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Abstract
Machine Learning (ML) has revolutionized various fields, enabling the development of 
intelligent systems capable of solving complex problems. However, the process of manu-
ally designing and optimizing ML models is often time-consuming, labor-intensive, and 
requires specialized expertise. To address these challenges, Automatic Machine Learning 
(AutoML) has emerged as a promising approach that automates the process of selecting 
and optimizing ML models. Within the realm of AutoML, Neural Architecture Search 
(NAS) has emerged as a powerful technique that automates the design of neural network 
architectures, the core components of ML models. It has recently gained significant at-
traction due to its capability to discover novel and efficient architectures that surpass 
human-designed counterparts. This manuscript aims to present a systematic review of the 
literature on this topic published between 2017 and 2023 to identify, analyze, and classify 
the different types of algorithms developed for NAS. The methodology follows the guide-
lines of Systematic Literature Review (SLR) methods. Consequently, this study identified 
160 articles that provide a comprehensive overview of the field of NAS, encompassing 
discussion on current works, their purposes, conclusions, and predictions of the direction 
of this science branch in its main core pillars: Search Space (SSp), Search Strategy (SSt), 
and Validation Strategy (VSt). Subsequently, the key milestones and advancements that 
have shaped the field are highlighted. Moreover, we discuss the challenges and open is-
sues that remain in the field. We envision that NAS will continue to play a pivotal role in 
the advancement of ML, enabling the development of more intelligent and efficient ML 
models for a wide range of applications.

Keywords Neural architecture search (NAS) · Search space (SSp) · Search strategy 
(SSt) · Validation strategy (VSt) · Systematic literature review (SLR)
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1 Introduction

Since the advent of Machine Learning (ML) and Artificial Intelligence (AI), several break-
throughs have been made in the software Targ et al. (2016); Zhu and Newsam (2017); Dil-
lon et al. (2017) and the hardware Barnell et al. (2022); Ditty (2022); Cook (2012). Along 
with a wide range of application approaches in AI and optimization have been explored 
across various engineering fields, including bio-medical engineering Giveki and Karami 
(2020); Rastegar and Giveki (2023); Rastegar et al. (2024), mechanical engineering Hu 
et al. (2021); Yaghoubi and Kumru (2024); Yaghoubi et al. (2022), process engineering 
Salmanipour et al. (2023), material science Caglar et al. (2022), etc. All are pointed to 
improve the performance of models in the sense of accuracy, training time, energy con-
sumption, etc., to allow the improvement of faster and cheaper AI models and hardware for 
different applications. However, since different datasets (e.g. 1-D vibration dataset Mey et 
al. (2020), 2-D MNIST LeCun et al. (2010), 3-D RGB images like CIFAR-10 Krizhevsky 
and Hinton (2009), or 4-D RGBD images Silberman and Fergus (2011)) have different 
dimensions and information types, neither method nor model can be used for all datasets; 
therefore, one should alter either the method or the (hyper)parameters to be able to train on 
a new dataset. Analyzing data, changing the architecture, and tuning the (hyper)parameters 
can make a huge difference in the performance of the AI models. Therefore, the model’s 
performance highly depends on the experience of the developer in AI to design the archi-
tecture, and the background knowledge in the applied field to understand the data Yaghoubi 
et al. (2022). Furthermore, the developer needs to have a good knowledge of optimizing 
the model to generate the optimized model for a dataset. To solve this problem, Automatic 
Machine Learning (AutoML) was introduced as a new solution in ML to develop an opti-
mized model automatically. For this purpose, the whole hyperparameters associated with AI 
models, e.g. learning, architecture, optimizer, operations in layers, data analysis, etc., during 
the learning process will be optimized Zhao et al. (2021a). For instance, Lange et al. Lange 
and Riedmiller (2010) used a reinforcement learning algorithm to change the numbers of 
units in a Multilayer Perceptron (MLP) model to increase the performance and decrease the 
validation error.

When convolutional neural networks became popular, researchers also tried to bring 
auto-tuning algorithms to these models. The convolutional neural fabric Saxena and Ver-
beek (2016) was one of the first attempts in this area in which a 3D trellis of layers, scales, 
and kernels was created as a search space for the algorithm to find the proper network. The 
algorithm searched for the best pipeline in this 3D Search Space that eventually defines the 
network. Fig. 1 demonstrates a simplified version of this method with a 2D search space 
of scales and layers. In this figure, models A and B have been created using different paths 
in the search space. The first layer of both models is appointed by “Input” during the opti-
mization each of them followed different paths to the “Output” which is the output of the 
networks. The result of the procedure is two models shown in the right image.

As neural networks gained popularity for their ability to model complex patterns and 
make accurate predictions, the need for optimized architectures became apparent. This led 
to the development of Neural Architecture Search (NAS) Zoph and Le (2016), a specialized 
branch of AutoML, dedicated to automating the process of finding the most effective neural 
network architecture. It was initiated by the work of Zoph and Le Zoph and Le (2016) in 
which a reinforcement learning algorithm was developed to make an architecture with the 
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highest validation accuracy but with the expense of 800 Graphics Processing Unit (GPU)s 
for an image classification dataset. This means the models designed by the NAS algorithm 
can outperform models designed manually Zoph et al. (2018). In addition, NAS can be 
adjusted to generate the most accurate, lightest, and/or fastest models for image classifica-
tion Real et al. (2019b), object detection Zoph et al. (2018), or semantic segmentation Liu 
et al. (2019). Furthermore, the NAS algorithms can optimize models for Internet of Things 
(IoT) devices as well as Microcontroller Unit (MCU)s Lin et al. (2020); Saha et al. (2022). 
However, NAS requires a computing power that is not accessible to all industries and peo-
ple. Therefore, the main goal of NAS was pushed toward making it computationally cheaper 
in the sense of time and memory usage.

The rest of the paper is outlined as follows: In section 2, the materials and methods used 
in this study will be presented. In section 3, basic knowledge of the NAS algorithms will 
be introduced. In Sect. 4, the improvements achieved by different researchers will be elabo-
rated on. In Sect. 5 a discussion and in Sect. 6 a conclusion is provided.

2 Materials and methods for systematic literature review

This paper aims to introduce a systematic review of NAS algorithms as well as a discus-
sion on current works, their purposes, conclusions, and predictions of the direction of this 
science branch. In this study, we used the methodologies of Systematic Literature Review 
(SLR) Keele (2007); García-Holgado et al. (2020). A SLR is a comprehensive and unbiased 
review of the literature on a particular topic; it involves identifying, evaluating, and syn-
thesizing all relevant research on the topic. Within this section, you can find sources, tools, 
review plans, research questions, and review processes that are used in this article.

2.1 Tools

For preparing a systematic literature review, we used Parsifal (https://parsif.al/) as a  s y s t e m 
a t i c review manager and Mendeley (https://www.mendeley.com/) as a reference manager. 
Also, we used Overleaf (https://overleaf.com/) as a text editor, Inkscape  (   h t t p s : / / i n k s c a p e 
. o r g /     ) for drawing figures, and RStudio (https://pos it.co/produ cts/open-so urce/rst udio/) for 
plotting.

Fig. 1 Convolutional Neural Fabric Saxena and Verbeek (2016): on the left, there is the simplified search 
space and on the right, there are two different models with different colors that are generated by the paths 
which are illustrated in the search space
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2.2 Sources

The review process is illustrated in Fig. 2 using a PRISMA diagram Moher et al. (2009) to 
show the searching process clearly. Both journal and conference papers are considered due 
to the publishing culture in computer science. First of all, some digital libraries were selected 
due to their popularity on NAS. As shown in the PRISMA diagram in Fig. 2, between 2017 
and mid-2023, 3508 papers were found in the following digital libraries, 620 published in 
Institute of Electrical and Electronics Engineers (IEEE), 551 published in Association for 
Computing Machinery (ACM), 1011 published in Web of Science (WOS), 669 published 
in ScienceDirect (SD), and 657 published in Scopus. The query string used for this search 
was “Neural Architecture Search (NAS),” “architecture searching algorithm,” and “predict 
performance.” After eliminating duplicated publications, pruning non-related papers, and 
adding our pre-studied papers to this collection, 160 papers were accumulated.

Figure 3, shows how fast NAS algorithms are getting popular among researchers, with 
more than 3000 papers between 2017 and mid-2023 in mentioned digital libraries. Further-
more, the geographical distribution of the NAS researchers worldwide, is shown in Fig. 4. 
It indicates that the US and China are leading the field by contributing to more than half of 
the relevant papers.

