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SUMMARY

With a scanning tunneling microscope (STM) it is possible to study single atoms, the
building blocks of all materials, and structures that are build from these single atoms. For
STM measurements, these atoms, though, must in general always reside on a conducting
surface which affects them. This thesis is about the influence of a metal surface on
measurements of various atomic structures. We present models for three specific systems.
These models give insights in the limitations of STM measurements and how to possibly
overcome them.

Chapter 3 is about chains of magnetic atoms on a superconductor. Here, the metal
surface causes electron states to be possible that are bound in between the magnetic
atoms and the superconductor. They are called Yu-Shiba-Rusinov (YSR) states. They
can hybridize to form a bandstructure. We present a new method to evaluate this band-
structure based on the theory of short junctions. With this method we can compute the
effective Hamiltonian of a YSR chain, from which we can find how the bandstructure
changes when we change parameters of the chain like its magnetism. We only require the
surface self-energy at the Fermi level as an input. We test out method by comparing it
with an exact calculation and show, subsequently, with an atomistic spin-orbit coupling
model that the YSR bandstructures inherits features from the Fermi surface of the metal
surface.

Chapter 4 is about electrons trapped in chlorine vacancies on top of copper nitride
that are further confined by the STM tip. They are called field emission resonances (FER’s)
and behave like artificial atoms. Measurements of the conductance differential spectra
for various sizes of vacancies show a negative differential resistance. We model the system
and show that the negative differential resistance originates from interaction with the
copper metal surface. We model the copper with density functional theory based on
plane waves.

Chapters 5 and 6 are about titanium spins on silver metal surfaces decoupled by a layer
of magnesium oxide. Specifically, theses chapters are about the quantum coherence these
spins can have. In chapter 5 we demonstrate how to initiate coherent flip-flop interaction
between the titanium electron spin and its nucleus spin. We use the STM tip magnetic
field to tune the spins and confirm this with electron spin resonance. Subsequently, we
apply a DC voltage to the electron spin which polarizes both spins through spin-pumping
and initiates the coherent flip-flop interaction. This interaction decreases over time as the
titanium atom is constantly interaction as well with free electrons from the metal surface.
We model this decoherence as well as the spin pumping and show that the models match
the measurements.

Chapter 6 concerns the question whether it is possible to entangle two titanium
electron spins and particularly how to detect this entanglement. This is a challenge to do
with a STM as it is in general only able to probe a single spin at the same time. We present
a method to entangle two spins further away from the STM tip and subsequently project

ix



x 0. SUMMARY

this state on a third spin that is directly underneath the STM tip and we are thus able to
read out. We show that a STM operating at sufficiently low temperature should be able to
perform this measurement protocol despite of the decoherence due to electrons of the
underlying metal.

Finally, in chapter 7 we look ahead what kind of experiments would be in the near
future for each of these systems. Here, we pay specific attention to chains of titanium
spins and initiate the discussion on how the quantum decoherence time of an induced
flip-flop interaction in these chains decreases with chain length.



SAMENVATTING

Met een scannende tunnel microscoop (STM) kunnen we enkele atomen bestuderen, de
bouwblokken van materialen, en structuren die uit deze atomen zijn opgebouwd. Voor
deze metingen bevinden de atomen zich echter altijd op een geleidende ondergrond
welke de atomen beinvloedt. Dit proefschrift gaat over de invloed van een metalen
ondergrond op metingen van verschillende atoomstructuren binnen een scannende
tunnel microscoop. Voor een drietal specifieke systemen presenteren we modellen hoe
de invloed van de metalen ondergrond te bepalen. Deze modellen geven inzicht in de
limitaties van de metingen en potentieel in hoe deze op te rekken.

Hoofdstuk 3 gaat over kettingen van magnetische atomen op een supergeleidend
metaal. Hier heeft de metalen ondergrond het effect dat er elektronische toestanden
mogelijk zijn die gebonden zijn tussen de magnetische atomen en de supergeleider. Deze
worden Yu-Shiba-Rusinov toestanden (YSR) genoemd. Ze kunnen onderling met elkaar
koppelen en zo een bandstructuur opmaken. Wij presenteren een nieuwe manier om deze
bandstructuur te bepalen die gebaseerd is op de theorie van korte juncties. Door middel
van deze methode kunnen we de effectieve Hamiltoniaan van een YSR ketting bepalen,
welke direct laat zien hoe de bandstructuur verandert wanneer we de eigenschappen
van de ketting zoals zijn magnetisme veranderen. Hier is slechts de zelf-energie van het
metalen oppervlak voor nodig op het Fermi niveau. We tonen aan dat onze methode
werkt door het te vergelijken met een exacte berekening en laten vervolgens met een
spin-baan koppeling model zien dat de YSR bandstructuur de eigenschappen overneemt
van het Fermi oppervlak.

