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Abstract
During Abandonment and Recovery (A&R) operations, steel wire ropes can experience torsional de-
formation. This deformation is a result of the helical configuration and the tension gradient in the rope
due to its self-weight. The latter is very high when the ropes are used in deep water operations. Since
the static component of the torque is constant over the length of the rope, it unlays in the direction of
the greater tension while winding up in the direction of the lesser tension. The torsional energy in a
steel wire rope can lead to instability of the straight shape of the rope. Tension and bending stiffness
of the rope will play the most important role in the process. Instability of a wire rope can lead to hock-
ling and loop formation which, in turn, may translate into irreversible damage to the rope, delaying the
A&R operation. Currently, a very low value for the bending stiffness is used to predict these failure
mechanisms, leading to conservative values for the allowable tension and torsional deformation. This
reduces the time window in which operations involving steel wire ropes will be allowed. To improve
the understanding of wire rope instability, research into the state-dependent bending stiffness of steel
wire ropes has to be performed. Therefore, the objective of this thesis is to numerically model the
state-dependent bending stiffness of steel wire ropes used for A&R operations.

A literature study revealed a large variety of modelling approaches of the bending behaviour of wire
ropes. Most analytical models describe the bending stiffness to be dependent on tension and curvature
of the wire rope. This bending behaviour of steel wire ropes is found to be dominated by friction between
the wires. In theory, large differences are found between the theoretical minimum and maximum value
for the bending stiffness. Assumptions made in these models could cause the outcome to be uncertain
and could affect the large difference between these theoretical limits. Analytically generated results
for simple strands and spiral ropes match those experimentally found quite well for a limited curvature
range. Stranded steel wire ropes used in A&R operations are difficult to model analytically due to
their complex configuration. Therefore, numerical modelling has to be used to describe the bending
behaviour.

In this thesis, a numerical model which can be used to generate the state-dependent bending stiff-
ness of arbitrary steel wire rope configurations has been developed. The bending stiffness due to
friction has been numerically modelled using the finite element programme MSC Marc. A sensitivity
study has been performed to test the boundary conditions and settings of the numerical model.

A practical implementation of the obtained results is carried out to develop insight into the variation
of the bending stiffness along a wire rope length. A subroutine is written to implement the obtained
bending stiffness into a model consisting of several beam elements which can be used to simulate
steel wire ropes during, for example, A&R operations.

The results for simple strands from the new numerical model match the analytically generated ones
quite well. The results of larger stranded rope configurations show less resemblance. Compared to the
analytical results, the numerically generated results show a less extreme difference between minimum
and maximum bending stiffness. This difference is influenced by the level of detail of the mesh. It
seems likely – but cannot be confirmed with the available data – that the maximum and minimum
bending stiffness for simple strands will match the theoretical ones if the element size will be considered
infinitesimal. It is concluded that the developed modelling method generates valid results for arbitrary
wire rope configurations as long as the level of detail of the mesh is sufficiently high and the correct
model length is taken into account. However, increasing wire rope complexity while maintaining a high
level of detail increases the computational time significantly.

A critical situation during an A&R operation, when high torsional deformation, low tension and a low
bending stiffness occur simultaneously, is simulated. An indication is given for the likelihood of loop
formation and hockling when performing an A&R operation in certain sea states.

Experiments should be performed to test the validity of the numerical model. The new insights
into the state-dependent bending stiffness should be used to create an experimental set-up to find the
critical parameters that result in loop formation and hockling. Further studies into friction modelling in
FEM are needed to reduce the computational time when wire rope complexity is increased.
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1
Introduction

1.1. Company
The Swiss-based Allseas Group founded in January 1985 in Châtel Saint-Denis, Switzerland, and The
Hague, the Netherlands is headed by Edward Heerema. The company specializes in offshore pipeline
installation while also performing heavy lifts and subsea construction. Allseas operates a versatile fleet
of pipe lay, heavy lift and subsea installation vessels. All vessels are designed in-house, with the latest
being the Pioneering Spirit, which is designed to install and remove offshore platforms with a single lift.
The vessel can also be used for pipeline installations in up to three kilometres of water depth.

By possessing a large and productive Innovations Department, Allseas is a company that strives
towards new and creative ideas to help improve the quality of delivered work. By establishing three
Innovations Offices in the Netherlands, located close to Technical Universities, high end tools and
systems are developed and tested to increase the efficiency of the operations performed by or on the
vessels. One frequently used and researched piece of equipment is a steel wire rope (SWR).

1.2. Steel wire ropes
Allseas uses steel wire ropes frequently and in numerous different applications. Investigation of the
behaviour of these ropes is therefore of major importance. Modelling wire ropes and researching their
response to loads and moments is not new. Researching wire rope behaviour has been done for
several years. The usage of wire ropes date back even further in history as will be explained in this
chapter.

This chapter will provide an introduction to steel wire ropes and to their usage in abandonment and
recovery (A&R) operations. This section will be divided into five parts where the first part will provide
the reader with a short summary on the history of wire ropes. To properly understand the modelling
strategies explained further in this thesis, the basics of wire rope geometry and configuration will be
addressed in part two. Perhaps the best way to understand the geometry and composition of steel wire
ropes is to know how they aremade. Manufacturing and the impact of machining on wire rope behaviour
will be presented afterwards. The load characteristics will be discussed in the last part as they have an
influence on the non-linear behaviour of a steel wire rope at the onset of tensioning or bending. This
short introduction to wire ropes will provide a basis to discuss the implications of implementing wire
ropes in the offshore industry with a focus on A&R operations.

1.2.1. History
Ropes made from materials such as plants and hides are among the first technological achievements
of mankind and date back to 12000 BC. These ropes where made for fishing nets and traps but also
for lifting and dragging of loads. The iron wire rope was invented in the 19th century when the German
mining engineer Albert tried to improve the transportation in the mining pits by combining the advan-
tages from hemp rope and those of iron chains. Hemp rope has the advantage of bearing elements
in a parallel arrangement which increases redundancy while iron chains are constructed in a series
arrangement with a high tensile strength. After his attempt to construct wire ropes for the mining in-
dustry a lot has changed. Numerous different wire rope configurations are invented and are applied in
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2 1. Introduction

a great variety of industries. The offshore industry is one that makes use of and contributes to these
developments. Nowadays, engineers at such companies are still trying to improve and understand the
way these wire ropes behave under loads and in different circumstances.

1.2.2. Configuration
The most basic components of a steel wire rope are, as the name already implies, the wires. Figure
1.1 clearly displays a single wire, which is an element of a bigger component, namely the strand. The
strand consists of a core wire together with multiple wires helically wound around it. These wires can
be located in single or in several layers as is shown in the figure. Wire ropes are made out of several
strands and can consist of different kinds of helical configurations around a core strand.

Figure 1.1: Steel wire rope components [24]

Figure 1.2: Strand configurations from left to right; Filler, Seale and Warrington strand [10]

The way different components in a wire rope are numbered and named in this thesis can be ex-
plained quickly by taking a look at figure 1.3. The figure displays a typical cross section configuration
of a wire rope. The orange arrows indicate the way the strand layers are numbered while the green
arrows indicate how the wire layers in a certain strand can be numbered. For example, the red coloured
wire in figure 1.3 is in the first wire layer of a second layer strand. Different wire rope configurations
can be described by using the same method of numbering wire and strand layers.

Figure 1.3: Typical wire rope configuration and numbering [5]

There are four different winding orientations in which the wires in the strand and the strand itself
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can be wound. In figure 1.4 these lay configurations can be found. A type of lay is used to describe
the way the strand and the wires are orientated. The thick black lines in figure 1.4 describe the coding
method of recognizing the lay orientation, where the black line forms a Z when the wires or strands
are wound in a clockwise direction, and forms a S when they are wound anticlockwise resulting in right
or left handed lays. In ordinary lay, the lay direction of the wires in the strand and the lay direction of
the strand are always opposite while in Lang’s lay the lay directions of wire and strand are always the
same.

Figure 1.4: Typical wire lays (from left to right: right hand ordinary lay, left hand ordinary lay, right hand Lang’s lay, left hand
Lang’s lay) [5]

Figure 1.5: Direction of the wires as seen from the outside of the outer strands with respect to the wire rope cross section for
ordinary lay (left) and Lang’s lay (right) [42]

In ordinary lay ropes, wires are twisted in one particular direction while the strand is laid up in the
opposite direction. This results in the fact that wires in strands are parallel to the centreline of the
wire rope core when observing the outside of the rope as can bee seen in figure 1.5. The wires are
orientated diagonally to the centreline of the rope when they touch the wire rope core. This situation is
opposite when looking at Lang’s lay wire ropes. Lang’s lay is a lay orientation where the strands are
laid up in the same direction as the wires they are made of. The wires are now diagonally orientated
with respect to the centreline of the core when observing the outside of the rope as can be seen in
figure 1.5. Wires make contact with the core of the wire rope when they are orientated parallel to the
centreline of the rope.

Due to the helical geometry of wire ropes, torque is introduced when the rope is loaded in tension.
There are ropes however that generate almost no torque when loaded in tension. These ropes are
called rotation resistant. The characteristic that defines rotation resistant ropes is that the outer layer
of strands is wound in the opposite direction of the layer underneath so that the generated torque can
be cancelled out. This technique is illustrated in figure 1.6.

Each configuration has its advantages and disadvantages. Lang’s lay has the advantage of a better



4 1. Introduction

Figure 1.6: Rotation resistant wire rope [46]

connection and behaviour between cable and sheave. However, ordinary lay rope is more flexible than
Lang’s laid rope which can be spliced more easily, it is therefore considered more convenient to use.

The geometry of a wire rope component such as a strand or wire, can be described by a number of
parameters which can be seen for a simple strand in figure 1.7 and are described in table 1.1. These
parameters are given for a simple strand but can be implemented on components of larger diameter
ropes and strands as well.

Table 1.1: Strand geometry

Parameter Symbol Description

Wire lay length [ℎ ] The length along the core describing one complete turn of a strand
Strand lay length [ℎ ] The length along the core describing one complete turn of a rope
Wire lay angle [𝛼] The angle between the wire and the centreline of the straight strand
Lay angle [𝛽] The angle between the strand and the centreline of the wire rope
Wire winding radius [𝑟 ] The radius of the circle passing through the centre of all wire in a straight strand
Strand winding radius [𝑟 ] The radius of the circle passing through the centre of all strands in a wire rope

Figure 1.7: Strand properties [10]

In figure 1.7 a helically wounded wire (black wire) is shown in a simple strand along with its most
important parameters. However, more complex wire rope configurations such as can be seen in figure
1.14 also have wires which describe a double helix. These wires are located in the first and second
strand layer. The method of describing the properties of these wires is as if the wire is located in a
straight strand. When combining the parameters from the wires and those of the helically wounded
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strand, the geometry of double helical wounded wires in the first and second layer of strands can be
derived.

1.2.3. Manufacturing
Steel wire ropes are mostly made out of carbon steel wires with 0.35 to 0.85 % carbon. The rope
manufacturing process starts with rods made out of high carbon steel billets in a hot rolling process.
Typical dimensions for these rods are between 5.5 to 8 mm. After these rods have been cleaned and
inspected they are entered in the drawing process where their diameter will be reduced and tensile
strength increased.

Figure 1.8: Wire rope manufacturing process [15]

The rods enter the drawing process which is schematically shown in figure 1.8. This is a continuous
process where in each step, the wire in the making will experience a process called cold forming.
Forming at high speed and pressures, cold working of the metal increases the hardness and yield and
tensile strengths. In each step the wire is fed through a lubricant bath and a draw die to smoothly
reduce its diameter. After going through a draw die the wire has a lower diameter thus increasing the
speed of which the wire has to be wound around the next drum to ensure a continuous process. This
process will go on until the required diameter and material specifications are reached.

After the wire manufacturing process, strands which make up a wire rope are formed. The individual
wires are combined to form a strand. To keep stresses due to the manufacturing out of the wire rope,
the wire and strands are pre-formed before they are added to the strand or wire rope. In figure 1.9 an old
wire rope manufacturing machine can be seen. The method of manufacturing wire ropes today remains
approximately the same. Nowadays, the companies that produce wire ropes keep their machines and
manufacturing techniques a secret to the outside world.

Figure 1.9: Wire rope manufacturing machine [9]
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1.2.4. Redundancy
Due to the repetitive or continuous loading of wire ropes, breaks can occur in individual wires due to
fatigue or overloading of the rope. Wire ropes have the unique feature that these wire breaks do not
necessary have to result in a reduction of the performance of the rope due to the parallel arrangement
of the load bearing elements. Clamping and friction forces from other wires in the rope are sufficient
enough to keep the wires which can be broken many times along their length in place.

Figure 1.10 shows a schematic arrangement of multiple wires inside a wire rope. Each one of these
wires is broken one time along the displayed length. Because of the parallel arrangement of the load
bearing elements in wire ropes, the reduction in breaking strength is only reduced locally as can be
seen in the schematic graph in figure 1.10.

Figure 1.10: Wire breaks and their contribution towards the reduction in breaking strength [50]

However, wire breaks can be dangerous when they are concentrated in one location and the wire
rope is loaded critically. For example, suppose the outer layer strand of a wire rope has a large con-
centration of wire breaks. When loaded in axial direction this rope could be fine as the more inner
located wires will take more of the load. When loaded in bending, outer wires will experience more
load than the inner wires as they are bended along a large curvature and the rope could fail because
off the already weakened section will fail. Hereafter, other wires would have to take over the load and
they eventually will also fail.

1.2.5. Loading characteristic
Wire ropes responds differently to loading than rods do. A straight rod or a centre wire will start to
elongate linearly according to Hooke’s Law as can be seen by the green part in figure 1.12a. After
a certain elongation the rod will start to yield an the relationship between load and elongation will be
non-linear until the rod breaks.

For a simple strand of six helical wires wound around a core wire, the relationship between load
and elongation will be a bit different. The core wire will start to take axial loading immediately at the
onset of loading while the helical wires will need some elongation and thus time to resist the loading
with their full potential. This is because of their orientation compared to the straight wire. The helical
wires will elongate less than the straight wire does when the whole rope elongates.

Pre-tensioning the wire rope is of importance to the loading characteristic as the wires inside the
strands have to be in contact with each other so that they can resist the loading with their full potential.
This closing of the gap due to pre-tensioning is illustrated in figure 1.11a. Gaps have to be present be-
tween outer wires or strands in a simple strand or wire rope respectively to ensure flexibility in bending.
The wire rope is designed so that these gaps exist after pre-tensioning the rope.

When a certain elongation is reached, further loads will be spread evenly over all wires and the
load-elongation relations will be linear again as can be seen in figure 1.12b. The non-linear behaviour
at higher elongations will start with the yielding of the core wire. Hereafter, wires in the penultimate
layer will start yielding because they cannot take over the load from the core wire and so on.

When looking at complete wire rope configurations experiencing axial loads, core (straight) wires
will take the first loads, it will elongate as a result. When the elongation reaches a certain value, other
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(a) Initial situation with a
gap between the helical

wires

(b) Deformed situation
where the gap is closed and
the helical wires will take up

similar load

Figure 1.11: Illustration of the initial loading of the helical wires in a strand or wire rope

(a) Schematic load-elongation graph for a
straight wire [48]

(b) Schematic load-elongation graph for a
simple strand [48]

wires will start to take loads until all wires share the increasing load evenly, with the wires in the outer
layer being the latest who do so. The behaviour between load and elongation becomes linear if all wires
contribute evenly to further loading as can be seen in figure 1.13. The non-linear relation between load
and elongation at the start will be longer than that of the strand in figure 1.12b due to the fact that there
are more and differently orientated wires in a wire rope that have to be aligned to take axial loads.

1.3. Implementation
In the previous section a short introduction to steel wire ropes is presented. Geometry, configuration
and the behaviour towards axial loading is made clear. With this knowledge more can be stated about
the implementation of these ropes in offshore operations.

Offshore used wire ropes generally consist of multiple strands and wires that form a large diameter
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Figure 1.13: Schematic wire rope load-elongation graph [48]

rope. An example of a cross section of a rope that is used in the offshore industry can be found in
figure 1.14. The name of the wire configuration is 6x36WS+IWRC, parameters of which can be found
in appendix A. The six in the name stands for the number of strands in the outer or in this case the
second layer. The 36 stands for the number of wires in one of the second layer strands. WS is an
abbreviation for Warrington Seale, describing the way the wires are orientated in the second layer
strands. An example of a strand with a Warrington Seale configuration can be found in figure 1.2. All
the outer layer strands are wound around an Independent Wire Rope Core (IWRC) which forms the
basis of the rope.

As the ”easy to drill” oil fields are depleting, offshore oil companies have to find and extract hydro-
carbons in the deeper parts of the ocean. This causes for extra technical challenges, including the
need for wire ropes with different properties and dimensions which are able to withstand ever increas-
ing loads and stresses. Steel wire ropes used in the offshore industry are of a large size and complex
configuration which contains multiple layers of wires. This results in a difficult determination of their
behaviour.

Figure 1.14: 6x36WS+IWRC [23]

1.3.1. Abandonment and Recovery
Allseas uses these steel wire ropes in for example: deep water offshore operations, installation of
subsea structures, lifting of jacket legs or the installation of pipelines. An operation which is an essential
component of pipe lay is an A&R operation. This operation uses large diameter wire ropes which are
prone to failure mechanisms that can influence the outcome of a project. These A&R operations and
the accompanying failure mechanisms will be explained in this section.

When installing a pipeline with an offshore vessel, it can be necessary to lay down (abandon) the
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pipeline and possibly later pick up (recover) the pipe line. This operation has to be executed in case
of bad weather forecasts, operational circumstances or at the end of a pipeline installation scope. The
way this operation is executed is by mounting a head on the pipeline with a pad eye which can be
attached to a hook via a shackle and a sling. By lowering the hook with the so called abandonment
and recovery (A&R) wire to the seabed while maintaining a sufficient horizontal force in the system, the
pipeline can be lowered while its structural integrity is warranted. The pipeline can be recovered by the
reverse process. When performing this operation in deep water, the helical structure of the rope and
the tension gradient along the length of the rope due to the self weight of the cable cause the wire rope
to generate torque and torsionally deform.

When a rope stores torsional energy, it is more likely for it to become unstable. Instability of the rope
can lead to damage and can bring a project into jeopardy as a new rope has to be installed which can
cause delay or even failure of the project. There are a number of factors that contribute to the stability
of a rope: tension, bending stiffness and the torsional deformation are considered the most important.
The bending stiffness of wire ropes is not a constant value. Complex interactions between individual
wires result in a state-dependent bending stiffness which is dependent on tension, friction coefficient,
torsional deformation and the curvature of the rope.

Low tension at the bottom end of an A&R wire rope, combined with torsional deformation due to
the tension gradient over its length and a low bending stiffness because of a high local curvature, will
result in the fact that wire ropes used in A&R operations are prone to a phenomenon called hockling.
Hockles or loops in a wire rope (figure 1.15) may cause damage and may lead to failure of an operation.
Hockling occurs when a wire rope is slackened while a torque present, so that a section of it forms a
loop.

Figure 1.15: Low tension cable forming loops (hockles) at seafloor [13]

This feature is not only present in the offshore industry. Other applications include ’snarling’, this is
a term used in the textile industry to describe the onset of highly twisted helical plies [12]. The hockling
of marine wire ropes is a mechanism that is also topologically equivalent to ’plectonemic supercoiling’
of long DNA molecules.

1.3.2. Torsional stability
An introduction has been given about the A&R operation Allseas performs using large diameter steel
wire ropes. Stability of a wire rope in these situations has been addressed, accompanied by the main
factors that contribute to it: tension, bending stiffness and torsional deformation. This section will
address the actual mechanisms that occur in and with a wire rope during for example an A&R operation.
Why the main problems with using wire ropes over large vertical distances arise will also be discussed
in this section.

A wire rope used horizontally with both ends restricted from twisting while enduring an axial load,
will experience forces and moments corresponding to this external tensile force and the cross sectional
properties of the wire.

In a horizontal wire rope section which can be seen in figure 1.16 there is an equilibrium of forces
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Figure 1.16: Forces and moments on a horizontal cable section [50]

and moments because gravity does not effect the tension or moment along the wire length.

𝑇 − 𝑇 = 0 (1.1a)
𝑀 (𝑇 ) −𝑀 (𝑇 ) = 0 (1.1b)

The torsional moment generated due to the orientation of the helical wires can be considered equal
to equation 1.2. The relationship between tension and torque for the simple strand with dimensions
which can be found in appendix A can be seen in figure 1.17. For this figure the equations by Costello
[7] are used. The equations from Costello [7] which are used can be found in the appendix in section
D.2.
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Figure 1.17: Axial-torsion relationship of a simple strand according Costello [7]

𝑀 = 𝑐 𝑑𝑇. (1.2)

𝑀 is equal to the torsional moment, 𝑐 is a constant, 𝑑 is the nominal rope diameter and 𝑇 is the
axial tension. The torsional moment changes if the rope is twisted before loading. According to Feyrer
[10] the equation becomes:

𝑀 = 𝑐 𝑑𝑇 + 𝑐 𝑑 𝑇𝜔 + 𝑐 𝐺𝑑 𝜔. (1.3)

𝑐 and 𝑐 are constants, 𝐺 is the shear modulus and 𝜔 is the angle of rope twist per unit length.
In equation 1.3, two terms are dependent on the twist 𝜔 and two terms are equal to the external axial
tension 𝑇. Values for 𝑐 , 𝑐 and 𝑐 are determined in [10] and will not be discussed in this section.
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Rope twisting during rope service and installation is almost inevitable. The angle of rope twist 𝜔
will assume a certain value and when the external axial tension is reduced to zero there will still be a
torsional moment in the system. This is shown by equation 1.4.

𝑀 (𝑇 = 0) = 𝑐 𝐺𝑑 𝜔 (1.4)

When there is a torsional moment in the rope and it becomes slack, it has the tendency to form a
loop. This mechanism is explained in figure 1.18 while using a rubber rod. The twisting of the cable due
to axial loading is simulated by turning one end of the rod. When the ends are moved closer together,
the rod will start to form a loop. When the tension is removed even further, the loop can transform in a
hockle.

Figure 1.18: Loop forming mechanism from top to bottom: 1: tensioning of the rod, 2: twisting of the rod, (3,4): removing the
tension on the rod and the beginning of loop forming, (5): Loop has formed in the rod, (6): The loop has transformed in a

hockle [12]

Rope twist can be limited or avoided when using ropes in horizontal applications. If a rope is hanging
down vertically, even if both ends are protected against twisting, rope twist is almost impossible to avoid.
Because of the self weight of the rope, each rope segment will be effected by the external force plus the
weight of the rope hanging underneath it. This will cause the wire rope to have a higher axial tension
at the top than at the bottom. In this undeformed situation, per wire rope segment (figure 1.19) there
will still be force equilibrium but no equilibrium of moments.

The wire rope will respond to this instability by starting to unlay in the direction of the greater moment
so that the moment equilibrium is restored. If both rope ends are fixed, the number of rope lays cannot
change. Therefore the rope lay lengths in the upper part of the rope will increase while in the lower
parts, the lays will decrease as is visually illustrated in figure 1.20. The 𝐹 in the figure represents the
constant torque that has to present over the whole vertical cable length.
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Figure 1.19: Forces and moments on a vertical cable section [50]

Figure 1.20: Lay angle change in long vertical rope

There will be three sections along the length of the vertical rope where the lay length is equal to the
original lay length. This is at the top, bottom and approximately in the middle of the rope as can been
seen in the schematic figure 1.21. For clarity a lay length increase corresponds with a decrease in lay
angle as is also illustrated in figure 1.20.

Slack in a rope is most likely to occur at the lower end of the cable when for example a load is set
down on the seabed. Slack in combination with a torque will cause a rope to be in danger of forming
loops or hockles which are previously mentioned in section 1.3. This torque will be present due to the
tension gradient and the helical orientation of the wires in a cable which has been explained in section
1.3.2. Because of the lay angle increase in the lower parts of the cable the bending stiffness will reduce
[55], which will decrease the resistance to loop formation even further. This statement is numerically
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Figure 1.21: schematic graph of the change of lay length along the length of the rope [49]

analysed further on in chapter 4.
Hockling as a result from loop formation happens rather quick and so wire breaks have been re-

ported as a consequence [49]. The damage due to hockling can be seen in the examples from figure
1.22. These wire breaks are generated on a single location along the length of the rope and can be
very concentrated thus reducing the breaking strength of a wire rope significantly which was discussed
in (section 1.2.4). The real problem occurs when tensioning a rope after it has formed a hockle some-
where along its length. This could result in a knot or when the hockle remains intact during tensioning,
the rope could tare itself appart due to the generation of excessive shear forces.

Figure 1.22: Damage to wire ropes because of hockling [51]

1.4. Problem definition & research questions
Previous sections of this chapter have provided information about steel wire ropes and their usage in
offshore operations. Now that the basic knowledge about the subject is acquired, the problem defini-
tions will be elaborated upon in this section.