2.3 Research questions

The main research questions that we aimed to answer in this paper are (reasons that these 
questions are being elaborated exist in section 3): 

Fig. 2 PRISMA Diagram Moher et al. (2009) on NAS. The ’n’ indicates the number of papers for each 
step. At the beginning of the process, various papers have been gathered from different digital libraries. 
then, the gathered papers were filtered using different properties of them that were defined in every box. 
In the end, 160 papers were selected and studied to satisfy the needs of this systematic review paper
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1. What specific improvements did each paper make in the NAS field to achieve better 
performance?

2. How long does the developed NAS algorithm take to reach the optimized model?
3. How good is the NAS algorithm in finding the optimized architecture?

2.4 Criteria

After defining the research questions, we need to define the inclusion criteria as clearly as 
possible and exclude otherwise. They are listed as follows, 

(i) The papers advance the main NAS pillars, i.e. Search Space, Search Strategy, and Vali-
dation Strategy (elaborated in section 3), AND

(ii) The papers are available to download or review in full under the license from Delft 
University of Technology (TU Delft) AND

(iii) The papers are written in English

Fig. 4 Geographical distribution of NAS 
researchers around the world
 

Fig. 3 Conference and journal papers on 
NAS till September of 2023
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3 Basic knowledge

Neural Architecture Search (NAS), as a subset of AutoML, is a framework for optimizing 
hyperparameters related to the architecture of Neural Network (NN) models Del Valle et al. 
(2023). It has three interconnected pillars as shown in Fig. 5:

Search Space (SSp): It is the space of all possible architectures, layers, hyperparameters, 
etc. for making a model.

Search Strategy (SSt): It is an optimization problem determining how to explore the SSp 
to make an architecture or model with the best performance. The choice of SSt can have a 
significant impact on the efficiency and effectiveness of the search process.

Validation Strategy (VSt): It determines how to assess the performance of each archi-
tecture or model during the SSt. For this purpose, the dataset is divided into training and 
validation sets to be used for training a model and evaluating its performance, respectively. 
The results of the VSt can be directly fed into SSp and SSt for their modifications Zhang et 
al. (2021a); Elsken et al. (2019).

To understand the NAS algorithm more in detail, the following subsections describe the 
three main pillars and the methods that have been developed in each one. Figure 6 gives an 
overview of these different methodologies.

3.1 Search space

Search Space (SSp) is a space containing all hyperparameters of a model, such as layer 
types, layer connections, activation functions, kernel sizes, kernel numbers, etc. Such an 
SSp ensures the presence of the optimized model, but can simply lead to an infinite space 
that is impossible to make and explore. In practice, some constraints should be imposed 
on the SSp to limit its size to reduce the searching time and push the SSt toward the near-
optimal architecture. In this regard, one commonly used approach is that instead of having 
a single layer as a selection unit from SSp, a set of connected layers, called a cell, will be 
chosen. This means the SSp will affect the architecture of the near-optimal model as well 
as its performance. For instance, the type of numbers of operations, connections, and layers 
can dictate the latency and accuracy of the optimized model Mao et al. (2021).

Layer-based Search Space (figure 7a):
In the layer-based architectures each layer, as the selection unit, can only be connected 

to its immediate layers. In other words, the optimizer has to look for in-series architecture 
in the SSp, as shown in (figure 7a). For instance, in FBNet Wu et al. (2019) the depth of the 
model has been fixed to 22 layers and each layer type can be chosen from the nine specific 

Fig. 5 Neural architecture search
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options, e.g. skip connections, convolutional layers with different kernel sizes, etc. Giving 
limited options with fixed layer types reduced the searching time by reducing the SSp.

Hierarchical-based Search Space (figure 7b):
In the hierarchical-based architecture besides in-series connections, a model can have 

parallel branches and skip connections, as shown in Fig. 7b. Therefore, this leads to a larger 
SSp and thus, some techniques need to be employed to reduce it and in return, to speed up 
the procedure Tan et al. (2019); Li et al. (202c0).

Cell-based Search Space (figure 7c):
In the cell-based architecture the selection unit is a cell that will be connected in series to 

create models with different sizes. However, the layers in each cell are connected in a hier-
archical fashion (Fig. 7c). This means, in this approach, we have the benefits of hierarchical 
connections but with smaller SSp because of the cell-based selection Liu et al. (2018b).

Even though limiting the architecture’s layers and connections can decrease the search 
time, some algorithms try to modify the SSp according to some restrictions (e.g. memory, 
processing, latency, accuracy limitations) while optimizing the model Lin et al. (2021, 
2020); Liu et al. (2018b); Huang et al. (2021). Lin et al. Lin et al. (2021) showed that layers’ 
size as well as their place or order in the network can change memory usage intensively. For 
instance, Fast Probabilistic NAS or FP-NAS Yan et al. (2021) was proposed to explore the 

Fig. 6 Different methodologies adopted in each pillar of the NAS algorithms and each will be elaborated 
further
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Fig. 7 Different Search Space (SSp) connection possibilities: a Layers-based Wu et al. (2019): layers in 
series (no parallel or skip), b Hierarchical-based Zhu and Newsam (2017): layers in series, parallel, or 
skip, c Cell-based Liu et al. (2018b): connections within one cell are Hierarchical-based but between the 
cells are in series (cells with same colors have the same structure – means that this architecture has two 
types of cells)
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SSp adaptively using probabilistic learning together with an adaptive sampling algorithm 
that could shrink down the SSp and thus speed up the optimization. As a result, the opti-
mized model needed less memory and fewer numbers of Floating Point Operations (FLOPs). 
CP-NAS (Child-Parent NAS) Zhang et al. (2021a) and DARTS (differentiable architecture 
search) Liu et al. (2018a) developed continuous variables for each connection between lay-
ers. The optimizer continuously changes the variables using gradient-based methods to find 
the best suitable connections by emphasizing the important connections with higher values. 
This method worked faster to find optimized connections in the dictated SSp. The problem 
is that restricting options like the number of layers or the types of layers can be problematic 
because it forces the algorithm to search for models with a specific level of complexity and 
depth. This can make the optimization process more challenging, as can be seen in DARTS 
Liu et al. (2018a). But some researchers believe that having complex cells and then pruning 
the SSp can speed up the process of finding the best architecture by using less computing 
power Liu et al. (2018b); Loni et al. (2020); Hong et al. (2021) instead of limiting the SSp. 
On the other side of the coin, using the limited SSp for the NAS algorithm has some benefits 
like helping the optimizer to find models for specific applications (like light models for dif-
ferent hardware) by defining some special operations like layers and connections Mao et al. 
(2021) to reach models with specific properties such as memory usage.

3.2 Search strategy

Search Strategy (SSt) defines how to explore the SSp. Its main goal is to construct the 
best model for a given dataset from a vast pool of models available in the SSp. To achieve 
this goal, a well-designed SSp in conjunction with a proper optimizer as SSt should be 
employed in NAS algorithms. Several popular SSts are available in the literature such as 
Random Search, Bayesian Optimizer, Evolutionary Algorithms, Reinforcement learning, 
Gradient-based optimizer, etc. that will be discussed in the following. As can be seen in 
figure 8, the popularity of different optimizers is changing over time. Bayesian Optimizer 
got popular because of their convergence speed but they need to reformulate the Search 
Space which makes the problem more complex. Evolutionary Algorithms is one of the most 
popular methods which uses a population-based optimization method and can ensure high 
effectiveness. Gradient-based optimizers are getting more popular because of their Graphics 
Processing Unit (GPU) friendly methodology. This method can be run on the GPU which 
is faster than Central Processing Unit (CPU) when using large datasets and matrix calcula-
tions. Random Search is easy to use but not efficient. Reinforcement learning based methods 
lost popularity because they need a lot of effort to find the best model for a dataset which 
needs a lot of time for validation but, by introducing cheap and fast validation techniques, 
it regained its position. Table 1 gives a high-level comparison between these techniques.

3.2.1 Random search

Random Search (RS) is a numerical method that is normally used on discrete problems 
Li and Talwalkar (2020); Wen et al. (2020). This optimizer is easy to implement but is the 
slowest one for the NAS algorithms, therefore, it found very limited applications in this 
field. This method is mainly used when the goal is to develop a Validation Strategy and its 
performance should be independent of SSt Abdelfattah et al. (2021).

1 3
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3.2.2 Gradient-based optimizer

Gradient-based optimizer (GO) algorithms rely on the derivate or gradient of the Objective 
Function (OF) to update the parameters/hyperparameters iteratively in the direction of its 
maximum or minimum Pham et al. (2018). This will contribute to a faster exploration of the 
SSp for finding the optimal architecture by NAS. These methods can work well for differen-
tiable objective functions where gradients can be readily computed. Therefore, this type of 
approach, such as DARTS Liu et al. (2018a), needs to compensate for the discrete nature of 
the SSp in searching for the optimized model.