Hoofdstuk 4 gaat over elektronen die gevangen zijn in gaten in een chloor rooster op
kopernitride en het uiteinde van de STM punt. Deze worden veld emissie resonanties
genoemd en gedragen zich als atomen. Metingen van de geleidings differentie spectra
van verschillende grootte van de gaten laten een negatieve differentiele weerstand zien.
We stellen een model op voor deze elektronen en tonen aan dat de negatieve differentiele
weerstand komt door de interactie met de metalen ondergrond. Hiertoe modeleren we
het koper van het kopernitride door middel van dichtheidsfunctionaaltheorie gebaseerd
op staande golven.

Hoofdstukken 5 en 6 gaan over titanium spins op een zilver metalen ondergrond
ontkoppelt door een laag magnesium oxide. Speciek gaan ze over de quantum coherentie
die deze spins kunnen hebben. Hoofdstuk 5 gaat over hoe de coherente flip-flop interactie
tussen de elektronspin van titanium en de kernspin tot stand te brengen en te meten.
We gebruiken het magnetische veld van de STM punt om de spins te synchroniseren
via elektron spin resonantie en passen vervolgens een DC voltage toe welke de spins
polariseert en zo de coherente flip-flop interactie initialiseert. Deze interactie neemt af
over tijd doordat het titanium atoom ook voortdurend interactie heeft met elektronen van
de metalen ondergrond. We modeleren dit zowel het verval van de flip-flop interaction
als het initialisitie proces voor de flip-flop interactie en laten zien dat dit overeenkomt

xi
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met de metingen.
Hoofdstuk 6 gaat over de vraag of het mogelijk is om titantium elektron spins met

elkaar te kwantum verstrengelen en vooral over hoe onomwonden vast te stellen dat dit is
gelukt. Dit is een uitdaging omdat de STM is gelimiteerd doordat deze doorgaans maar
een spin tegelijk kan meten. Wij presenteren een methode om twee spins verder weg van
de STM punt met elkaar te verstrengelen en deze vervolgens te projecteren op een derde
spin die zich recht onder de STM punt bevindt en dus uit te lezen is. We laten zien dat
een STM die op voldoende lage temperatuur opereert deze meting zou moeten kunnen
volbrengen ondanks de interactie met elektronen van het onderliggende metaal.

In het laatste hoofdstuk 7 kijken we naar studies die voor ieder van deze drie systemen
in het vooruitzicht liggen. We besteden speciale aandacht aan spin kettingen van titanium
atomen en maken een begin met het beantwoorden van de vraag hoe de quantum deco-
herentie tijd afneemt met de lengte van de ketting wanneer we een flip-flop interactie
initialezeren door middel van een DC puls.
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2 1. INTRODUCTION

1.1. PREFACE
By now, we have such a great understanding of nature and its underlying forces around
us that we have been able to develop technologies for skyscrapers, airplanes, and smart-
phones. We often forget to realize what an enormous achievement this is. Yet, still
zooming in and out to the smallest and biggest scales, nature holds some of its mysteries.

One of the reasons mysteries remain at the smallest scales is that a lot is happening at
these scales. A single gram of any material contains over a billion billion particles, which
all have complex interactions to finally give the material the properties we know, such
as conductivity and magnetism. This makes it difficult to disentangle everything that is
going on.

One powerful tool that can still do so is scanning tunneling microscopy. With the
scanning tunneling microscope (STM), it is possible to build materials from the individual
parts they are made of: atoms. Instead of being forced to work with the materials that
are available in nature, the STM allows us to make them ourselves. This permits us to
single out specific phenomena we are interested in. We can build, for example, structures
starting from single iron atoms and see how magnetism as we know it manifests itself as
we make the structures bigger [1].

There is, however, a catch. The structures we study cannot be floating in thin air and
instead have to be deposited on or embedded in a surface. This surface, which is usually
a metal, consists itself of many atoms which influence our measurements of the atomic
structures. Fortunately, computer models exist that can tell us the influence of the metal.

