMMENDATIONS

Practice

Construction companies

- More attention should be given to business models
- Innovation is only introduced by sub-contractors
 - Increase competition
- In order to remain at the same market possition construction companies have to innovate
- 3D concrete printing robot is not satisfying enough, small share in the process

3D concrete printing robot company

- Rethink business strategy
- 3D printing can be much cheaper compared to competitors
- Decrease price of mortar
- Service costs are too high

CONCLUSIONS

RECOMMENDATIONS

- Research
 - Other robots can be researched: Masonry and finishing robot
 - Case studies in other sectors can be conducted
 - Legislation of robots can be researched
 - Construction time can be researched
 - Difference between large en small companies can be researched