
Landmarks in Planning
Using landmarks as Intermediary Goals or as a Pseudo-Heuristic

Bart van Maris

Supervisor(s): Sebastijan Dumančić, Issa Hanou

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Bart van Maris
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Issa Hanou, Luı́s Miranda da Cruz

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Algorithmic planners occasionally waste effort and
thus computing time trying to solve certain tasks,
as they often lack the human ability to recog-
nize essential paths. These essential paths ,termed
landmarks, are vital for optimizing planning pro-
cesses. This study revisits landmark-based plan-
ning methods introduced by Richter, Helmert, and
Westphal in their 2008 paper, adapting and imple-
menting them within a different framework, Sym-
bolicPlanners, using the Julia programming lan-
guage. The primary research question explores the
performance of using landmarks as intermediary
goals and pseudo-heuristics in the SymbolicPlan-
ner framework. Sub-questions delve into the effec-
tiveness of specific planning strategies, such as A∗
Planner with GoalCount and HAdd heuristics, as
well as planners utilizing landmarks. Evaluation
over diverse domains reveals that LMLocal and
LMLocalSmart outperform the basic GoalCount
heuristic and are on par with the HAdd heuris-
tic. LMCount, despite solving fewer instances, ex-
hibits speed improvements over GoalCount in the
instances that they both solve. Discussion high-
lights limitations, such as the non-exhaustive inter-
ference check in LMLocalSmart and limiting fac-
tors in the SymbolicPlanner framework.

1 Introduction
When planning a route through a city we humans can quite
quickly determine that we need to take certain roads to get to
our destination. However algorithmic planners don’t have the
ability to recognize these required roads, which for us is quite
easy since we can quickly spot choke points and other obsta-
cles. Moreover it would significantly speed up their planning
process if they did know they needed those roads. In the con-
text of generalized planning problems these required roads
are called landmarks. Giving planning algorithms access to
knowledge about these landmarks could prevent wasted ef-
fort.

Richter, Helmert and Westphal [2008][10] propose two
methods for using landmarks and one method for extracting
landmarks. In their work they find that the usage of land-
marks in solving planning problems increase the performance
of the planners that are used to solve them [10]. Their meth-
ods where implemented in a package called FastDownward.

In this paper we aim to reproduce their methods for us-
ing landmarks in a different framework and programming
language, namely SymbolicPlanners and Julia respectively.
Then we would also like to asses the performance of these
algorithm to see if the findings of Richter et al. match what
we are able to produce. Thus the main research question is as
follows:

”What is the performance of using landmarks as interme-
diary goals and using landmarks as pseudo-heuristics in the
SymbolicPlanner framework?”

This main research question can be further divided into the
following sub-questions:

• What is the performance of the A∗ Planner using a Goal-
Counting heuristic in the SymbolicPlanner framework?

• What is the performance of the A∗ Planner using a Ad-
ditive heuristic in the SymbolicPlanner framework?

• What is the performance of a planner using landmarks as
intermediary goals in the SymbolicPlanner framework?

• What is the performance of the A∗ Planner using a land-
mark pseudo-heuristic in the SymbolicPlanner frame-
work?

• How do each of the before mentioned methods compare?

In the next section the background and definitions in this
paper will be further elaborated on. After this background
information a short section on related work follows. Then a
detailed description of the implemented algorithms and as-
sessment criteria are contained in the methodology section.
This is then followed by the results, conclusion and discus-
sion.

2 Background
In this paper we will be talking about planning, planners and
landmarks. Planning in this context is finding a sequence of
actions that take you from the starting state to a goal state.
Think of finding a route on a map or arranging blocks in a
certain way. These different contexts in which a plan can be
made are called domains and a possible situation is called a
state. These domains and states can be expressed in PDDL,
a programming language used in the International Planning
Competition to standardize these planning problems [3]. This
language describes problems in two parts. Firstly, a domain
description containing its name, requirements, an object-type
hierarchy, constant objects, predicates and actions. Secondly
a problem description containing its name, the domain-name,
all objects, initial conditions and a goal state.

