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Abstract

Counterfactual explanations (CEs) can be used to gain useful insights into the
behaviour of opaque classification models, allowing users to make an informed
decision when trusting such systems.
Assuming the CEs of a model are faithful (they well represent the inner workings
of the model), an explainable model generates plausible CEs (i.e. CEs fitting the
real-world distribution of the data). This raises the question of whether classifiers
explicitly designed to model the distribution of the data, such as energy-based
models, are inherently more explainable.
This work focuses on the evaluation of joint energy-based models (JEMs) in com-
bination with the Energy-Constrained Conformal Counterfactuals (ECCCo) gen-
erator, with the goal of identifying if the generative capability of a model influ-
ences its explainability. Since ECCCo has been designed specifically to generate
more faithful CEs, it makes it possible to use the CEs plausibility as a proxy of
the model explainability.
Two experiments have been performed to evaluate the effect of variations of gen-
erative capability within the same JEM architecture and the difference between
JEMs and classically trained classifiers. Despite the experiments not having es-
tablished a clear correlation between generative capability and explainability of a
model, various research avenues are still open to explore in future works.

1 Introduction

As AI systems become more ubiquitous in our daily life, the need to understand how these models
take the decisions we ask them to take becomes more apparent. A responsible adoption of these
technologies requires that we not only trust the developers of these tools, but the tools themselves
[1]. The field of Explainable Artificial Intelligence (XAI) focuses on the study of tools that can be
used to gain insight into Machine Learning models, with the aim of making the behaviour of these
models more transparent and understandable for humans.

Counterfactual explanations (CEs) [2] are an intuitive tool to gain insights into a black-box model’s
behaviour. They are particularly useful in the context of algorithmic recourse (AR) [3], when an
opaque classifier is used to make decisions that affect important aspects of human life and the people
affected need a reason of why they were classified in a undesirable class and want an actionable
plan to change this outcome. A CE is a set of changes that, when applied to a given input called
“factual”, result in the factual being classified as the desirable class. In general, the same factual can
have infinitely many CEs.

A common example would be a classifier tasked with accepting or rejecting loan applications. If,
for example, Alice’s loan application gets rejected, a CE for her situation could be that she needs to
earn 10% more, or that she needs to stay in her current job for at least another year.

Fundamental to the perceived trustworthiness of a system, is the plausibility of a CE, defined by
how much the new input looks like an outcome of the same probability distribution as the observed
points of the target class. In our example, if Alice was told that she needs to keep her job for another
year and she knows that her colleague Beth just got her loan approved after working in the same
place for one year and three months more than her, she would consider this CE plausible. But if she
was told instead that she needs to earn the entire GDP of The Netherlands for her application to be
accepted, she would certainly trust the system a lot less.

Another important characteristic of a CE is its faithfulness: how closely the CE represents the inter-
nal “understanding” of the classifier. Faithfulness and plausibility are closely related, since faithful
CEs generated for a model that has correctly internalised the training data will also be plausible
and vice versa [4]. For this reason, a model is considered “explainable” if its faithful CEs are also
plausible.

Altmeyer, Farmanbar, van Deursen, et al. [4] have proposed to use “Energy-Constrained Confor-
mal Counterfactuals” (ECCCo) as a novel way of generating faithful CEs, taking ideas from joint
energy-based modelling [5] and conformal predictions [6].
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Since ECCCo makes use of the energy-based generative capabilities of the model to penalise un-
faithful CEs, it can be reasonably hypothesised that models specifically trained to focus on such
generative capabilities would be more explainable. Joint Energy-Based Models (JEM), proposed by
Grathwohl, Wang, Jacobsen, et al. [5], do exactly that, as they train a classifier architecture with the
double objective of acting as a classifier as well as a generator.

The aim of this work is to evaluate whether the generative capability of a model affects the plausi-
bility of the CEs produced with the ECCCo technique. With this in mind, two questions need to be
answered:

1. Does the generative capability of a joint-energy model affect the plausibility of the gener-
ated CEs?

2. Given the same architecture, are the CEs generated from a joint-energy model more plau-
sible than the ones generated on a classical model?

To answer these questions for a general neural network, different architectures will be considered
for a number of common datasets, trained both classically and as joint-energy models and used to
generate CEs.