Due to the iterative nature of the GO methods, they are considered computationally 
expensive algorithms. However, GPUs can be leveraged for solving this problem Dong and 
Yang (2019). As a result, GO algorithms are becoming popular because they are faster on a 
GPU than CPU.

Table 1 High-level comparison of different Search Strategies (D and C stand for Discrete and Continuous, 
respectively)

Fig. 8 Percentage of different optimizers used in SSt of NAS algorithms
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3.2.3 Bayesian optimizer

The Bayesian Optimizer (BO) is a widely used optimization technique that utilizes prob-
abilistic models to approximate the OF and select the next set of hyperparameters. It is 
particularly effective when the OF is not necessarily continuous and/or its evaluation is 
computationally expensive as it is in NAS; since it minimizes the number of evaluations 
needed to optimize the hyperparameters Jin et al. (2019).

3.2.4 Evolutionary algorithms

Evolutionary Algorithms (EA) are a class of optimizers inspired by principles from bio-
logical evolution and genetics. It was first used to obtain a proper architecture for neural 
networks in Elsken et al. (2018). To adapt EA to the NAS algorithms to find the best archi-
tecture the following steps should be taken:

 ● Population generation: some architectures should be chosen as an initial population;
 ● Performance evaluation: the algorithm will evaluate the population’s performance based 

on some metrics such as accuracy, complexity, and resource requirement;
 ● Population evolution: some models will be chosen based on selection techniques, such 

as tournament selection Real et al. (2019b) or fitness proportionate selection Lopes and 
Alexandre (2022), to evolve and make the next generations;

 ● Termination criteria: this evolutionary procedure continues until a termination criterion, 
such as a predefined error or a maximum number of generations, is met.

3.2.5 Reinforcement learning

Reinforcement learning (RL) Kaelbling et al. (1996) algorithms work through the reward 
and penalties from the feedback which in NAS is provided by the Validation Strategy. The 
agent who is looking for the answer to the optimization problem tries to find the goal by 
gaining the most possible rewards in an interaction with the environment. In the scope of 
NAS, an RL agent interacts with the neural network environment in the SSp of the NAS 
algorithm Real et al. (2019b); Zoph and Le (2016); Cassimon et al. (2020) and learns to find 
the optimized architecture based on feedback that can be one of several or more evaluation 
metrics, such as accuracy, complexity, latency, etc. For instance, in Zoph and Le (2016), the 
problem was defined as an RL agent that tries to optimize a specific objective like accuracy 
by selecting architectural components. The agent modifies its policy based on how created 
architectures perform on VSt pillar. Due to the necessity of evaluating each generated archi-
tecture, RL-based NAS approaches demand a large amount of computational power. This 
approach is enabled to progressively refine its decision-making abilities and uncover novel 
architectural configurations that outperform existing models.

3.3 Validation strategy (or proxies)

The most time-consuming step in NAS algorithms is the Validation Strategy (VSt) pillar, 
which assesses the performance of a model through the Objective Function (OF) and gives 
it as feedback to SSt or SSp. This value indicates how good the architecture would perform 
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on the data at hand from the perspective of the OF. Several methods have been proposed in 
the literature as VSt. The most straightforward approach is to train each model from scratch 
on the training dataset for a pre-determined iteration (n) and then assess the model’s perfor-
mance on the validation dataset. This approach which will be referred to as training-based 
Zoph and Le (2016), is the most accurate one but computationally very expensive. There-
fore, the research trend here is to reduce the computational cost of this stage by approximat-
ing the performance of a model on the validation dataset. This is why it is sometimes called 
proxies in the literature Mellor et al. (2021). The proposed methods can be categorized as 
full training (training-based) Zoph and Le (2016), partial training Li et al. (2017); Zoph et 
al. (2018); Zela et al. (2018); Falkner et al. (2018); Real et al. (2019a); Runge et al. (2018); 
Trofimov et al. (2020); Elsken et al. (2019); Pham et al. (2018); Liu et al. (2018a); Xie et al. 
(2018), adaptive training Swersky et al. (2014); Domhan et al. (2015); Klein et al. (2016); 
Baker et al. (2017); Jeong et al. (2022) and no training (zero-shot) Gracheva (2021); Mellor 
et al. (2021). Table 2 compares the required training iteration for these different methods 
schematically. You can find a comparison of some proxies in White et al. (2021b).

In the following section, we will elaborate on different VSt techniques.

3.3.1 Full training

In this approach, every single architecture proposed by the SSt will be fully trained (for n 
epochs as you can find in Table 2) before assessing its performance on the validation dataset. 
Therefore, it compares the exact performance of the models but with the cost of an exhaus-
tively long training time Zoph and Le (2016).

3.3.2 Partial training

In this approach, the models will be trained for r < n iterations (Table 2). The r iterations 
can be done for each model from scratch (type I) or the model could inherit its weights from 
another model and then be trained for extra r iterations (type II). The former is also called 
low fidelity and was introduced to reduce the computational burden and thus, speed up the 
searching procedure. For instance, the performance of each model on the validation dataset 
was assessed after its training for a few epochs in Zimmer et al. (2021); Trofimov et al. 
(2020). The second type, Weight Sharing or Inheritance, aims to reduce the training time by 
sharing the weights from one model to the next one, thus new models never need training 
from scratch to be validated for the NAS algorithm Liu et al. (2018a). This category can be 
implemented in four ways:

 ● One-time training of a huge architecture (SuperNet) and then using its different parts as 

Table 2 Comparison of different Validation Strategy (VSt) methods from the training time perspective
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smaller models (SubNets) Liu et al. (2018a),
 ● Training small architectures (SubNets) and then sharing their weights with a bigger 

architecture that contains all the small models (SuperNet) Chen et al. (2021a),
 ● Sharing weights just in the generation moment of a model by the saved models Wan et 

al. (2020), and
 ● Transferring weights from one model to other ones which are more suitable with algo-

rithms like EA optimizers in which the optimizer uses some previous models to gener-
ate new ones Wan et al. (2020).One of the most famous pieces of literature is ENAS 
Pham et al. (2018) which introduced a novel parameter-sharing technique. The proposed 
search strategy seeks to identify an optimized SubNet within the SuperNet architecture. 
By employing this method, connections can be shared among distinct SubNets, utilizing 
a single directed acyclic graph (DAG) Li et al. (2022).

3.3.3 Adaptive training (processing learning curve)

In this approach, the model trains from scratch but the number of iterations depends on the 
behavior of the learning curve. A learning curve is a curve that shows how the accuracy or 
loss of the model changes over training iterations. Analyzing this curve can help us predict 
whether the model is converging to a reasonable performance during the early stages of the 
training step. For instance, Jeong et al. Jeong et al. (2022) introduced performance metrics 
based on the depth and flatness of the loss value during the training step.

3.3.4 Zero-Shot (zero-cost)

All the VSt methods mentioned above require some level of training for a model. Since 
NAS algorithms normally handle hundreds or even thousands of models, even some train-
ing iterations for each model could lead to an untractable search time. Therefore, research-
ers are looking for methods that can provide a score for each model as an indicator of the 
model’s performance. These methods which are mostly based on mathematical algorithms 
related to data and/or model architecture Mellor et al. (2021), can reduce the validation time 
of the NAS algorithm to close to zero seconds Lin et al. (2021); Fan et al. (2023).

4 Literature

For shortlisting the papers for this section we used Systematic Literature Review (SLR) 
because this method starts with wide open keywords in the field and filters papers step by 
step by logical conditions and can eliminate the human preferences in the paper collecting.

Using NAS for finding an optimized model normally needs lots of time, memory, and 
energy. Therefore, the recent trend is to minimize its cost by modifying at least one of its 
three pillars (search space, search strategy, and validation strategy as shown in Fig. 5) to 
increase its efficiency and effectiveness and decrease its computational demand. Also, these 
improvements are heading to the point that hardware specifications are taken into account 
such that one can optimize AI models by NAS algorithm for devices with limited computa-
tional power and memory size e.g. edge devices and microcontrollers.

1 3
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4.1 Comparing NAS algorithms

Over the years, several different algorithms have been developed in the field of NAS that 
will be compared and discussed in this section. To compare their performance, some met-
rics and benchmarks need to be first defined. Performance metrics are essential tools for 
evaluating the effectiveness of models. They provide quantitative measures of a model’s 
ability to achieve its intended purpose, such as classification accuracy, prediction error, or 
energy efficiency. The choice of performance metrics depends on the specific application 
and the desired outcomes. Benchmarks are evaluation frameworks that provide a structured 
and comparable basis for assessing NAS algorithm performance. They typically contain a 
defined SSp, VSt information, and performance metrics; allowing researchers to compare 
the performance of a model with any other model, systematically and objectively.

4.1.1 Performance metrics and menchmarks

Each benchmark provides several parameters that can be used as performance metrics. The 
following is the definition of these metrics.