For a planner to solve a problem represented in PDDL it
needs some way of approximating the distance to the goal
from some state. The most state of the art solution is to use
some form of heuristic search [1]. A heuristic in this case is a
function that contributes some value to a state. These values
are then used by a planner to determine a plan. There ex-
ists quite a few heuristic search based planners and different
heuristics. In this paper the heuristic based planner we use to
compare to is the A∗ planner. Furthermore some of the meth-
ods we implement will use a planner, in this case we also use
the A∗ planner. As described in the research questions, we
intend to use as heuristics the Goal-Count and Add heuris-
tics. The Goal-Count heuristic simply counts the number of
goals that are satisfied. The Add heuristic uses the sum of the
costs of the conditions an action depends upon to determine
the heuristic value.

The foundation for this paper is the work by Richter,
Helmert and Wesphal [10]. Thus the formal definition for
a planning task, landmarks and orderings between facts or
landmarks will be kept the same as in the work by Richter et
al [10] but will be repeated here for clarity.



Definition 1 SAS+ planning task
An SAS+ planning task[2] is a tuple Π = ⟨ν,O, s0, s∗⟩
where:

• ν is a finite set of state variables, each with a finite do-
main Dv . A fact is a pair ⟨v, d⟩ (also written as v 7→ d),
where v ∈ ν and d ∈ Dv . A partial variable assignment
s is a set of facts, each with a different variable. (We
use set notation such as ⟨v, d⟩ ∈ s and function notation
such as s(v) = d interchangeably.) A state is a partial
variable assignment defined on all variables ν.

• O is a set of operators, where an operator is a pair ⟨pre,
eff⟩ of partial variable assignments.

• s0 is a sate called the initial state.
• s∗ is a partial variable assignment called the goal.

An operator o = ⟨pre, eff⟩ ∈ O is applicable in state s iff
pre ⊆ s. In that case, it can be applied to s, which produces
the state s′ with s′(v) =eff(v) where eff(v) is defined and
s′(v) = s(v) otherwise. We write s[o] for s′. For operator
sequences τ = ⟨o1, ..., on⟩, we write s[τ ] for s[o1]...s[on]
(only defined if each operator is applicable in the respective
state). The operator sequence τ is a plan iff s∗ ⊆ s0[τ ].

This SAS+ representation can be generated from a PDDL
representation of a planning task automatically[4].

Definition 2 Landmark
Let Π = ⟨ν,O, s0, s∗⟩ be am SAS+ planning task, let π =
⟨o1, ..., on⟩ be an operator sequence applicable in s0, and let
i ∈ 0, ..., n.

• A fact F is true at time i in π iff F ∈ s0[⟨o1, ..., oi⟩].
• A fact F is added at time i in π iff F is true at time i in
π, but not at time i−1 (Facts in s0 are considered added
at time 0).

• A fact F is first added at time i in π iff F is true at time
i in π, but not at any time j < i.

• A fact F is a landmark of Π iff in each plan for Π, it is
true at some time.

In s0 and s∗ all facts are landmarks by the above definition
(consider i = 0 and i = n respectively). To be able to use
landmarks as goals or as a heuristics the ordering of those
landmarks needs to be known. The following definition
follows from Hoffmann et al. [5][7].

Definition 3 orderings between facts
Let A and B be facts of an SAS+ planning task Π.

• There is a natural ordering between A and B, written
A→ B, iff in each operator sequence where B is true at
time i, A is true at some time j < i.

• There is a necessary ordering between A and B, writ-
ten A →n B, iff in each operator sequence where B is
added at time i, A is true at time i− 1.

• There is a greedy-necessary ordering between A and B,
written A →gn B, iff in each operator sequence where
B is first added at time i, A is true at time i− 1.

Note that a necessary ordering is always also a greedy-
necessary ordering.