The rest of this paper will first provide a more rigorous description of the ECCCo generator and
joint-energy models (section 2), followed by a description of the experiments performed to answer
the research questions (section 3). The results of these experiments will be then presented (section 4)
and commented (section 5). Subsequently, the author will reflect on the ethical implications of this
research (section 6), on its limitations and on the questions that it leaves unanswered (section 7).
Finally, all these elements will be put together to answer this work’s research questions (section 8).

2 Background

2.1 Counterfactual generation

In the process of generating counterfactual explanations, a few different aspects need to be consid-
ered. A good CE needs to be:

• Valid: a CE is valid if the suggested change would actually result in the desired classifica-
tion.

• Plausible: a CE is plausible if it matches the distribution of real-world data [7].

• Faithful: a CE is faithful if it reflects the internal “understanding” of the model [4]. For
example, if a loan-requests classifier has learned that tall applicants are usually granted
loans, a faithful counterfactual explanation would suggest to an applicant to become taller.

• Actionable: a CE is actionable if it suggests changes that can actually be applied [8]. The
CE suggesting applicants to become taller would not be actionable, while one suggesting
to increase by 5% their annual income would be.

• Close: a CE is closer the smaller the changes that it suggests are [9]. In the example above,
a 1% increase in the annual income is closer than a 50% increase.

To better illustrate the difference between faithfulness and plausibility, Figure 1a shows counterfac-
tual explanations that are both plausible (i.e. indistinguishable from the training data) and faithful.
Additionally, Figure 1b shows CEs that are faithful, being representative of the internal understand-
ing of the model, but not plausible, as they look more like outliers of class 2 than members of class
1.

There are various techniques to generate counterfactual explanations, depending on whether the
model is differentiable or not [10]. This work focuses on the Energy-Constrained Conformal Coun-
terfactuals (ECCCo) generator, proposed by Altmeyer, Farmanbar, van Deursen, et al. [4], in partic-
ular, on the ECCo variant (i.e. without the Conformal Prediction component).

The ECCo generator is based on gradient descent, with the following objective function:

min
x′∈X

{Lclf (f(x
′);Mθ, cT ) + λ1 · cost(f(x′)) + λ2 · εθ(f(x′) | cT )}
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(a) Example of CEs both plausible and faithful. (b) Example of CEs faithful but not plausible.

Figure 1: Examples of CEs targeting class 1 of the Linearly Separable dataset on two different
classifiers.

Where x′ is the counterfactual explanation, X is the counterfactual domain, Lclf(·) is a standard
classification loss, f(·) maps the counterfactual state space into the domain state space (usually f(·)
is the identity function), Mθ is the model, cT is the target class, λ1 is the relative penalty for distance,
cost(·) is the distance from the factual, λ2 is the relative penalty for unfaithfulness and εθ(· | cT ) is
the energy conditioned to the target class (the negative of the logit corresponding to cT ) [4].

The CE desiderata are achieved in different ways during the generation process: actionability is
ensured by limiting the search space X , using domain specific knowledge of the input parameters;
closeness and faithfulness are achieved by the λ1 and λ2 penalties respectively and validity is given
by Lclf . However, practical limitations such as the maximum number of iterations in the process or
too restrictive actionability constraints, might lead to invalid CEs.

Plausibility can be measured knowing the training data of the model. The metric used by Altmeyer,
Farmanbar, van Deursen, et al. [4] and in this work is its inverse, implausibility, which is defined as
follows:

impl(x′,XcT ) =
1

|XcT |
∑

x∈XcT

dist(x, x′)

where x′ is the counterfactual explanation, XcT is the subset of points from the training set originally
labelled as the target class cT and dist(·, ·) is the euclidean distance. XcT is limited to the 100 nearest
neighbours of x′.

As mentioned in section 1, a model is considered explainable if its faithful CEs are also plausible,
therefore a lower implausibility is desirable.