The objective of the industry is to numerically model the state-dependent bending stiffness of steel
wire ropes used for A&R operations. The influence of the tension and torsional deformation on the
bending behaviour is also taken into account. As is shown before, these parameters influence the
likelihood of hockling of wire ropes during A&R operations. More knowledge about the bending stiffness
of wire ropes will provide Allseas with more understanding about the operational limits of an A&R
procedure involving wire ropes, as more can be stated off the likelihood of loop formation and hockling.

To this day it is common practice at Allseas to assume that the bending stiffness of a wire rope
is equal to the theoretically determined minimum possible value. This results in conservative values
for the torsional instability of wire ropes and to the prediction of loop formation and hockling. Investi-
gating the state-dependent bending stiffness of steel wire ropes into more detail can lead to a better
understanding about the stability of wire ropes used during an A&R operation.

A better understanding of the bending stiffness of steel wire ropes is not only important to the off-
shore industry. Mining operations require steel wire ropes of immense length where torsional stability
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has to be monitored closely to keep all mining operations safe. Lifting of objects with multiple wires in
the construction sector is another example of an industry which would greatly benefit from more knowl-
edge about the bending stiffness of steel wire ropes. Rope lengths are not that long in these lifting
configurations compared to those used in offshore or mining applications, nevertheless a phenomenon
called ”Cabling” which is triggered by the same parameters as are found during hockling. This can be
explained in more detail if more information about the bending stiffness is acquired.

Numerical finite element modelling (FEM) is used to improve understanding about the main objec-
tive of this research, which is consequently the description of the bending behaviour of steel wire ropes
and the impact on A&R operation operability. The objective is divided into four parts, each with a set
of associated questions which serve as a guidance throughout the report.

Create an overview of all available research on wire rope modelling:
Which modelling techniques can be used to describe wire rope bending behaviour?
Which modelling technique corresponds best with experimentally found results?

Elaborate and study the chosen modelling technique:
What are the main advantages and disadvantages of this model?
Which assumptions are taken into account and how do they affect the model outcome?
Do the results from the model resemble those generated with experiments?

Evaluate and describe the generated numerical model:
What are the advantages of numerical modelling compared to the analytical model?
Can numerical modelling be applied to every wire rope geometry and configuration?
Which uncertainties do the results of numerical modelling have?

Implement the state-dependent bending stiffness in a wire rope model to simulate critical situations
during A&R operations:
Are the results from the simulation using the state-dependent bending stiffness derived in this thesis
different than the current method used by Allseas?
What does Allseas gain from the knowledge constructed in this report?

1.5. Report outline
The thesis is divided into seven chapters: (1.) Introduction, (2.) Wire rope modelling, (3.) Bending
stiffness: Analytical analysis, (4.) Bending stiffness: Numerical analysis, (5.) Results, (6.) Practical
implementation: Beam model simulation, (7.) Conclusions and recommendations.

The first chapter consists of an detailed introduction to steel wire ropes, including its history and
use in the offshore industry. The problem definition as well as the main questions to be answered in
this report are clarified in this chapter. The second chapter is about all previous wire rope models that
have been derived to research the behaviour of wire ropes under tension, bending and/or torsion. All
relevant research has been categorized and shortly addressed. Two types of analyses regarding the
bending stiffness of wire ropes have been elaborated upon in this thesis and are divided into the two
chapters Analytical and Numerical analysis. In the first chapter, an existing analytical model has been
worked out and evaluated. A numerical analysis using a finite element program is performed in the
next chapter and compared to the analytical results from the previous chapter. Both analyses will be
used in the practical implementation to calculate the impact of the differences between both models in
a realistic situation. The last chapter is used for conclusions and recommendations where answers to
the research questions are given and recommendations are made for further research concerning the
same or similar topics.



2
Wire rope modelling

The purpose of this chapter is to gain insight into the developments in modelling wire ropes with a focus
on bending behaviour. The final goal is to select a consisting analytical model to compare the in this
thesis generated numerical model to.

Modelling considerations which are used for these models will be discussed. These modelling
considerations are divided into subcategories explained in section 2.1. The change of wire orientation
during axial loading or bending is discussed in section 2.2 to understand the change in wire rope
response when it is deformed in axial or rotational direction.

Previous wire rope research and wire rope models are described in section 2.3. After a discussion
comparing all models, the model is chosen which resembles reality in the best way. The numerical
model generated in this thesis will be compared to the analytical model chosen in this chapter.

2.1. Modelling considerations
Themain goal of a wire ropemodel is to map the behaviour of a certain property of that rope. Because of
the complex geometry of wire ropes, it is hard to take all mechanisms and parameters into account when
modelling analytically. Modelling considerations have to be assumed, depending on the information
being sought. The impact of the assumptions made has to be checked and monitored for its influence
on the desired parameter. The modelling consideration topics treated in this section are considered
the ones having the most impact on the results of the corresponding model. All assumptions can be
subdivided into the following categories:

1. Boundary conditions

2. Inter wire contact

3. Wire cross sectional geometry

4. Radial contraction

5. Additional wire forces and moments

6. Friction regimes

7. Lay angle

8. Material

All cable models need a number of hypotheses and assumptions that have to be implemented to
simplify the calculations. In the following subsections, these hypotheses and their repercussion on the
outcome will be discussed.

15
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1. Boundary conditions
Boundary conditions describe the allowed movement of helical and core wires at both ends of the rope.
In general, the wire/strand length under investigation is assumed to be long enough so that the effect
of the boundary conditions implied can be neglected. When comparison has to be made between
a model where a limited strand length is considered and experimental results, the influence of the
boundary conditions on the outcome of the model has to be checked.

A very short model could neglect mechanisms that only play a part in longer cables such as the
axial torsional relationship and the lay angle change it accommodates as was explained in section
1.3.2. Models which focus on large scale mechanisms could miss the small interactions that take place
on a much smaller scale. Neglecting these interactions could effect the results they generate.

2. Inter wire contact
Assuming a strand where all wires are ideally configured, three possible contact conditions can exist
in the strand: interlayer, intralayer and mixed contact. The first two contact conditions are illustrated in
figure 2.1.

• Interlayer: A condition where there is no contact between wires in the same layer. Commonly
present in wire ropes or strands with small lay angles.

• Intralayer: Wires will only have contact with adjacent wires which are present in the same layer
and no or negligible contact with wires from other layers. Commonly present in wire ropes or
strands with large lay angles.

• Mixed: Both inter- and intralayer contact exist.

Figure 2.1: Spiral strand rope used for the visualisation of different contact modes (a) intralayer contact; (b) interlayer contact
[11]

These contact conditions depend on the way the strands and wires are orientated in the cable or
strand respectively. This is influenced by for example the manufacturing process, wire breaks, or gaps
between individual wires.

Intralayer contact modes have been implemented by many authors in the past such as Feyrer [10]
and Costello [7]. This type of contact takes place along a continuous line resulting in intralayer friction as
a result from hoop actions. However, typical strand constructions allow for intra-layer gaps which deny
the aforementioned circumferential contact to be realised. These intra-layer gaps can be generated by
strand manufacturing or wear and tear of the wire rope during its lifetime [20]. When there are intralayer
gaps between wires only interlayer contact can be present.

3. Wire cross sectional geometry
When small lay angles are assumed (typically, from 5∘ to 20∘ [4]) cross sections of the round shaped
helical wires within a strand are approximately elliptical. For lay angles larger than 40∘ [4], this cross
sectional shape cannot be considered elliptical any more.

The contour of a round strand wire in a cross section perpendicular to the strand axis is not circular
but assumes a ”kidney” shape as can be seen in figure 2.2. In this particular example, the lay angle
has been given the value 𝛼 = 60∘ which is a much higher value than is used in practise. By selecting
a high value, the effect of a changing cross sectional geometry can be made more clear.

The fact that the contour of a wire in a strand perpendicular to the strand axis is of a kidney shape
will have an influence on the calculated clearance between wires. This again has an effect on the
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Figure 2.2: Contour of a round lay wire in the section perpendicular to the strand axis [10]

contact conditions considered and thus on the interaction between wires inside a rope or strand. It will
also have an influence on the cross sectional area as it is larger than that corresponding to a wire in a
strand with a lower lay angle.

4. Radial contraction
Poisson’s ratio is the ratio of transverse contraction strain to longitudinal extension strain in the direction
of axial force. The length related radial strain between the wires is very small in a strand. Therefore,
the deformation of the wire circumference and the wire diameter is mainly caused by the elongation of
the wire. The effect on strands is difficult to determine but it is known that the influence of the Poisson’s
ratio declines with an increasing number of wires [10].

Wire ropes are commonly under tensile loads which result in a clamping effect of outer on inner wires
due to their helical geometry, thus introducing normal stresses which have an effect on the cross section
of the wires. Transverse contraction of the wires due to the Poisson’s effect and because of these local
contact deformations, contact conditions of the model will be influenced. The main consequence is that
the wire rope and individual wire diameters and circumferences will start to decrease as the tension on
the rope increases which could lead to larger stresses.

5. Additional wire forces and moments
During the axial loading of a wire rope, tensile loads will be distributed over all individual wires. Due
to these tensile loads, wires will experience friction loads, shear force, bending and torsion loads due
to their kinematic properties within the strand. The to be researched parameter can depend on all or
some of these loads and forces. Taking the correct mechanisms into account and neglecting others
which do not influence the result can reduce model complexity significantly.

6. Friction regimes
The way friction plays a role in wire ropes is best described by Papailiou [33]. While bending a strand,
three friction regimes can be defined, these regimes can be identified by figure 2.3 which displays a
relation between bending stiffness and curvature of a simple strand [33].

• Stick regime: The friction between individual wires and core wire are considered to be large
enough to prevent the wires from slipping relative to each other and the core wire.

• Transition regime: The curvature of the strand is increased so that some wires in the strand will
start slipping over a limited amount of their length.

• Slip regime: When the curvature of the strand is increased even further, the fully slipped regime
is reached where all wires are slipping until eventually they are slipping over their entire length
and the minimum bending stiffness is reached.

By neglecting this state-dependent bending stiffness in bending related models, especially at low
curvatures where this change has the most impact, not all information is taken into account and results
have to be interpreted with caution.
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Figure 2.3: Bending stiffness as a function of cable curvature [34]

7. Lay angle
The lay angle of wires in a strand has an influence on the geometry of the cross-section perpendicular to
the strand axis as has been explained before and can be seen in figure 2.2. The lay angle will influence
the width of the gap between wires in a layer. As the lay angle increases, the gap between adjacent
wires will diminish. This has a profound effect on the contact conditions. The lay angle of wires in
a strand could change while the strand bends, elongates and/or rotates. This effect can change the
contact conditions during loading.

Because of the tension gradient in vertically suspended wire ropes, lay angle variations influence
the axial and bending response of wire ropes as the geometry of a wire rope changes with it. Lay angle
change due to the tension gradient has been explained in section 1.3.2. As will be seen later in this
thesis, a change in lay angle also has an effect on the state-dependent bending stiffness of a rope or
strand.

8. Material
The material is commonly chosen to be linear elastic and isotropic to simplify the mathematical model.
Other material choices are possible, although they could complicate the system.

2.2. Wire kinematics
Modelling considerations mentioned in section 2.1 will have to be addressed while working with wire
ropemodels as they can influence their outcome. If it is chosen to neglect some of these considerations,
it has to be checked if and how these assumptions will influence the results.

Kinematic parameters of a wire inside a rope are very much different for a wire in a straight or in a
bent rope. Due to the change in kinematic properties, stresses and forces will be distributed over the
wire length differently when rope curvature increases.

Due to the helical structure of wires around a rope, not only axial forces in each wire arise during
tensioning. Bending stress and torque can be found in the individual wires. Due to bending and torsion
of the wires, it’s geometry will change under tension. To properly map the bending and torsion stresses
in a wire and of the strand, curvature and torsion along the wire length have to be determined. For
straight stranded ropes the value for the curvature and torsion of a helical wire will be constant.

During bending of a wire rope, the orientation of the wires that move helically along the strand will
change as can be seen in figure 2.4.

Figure 2.4: Bended wire rope [10]

Because of this change in orientation, curvature and torsion will no longer be constant over the
length of the rope, which was still the case when considering straight wire ropes. Figure 2.5 shows the
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first full rotation of a wire corresponding with six different strand curvatures, each situation corresponds
with a strand curvature displayed in the legend.
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Figure 2.5: Helical wires for different strand curvatures ( )

Using Frenet-Serret equations which are worked out in appendix B, curvature and torsion of the
wire along its length can be derived. With zero curvature of the strand, the wire curvature and torsion
will remain constant. With increasing strand curvature, the wire curvature and torsion along the wire
length will assume a sinusoidal shape with opposing phase. It can be seen in figure 2.6 that the
absolute difference between the average curvature and torsion corresponding with 𝑘 = 0m with
their maximum value along the first half of the pitch length of the strand is larger than that of the second
half. This is because of the effect displayed in figure 2.4, where it is shown that wires inside a bended
rope will move towards the more stretched part of the strand.
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Figure 2.6: Curvature and torsion as a function of arclength for different strand curvatures

More mechanisms that enhance the differences in wire stresses are the change in lay angle along
the different layers of wire. As individual wires in the strand have a variable curvature and torsion along
their length they will also experience a variable axial force.

The fact that there is spacing between individual wires before the moment of tensioning results in
non-immediate loading of all the wires at the start, which makes behaviour of the cable at the start non-
linear. These gaps between wires and strands also have a positive effect on the ropes. The fact that
ropes can bend more easily than solid beams is because they consist of wires and/or strands which
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can move independent of each other due to the gaps between the wires and the slipping condition that
is reached with increasing curvature. This effect has been explained previously in section 2.1.

2.3. Previous research
Now that most modelling considerations have been discussed and the way wires in strands and ropes
behave when deformed has been analysed, previous research can be presented. This section will start
with a short history on cable modelling and a quick explanation of the model categories present.

The first cable models date back to the 1950s, with the researching of stresses and strains of wires
in wire ropes. The first models described wires as springs which are loaded in tension to simulate the
properties of a cable. This method neglected any bending or torsional stiffness. For small diameter
cables these assumptions would not influence the results. However, for offshore applications, cable
dimensions are such that the bending and torsional stiffness do play a significant role in the character-
istics of a steel wire rope thus using these early models would not be preferable.

An early way to take these stiffness’s into account is to model the cable as a beam or thin rod, which
would lead to the so called thin rod models first described by Costello in his book Theory of Wire Rope
[7].

Semi-continuous models were created later and are first described by Jolicoeur and Cardou [20]
and Raoof and Hobbs [37]. The strategy used in these models is to create homogeneous layers out
of the helically twisted wires in a wire rope. Each layer is then modelled as a cylinder or sheet with its
own properties.

Using these methods described above, a large number of papers have arisen on the subject, which
can be explained by the great variety of parameters and situations that can be investigated. The three
aforementioned modelling techniques, spring, thin-rod and semi continuous modelling are used for
computing both the behaviour of strands and ropes under axial loading and under bending. All these
modelling methods provide answers taking different modelling conditions into account such as they are
defined in section 2.1.

Papailiou [33] created a promising model which fits in the thin-rod category that combines the loads
in tension and bending. The model incorporates friction and the stick-slip behaviour between the wires.
This will result in a state-dependent bending stiffness depending on tension, friction coefficient, lay
angle and the curvature of the wire rope. Because of this state-dependent bending stiffness, according
to his model, the cable will have a non linear bending behaviour, as has been verified by experiments.
Hence, it is realistic [52]. He described the three different regimes; stick, transition and slip, which are
explained in section 2.1.

A relatively new method of modelling wire rope is the use of finite element method (FEM) to model
wire ropes. This technique is used in this thesis to compute a model of a simple strand and of larger
configurations to compute their response to bending.

All advantages and disadvantages of the four aforementioned modelling techniques will be dis-
cussed in the next sections. Hereafter, one of the analytical models is chosen as the most reliable and
realistic after which it will serve as comparison to the numerical model generated in this thesis.

The four modelling categories are:

1. String/beam

2. Thin-rod

3. Semi-continuous

4. Finite element

2.3.1. String/beam models

Figure 2.7: Time line string models
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Table 2.1: Modelling consideration for string/beam models

Modelling consideration

Boundary conditions No boundary condition effect; zero end rotation is assumed
Inter wire contact Purely interlayer contact is assumed
Wire cross sectional geometry Cross sectional geometry is not considered as wires are infinitely thin
Radial contraction Radial contraction is neglected
Additional wire forces and moments Wires are assumed to be subjected to tensile forces only
Friction regimes Friction is neglected
Lay angle The lay angle is assumed constant over the length of the wire
Material Material is considered linear elastic

The first string/beam model from Hruska [16] was based on the simplest of hypotheses [4]. These
accompanying modelling assumptions can be found in table 2.1.

The equations from Hruska [16] have been extended and improved over the years by various other
researchers to incorporate more level of detail. Representative governing equations for the string/beam
models are

String: 𝑚�̈� − 𝑇𝑤” = 0
Euler-Bernoulli: 𝜌𝐴�̈� + 𝐸𝐼𝑤”” − 𝑇𝑤” = 0

Timoshenko: 𝜌𝐴�̈� − 𝐾𝐺𝐴(𝑤” − 𝜐 ) = 0, 𝐸𝐼𝜐” + 𝐾𝐺𝐴(𝑤 − 𝜐) = 0.

Meaning of the different variables can be found in the nomenclature. Starossek [44] discussed the
history of string models from the 18th century to the present. His work includes the basic equations and
explanation on how these models are derived and presented. As mentioned before, these models do
not include any bending and torsional stiffness.

Modelling a steel wire rope as a collection of multiple ”beams”, increases the level of detail. Beams
are outfitted with properties developed to correctly incorporate the bending and torsional stiffness of
the rope. Lutchansky [26] proposed a model where this method will be used to compute the behaviour
of the bending of strands. Hereby it is assumed that the wire diameter is very small compared to the
helix radius.

In short, string/beammodels are among the first methods for describing the characteristics of helical
strands and cables. They include models which use simple but efficient methods for computing the
desired parameter but lack detail in some regions as for example friction is mostly neglected and wires
can only be in interlayer contact.

2.3.2. Thin-rod

Figure 2.8: Timeline Thin-rod models

Thin-rod models can incorporate more detail and more realistic modelling considerations such as
can be seen in table 2.2.

Thin rod theory was a leap forward in cable modelling. This was introduced when Costello [6]
presented a helical rod model based on Love’s equations for the equilibrium of a curved rod [25].
Velinsky [47] incorporated bending and torsion and modelled the wires of a steel wire rope as thin rods.
When modelling the wires of a rope as thin rods, cable geometry (Figure 2.9) is of major importance.
At first, the bending stiffness of the entire rope was modelled as the sum of the bending stiffness’s of al
individual wires. Inter wire friction was supposed to be non existing which would result in conservative
values regarding the bending and elongation of the rope under stress.
Continuing from the models at hand, Jiang [18] incorporated small lay angle variations of the length of
the strand and presented a linearised solution.
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Table 2.2: Modelling consideration for thin-rod models

Modelling consideration

Boundary conditions No boundary condition effect
Inter wire contact Inter- or intralayer contact can be assumed
Wire cross sectional geometry Cross sectional geometry is not considered as wires are assumed infinitely thin
Radial contraction Radial contraction is neglected
Additional wire forces and moments Wires are assumed to be subjected to tensile forces and moments
Friction regimes Friction is mostly neglected but is incorporated into modern thin-rod models
Lay angle Lay angle can be assumed to be constant or changing over the length of the wire
Material Material is considered linear elastic

(a) Local coordinate system of a
wire

(b) Geometric features o the
cross-section of a rope

Figure 2.9: Geometric properties [33]

In a model described by Raoof and Davies [36], a simplified method to determine the bending
stiffness of a single strand was presented. However, to come up with a solution they had to assume
that the contributions from all other internal moments and forces that would exist in the entire cable are
sufficiently small so that they could be neglected. Another assumption was that the lay length of the
cable would not change in loaded and unloaded condition.

Wire bending and its influence on slip and stick regimes in the strand has been thoroughly addressed
by Papailiou [34], where the slip criterion was based on the difference between tension along a wire in
a strand.

Over all, Raoof and Hobbs [38] compared different kinds of models and found that thin-rod theory
became more reliable when modelling small diameter cables with fewer strands because of the high
level of geometric detail that the model requires.

2.3.3. Semi-continuous

Figure 2.10: Timeline Semi-continuous models

A semi-continuous model is a collective name for orthotropic sheet or cylinder models. The mod-
elling considerations present in these models can be found in table 2.3.

Semi-continuous models were created by Raoof and Hobbs [37]. This type of modelling is best
described by using their own words. ”In essence, the individual layers of wires in a multi-layered strand
are treated as a series of partly self-pre-stressed cylindrical orthotropic sheets whose non-linear elastic
properties are averaged to form an equivalent continuum.” [38]. Semi-continuous modelling is particu-
larly efficient for larger diameter cables consisting of spiral strand where these strands can be simplified
by making use of orthotropic sheets. When considering axial loaded strands the method allows for the
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Table 2.3: Modelling consideration for semi-continuous models

Modelling consideration

Boundary conditions No boundary condition effect
Inter wire contact Inter-, intralayer or mixed contact can be assumed
Wire cross sectional geometry Cross sectional geometry of the wires is replaced with that of a sheet or a cylinder
Radial contraction Radial contraction is neglected
Additional wire forces and moments Wires are assumed to be subjected to tensile forces and moments
Friction regimes Friction is mostly neglected but is incorporated into some semi-continuous models
Lay angle Lay angle is assumed to be constant over the length of the wire
Material Material is considered linear elastic or hypo elastic

quick calculation of axial and torsional stiffness as has been done by Raoof and Hobbs [4]. The main
advantage of these types of models is that they simplify the problem of inter-wire contact significantly
over thin-rod methods. The model created by Raoof and Hobbs [37] used kinematic relations based
on the discrete theory of strands while assuming thin cylinders, thus making a bi-dimensional problem
(plane stress) with material elastic properties defined in the tangential plane of the layer [19]. Slip is
chosen to occur between wires of the same layer which mainly has an influence on the torsional stiff-
ness of the cable. The model has been improved and extended over the years by Raoof and Huang
[39] and Mimoune et al. [31]

Jolicoeur and Cardou [20] also made use of the orthotropic sheet model. The main difference from
the model by Raoof and Hobbs [37] is that the model is based on continuum mechanics and that the
sheets are considered thick walled so that they can be modelled as cylinders. This orthotropic cylinder
model (figure 2.11) describes the problem in three dimensions with material properties in three orthog-
onal directions. An important feature of the model by Jolicoeur and Cardou [20] is that: in bending, the
model is extremely sensitive to the shear modulus while in the model by Raoof and Hobbs [37] this is
not the case.

Another extended version of the orthotropic sheet model has been derived by Blouin and Cardou
[2] where the model also consists of orthotropic cylinders, but with variable thickness. These models
were used to determine the axial behaviour of ropes.

Jolicoeur and Cardou [20] discus the main differences and features of the orthotropic sheet and
cylinder models described above. In their conclusion they depict that for bending predictions, the model
by Jolicoeur and Cardou [20] should be preferred because it has the capability to produce stiffness
results in the complete range between theoretical minimum and maximum. On the point of shear
modulus evaluation, it appears that this model is preferable for torsion stiffness predictions while the
model by Raoof and Hobbs [37] is preferable in bending [19].

These semi-continuous models are mostly used for spiral stranded ropes with wires in concentric
layer configurations. Wire ropes used in the offshore industry consist of more complex configurations.
No semi-continuous models can be found which describe these wire ropes.

2.3.4. Finite Element Models

Table 2.4: Modelling consideration for finite element models

Modelling consideration

Boundary conditions Boundary conditions do have an effect on results
Inter wire contact Inter-, intralayer or mixed contact can be assumed
Wire cross sectional geometry Cross sectional geometry (the kidney shape) is realistically defined such as in figure 2.2
Radial contraction Radial contraction can be taken into account
Additional wire forces and moments Wires are assumed to be subjected to all possible forces and moments
Friction regimes Friction can be taken into account
Lay angle Lay angle change over the length of the wire will depend on the selected boundary conditions
Material Material is considered linear elastic or hypo elastic

Three-dimensional (3D) finite element methods (FEM) have been created to study the axial and
bending behaviour of steel wire ropes. Pure bending behaviour without friction was one of the first
researches that have been performed using finite element methods. Jiang [18] created such a finite
element method where the bending moments from the numerical model matched that of the analytical
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Figure 2.11: Geometry of one layer of wire with equivalent orthotropic cylinder [20]

model by Costello [7]. However, only Zhang and Ostoja-Starzewski [55] constructed a finite element
model specifically focused on the bending stiffness variation of cables with friction. In the paper a simple
strand was modelled with Coulomb friction present between the wires and core in all contact conditions.
Stick, transition and slip regions have been analysed and compared to the analytical models derived
by Papailiou [33].

Finite element modelling has offered a means of predicting the friction condition and behaviour of
bent cables in recent years [54]. However, these models require numerous elements to be generated,
thus computational time is considerable. This relativity new type of modelling has potency to find
solutions which resemble the results from experiments in the best possible way currently available.

2.3.5. Evaluation
Now that all categories have been treated along with their advantages and disadvantages the best
model for generating bending stiffness can be selected. This is done by reading the researches de-
scribed in this chapter and comparing results and methods found and used.