2.1 Definition of algorithms
Since we intend to reproduce the methods of Richter et al.
[10], namely their procedures of LMCount and LMLocal, we
will give the formal description of those algorithms here. In
the methodology section of this paper we will go into detail
on changes that had to be made due to the limits of the chosen
framework and programming language.

LM Local: Using landmarks as Intermediary goals
LMLocal is a procedure which exploits landmarks by using
them to divide the larger planning task into smaller sub-tasks.
This is done by employing landmarks as intermediary goals
in the planner. First a landmark graph is generated using some
landmark extraction method. From this directed graph source
nodes are extracted. These sources are nodes that have no
edges pointing to them. However due to cycles in the graph it
can occur that there are no more sources to be found. So be-
fore extracting sources all possible cycles must be removed
from the graph. This is done by removing edges from the
graph. Then the found sources are given to a planner as a dis-
junctive goal. Once one of those goals is completed the land-
mark associated with that goal is removed from the landmark
graph and the new sources are added to the disjunctive goal.
The planner is then told to continue solving for those goals.
Once the landmark graph is empty the planner is tasked with
solving for the original goal. This is because even though
the original goal should be a landmark it might be that it was
needed multiple times to complete the full task, thus the plan-
ner still has to solve for the original goal.

LM Count: Using landmarks as a pseudo-heuristic
The formal description of the simple landmark pseudo-
heuristic as described by Richter et al. [10] goes as follows:
The heuristic value h of a state s is based on the number of
landmarks by the following estimation: h := n − m + k.
Where:

• n is the total number of extracted landmarks

• m is the total number of accepted landmarks in state s

• k is the total number of accepted landmarks in state s
that are required again.

A landmark l is accepted in state s iff l is true in state s or l
has been true in some successor state of s. A landmark l is
required again in state s iff l is not true in state s and l has
some greedy-necessary predecessor that is not accepted. We
shall refer to this pseudo-heuristic as LMCount from now on.

It should be noted that LMCount is not a true heuristic,
hence the reason that we refer to it as a pseudo-heuristic.
LMCount is not a true heuristic because its definition de-
pends on the way the state was reached during search. Nev-
ertheless, it can be used as a heuristic in best-first search al-
gorithms.

3 Related Work
As this paper aims to reproduce the work of Richter, Helmert
and Westphal[10], it is closely related to it, in this paper they
define the methods that we also intend to use. Other no-
table pieces are firstly that of Richter and Westphal further



elaborated on the usage of landmarks in their LAMA plan-
ner [8]. In that work, Richter and Westphal provide pseudo
code for using landmarks as a pseudo heuristic and combine it
with other heuristics. Secondly, Richter’s own thesis on land-
mark based heuristics [9] contains the previous two works by
Richter and adds more detail. Thirdly the work of Pereira,
Oren and Meneguzzy provides multiple alternative methods
to use landmarks as heuristics [6]. In this work they pro-
vide additional methods for computing achieved landmarks,
finding landmark uniqueness and a different heuristic. These
methods can be combined with this paper’s results to improve
overall performance of a planner using landmarks. Lastly
the work of Segovia-Aguas, Celorrio, Sebastia and Jonsson
take the method of using landmarks as a heuristic described
Landmarks Revisited and place it in the context of General-
ized Planning[11]. This adds important context for when the
methods described in this paper can be used in the setting of
generalized planning, since now the implementation works
only for SAS+ planning tasks.

4 Methodology
This section of the paper will start with a detailed description
of the implemented algorithms. The last subsection will go in
detail on assessment criteria and experimentation setup.