 ● Accuracy: The proportion of correct predictions made by a model.
 ● Loss: The difference between the predicted values and the actual values.
 ● Latency: the amount of time that takes for a model to process and react to an input; 

lower latency indicates faster processing (it relates to real-time performance and re-
sponsiveness)

 ● FLOPs: number of Floating Point Operations that a model needs to process an input
 ● Energy: the required amount of energy needed to run a model on a specific hardware
 ● Training Time: the required time for training a model for a specific number of iterations
 ● Trained Parameters: the values of trained weights.These metrics can be considered as 

some specifications of benchmarks in the NAS algorithms. Table 3 demonstrates some 
NAS benchmarks available for image classification tasks. It also shows the metrics and 
features included in each benchmark.

For instance, in table 3, we can see that Nas-Bench-101 Ying et al. (2019) has a SSp consist-
ing of 15 × 103 models with Cell-based architectures. These models are trained on CIFAR-
10 and CIFAR-100 datasets but not on ImageNet and the following metrics are reported: 
1. accuracy on Validation data (Val. Acc.) 2. accuracy on test data (Test Acc.) 3. latency of 
models 4. number of FLOPs 5. training time 6. number of training parameters 7. but the 
energy consumption is not available. Also, in the hardware part, you can see that this bench-
mark is evaluated on just one single hardware (GPU), which means there are no measured 
metrics of models on different hardware.

4.1.2 Methods

Historically, Zoph and Le Zoph and Le (2016) started Neural Architecture Search (NAS) 
algorithms by implementing Reinforcement learning as their Search Strategy to find the 
most accurate model for a specific dataset. Because their VSt was based on full training, it 
needed a huge amount of GPU hours to find the optimized model. Since then, researchers 
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have been trying to improve the performance of the NAS algorithm from different perspec-
tives e.g. running time, energy efficiency, optimized model performance, etc. The rest of 
this section introduces and compares the available literature based on their SSt. Table 4 
summarizes all the different methods to compare next to each other.

Reinforcement learning: As mentioned, the first NAS algorithm is introduced using Rein-
forcement learning (RL) Zoph and Le (2016). Within this SSt, the RL algorithm searches 
for the best architecture based on feedback such as accuracy. In general, RL enabled the 
algorithm to find architecture that is optimized in the sense of accuracy and latency, etc., and 
performed better than the human-designed models.

To dive into more detail, Zoph and Le Zoph and Le (2016) implemented a recurrent neu-
ral network (RNN) to find the best architecture. The RNN was trained with an RL algorithm 
to maximize the performance of the generated architecture. This algorithm was iterative, 
and in each iteration, the generated architecture was trained from scratch and then evalu-
ated on the validation dataset. The obtained validation accuracy was fed to the controller, as 
the reward, to generate a new architecture for the next step. Although the process was very 
costly, about 800 GPUs of hours, it could outperform human-designed models.

In Mills et al. (2021), the algorithm was improved to be faster and more accurate by 
leveraging the concept of the SuperNet and SubNet. A SuperNet is a large, flexible network 
that contains a large number of small models, known as SubNets. In this way, the NAS 
algorithm can find the best model by evaluating the performance of different SubNets within 
the SuperNet.

Since NAS algorithms are normally computationally demanding, the main focus of the 
researchers shifted toward reducing the computational cost. In this regard, Zoph et al. Zoph 
et al. (2018) tackled this issue by limiting the Search Space for the algorithm and introduc-
ing the Cell-based architecture. This leads to reducing the training cost from 800 to 500 
GPUs. In this way, instead of searching for the entire network, the algorithm needs to search 
for the layers and connections inside a cell. Two types of cells were created in this method: 
Normal cells and reduction cells. Normal cells extract the features holding the input size but 
the reduction cells reduce the output size while processing it. Later, they created a model 
by connecting these cells multiple times. Using this method, they were able to find the best 
cell with a smaller dataset, then transfer the cell to a larger and more extensive network, and 
train it on a large dataset. As was proven in Wen et al. (2021), this approach was extremely 
energy and time-efficient.

Ding et al. Ding et al. (2021) increased the speed of the NAS algorithm by implement-
ing RL optimizers and broader architecture with flexible hyperparameters; as a result, they 
introduced BNAS to find a model that has less size and higher accuracy.

One of the known issues of BNAS Ding et al. (2021) was an unfair learning SubNet 
meaning that during the training step of the SuperNet, some SubNets tend to be trained bet-
ter than others causing some problems at the end of the optimization process. The optimizer 
tended to find models that were well-trained instead of choosing models that were more 
suitable for the data. This issue was addressed in Ding et al. (2022) and led to BNAS-v2. 
To reach the aim, they adjusted the learning rate based on the gradient to prevent aggressive 
changes in architecture selection. To decrease the computation and memory consumption, 
they implemented a method to select just the active part of each layer during the process. 
Also, BNAS Chen et al. (2020) suffers from unstable training and over-fitting, therefore, a 
normalization method for the active SubNets in the SuperNet was applied.
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In response to the increasing demand for more efficient NAS algorithms, Chen et al. 
developed an efficient NAS algorithm called Binarized Neural Architecture Search Chen 
et al. (2020). In this approach, the SSt explore only a portion of SSp that was randomly 
sampled. Similar to Zoph et al. (2018), they produced two cells (normal and reduction cells) 
to build up the main model. In this literature, along with channel sampling to reduce the 
number of parameters that need to be searched over, another method has been introduced 
called operation space reduction, which limits the search space in the sense of operations. 
To solve the problem of not converging to a well-optimized model, they implemented a 
performance-based SSt to ensure a high-performing architecture. Later, Zhang et al. Zhang 
et al. (2021a) improved the binarized algorithm to achieve a faster NAS algorithm by shar-
ing trained weights from parents to child (generated) models during the optimization.

Gradient-based optimizer: Knowing that continuous optimizers, like Gradient-based 
optimizer (GO), are faster than discrete ones on GPUs, bringing them to a NAS algorithm 
as a SSt can speed it up and make it more applicable to the AI world. However, the main 
challenge would then be how to deal with the discrete nature of the Search Space.

This issue in NAS was first addressed by Differentiable Architecture Search (DARTS) 
Liu et al. (2018a) in which the search for the optimal architecture was performed on GPU. 
In this approach, a cell-based SSp was used that consisted of several types of layers such as 
convolution, skip, or pooling that were connected to each other. The SSt was a reinforce-
ment agent that implemented the GO method to optimize the architecture of a model. In 
order to have continuous SSp and enable GO, all connections in architecture are assigned 
a variable. Then, the SSt optimizes the performance of the architecture by changing those 
variables that define the state of the connection (appearance in the network or not) at the end 
of the optimization Xue et al. (2022); Wan et al. (2022). As was shown in Fig. 9, only the 
connections with the highest values were retained, and the others were removed.

DARTS Liu et al. (2018a) could be unstable, and thus the search procedure could lead to 
sub-optimal solutions. Regularized Differentiable Architecture Search (RDARTS) Wang et 

Fig. 9 A simplified SSp of differentiable architecture search (DARTS) Xue et 
al. (2022): non-faded connections (or layers) are selected for the architecture, 
blocks are different data stages, and different colors show different types of 
layers like CNN, skip, etc
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al. (2022b) overcomes this problem by utilizing regularization to encourage the RL agent to 
choose architectures that are capable of being more generalized and less overfitted. ENAS 
(Efficient NAS Pham et al. (2018)) introduced a method that lets the computer find the best 
architecture only using a single GPU in less than a day. In this method, sharing parameters 
played an important role in minimizing the optimization time. Further, they implemented 
Long short-term memory (LSTM) to find the hyperparameters of the model. In this method, 
the whole search space is defined as SuperNet and Subnets. The controller (which is the SSt 
in this approach) selects a suitable SubNet through the search space. As a result, they found 
out that using SubNet during training enhances the performance of the optimized model at 
the end of the process by preventing it from being trapped in local minima.

Dong and Yang addressed the issue of converting the discrete SSp to a continuous by 
introducing Gradient-based search using Differentiable Architecture Sampler or GDAS-
Dong and Yang (2019). In this approach, they represented the SSp as a Directed Acyclic 
Graph (DAG) in which, each sub-graph can be sampled to be an architecture for the neural 
network. To limit the number of sub-graphs and speed up the search process, a differen-
tiable sampler was developed. In this way, they were able to search for the optimized model 
efficiently benefiting the SSt presented in GDAS which was faster when using DAG SSp. 
GDAS guided the search toward architectures with lower validation loss.