The amount of interest in finding solutions to unknown behaviours and parameters of wire ropes is
substantial. Over the years, techniques have improved so that users of steel wire ropes have a better
understanding of their behaviour. A model in which the bending moment contribution comes mostly
from the tension effect, calculated using the Euler-Bernoulli hypothesis and from independent wire
bending is found to resemble experiments best. As curvature increases, outer layers will start slipping
which will result in a state-dependent bending stiffness. The theory fromPapailiou [33] uses this method
to provide slip criteria for different wire elements inside strands and wire ropes. Static bending tests
on transmission line conductors were performed where a transverse centre load was applied on the
cable. The paper [34] shows the deformed shape of the specimen. Measured and calculated values
for the bending stiffness is found to be in good agreement. However, the analytical model by Papailiou
[33] is based on assumptions and uses the theoretical limits for the minimum and maximum bending
stiffness which will be explained in the next chapter. Because of the good comparison with experimental
results, the model by Papailiou [33] can be assumed realistic for simple strands and spiral strands such
as transmission line conductors.

Numerical models can provide more insight in the validity of the assumptions and theoretical limits
stated in the analytical model. Larger and different wire rope geometries can be modelled more easily
using numerical modelling. Finite element models such as the ones generated by Zhang and Ostoja-
Starzewski [55] and Yu et al. [54] already provide information about numerical modelling of simple or
spiral strands comparing their results to the thin-rod model by Papailiou [33]. However, these models
do not research the validity of all the assumptions made by Papailiou [33] and so a more extensive
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research is needed.
Independent Wire Rope Cores (IWRC’s) or other larger and more complex stranded rope con-

figurations however have not been researched using numerical and analytical models. In this thesis,
numerical modelling will be used to generate results for larger wire rope configurations. The drawbacks
and difficulties will also be addressed.

A numerical model is created in this thesis to test the validity of the assumptions and limits of the
model created by Papailiou [33]. Larger configurations such as IWRC’s of larger and more complex
cable configurations are investigated using the numerical model, extending the knowledge of numerical
modelling steel wire ropes.





3
Bending stiffness: Analytical analysis

In chapter 2.3 the most important model considerations have been shown which could be categorized
into the following categories: string/beam models, thin-rod models, semi-continuous models and finite
element models. The influence of these assumptions on the found results has been addressed in the
previous chapter and will be checked using the analytical and numerical model derived in this thesis.
Changes of the wires inside a wire rope or strand while it is being bend have been discussed and shown.
The chapter concluded with a summery of different cable models which could be used to describe the
bending behaviour of wire ropes. After a discussion it has been chosen that the analytical model by
Papailiou [33] will be used to predict the bending behaviour. A numerical model using FEM is generated
in this thesis to compare the analytical model to. The impact of the assumptions made in the model by
Papailiou [33] will be checked using the results of the numerical model as well.

Both the analytical and numerical model will be constructed for a simple strand after their expansion
to work with larger wire rope configurations such as IWRC’s or complete wire ropes will be investigated.
This chapter focusses on the development of the analytical model described by Papailiou [33].

It is divided into four sections in which all aspects of the model will be analysed: geometry and
forces, model description of a simple strand, model description of multiple layers and a discussion.
The first section will focus on the kinematic relations involved in the 3D modelling of wire ropes. After
these kinematic parameters are known the model itself can be developed and analysed for simple
strands and multiple layered ropes. In the discussion, the model will be evaluated along with its strong
and weak points.

3.1. Geometry and forces
One sound and practical analytical model of a state-dependent bending stiffness became available
through the work of Papailiou [33]. In his model, Papailiou takes inter-wire friction and inter-layer
slipping into account which results in a state-dependent bending stiffness which is dependent on wire
rope curvature, lay angle, friction coefficient and tension. Assumptions used in the theory are as in
table 3.1.

Table 3.1: Modelling considerations Papailiou [33]

Modelling consideration

Boundary conditions Clamping forces are neglected, long wire considered so that boundary conditions can be neglected.
Inter wire contact Purely interlayer contact is assumed
Wire cross sectional geometry Cross sectional geometry change is partly taken into account
Radial contraction Radial contraction is neglected
Additional wire forces and moments Wires are assumed to be subjected to additional wire forces and moments
Friction regimes Interwire friction is taken into account
Lay angle The lay angle is assumed constant over the length of the wire during bending
Material Material is assumed to be linear elastic

The model constructed by Papailiou begins with the statement that in practically all bending ap-
plications, a tension 𝑇 is present. The following assumption is that all wire cross sections in a layer

27
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have the same diameter 𝛿. The helix orientation angle 𝜙 is oriented as can be seen in figure 3.1. This
aforementioned tension 𝑇 causes a local tensile force 𝑍 on each wire. The tensile force will act on a
small element along the wire length 𝑑𝑙 = 𝜌𝑑𝛼, with 𝜌 and 𝛼 being the radius of curvature and the so
called wrap angle of the wire respectively. Tension, in combination with the curvature and lay angle of
the wire will exert a pressure on the wire(s) below.

𝑝 = 𝑍
𝜌 (3.1)

A distributed load can be derived combining equation 3.1 for the pressure and the aforementioned
equation for the element length.

𝑑𝑁 = 𝑝𝜌𝑑𝛼 (3.2)

From the geometrical configuration shown in figure 3.1b, a relationship for the lay angle 𝛽 can be
concluded.

𝑟𝑑𝜙
𝜌𝑑𝛼 = sin 𝛽 (3.3)

Combining the equations 3.1, 3.2 and 3.3 with the equation for the curvature of a helix which is
commonly known to be equal to 𝜌 = 𝑟/sin𝛽 , the equation 3.4 for the radially directed force can be
derived,

𝑑𝑁 = 𝑍 sin 𝛽𝑑𝜙 (3.4)

which has a direct relationship with the friction that exists between the wires in a layer and the
penultimate layer. This frictional force can either be higher, lower or equal to the local tensile force on
that particular wire. The situations described in chapter 2.3 are defined as the friction regimes stick,
slip and transition. The stick regimes corresponds with high frictional forces while the slip region is
dominated by low friction forces. In the transition regions, parts of the wires start slipping due to the
increase of tensile forces on the wires.

When bending a wire rope to a constant curvature, the bending stress in each wire will consist out
of two components:

1. The bending stress, which will result from the bending of a wire around its own neutral axis. With
𝐸 for the Young’s modulus of the material, 𝛿 for the diameter and 𝜅 for the curvature of the wire
this will be equal to equation 3.5. This minimum stress contribution from an individual wire is
always present.

𝜎 = 𝐸𝛿2𝜅 (3.5)

2. A second term which is depended on the curvature of the strand has to be added to that of
equation 3.5. When low curvatures are considered, bending stress of the wire is in the sticking
regime (𝜎 ), which was previously described as a regime where the normal forces between
wires are still to high to prevent slipping. After wires start slipping at higher curvature of the strand,
internal friction will be not enough to prevent wires from sticking and the second term will be equal
to the frictional slip stress (𝜎 ).

The previously mentioned (𝜎 ), is dependent on the distance ℎ,

ℎ = 𝑟 sin𝜙 (3.6)

from the neutral axis of the strand to that of the wire. This is calculated in equation 3.6 where 𝜙
is the helix angle which is indicated in figure 3.1a as the angle from the neutral axis of the strand.
The variable 𝑟 is equal to the wire winding radius. Using Euler-Bernoulli beam theory the stress in the
sticking regime

𝜎 (𝜙) = 𝐸𝜅ℎ cos 𝛽 = 𝐸𝜅𝑟 sin𝜙 cos 𝛽 (3.7)
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(a) Cross section (b) Helix geometry

Figure 3.1: Definitions of parameters cross-section and helix geometry as described in [33]

will depend on the curvature 𝜅, the Youngs modulus 𝐸 and the lay angle 𝛽 of the wire. The factor
cos 𝛽 compensates for the fact that the wire has a helical shape which will decrease the stress slightly.

When bending curvature is increased, internal friction forces will not be enough to prevent the wires
from slipping over other wires and the core. Leider [22] showed that relative wire slip will start in at the
neutral plane of the strand. When curvature reaches even higher values, the part that has slipped of
each wire will propagate along their length beginning from their starting positions on the neutral plane
of the strand.

Figure 3.2: Free body diagram of a wire element [33]

Radial force as is expressed in equation 3.4 together with a friction coefficient 𝜇 will generate a
frictional force,

𝑑𝑅 = 𝜇𝑑𝑁 = 𝜇𝑍 sin 𝛽𝑑𝜙 (3.8)

which will effect the axial force Z on each wire. Integrating this equation with boundary conditions
𝜙 = 0 ∶ 𝑍(𝜙) = 𝑍 will result in equations 3.9 and 3.10,

𝑑𝑍 = 𝑑𝑅 = 𝜇𝑍 sin 𝛽𝑑𝜙 (3.9)

𝑍(𝜙) = 𝑍 𝑒 (3.10)

where the value 𝑍 is the tensile force on a wire before bending has taken place. When only a
tension 𝑇 acts on the strand, the tensile force in each wire can be calculated by equation 3.11.

𝑍 = 𝐸𝐴 cos 𝛽
∑ 𝐸𝐴 cos 𝛽𝑇 (3.11)

𝑍(𝜙) in equation 3.11 is the maximum tensile force which acts on a wire during bending. The value
varies with the helix angle 𝜙 which can be seen in figure 3.1a, and so the value changes along the wire
length. During bending, in addition to the original tensile force 𝑍 there exists an tensile or compressive
force 𝑍 which is the result of inter-wire friction.

𝑍(𝜙) = 𝑍 + 𝑍 (3.12)

When combining equation 3.10 with 3.12 an expression for 𝑍 can be found,

𝑍 = 𝑍(𝜙) − 𝑍 = 𝑍 (𝑒 − 1) (3.13)
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where this frictional slip force can be converted to a slip stress as is shown in equation 3.14,

𝜎 (𝜙) =
𝑍 (𝜙)
𝐴 (3.14)

where the 𝜎 is again dependent on 𝜙 and so variable along the length of the wire.
These equations describe the kinematic model where a strand is made of. Forces and stresses in

wire elements have been calculated. In the next section more information about the bending stiffness
of a particular strand is shown using the kinematic relations from this section.

3.2. Model description: Simple strand
In the previous section all parameters involved in generating a force and geometry profile of a simple
strand are calculated. How these forces and displacements relate to a response in bending will be
explained in this section.

Papailiou [33] takes into account that strands will follow with good approximation the bending equa-
tion,

𝑀 = 𝐸𝐼𝜅 (3.15)

where 𝐸𝐼 stands for the bending stiffness of the strand. Bending moments during the stick and slip
regimes arise from the geometry in figure 3.1a, by multiplying the bending stresses with their distance
from the wire neutral axis 𝑒 and from the neutral axis of the conductor ℎ while integrating over the wire
cross-section.

𝑀 = ∫𝜎 cos 𝛽𝑒𝑑𝐴 + ℎ∫𝜎 cos 𝛽𝑑𝐴 (3.16a)

𝑀 = ∫𝜎 cos 𝛽𝑒𝑑𝐴 + ℎ∫𝜎 cos 𝛽𝑑𝐴 (3.16b)

The cos 𝛽 term is implemented in equations 3.16a and 3.16b because it compensates for the actual
inclined area of the wire inside the strand. Combining these equations with the equations 3.5, 3.7 and
3.14 and taking into account the relationship described in equation 3.15, the following equations for the
different regimes can be derived:

𝐸𝐼 = 𝐸𝜋𝛿64 cos𝛽 (3.17a)

𝐸𝐼 = 𝐸𝐴(𝑟sin𝜙) cos 𝛽 (3.17b)
𝐸𝐼 = 𝜎 𝐴𝑒 sin 𝑟sin𝜙cos𝛽/𝜅. (3.17c)

When bending is first introduced in a straight cable, the wires will act as a solid body. When this
mechanism occurs, the bending stiffness is a result from equation 3.17b plus the minimum bending
stiffness from equation 3.17a. Where not only the bending resistance of the wires around their own
neutral axis is taken into account but also the distance from the neutral axis of the cable to the axis of
the wires is accounted for as it is assumed that all wires are sticking to each other. This can be seen
in figure 3.3 and in equation 3.18 corresponding to the low curvatures.

When the wires start slipping due to the increase of curvature of the wire rope, the bending stiffness
will start to change accordingly. Equation 3.17c takes into account the friction stress which acts on
each individual wire as a result of the tension and the applied moment. The value of the stiffness will
decrease gradually and will approach the minimum value determined by equation 3.17a. This value is
determined as the sum of all individual wire stiffness’s. Thus, the minimum bending stiffness will only
consist of the bending resistance of all wires around their own neutral axis. This corresponds with the
higher curvatures in figure 3.3 and is shown in equation 3.19.

The bending stiffness for the stick region in figure 3.3 is equal to the sum of equation 3.17a and
3.17b. In the slip region equation 3.17c has to be added to the minimum bending stiffness.

𝐸𝐼 = 𝐸𝐼 + 𝐸𝐼 (3.18)
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Figure 3.3: Bending stiffness as a function of cable curvature [33]

𝐸𝐼(𝜅, 𝑇) = 𝐸𝐼 + 𝐸𝐼 (3.19)

The transition from sticking to slipping should be smooth, as can be seen by observing the solid line
in figure 3.3. This is due to the fact that the transition of each wire from stick to slip is accomplished at a
different curvatures and at different positions along the length of the wire. In the work of Papailiou [33],
the moment of transition is described by calculating the critical curvature where wires start to slip. De
dashed lines in figure 3.3 have an intersection which corresponds to 𝜅 . This point can be calculated
by equating equations 3.18 and 3.19 and solving for 𝜅. This 𝜅 is used to divide the stick and slip part.
In the more extensive thesis report by Papailiou [33], equations are stated to smoothen the transition
from stick to slip. This correcting of the realtionship in the transition zone is neglected as it only slightly
adjusts the values. When neglecting the smoothing the statement becomes,

𝜅 < 𝜅 → 𝐸𝐼 = 𝐸𝐼 (3.20a)
𝜅 < 𝜅 → 𝐸𝐼 = 𝐸𝐼(𝜅, 𝑇) (3.20b)

were the value for 𝐸𝐼 is equal to the solid lines outside and to the dotted section in the transition
regime in figure 3.3. When calculating the bending stiffness according to Papailiou [33] for a simple
strand with a cross sectional geometry as in appendix A, friction coefficient of 𝜇 = 0.125 and a tension
of 𝑇 = 20000N, the relationship between bending stiffness and curvature would be as in figure 3.4.

3.3. Model description: Multiple layers
Papailiou [33] also extended his theory to multilayer strands. In his theory he only considers transmis-
sion line conductor configurations for example as can be seen in figure 3.5.

These configurations differ from the ones used in steel wire ropes because the lay direction changes
per layer. Another dissimilarity is that the transmission line conductors only have concentric layers of
wires with helical wound wires. Steel wire ropes can contain helical wound strands resulting in wires
which describe double helical paths.

However, minimum and maximum values for the bending stiffness of larger wire rope configurations
can be easily derived from the model described by Papailiou [33]. In stick all wires are stuck together
and Steiner’s theorem can be used, in full slip only the individual contribution will be taken into account.

In the transition region where the wires are slipping but not over their entire length the model by
Papailiou [33] has to be adapted. It is assumed that a strand of the IWRC will behave as a helical
wound cylinder with a cross sectional area equal to that of the wires inside the corresponding strand
corrected for the lay angle of the wires in the strand. This assumption reduces the problem to a simple
strand with six wires in the outer layer. All calculations performed to come up with the relationship
between bending and curvature for an IWRC can be found in C.

3.4. Evaluation
Papailiou [33] presented an analytical model which is described in this chapter based on the thin-rod
theory, where frictional slip is taken into account for the full range of curvatures. In his model, the
thin rod approximation is used where the axial pretension in the cable leads to a pressure difference
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Figure 3.4: Bending stiffness as a function of cable curvature according to Papailiou [33]

Figure 3.5: Spiral rope: Transmission line conductor cable (ACSR) [21]

between each wire layer which leads to frictional forces countering the bending moment. Frictional
forces in combination with tensile forces result in the discussed stick-slip behaviour.

As can be seen in figure 3.4, there is a large difference between the analytically derived maximum
and minimum bending stiffness. In fact; = 7.40, when taking into account the simple strand
described in appendix A. Assumptions made in the model most likely cause this large difference. For
example, the fact that no deformation of the wires is taken into account, pure inter layer contact and no
radial contraction is assumed. The numerical model will show if this large difference between minimum
and maximum bending stiffness is realistic.

At large curvatures, the analytically found bending stiffness becomes equal to its minimal value
where no friction is taken into account. However, it is realistic to think that friction will still play a role in
the determination of bending stiffness as even frictional coefficients for greased steel on steel contact,
both static and dynamic have a value above zero. Eventually for extremely high curvatures the role
of the friction coefficient will diminish. Comparison with the numerical model will show if the model by
Papailiou [33] is to conservative.

Papailiou in his analytical model assumes that the geometry of the cross-section will stay the same
during tensioning and bending. This is a geometrically linear approach. In reality however, this cross-
section will deform under loads. This effect will influence the generated results as the direction and
magnitude of the forces in the strand changes with the changing geometry. Numerical modelling will
take this geometric non-linearity into account.

Tests are performed by Papailiou [34] on a single transmission line conductor. The model described
in this chapter is experimentally validated using these tests and matches the data quite will for a limit
curvature range. The maximum bending stiffness at low curvatures matches the analytical model very
well. However, only a limited curvature range is considered so no experimental verification of the mini-
mum bending stiffness is presented. This shows that the analytical model can be considered somewhat
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correct for transmission line conductors which are spiral ropes just as a simple strand. Despite this val-
idation, numerical models are still needed to test the assumptions made in the model, some of which
have just been discussed. Generating a numerical finite element model of a simple strand could pro-
vide answers to the validity of the assumptions made in the model. Because the model is only tested
against one particular wire rope configuration, it validity cannot be guaranteed.

In short, the analytical model described in this chapter works well for simple strands and multiple
layered spiral strand such as transmission line conductors. For larger and more complex wire rope
configurations, this model has not been verified. Assumptions made in the model will also have a more
profound impact on the results when larger wire rope configurations are taken into account. Therefore
numerical modelling has to be used to check the assumptions made. As the results of the analytical
model for simple strands are considered plausible, results from the numerical model will be compared
to those analytically generated. If comparison has been found for results considering simple strands,
the numerical model can be expended to larger wire rope configurations.
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Analytical models such as those of Costello [7] and Velinsky [47] neglect non-linear effects, like friction
and contact between wires. These models can be used to quickly determine preliminary results for
difficult strand structures and large wire diameters. [32] For the behaviour of cables under tension
and/or torsion loads, these analytical models can be used as non-linear effects do not play a significant
role. When looking at bending combined with tension for simple or multilayer strands, the model by
Papailiou [33] can be used to quickly generate values.

The model by Papailiou [33] is described in chapter 3 and is used to find a relationship between
bending stiffness and curvature for different tensions, curvatures and lay angles. In the evaluation all
assumptions which will effect the results have been mentioned. It was stated that numerical modelling
is needed to check the assumptions made in the analytical model and to expand to larger and more
complex wire rope configurations.

Finite element methods are numerical methods that approximate solutions of mathematical prob-
lems. By using this method, for example the bending of beams can be modelled. This is done by
subdivision of the beam into smaller parts, which is called a mesh (figure 4.1). These simpler parts are
called elements abiding certain element equations. By systematically recombining all local element
equations, a global set of equations is derived and so the desired behaviour of the global system can
be calculated. Initial conditions and boundary conditions are needed for the original set-up to obtain a
numerical answer.

Figure 4.1: A finite element mesh of cable core [55]

Setting up a model using the finite element method divides the problem into simpler parts, the will
result in several advantages:

1. FEM can handle very complex geometry

2. Relativity easy representation of the total solutions

3. Local effects can be captured more easily

However, there is also a downside to modelling with FEM. Because of the subdivision of the geom-
etry into smaller parts, the solutions will be approximated and they always have to be checked. Used
FEM software could have errors in execution of the finite element method. Although these disadvan-
tages are severe the most common error is the one made by the user.

35
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Presently, finite element methods which focus on the behaviour of wire ropes under bending or axial
loading are increasingly being found in literature. Already many papers exist on the 3D modelling of
wire ropes and strands such as in the paper by Stanova et al. [43]. One can say that the preparations
to model the bending behaviour of steel wire ropes have been done but the execution has yet to be
performed.

When setting up numerical models, it is wise to start simple. By expanding the model gradually and
performing checks in the process, bugs and flaws can be detected without losing valuable time. When
taking wire rope modelling into account, this process can be made clear easily, because wire ropes are
made out of different components.

First a model of a simple wire rope configuration (figure 4.2a) is constructed. This model consists
of a core wire with six helically wound wires around it. A sensitivity analysis will be performed on this
relatively simple model to determine the correct settings and parameters needed to ensure its results
reliable.

After the sensitivity analysis has been carried out, the model can be expanded by adding more wires
to the configuration to form for example an Independent Wire Rope Core (figure 4.2b), or a complete
steel wire rope (figure 4.2c). The details of the geometry of the models seen in figure 4.2 can be found
in appendix A.

(a) Simple strand (b) IWRC
(c) 6x36WS+IWRC

Figure 4.2: Meshes of different wire rope configurations

In the next chapter a comparison between analytically and numerically determined values will be
made. The analytical model from Papailiou [33] described in chapter 3 will be used to compare the
numerical model to. The bending stiffness will be determined as a function of the tension and cur-
vature respectively on and off the cable. This is of importance to the practical implementation of the
acquired results, as a beam will be modelled with a state-dependent bending stiffness depending on
these parameters.

4.1. Numerical model set-up
The numerical model is set-up using the programMarcMentat, whereMentat is the user interface where
the kinematic model and mesh is generated. Marc is the computational engine which computes the
result of the analysis. This programme is chosen because of its ability to calculate non-linear frictional
problems accurately. [27]

The numerical model set-up consists of four categories: Geometry, element properties, contact and
boundary conditions. The first section will focus on the method of defining the geometry of different
cable configurations in Marc. Element properties are quickly addressed afterwards with a more exten-
sive explanation of their content in appendix E. Different kinds of contact configurations will be taken
into account after which the same is done for different boundary conditions. In the end of this section
the standard way of analysing the bending behaviour of a cable configuration in Marc will be shown.

4.1.1. Geometry
Modelling the cable section used for the analysis starts with a sketch of the cross-section of the wire
generated in the CAD drawing program Inventor. [1] After the sketch is imported into Mentat, a planer
mesh of the cross section is generated.
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A kinematic model of the centrelines of all wires in the strand section is constructed in Matlab (figure
4.3) using the Frenet-Serret equations explained in appendix B. This kinematic model will be translated
to Python programming language, so that it can be read by Mentat. This ’input file’ uses the Python
based commands in Mentat to generate a 3D model from the already drawn 2D cross section. By
choosing this method of constructing a model in Mentat it is easier to construct different geometries
and different cables configurations quickly.
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Figure 4.3: Centrelines wire in strand section

After the cross-section is imported into Mentat, the generated Python file will first rotate the wire
cross-sections to the appropriate configuration is realised. Afterwards the planer elements of which
the sections exist will be expanded helically and straight for the wires and the core along the z axis
respectively to generate 3D solid elements.

4.1.2. Element properties
The chosen element type for these solid elements is Hex 8. This is an eight-node, isoperimetrical,
arbitrary hexahedral element. According to the element library of Marc [29], this element type is the
preferred choice when conducting a contact analysis. Material properties corresponding with steel are
added to these elements and can be found in table 4.1.

Table 4.1: Element properties

Parameter Unit Value

Young’s modulus [Gpa] 188
Poissons ratio [-] 0.3

More information on this element can be found in appendix section E.1 where the orientation and
usage is discussed.

4.1.3. Contact
Different kinds of contact have been discussed in section 2.1 as interlayer, intralayer andmixed contact.
All these contact modes will be analysed in the numerical analysis to display the differences between
these modes while comparing the results to that of the analytical model. In the standard numerical
analysis contact between all wires is considered as that is themost realistic approach. Appendix section
E.3 will elaborate on the exact method of detecting contact in Marc.

4.1.4. Boundary conditions
Now that the geometry of the model and the rules for contact are implemented into Marc, boundary
conditions have to be applied to the model. The method of restraining the model described in this
section is not the only way to imply boundary conditions. Multiple sets of boundary conditions will be
described and compared in section 4.4. However, it has been found that the standard method, which
will be described in this section provides the best and most reliable answers. In this report this set-up
is called the ’standard model’.

Standard model:
Two reference nodes are created on the centreline of the cable at both ends. These nodes are rigidly
connected to all nodes located at the end of the cable. Boundary conditions are then applied to this
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single node as can be seen in figure 4.4.

Figure 4.4: Nodes at the end of the strand, rigidly connected to a reference node with boundary conditions

The loading of the cable consists of two parts, the tensioning and bending part as is illustrated in
figure 4.5. In the first part, the two reference nodes will be restrained in all degrees of freedom except
the translation direction of the cable while an axial force will be build up on both ends. The middle of
the centre wire of the cable will be restricted from moving in axial direction so that an axial force can
be built up.