4.1 LM Local
The implementation of LMLocal differs slightly from the
description given in the Background section. This is due
to limitations in the SymbolicPlanner framework. Unfortu-
nately the planners in the SymbolicPlanner framework do not
support disjunctive goals. To overcome this issue two ver-
sions of LMLocal where implemented. One simple imple-
mentation that we will refer to as LMLocal and one version
that tries to improve on this simple implementation called
LMLocalSmart.
LMLocal is implemented as follows: Instead of providing

the planner with a disjunctive goal we instead create a copy of
the current planner. This copy is then used to solve for one of
the source landmarks. We then take the shortest solution be-
tween the solutions produces for each source. The used land-
mark for that solution is removed from the landmark graph.
The planner that produced this solution is used as the basis
for the copy in the next step of the algorithm. Then we start
again with procuring sources from the landmark graph and
making a copy of our planner. The pseudo code for LMLocal

can be seen in Algorithm: 1
LMLocalSmart adds to the implementation of LMLocal

by trying to combine sources into larger goals to try to mini-
mize the amount of copies of planners that have to be made.
This is done by pre computing all possible combinations of
landmarks and checking if they are achievable together. Then
instead of using the source as a goal, larger goals are con-
structed based on the current sources. Then for those larger
goals or goal groups the copies of planners are made and are
told to solve that sub task. Again the shortest of those so-
lutions is taken. Each of the landmarks associated with the
solved goal group is then removed from the landmark graph.
This repeats until the landmark graph is empty. The pseudo
code for LMLocalSmart can be seen in Algorithm: 2

Algorithm 1: LM Local
Data: planner
Input: lm graph, domain, state, goal state
solution
while lm graph not empty do

shortest sol, used lm, used planner
for lm ∈ get sources(lm graph) do

copy planner ← planner
sub sol←
copy planner.search(domain, state, lm.state)

if sub sol is shorter than shortest sol then
shortest sol← sub sol
used lm← lm
used planner ← copy planner

end
end
remove used lm from lm graph
planner ← used planner
solution← shortest sol

end
solution←
planner.search(domain, state, goal state)

return solution

4.2 LM Count: Using landmarks for a
pseudo-heuristic

The implementation of LMCount comes in two parts. The
pseudo-heuristic itself and a landmark status manager:

The landmark status manager is used to keep track of which
landmarks are accepted and which are required again. This is
done by keeping a set of landmark IDs for each state, for both
the future and past landmarks. Landmarks in the future
set are required again and landmarks in the past set are ac-
cepted. New visited states always have an empty future set
and a past set with all landmarks in them. In the initial state
all landmarks that are not true in that state are removed from
the past set and added to the future set. Also if a landmark
that is true in the current state has a parent, that is not true
in the current state we add that landmark to the future set.
When computing a new value for a state the landmark status
manager will update the past and future sets based on the
sets of the previous state. It checks the following items:

• If a landmark was previously in the future and it is not
true in this state. The landmark remains in the future
set.

• If a landmark was previously not in the past and it is not
true in this state. The landmark should not be in the past
set.

• If a landmark was true in the previous state but is not
true in the current state it is needed again. Thus add it to
the future set.

• Always add all landmarks that are true in the goal state
to the future set.

• If a landmark has a child with a Greedy Necessary order-
ing that is not in the past and the landmark is not true in
the current state. Add this landmark to the future set.



Algorithm 2: LM Local Smart
Data: planner
Input: lm graph, domain, state, goal state
compatibilty matrix
for i = 0; i < length(lm graph); i++ do

for j = i+ 1; j < length(lm graph); j ++ do
compatibility matrix[i][j]←
interferes(lm graph[i], lm graph[j])

end
end
solution
while lm graph not empty do

sources← get sources(lm graph)
goal groups←
construct goal groups(sources, compatibility matrix)
shortest sol, used planner
for goal ∈ goal groups do

copy planner ← planner
sub sol←
copy planner.search(domain, state, goal)

if sub sol is shorter than shortest sol then
shortest sol← sub sol
used planner ← copy planner

end
end
planner ← used planner
solution← shortest sol
for lm ∈ sources do

if lm is completed in solution then
remove lm from lm graph

end
end

end
solution←
planner.search(domain, state, goal state)

return solution

• If a landmark has a parent with a Reasonable ordering
that is not in the past. Add this landmark to the future
set.