2.2 Joint energy-based models

Joint Energy-based Models (JEMs) are a form of hybrid models, capable of acting both as classi-
fier and as generator, introduced by Grathwohl, Wang, Jacobsen, et al. [5]. The specifics of the
implementation of these models are beyond the scope of this work, however, the general concept is
that a classifier architecture (such as a multi-layer perceptron) can be trained to output the energy
distribution of the dataset, meaning that, given an input x, the logit of class ci will take the value
E(x ∧ ci). Energy is defined as per the Boltzmann distribution: p(j) = e−E(j)∫

K
e−E(k) dk

, where K is

the input domain. It follows that p(x ∧ ci) can be computed for every class and used to evaluate
p(ci | x) (classification task) and p(x | ci) (generative task) [5].

During the training of a JEM, both the accuracy (quality of the classification task) and the generative
loss (quality of the generative task) of the model are monitored and optimised. The generative loss
is defined as the energy of the training data minus the energy of samples generated by the model.1
Generative loss will be used in this paper to evaluate a model’s generative capability; a lower value
of generative loss indicates a more effective generator.

1https://github.com/JuliaTrustworthyAI/JointEnergyModels.jl/blob/
38fd7d7ba4b34a06d12bb2d3df0cdd89ffabd928/src/model.jl#L61
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3 Methodology

Two experiments were conducted to investigate the relation between energy-based training and
plausibility of counterfactual explanations: the first to compare joint-energy classifiers with dif-
ferent generative losses, the second to compare the classically trained classifiers and joint-energy
classifiers. The experiments were ran in Julia,2 using modules developed by the “Trustwor-
thy Artificial Intelligence in Julia” (Taija) group.3 In particular: TaijaData was used to load
the relevant datasets, TaijaParallel to speed up the generation of counterfactual explanations,
CounterfactualExplanations to generate and manipulate the counterfactual explanations and
JointEnergyModels to train the joint energy-based models.

For both experiments, multiple pairs of dataset and neural network architecture were defined. The
datasets chosen are either artificially generated or commonly used in the literature [10]:

• Circles: an artificial dataset consisting of a central blob of class 1 and a corona surrounding
it of class 2.

• Linearly Separable: an artificial dataset consisting of two blobs, one for each class, that
could be fully separated by a linear classifier.

• Overlapping: an artificial dataset consisting of two blobs, one for each class, that cannot
be fully separated by a linear classifier.

• MNIST: an image dataset, consisting of 28x28 images of handwritten digits in grey-scale
[11].

• California Housing: a financial dataset for house values, based on the 1990 California
Census [12].

• German Credit: a financial dataset for credit risk [13].

Table 3 in the Appendix shows which architecture was applied for each dataset. Most architectures
are simple multi-layer perceptrons (MLPs) defined for this study, while some are taken from the
literature. In the rest of this paper, each pair is identified by the dataset used and, if applicable, the
name of the author whose architecture was used.

3.1 Explainability evaluation

To evaluate the explainability of a model M , the same procedure was followed every time. For every
combination of starting class cS and target class cT , a large amount of factuals is selected. Factuals
are values from the training set that are labelled as cS and classified as the same class by the model.
From each factual, a CE with the given target class is generated, the implausibility of each CE is
computed and the average of these values for all CEs is taken to obtain a single value ̂implM .

To mitigate the effect of fortuitous selections of factuals, the same procedure was repeated multiple
times, using the average µ̂implM and standard deviation σ̂implM of each estimated ̂implM as a way
to compare different models.

In this framework, a model is more explainable the lower its implausibility score µ̂implM is.

Ideally, the number of CEs with starting class cS and target class cT is the same for each combination
of cS and cT (excluding the case in which cS = cT ). An approximation of this even distribution was
obtained selecting a number of factuals equal to ⌈n/(c · (c − 1))⌉ (where n is the desired number
of factuals and c is the number of classes in the dataset) for each valid combination of cS and cT .
However, the amount of possible factuals with a given starting class was not always as high as this
formula required, due to additional constraints given by the experiment, therefore the final number
of CEs computed for each model did not always amount to the desired n.

Counterfactual explanations were generated using the ECCCo technique without the conformal pre-
diction component, since the full implementation was not available at the time of running the exper-
iments. The penalties for the gradient descent procedure were kept at the default values, as the time
available did not allow for a proper tuning of these parameters.

2https://julialang.org/
3https://github.com/JuliaTrustworthyAI
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3.2 Intra-model experiment

To evaluate the effect of different generative losses, the same model was trained using the joint-
energy technique multiple times on the same data, using a different random initialisation each time.
For each trained model, its generative loss and its average implausibility were noted. The same
procedure was repeated for each dataset-architecture pair.