(a) Tensioning (b) Bending

Figure 4.5: Loading case

When the tension reaches its prescribed maximum value, both ends will be restrained in all direc-
tions except the rotation along the neutral axis of the cross-sections at both ends. A moment will be
applied gradually on both sides while the ends of the cable will be held in place.

4.2. Data processing
The model created is a simple strand model consisting of one core wire and six wires in the first layer
(figure 4.2a). The geometric and material properties of the simple strand can be found in table 4.2 as
well as in appendix A. These properties are chosen because they are widely used in papers concerning
the bending behaviour of steel wire ropes.

Table 4.2: Geometric and material properties simple strand

Parameter Unit Value

Core wire diameter [mm] 3.94
Helical wire diameter [mm] 3.73
Lay angle [deg] 17.03
Pitch length [mm] 78.67
Cable length [mm] 80
Young’s modulus [GPa] 188
Poisson’s ratio [-] 0.3

Three different situation will be considered in this thesis:

• Fully bonded: Contacting nodes will be bonded together so that no relative movement is allowed

• Frictionless model: A friction coefficient of zero will be taken into account



4.2. Data processing 39

• Friction (standard) model: A friction coefficient between contacting surfaces higher than zero will
be taken into account

Wire ropes have their maximum bending stiffness when the cable has a curvature of zero, or a
value close to zero. When wires inside a wire rope start slipping, the value for the bending stiffness
of that strand will decrease. With a further increase in curvature, the bending stiffness will decrease
even further until it will eventually level out and assume a constant value which is equal to the minimum
bending stiffness. In most analytical models such as the model described by Papailiou [33] in the
previous chapter, it is assumed that the minimum bending stiffness will not depend on the friction
coefficient or applied tension.

In this thesis, the contribution to the bending stiffness due to mechanisms in the rope will be isolated
and presented. In reality, increased tension on a rope will also stiffen it in bending. However, this is
a contribution from the tension and not of the rope itself. This can be explained by thinking of a small
hemp rope which has almost no bending stiffness. When tensioning the rope, it will be more resistant
to bending. This is due to the tension on the rope and not due to a change in its internal parameters.
When bending stiffness is mentioned in this thesis it refers to the change in the internal parameter of
the rope.

4.2.1. Curvature
It is assumed that the curvature of the strand is constant over its length when bending the rope using
the model set-up described in section 4.1. This assumption is not entirely valid because of the applied
boundary conditions during the bending part of the analysis. These boundary conditions will have the
effect that the centreline of the strand will not fit perfectly on a circle fitting when bend. The validity of
this assumption will also depend on the length of the model. When considering large model lengths,
the moment exerted on the ends will not be enough to bend the middle part of the rope. This effect can
be seen in figure 4.6.

(a) Side view

(b) Isometric view

Figure 4.6: Model length of three strand rotations. Legend displays the deflection in vertical direction in millimetres.

It is obvious that the curvature in this bent rope is not constant over its length as the middle part of
the rope still contains wires in stick and is still horizontal (figure 4.6a). The aforementioned assumption,
that the centreline of the rope will fit on a circle fitting will not be valid when considering this model length.
By reducing the length of the model, this assumption will become approximately valid as can be seen
in figure 4.7. The green dotted line represents the circle fitting corresponding to the cable curvature.
It can be seen that the rope in figure 4.7 matches the circle fitting better than the rope in figure 4.6. A
pitch length of one will be used in further analysis so that constant curvature along the strand length
can be considered.

The curvature of the rope is determined by measuring the rotation of the core at the ends (𝜃) which
is defined as in figure 4.8.

To calculate the curvature of the strand, the curvature radius 𝜌 has to be calculated. By making
use of the aforementioned assumption of a circle fitting and assuming that the length of the cable is
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(a) Side view

(b) Isometric view

Figure 4.7: Model length of one strand rotation. Legend displays the deflection in vertical direction in millimetres.

Figure 4.8: Side view of the rope showing only the core wire where is equal to the angle of rotation

constant before and after tensioning and bending, strand curvature is equal to

𝛽 = 𝜃 (parallel lines) (4.1a)

𝜌 =
𝐿straight
2 sin 𝛽 . (4.1b)

The variables are defined as in figure 4.9. 𝐿straight is equal to the shortest distance between the two
ends of the strand. Due to the boundary conditions applied to the model, this distance will not change
when bending the wire rope.

Figure 4.9: Radius of curvature

4.2.2. Bending stiffness
Now that the curvature radius of the rope is known under different loading conditions more can be said
of the relations between bending stiffness and bendingmoment. In the finite element analysis described
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in this chapter, the bending stiffness will be derived using the method described in this section. The
equation describing beam curvature can be approximated by,

𝐸𝐼 = 𝑀
𝜅 (4.2)

where 𝑀 is the bending moment and 𝐸𝐼 is the bending stiffness of the rope. The curvature 𝜅 is
equal to

𝜅 = 1
𝜌 (4.3)

the inverse of the previously defined radius of curvature. There are different methods of defining
bending stiffness. Dastous [8] for example defined the bending stiffness relation for a beam as follows:

𝐸𝐼 = 𝑑𝑀
𝑑𝜅 . (4.4)

Because of inter wire friction in a wire rope, the relation between bending stiffness, curvature and
the bending moment will be more complex. Using equation 4.4 to come to a relationship for the bending
stiffness will lead to a staircase shaped 𝐸𝐼 − 𝜅 relation, instead of a continuously decreasing one. [55]
Equation 4.2 will be used as a basis to construct a relationship for the state-dependent bending stiffness
which will be presented at the end of this section.

According to beam theory with large axial tension [3], the force and moment equilibrium in the cross
sections of a wire rope will lead to,

𝑑𝑉
𝑑𝑥 + 𝑁𝑑 𝑢𝑑𝑥 − 𝑝 𝑑𝑢𝑑𝑥 + 𝑝 = 𝜌𝐴𝑎 (4.5a)

𝑑𝑁
𝑑𝑥 + 𝑝 = 0 (4.5b)

𝑑𝑀
𝑑𝑥 + 𝑉 = 0 (4.5c)

Figure 4.10: Beam subjected to transverse and axial loading [3]

where 𝑉, 𝑀 and 𝑁 are the cross-sectional forces and moments respectively equal to the cross-
sectional shear force, bending moment and axial force. The variables 𝑝 and 𝑝 are equal to the
distributed forces identities in respectively the transverse and axial direction, where 𝑢 and 𝑢 symbolize
these directions, which can be seen in figure 4.10. Inertia terms will not be taken into account in this
analysis. Therefore, 𝜌𝐴𝑎 in equation 4.5a will be zero. The curvature of the vector in the direction of
the beam is equal to

𝜅 = 𝑑 𝑢
𝑑𝑥 . (4.6)

In the case of wire rope bending, the bending stiffness will be dependent on curvature. Therefore,
when combining the equation above with equation 4.2 the moment curvature relation can be written as

𝑀 = 𝜅𝐸𝐼(𝜅) = 𝑑 𝑢
𝑑𝑥 𝐸𝐼(𝜅). (4.7)
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Where 𝐸𝐼(𝜅) is the state-dependent bending stiffness dependent on curvature. Combining equa-
tions 4.5 with 4.7 the following equation can be derived:

𝑑
𝑑𝑥 (𝑑 𝑢𝑑𝑥 𝐸𝐼(𝜅)) + 𝑝 𝑑𝑢𝑑𝑥 = 𝑇𝑑 𝑢𝑑𝑥 + 𝑝 . (4.8)

Equation 4.8 can be worked out when selecting correct boundary conditions. When considering
an axially loaded cable with a pair of bending moments 𝑀 at both ends of the strand just as has been
described in section 4.1.4 the following boundary conditions are present: [55]

𝑢 | = 𝑢 | = 0 (4.9a)
𝑑 𝑢
𝑑𝑥 𝐸𝐼(𝜅)| = 𝑑 𝑢

𝑑𝑥 𝐸𝐼(𝜅)| = 𝑀 (4.9b)

𝑝 = 𝑝 = 0. (4.9c)

If 𝐸𝐼 is constant over the length of the rope then the solution of equation 4.8 is,

𝑀 =
(1+exp(𝐿√ ))√𝑇𝐸𝐼

exp (𝐿√ ) − 1
𝜃 (4.10)

where 𝑇 is equal to the axial tension as is illustrated in figure 4.5. The rotation angle at the ends 𝜃
is in a direct relationship with 𝜅 for a cable with constant curvature. Combining equation 4.1 with 4.3
will give

𝜃 = 𝜋
2 − arctan

𝐿
2𝜅 . (4.11)

A relation between the bending moment 𝑀 and the curvature 𝜅 of the strand is realized as can be
seen in figure 4.11a and in equation 4.12.

𝑀 =
(1+exp(𝐿√ ))√𝑇𝐸𝐼

exp (𝐿√ ) − 1
(𝜋2 − arctan

𝐿
2𝜅) (4.12)

By imposing a bending moment on the rope and measuring the angle of rotation at the ends, the
bending stiffness of the rope can be derived via equation 4.10 or 4.12, results of this can be seen in
figure 4.11b.

4.3. Geometric (non)linear effect
As previously mentioned in section 4.1.4, the model is tensioned first before bending. After the ten-
sioning is completed, the ends will be restricted from all movement except one rotation which allows
for bending around one axis while keeping the axial force in the rope model. Because of this restric-
tion in axial direction, the axial force on the rope will increase when the strand assumes relatively high
curvatures. This is due to the geometric nonlinearity of the system.

When assuming a geometrically linear system, equations of motion are formulated in the initial state
of the system. These equations are not updated when the model deforms. This assumption causes
errors which can be considered insignificant for small strains or curvature changes. However, for larger
deformations, these errors cannot be neglected.

The analytical linear equation for a beam simply supported at both ends loaded by a uniformly
distributed load 𝜔(N/m) over its whole length as is shown in figure 4.13 is defined by

𝛿 = 5𝜔𝑙
384𝐸𝐼 . (4.13)



4.3. Geometric (non)linear effect 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Curvature (m-1)

0

5

10

15

20

25

30
B

en
di

ng
 m

om
en

t (
N

m
)

(a) Bending moment

10-2 10-1 100

Curvature (m-1)

10

20

30

40

50

60

70

80

90

100

B
en

di
ng

 s
tif

fn
es

s 
(N

m
2
)

(b) Bending stiffness

Figure 4.11: Bending moment and stiffness against curvature of a simple strand with a friction coefficient of . and an
axial tension of kN

(a) Fixed and free boundary condition (b) Fixed boundary conditions

Figure 4.12: Two simple beams with different boundary conditions where figure 4.12a resembles geometrically linear behaviour
while figure 4.12b generates nonlinear results. Both cylindrical beams have dimensions equal to the core wire of the simple

strand described in section 4.2

Figure 4.13: Simply supported beam of length with distributed load

This equation describes the deflection of the middle point of the beam. The variable 𝑙 stands is the
length of the considered beam. The reaction moment at the ends can be calculated by:

𝑀 , =
𝜔𝑙
2 . (4.14)

When taking the examples shown in figure 4.12 and measuring the maximum defection of both
models exited by the shown bending moment, differences in geometrically linear and non-linear sys-
tems modelled numerically can be explained. Both models are implemented in Marc and are compared
to the analytical equation 4.13. This comparison can be seen in figure 4.14 where the numerical and
analytical linear model correspond quite well. The numerically calculated non-linear model shows in-
creasingly more deviation from the linear models after a certain curvature has been reached.

Because the numerical model of the simple strand described in this chapter uses the geometrically
non-linear set-up of figure 4.12b, this deviation from the linear result can also be expected. In reality
when considering cable sections far away from the ends, boundary conditions can be considered to
be as in figure 4.12a. Because these boundary conditions are hard to model numerically, the set-up of
figure 4.12b is used. As the models from figure 4.12 have the same dimensions as the core wire of the
simple strand explained in section 4.2, they can be compared.

In figure 4.15 the relationship between bending stiffness and curvature numerically calculated for a
simple strand can be seen. No friction is taken into account to isolate the contribution due to geometric
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Figure 4.14: Bending moment against curvature for a geometrically linear and non-linear system

non-linearity. After a curvature of 𝜅 = 0.5m the results will deviate significantly from the minimum
value for the bending stiffness. In figure 4.14, non-linear behaviour will deviate from the linearly derived
results around the same curvature of 𝜅 = 0.5m . Therefore it can be stated that after this curvature,
bending stiffness results are not reliable any more.

Figure 4.15: Relationship between bending stiffness and curvature for a frictionless model

To be able to conclude anything about the bending stiffness of a simple strand at higher curvatures,
some sort of correction has to take place. To isolate the effect of friction on the bending stiffness, a
frictionless analysis has to be performed and compared to the analysis with friction. In reality the value
for the bending stiffness for a frictionless analysis should be constant. However, from figure 4.15 can
be concluded that this is not the case.

When running a model with friction the change in bending stiffness arises from two different pa-
rameters; stick-slip and due to geometric non-linearity. The stick-slip contribution is considered to be
dominant until a curvature of 𝜅 = 0.5m is reached. After this curvature, geometric non-linearity will
influence the found bending stiffness. To remove this contribution, a frictionless model is constructed
for each set-up while afterwards, the difference 𝛿 shown in figure 4.15 is subtracted from the found
bending stiffness in the corresponding model with friction. An example of this correction can be seen in
figure 4.16. This way the effect of geometric non-linearity is removed from the analysis and the effect
of friction on the bending stiffness is isolated.

Note that this technique is not fully trustworthy. The assumption that the contribution of geometrical
non-linearity to the bending stiffness of frictionless and models with friction is equal is not fully true.
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Figure 4.16: Correcting the relationship between bending stiffness and curvature for axial restriction

Results for the bending stiffness for curvatures higher than 𝜅 = 0.5m are corrected but cannot be
fully trusted.

When changing the length of the model, the effect that geometric non-linearity has on the model
outcome is different as can be seen in figure 4.17. When reducing the length of the model, the effect
is not noticable for the investigated curvature range as can be found in figure 4.17a. For larger model
lengths, the effect geometric non-linearity has on the model outcome will increase.
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(a) Model length of 40 cm
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(b) Model length of 120 cm

Figure 4.17: Bending moment against curvature for a geometrically linear and non-linear system

4.4. Sensitivity study
Now that the numerical model and the post processing method is fully described a sensitivity study
has to be performed to check the impact of changing certain input parameters. The numerical model
consists of a wide variety of parameters, and many relationships between the input and the output of
the model exist. There is a difference in the impact of these variables on the output of the model. A
sensitivity analysis will help show how the uncertainty of output of the numerical model. Increased
understanding of the relationships between input and output can result in uncertainty reduction. This
is done by the identification of input parameters which cause significant uncertainty in the outcome of
the model. Research into these specific parameters results in a more robust model.

Parameters with no significant influence on the output can be filtered out to reduce the complexity of
themodel and possibly reduce computational time. Incorrect relations can be identified by encountering
unexpected relations between certain inputs and outputs.

For this study a simple strand model is used as computational expense will be a significant problem
when executing the sensitivity analysis on different parameters of the numerical model. The model will
take 10 to 20 minutes to run in its most simple form. When changing the level of detail of the model by
increasing the amount of elements, computational time will increase as can be seen in figure 4.18.
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Figure 4.18: The amount of elements in a mesh against the computational time needed for an analysis

When comparing different settings and conditions, it is of importance to select a mesh size which
corresponds with reliable results and with preferably low computational time. As one can expect, these
two parameters do not go hand in hand. In the next section, different mesh sizes will be analysed along
with the mesh size chosen for all the analyses in this thesis.

4.4.1. Mesh size
The first investigation topic of the sensitivity study is the element or mesh size. A mesh is a name for
the collection of nodes and elements of which a finite element model exists. The size of a mesh is
important to the degree of detail of the model. However, an increased mesh size will have a negative
effect on computational time as can be seen in table 4.3.

Table 4.3: Mesh sizes and corresponding computational time for a standard simple strand model with a tension of kN
and a friction coefficient of .

Model name Elements [-] Nodes [-] Computational time [s]

Very very coarse 4704 6477 490
Very coarse 13104 17082 1475
Coarse 26068 32552 4206
Fine 39368 48827 7040
Very Fine 162400 192761 178465

As mentioned before, mesh size also has an influence on the degree of detail of the model and of
its results. The simple strand model defined in section 4.2 is constructed with the different mesh sizes
seen in table 4.3. The results of the analysis of these models can be found in figure 4.20 where the
horizontal dotted lines correspond with the fully bonded model where all wires are glued together. The
continuous lines represent the model with friction, where all wires touch and can move relative to each
other. The analytical model by Papailiou [33] is also shown so the numerical results can be compared
to the theoretical one.

The difference between the fully bonded models with different mesh sizes in figure 4.20 is due to
the way Marc determines contact and due to the element type chosen for the model. In appendix E
the element type and contact detection techniques Marc uses can be found. The normal and friction
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stress vector (when looking at the standard friction models) direction is dependent on the element size,
as the normal vector of an element (figure 4.19) also describes the direction of the normal force. If
the mesh is coarse and so the element size is large, than the normal stress vector from contact body
one and two are definitely not perfectly opposite to each other as can be seen in figure 4.19a. When
increasing the number of elements in the wire cross-section the normal vectors will align better as can
be seen in figure 4.19b. When these factors are more aligned, a more representative value for the
bending stiffness in the fully bonded models can be found. However, it cannot be confirmed that with
an infinitely fine mesh the bending stiffness during stick will match the analytically generated one but
the results generated in figure 4.20 show that with increasing mesh size the bending stiffness for the
fully bonded models will go up.

(a) Contact detection
coarse mesh

(b) Contact detection
fine mesh

Figure 4.19: Contact detection and normal stress direction vector
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Figure 4.20: Bending stiffness as a function off curvature for different mesh size. All models are analysed with a axial tension of
kN, all analysis with friction use a friction coefficient of .

A few things can be concluded from figure 4.20 about the continuous lines describing stick-slip
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behaviour:

• The first section of each line is horizontal and describes a regime where all wires stick to each
other

• With increased detail of the mesh, the bending stiffness at low curvatures describing stick in-
creases

• The difference between the fully bonded model and its corresponding stick-slip model decrease
with increasing model complexity

• Models approximately behave the same for high curvatures

Computational time needed to run the very fine model is quite large (50hr) while for example running
a very coarse model costs around half an hour. The most detailed model shows the best results.
Therefore, a consideration between desired level of detail and computational time has to be made.
The fine model is chosen for the bulk of further analyses as it shows a relative good initial comparison
between the maximum bending stiffness of the fully bonded model and the stick-slip model and its
computational time is relatively low compared to that of the very fine model.

4.4.2. Friction
Regarding the results for the very finemodel (light blue) in the previous section, it can be noticed that the
results for the fully bonded and the frictional (standard) model are quite close together. Other models
display a difference between the fully bonded and the frictional variant. At first it can be concluded that
the reason for this is the element size and due to the effect explained and illustrated in figure 4.19.
However, further studies towards the method Marc calculates stick slip behaviour have shown that this
is not the only reason. The method used to model friction will also have an impact on the magnitude
of the bending stiffness during stick. The actual physics of friction and the numerical representation of
it continues to be topics of research. [28] For the numerical model a Coulomb friction model has been
used which can be represented by the following equations,

|𝑓 | < 𝜇𝑓 stick (4.15a)
𝑓 = −𝜇𝑓 ⋅ 𝑡 slip (4.15b)

where 𝑓 is the tangential (friction) force, 𝑓 is the normal force and 𝑡 is the tangential vector in the
direction of the relative velocity. The discontinuity in equations 4.15 for the friction value may easily
cause numerical difficulties. Marc can use different methods that deal with this problem. For example a
bilinear friction model, where stick and slip conditions correspond to reversible (elastic) and permanent
(plastic) relative displacements, respectively. Because of this assumption to resolve the discontinuity
in the Coulomb model, numerical errors arise in the results of the analysis. Due to the allowed elastic
movement during stick the measured bending stiffness will not be realistic. The ”frictional stiffness”
corresponding to this elastic relative displacement is dependent on the element size and thus also has
an influence on the measured bending stiffness. This explains the fact that the bending stiffness during
stick for the standard models increases with higher mesh sizes. The details of what is stated here is
further explained in detail and can be found in appendix E.3. The method of analysing the bending
stiffness correctly, which will be used in this thesis is explained in section 4.4.2 where the parameters
on which this frictional stiffness depend will be varied. The standard model is considered correct if
the horizontal plateau in the graph displaying the maximum bending stiffness during stick matches the
value generated by the corresponding fully bonded model.

For higher curvatures, the bilinear model and the Coulomb model described in equations 4.15 be-
have in the same way and so no significant dissimilarities between outcomes of different mesh sizes
are found.

When changing the value for the friction coefficient, it is expected that the maximum bending stiff-
ness at low curvatures will not change as wires are still in the sticking phase. When looking at figure
4.21 it can be seen that this is not the case. The bending stiffness at low curvatures will decrease for
lower friction coefficients.
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Figure 4.21: Variation of friction coefficient using a very fine model using a axial tension of kN.

This has to do with the way Marc solves friction problems which has been addressed previously in
this section. The friction coefficient has an influence on the ”frictional stiffness” previously introduced.
How this influence can be calculated is shown in appendix E.3. The main outcome of the analysis
shown in appendix E.3 is that the so called slip threshold (𝛿) has to be adjusted when the friction
coefficient changes to make sure that the frictional stiffness during stick stays the same when using
different friction coefficients. The slip threshold describes a distance which is smaller than the average
element edge length. It defines a section of elastic relative displacement where the frictional stiffness
will be used to define the resistance to external forces.

The bending stiffness value during stick has to match the value found when running the fully bonded
models. As the bending stiffness found during stick is dependent on this frictional stiffness, the slip
threshold has to be adjusted when choosing a friction coefficient so it will match the required maximum
bending stiffness defined by the fully bonded models. This adjusting of the slip threshold to match the
correct value of the bending stiffness can be seen in figure 4.22.

The curve corresponding with a 𝛿 value of 1.5mm is found to match the fully bonded model best
when looking at the maximum bending stiffness at low curvatures. All simulations in figure 4.22 are
run using a friction coefficient of 𝜇 = 0.5. When using other friction coefficients, the 𝛿 value has to be
adjusted. How this is done can be found in appendix E.3.

The default value of the slip threshold is 𝛿 = 0.0025𝐿 , where 𝐿 is the average edge
length of the mesh. Using the fine model this results in 𝛿 = 0.0018m = 1.8mm. For a model
using 𝑇 = 20kN and 𝜇 = 0.5 a slip threshold of 𝛿 = 1.5mm has to be used to make the model behave
as it should. Because a friction coefficient of 𝜇 = 0.5 is not realistic for steel wire ropes, a value of
𝜇 = 0.125 is used. Because the frictional stiffness (equation 4.16) has to remain equal,

𝐶 = 𝜇𝐹
𝛿 (4.16)

the slip threshold has to reduce by the same factor as the friction coefficient to keep 𝐶 constant.
As is determined in section 4.4.6, the same will be done for a change in tension. This will result in the
slip thresholds and their percentage from the default value seen in table 4.4.

In the third case in table 4.4, a slip threshold has to be chosen which is 10.44 percent lower than
the default value. A reduction in slip threshold will result in the need for smaller load steps to reduce
the numerical instability generated by the slip threshold reduction thus increasing computational time
significantly.
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Figure 4.22: Variation of the slip threshold using a fine model using a axial tension of kN and a friction coefficient of
.

Table 4.4: Standard model with different parameters using different slip threshold values to match to the fully bonded model

- Tension [N] Friction coefficient [-] Slip threshold [mm] percentage of default [%]

1 20000 0.5 1.5 83.33
2 20000 0.125 0.375 20.83
3 10000 0.125 0.188 10.44

4.4.3. Load step determination
The transition from stick to slip is hard to model numerically as it is somewhat of an abrupt change.
The abruptness is made smooth by the program as will be explained in section 4.4.2 but will still require
detail to model correctly. Because of this fact, the load step will be varied when the model progresses
so that the load step size can be reduced where needed without heavily increasing computational time.
The analysis will be divided into three parts, the tensioning, stick to slip transitions regions, and the
slipping part. After the tensioning part the results can be seen in figure E.2. The load steps that have
been taken into account for a simple strand model with a fine mesh can be seen in table 4.5. Noticeable
are the smaller load steps in the transition and slip part where the former contains the lowest load step.
This is due to the aforementioned abrupt change in bending stiffness as can be seen in figure E.2. Note
that when an even more abrupt change from stick to slip is seen, the load steps shown in table 4.5 will
be reduced until a smooth transition in the results is seen.

Table 4.5: Different load steps per analysis region for a simple strand model with a fine mesh with a tension of kN and a
friction coefficient of .