The pseudo-heuristic itself only does the computation nec-
essary to obtain the heuristic value. It does this by progressing
the landmark status manager based on the current and previ-
ous states. Then it gets the future and past sets. Finally it
computes h := n−m+ k. Where:

• n is the total number of extracted landmarks

• m is the total number of accepted landmarks in state s.
The size of the past set.

• k is the total number of accepted landmarks in state s
that are required again. The size of the intersection be-
tween future and past.

The pseudo code of the landmark status manager can be
seen in Algorithm: 3 and 4. The pseudo code for LMCount

can be seen in Algorithm: 5.

Algorithm 3: Landmark Status Manager Initial State
Data: lm graph = LandmarkGraph
Input: state
past set← get past set(state)
future set← get future set(state) for
lm ∈ lm graph do

if landmark is true in state(lm, state) then
for parent ∈ lm.parents do

if
!landmark is true in state(parent, state)
then

add lm.id to future set
end

end
else

remove lm.id from past set
add lm.id to future set

end
end

5 Experimentation
In this section of the paper we will touch on the exact assess-
ment criteria for the research question and on the results the
experimentation has produced.

5.1 Assessment Criteria
To asses the performance of each of the previously mentioned
algorithms, a clear definition of assessment criteria is needed.
The base planner we shall compare to is the A∗ planner with
the Goal-Count and Add heuristics. Each planner and heuris-
tic is given three minutes to do three runs over a domain both
as a compiled problem and as an interpreted problem. In Ju-
lia there is a difference between a compiled and interpreted
problem since the language is just-in-time compiled. Thus a
compiled problem tends to be solved faster. However, per-
formance of a planner or heuristic can differ between the two



Algorithm 4: Landmark Status Manager Process
Data: lm graph = LandmarkGraph
Input: state, prev state
past set← get past set(state)
futureset← get future set(state)
prev past set← get past set(prev state)
prev future set← get future set(prev state)
for lm ∈ lm graph do

if lm.id ∈ prev future set then
if !landmark is true in state(lm, state)
then

add lm.id to future set
if lm.id ∈ prev past set then

remove lm.id from past set
end

else if
landmark is true in state(lm, prev state)
then

add lm.id to future set
end

end
if lm is goal landmark then

add lm.id to future set
end

end

Algorithm 5: LM Count heuristic
Data: lm graph = LandmarkGraph
status manager = LandmarkStatusManager
Input: state
past, future, curr true =
status manager.progress(state)
n = size(lm graph)
m = size(past)
future past = intersect(past, future)
k = size(difference(future past, curr true))
return n−m+ k

methods. Information stored in the planner is retained be-
tween each run. Thus allowing us to see if a planner gets
faster if it is asked to solve the same problem again. The total
number of solved problems in this time is the first and main
performance criteria. The second criteria is the time it took
the planner to solve the problem. The domains that will be
used as benchmarks are:

• Blocksworld
• FreeCell
• Grid
• Logistics
• Miconic
• Prodogy Blocksworld
• Tireworld

This is a large and diverse set of domains, which will allow
us to see in which types of domains the planner and heuristic
by Richter et al. will perform the best and worst in. The
exact domain specifications and exact problem instances can
be found in the GitHub repository 1.

5.2 Results
Running the four planners over all of the proposed domains
resulted in a large table 2 of data. The full data table con-
tains information on the following: domain, problem, size of
the problem, compiled domain or not, the planner, which run
number, number of steps in the solution, time it took to com-
plete (-1 for a timeout), size in bytes of the solution, number
of evaluated nodes, number of expanded nodes, number of
landmarks in the graph and finally whether or not the solu-
tion returned was a correct plan to reach the goal.

To then properly asses our performance criteria we first
looked at how many problem instances where solved in each
domain. As can be seen in table 1, LMCount performed the
worst in this category. While LMLocal and LMLocalSmart
performed similarly to HAdd in this metric.

Secondly we looked at the time it took for a planner to
complete the search for a solution. This can be seen in figure
1, figure 2 and in figure 3. First thing to note in figure 1 is
that the time scale is logarithmic. Since in very small problem
instances it often takes only a fraction of a second to solve the
instance it is important to look at the times on this scale.