In this thesis, motivated by recent STM-performed experiments, we build upon the
existing computer models and apply them to three different systems where the surface
plays an essential role, in order to better understand the respective measurements and
their future possibilities. These three systems are:

• Single atomic magnets in an external magnetic field, which lose their quantum
properties due to the surface they reside upon

• Yu-Shiba-Rusinov(YSR) states, resulting from the interaction between magnetic
atoms and a superconductor, which can only exist because of the surface

• Field-emission resonances, i.e. electronic states that live in the vacuum near a
surface, of which the current resistance is determined by the surface

1.2. THREE SYSTEMS OF INTEREST

1.2.1. SINGLE ATOMIC MAGNETS
One interesting example where the surface place a role in STM measurements is atomic
magnets in an external field. Magnets are a natural candidate for storing information. We
can assign a "0" to their field pointing in one direction and a "1" to their field pointing
in the opposite direction to make up a "bit". But can we do better? It turns out that for
sufficiently small single atomic magnets, we can store additional information in a single
magnet called quantum information, the type of information of quantum computers.

Electrons have an intrinsic magnetic moment called spin. Atoms that carry mag-
netism, such as iron and nickel, are nothing more than atoms with electrons arranged
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such that a net spin is left. Now, when we place such a single atom spin in a much bigger
magnetic field, the atom spin, if free to rotate its magnetic moment, will line up with the
much bigger magnetic field like a compass needle pointing north.

It becomes more interesting if we use techniques of the STM as explained in section
2.2 to force the spin to not align with the magnetic field. In this case, the atom spin starts
to rotate around the direction of the magnetic field like a gyroscope. This rotation is called
Larmor precession. It is completely deterministic. At every point in time, we know the
phase of the rotation. This property is called coherence.

The larger the atomic spin, the more energy is required to rotate the spin away from
aligning with the magnetic field. So, the coherence property is only present for spins
small enough. In fact, the property ties in directly with the quantum nature of such small
spins. We can use the coherence to store quantum information.

Unfortunately, the atomic magnets must reside on a surface, which, for the STM to
function properly, has to be a conducting surface, so preferably a metal. The problem
is that metals have free electrons, which can completely distort the spins. We then lose
track of their phase and thus of their quantum information. There are ways around this.
To start with, we can place a small insulating layer in-between the metal surface and our
atomic magnets of interest. This decouples the magnets from the free electrons allowing
it to keep its coherence over a longer time. Yet, we cannot fully decouple from the surface,
so after some decoherence time the quantum information will always be lost. The time is
typically in the order of 100s of nanoseconds [2].

Perhaps we can do better if we store the information in the atomic nucleus spin rather
than the electron spins. The nucleus is surrounded by many electrons and is therefore less
easily distorted by additional free electrons from the surface. The fact that the nucleus is
less accessible makes it, however, also more difficult to store information in it in the first
place. Still, this has already been achieved in other setups [3, 4]. In Ch. 5 we show how to
do so in the STM setup.

Another question is whether we can change the quantum information at will. Thanks
to recent advancements in STM technology, we can completely control the quantum
information of a single spin. It still remains to be shown that we can also do so for two
spins. In contrast to one spin, two spins can store a special kind of shared quantum
information called entanglement. The nature of STM technology makes it particularly
difficult to prove that we have stored entanglement. In Ch. 6 we present a proposal to
nonetheless do so. Such a proposal has as a requirement that everything needs to happen
within the decoherence time. So, simulating the surface properly is essential to judge
whether it is feasible.

1.2.2. YU-SHIBA-RUSINOV STATES OF CLASSICAL SPINS

Another interesting example is single-atom magnets on a s-wave superconductor. Super-
conductors conduct electrons without resistance but also expel magnetic fields until the
field reaches a critical magnitude. The Maglev trains in Japan are built upon this last prin-
ciple [5]. So then what happens when the magnet is of the size of a single atom and placed
on top of the superconductor? Is the field expelled or is it strong enough to penetrate
and break superconductivity? And does this happen everywhere in the superconductor
or only very locally around where the atomic magnet is placed? It is these questions
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originating from curiosity that ultimately drive condensed matter research. Below, we
will give an initial answer, which is far from complete. A more complete description is
given in Ch. 2.