Addressing the problem that NAS algorithms are computationally inefficient, CDARTS, 
which stands for a Cyclic Differentiable Architecture Search Yu et al. (2022), developed 
a two-step optimization to solve the problem. In every iteration of the algorithm, both the 
architecture and weights of the model are being trained: first, the weights of the model are 
trained; and then, the hyperparameters are evaluated to optimize the architecture. Until the 
evaluation method does not change the architecture, the iterations go on. CDARTS achieved 
the optimized architecture in less than 24 GPU hours for different datasets with a competi-
tive accuracy.

Wu et al. developed a differentiable NAS technique in which besides optimizing the 
accuracy of the model, they considered hardware constraints to find an optimized network 
architecture for a mobile device. It is called FBnet: Facebook-Berkeley-Nets Wu et al. 
(2019). In this approach, layer-wise SSp with a predefined number of layers was imple-
mented, i.e. 22 layers. The functions of each layer can be selected among 9 operations. This 
technique was applied to find a proper model on the ImageNet dataset. They managed to 
achieve 74.9% top-1 accuracy with 28.1ms latency. Also, the fastest architecture (for mobile 
devices) has 73% top-1 accuracy with 19.8ms latency on Samsung Galaxy S8.

In 2020, they introduced FBnetV2 Wan et al. (2020) which can perform NAS in a more 
efficient way on a larger SSp than FBnet Wu et al. (2019). In this method, to search for the 
most accurate architecture, first, a SuperNet was made and trained for one time. Then, the 
best SubNet is chosen as the optimized architecture. There were some issues like incom-
patible dimensions of weights, and increased memory consumption while sharing weights 
between different models. To solve them, they used a new zero padding method to make the 
kernels shareable between different models even with different sizes.

Some other approaches for NAS benefited GO optimizers and other improvements. For 
instance, Song et al. Song (2021) implemented a GO algorithm together with a cluster-
ing method to minimize the Search Space and speed up the search time; In Zheng et al. 
(2021); Wan et al. (2022), authors solved the challenge of achieving more accurate models 
by implementing a probabilistic GO method; Wu et al.Wu et al. (2021a) solve the limitation 
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of DARTS SSp by adding a Gradient-based searching algorithm and a Gradient-based prun-
ing technique to decrease the running time as well as extending the SSp; Wei et al.Wei et al. 
(2022a) implemented multi-objective GO to optimize hardware-friendly models according 
to different metrics.

Bayesian optimizer: Evaluating models with different architecture in the NAS algorithm 
increases the search time. Bayesian Optimizer (BO) can find the optimized architecture by 
evaluating fewer models than the other SSts. BOs achieve this by building a probabilistic 
model of the OF, which allows them to estimate the performance of an architecture without 
actually evaluating it. They then use this probabilistic model to select the next architecture, 
focusing on the most promising regions of the SSp. This iterative process allows BOs to 
converge to the optimal architecture with fewer evaluations, significantly reducing the com-
putational cost of NAS.

In essence, BOs work by modeling the relationship between the hyperparameters of an 
architecture and its performance. BO starts with an initial model, which could be a simple 
or a complex architecture. As they evaluate more architectures, BO updates its model to 
capture the most accurate and reliable relationship between the hyperparameters and the 
architectures’ performance. This allows BOs to make more accurate predictions about the 
performance of the new one, guiding the SSt towards the optimal architecture. It should be 
bear in mind that, the complexity of BOs brings up three more complicated challenges in 
solving the NAS problem: 

1. How to speed up the performance – Zhou et al. Zhou et al. (2019) solved this problem 
using DARTS SSp and Laplace Approximation,

2. How to quantify the posterior and likelihood to optimize the parameters or hyperparam-
eters – this problem is solved by Shaw et al. Shaw et al. (2019) by introducing Bayesian 
neural networks (BNNs) and utilizing stochastic gradient descent to the probability 
distribution of neural network weights, and

3. How to explore the SSp to find the optimized architecture – Li et al. Li et al. (2020b) 
solve this problem by enabling direct performance prediction and exploring according 
to the estimated metrics.Kandasamy et al. Kandasamy et al. (2018) introduced BO in 
the NAS field, called NASBOT. This approach performed competitively with the other 
optimizers such as RS and EA. It was shown that BO makes more informed decisions 
about which architectures to evaluate and BO is less likely to get stuck in local optima. 
Further, They showed that BO are better at handling noisy objective functions.

BANANAS White et al. (2021a), Bayesian Optimization with Neural Architectures for Neu-
ral Architecture Search, introduced a specific encoding-decoding method between the SSps 
of the NAS and the BO SSt. Further, they implemented a NN based proxy to accelerate the 
VSt by skipping the time-consuming part of the validation step (training every architecture). 
As a result, this algorithm converged to the near-optimized architecture faster than other 
NAS methods. Later, to improve this approach, multi-objective BOs Yang et al. (2020a); 
Cai and Luo (2021) was introduced to search for the best algorithm while satisfying con-
straints like inference time, memory usage, etc. which are all hardware-related limitations.

It is easy to find BOs that are being used for different hardware and (IoT) devices for 
instance robotic and navigation applications Saha et al. (2022). They implemented BO and 
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a temporal convolutional network (TCN) backbone to satisfy their goal of finding a model 
for an edge device with lower latency compared to man-made models.

Evolutionary algorithms: One of the most important aspects of the EA algorithms is that 
they have the potential to find a model with high performance during the optimization. As 
mentioned previously, in every iteration of this optimization, the algorithm validates the 
population and keeps the best ones. Then, it generates offspring from the kept population. 
This way, the algorithm keeps the obtained performance of the found model or optimizes 
the model to a better architecture. At the end of the search, the close-to-optimal models are 
listed in the population.

LEMONADE (Lamarckian Evolutionary algorithm for Multi-Objective Neural Archi-
tecture DEsign) Elsken et al. (2018) is the first EA based NAS method. They developed a 
multi-objective EA optimizer (same as Lu et al. (2019)) to search for a model with better 
performance but with a small architecture size. They managed to speed up the algorithm 
benefiting a warm start method for the off-spring. As a result, this method achieved models 
with the same accuracy in comparison with MobileNet-V2 Sandler et al. (2018) but with 
fewer operations and less latency.

Like any other optimization algorithm, still there are chances for EA algorithm to stuck 
in local minima. Real et al. Real et al. (201b) introduced a new tournament selection in EA 
to favor the younger architecture in the population. The results showed that this algorithm 
found a model with better accuracy and lower computational cost using EA-based SSt in 
comparison with RL and RS methods.

Developing a zero-cost estimator in conjunction with the guided EA makes the NAS 
algorithm converge to the best architecture faster Lopes et al. (2022). The Jacobian covari-
ance of the weights in the network is used to evaluate the accuracy of the network at the 
initial moment. As a result, this method found a model with a competitive accuracy within 
NAS-BENCH-101 and NAS-BENCH-201 SSps.

Searching for different architectures one by one was slow and there was a high chance of 
finding local optimal architecture. To solve these issues, NEAS, One-Shot Neural Ensemble 
Architecture Search Chen et al. (2021a), proposed K-path EA to find multiple best models 
instead of one single model. In this method, a SuperNet is defined as different paths of 
architecture instead of defining it as a giant architecture and SubNet was a path in the Super-
Net. In this way, it became possible to implement a new weight-sharing technique (called 
layer-sharing technique) to merge different parts of architectures with each other to decrease 
memory consumption. This led to reduced search and training time.

Shang et al. addressed the issue of the inefficiency of the NAS algorithms and also the 
challenge of sharing trained weight with off-springs; as a result, they introduced EF-ENAS 
Shang et al. (2022), which is an improved method of a EA optimization algorithm. In this 
method, different off-spring generation methods were implemented to find the best architec-
ture. This algorithm contains two parts: first, it defines some blocks that were more effective 
with previous models, and second, uses them as pre-defined blocks in the generation of 
offspring. These steps contribute to keeping the valuable and trained parts of the models for 
the off-springs. The proposed EA algorithm is called correction-based which is suitable for 
decreasing computational time in comparison with traditional EA algorithms.

Sometimes, the NAS algorithms tend to find complex and large-scale architectures with 
high accuracy which are not efficient for industrial or real-world applications. To solve this 
problem, Louati et al. Louati et al. (2022) used EA optimizer together with a pruning method 
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to make the network fit the hardware requirements like suitable memory size for health-care 
applications. This method works in two-step sequences: the low-level pruning action and a 
high-level design process, by implementing a co-evolutionary migration-based algorithm.