The correlation coefficient between these values was used to estimate if a relation exists between the
generative capabilities of a model and its explainability. A correlation coefficient close to 1 would
indicate that models with strong generative capabilities (low generative loss) are generally more
explainable (low implausibility score), as hypothesised in this work.

3.3 Training-based experiment

For the training-based experiment, each pair of dataset and architecture was trained twice, once in
the classical way and once using joint-energy training. By “classical training”, it is intended the
state of the art use of backpropagation to estimate the weights of the neurons’ connections in a
neural network given a training dataset.

To compare the two trained models, the same set of factuals was selected from the training dataset,
making sure that both models correctly classified each of them.

The goal of this experiment is to use the classical training as the baseline and to consider a joint-
energy model significantly different from the baseline if its implausibility score is more than σ̂implCM

away from the classical model’s implausibility score. This experiment’s hypothesis is that

µ̂implCM
− µ̂implJEM

≥ σ̂implCM

for all dataset-architecture pairs.

4 Experimental setup and results

For both experiments, the generation of CEs was performed using the ECCoGenerator available
in the CounterfactualExplanations.jl module with λ1 = 0.1 and λ2 = 0.5. The conditions
for convergence were set at 0.01 gradient tolerance and default values for every other condition (0.5
decision threshold, 100 max iterations and 0.75 min success rate).

The search space was limited for each dimension of the input to double the range of the training data,
keeping the same middle point: for a dimension d whose training data-points spanned [md,Md] the
CE search was limited to

[
md − Md−md

2 ,Md +
Md−md

2

]
.

As described in section 3, ̂implM was estimated 5 times attempting to select 1000 factuals each
time, to a total of at most 5000 CEs per model. In the intra-model experiment, each architecture
was trained and evaluated 10 times. Table 4 and Table 5 in the Appendix show how many CEs
were computed for each dataset-architecture pair and how many of those CEs were valid. They also
provide information about the accuracy of the models.

4.1 Results

The results of the intra-model experiment can be found in Table 1, showing the correlation between
generative loss and implausibility (computed only on the valid CEs) for each dataset-architecture
pair. Additionally, Figure 2 provides a visual representation of the same results, with plots showing
the generative loss of a model against the implausibility of the CEs generated.

Table 2 shows the results of the training-based experiment for the different datasets. Each dataset-
architecture pair presents the implausibility computed using all available CEs as well as the implau-
sibility computed using only the valid ones for both classical and energy based models. Finally, the
plot of model’s generative loss against valid CEs’ implausibility can be found in Figure 3.
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Table 1: Intra-model correlation between generative loss and implausibility for each dataset-
architecture pair. The author of the architecture is mentioned for non-original architectures. Values
above 0.5 and below -0.5 are in bold face.

Dataset Correlation

Circles 0.0117

Linearly Separable 0.2056

Overlapping 0.1506

MNIST [Altmeyer] -0.2536

MNIST [Le Cun] 0.5142

California Housing -0.2460

German Credit -0.6261

German Credit [Zhao] 0.0078

(a) Circles. (b) Linearly Separable. (c) Overlapping.

(d) MNIST [Altmeyer]. (e) MNIST [Le Cun].

(f) California Housing. (g) German Credit. (h) German Credit [Zhao].

Figure 2: Intra-model generative loss vs. valid CE implausibility for all dataset-architecture pairs.

6



Table 2: Results of the training-based experiment for all dataset-architecture pairs. The author of the
architecture is mentioned for non-original architectures. The lower implausibility of each column is
in bold face. Values for joint-energy models below one (*) or two (**) and above one (†) or two (††)
standard deviations from baseline are marked.