To understand the answer, it is essential to know how superconductors work. For the
s-wave superconductors considered in this thesis, the 1957 theory of Bardeen, Cooper,
and Schrieffer (BCS) offers a full explanation [6]. It poses that superconductors are metals,
which, when cooled down below a certain critical temperature, have their conduction
electrons pairing up, which would normally repel each other due to their charge. These
so-called Cooper pairs are bound strongly together such that their corresponding current
does not experience any resistance. Only when enough energy is put into the supercon-
ductor by heating it up or exposing it to a magnetic field, the pairs can break up again
resulting in a normal metal current flow.

Knowing this, a natural follow-up question is: what happens when a superconductor
carrying Cooper pairs is coupled to a normal metal conducting normal electrons? The
answer to this was given by Andreev in 1964 [7]. A normal metal electron traveling
towards a superconductor with an energy coinciding with the superconductor Cooper
pairs creates a traveling Cooper pair in the superconductor and a deficit of an electron
(hole) moving the opposite direction back into the normal metal. This hole thus carries
the opposite charge of the initial electron. The total process is called Andreev reflection.
It also works in the opposite direction. So, a hole incident to a superconductor creates
an electron moving in the opposite direction. This means that we can trap electrons in a
superconductor-normal metal-superconductor junction. Electrons of the normal metal
traveling towards one of the superconductors reflect into holes traveling the opposite
direction where they meet the other superconductor reflecting back into electrons and so
on. We refer to these electrons as Andreev bound states as they are normally free to move
but are now locally bound due to the superconductors.

This is exactly what we need to explain what happens when we place single atomic
magnets on a superconductor. The electrons responsible are usually far away from the
atom core and have, therefore, more freedom to move than the other electrons of the
atom. They can thus form an Andreev bound state, which in this case is known as a
Yu-Shiba-Rusinov (YSR) state.

We should emphasize that this description only holds for atoms with sufficiently large
spin, i.e. atoms with strong Hund coupling [8]: the so-called classical atomic spins. For
atoms carrying smaller spin, so-called quantum spins, the interaction between the atom
electrons and the superconductor is a more complicated quantum process resembling
more the screening of magnetism that can occur when spin-carrying atoms are placed on
top of a normal metal known as the Kondo effect [9].

Multiple YSR states that are in close proximity to each other can also interact with
each other. Electrons can move from being in a bound state with one magnetic atom
to being in a bound state with the next magnetic atom. For atoms arranged in a chain,
a 1-dimensional YSR lattice is formed. One reason why these chains are of particular
interest is that they are proposed to have a non-trivial state of matter called a topological
superconducting phase in which the electrons are split into two parts called Majorana
modes residing at each of the ends of the chain and with an energy equal to the Fermi
energy [10–12].
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1.2.3. FIELD-EMISSION RESONANCE ARTIFICIAL ATOMS
The final system of interest is field-emission resonances. They tie in with the search for
artificial atoms. Sometimes, the STM is not suitable for building up certain materials
bottom-up. A possible example is Mott-insulators. In this case, an alternative can be to
work with other quantum systems that behave very similarly. Instead of working with real
atoms, we work with electrons confined to a confining potential, which behave as if they
are part of real atoms.

A way to do so would be to have a surface with a vacancy, which can trap the electron,
resulting in a near-perfect square well. They appear, for example, in chlorine layers on
copper nitride. To truly confine them, we need to also add a potential in the third direction
going out of the surface. The STM tip can form this potential when it hovers above the
vacancy. The resulting bound electrons are called field-emission resonances.

Artificial atoms created through trapping electrons like this have a certain probability
of losing these electrons over time to the environment. Ideally, this lifetime is as long as
possible. The lifetime thus forms a good metric to compare different types of artificial
atoms.

1.3. THIS THESIS
In this thesis, we zoom in further on the above examples: YSR states, atomic coherence
on metallic surfaces, and field-emission resonances.

We start, in Ch. 2, with a more in-depth discussion of the relevant background. This
includes general Hamiltonians of spins on a surface, general STM techniques, general
surface scattering problems, and the theory specific to the three systems of studies.

For YSR states we look at the band structure of YSR chains. Recently, this structure has
been measured using STM and it was found that it cannot be explained by simple models.
We present, in Ch. 3, a new method to evaluate the YSR band structure based on the
theory of short junctions. With this method, we can compute the effective Hamiltonian
of a YSR chain when we only know the self-energy at the Fermi level. We benchmark
the method through a single orbital model and evaluate an atomic spin-orbit model to
further show its use. We find that the YSR band structure heavily depends on the Fermi
surface of the metal.