There are different methods for EA Zhu et al. (2019); Xue et al. (2021); Wen et al. (2021); 
Gottapu and Dagli (2020); He et al. (2021), like cartesian genetic programming (as a multi-
objective NAS method) Pinos et al. (2022); Park and Yi (2022) focusing on the performance 
of the optimized architecture, genetic-based multi-objective optimizer Geraeinejad et al. 
(2021) focusing on not only the robustness of the model but also the memory efficiency, 
Aquila optimization together with a genetic algorithm to overcome more complex SSp 
Wang et al. (2022a), continuous evolutionary algorithm Chen and Xu (2022); Yang et al. 
(2020b) focusing on converge faster using weight sharing during searching on the Search 
Space, and a multi-objective EA method together with an online surrogate model to predict 
the performance Chen et al. (2022) focusing on solving the problem of having non-efficient 
NAS algorithms.

Random search: This approach has been mainly used in the NAS literature that focused 
on Validation Strategy (VSt). The reason is that their methodologies can be introduced and 
compared with the others independent of employed Search Strategy. Therefore, in the fol-
lowing, we sort the literature based on their VSt.

Partial training - type I: Low Fidelity In NAS algorithms, low-fidelity evaluation was 
used to reduce computational costs. However, these shallow evaluations can lead to subopti-
mal architectures due to their limited understanding of the true performance of architectures 
on the full dataset and with sufficient training. Addressing this issue, Trofimov et al. Trofi-
mov et al. (2020) introduce knowledge distillation into the low-fidelity evaluation process. 
By transferring knowledge from a pre-trained model to a smaller newly generated network, 
they can obtain a more accurate estimate of the model’s performance on the full dataset. 
This approach enhances the effectiveness of the NAS, leading to improved performance.

Partial training - type II: Weight Sharing or Inheritance
Neural Architecture Optimization Network (NAONet) Luo et al. (2018) used a weight-

sharing method together with a proxy method to solve the NAS problem to find a lighter 
model on CIFAR-10. In this approach, they converted the discrete SSp to a continuous 
one by using an encoder-decoder algorithm. In every iteration, the algorithm encodes the 
architecture to the continuous space (SSp) that provides suitable space for predicting the 
performance. Later, SSt optimizes the architecture according to the predicted performance. 
The chosen architecture is decoded into an architecture as in original SSp.

LEMONADE Elsken et al. (2018) developed a technique to share parents’ weights with 
the offspring by mapping the weights from one network to another. This sharing caused the 
model to inherit performances like accuracy, resource requirements, or other metrics from 
the old models before training.

Knowledge-Inherited Neural Architecture Search or ModuleNet Chen et al. (2021b) 
introduced a new technique to share trained parameters. In this method, knowledge of every 
trained model is transferred to the newly generated model by decomposing the trained 
model into parts and using them in the architecture generation process. This showed better 
performance in comparison with the SuperNet weight-sharing technique because of using 
well-trained parts instead of sharing every single weight in different optimizing iterations.

Some techniques have been developed to improve the performance of the weight-sharing 
method on a SuperNet. For instance, randomly activating some SubNets or connections on 
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the SuperNet can prevent the SuperNet from dictating the specific weight to some weights 
during the search Zhang et al. (2022a).

Adaptive training
GeNAS, Generalization-aware NAS Jeong et al. (2022), introduced a new metric for 

the NAS algorithms by processing the learning curve. In this method, the authors analyzed 
the flatness of the loss function during training. They realized that models with flatter loss 
curves have more generalization ability. Additionally, for more improvements, they mixed 
conventional cross-entropy loss metrics with flatness metrics, which led to architectures 
with better performance. This technique contributed to optimizing the architecture on a 
small dataset and training it on a large dataset (called transferability).

Zero-shot (zero-cost)
Zero-cost VSts or proxies can estimate the performance of the models before training 

them Zheng et al. (2020); Dai et al. (2021); Lu and Lyu (2021); Xu et al. (2021a); Gracheva 
(2021); Phan and Luong (2021); Hu et al. (2021). They can be divided into two classes: 
theory-driven methods that predict the performance of the models at the initial point of the 
optimizer without knowing about the performance of any model; and data-driven methods 
that predict the performance of the models using previous knowledge which is gained dur-
ing the optimization process (they learn from the previous models’ performance and later, 
predict the upcoming models’ performance). In simple words, theory-driven methods can 
predict the performance of the model at any time without needing information from other 
models but the data-driven models need the performance of several models to learn the 
prediction and apply it to the new coming models. In the following paragraphs, we dive into 
more detail about these methods.

Formulating a VSt in the NAS algorithm in a way that does not need to train a model can 
improve the running time significantly so that the algorithm can be considered a zero pro-
cessing cost method. NASWOT Mellor et al. (2021) managed to find an architecture with 
92% testing accuracy on CIFAR-10 only in 3.05 seconds (using a single Nvidia GTX 1080 
Ti) which, in comparison, takes more than 13,000 s for the ENAS Pham et al. (2018). The 
most important feature of this algorithm is that it works as a training-free algorithm that can 
be run on a single GPU. They implemented an estimation method to predict the validation 
accuracy at the initialization level. The scoring formula calculated an estimation value for 
the accuracy of the network without training using:

 

s = log

∣∣∣∣∣∣

NA − dH(c1, c1) . . . NA − dH(c1, cN )
...

. . .
...

NA − dH(cN , c1) . . . NA − dH(cN , cN )

∣∣∣∣∣∣
 (1)

In this equation, NA is the number of ReLu functions in the model, ci is a binarized code of 
the model for the ith image in the mini-batch, and dH  is Hamming distance between cis. 
The equation shows how the model can split different input data in a mini-batch from each 
other in the linear space of the features using ReLUs.
Genetic algorithm and noise immunity for neural architecture search without training or 
GA-NINASWOT Wu et al. (2021b) improved the efficiency and generalization of NAS-
WOT Mellor et al. (2021) such that the optimized model has 0.6% higher test accuracy and 
47% less time consumption. They used NASWOT’s scoring algorithm together with a EA-
based Search Strategy. Also, they introduced a look-up table for the validated networks to 
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store the parameters and validation metrics of the chosen model by the SSt to reduce mem-
ory consumption and improve computational efficiency. GA-NINASWOT outperformed 
NASWOT on all datasets including CIFAR-10, CIFAT-100, and ImageNet16–120 using 
NAS-BENCH-201 Search Space.

Training-free neural architecture search (TE-NAS) Chen et al. (2021c) introduced a NAS 
method that is train-free and label-free. This method uses analysis of the architecture in 
the spectrum of the neural tangent kernel (NTK) Jacot et al. (2018) and the number of 
linear regions to rank it. In this way, TE-NAS could measure the trainability and expres-
sivity, which are heavily correlated with the test accuracy of the architecture. Trainability 
measures how much a model can be trained to learn from data. Expressivity is a metric that 
measures the ability of a model to represent a wide range of functions (complexity of the 
architecture). Also, this algorithm used a pruning mechanism called pruning-by-importance. 
This approach can enormously decrease the Search Space, to improve the trainability and 
lets the algorithm completely fine-tune the architecture without sacrificing expressivity. 
This method was able to find the best architecture on CIFAR-10 and ImageNet only in 0.5 
and 4 GPU hours, respectively.

In the FAM method Mokhtari et al. (2022), the performance of the network was esti-
mated by the Intra-Cluster Distance (ICD) score and a EA-based SSt was used. To convert 
the discrete SSp into a continuous one, they used an encoder to translate the layer types, 
kernel sizes, etc. into continuous parameters that are easier for the SSt to optimize.

Neural Architecture Optimization (NAO) Luo et al. (2018) is a 3-step NAS algorithm: I) 
Encoding discrete architecture to continuous space, II) Predicting accuracy and optimizing 
the architecture in the continuous space, III) Decoding the chosen continuous architecture to 
a model. Thus, they create a performance prediction function and a continuous SSp, instead 
of searching the SSp and training the generated model at each step. Similar to NAO Luo et 
al. (2018), EmProx Franken et al. (2022) developed an encoder-decoder method to map the 
architecture space to continuous SSp; the difference is that instead of Multilayer Perceptron 
(MLP), they used weighted k-nearest neighbors for the prediction. This strategy contains 
two sets of architectures: known and unknown. In this method, the accuracy is given for 
the first set. Then, the algorithm can learn from the given data to predict the accuracy for 
the second set of architectures using the kNN algorithm. Compared with other methods like 
NAO, SemiNAS, XGB, BANANAS, and MLP, this method works faster.

To find the best scoring methods and improve them, Abdelfatteh et al. Abdelfattah et al. 
(2021) used five more zero-cost metrics (Snip Lee et al. (2018), GraspWang et al. (2020a), 
SynapticFlow Tanaka et al. (2020), Fisher Turner et al. (2019), and Grad − normMellor 
et al. (2021)) to predict the performance of the models. After calculating these metrics, 
they used the Spearman Rank correlation coefficient (Spearman’s ρ) to compare the cor-
relation of these metrics with the validation accuracy of the models. Between the above-
mentioned metrics, SynapticFlow showed the highest correlation between all investigated 
datasets (CIFAR-10, CIFAR-100, ImageNet16–120). They introduced a new metric called 
vote, which takes the majority vote between the three metrics: SynpeticFlow, Snip, and 
Grad − norm. they showed that vote performed better than each individual metric. Spear-
man’s ρ was consistently above 0.8 on NAS-Bench-201. Also, the vote was able to predict 
the accuracy using just 3 mini-batches.