Training Circles Linearly Separable Overlapping

Implausibility
(all CEs)

Implausibility
(valid CEs)

Implausibility
(all CEs)

Implausibility
(valid CEs)

Implausibility
(all CEs)

Implausibility
(valid CEs)

Classical 0.38 ± 0.25 0.33 ± 0.30 4.24 ± 0.51 2.37 ± 0.03 0.91 ± 0.20 0.85 ± 0.26

Joint-Energy 3.16 ± 0.56 †† 1.91 ± 1.87 †† 3.17 ± 0.78 ** 2.13 ± 0.28 ** 1.56 ± 0.86 †† 0.91 ± 0.20

Training MNIST [Altmeyer] MNIST [Le Cun]

Implausibility
(all CEs)

Implausibility
(valid CEs)

Implausibility
(all CEs)

Implausibility
(valid CEs)

Classical 18.80 ± 1.83 16.50 ± 1.66 18.02 ± 1.47 17.07 ± 2.06

Joint-Energy 18.79 ± 1.83 19.17 ± 2.49 † 17.90 ± 1.51 17.53 ± 1.82

Training California Housing German Credit German Credit [Zhao]

Implausibility
(all CEs)

Implausibility
(valid CEs)

Implausibility
(all CEs)

Implausibility
(valid CEs)

Implausibility
(all CEs)

Implausibility
(valid CEs)

Classical 1.62 ± 0.31 1.62 ± 0.31 4.75 ± 0.21 4.74 ± 0.43 4.94 ± 0.07 4.90 ± 0.07

Joint-Energy 1.89 ± 0.10 1.43 ± 0.43 4.94 ± 0.05 4.75 ± 0.18 4.81 ± 0.04 * 4.72 ± 0.07 **

Figure 3: Generative loss vs. valid CE implausibility for all models of the training-based experiment.

5 Discussion

The relationship between generative loss of a model and its ability to generate plausible counterfac-
tual explanations does not seem to be significant, as shown in Figure 3 and from the results of the
intra-model experiment: for all dataset-architecture pairs, the correlation shown in Table 1 is fairly
close to 0. Only MNIST [Le Cun] and German Credit got values above 0.3 (in absolute terms), but
presenting still a very low coefficient showing no clear correlation between the two quantities.

For the training-based experiment, the different models seem to behave in a wide variety of ways:
Circles and MNIST [Altmeyer] show a significant increase of implausibility in CEs generated on the
joint-energy models; Overlapping, MNIST [Le Cun], California Housing and German Credit show
no significant difference between the different training methods; and finally Linearly Separable and
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German Credit [Zhao] show a consistent decrease of implausibility for JEMs. These groupings do
not seem to follow any particular pattern based on the model’s accuracy nor on the percentage of
valid CEs generated.

It is to be noted that certain models perform very differently depending on the “direction” of the
counterfactual explanation being generated. The Circles models are a good example of this phe-
nomenon, Figure 4 and Figure 5 show clearly how in the classical model, the implausibility of CEs
targeting class 2 is much higher than the ones targeting class 1. While for the energy-based model
the opposite applies, with CEs targeting class 2 being extremely implausible (albeit very faithful).
Furthermore, the model trained classically on the Linearly Separable dataset did not produce any
valid CE targeting class 1 (Figure 6), probably due to the limited number of steps allowed to the
ECCCo generator and the unlucky shape of the model’s decision boundary.

Figure 4: Examples of CEs targeting class 2 of the Circle dataset on the models trained classically
(left) and with energy-based training (right).

Figure 5: Examples of CEs targeting class 1 of the Circle dataset on the models trained classically
(left) and with energy-based training (right).

Figure 6: Examples of CEs targeting class 1 of the Linearly Separable dataset on the models trained
classically (left) and with energy-based training (right).

6 Responsible research

From an ethical perspective, this work could have run into two main issues: lack of reproducibility
and confirmation bias of the author towards the “desirable” outcome of a strong positive influence
of a model’s generative capability on the counterfactual explanations plausibility.
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To ensure a high degree of reproducibility, a series of precautions were taken: all the code is pub-
licly available on GitHub 4 and only free and/or open source technologies were used to execute the
experiments.
The scripts for both experiments reset the random seed when run, therefore the same models will be
trained and the same factuals and counterfactual explanations should be obtained when re-running
each of them. However, the results for such a clean re-run of the experiments would not be exactly
the same as the one reported in this paper: in order to reduce the time needed to run the experi-
ments, some of the models were pre-trained, therefore the number of draws from the RNG buffer
was altered. The pre-trained models are available in the same repository as a release artefact and
they should still give results comparable to the ones reported here.
Additionally, each experiment activates a Julia environment that sets the specific version of the lan-
guage and modules to be used, therefore even if substantial changes happen in the future, the code
will remain true to itself.