Second thing to note about both figures is that problem in-
stances that where not completed by a planner are not added
to the statistics of this plot. Meaning that both GoalCount
and LMCount seem to perform quite well in figure 1. How-
ever this is because they simply did not complete the larger
problem instances that the other three methods completed.
These larger problem instances often take much longer to
complete. If it seems like those methods are in the same per-
formance range as HAdd, LMLocal and LMLocalSmart,
while having only completed small and simple problems

1’https://github.com/PaulTervoort/SymbolicPlanners.jl-
landmarks’ on branch ’dev-bart’ in ’./experiments/logical’

2This larger data-set can be found at
’https://github.com/PaulTervoort/SymbolicPlanners.jl-
landmarks/tree/dev-bart’



means that they actually perform worse. Figure 2 and figure
3 better show how GoalCount and LMCount only complete
the small problem instances.

However there are some specific instances that LMCount

is the fastest method to solve a problem 3. This is most likely
due to a small landmark graph that is of high quality. The
most likely explanation for its good performance in small in-
stances but quick downfall when the problem becomes larger,
lies in that it starts to significantly increase the amount of
nodes that are expanded and evaluated.

LMCount is also the only planner that occasionally expe-
rienced worse times in subsequent runs over the same prob-
lem instance. This can be explained by the fact that it is a
pseudo-heuristic, meaning that the way it reached a state mat-
ters. Therefore when it is searching for a solution again it can
not use its prior knowledge since it might have reached a state
differently. Thus it would have a different Heuristic value.

When comparing LMLocal and LMLocalSmart to HAdd
we see that in the medium to small problem instance sizes
they are faster in the compiled domains. In the interpreted
domains of those same instances they are a little bit slower.
Once problem instances started becoming much larger both
LMLocal and LMLocalSmart started performing worse than
HAdd. This is likely due to the larger computational strain
these two methods experience when dealing with the large
landmark graphs from these problems.

While LMLocal was able to solve more problem instances
than LMLocalSmart, it was slower in almost all of the in-
stances that they both solved. Meaning the upfront cost of
computing the larger goals is worth it in terms of time spent.
However, instances that LMLocalSmart was not able to
solve was most likely because that version could still produce
goals that are impossible to solve. This is because the inter-
feres method that determines whether or not landmarks can
be achieved together is not exhaustive. This seemingly be-
came more of a issue in problem instances with bigger land-
mark graphs. In those larger landmark graphs there is a higher
chance that a mistake is made in the compatibility matrix.

Table 1: Number of problems solved by each planner per domain.
The number in parentheses after the domain name is the number of
problem instances in that domain.

GoalCount HAdd LM
Count

LM
Local
Smart

LM Lo-
cal

Blocksworld (75) 18 38 15 31 34
Blocksworld Prodigy
(4) 2 4 1 2 4

Freecell (15) 0 0 0 0 0
Grid (5) 0 1 0 0 0
Tyreworld (2) 1 1 1 1 1
Miconic (77) 54 77 53 76 77

6 Responsible Research
To reproduce the work done in this paper one only needs to
have their own computer with access to the internet. The code

3Blocksworld: prob01, prob02 and prob03 as compiled domains
for instance

Figure 1: Plot of all times of completed problems per run. The time
scale is logarithmic. The number indicates the run iteration over the
same problem. The large black point in each run is the mean of that
planner in that run

used to generate the results described in the paper will be
available for use by anyone 4. The one difference between the
work in this paper and the reproduction by someone else will
be the exact machine the code is ran on, thus possibly leading
to slight discrepancies in exact times. However the relative
relations of those times should stay roughly the same. The
specifications of the computer the experiments where ran on
in this paper are as follows:

• Processor: Intel(R) Core(TM) i5-6600K CPU @
3.50GHz

• RAM: 16GB of DDDR4

• GPU: NVIDIA GeForce GTX 1060 6GB

The domains and their problems are all open-source and
have all been previously used in the International Planning
Competition. These problems are chosen and designed by
the IPC to be free of bias as possible and in some cases they
have no relation to the real world preventing such issues.