For field-emission resonances, in Ch. 4, we show that the STM spectrum of field-
emission resonances in chlorine vacancies on copper nitride indicates an unexpected
increase in the lifetime of the resonances when we increase the bias voltage. We model
the system and show through density functional theory calculation that the increasing
lifetime can be attributed to the complex Fermi surface of copper.

For atomic decoherence, we present various experiments pushing the boundaries
of control and show that they can be performed and modeled despite the limitations
of decoherence. In Ch. 5, we demonstrate how to use the free evolution of spins to
coherently address the nucleus spin through the electron spin of a Ti atom. This work is
motivated by the previous success of probing the coherent evolution between Ti electron
spins. We also show how we can model the corresponding evolution, combining rate
equations and an equation of the Lindblad form.

Next to this, in Ch. 6, we present a way to controllably entangle two Ti spins using an
STM and subsequently detect the entanglement. We first present the protocol, which is
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based on the free evolution of entangled states. Subsequently, we show that the protocol
is feasible in a low-temperature STM when the electron spins lose their coherence due to
spin scattering with the underlying surface.

Finally, we present an outlook in Ch. 7, where we make a beginning with studying the
behavior of decoherence of the free evolution of Ti spin chains that are larger than two
spins.

REFERENCES
[1] Loth, S., Baumann, S., Lutz, C. P., Eigler, D. & Heinrich, A. J. Bistability in atomic-scale

antiferromagnets. Science 335, 196–199 (2012).

[2] Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science
366, 509–512 (2019).

[3] Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon.
Nature 496, 334–338 (2013).

[4] Dutt, M. G. et al. Quantum register based on individual electronic and nuclear spin
qubits in diamond. Science 316, 1312–1316 (2007).

[5] Lee, H.-W., Kim, K.-C. & Lee, J. Review of maglev train technologies. IEEE transactions
on magnetics 42, 1917–1925 (2006).

[6] Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Physical
review 108, 1175 (1957).

[7] Pannetier, B. & Courtois, H. Andreev reflection and proximity effect. Journal of low
temperature physics 118, 599–615 (2000).

[8] von Oppen, F. & Franke, K. J. Yu-shiba-rusinov states in real metals. Physical Review
B 103, 205424 (2021).

[9] Farinacci, L. et al. Tuning the coupling of an individual magnetic impurity to a
superconductor: quantum phase transition and transport. Physical review letters
121, 196803 (2018).

[10] Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. Majorana fermions
emerging from magnetic nanoparticles on a superconductor without spin-orbit
coupling. Physical Review B—Condensed Matter and Materials Physics 84, 195442
(2011).

[11] Pientka, F., Glazman, L. I. & Von Oppen, F. Topological superconducting phase in
helical shiba chains. Physical Review B—Condensed Matter and Materials Physics 88,
155420 (2013).

[12] Nadj-Perge, S. et al. Observation of majorana fermions in ferromagnetic atomic
chains on a superconductor. Science 346, 602–607 (2014).



2
EXPERIMENTAL AND THEORETICAL

BACKGROUND

In this chapter, we will discuss the relevant background experiments and theory for the
chapters to follow. We start with a general introduction to spins on a surface, explaining
why we can model them with effective spin Hamiltonians. We continue by introducing
experimental techniques of the scanning tunneling microscope to probe these spins. Finally,
we zoom in on the effects of the surface by first giving a general introduction to surface
scattering problems and subsequently discussing the relevant background for classical spin
YSR states and coherent spins on a surface.
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Figure 2.1: (Partial) orbital momentum quenching for C4v symmetric spin on a surface. Under C4v symmetry,
the |xz〉 and |y z〉 states are still degenerate, whereas the degeneracy of the other orbitals is lifted. As the atomic
d-orbitals are equal superpositions of the orbital momentum states, each individual d-orbital has 〈L〉 = 0. So, in
this case, only the |xz〉 and |y z〉 states still carry some orbital momentum.