Aside the specific repeatability of each individual run, the experiments are designed to account for
the randomness of the counterfactual generation: a high number of CEs is generated for each model
multiple times (randomly selecting factuals each time) to balance possible “lucky” runs. This setup
makes the results more stable and helps balancing the possibility of unconsciously choosing to only
publish the results a particularly successful run.

A general ethical consideration about the use of machine learning models, is that biases present in
the training data and learned by the model could be exacerbated. In this study in particular, the
faithfulness and the plausibility of a CE are kept in high regard, but both of these qualities are
heavily affected by the distribution of the training data and would therefore reflect those biases. As
an extreme example, a model that learns that male applicants have a higher chance of being hired by a
company would produce a faithful counterfactual explanation for a female applicant who got rejected
proposing the “become male” change. Such CE would be both faithful and plausible (given the
historical bias in the training data), resulting in the model being considered more explainable. This
means that users of machine learning tools should not make the mistake of confusing “explainable”
with “trustworthy”, since trustworthiness only comes from a critical analysis of the explainability
of the model. The use of highly explainable models makes it easier to spot these biases and correct
them or discard the models that perpetuate them. This work aims to provide ways to generate more
explainable models, but using these models ethically is a burden that falls on us all.

7 Limitations and future work

A series of factors have contributed to the inconclusiveness of the results. In particular, this work
presents limitations in the experimental setup, in the model training and in the CE generation.

The main issue with the experimental setup stems from the attempt of generalising the results to a
wide spectrum of models: the number of possible neural network architectures is infinite, as it is the
range of their applications. A more focused approach could be beneficial, for example choosing only
two possible architectures, one with many nodes and layers and another very simple, and limiting
the datasets to binary classification problems.

The second set of issues lies with the training of the joint energy-based models. The approach taken
was to train them all in similar conditions, changing only the weight initialisation, while two things
could have been noted instead:

1. For the intra-model experiment, different iterations could have been trained prioritising
more or less the generative task of the model, in order to have a wider spread of generative
loss values and possibly more meaningful correlations.

2. In general, JEM’s training is particularly unstable, and it is therefore quite hard to obtain
faithful models without supervision. Grathwohl, Wang, Jacobsen, et al. [5] suggest ways
to improve on this issue, but no such precaution was taken in this work due to the limited
amount of time and computational power available.

Finally, the last category of limitations lies with the generation of counterfactual explanations: when
using the ECCoGenerator, the penalties have been kept constant for all the datasets examined, but

4https://github.com/JuliaTrustworthyAI/what-makes-models-explainable
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it is now clear how different distributions have different priorities. For example the MNIST dataset
would benefit from a less restrictive penalty on closeness, since switching from one digit to another
requires significant changes to many pixels, while the Circle dataset has the opposite problem, with
many CEs reaching the extremes of the search-space. In general, taking the time to tune the hyper-
parameters of the generator, both in terms of penalties and stopping conditions, could have helped
obtain more conclusive results and avoid some of the issues discussed in section 5 too.

In light of these limitations, future works expanding on this research can take a variety of directions:

1. Explore more accurately the intra-model explainability, systematically changing the bal-
ance of generation and classification task when training the joint-energy models.

2. Focus on the stabilisation of the JEM training process, in order to evaluate the explainability
of models that actually present the advertised generative capability.

3. Work on the generalising the results, taking a more rigorous approach to the definition of
the architectures to use and evaluating them on the same dataset.

8 Conclusions

This work has tried to answer the questions of whether joint-energy models become more explain-
able as their generative capability increases and if joint-energy models are in general more explain-
able than classically trained neural network models.

To provide answers to these questions, two experiments have been designed and applied on various
commonly used dataset. The first training a joint-energy model multiple times and comparing the
obtained generative capacities with the corresponding explainabilities. The second comparing the
explainability of classically trained models with the one of joint-energy models, given the same
underlying architecture. The plausibility of counterfactual explanations generated using ECCCo
was used as a proxy for the explainability of a model.