7 Conclusion
Using these results we can now accurately asses the per-
formance of using landmarks as intermediary goals or as a
pseudo-heuristic. Both of the LMLocal planners perform bet-
ter then the extremely basic GoalCount heuristic. LMCount

does however solve less problem instances than GoalCount
but it is significantly faster than it in all cases where it does

4https://github.com/PaulTervoort/SymbolicPlanners.jl, specifi-
cally on the branch ’dev-bart’



Figure 2: Scatter plot of all times of completed problems versus
the problem size. The fitted line indicates the trend of that specific
planner. This plot contains all domains.

solve the problem. LMCount is even faster than HAdd in
some problem instances. The reason LMCount seems to
struggle with larger problem instances is that it very quickly
starts to evaluate and expand a very large amount of nodes
compared to the other planners.

LMLocal and LMLocalSmart are not quite as fast as
HAdd but are also not significantly slower. In some instances
they are even faster than HAdd, it is quite possible that given
more landmarks and more orderings those two methods could
even perform better.

Regarding all of the above conclusions it is important
to note that performance of all of our methods greatly de-
pends on the number of landmarks and of their quality.
Mistakes in the landmark graph or a lack of nodes in the
graph will make LMCount practically useless and LMLocal

and LMLocalSmart will pre-compute quite a few things
that are then not used, like the compatibility matrix for
LMLocalSmart, since the landmark graph is almost imme-
diately empty. Since the landmark graph will be very small.

In general our findings are in line to that of Richter et al.
[10]. However in their work they do suggest to combine
LMCount with other heuristics. Since this was not imple-
mented in this paper we can unfortunately not speak on that
topic. Differences that where found can be explained by the
difference in framework and programming language.

8 Discussion
Due to some limitations of the SymbolicPlanner framework
there are some uncertainties with the implementations of
the methods described in this paper. Firstly LMCount is a
pseudo-heuristic that needs access to the state it came from
to get the heuristic value of that state. However the way that
that previous state is currently gotten might not be correct,
thus possibly leading to incorrect h-value estimations. Sec-
ondly the unfortunate fact that the planners in the Symbol-
icPlanner framework do not support disjunctive goals led to

LMLocal and LMLocalSmart need to make copies of their
internal planner. These need to be deep-copies. Making
a deep-copy, especially of a planner that already has done
quite a bit of searching, is computationally expensive. Thus
hindering performance of those methods. Besides that the
interference check for LMLocalSmart being non exhaus-
tive and thus sometimes allowing landmarks to be grouped
even though they cant be completed together also causes that
method to get stuck. Both of these issues could be solved
by adding support for disjunctive goals to the SymbolicPlan-
ner framework. Due to time limitations and some mistakes
when running the code the last 27 and 24 problem instances
of the Blocksworld and Logistics domains where not tested.
However all of those problem instance were bigger than the
ones before those. Since none of our planners completed a
problem instance that was slightly smaller than the problems
that are left it can be reasonably concluded that the planners
would not have been able to complete these final problems.
So in the context of our research question, not having these
final results has little to no effect on the conclusion. Unfor-
tunately also due to the lack of time we were unable to run
the last 70 problem instances of the Miconic domain. This is
specifically very unfortunate since both HAdd, LMLocal and
LMLocalSmart were still completing those problems. This
means that in that domain we have incomplete data. However
we expect a similar trend as with Blocksworld. Finally, an is-
sue with landmark generation for the Freecell domain meant
that in that domain only the goal was a landmark. Meaning
that our methods don’t have any extra information to work
with compared to a base planner.