To introduce other proxy methods briefly, we can mention the following literature: NPE-
NAS Wei et al. (2022b) used two different estimators: a BO acquisition function, which is 
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used as a graph-based uncertainty estimation network; and a graph-based neural network for 
predicting the performance of the architecture. Using a meta-learning framework, the NAS 
algorithm learned from a small number of samples in the SSp without probing the whole 
space Zhao et al. (2021b). Using few-shot NAS, they found more accurate models in com-
parison with one-shot models Bender et al. (2018). Fang et al. Fang et al. (2020) optimized 
the architecture for specific hardware with respect to accuracy and FLOPs/latency. Li et al. 
Li et al. (2020a) reformulated the validation step in a way to estimate the loss using weights 
of the model.

In the literature, there are some other methods to predict the performance of models 
without traditional training, such as the Firefly Algorithm method (FAM) Mokhtari et al. 
(2022) that predicts the weights for the model, EPE-NAS Lopes et al. (2021) that predicted 
the accuracy using Jacobian of weights of the model, and KNAS Xu et al. (2021b) that used 
the gradient of weights to estimate the performance.

Other methods: Besides the methods mentioned above, some other optimizers can be 
found in the literature that have been used to improve the performance of the NAS algo-
rithms. Having known that searching for an optimized model on a SuperNet or in a big 
Search Space needs tons of processing power, it is more efficient to add layers one after 
another to the structure till converging to a model with acceptable performance. This opti-
mization method is called growth-based strategy and has been implemented in the NAS 
algorithm Millán et al. (2018). Further, a Biology Inspired version of the Growth optimizer 
LaKemper et al. (2022) has been developed as a method for modifying the artificial neural 
network’s structure. Introducing DensEMANN Garcia-Diaz and Bersini (2021) brought this 
opportunity to build architectures layer-by-layer and kernel-by-kernel during training with 
better performance. In this algorithm, it was possible to prune or add layers/kernels simul-
taneously during the optimization.

HotNAS Jiang et al. (2020a) developed a NAS algorithm for optimizing the pre-trained 
architectures instead of starting the algorithm from scratch. This method tried to improve 
the available models’ performance and not generate a new model. In this way, they managed 
to reduce the searching time to 3 GPU hours on ImageNet and only 20 min on CIFAR-10 
even without a proxy. They created a model library named ’Model Zoo’ with 24 human-
designed models for ImageNet among which only 4 models could satisfy the computational 
limitation of the chosen hardware. Later, they used this pre-trained model zoo considering 
some constraints like a range of 5ms latency on Xilinx ZCU 102 FPGA which came up with 
a model that reached the 87.50% accuracy. By changing these constraints the algorithm 
optimized a model with 90% accuracy with latency of 5 − 10ms.

One other SSt for the NAS algorithms is the graph-based search algorithm Su et al. 
(2021); Wang et al. (2020b). This method brings a good balance between exploration and 
refinement to the SSt and speeds up the algorithm in comparison with RS and greedy search 
methods. Further, by introducing TNAS (NAS with trees) Qian et al. (2022), authors were 
able to prune the SSp, which can improve the search time extremely.

Knowing that during the training of a neural network, the most influential weights are 
subjected to bigger changes in comparison with the other weights, searching with Random 
Labels NAS or RLNAS Zhang et al. (2021b) developed an algorithm to find the optimized 
model by analyzing the changes. For this purpose, the SuperNet was trained with random 
labels. Then, by selecting the most changed weights in the network, they managed to choose 

1 3

   73  Page 26 of 38



Systematic review on neural architecture search

the SubNet. It was shown that the optimized model had better accuracy in comparison with 
previous methods.

Quantum-inspired NAS, or Q-NAS Szwarcman et al. (2019), tried to optimize the opera-
tions on fixed layer numbers. The quantum-inspired optimizer chooses a layer operation 
from a small SSp by quantum probabilities. Later, they improved their algorithm even fur-
ther to touch the +90% accuracy on CIFAR-10 Szwarcman et al. (2022). The downside of 
this algorithm is its running time; it takes more than 50 GPU days to optimize the model.

Moreover, there are different methods, except the mentioned algorithm, in the literature 
like binarized neural networks Shen et al. (2019), swarm intelligence Byla and Pang (2019), 
greedy optimizers You et al. (2020); Li et al. (2020c), novelty search strategy Zhang et al. 
(2020a), attention-based search Nakai et al. (2021), slow-fast learning Tan et al. (2021), 
enhanced RL mixed with a new reward function Cassimon et al. (2020), etc.

Hybrid methods: Some methods mix different optimizers to increase the accuracy or the 
search speed. For instance, the Bayesian Learning rule to the architecture optimization in 
differentiable NAS (BaLeNAS) Zhang et al. (2022b) introduced to improve the baseline of 
the architectures to solve the issue that the DARTS Chen and Hsieh (2020) algorithm tends 
to find complex architecture because of shared weights from SuperNet. As a result, BaLe-
NAS reached a better accuracy in comparison with DARTSLiu et al. (2018a), and Zero-cost 
NAS Abdelfattah et al. (2021), etc. BaLeNAS-TF (train-free) achieved even better results 
with 94.33% test accuracy on CIFAR-10. Furthermore, to list hybrid methods briefly, we 
can mention: Fast Evolutionary NAS (FENAS) Shi et al. (2021) and Adaptive scalable NAS 
Zhang et al. (2021c). Also, there are some methods that are mixed of different optimization 
techniques and SSp structures for example Jing et al. Jing et al. (2022) used DAG and intro-
duced a Neural Architecture Generator (NAG) to optimize the model. In this method, they 
utilized a generative adversarial network (GAN) framework to effectively explore the vast 
architecture space. GAN algorithms consist of two components: a generator that produces 
DAGs a.k.a model, and a discriminator that assesses the quality of the generated model, the 
discriminator compares the metrics of the generated model with models from the metrics 
dataset. Both of these networks benefited Gradient-based optimizer to be optimized; but, 
we classified this approach in this category, not in GO methods, knowing that the model 
searching process was a RS technique to generate noise as an input for the generator. In this 
approach, the algorithm needs to be trained once and used several times which can increase 
the efficiency of the NAS algorithm.

4.2 NAS for specific hardware

These days, NAS algorithms are finding their way to the edge and Internet of Things (IoT) 
devices, to bring neural networks close to the sensors. This allows (IoT) devices to have 
better performance and less latency. Before diving into the details, the following hardware-
related terminologies should be introduced: 

1. SRAM (Static Random-Access Memory): is a type of memory that stores data as long 
as power is applied and loses all the data when the power is off.

2. FLASH memory: is a type of memory that can store data even when power is lost.
3. Model size: is the amount of memory required to store a neural network model. The size 

of a model is determined by the number of parameters in the model.
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4. Inference time: is the time it takes for a model to process an input and produce an output 
which can affect the latency.

5. Uptime: is the percentage of time that the device is ready to process the new 
data.Knowing that microcontroller units (MCUs) are cheap and self-contained, using 
the NAS algorithm will help (IoT) devices to work as stand-alone devices with accept-
able inference time. Also, due to MCUs’ low power consumption and ability to be an 
always-on system, they have been getting more attention recently in different applica-
tions like healthcare systems or low-cost Non-Destructive Testing (NDT)/Structural 
health monitoring (SHM) systems.

Sparse Architecture Search, so-called SpArSe Fedorov et al. (2019), introduced a method 
that is able to search for a network with small working memory, less model size, and better 
accuracy, which is able to be run on an MCU. They used BO-based multi-objective optimi-
zation to optimize the architecture with respect to 3 objectives: performance, model size, 
and inference time. They applied their method to MNIST, CIFAT-10, CUReT Dana et al. 
(1999), and Chars4k de Campos et al. (2009) and managed to find optimized models with 
a testing accuracy of 98.64%, 73.84%, 80.68%, and 77.78%, respectively. All the models 
needed less than 2KB RAM and had less than 2KB model size of an MCU. The algorithm 
requires 4 GPU days on average to find the best model.