In the conditions under which the experiments have been conducted, no relevant influence was found
of the generative capability on the explainability of a joint-energy model. Furthermore, the use of
such technique was shown to produce more explainable models only in certain cases, while other
cases were better served by classical training. No pattern emerged based on characteristics of the
datasets or the models used.

The investigation on joint-energy models’ explainability in the context of counterfactual explana-
tions, however, has not reached a dead end. Changing the experimental conditions could yield
interesting results, possibly even subvert the findings of this work. In particular, repeating the first
experiment while increasing the importance of the generative training objective of the models could
provide a wider overlook of the influence of a model’s generative capability on its explainability.
Furthermore, putting additional effort into counterbalancing the training instability of joint-energy
models could result in their explainability being more clearly distinct from classically trained mod-
els.
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Appendix

Table 3: Neural Network architectures used for each dataset in the experiments. If an architecture is
taken from a previous work, a specifier with the name of the first author and a reference are added.

Dataset Architecture

Circles Input: 2 nodes, Activation: relu
Dense: 32 nodes, Activation: relu
Dense: 32 nodes, Activation: relu
Dense: 32 nodes, Activation: identity
Output: 2 nodes, Activation: identity

Linearly Separable Input: 2 nodes, Activation: tanh
Dense: 4 nodes, Activation: relu
Dense: 4 nodes, Activation: identity
Output: 2 nodes, Activation: identity

Overlapping Input: 2 nodes, Activation: relu
Dense: 16 nodes, Activation: relu
Dense: 16 nodes, Activation: identity
Output: 2 nodes, Activation: identity

MNIST [Altmeyer] [2] Input: 784 nodes, Activation: relu
Dense: 32 nodes, Activation: tanh
Output: 10 nodes, Activation: identity

MNIST [Lecun] [14] Input: 28x28 nodes, 1 channel, Activation: identity
Convolution: 5x5 kernel, 1-padding, 6 channels, Activation: relu
Pooling: 2x2 window
Convolution: 5x5 kernel, 1-padding, 16 channels, Activation: relu
Pooling: 2x2 window
Flatten: 7x7x16 to 784 nodes
Dense: 400 nodes, Activation: relu
Dense: 120 nodes, Activation: relu
Dense: 84 nodes, Activation: relu
Output: 10 nodes, Activation: relu

California Housing Input: 8 nodes, Activation: relu
Dense: 32 nodes, Activation: relu
Dense: 128 nodes, Activation: relu
Dense: 32 nodes, Activation: relu
Output: 2 nodes, Activation: identity

German Credit Input: 10 nodes, Activation: relu
Dense: 128 nodes, Activation: relu
Dense: 128 nodes, Activation: relu
Output: 2 nodes, Activation: identity

German Credit [Zhao] [15] Input: 10 nodes, Activation: tanh
Dense: 10 nodes, Activation: tanh
Output: 2 nodes, Activation: identity
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Table 4: Information about the models for the intra-model experiment: accuracy mean and standard
deviation, number of generated CEs and number of valid CEs.

Dataset Accuracy Total CEs Valid CEs

Circles 0.99 ± 0.00 50000 30301

Linearly Separable 0.96 ± 0.11 50000 32482

Overlapping 0.92 ± 0.00 50000 36332

MNIST [Altmeyer] 0.31 ± 0.07 47430 1899

MNIST [Le Cun] 0.85 ± 0.15 46440 21365

California Housing 0.87 ± 0.00 50000 25513

German Credit 0.92 ± 0.04 45765 30512

German Credit [Zhao] 0.77 ± 0.02 38670 31633

Table 5: Information about the models for the training based experiment: accuracy and proportion
of valid CEs for each training technique.

Dataset Accuracy (classical) Accuracy (JEM) Total CEs Valid CEs (classical) Valid CEs (JEM)

Circles 0.9976 0.9872 5000 3702 2715

Linearly Separable 0.9998 0.9998 5000 1078 2200

Overlapping 0.9198 0.9160 5000 4461 3007

MNIST [Altmeyer] 0.8141 0.2178 4140 120 131

MNIST [Le Cun] 0.6730 0.8928 3240 330 1431

California Housing 0.8372 0.8810 5000 5000 2503

German Credit 0.7860 0.9360 3530 671 4231

German Credit [Zhao] 0.6840 0.8030 3025 2330 2408
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