9 Future work
There are five possible continuations on this paper. Firstly
improving LMCount and by extension the planner imple-
mentation in SymbolicPlanners by adding proper support
for passing the previous state to the pseudo-heuristic. Sec-
ondly adding support for disjunctive goals to planners in the
SymbolicPlanner framework. This would allow for a redo
of LMLocal that should greatly improve its performance.
Thirdly assessing the effect of using different landmark ex-
traction methods to see how exactly the quality and size of a
landmark graph affects the methods described in this paper.
Fourthly combining LMCount with other heuristics as de-
scribed by Richter and Westphal in their paper on the LAMA
planner[8]. Finally seeing what the effect on performance is
of using different planners as the internal planner of LMLocal

and LMLocalSmart. Even just changing the heuristic of the
current A∗ planner could be interesting.

10 Acknowledgements
This paper would not have been possible without the follow-
ing people. Firstly Paul Tervoort for providing me with his
implementation of landmark extraction. He has his own pa-
per on this specific topic [12]. Secondly the rest of our re-
search group, Pauline Hengst, Noah Tjoen and Ka Fui Yang,
for support and insightful discussions on our shared topic of
landmarks. Thirdly Issa Hanou and Sebastijan Dumančić, our
supervisor and responsible professor for providing feedback



and answering any questions we had during the course of this
project. A big thank you to all of them for helping us in mak-
ing this paper possible.

References
[1] Blai Bonet and Héctor Geffner. Planning as heuristic

search. Artificial Intelligence, 129(1-2):5–33, 2001.
[2] Christer Bäckström and Bernhard Nebel. Complexity

results for sas+ planning. Computational Intelligence,
11:625–656, 01 1995.

[3] Alfonso Gerevini and Derek Long. Plan constraints and
preferences in pddl3. Technical report, Department of
Electronics for Automation, University of Brescia, Italy,
2005.

[4] Malte Helmert. Concise finite-domain representa-
tions for pddl planning tasks. Artificial Intelligence,
173(5):503–535, 2009. Advances in Automated Plan
Generation.

[5] J. Hoffmann, Julie Porteous, and Laura Sebastia. Or-
dered landmarks in planning. The journal of artificial
intelligence research, 06 2011.

[6] Ramon Pereira, Nir Oren, and Felipe Meneguzzi.
Landmark-based heuristics for goal recognition. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 31(1), Feb. 2017.

[7] Julie Porteous, Laura Sebastia, and Jorg Hoffmann. On
the extraction, ordering, and usage of landmarks in plan-
ning. Proc. European Conf. on Planning, 07 2001.

[8] S. Richter and M. Westphal. The lama planner: Guiding
cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research, 39:127–177, Septem-
ber 2010.

[9] Silvia Richter. Landmark-based heuristics and search
control for automated planning. pages 3126–3130, 08
2013.

[10] Silvia Richter, Malte Helmert, and Matthias Westphal.
Landmarks revisited. In Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence - Volume 2,
AAAI’08, page 975–982. AAAI Press, 2008.

[11] Javier Segovia-Aguas, Sergio Jiménez, Anders Jonsson,
and Laura Sebastiá. Scaling-up generalized planning as
heuristic search with landmarks, 2022.

[12] Paul Tervoort. Reproducing the concept of ordered
landmarks in planning: The effect of ordered landmarks
on plan length in forward search, 2024.

Figure 3: Scatter plots for the Blocksworld, Logistics and Miconic
domains. All times of completed problems versus the problem size
are featured. The fitted line indicates the trend of that specific plan-
ner. The reason not all domains are featured here is because those
domains only had 4 or less completed problem instances.


	Introduction
	Background
	Definition 1 SAS+ planning task
	Definition 2 Landmark
	Definition 3 orderings between facts

	Definition of algorithms
	LM Local: Using landmarks as Intermediary goals
	LM Count: Using landmarks as a pseudo-heuristic


	Related Work
	Methodology
	LM Local
	LM Count: Using landmarks for a pseudo-heuristic

	Experimentation
	Assessment Criteria
	Results

	Responsible Research
	Conclusion
	Discussion
	Future work
	Acknowledgements