Analysis part Load step [s]

Tension 0.01
Transition 0.002
Slip 0.008

Determining the correct load step is also important because of the non-linear behaviour of the strand
in the slip regime. When the load step selected is to large, the program reacts to abruptly to the change



4.4. Sensitivity study 51

0 0.2 0.4 0.6 0.8 1 1.2

Curvature (m-1)

0

5

10

15

20

25

30
B

en
di

ng
 m

om
en

t (
N

m
)

Load step

(a) Bending moment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Curvature (m-1)

10

20

30

40

50

60

70

80

90

100

B
en

di
ng

 s
tif

fn
es

s 
(N

m
2
)

Load step

(b) Bending stiffness

Figure 4.23: Load step variation for a simple strand model with a fine mesh with a tension of kN and a friction coefficient
of .

in load resulting in outliers when compared to results from analysis ran with a smaller load step. In
appendix section E.2 results of different analysis using other load steps have been shown. Again, the
load steps shown in table 4.5 for the slip part are reduced when uncertainties are found in the results.

4.4.4. Boundary and initial conditions
In section 4.1.4 the boundary conditions are explained which have been implemented into the standard
model, for clarity these will be summarized in this section.

The standard model loading characteristic is divided into two parts, tensioning and bending where
the axial forces and bending moments are exerted on two reference nodes located on each end of the
strand. All nodes at the end of a strand are rigidly connected to that one reference node. To properly
map the bending stiffness due to the bending of the strand, friction is only allowed in the second or
bending part.

Other set-ups of boundary and input conditions can be realized and compared to the standard
model. This will show which model set-up is the most realistic and which model should be used for
further analysis. Five different model set-ups have been developed, the first two will consist of the
standard model and the all friction model. Both models have the same boundary conditions: all nodes
at the ends have been rigidly connected to a reference node where the tension and bending loads will
be applied but have different input parameters. The last three models have the same input parameters
as the standard model but differ in boundary condition set-ups.

1. Standard: Only friction during bending is allowed, friction during tensioning is assumed to be zero

2. All friction: Friction is allowed during both tensioning and bending

3. Free translation: Movement in axial direction of the strand between wires and between wire and
core is allowed as can be seen in figure 4.24a

4. Free rotation: Movement in rotational direction of the strand between wires and core is allowed
as can be seen in figure 4.24b

5. Free translation and rotation: Movement in axial and rotational direction of the strand between
wire and between wire and core is allowed as can be seen in figure 4.24c

When comparing the standard with the All friction model in figure 4.25a, it can be concluded that
the All friction model displaces a more compliant response. This can be explained due to the fact
that during the tensioning of the strand, the All friction model generates friction between wires. This
pre-existing friction on the onset of bending makes it easier for the wires to slip and also reduces the
bending stiffness during the stick regime. In order to rule out the effect of pre-existing friction so that
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(a) Free translation (b) Free rotation (c) Free translation
and rotation

Figure 4.24: Alternate boundary condition set-ups
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(a) Standard and all friction model
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(b) Standard model compared to alternate boundary
conditions set-ups which can be found in figure 4.24

Figure 4.25: Boundary condition analysis, all very coarse models are calculated with . and kN

solely the effect of the bending can be taken into account, following analysis have been performed with
the method of the standard model with only friction during bending.

The models that allow for different movements at the boundaries displayed in figure 4.25b also
show more compliant movement than the standard model. Energy will be dissipated due to the al-
lowed movement of the individual wires in the strand. The more the wires are allowed to move at the
boundaries, the lower the bending stiffness. The ends of wire ropes are clamped at thus displaying the
restrictions set for the standard model, however over the length of the rope different wire rope compo-
nents can slightly move relatively to one another which resembles the models with allowed movement.
This movement however is not entirely free such as is the case with the models 3, 4 and 5.

The problem with these models allowing movement is the numerical calculation of the friction. As is
briefly explained in section 4.4.1, the conditions for slipping depend on the mesh size and orientation
of the mesh. When allowing movement at the ends, the calculation of the friction on the mesh is more
difficult and a more detailed mesh size and load step are needed. However, changing the mesh size
has an influence on the bending behaviour as has been seen in section 4.4.1. Changing the mesh
size will impact the results. To properly compare results, constant mesh sizes have to be used. This
causes some numerical instabilities as can be seen in figure 4.25b.

It seems like the standard model due to its boundary conditions isolates the effect of the inter wire
friction on the state-dependent bending stiffness. This model set-up will be used to compute the state-
dependent bending stiffness shown in this thesis.

4.4.5. Modelled length
During the bending tests performed by Raoof [35] is was concluded that the slip of wires in a wire rope
start at the neutral axis of bending. In the numerical model a limited length of the simple strand can be
constructed. Wires inside the strand cross the neutral axis only with a spacing of 60∘ times the pitch
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length separated from each other. In figure 4.26 different strand lengths are shown with the same lay
angle. The locations of different wires inside the strand crossing the neutral bending axis are indicated.
It is expected that slip will propagate from these locations outward in both directions.

It has to be noted that the maximum bending stiffness found for the models with different lengths
shown in figure 4.27 cannot be compared. This is due to the fact that the maximum bending stiffness
for the fully bonded models is dependent on the element size which is not constant throughout the
models. The parameters defining the frictional stiffness during stick, explained in appendix section E.3
is adjusted individually for each model so that the maximum bending stiffness during stick will match the
value found in the corresponding fully bonded model. It is assumed that all models shown in 4.26 with
have approximately equal values for the maximum bending stiffness if the element sizes were equal.

(a) Half a pitch length (b) One pitch length

(c) One and a half pitch length

Figure 4.26: Slip starting locations for multiple lengths of a simple strand with equal lay angle

When looking at figure 4.26a where half a pitch length has been modelled, it can be seen that two
wires cross the neutral bending plane at the ends of the model. All nodes at the ends are connected to
a reference node which is restricted in all movement except the rotation in the direction of the moment.
Due to this boundary condition, wires will not slip close to the ends of the strand. Therefore, only four
wires will slip while bending this model. This will result in a higher bending stiffness for larger curvatures
as not all wires will slip. This effect can be seen in figure 4.27 where the bending stiffness is shown for
different curvatures for all model lengths shown in figure 4.26.

The results for a pitch length of one and that of one and a half show similar results. This is because
the pitch length is long enough so that all wire can show slip behaviour as is schematically shown in
figures 4.26b and 4.26c. However, the bending stiffness found for the one and a half pitch lengths is
again slightly higher than that of the one pitch length model for high curvatures. This is because of
the previously explained phenomenon in section 4.2 where it is explained that when a model gets to
long, the middle of the strand will not slip. This will results in a larger bending stiffness than expected
because the assumption that the bended strand is on a circle is no longer valid and wires in the middel
of the strand will still be in sticking condition. However, with this model length, this effect is still quite
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Figure 4.27: Bending stiffness for standard models with model length variation using simple strands with the same lay angle

small so the results from the model with a pitch length of one and that of one and half are approximately
the same.

It can be concluded that the one pitch length model is long enough so that when bent, all wires
will be able to slip along their length. The model is considered short enough so that the middle part of
the strand will also show slip causing the assumption that the bent strand can be projected on a circle
to be valid. This last remark is strengthened by the fact that the one pitch length strand also has two
wires that pass the neutral bending axis in the middle of the cable thus starting slip from that location
onwards.

4.4.6. Tension
The effect described in the previous section defining the way Marc solves frictional problems, also has
an effect on the bending stiffness during stick when varying the tension on the strand. In appendix E.3
it is explained that the friction coefficient and the normal force on the element have an effect on the
frictional stiffness during stick. As has been shown in section 4.4.2, adjusting the slip threshold when
changing the friction coefficient is sufficient to make sure that the bending stiffness during stick will
remain the same when other frictional coefficients are used.

However in the case of varying tension, it is more complicated as the normal force influencing the
frictional stiffness is not directly determined by the tension but is also dependent on the lay angle and the
orientation of the wires. Another difference is the fact that the frictional coefficient is constant throughout
the analysis while the normal force on the elements will continually change due to the applied external
forces thus effecting the frictional stiffness and therefore effecting the bending stiffness during stick.

It is important to state that the bending stiffness of the strand during stick is not expected to change
when different pretensions are used. As can be seen when modelling the strand as a beam following
the Euler-Bernoulli equations with pretension:

𝜌𝐴�̈� + 𝐸𝐼𝑤”” − 𝑇𝑤” = 0 (4.17)

The term 𝑇𝑤” will take the extra bending resistance due to a higher pretension into account while
the material bending stiffness parameter will stay the same. Consider for example a simple string with
hardly any bending stiffness loaded with tension. Apply a point load perpendicular to the string halfway
along the length. When increasing the tension, it will become harder to bend the string using the point
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load. This is not because the bending stiffness of the string is increased, in fact it is still the same as it
was before. It is due to extra tension that is added in the system described by 𝑇 in equation 4.17.

Wire ropes during stick will behave the same way as the string does in the aforementioned example.
This can be seen in figure 4.28 where different tensions are applied to a simple strand with a fully
bonded and a standard frictional model. The maximum bending stiffness that has been found for
different curvatures for the fully bonded model will stay the same. This corresponds to the findings
stated in this section.
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Figure 4.28: Fully bonded and frictional models using a friction coefficient of . for different tension levels

In figure 4.28 also the standard frictional model change under different tension levels is shown.
When examining the effect of varying tension while keeping the slip threshold constant, it can be stated
that the effect is similar to the effect of changing friction coefficient which was seen in figure 4.21.
Although the effect of the tension forces on the normal force determining the frictional stiffness during
stick are more complicated than that of the friction coefficient, the results seem similar. Therefore
changing the slip threshold could again keep the frictional stiffness similar for different tension levels.
In figure 4.29 different slip threshold values for a standard model with a constant tension are shown. It
can be seen that when decreasing the slip threshold value even further, the horizontal plateau of the
standard model with match the fully bonded model.

It can be seen in figure 4.29 that by decreasing the slip threshold the bending stiffness during stick
will go up and with therefore eventually match the fully bonded model. If these values match the model
is considered well represented. During the slipping phase the influence of the slip threshold will no
longer have an influence and all models will behave similarly.

4.5. Model expansion
Steel wire ropes used in the offshore industry consist of more complex wire rope configurations. Wires
describing double helical paths in the outer layers are present in these more complex configurations.
When solving these models using Marc [27], problems with mesh size can be expected especially with
more wires and thus contact bodies as has been seen in figure 4.20. In the same figure is is shown that
the shape of the curve corresponds quite well with the model by Papailiou [33] although the extremes
of the numerical model are more nuanced when compared with the analytical model.

The difficulties with setting up a numerical model for larger wire ropes configurations are caused by
several components, which will be addressed with a coarse mesh model consisting of 67228 elements.
The mesh used is shown in figure 4.30. While performing the same method of measuring the bending
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Figure 4.29: Models with changing slip threshold while keeping tension at kN and friction at .

moment as is described in section 4.1 the following relationship has been found between bending
stiffness and curvature (figure 4.31).

Figure 4.30: Mesh of the coarse IWRC model

When comparing figure 4.31 with for example figure 4.20 it can be concluded that there is no clear
horizontal part of a curve in figure 4.31 which indicates full stick. Theminimum andmaximum theoretical
values calculated using C are far removed from the numerically determined ones. The curve in figure
4.31 does however show stick slip behaviour as after a certain curvature the bending stiffness will drop
towards a constant value.

High computational time
Modelling more complex geometries in Marc can provide numerical uncertainties because of the pres-
ence of multiple wires and thus contact bodies and because of the way Marc calculates friction which
is briefly explained in section 4.4.1. Large computational time is needed to run a model such as an
IWRC with a configuration as is described in appendix A. The large number of elements and the small
load step which are necessary to come to a stable solution are the main contributions towards this high
computational time.
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Figure 4.31: Relationship between bending stiffness and curvature for an IWRC

Radial contraction limitation
The first part of the graph corresponding with low curvatures in figure 4.31 can be explained by the
fact that some wires are not touching each other somewhere over their length at the onset of bending.
This is due to the boundary conditions placed upon the model restricting the radial contraction of the
ends of the IWRC. This effect can be seen in figure 4.32 where in figure 4.32a the side view of the
model in initial condition is shown. Because of the rigid connection between the nodes at the ends of
the IWRC and the reference node no radial contraction is allowed. Figure 4.32b shows a exaggerated
situation after tensioning where it can be seen that all wires in the middle of the model touch while at the
ends the initial configuration is still maintained. Wires will not achieve perfect line contact along their
entire length thus resulting in a non equal distribution of the normal forces between wires. Therefore
the bending stiffness at the onset of bending is quite uncertain as the loads and contact conditions
near the boundaries differ from the situation in the middle of the model. After certain deformation and
movement during bending, wires will settle and a more reliable response is found as can be seen in
figure 4.31 for somewhat higher curvatures.

(a) Initial configuration (b) After tensioning

Figure 4.32: Exaggerated visualisation of the radial contraction limitation in larger wire rope configurations

Slip threshold
The way Marc determines friction explained in appendix E.3 also has an influence on this varying
bending stiffness during stick. The size of the elements in all wires of the IWRC are not the same while
the slip threshold for all elements is equal. This results in the fact that the frictional stiffness between
elements is not the same throughout the model which will result in a non constant bending stiffness
during stick.

When decreasing the slip threshold as has been done in this chapter for simple strands the resis-
tance during stick should increase. As however can be seen in figure 4.31, bending stiffness during
stick decreases and it takes some time or curvature of the cable until it reaches its maximum value. In
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the case of the simple strand model the slip threshold was also equal for all elements while the element
edge size was not. However, differences due to the low number of different wires are very small and
no serious issue arises. In the IWRC, differences between wire diameters are larger and thus reducing
the slip threshold has a different effect on the elements of different contact bodies.

Model length
The model length influences the found results. Taking to much strand rotations into account will result
in the maintaining of stick in the middle of the strand when bending, as has been shown in section 4.2.
This is not the desired effect as it will increase the found bending stiffness. When considering a to short
model, not all wires will start slipping as is explained in more detail in section 4.4.5.

When considering larger wire rope configurations such as an IWRC with double helical wires in the
outer strands, more parameters play a role. For the results shown in this section an IWRC as in figure
4.30 is taken into account. The strands accomplishes one full rotation while the wires in those strands
make four rotations. The wires in the core strand make two rotations all within the same model. Due
to these differences in winding lengths, it is difficult to find the ideal model length. A to short model will
prevent wires from slipping while a to long model will prevent wires from slipping in the middle of the
model. This problem increases for even larger wire rope configurations.

Modelling the correct bending stiffness while taking all these mentioned challenges into account is
time consuming and challenging. The simple strand model is chosen and elaborated on in this thesis
as results are generated more quickly.

4.6. Evaluation
This chapter has treated the method used to model different wire rope configurations into the FEM
program Marc. The simple strand model is discussed elaborately along with the method of calculating
the bending stiffness dependent on parameters such as curvature, tension and friction coefficient. The
method of finding the bending stiffness can be divided into the following steps:

1. Create an input file for an arbitrary wire rope configuration using Matlab

2. Construct the wire rope cross sectional configuration in Marc or import it directly from Inventor

3. Use the input file to construct the mesh

4. Choose settings and boundary conditions corresponding to the desired analysis (fully bonded,
frictionless or standard)

5. Run the fully bonded and standard model and compare the results for the maximum bending
stiffness

6. Adjust the slip threshold so that the maximum bending stiffness from the standard model matches
the fully bonded model

7. Run the frictionless model and use the results to correct the bending stiffness found for large
curvatures due to geometric non-linearity

8. When parameters such as friction coefficient, tension or element size are changed, the slip thresh-
old has to change accordingly

In the sensitivity study some aspects of the program Marc are described and it is discussed how
they influence the results. One main challenge with modelling friction was found when changing the
values for the friction coefficient and the tension. The maximum bending stiffness during stick was
not influenced by the variation of the friction coefficient or tension. This is an unrealistic result and is
caused by the slip threshold value determining the frictional coefficient which has an impact on the
bending stiffness during stick. Adjusting this slip threshold according to the parameters used resulted
in models which behaved representatively and which could be used in further analysis. However,
reducing the slip threshold value will result in higher computational time because of the smaller load
step that has to be chosen. Lowering the slip threshold will result in a more sudden change between
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stick and slip thus resulting in numerical instability. By reducing the time step, this instability can be
resolved. In appendix section E.3, the effect of reducing the slip threshold is shown.

The preliminary study performed in this chapter does show very promising results as the numerical
model clearly resembles the analytical model by Papailiou [33] for simple strands. When looking at
multiple layers in section 4.5, the resemblances are still there for higher curvatures but for lower cur-
vatures they correlate much less. As computational time needed for these more complex models are
substantial, only basic results are shown. However, the findings in this chapter are promising. With time
and increasing computer capacity, numerical modelling for these more complex wire rope geometries
is certainly possible.

For further research into the validity of the assumptions by Papailiou [33] and into the bending
behaviour of helical wound ropes, a simple strand with a configuration as in appendix A is used. This
is done because of its simplicity. This reduces computational and model fine-tuning time considerably.
When it is shown that it is possible to model the state-dependent bending stiffness for simple strands,
the conditions required for model expansion can be discussed.





5
Results

This chapter will focus on the results generated by the numerical model explained in chapter 4. The
results will be compared to that of the analytical model described in chapter 3. Some of the assumptions
made in the analytical model by Papailiou [33] will be discussed in this chapter. The standard model
described in section 4.1.4 is used for the analyses with a fine meshed simple strand model (table 4.3).
The used load step will vary depending on the input as some input parameters require a smaller load
step to be able to deliver reliable results.

In section 5.1 the assumption of pure interlayer contact will be checked. Differences between all
aforementioned contact modes: interlayer, intralayer and mixed will be shown.

In section 5.2 the friction coefficient will be varied. This is of importance as the friction coefficient
in steel wire ropes is hard to determine and will change over time. Lubricant will seep out of the wire
rope because of repeated tensioning and bending thus increasing the friction coefficient. [10] As it is
uncertain what the axial coefficient is, its effect on the bending stiffness has to be monitored.

The effect of tension on the bending behaviour of wire ropes is an important parameter to monitor
as the tension varies along a vertically suspended wire rope due to its self weight. Section 5.3 will
display and evaluate the effect of tension.

Lay angle variation and tension differences along a wire rope are caused by one another. Section
5.4 will show the impact of different lay angles on the bending stiffness at different curvatures.

The chapter will end with a discussion of the results and an overall comparison of the analytical and
numerical models. Use of both models for large wire rope configurations will be discussed.

5.1. Contact
The three different contact modes implemented in the numerical model are: interlayer, intralayer and
mixed contact. A more detailed description of how contact is determined in Marc will be shown in
appendix E.3.

The black dotted line in figure 5.1a represents the analytical solution defined in chapter 3 and is
used as a reference. In the analytical solution, the contact is assumed to be solely interlayer.

In figure 5.1a the result can be seen for a simple strand with a lay angle of 17∘. This lay angle is high
enough to let the wires in the first layer of the strand touch each other in the undisturbed situation. If only
interlayer contact is allowed, a reduction in bending stiffness at low curvatures is seen while comparing
with the intralayer or mixed contact conditions. Intralayer contact resembles the mixed contact quite
well for a simple strand with a lay angle of 17∘ as can be seen in figure 5.1a.

This is completely different when looking at the results of a simple strand with a lay angle of 9∘ in
figure 5.1b. Wires only make interlayer contact in the undisturbed situation. This is in agreement with
the assumption made in the analytical model. At lower curvatures, the results from the intralayer con-
tact condition show lower values for the bending stiffness. Interlayer contact and mixed contact show
exactly the same results thus indicating that throughout the model only interlayer contact is present.

The assumption by Papailiou [33] that only interlayer contact is present can be considered correct
for low lay angles. When in the undisturbed situation, intralayer contact is available, this assumption
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Figure 5.1: Relationship between bending stiffness and curvature while using different contact modes for a simple strand with
lay angels of ∘ and ∘

will not be correct for low curvatures of the strand. At higher curvatures, the difference between the the
mixed and interlayer results will diminish.

5.2. Friction coefficient
After numerically validating the model for friction variation in section 4.4.2, this section focusses on
the effect of changing the friction coefficient while mapping the change in bending behaviour. The
uncertainty of input parameters like the friction coefficient of lubricated steel on steel contact is quite
high. [41] Therefore, the effect of different friction coefficients is measured in this section.

As the determination of the friction coefficient between wires in a wire rope can be uncertain, the
outcome of a model and experimentally determined results can be as well. Figure 5.2 displays the effect
of a different friction coefficient on the outcome of the model while keeping the tension constant. The
analytical results display a stiffer response in lower curvature ranges and a more compliant response
at higher curvatures than those numerically generated. The slope during stick is higher and the slope
of the graph in slip is smaller than that of the numerical model. It can be seen from the graph that with
an increasing friction coefficient, slip will start at higher curvatures both in the analytical and numerical
model.

Figure 5.3 displays the relation between curvature and bending stiffness. When comparing the
analytical and the numerical model, similarities and dissimilarities can be seen when only focussing on
the effect of the friction coefficient. The dissimilarity at low curvatures can be explained by the level of
detail of the mesh as has been explained in section 4.4.1.

The moment of slip calculated by the numerical model starts at higher curvatures than the moment
of slip from the analytical model. However, this is not representative as the analytical model starts with
a higher bending stiffness during stick. The moment of slip generated by the numerical model does
match with the predicted curvature described by the analytical model as can be seen in figure 5.3. The
transition from stick to slip is less abrupt in the numerical model as at the start of slipping, not all wires
have slipped over their entire length. As the curvature increases, the rest of the wire length will slip and
thus decrease the bending stiffness gradually.

The shape of the curve at larger curvatures is similar for both models apart from the fact that the
numerically generated value is slightly higher than that of the analytical model. The friction coefficient in
the numerical model seems to have an influence on the bending stiffness at high curvatures. However
this statement could be false due to the fact that the numerical model is corrected for geometric non-
linearity which is explained in section 4.3. It was found that values generated for curvatures higher
than 𝜅 = 0.5m can be unreliable. The correction reduces the non-linear effect. However, it cannot
be assured that the values found at these high curvatures are completely reliable.

Curvatures higher than 𝜅 = 1m are considered quite large. These curvature are hard to model
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Figure 5.2: Relationship between curvature and bending moment with varying friction coefficient while maintaining a constant
axial force of kN
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Figure 5.3: Relationship between curvature and bending stiffness with varying friction coefficient while maintaining a constant
axial force of kN

numerically due to the geometric non-linearity of the model set-up. It can therefore not be stated that
the bending stiffness reaches the analytical minimum independent of the friction coefficient. These
curvatures are not likely to be found in reality, so it can be stated that the minimum bending stiffness
is not reached when using a wire rope in practice. However, the value for the bending stiffness at
a curvature of 𝜅 = 1m is almost equal to the theoretical minimum value. This statement will be
investigated in the practical implementation of the next chapter.
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It can be concluded that with a variation in the friction coefficient both models behave in the same
manor except for large curvatures. At these curvatures, the numerical model shows a dependency
on the coefficient of friction while the analytical model does not. Another conclusion is that the higher
friction coefficient will generally result in a higher slipping curvature which indicates the starting point of
slip. After the slipping curvature is reached values for the bending stiffness for larger friction coefficients
will be higher.

5.3. Tension
Tension has an effect on bending stiffness which is found to be somewhat similar to that of the friction
coefficient. Slip of the wires inside the strand will start at higher curvatures with increased tension,
just as with an increased friction coefficient. The bending stiffness at high curvatures will be higher for
strands with a higher axial tension according to both the analytical and numerical model. Eventually,
the bending stiffness will drop to the theoretical minimum value according to the analytical model. For
the same reasons as in section 5.2, the same cannot be stated for the numerical model. However,
curvatures higher than 𝜅 = 1m are not likely to occur.

The analytical model does take into account that with increasing tension, wires will slip at higher
curvatures as can be seen in figure 5.5.
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Figure 5.4: Relationship between curvature and bending moment with varying axial tension while maintaining a constant
friction coefficient of .

It can be seen in figure 5.5 that the bending stiffness of all models during stick is not entirely equal
to each other as they should be. This is due to the load step and slip threshold change which is needed
to ensure comparable results. Section 4.4.6 has provided more information into this phenomenon. The
results shown in the figures 5.4 and 5.5 do show good resemblance with the analytical model derived
by Papailiou [33].

The observed change in relationship between bending stiffness and curvature for different tension
levels shown in this section can be translated to the situation of a steel wire rope in an A&R operation.
When vertically used in large water depths, the tension at the bottom of the cable will be low while the
tension at the top will be high. According to figure 5.5, the bending stiffness over the whole curvature
range in the slip and transition regime will be lower when considering low tension. Taking this into
account in the aforementioned situation, a lower bending stiffness will be found in the lower parts of the
wire rope. However, this does not necessary have to be the case. The results shown in this section
are for a simple strand with a constant lay angle. In reality, the lay angle will change because of the
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Figure 5.5: Relationship between curvature and bending stiffness with varying axial tension while maintaining a constant
friction coefficient of .

applied tension and helical geometry as has been explained before. Therefore the conclusion that the
bending stiffness over the whole curvature range will drop when lower tension is considered is not yet
justified when considering an A&R wire rope used in large water depth. Lay angle variation has to be
taken into account. This effect will be discussed in section 5.4.