Due to the importance of knowing the real-world latency of models on specific hardware 
for the NAS algorithms, using actual latency to calculate the OF of the NAS algorithm. 
For instance, MnasNet Tan et al. (2019) used a mobile phone to feed the exact real-world 
latency to the SSt. It was argued in this paper that the number of parameters and FLOPs are 
not accurate metrics to predict the latency on the actual device. This is mainly due to the 
difference in the running effort of different processing units even with the same number and 
type of operations. To generate and optimize models that are faster on the mobile device 
in comparison with other hardware, they defined a SSp using convolution layers, different 
kernels shape, two squeeze-and-excitation levels, skip connections, and so on. This helped 
them to maximize the accuracy while keeping the latency low. The SSt was a RL algorithm. 
In the end, they managed to find 3 architectures with 78 − 103ms latency in 4.5 days on 
64 TPUv2. Moreover, it was able to achieve 75.2% top-1 accuracy with 78ms latency on a 
Google Pixel 1 phone, which is 2.3 times faster and 1.2% more accurate than NASnetQin 
and Wang (2019) and 1.8 times faster and 0.5% more accurate than MobileNetV2 Sandler 
et al. (2018).

MCUNet Lin et al. (2020) introduced a NAS algorithm that first, modifies and optimizes 
the SSp, then starts to search for the proper architecture in the modified SSp. As a result, 
MCUNet was able to find an architecture to achieve more than 70% top-1 accuracy on 
ImageNet for an MCU. This architecture used 3.5 times less SRAM and 5.7 times less flash 
memory compared to quantized MobileNetV2 Sandler et al. (2018). Also, their network was 
2.4 − 3.4 times faster with 3.7 − 4.1 times smaller peak SRAM than MobileNetV2 Sandler 
et al. (2018). Later, MCUNetV2 Lin et al. (2021) is introduced to improve the efficiency and 
time consumption of MCUNet Lin et al. (2020). MCUNetV2 is 4 − 8 times more efficient 
than MCUNet in peak memory usage and achieved 71.8% accuracy on ImageNet.

To optimize the model for Raspberry Pi 3 (RPi3), an RL optimizer has been used as well 
as a look-up table for the processing time that helps the algorithm to estimate the latency 
of the executing operations on the RPi3 Cassimon et al. (2020). They improved the ENAS 
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Pham et al. (2018) algorithm by defining two sets of constraints: hard constraints such as 
memory usage and latency, and soft constraints such as compression, cache usage, and 
network performance.

EdgeNAS Luo et al. (2020) developed a latency estimator and used a GO-based SSt to 
find the fastest model (model with lowest latency) for edge devices. Like MnasNet Tan et 
al. (2019), they provide some measurements that show how the latency and FLOPs are not 
perfectly correlated; therefore, they improved the latency estimation algorithm that is more 
correlated with the latency by which the NAS algorithm can find models with better perfor-
mance and lower latency.

MicroNets Banbury et al. (2021) considered the opposite approach and decided to trust 
the number of operations as a metric for latency and energy consumption. A differentiable 
neural architecture search algorithm (DNAS), together with the number of operations as a 
OF was used to find suitable models with less latency and better performance/accuracy for 
MCUs. MCUs’ hardware-related performance like the latency of the layers, the latency of 
the models, and the models’ energy consumption were taken into account to define the hard-
ware constraints for the optimizer. They also showed that energy consumption and latency 
have an acceptable linear relationship with the number of operations. Having the same 
amount of latency, MicroNets was able to reach better accuracy than MobileNetV2 Sandler 
et al. (2018). Furthermore, generated networks need less FLASH and SRAM memory in 
comparison with MobileNetV2.

There are other papers on the NAS algorithms for (IoT) and edge devices that we can 
mention briefly with: different optimization methods Zhao et al. (2020); Zhang et al. 
(2020b); Yang et al. (2021); Luo et al. (2021); different metrics Jiang et al. (2020b); Dong 
et al. (2021a); different Hardware Ipenburg et al. (2021); Li et al. (2021a); Dong et al. 
(2021a); Cardoso-Pereira et al. (2021); Liberis et al. (2021); and so on so forth. For finding 
more information about hardware-aware NAS, you can read Benmeziane et al. (2021). They 
gather valuable knowledge of the NAS using a hardware-aware perspective by considering 
two main challenges, the variety of data and the variety of hardware.

5 Discussion

This systematic literature review reveals that existing research is dominated by a few 
research questions: 

1. Why NAS is beneficial and What are the underlying motivations for every transition in 
the field?

2. What is the current situation?
3. What are the benefits and the opportunities of NAS?In this section, we analyze and dis-

cuss present research in order to identify knowledge gaps and opportunities for future 
research.

5.1 Introduction and motivations in the NAS

Hoping to automate the AI models design and optimization led to the NAS algorithms. The 
NAS algorithm contains three pillars that contribute to bringing the automatic architecture 
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design into the practical world. In this journey, three different transitions happened: working 
on optimizing the whole architecture for a dataset, finding proper SSt for the algorithm that 
can lead to an optimized model, and focusing on predicting the performance of architectures.

The main goal of AI users was to find an architecture with the best performance for a 
dataset. This goal pushes the researchers to develop NAS framework to let everyone find 
the most accurate model without diving deep into the AI structures. Later, researchers used 
high-performance computational units to train and validate different architectures. How-
ever, the main lack in the process was the knowledge of choosing proper architecture and 
improving it. Therefore, researchers started to develop different SSts which head to the next 
barrier, time limitation. At this stage, the algorithms needed several days to find the opti-
mized architecture. To solve this problem, they started to develop some algorithms to find 
the validation data faster. This trend led to the point that zero-cost VSts take the helm of the 
NAS algorithms and bring today’s state-of-the-art performances.

5.2 Current status analysis

In this subsection, the main challenges and open issues in each of mentioned three pillars 
will be discussed.

The first pillar of the NAS algorithm is Search Space. Some defined spaces can be used 
for optimizing models for specific hardware or as benchmarks, but it is not possible to find 
a Search Space that is suitable for all types of data and scenarios because a general Search 
Space should contain all possible operations, layers, connections, etc. which make the space 
indefinite. On one side of the coin, the large size of the Search Space increases the searching 
time; but on the other side, larger Search Space guarantees more optimized architecture with 
better performance. Therefore, selecting the Search Space is kind of a trade-off between 
how much time needs to be spent and how accurate models we expect the NAS algorithm to 
find. Additionally, for optimizing models for specific hardware like edge devices, we need 
to limit the Search Space with some options that consume less time and energy on these 
devices.

The second pillar, Search Strategy, is an optimizer that works as a human in the NAS 
algorithm to choose the most efficient and most accurate architecture to overcome human-
designed architectures. The Search Strategy can control the time consumption of the algo-
rithm indirectly. The SSt, optimizer, uses a small portion of time and energy in comparison 
with training but the number of generated models that need to be validated during the pro-
cess can make a huge difference at the end of the day. Therefore, researchers are looking 
for a Search Strategy that does not need a lot of iterations to find the optimized architecture. 
These days, Gradient-based optimizer (GO) and Bayesian Optimizer (BO) have become 
popular because they can satisfy the mentioned demand.

The last pillar is the Validation Strategy, which dictates the amount of time the NAS 
algorithm needs to validate a model. Many methods are introduced to decrease time con-
sumption to have faster NAS algorithms like low fidelity or processing learning curve. That 
is true that some methods like weight sharing Pham et al. (2018) managed to increase the 
efficiency and speed of the algorithm but proxies/estimators are acting faster than any other 
methods that are based on training, no matter if it needs to train the model from scratch or 
not. The most important breakthrough in VSts is Neural Architecture Search without train-
ing method which is introduced as NASWOT Mellor et al. (2021).
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5.3 Benefits and future direction

It should be mentioned that the astonishing performance of the architectures which are 
designed by NAS algorithms showed the benefits of this field. Continuously, better and 
more efficient techniques are being introduced and they are making the ground ready for the 
low-performance hardware to catch up with others, especially by increasing the popularity 
of edge and mobile devices. Focusing on the model latency on edge devices Lin et al. (2020) 
opens a new sub-field that combines both different hardware specifics and NAS techniques 
to create more efficient models with better performance.

The trend of the NAS algorithms going toward the improvement of the VSts that can 
predict the performance of the model on different datasets without training. The biggest 
challenge here is the variety of different architectures and also the variety in spaces and 
types of data.

6 Conclusion

In this study, we have systematically reviewed research articles on Neural Architecture 
Search (NAS). We analyzed the contributions with respect to specific research questions. 
This article contributes to research in several ways. First, it provides a systematic overview 
of existing research from 2017 to mid-2023. We have identified 160 significant contributions 
including journal articles and articles on conference proceedings. The contributions have 
been systematically introduced, analyzed, classified, and predicted the future of this emer-
gent research field and will ease researchers’ search for relevant studies. Second, through 
a thorough analysis, we have proposed potential areas and approaches for future studies.

The review concludes that the motives for every transition in NAS field, current status 
analysis, outcomes, benefits, research opportunities, and field direction are the most domi-
nant topics in current research.
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