5.4. Lay angle
The model by Costello [7] has been used to display the relation between axial tension and torsion of a
simple strand. Using the numerical model generated in section 4 the approach by Costello [7] can be
verified. Figure 5.6 displays the tension torsion relationship according to Costello [7] and the numerical
model. Because Costello [7] does not take friction into account, the numerical model is run with and
without friction to see the difference between the results.

Both the frictionless and friction models correspond quite well with the analytically generated re-
sult. It can be seen in figure 5.6 that friction influences the numerical result but the deviation from the
frictionless result can be considered small. It can be concluded that the model by Costello [7] corre-
sponds quite well with the numerically generated numerical model and can therefore be used in further
analysis.

Now that the relationship between tension and torsion is analysed, the torque in a wire rope used
in A&R operations can be derived. Because the lay angle of a wire rope section located halfway along
the vertically suspended length does not change, the torque can be derived in this location. This torque
is then equal along the whole length of the vertically suspended cable.

The effect of axial torsion coupling on the bending behaviour of wire ropes is not of a direct nature.
Due to the effect that the lay angle of wire ropes will change over their length, bending behaviour will
change accordingly. Bending stiffness of wire ropes is not only dependent on tension, friction coefficient
and curvature but also on the lay angle of the rope or strand.

As can be seen in figure 5.7 while using the analytical model by Papailiou [33] the minimum bending
stiffness corresponding with high curvatures does not change significantly when considering different
lay angles. The maximum bending stiffness corresponding with lower curvatures does show changes
when different lay angles are considered. Higher values for the stiffness are found if lower lay angles
are considered.

However, when increasing the curvature the opposite occurs. The value for the stiffness will be less
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Figure 5.6: Axial-torsion relationship of a simple strand according to the FEM model and Costello [7]
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Figure 5.7: Relationship between bending stiffness and curvature with different lay angles and keeping tension constant. The
simple strand in appendix A is used in the model by Papailiou [33]

for lower lay angles after the slipping curvature has been reached. This is shown in figure 5.7 by the
difference in bending stiffness when considering the same curvature and different lay angles.

When considering for example a vertically suspended wire rope from an offshore vessel in multiple
kilometres water depth, the tension will vary along the rope length as well as the lay angle. In these
situations, the middle of the cable will not experience lay angles change [49]. In fact, this point is located
a bit below the middle of the cable but for simplicity the middle is assumed.

When for example a simple strand in appendix A is used with a lay angle of 𝛼 = 12∘ and the tension
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Costello [7] elaborated on in appendix D

in the middle of the cable is found to be 𝑇 = 10kN, figure 5.8a provides a torsion value of approximately
𝑀 = 6.41Nm. The value for the torsion has to be constant throughout the cable while the tension varies.
Figure 5.8b can be used to select the values for the changing lay angle when assuming that at the top
of the cable the tension is equal to 𝑇 = 12kN and at the bottom 𝑇 = 8kN. With constant torque the lay
angles are respectively 𝛼 = 10∘ and 𝛼 = 15∘. With the same difference in tension of Δ𝑇 = 2kN between
top and bottom, non equal differences in lay angle are found as can be seen in figure 5.8b. Lowering
tension will result in a larger change of lay angle then increasing tension with the same magnitude.

In the regions close to the seabed, where mechanisms such as hockling will occur due to higher
curvatures, lay angle variation will play a prominent role. Because of the low tension and constant
torque over the length of the cable, lay angles will increase at the lower regions of the cable. In figure
5.7 it was concluded that a strand in its stick regime will have a lower bending stiffness if larger lay
angles are considered. However, when looking at larger curvatures, larger lay angles will cause the
strand to become stiffer en so more resistant to bending.

While modelling different lay angles in Marc, the pitch length of the model will vary with different lay
angles due to the fact that one full strand rotation is taken into account for each model. The mesh size
is dependent on the length and so the element size is as well. The slip threshold value that influences
the bending stiffness during stick is dependent on the size of the elements and therefore has to be
adjusted for each model so that they can be compared. This has been done according to the same
strategy used in the sensitivity analysis in 4.4.

In figure 5.9 similarities between the numerical and analytical model can be seen. The maximum
bending stiffness found for the numerical models is again lower than the analytically derived ones due
to the mesh size. When decreasing the lay angle, both models display stiffer behaviour in low curvature
regions and softer behaviour at higher curvatures. For even higher curvatures, the bending stiffness
for lower lay angles will again be higher than that of higher lay angles. This is due to the geometric non-
linear effect. Because this effect has a different influence when different model lengths are considered,
differences in the outcome at higher curvatures can be found.

5.5. Evaluation
In section 2.1 multiple modelling considerations where stated which are the governing assumptions
describing a wire rope model. The modelling considerations for the analytical model have been shown
in table 5.1. In this evaluation the assumptions made in the analytical model and in the numerical model
are compared. Information from chapter 3, 4 and 5 are used.

Boundary conditions such as clamping forces are neglected in in the analytical model. The analytical
model uses infinite long wires, while in the numerical model only one pitch length is considered. It
is found that increasing the length of the numerical model generates problems with determining the
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Figure 5.9: Change of lay angle comparison using a friction coefficient of . and a tension of kN

Table 5.1: Modelling considerations Papailiou [33]

Modelling consideration

Boundary conditions Clamping forces are neglected, long wire considered so that boundary conditions can be neglected.
Inter wire contact Purely interlayer contact is assumed
Wire cross sectional geometry Cross sectional geometry change is partly taken into account
Radial contraction Radial contraction is neglected
Additional wire forces and moments Wires are assumed to be subjected to additional wire forces and moments
Friction regimes Interwire friction is taken into account
Lay angle The lay angle is assumed constant over the length of the wire during bending
Material Material is assumed to be linear elastic

curvature of the strand as the centre line can no longer assumed to be on a circle as is shown in 4.2.
Sticking of the wires in the middle of the strand increases the resistance towards bending. The effect
of geometric non-linearity also effects the found bending stiffness. Increasing the length of the model
is found to decrease the reliability of the results.

Inter wire contact in the analytical model is considered to be interlayer while in the numerical model
contact between all wires is taken into account. As is seen in section 5.1, low lay angles correspond
to a more interlayer contact while larger lay angles are more similar to models considering intralayer
contact. Therefore, by assuming that in all wire rope configurations only interlayer contact is present,
reliability issues arise when working with higher lay angles.

Wire cross sectional geometry changes in the numerical model are taken into account. The cor-
rectness of the wire cross sectional geometry will depend on the level of detail of the mesh. In a finer
mesh, the kidney shaped cross section of a wire perpendicular to the strand axis is more pronounced.
In the analytical model, wire cross sections are corrected for the lay angle. However, the kidney shape
shown in figure 2.2 is not taken into account. This is considered correct when low lay angles are con-
sidered as the shape of the cross section will be elliptical. When larger lay angles are considered, the
kidney shape will be more pronounced thus leading to reliability issues due to the assumption made in
the analytical model.

Radial contraction is neglected in the analytical model while in the numerical model it is taken into
account. Mostly due to the tensioning part of the analysis, the wire will experience radial contraction
which could influence the found results. This radial contraction is taken into account along the model
length, except for the boundaries. Because of the movement restriction of all nodes connected to the
reference node, no radial contraction is allowed. This feature is a problem when looking at models with
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more wires such as an IWRC. Wires will not have perfect contact along their length when tensioned
which can lead to uncertainties when bending an axially loaded strand as has been seen in section 4.5.

Additional wire forces andmoments are all taken into account in the numerical model. The analytical
model uses axial tension, frictional, normal and shear forces. Forces due to the deformation of wire
rope material are not taken into account.

Friction regimes are part of both the analytical and numerical models. However, the numerical
model describes the transition region, which is located between the stick and slip regimes in more
detail. The analytical model displays a more sudden change in bending stiffness when the so called
critical curvature is reached. Papailiou [33] showed methods to describe the transition region in more
detail. However, this method has many uncertainties and so it will not be discussed in this thesis.

The lay angle is assumed to be constant over the length of the cable. This is done in both the
numerical and analytical model. It is shown in section 5.4 that, the lay angle will influence the bending
stiffness parameter when vertically suspended cables used in for example A&R operations are consid-
ered. The assumption that for small cable sections the lay angle under tension and bending loads will
stay constant is correct. However, one must take into account that when using longer cables, lay angle
variation will have an effect on the bending behaviour.

Material using the thin-rod modelling method by [33] is linear elastic. The numerical model uses a
geometrically non-linear model with elasto-plastic materials using a large strain analysis.

As can be concluded from the comparison described above, many differences are present between
the analytical and numerical model. However, both models do show similar bending behaviour. The
fact that the maximum bending stiffness in the numerical model is always lower than the one analytically
found cannot be explained using the differences in assumptions described above. It is found that it has
more to do with the numerical way of modelling friction and the level of detail of the mesh. As the value
for the maximum bending stiffness is mostly influenced by these numerical parameters, nothing can be
said about the influence of the assumptions used in both models.

The more detailed and smooth transition region shown in the numerical model is assumed to be
realistic as the transition from stick to slip is not supposed to be an instantaneous development. Slip will
not start at the same time along the length of the strand but it will gradually develop. The assumption
that there is a critical curvature and a sudden shift from stick to slip as is the case in the analytical
model is therefore not correct.

At higher curvatures, there is a difference between both models, however it is not very significant.
It seems to be that the numerically found value is still influenced by the friction coefficient and tension
as was also found by Zhang and Ostoja-Starzewski [55]. This statement is still not entirely certain as
this difference could also be due to the geometric non-linearity of the model.

When combining the results of this chapter, something can be said about the bending stiffness
dependent on lay angle, tension, friction coefficient and curvature. For a simple strand with a realistic
friction coefficient of 𝜇 = 0.125 and a lay angle of 𝛼 = 17∘ as is much used in literature, the bending
stiffness according to the numerical model can be described as in figure 5.10.

(a) 3D graph (b) Contour plot

Figure 5.10: Simple strand model with a lay angle of ∘ with varying tension and curvature
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Overall there seems to be good comparison between the analytical and numerical models for simple
strands as has been shown in this chapter. After modification of the numerical method that determines
friction by adjusting the slip threshold, the behaviour of the numerical model is as expected. However,
especially at low tension levels, the slip threshold has to become so low that numerical difficulties
prevent a well simulated result. Results from the numerical model at lower tension levels are therefore
more uncertain than those generated with higher tensions. Figure 5.10b shows that the value for the
maximum bending stiffness stays constant for low curvatures at any tension value. The non-continuous
development of the maximum bending stiffness border when lowering the tension seen in figure 5.10
is due to the interpolation technique that is used. This interpolation technique is explained in appendix
F. A model with a tension of 1 kN is used as the lowest tension level. This is due to the fact that the
slip threshold value becomes very low at lower tension levels. Therefore numerical modelling does no
longer provide reliable results.

Model expansion using both the analytical and numerical model have shown to be quite a challenge.
When looking at the numerical model results, a stick slip behaviour can be seen. However, at lower
curvatures, results seem unstable due to the large amount of wires which need to settle first before
they can fully resist the applied external load. The similarity between the analytically and numerically
found results is less than the comparison found between the results for a simple strand. The different
diameters of the modelled wires in a IWRC and thus element sizes of which they consist, are the main
problem of this more complex wire rope configurations. As friction modelling in Marc [27], depends on
the average size of the elements, problems occur when a certain element largely deviates from the
average value which is the case in the IWRC model constructed in this report. Calculating the bending
stiffness variation for IWRC’s however is possible. In chapter 7, recommendations will be presented
how to realise correct friction modelling in Marc.

The results shown in this chapter describe the impact of the change of one particular parameter
while trying to keep all other parameters constant. This is a perfect way of checking the influence of
one parameter and comparing the numerically found relationship to the analytical one. However, in
reality if a parameter such as for example tension changes, the value for the lay angle will change as
well which will have an impact on the bending behaviour of the researched strand or wire rope. In
figure 5.10, the lay angle is constant and independent from tension resulting in unusable results for the
practical implementation.

In chapter 6 a critical situation during an A&R operation will be simulated using the relationship
calculated from the analytical and the numerical model. All parameters that change during this practical
study are taken into account.
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simulation
In previous chapters the state-dependent bending stiffness of steel wire ropes has been calculated
using the analytical model by Papailiou [33] and the numerical model developed in this thesis. Differ-
ent parameters are varied to study and compare the response of both models. The results from the
numerical model are used to check the assumptions made in the analytical model. It has been found
that the numerical model resembles the analytical model quite well.

This chapter will focus on the impact of using both models for a simulation of a situation that could
occur during A&R operations. A criterion for loop formation is developed. Parameters which influence
this criterion will be monitored during the simulation.

First, an introduction to critical situations during A&R operations will be presented along with a
schematic visualisation of the model set-up. The next section will cover the vessel motions used for
the analysis. The effect of these motions on the stinger tip will be discussed. Since it is assumed that
the top of the A&R wire rope is located here. The modelling technique and strategy will be discussed
in the next section. Input parameters, explanation of subroutines and interpolation techniques are
discussed here. The chapter will end with a discussion on results and an evaluation.

6.1. Introduction
During abandonment and recovery operations (figure 6.1) a critical situation can occur when the pipeline
is located on the seabed with the A&R wire rope connected to the ship. This situation becomes dan-
gerous when the pipelay vessel is above the pipeline and experiences heave motions. This situation
occurs when moving towards the location of the pipeline for retrieval or when laying the pipeline down
for abandonment. Themain reason for the situation to become critical is because of the vertical motions
that the vessel experiences due to wind and waves. This induces curvature in the wire rope which will
reduce the bending stiffness. This effect could lead to loop formation or hockling in wire rope sections.
This mechanism most likely occurs near the seabed where the wire rope has the lowest tension and
is forced to bend. As has been found in chapter 4, adding curvature to wire ropes whilst having a low
tension will decrease their bending stiffness significantly.

Normally decreasing the bending stiffness of wire ropes would not be that much of a problem.
However, when combining the reduced bending stiffness with a high torque and low tension, problems
arise. Hockling or loop formation is a phenomenon that occurs when helically wounded ropes are bent
while they contain torsional energy. Because of the helical shape of wire ropes, they generate this
torsional energy when loaded axially. This axial force on the wire rope is generated by its own weight,
the load it carries and due to the vessel motions.

Downward vessel motions could introduce slack in wire rope sections close to the seabed. This
increased curvature will reduce the bending stiffness of the wire rope section significantly. With the
constant self-weight of the cable, axial tension and therefore the torque in the cable make it easier for
the cable to form loops or to hockle.

71
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Figure 6.1: Abandonment and recovery operation [45]

To simulate the reduction of the bending stiffness due to vessel motions in A&R operations, a 2D
beam model has been developed. The model will be used to calculate the shape of the wire rope due
to vertical movement of the vessel while monitoring all parameters which could trigger loop formation or
hockling. This simplified model has been illustrated in figure 6.2a and has been implemented in Marc
[27] resulting in the model displayed in figure 6.2b. The wire rope has been divided into several beam
elements so that the variation of certain parameters along the length can be monitored. The beam
model is put under a slight angle, to avoid numerical instabilities.

(a) Schematic visualisation (b) Implementation of
the simplified model in

Marc [27]

Figure 6.2: Simple model of critical abandonment and recovery situation

6.2. Vessel motions
Response amplitude operators (RAO’s) from the Solitaire (a ship from Allseas, figure 6.3) are used to
calculate the vessel motions which will lead to the vertical displacement of the stinger tip over time.
These values will be taken into account for the analysis shown in this chapter. Since this chapter is
about developing a beam model with a state-dependent bending stiffness, no extensive study towards
the vessel motions has been done. The values for the accelerations of the vessel only serve as an
indication. Therefore, no further explanation into the working method of the program used to come up
with the RAO’s is given.

It is chosen to analyse the vessel motions for two particular wave approach angles, periods and
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Figure 6.3: Solitaire

Table 6.1: Two different wave characteristics are taken into account for the calculation of the vessel motions

Description Symbol [unit] Case 1 Case 2

Significant wave height 𝐻 [m] 1 1.5
Wave frequency 𝑓[rad ] 0.1 0.350
Wave approach angle 𝜃[∘] 30 90

heights. The parameters for the two corresponding wave states can be found in table 6.1. The RAO’s
corresponding to these wave characteristics can be found in table 6.2.

Case Surge Sway Heave Roll Pitch Yaw
Amp 𝜙 Amp 𝜙 Amp 𝜙 Amp 𝜙 Amp 𝜙 Amp 𝜙

1 1.0407 89.85 0.5948 89.93 0.9975 0.00 0.0506 64.18 0.0604 -90.81 0.0310 -161.77
2 0.0012 138.14 0.9223 89.33 1.0099 0.01 1.1267 -103.55 0.0062 -173.65 0.0103 -82.95

Table 6.2: RAO’s of the Solitaire in sea states described by the two cases in table 6.1. The amplitudes are dimensionless and
the phase angles are in degrees. [17]

To calculate the actual wave amplitude the RAO amplitudes from table 6.2 have to be multiplied
by the significant wave height corresponding to that particular case. Both the centre of gravity (CoG)
and the location of the stinger tip of the vessel are assumed to be located exactly on the heart line of
the ship. The overall length of the ship is approximately equal to 360m. By assuming that the CoG is
located exactly in the middle of the ship, the distance from the CoG to the stinger tip will be equal to

= 180m. Only heave and pitch motions will contribute towards the vertical movement of the stinger
tip. For the two cases described in table 6.1 this will result in the vertical motions of the stinger tip as
presented in figure 6.4.

6.3. Variable bending stiffness
In chapter 3 and chapter 4 analytical and numerical models are given to calculate the state-dependent
bending stiffness of simple strands. However, the results from these chapters are so that only one pa-
rameter is changed per analysis. This is a good method to map the influence from a certain parameter.
In reality multiple parameters change simultaneously when bending a wire rope.

To be able to use the information about the bending stiffness developed in chapter 3 and 4 in a
beam simulation, a strategy has to be made which will be explained in this section.

The constant torque over the length of the rope in an A&R operation has to be calculated first.
This can be done using the theory from Costello [7] which resembles the results generated from the
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Figure 6.4: Vertical motion of the stinger tip for the two cases described in table 6.1 using the RAO’s from table 6.2

numerical model quite well as was seen in section 5.4. When the torque is known, the lay angle variation
along the rope length can be determined. Torque is constant over the wire rope length while the tension
is highest at the top and lowest at the bottom. Using these parameters, lay angles will be low at the
top and high at the bottom of the wire rope. Now that the lay angle and torque of a wire rope section
are known something can be said about the bending stiffness of that section of rope. The curvature
and tension of that section is an output of the beam model and are used to adapt the bending stiffness,
using the results from the numerical model generated in the previous chapter.

To be able to use this strategy, multiple models combining different parameters have to be analysed.
Fine simple strand models have been run for the following tension levels: 𝑇 = 1, 5, 10, 15 and 20kN.
The lay angels that are modelled are the following: 𝛼 = 9∘ and 𝛼 = 17∘. At 𝛼 = 17∘ all wires will be
in contact with each other, while at 𝛼 = 9∘ only radial contact is possible. The friction coefficient is
considered constant using the simulation.

A lay angle of 𝛼 = 12∘ is used as the original lay angle of the simple strand. According to Costello
[7], the relation between tension and torsion for a simple strand with a lay angle of 𝛼 = 12∘ can be
described as follows,

𝑀 = 6.44𝑒 𝑇 (6.1)

where𝑀 is equal to the torque and 𝑇 is the tension. The method to calculated this value by Costello
[7] is shown in appendix D. The constant value in equation 6.1 is equal to the gradient of the curve in
figure 5.6 corresponding to a lay angle of 𝛼 = 12∘. According to Verreet [50], the lay angle of the rope
located in the middle and at both ends of the rope will not change. The constant torque over the whole
cable length can be calculated in the location where the lay angle is known, such as in the middle.
Equation 6.1 together with the present tension will provide the value for the torque.

Now that the constant torque is calculated and the tension distribution over the cable length is
known, the lay angle can be determined. The method from section 5.4 gives the lay angles at different
tension levels while keeping the torque constant. Lay angle, tension and curvature values can now be
used to determine the bending stiffness of a wire rope section during the A&R simulation.

An initial offset of 100m in horizontal direction between the two ends of the vertically suspended
cable is implemented to prevent numerical problems with buckling. The total water depth is selected to
be 1000m as is presented in figure 6.2. The initial length of the cable will be 𝐿 = √100 + 1000 =
1005m. The cable is modelled as a collection of multiple beam elements with a state-dependent bend-
ing stiffness.

In the first 50 seconds of the simulation, pretension and gravity will be gradually introduced to avoid
numerical instabilities. First, the beam model is tensioned by applying a positive vertical displacement
to the top node during the first 25 seconds. In the next 25 seconds, the gravity will be introduced.
During the increase of gravity, the top node will vertically displaced towards its starting position which
is determined by the vessel motions from figure 6.4. After all these initial conditions are satisfied, a
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sinusoidal movement simulating the vertical movement of the stinger tip is applied to the top node. The
development of this displacement and that of the gravity increase is presented in figure 6.5.

A static and dynamic analysis will be performed. In this case, a static analysis is an analysis where
the inertial effects are neglected and a static equilibrium is found for each increment. A time step of
Δ𝑡 = 1s is taken into account for the static analysis, resulting in 200 increments for a simulation that
lasts 200 seconds. In the dynamic analysis, inertial effect are taken in to account. The time step for
the dynamic analysis will be equal to Δ𝑡 = 0.5s.

The top node simulating the stinger tip will be displaced according to the vessel motions as for
example can be seen in figure 6.5a. The increase of the gravity will be presented in figure 6.5b. For
the gravity a maximum value of 𝑔 = 9.81ms is assumed. For the displacement of the top node a
maximum value of 𝑑 = 1.01m is found for case 1. The maximum displacement for case 2 is equal
to 𝑑 = 1.48m.
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Figure 6.5: Development of the external loads on the beam model over the specified time range

6.3.1. Subroutines
Three simulations are performed with different methods to determine the bending stiffness of the el-
ements of the beam model. In the first simulation the bending stiffness is considered independent of
curvature and equal to the minimum bending stiffness as calculated by Papailiou [33]. The second sim-
ulation will assume that the bending stiffness is a function of curvature, tension and lay angle and that
it will behave according to the analytical model by Papailiou [33] described in chapter 3. The third and
last simulation will include the relationship between bending stiffness and curvature as is generated by
the numerical model described in this report in chapter 4.

Figure 6.6: Simulation flowchart



76 6. Practical implementation: Beam model simulation

To change the bending stiffness of beam elements, so called subroutines are used in Marc [27].
These subroutines allow the user to solve non standard problems of a wide variety. The subroutine
illustrated by the flowchart in figure 6.6 is used to change the bending stiffness of the modelled beam
sections during the simulation. The bending stiffness is considered equal over the length of the mod-
elled beam element.

The vertical displacement of the top node simulating the vertical movement of the stinger tip shown
in figure 6.5 will cause the cable model to deform. Tension and curvature of the elements is calculated
by Marc and will be sent to the subroutine.

In the subroutine torque along the cable length is calculated. Together with the tension, the lay
angle per element can be determined. Information about the tension, curvature and lay angle of an
element is enough to provide a value for the bending stiffness. The element properties are changed to
incorporate this calculated bending stiffness property. This process will repeat itself for every element
for each increment.

6.3.2. Interpolation
Not all combinations of parameters are calculated using the numerical model. Therefore, interpolation
is needed. When using the analytical model no interpolation is needed as it uses explicit expressions
to describe the relation between parameters.

The numerical model is only run for a finite amount of parameter combinations. These combinations
can be found in table 6.3. To acquire the bending stiffness belonging to certain parameters which
satisfy the following conditions 9∘ ≤ 𝛼 ≤ 17∘ and 0N ≤ 𝑇 ≤ 20kN interpolation has to be used. The
values found for a tension of zero are assumed equal to the ones found for a tension of 𝑇 = 1kN. This is
because the slip threshold has to become so low that it is not possible to solve the analysis numerically.
The values for the curvature are in the range 0m ≤ 𝜅 ≤ 1.67m .

Table 6.3: Numerical model analysis defined by combinations of input parameters

Combination Lay angle (∘) Tension (kN)

1 9 0 (1 kN)
2 9 5
3 9 10
4 9 15
5 9 20
6 17 0 (1 kN)
7 17 5
8 17 10
9 17 15
10 17 20

For each combination shown in table 6.3, piecewise cubic interpolation is used to interpolate the
relationship between bending stiffness and curvature. The curvature range is interpolated with a vari-
able interval where the first part has a small interval which is increased in the second part. The reason
for this is that the first part of the relation displays the transition from stick to slip. Therefore a smaller
interval is chosen so that more detail can be captured. All models have completed the transition region
if a curvature of 𝜅 = 0.05m is reached, so this curvature will mark the end of the first part and the
beginning of the second. Three dimensional interpolation using the griddata function in Matlab is used
to come up with values for the bending stiffness depending on curvature, lay angle and tension with
the intervals and range of values which are shown in table 6.4.

The interpolated data is exported to a text file which can be read by the subroutine controlling the
bending resisting properties of the beam elements. However data has to be interpolated further in
the subroutine as the values for the lay angle, tension and curvature do not exactly match the values
from the interpolated data. This is done by trilinear interpolation which is a multivariate interpolation
performed on a three-dimensional regular grid. The state-dependent bending stiffness corresponding
with the output from the beam analysis in Marc will be used to find the interpolated value for the bending
stiffness. For further information about the interpolation technique being used, appendix F can be
consulted.
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Table 6.4: Parameter ranges and interval value used for interpolation

Parameter Unit Range Step size

Curvature [m] 0 ≤ 𝜅 < 0.05, 0.05 ≤ 𝜅 ≤ 1.67 0.0005, 0.016
Tension [kN] 0(1kN) ≤ 𝑇 ≤ 20 2.5
Lay angle [∘] 9 ≤ 𝛼 ≤ 17 1

6.4. Loop formation
The occurrence of loops in wire ropes is dependent on multiple parameters such as the tension, torque
and the bending stiffness. With the beammodel described in this chapter, parameters can bemonitored
continuously along the length of the cable. In this section, a strategy is presented to be able to determine
the critical combination of values which could result in loop formation.

The Greenhill formula [14] is commonly used to determine a critical tension or tension threshold.
When a wire rope is tensioned with a force above this value, no loop formation can occur. The equation
6.2 gives the tension threshold from Greenhill [14], which is a function of the torque on and bending
stiffness of the wire rope.

𝐹 = 𝑀
𝑚𝐸𝐼 (6.2)

Here 𝐹 is the critical tension or tension threshold, 𝑀 the torque, 𝑚 the Greenhill constant and
𝐸𝐼 the bending stiffness of the rope. The Greenhill constant is conservatively chosen to be equal to
𝑚 = 2, as is described by Ross [40]. The tension threshold value for the simple strand described in this
thesis is quite low. This is due to the low self-weight of the strand. If larger wire ropes are considered,
high tensions and a higher torque will be present in the cable. As torque has a quadratic influence on
the tension threshold value in equation 6.2, the critical value will increase exponentially with increasing
self-weight of the wire rope.

As the bending stiffness over the cable length varies, the value for the tension threshold does as well.
The bending stiffness is lowest when looking at elements close to the seabed. The tension threshold
will therefore be highest and thus critical in this location because of the influence of the bending stiffness
in equation 6.2. The maximum found tension threshold for the static simulation is found to be equal to
𝐹 = 2.90N.

6.5. Results
The results of the simulations will be shown using two methods. The first method will show the variation
of the involved parameters along the length of the cable fixed in time. The moment in time where the
parameters are the most critical is at 𝑡 = 180s for case 1 and at 𝑡 = 190s for case 2. These moments
in time correspond with the highest negative vertical displacement of the top node in both cases.

The second method will show the parameter variation of one particular element during the simula-
tion. An element at the bottom end of the cable is taken into account. Element number 99 is chosen,
which is the second-to-last element of the cable. The first and last element are shown in the simplified
model as presented in figure 6.2b. Element 99 is chosen instead of element 100 because it does show
lay angle variations where the lay angle of element 100 is fixed.

Note that the influence of hysteresis on the bending behaviour is not taken into account during the
simulations. The effect of taking hysteresis into account during a simulation is discussed in appendix
G.

6.5.1. Static: case 1
The input parameters for the vertical displacement of the top node for case 1 and case 2 can be found
in figure 6.5a. The movement for case 1 is quite calm compared to that of case 2. At 𝑡 = 180s, the
maximum negative displacement of the top node is realized. Interesting parameters along the length
of the cable are shown in figure 6.7 at this location in time. Bending stiffness, tension, lay angle, torque
and curvature variations along the cable length can be found in this figure.

Method 1: 𝑡 = 180s: The bending stiffness is considerably reduced at the beginning and at the
end of the cable as can be seen in figure 6.7a. This is mainly due to the increase in curvature at these
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Figure 6.7: Various parameters monitored along the length of the cable using the input from case 1 shown in figure 6.5a at
increment number 180

locations as can be seen in figure 6.7e. A negative slope can be seen when looking at the bending
stiffness progression along the cable length. This is due to the lay angle variation seen in figure 6.7c.
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Increasing lay angle corresponds with a lower bending stiffness for small curvatures. Because the
curvatures are very close to zero for the majority of the cable length, this downward slope is seen.

Tension variation along the cable length can be seen in figure 6.7b. Tension is highest at the top
of the cable and lowest at the bottom. This tension variation does not have an effect on the maximum
bending stiffness during stick but has influence when wires start slipping, which is the case at the ends
of the cable. The tension threshold is found to be lower than the minimum tension reached in any
cable section. In fact 𝑇 = 4.16kN while the tension threshold is equal to 𝐹 = 2.90N. According to
Greenhill [14] no loops will be formed over the cable length.

The lay angle varies quite a lot over the cable length as can be seen in figure 6.7c. In the middle
and at the ends, the lay angle is equal to the initial lay angle of 𝛼 = 12∘. An exponential function is
used to force the lay angle to become equal to this value at the ends. Therefore the lay angle values
for cable lengths lower than 50 m and higher than 950 m will increase and decrease exponentially to
the initial lay angle respectively. It is assumed that the lay angle cannot be larger than 17∘. At this lay
angle, all the wires in the outer layer will be in contact with each other.

The torque will be constant over the length of the wire rope as is presented in figure 6.7d.
Method 2: Element 99: The parameters corresponding with the second-to-last element can be found

in figure 6.8. All increments are shown. The first 50 increments are used to implement the gravity loads
and the initial displacement of the top node. Afterwards vertical motions of the stinger tip will describe
the displacement of the top node.

The bending stiffness shown in figure 6.8a drops when gravity is introduced into the model (from
increment 25 until 50). The bending stiffness of the element is almost equal to the theoretical minimum
value because of the tension drop which can be seen in figure 6.8b combined with the increased
curvature of the element in figure 6.8e. Afterwards, the top node is moved upwards thus increasing
tension and reducing curvature. When the tension is increased the bending stiffness will follow. This
is only the case when the wire rope is in the slipping state. During stick, tension differences will not
effect the bending stiffness property of the wire rope. The tension at the time range 50s < 𝑡 ≤ 200s
will have a minimum of 𝑇 = 1.35kN while the tension threshold has a maximum value of 𝐹 = 1.32N,
so no loop formation will occur during the simulation.

The lay angle will decrease when the tension on the element increases as can be seen by comparing
figures 6.8b and 6.8c. The tension on the element will again be high enough to unlay the wires of the
strand. Themaximum lay angle of around 𝛼 = 15.5∘ in figure 6.8c is because of the exponential function
used to force the lay angle to become equal to 𝛼 = 12∘ at the ends. As the element considered here is
the second-to-last, a slightly higher lay angles will be considered limit.

The torque variation is shown in figure 6.8d. The torque, together with the bending stiffness define
the tension threshold which can be calculated by equation 6.2. As the torque has a linear relationship
with the tension, the graphs are of a similar shape. The tension threshold value of 𝑇 = 2.90N is
not exceeded in this simulation so no loop formation will occur. This was expected as a low torque is
developed in the simple strand due to its size and shape resulting in a low tension threshold calculated
by equation 6.2.

6.5.2. Dynamic: case 1
In figure 6.9, the results from the dynamic analysis of case 1 are shown. Only the variation of the
parameters over time for element number 99 are shown as the variation along the cable at one time
step is quite comparable to the results from the static analysis in figure 6.8.

The global variation of the parameters is quite similar to that of the static analysis shown in the pre-
vious chapter. The fluctuating response is due to inertial effects that are part of the dynamic simulation.
Due to this fluctuation, maximum en minimum values of the parameters will be higher and lower re-
spectively. This observation causes the dynamic model to be more conservative than the static model.

6.5.3. Case 2
The results found for case 2 resemble that of case 1 shown in section 6.5.1 and 6.5.2. The same
conclusions can be deducted from the results. As the figures are quite large to display, the results for
case 2 can be found in appendix H.
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Figure 6.8: Various parameters monitored for all cable increments using the input from case 1 shown in figure 6.5a for element
number 99 (closest to the seabed)

6.6. Evaluation
In this chapter an implementation of the models developed in this thesis describing the state-dependent
bending stiffness is discussed. Results are generated by the creation of a beam model in Marc using
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Figure 6.9: Various parameters monitored for all cable increments using the input from case 1 shown in figure 6.5a for element
number 99 (closest to the seabed)

subroutines to implement the state-dependent bending stiffness for each beam element.
The 2D model has been developed in Marc using multiple beam elements connected to each other
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to simulate a wire rope. The bottom node, which resembles the seabed is restricted from all movement
except rotation around one axis. The top node has the same rotational degree of freedom and is
allowed to move vertically.

Vessel motions are roughly derived using selected wave characteristics and corresponding RAO’s.
The Solitaire is used for the determination of these parameters. These wave characteristic are not
considered critical for the analysis, they just serve as an example to show that the numerical model
provides reliable results.

The method used to implement the results from the analytic and numerical model to vary the bend-
ing stiffness of these beam elements is described. A designed subroutine makes it possible to vary
the bending stiffness property of beam elements during the simulation. Because not all combinations
of parameters needed to derive a value for the bending stiffness have been analysed in this thesis,
interpolation is needed. When analysing the results for a tension level of zero, slip threshold values
have to be so low that the results become unreliable. The results from an analysis with zero tension
have been selected to be equal to the results of an analysis with 1 kN tension which could be numeri-
cally modelled. The bending stiffness of slack cable sections will be slightly overestimated due to this
assumption.

Both a static and dynamic simulation has been performed. The parameter variation along the cable
length for all a certain increment has been shown. The variation of parameters of a certain element
along different increments/time steps are also analysed. It can be concluded that the bending stiffness
at the bottom end of the cable is significantly lower than in for example the middle section. This is due
to the increased curvature at that cable section. When observing the bending stiffness variation over
time at the bottom end of the cable, sinusoidal variations are seen depending on the displacement of
the top node. In the dynamic analysis inertial effects cause the output to fluctuate which results in a
more irregular curve.

This chapter has shown that a wire rope can be modelled as a simple beam model with a state-
dependent bending stiffness. A&R operations can be simulated using this model. All parameters which
are needed to define the loop formation criterion can be monitored during the simulation. With this in-
formation an indication, based on the tension threshold criterion described by Greenhill [14] concerning
loop formation can be made. This will show the impact that the state-dependent bending stiffness has
on the critical tension value that is used to design equipment for A&R operations.



7
Conclusions and recommendations

The main objective of this work is to describe the bending behaviour of steel wire ropes and its impact
on A&R operations. The conclusions concerning this objective are presented in this chapter and are
divide into four parts, each with associated questions which served as a guidance throughout the the-
sis. These four parts are repeated, along with the accompanying conclusions and recommendations,
ranked in order of importance.

It can be stated that the main objective of this thesis has been achieved for simple wire configu-
rations. The bending behaviour of these configurations has been numerically modelled. However, for
larger and more complex steel wire ropes, more computational time and effort is needed.

A numerical model has been developed in this thesis to describe the state-dependent bending
stiffness of steel wire ropes. The results have been compared with the analytical model from Papailiou
[33]. The latter model shows good resemblance with experimental results found by the same author.
However, the model is limited to simple stands or spiral ropes. Results from the numerical model match
the analytically generated ones reasonably well for simple strands. Hence, the used model strategy
can be considered plausible and could be used for other wire rope compositions.

A beam model with a state-dependent bending stiffness simulating a vertically suspended steel
wire rope has been developed. This model is used to simulate situations which can occur during an
A&R operation. The impact of the state-dependent bending stiffness on the model outcome has been
discussed.

7.1. Conclusions
1. Create an overview of all available research on wire rope modelling

• After an extensive literature study the model by Papailiou [33] has been chosen to represent the
state-dependent bending stiffness of simple strands analytically. According to the author, the
state-dependent bending stiffness can be divided into three regimes; stick, transition and slip. It
is concluded that the calculated bending behaviour for simple strands matches reality rather well.
Therefore, these results are used to validate the numerical model developed in this thesis.

• Bending experiments to model the state-dependent bending stiffness property of wire ropes are
scarce. Experiments that have been performed, involve spiral ropes instead of stranded ropes.

• Wire rope researching techniques are shifting from analytical models to finite element solutions.
Analytical models are widely used for simple strands and spiral ropes. However, stranded ropes
used in the offshore industry are not commonly researched using analytical models due to their
complexity. Models that simulate the behaviour of stranded ropes analytically need many contro-
versial assumptions which greatly influence the results. Numerical models using finite element
methods have greater potential to deal with these more complex wire rope configurations. Com-
putational time and performance seem to be the limiting properties concerning the feasibility of
numerical models.
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• Semi-continuous models have been constructed for stranded ropes in order to research their
axial behaviour. However, for bending of stranded ropes, this modelling technique is not feasible.
However, these models have better results compared to thin-rod models for spiral strands with a
large number of wires.

2. Elaborate and study the analytical model by Papailiou

• The state-dependent bending stiffness of wire ropes is due to inter wire friction. In the stick regime,
friction will prevent movement of the wires relative to each other, thus resulting in the maximum
bending stiffness. With increased bending of the wire rope, wires will start to slip. Therefore, the
bending stiffness of the rope will reduce. This mechanism will continue until all wires have slipped
over their entire length resulting in the minimum bending stiffness of the rope.

• The transition region describes the start of slip of the wires, where wires will slip one after another.
In the slip region, all wires will have slipped along a certain portion of their length. When curvature
increases, the slip will propagate until all wires slip along their entire length.

• The maximum and minimum bending stiffness is not dependent on the tension or the friction
coefficient of the rope. However, these parameters do have an influence on the curvature at
which slip of the wires will commence.

• Slip of the wires will start at the locations where a wire passes the neutral bending plane of a
rope.

• The use of the analytical model is limited to simple strands or spiral ropes. Adjusting the analytical
model for stranded ropes requires assumptions that limit the reliability of the acquired results. This
adjustment of the analytical model has been developed in this thesis. Resemblance has been
found with the results from the numerically generated models.

3. Evaluate and describe the generated numerical model

• The analytical and numerical model results match each other reasonably well for simple strands.
The analytical model gives higher values for the maximum and lower values for the minimum
bending stiffness compared to the numerical model.

• The maximum bending stiffness found using fully bonded models is dependent on the level of de-
tail of the mesh. It can be concluded that an increase in mesh size increases the found maximum
value for the bending stiffness. However, it seems likely but cannot be stated that this value will
eventually reach the theoretical limit.

• The element size of the numerical model has an influence on the maximum bending stiffness
during stick. The bending stiffness during stick for a model with a particular lay angle is dependent
on the average edge length of the mesh, tension, friction coefficient and slip threshold. As the
tension and friction coefficient change for different analysis, the slip threshold has to be altered
so that the found maximum bending stiffness remains unchanged.

• Altering the value for the slip threshold has consequences for the numerical feasibility of the
model. Load step size has to be reduced so that results from the model are still reliable and
stable, therefore increasing computational time. For certain combinations of parameters, the slip
threshold is so low that no reliable numerical solution can be found.

• The numerically generated minimum bending stiffness is higher than the theoretical minimum
value because of the boundary conditions of the numerical model. These prevent the wires to
slip over their entire length, thus increasing the bending stiffness at large curvatures slightly.

• Geometrical non-linear effects cause incorrect results for the bending stiffness at higher curva-
tures. A method to compensate for this error is presented in this thesis. Using this technique, the
effect of friction on the state-dependent bending stiffness is isolated by removing the contribution
of the geometrical non-linear effect. The results of the analytical model for large curvatures are
questionable due to geometric non-linearity. Therefore, comparing both models for high curva-
tures is arguable.
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• Numerical modelling of the state-dependent bending stiffness of large stranded ropes requires
detailed computational meshes and time. However, with the suggested modelling methodology
presented in this thesis it is possible to model the bending stiffness variation of these larger
stranded ropes.

4. Implement the state-dependent bending stiffness in a wire rope model to simulate critical situations
during A&R operations

• A model is developed to simulate a vertically suspended A&R wire rope as multiple beam ele-
ments with a state-dependent bending stiffness. During the simulation, the bending stiffness is
found to be close to the theoretical minimum value at wire rope sections close to the seabed. Low
tension combined with torsional deformation and a high curvature at these locations are the main
reason for this low bending stiffness.

• The conservative assumption that during the simulation, the bending stiffness will reach its theo-
retical minimum value is considered correct when a simple strand is taken into account. However,
preliminary numerical results concerning the minimum bending stiffness of an IWRC show a nu-
merically generated minimum bending stiffness which is significantly larger than the theoretical
value. Therefore, it could be that previously made assumption is too conservative when larger
wire ropes are considered.

• A criterion for loop formation has been introduced in the form of a tension threshold. This criterion
depends on the torque in the rope and on its bending stiffness. If the tension in a wire rope is
reduced below this value, loop formations will occur.

• The bending stiffness decrease during the analysis is mainly due to the low tension at lower
sections of the wire rope. If sufficient tension can be maintained in the wire rope, large reductions
in bending stiffness can be avoided.

7.2. Recommendations
• Segment to segment friction modelling in Marc using bilinear Coulomb friction is used in this
thesis. Therefore, element size, tension and the friction coefficient have an effect on themaximum
bending stiffness found using this model. As this effect is unwanted, it can be countered by
adjusting the slip threshold factor. However, for larger wire rope configurations, this becomes
more difficult. As the element size in different contact bodies differ more for larger wire ropes,
segment to segment friction modelling could prove to be unreliable. This is because the slip
threshold is equal for all contact bodies in a mesh while the element size is not. Node to segment
modelling in Marc should be investigated, as edge lengths do not influence important parameters
needed for modelling friction.

• Previously performed experiments by Allseas into the hockling behaviour of steel wire ropes did
not provide desired results. As is concluded in this thesis, bending stiffness reduction is a com-
bination of the friction coefficient, tension, lay angle change and curvature of the wire rope. In
the experiment performed by Allseas, tension was varied and lay angle change was simulated by
torque variations. However, this did not provide the desired result of loop formation as no curva-
ture was introduced in the wire rope. With zero curvature, bending stiffness values of a wire rope
are at their maximum, therefore the resistance to loop formation is at its highest. Experiments
should be performed with no or little tension while introducing a torque and a curvature on the
wire rope. This will reduce the bending stiffness while increasing the likelihood for loop formation.
The results from these experiments can provide Allseas with information about the combination of
parameters at which loops will occur. The validity of the Greenhill formula could also be checked
using these experiments.

• The numerical model should be expanded to stranded rope configurations which are used by
Allseas, using the methodology presented in this thesis. After the state-dependent bending stiff-
ness has been found, the developed subroutine and interpolation technique can be used to im-
plement the bending stiffness into a beam model simulating a wire rope.
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• Bending experiments with stranded ropes used for A&R operations should be performed. A test
set-up should be designed which can measure the bending resistance of these ropes due to an
external moment or load. The results from the experiment should be used to verify the results
from the numerical model.

• For the determination of the state-dependent bending stiffness in this thesis, no initial deforma-
tions of the wires due to manufacturing and wear have been taken into account. The manufac-
turing process and wear of wire ropes could increase, or decrease, the contact area and normal
stresses between wires, resulting in a bending stiffness which is higher or lower than the theoret-
ical minimum value. Therefore, the effect of pre-stresses and deformations in wire ropes should
be investigated using the numerical model developed in this thesis.
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A
Wire rope details

In this thesis, multiple wire rope configurations have been mentioned which are used for calculation. A
Simple strand is the most common because it is a simple configuration and is mostly used throughout
the thesis. More complex wire rope configurations are also used, for example a 6x36WS+IWRC or
IWRC.

A.1. Strand

Figure A.1: Simple strand with one core wire and six outer wires

Table A.1: Geometric and material properties simple strand

Parameter Symbol Unit Value

Core wire diameter [𝛿 ] [mm] 3.94
Helical wire diameter [𝛿 ] [mm] 3.73
Lay angle [𝛼] [deg] 17.03
Pitch length [ℎ ] [mm] 78.67
Cable length [𝐿] [mm] 80
Young’s modulus [𝐸] [GPa] 188
Poisson’s ratio [𝜐] [-] 0.3

91



92 A. Wire rope details

A.2. IWRC

Figure A.2: Independent Wire Rope Core

Table A.2: Geometric and material properties IWRC

Parameter Symbol Unit Value

Diameter of core wire in core strand [𝛿 , ] [mm] 1.76
Diameter of wire in first wire layer of core strand [𝛿 , ] [mm] 1.64
Diameter of core wire in first layer strand [𝛿 , ] [mm] 1.64
Diameter of wire in first wire layer of first layer strand [𝛿 , ] [mm] 1.47
Lay length first layer wires in core strand [ℎ𝑐 ] [mm] 40.32
Lay length first layer wires in first layer strands [ℎ1 ] [mm] 40.32
Lay length first layer strand [ℎ𝑠 ] [mm] 89.5 - 93.1
Cable length [𝐿] [mm] 91.15
Young’s modulus [𝐸] [GPa] 188
Poisson’s ratio [𝜐] [-] 0.3

A.3. 6x36WS+IWRC

Figure A.3: Geometric and material properties 6x36WS+IWRC
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Table A.3: Geometric and material properties 6x36WS+IWRC

Parameter Symbol Unit Value

Diameter of core wire in core strand [𝛿 , ] [mm] 1.76
Diameter of wire in first wire layer of core strand [𝛿 , ] [mm] 1.64
Diameter of core wire in first layer strand [𝛿 , ] [mm] 1.64
Diameter of wire in first wire layer of first layer strand [𝛿 , ] [mm] 1.47
Diameter of core wire in second layer strand [𝛿 , ] [mm] 2.24
Diameter of wire in first wire layer of second layer strand [𝛿 , ] [mm] 1.96
Diameter of wire in second wire layer of second layer strand [𝛿 , ] [mm] 1.60
Diameter of filler wire in second wire layer of second layer strand [𝛿 , ] [mm] 1.23
Diameter of wire in third wire layer of second layer strand [𝛿 , ] [mm] 1.64
Lay length wires in core strand [ℎ𝑐 ] [mm] 40.32
Lay length wires in first layer strand [ℎ1 ] [mm] 40.32
Lay length first layer strand [ℎ1 ] [mm] 89.5 - 93.1
Lay length wires in second layer strand [ℎ2 ] [mm] 91.15
Lay length second layer strand [ℎ2 ] [mm] 231.7 - 241.0
Cable length [𝐿] [mm] 91.15
Young’s modulus [𝐸] [GPa] 188
Poisson’s ratio [𝜐] [-] 0.3





B
Frenet-Serret equations

A simple strand consists out of 1 core wire surrounded by 6 helically wound wires. The helical curve of
the outer wires can be parametrized by the following equations.

𝑥 = 𝑟
tan(𝛼) ∗ 𝜙 (B.1a)

𝑦 = 𝑟 ∗ cos(𝜙) (B.1b)
𝑧 = 𝑟 ∗ sin(𝜙) (B.1c)

Where 𝑥, 𝑦 and 𝑧 described the coordinates of the centreline of the helical wire. Here, 𝛼 is the lay
angle of the wire in the strand and 𝜙 is the angle of rotation around the strand.

For more complex curves, such as those of a wire located in the outer strands of an IWRC the
following parametrisation is carried out.

𝑥 = 𝑟 ∗ sin(𝜐) ∗ sin(𝛽) + 𝜙 ∗ 𝑅
tan(𝛽) (B.2a)

𝑦 = 𝑟 ∗ (cos(𝜐) ∗ cos(𝜙) − sin(𝜐) ∗ cos(𝛽) ∗ sin(𝜙)) + 𝑅 ∗ cos(𝜙) (B.2b)
𝑧 = 𝑟 ∗ (cos(𝜐) ∗ sin(𝜙) − sin(𝜐) ∗ cos(𝛽) ∗ cos(𝜙)) + 𝑅 ∗ sin(𝜙) (B.2c)

Here, 𝜐 = 𝜙 characterizes the relation between the size of the torsion 𝜐 of a point 𝛾 around
the axis of the helical wound strand and the size of the rotation 𝜙 of the strand around the core of the
wire rope. The parameter 𝛽 is equal to the lay angle of the helical strand around the core strand. 𝑟
and 𝑅 are the winding radii of the wire in the strand and of the strand respectively. The Frenet-Serret
formulas are used to simulate the local coordinate systems, curvatures and torsion values of all wires.

𝛾 = [𝑥, 𝑦, 𝑧] (B.3)

The arc length 𝑠 corresponding with the swept angle 𝜙:

𝑠 = ∫ |𝑑𝛾(𝑥, 𝑦, 𝑧)𝑑𝜙 | 𝑑𝜙 (B.4)

Now that the curve has been parametrized by arc length, the Frenet-Serret equations can be for-
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mulated.

𝑇 =
( , , )

| ( , , ) |
(B.5a)

𝑁 = 𝜅 (B.5b)

𝐵 = 𝑇𝑥𝑁 (B.5c)

The curvature and torsion can be derived and are needed for the equations B.6:

𝜅 = |𝑑𝑇𝑑𝑠 | (B.6a)

𝜏 = 𝑑𝐵
𝑑𝑠 ∗ 𝑁 (B.6b)



C
Adapted thin-rod model for IWRC

Geometry and configuration of the IWRC used in this appendix can be found in appendix A. As is
explained section 3.3, the model by Papailiou [33] can be used to come up with the maximum and
minimum bending stiffness for IWRC configurations. For the bending stiffness in the transition region,
an assumption has to be done which is explained in section 3.3. Symbols used in this appendix can
be found in appendix A.

C.1. Minimum bending stiffness
According to Papailiou, the minimum bending stiffness of multiple layered strands can be defined as,

𝐸𝐼 , = 𝑛 𝐸
𝜋𝛿
64 cos 𝛽 (C.1)

where 𝑖 stands for the wire number and 𝛽 is the lay angle. This equation is valid for transmission
line conductors (spiral stranded ropes) as they only consist of wires in concentric layers. IWRC’s do not
have the same configuration and thus have to be treated differently. In full slip, the only contribution
towards bending stiffness comes from the individual contribution of each wire. The problem can be
separated into two parts; the bending stiffness of the core strand and that of the outer strands. The
bending stiffness of the core strand can be easily calculated using the method described by Papailiou
[33] for a simple strand.

𝐸𝐼 , = 𝐸𝜋(𝛿 , + 6𝛿 , )
64 cos 𝛼 (C.2)

The bending stiffness of the outer strand can be divided into the bending stiffness of the core wires
of the outer strand and that of the wires in the strand.

𝐸𝐼 , = 𝐸𝜋6𝛿 ,
64 cos 𝛽 + 𝜋36𝛿 ,

64 cos 𝛽 cos 𝛼 (C.3)

Here, 𝛼 is the lay angle of the wire in the strand and 𝛽 is the lay angle of the strand. The total
minimum bending stiffness is then equal to the sum of these values.

𝐸𝐼 = 𝐸𝐼 , + 𝐸𝐼 , (C.4)

C.2. Maximum bending stiffness
The maximum bending stiffness is calculated using Steiner’s rule which stipulates that the moment of
inertia of a body which is not located on the rotation axis is equal to the moment of the body itself, as
if the rotation axis is located on its own rotation axis plus the area of the body times the distance from
the axis. Figure C.1 is used as a visualisation of this equation C.5.

𝐼 = 𝐼 + 𝑑 𝐴 (C.5)
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Figure C.1: Steiner’s rule

This rule has to be applied to the IWRC as if all wires are glued together and thus support each
other. 𝐸𝐼 corresponds with 𝐼 in equation C.5 and 𝐸𝐼 with the remaining 𝑑 𝐴. For each wire
with its centreline displaced from the rotating axis shown in figure C.2 the following equations have to
be performed.

Figure C.2: IWRC with axis of rotation and parameters needed for calculating

𝐸𝐼 , =∑𝐸𝐴 ℎ cos 𝛼 (C.6a)

𝐸𝐼 , =∑𝐸𝐴 ℎ cos 𝛽 + 𝐸 ∗ 𝐴 (ℎ + ℎ ) cos 𝛽 (C.6b)

The total value of 𝐸𝐼 is acquired by summing the above equations for all wires in a IWRC which
are not located on the axis of rotation. In equation C.6b the lay angle 𝛼 of the wires in the strand has
not been taken into account as one half of the wires approximately cancel out the other half, so all wires
can be assumed in the direction of the strand.

The maximum value of the bending stiffness is equal to

𝐸𝐼 = 𝐸𝐼 + 𝐸𝐼 . (C.7)

C.3. Bending stiffness during slip
For the bending stiffness during slip the IWRC is assumed to be a simple strand according to figure
C.3 while assuming that the winding angle and radius of the wires in the assumed strand are equal to
that of the strands in the IWRC as is shown in figure C.3. The area of a red wire is equal to the area of
the wires in a strand combined. Now that the problem is reduced, the method described in chapter 3
can be used to calculate 𝐸𝐼 and so the bending stiffness during slip.
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(a) Original IWRC (b) Strands replaced with circles
(c) Simple strand assumption
while preserving winding radius

and angle

Figure C.3: Assuming IWRC as a simple strand

Note that the method to determine the bending stiffness during slip is a rough estimate of the actual
results. It should only be used as an indication.





D
Costello

For the calculations using methods from Costello [7] a few variables have to be defined before showing
the calculations. This makes the calculations in this appendix easier to follow. The variables and
parameters used can be found in table D.1. The orientation of some of these forces and moments can
be found in figure D.2.

Table D.1: Variables and parameters while using methods from [7]

Parameter Unit Description

𝜁 [−] Axial strain in the centre wire
𝜁 [−] Axial strain in an outer wire
𝜌 [rad] Initial pitch of an outer wire
𝜖 [−] Axial strain of the strand
𝛼 [rad] Lay angle
𝜈 [−] Poisson’s ratio
𝑟 [m] Wire radius centre wire
𝑟 [m] Wire radius outer wire
ℎ𝑟 [m] Helix radius
𝜅 [m ] Curvature
𝜏 [m ] Torsion
𝐺 [Nm] Component of the bending moment on a wire cross section
𝐻 [Nm] Twisting moment in a wire
𝑁 [N] Force along cross section
𝑇 [N] Axial force
𝑋 [N ] External load per unit length
𝐹 [N] Axial reaction force on centre wire
𝑀 [Nm] Torsional reaction moment on centre wire
𝐹 [N] Axial reaction force on outer wire
𝑀 [Nm] Torsional reaction moment on outer wire
𝑚 [−] Number of outer wires

D.1. Pure bending of a simple straight strand
In this section the theory from Costello [7] is applied to a simple straight strand with dimensions as in
table A.1. Only pure bending is analysed.
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Figure D.1: Helical spring bent by a coupled moment (Costello [7])

The initial curvature and twist of the helical spring in unloaded condition are

𝜅 = 0 (D.1a)

𝜅 = cos(𝛼)
𝑟 (D.1b)

𝜏 = sin(𝛼) cos(𝛼)
𝑟 (D.1c)

where 𝑟 is the initial radius of the helix. Only a bending moment is applied on the spring

Figure D.2: Thin wire loads (Costello [7])
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D.2. Axial torsional coupling
If the strain in the strand is known the strains in the individual wires can be determined if it is assumed
that the strand will not twist. With this assumption the following can be stated,

𝜖 = 𝜁 + Δ𝛼
tan(𝛼 ) (D.2a)

0 = 𝜁
tan𝛼 − Δ𝛼 + 𝜈𝑟 𝜁 + 𝑟 𝜁

𝑟 tan 𝛼 (D.2b)

after which the curvature and the change in twist per unit length can be linearized which results in
the following.

𝑟 Δ𝜅 = −2 sin(𝛼 ) cos(𝛼 )ℎ𝑟/𝑟 Δ𝛼 + 𝜈𝑟 𝜁 + 𝑟 𝜁
𝑟

cos (𝛼 )
ℎ𝑟/𝑟 (D.3a)

𝑟 Δ𝜏 = (1 − 2 sin (𝛼 ))
ℎ𝑟/𝑟 Δ𝛼 + 𝜈𝑟 𝜁 + 𝑟 𝜁

𝑟
sin(𝛼 ) cos(𝛼 )

ℎ𝑟/𝑟 (D.3b)

Assuming small displacements and using the equations of equilibrium as they are described in the
book by Costello [7] the following can be stated for an outer wire. Forces and moments are as they are
in figure D.2 and in table D.1.

𝐺
𝐸𝑟 = 𝜋

4𝑟 Δ𝜅 (D.4a)

𝐻
𝐸𝑟 = 𝜋

4(1 + 𝜈)𝑟 Δ𝜏 (D.4b)

𝑁
𝐸𝑟 = 𝐻

𝐸𝑟
cos 𝛼
ℎ𝑟/𝑟 − 𝐺

𝐸𝑟
sin(𝛼 ) cos(𝛼 )

ℎ𝑟/𝑟 (D.4c)

𝑇
𝐸𝑟 = 𝜋𝜁 (D.4d)

𝑋
𝐸𝑟 = 𝑁

𝐸𝑟
sin(𝛼 ) cos(𝛼 )

ℎ𝑟/𝑟 − 𝑇
𝐸𝑟

cos (𝛼 )
ℎ𝑟/𝑟 (D.4e)

Now that the forces and moments are known, all that is left is projecting them in the axial direction
of the outer wires.

𝐹
𝐸𝑟 = 𝑚 [ 𝑇𝐸𝑟 sin(𝛼 ) + 𝑁

𝐸𝑟 cos(𝛼 )] (D.5a)

𝑀
𝐸𝑟 = 𝑚 [ 𝐻𝐸𝑟 sin(𝛼 ) + 𝐺

𝐸𝑟 cos(𝛼 ) + 𝑇
𝐸𝑟

ℎ𝑟
𝑟 cos(𝛼 ) + 𝑁

𝐸𝑟
ℎ𝑟
𝑟 sin(𝛼 )] (D.5b)

For the centre wires, no correction is needed.

𝐹
𝐸𝑟 = 𝜋𝜁 (D.6a)

𝑀
𝐸𝑟 = 𝜋

4(1 + 𝜈)𝑟 𝜏 (D.6b)

Total axial force and twisting moment on the strand can be found by summing up the accuired forces
and moments for the outer and centre wires.

𝐹 = 𝐹 + 𝐹 (D.7a)
𝑀 = 𝑀 + 𝐹 (D.7b)





E
Marc Mentat

E.1. Element type
Element type 7 is chosen from the Marc library [29] for the analysis performed in this thesis. Element
type 7 is an eight node isoperimetrical, arbitrary hexahedral. The element has a cubic form as can
be seen in figure E.1. The element type uses trilinear interpolation functions where the multivariate
interpolation is used on a regular grid in 3D. This interpolation technique is shown in appendix F. It
approximates the value of a point in the tetrahedra given values at the vertices of the cube. Because
of this, the strains tend to be constant throughout the element which results in a poor shear behaviour.
Therefore, more of these elements need to be used to describe shear and bending behaviour well.

Figure E.1: Arbitrary cube simulating element 7 Marc [29]

According to the Marc library [29] this element is preferred over higher-order elements when used in
a contact analysis. The stiffness of this element is calculated using the eight-point Gaussian integration.
A 2-point Gaussian integration is shown in figure E.2 comparing it to a trapezoid integration technique.
Higher point Gaussian quadratures used higher order polynomials to integrate the function and provide
a more accurate interpolation.
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Figure E.2: 2-point Gaussian compared to trapezoidal quadrature

E.2. Load step
In figure E.3, results for the bending stiffness where different load steps have been used are presented.
From the figure can be concluded that a load step of 𝐿𝑆 = 0.02s is to high to come up with reliable
results. The graphs corresponding with load steps of 𝐿𝑆 = 0.01s and 𝐿𝑆 = 0.005s show more reliable
results where the latter is the best of the two.
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Figure E.3: Relationship between bending stiffness and curvature for different load steps

E.3. Contact
E.3.1. Friction
Segment to segment contact is selected as contact mechanism with frictional behaviour assumed to
be governed by Coulomb’s friction law which can be expressed as,

𝜃 = ||𝜆 || − 𝜇𝜆 ≤ 0 (E.1)
where 𝜇 is the friction coefficient, 𝜆 represents the contact normal stress and 𝜆 represents the

tangential stress vector; 𝜃 ≤ 0 corresponds to stick and 𝜃 = 0 corresponds to slip.
However, numerical modelling of this discontinuity proves difficult. The coulomb model shown in

E.4 is therefore interpreted by the bilinear model which can be found in figure E.5.
Marc assumes that the stick and slip conditions correspond to reversible ( ̇𝑢 ) and permanent ( ̇𝑢 )

relative displacement, respectively.
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Figure E.4: Coulomb’s friction law illustrated with equal to the tangential stress and equal to the tangential force vector

Figure E.5: Bilinear interpretation of Coulomb’s friction law illustrated with equal to the slip threshold value and equal to
the relative tangential displacement

̇𝑢 = �̇� + �̇� (E.2)

By expressing the Coulomb law for friction by a slip surface 𝜙, the stick domain is given by 𝜙 < 0,
while 𝜙 > 0 is physically impossible.

𝜙 = ||𝑓 || − 𝜇𝑓 (E.3)

The rate of change of the friction force ̇𝑓 is equal to a frictional stiffness term 𝐷 times the elastic
relative motions �̇� ,

̇𝑓 = 𝐷�̇� (E.4)

in which 𝐷 is defined by . 𝛿 is equal to the slip threshold value.

E.3.2. Contact check
To verify if certain contact bodies are in contact, Marc uses a contact detection procedure divided into
two passes, the first pass consists of the distance check followed by a direction check. During the
first check, the distance between a point on a contact body and its closest point projection on an other
contact body is calculated and compared with a reference value. This reference value can be set by
the user and is dependent on the contact tolerance 𝜖 and the bias factor 𝐵, where 0 ≤ 𝐵 < 1. The
default settings are used, where the program enters 5% of the smallest element side for the contact
tolerance. The default bias factor is zero which is left untouched in the analysis in this thesis. If the
position of a point on a body is 𝑥 and that of its point projection on an other body is 𝑥 , than the first
pass will be completed if:
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||𝑥 − 𝑥 || ≤ (1 − 𝐵)𝜖 (E.5)

When the distance check has been passed, the direction check is performed. This check compares
the angles between the normal vectors of the two points on the two contact bodies. If the angle between
the normal vectors is larger than a certain threshold value 𝛼 the check is passed. This comes down to
∠(𝑛 , 𝑛 ≥ 𝛼) where the default value for 𝛼 is used (𝛼 = 120deg). The total contact check is illustrated
in figure E.6.

(a) Distance and direction check passed
(b) Distance check passed while direction

check failed

Figure E.6: Contact detection method

In the second pass of the contact detection phase, each point is checked for contact using the
same procedure as described above. At the end of these checks, the sets of points being in contact
are represented by a contact area. Such as can be seen in figure E.7. These contact areas are used
for the normal and friction stresses during the analysis.

Figure E.7: Contact area segments [28]

In Marc, contact bodies can be defined. It can be selected which contact body is in contact which
a certain other body, or if the body is in self contact. By selecting certain contact relations between
bodies the method described in this section is ignored or activated.

E.4. Subroutines
Subroutines can be called within the Marc solver, allowing the user to substitute a custom subroutine
in Marc. Subroutines are written in Fortran and are made compatible with Marc using Microsoft Visual
Studio. The subroutine UBEAM [30] is used in the simulation in chapter 6. This user subroutine can be
used to define non-linear elastic cross sectional properties as a function of generalized elastic strains
for certain beam elements [30]. All values displayed in equation E.6 can be manipulated during the
analysis.
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𝐹,𝑀 ,𝑀 and 𝑇 stand for the axial, bending and twist forces. No shear is taken into account for this
beam element so the stiffness matrix will become four by four and consisting of 𝐷 , 𝐷 , 𝐷 and 𝐷
respectively being the axial, bending and torsional stiffness’s. The axial strain, curvatures and twist are
described by 𝜖, 𝐾 , 𝐾 and 𝑇.

At the start of each time step the subroutine will call for the calculated forces and strains. These val-
ues will be interpreted by the subroutine code. In the subroutine the stiffness matrix shown in equation
E.6 has to be determined. By changing the stiffness’s the forces and moments have to be changed as
well.

Figure E.8: Flowchart subroutine

Figure E.8 shows a flowchart describing the process involving the subroutine used in this model.





F
Interpolation

In this thesis, three forms of interpolation have been used, bilinear, trilinear and cubic interpolation.
This appendix will be used to explain the different forms of interpolation. It is assumed that the reader
understands the method of linear interpolation.

F.1. bilinear interpolation
Bilinear interpolation is an extension of linear interpolation. It can be used for the interpolation of func-
tions containing two variables. By interpolating along one direction and then performing the interpolation
for the remaining direction a value for the function can be derived. This process can be visualized as
is shown in figure F.1.

Figure F.1: Geometric visualisation of the bilinear interpolation process

Suppose there is an unknown function 𝑓(𝑥, 𝑦) dependent on the variables 𝑥 and 𝑦. The function
values are known for certain combinations of 𝑥 and 𝑦. The unknown value for 𝑓 at the point (𝑥 , 𝑦 )
has to be derived. For the interpolation technique to work it has to be assumed that the four nearest
values for 𝑓 namely; 𝑓(𝑥 , 𝑦 ), 𝑓(𝑥 , 𝑦 ), 𝑓(𝑥 , 𝑦 ) and 𝑓(𝑥 , 𝑦 ) are known. First, interpolation along
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the 𝑥 direction is performed.

𝑓(𝑥 , 𝑦 ) ≈ 𝑥 − 𝑥
𝑥 − 𝑥 𝑓(𝑥 , 𝑦 ) + 𝑥 − 𝑥

𝑥 − 𝑥 𝑓(𝑥 , 𝑦 ) (F.1a)

𝑓(𝑥 , 𝑦 ) ≈ 𝑥 − 𝑥
𝑥 − 𝑥 𝑓(𝑥 , 𝑦 ) + 𝑥 − 𝑥

𝑥 − 𝑥 𝑓(𝑥 , 𝑦 ) (F.1b)

After interpolation along the 𝑥 axis, interpolation along the 𝑦 axis is performed. Note here that the
order of interpolation does not influence the found result.

𝑓(𝑥 , 𝑦 ) = 𝑦 − 𝑦
𝑦 − 𝑦 𝑓(𝑥 , 𝑦 ) +

𝑦 − 𝑦
𝑦 − 𝑦 𝑓(𝑥 , 𝑦 ) (F.2a)

F.2. Trilinear interpolation
Trilinear interpolation is an extension of the pre discussed bilinear interpolation technique and operates
with spaces of dimension 𝐷 = 3, a visualisation can be seen in figure F.2. The method is approximately
the same as is discussed in section F.1 only an extra interpolation axis is present.

Figure F.2: Geometric visualisation of the trilinear interpolation process

State, the unknown function value 𝑓(𝑥 , 𝑦 , 𝑧 ) has to be found. Again, the assumption that the
neighbouring points are known has to be made. The first step is defining the differences between the
points describing the unknown function value and the smaller coordinate are found.

𝑥 = 𝑥 − 𝑥
𝑥 − 𝑥 (F.3a)

𝑦 = 𝑦 − 𝑦
𝑦 − 𝑦 (F.3b)

𝑧 = 𝑧 − 𝑧
𝑧 − 𝑧 (F.3c)

The 0 and 1 indices represent the smaller and larger coordinate value respectively. Secondly, the
interpolations along the 𝑥 will be performed. It has to be noted that as in the bilinear method, order
of interpolation does not influence the found results. The corners of the cubic representation seen in
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figure F.2 are called 𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 and 𝐶 where again the 0 and 1 represent the
smaller and larger coordinate.

𝐶 = 𝑓(𝑥 , 𝑦 , 𝑧 )(1 − 𝑥 ) + 𝑓(𝑥 , 𝑦 , 𝑧 )𝑥 (F.4a)
𝐶 = 𝑓(𝑥 , 𝑦 , 𝑧 )(1 − 𝑥 ) + 𝑓(𝑥 , 𝑦 , 𝑧 )𝑥 (F.4b)
𝐶 = 𝑓(𝑥 , 𝑦 , 𝑧 )(1 − 𝑥 ) + 𝑓(𝑥 , 𝑦 , 𝑧 )𝑥 (F.4c)
𝐶 = 𝑓(𝑥 , 𝑦 , 𝑧 )(1 − 𝑥 ) + 𝑓(𝑥 , 𝑦 , 𝑧 )𝑥 (F.4d)

Thirdly, the interpolation along one of the other axis has to be performed. In this example, the 𝑦
axis has been chosen.

𝐶 = 𝐶 (1 − 𝑦 ) + 𝐶 𝑦 (F.5a)
𝐶 = 𝐶 (1 − 𝑦 ) + 𝐶 𝑦 (F.5b)

The last operation, is the interpolation along the remaining unused axis. Now the value of the
function at the given coordinates is found.

𝑓(𝑥 , 𝑦 , 𝑧 ) = 𝐶 (1 − 𝑧 ) + 𝐶 𝑧 (F.6)





G
Hysteresis

In chapter 5, results for the bending behaviour of a simple steel wire rope strand are given. Curvatures
are increased from 0m to approximately a value of 1m depending on the analysis. In reality,
cables will bend in all directions, from lower to higher curvatures and visa versa. Because of the non-
linear bending behaviour of wire ropes and the tension variation during an A&R operation, hysteresis
is important to take into account.

Hysteresis is a phenomenon of a physical system, describing the dependence of the state of that
system on its history in time. If a system is exited by an external influence, that system will not only
react to the magnitude of that influence but also on the history of the system itself. It is important to
state that hysteresis is not taken into account during the practical implementation in chapter 6.

Describing the hysteresis loop of a steel wire rope in bending starts with explaining a simple friction
interface model illustrated in figure G.1a. Two bodies with frictional contact where one is considered the
body and the other one the ground. The body is exited by the harmonic displacement 𝑢 = 𝐴 cos𝜔𝑡 of a
point connected to a spring with a stiffness 𝑘 . If the exiting force reaches the counteracting frictional
force 𝑓 = 𝜇𝑛 then the body will start to slide over the ground. The stick slip response that is the result
of this harmonic excitation can be seen in the hysteresis loop of figure G.1b where 𝜃 = 𝜔𝑡.

(a) Friction model (b) Hysteresis loop [53]

Figure G.1: Hysteresis loop of the model in figure G.1a experiencing a constant normal load

In this case, the transition from stick to slip can be predicted easily. When the exiting forces reverses
its direction from + to − or the other way around (𝜃 = 0deg or 𝜃 = 180deg) the transition from stick to
slip or from slip to stick is made as can be seen in figure G.1b.

However, stick slip does not always occur under a constant normal force. When the normal force
varies over time and has an arbitrary phase angle from the varying exiting force, determining stick to slip
is more of a challenge. Transitions do not have to occur when the exiting force reverses its direction.
It is also possible for the normal force to decrease to a certain level so that stick to slip is activated. An
example of this model set-up is illustrated by figure G.2a. The corresponding hysteresis loop can be
found in figure G.2b.
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(a) Friction model (b) Hysteresis loop [53]

Figure G.2: Hysteresis loop of the model in figure G.2a experiencing a varying normal load

Again, the four alternating stick and slip regions can be seen, but the transition from stick to slip is
not as easy to determine and recognize as it was in figure G.1a with a constant normal force. Thus,
varying normal forces while harmonically exiting a body connected to the ground with frictional contact
results in a non-symmetric complex hysteresis loop.

G.1. Inter wire friction
In steel wire ropes, hysteresis plays a role when loading the rope in tension and/or bending. Hysteresis
in steel wire ropes almost entirely exist because of inter wire friction. Figure G.3 shows the external
loads on a strand and illustrates the internal normal and frictional forces between wires.

Figure G.3: Load directions of wires in a strand during slipping conditions where and represent the bending moment and
the axial tension on the strand. and are respectively the normal and the frictional forces between the wires

Energy will dissipate in a strand under tension or bending because off inter wire friction. The fric-
tional sliding of wires relative to each other generates heat which will leave the system. In figure G.4
the hysteresis loop of a simple strand is given. A very coarse model is used for this analysis where
approximately the same method is used as was explained in section 4.1.4. First a tension of 𝑇 = 20kN
is applied on the strand. Bending starts after this tension has been applied while having a friction co-
efficient of 𝜇 = 0.5 between the wires. The bending moment that has been applied varies between
𝑀 = +20Nm and 𝑀 = −20Nm. The loop can be divided into multiple sections;

• Stick, where the friction between wires is enough to prevent slip

• Slip, where wires move relative to each other restricted by friction

The energy that is dissipated is equal to the area in the loop and can be represented by:

𝐸 = ∮𝑀 𝑑𝜅 (G.1)

The hysteresis loop in figure G.4 can be compared to the hysteresis loop in figure G.1a with constant
normal force. However, the loop corresponding with the steel wire rope bending does not display a
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Figure G.4: Hysteresis loop for a simple strand with configurations as in appendix A calculated using the FEM model described
in chapter 4

horizontal displacement when the transition point is reached. It describes a more compliant response
than in the sticking state, and still continues to resist to bending when the slipping state is reached.

Tension has been assumed constant is this analysis. In reality however, this tension will not be
constant as is for example the case in A&R operations. The vessel connecting the wire rope with the
pipeline end will be continuously exposed to wave induced motions which will exert variational tension
forces on the rope. Tension has a direct relationship with the normal forces that exist between wires
due to their helical geometry. In reality the hysteresis loop for steel wire ropes in abandonment and
recovery operations will most likely correspond more with the loop illustrated by figure G.2a.





H
Practical implementation: Case 2

The results from case 2 with input conditions shown in figure 6.5b are shown in figure H.1 and in H.2.
The results are similar to that of case 1. The lay angle variation along the cable length shown in figure
H.1c shows that the lay angles at the beginning of the cable reach the lowest researched lay angle
of 9∘. For more reliable results, lower lay angles have to be researched so that the whole range of
possible lay angles can be taken into account.
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Figure H.1: Various parameters monitored along the length of the cable using the input from case 1 shown in figure 6.5b at
increment number 190
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Figure H.2: Various parameters monitored for all cable increments using the input from case 1 shown in figure 6.5b for element
number 99 (closest to the seabed)
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