2.1. HAMILTONIAN OF SPINS ON A SURFACE
Atoms behave differently on a surface than in a vacuum. This is because atoms on a
surface are surrounded by an environment that is not spherically symmetric such that
orbital energy level degeneracies are broken. For d-shell transition metal atoms, when
deposited on a square lattice surface, the symmetry of the lattice mostly quenches the
d-electron orbital momenta as illustrated by Fig. 2.1. As a result, the low energy excitation
spectrum of d-shell atoms such as Ti and Mn is well described by an effective spin
Hamiltonian in which all interactions with the remaining orbital momentum and the rest
of the environment are small and thus included as perturbations. Interaction with the
orbitals is included as a second-order perturbation of spin-orbit coupling of the form:

HSOC =αL ·S, (2.1)

with L the orbital momentum vector and S the spin. Interactions with the surrounding
crystal through the crystal field give rise to an additional anisotropy term to the effective
spin Hamiltonian.

2.1.1. ZEEMAN TERM

When exposed to a magnetic field, consecutive spin levels are energy split by a Zeeman
term

HZeeman =−µB B · ḡ ·S, (2.2)

where µB is the Bohr magneton, B the external magnetic field vector and S the total
spin of the atom. ḡ is the g-factor tensor, which depends on the type of atom and the
side the atom resides on. This is because the effective spin Hamiltonian is perturbed by
the surface. This perturbation results in a modification of the effective g -factor. The B
field here can have different origins. For example, in addition to an externally applied
homogeneous field, a spin-polarized tip, as further introduced in Sec. 2.2.5, emits an
effective B-field Btip.
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2.1.2. DIPOLAR COUPLING

The effective spin Hamiltonian is also affected by nearby spins. Spins, being magnetic
moments, act on each other through dipolar coupling. This coupling is anisotropic and
decreases cubically with increasing distance between the spins, as illustrated by Fig. 2.2b.
The full Hamiltonian description is:

H dipolar
i j = D0

(
S i ·S j −3(S i · r̂ i j )(S j · r̂ i j )

)
, (2.3)

with r̂ i j the inter-atomic unit vector from atom i to atom j and D0 the distance ri j -
dependent dipolar strength

D0 =
µ0µ

2
B g 2

4π2r 3
i j

. (2.4)

Here, µ0 is the magnetic permeability of the vacuum. g is approximated to be isotropic in
this expression.

2.1.3. EXCHANGE COUPLING

If the spins are close enough such that the atom electron wave functions overlap, the spins
couple through isotropic exchange coupling, decreasing exponentially in strength with
increasing distance between the spins. This is illustrated by Fig. 2.2a. So the Hamiltonian
is

H exchange
i j =−J (ri j )S i ·S j (2.5)

with J the exchange coupling depending on the distance ri j through a characteristic
decay length r0 as

J (ri j ) ∝ e−ri j /r0 . (2.6)

Spins of which the wavefunctions do not directly overlap can still be coupled through
the same Hamiltonian term when the surface mediates the interaction. The origin of this
coupling to the surface is further explained in Sec. 2.6.2. Fig. 2.2 shows how the energy
diagram of two spins on a surface changes due to magnetic field, dipolar coupling, and
exchange coupling.

2.1.4. HYPERFINE COUPLING

Isotopes of atoms exist with a finite spin in the nucleus. In this case, there is hyperfine
exchange coupling between the nucleus spin and the electron spin. There are various
origins of the coupling. One of them is indirect coupling, in which the outer shell d-
electrons spin wavefunction overlaps with inner shell s-electrons, causing a finite spin
density, which interacts with the nucleus spin. This is the Fermi-interaction term, which
is isotropic. Another origin is direct dipolar coupling between the d-electrons and the
nucleus, which is anisotropic. Both are illustrated by Fig. 2.3. We can describe the total by
the effective Hamiltonian

H hyperfine
i j = S i · Āi j · I j . (2.7)

Āi j is the hyperfine coupling tensor which is in general anisotropic [1].
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Figure 2.2: Two spin interactions on a surface (a) Schematic of exchange coupling between spins on a surface.
The interaction is isotropic and increases exponentially when the spins get closer. (b) Schematic of dipolar
coupling between spins on a surface. The interaction scales cubically and is anisotropic. It is the biggest when
the dipolar field aligns with the spins. (c) Energy spectrum of the spin eigenstates of two spins on a surface.
First, we increase the field B , causing the spins to Zeeman split. Then, we increase the tip field Btip, which is
only felt by one of the spin splitting ↑↓ from ↓↑. Subsequently, we introduce exchange coupling J , which causes
the spins to couple and form singlet-triplet states. Finally, we add dipolar coupling, which further splits the
singlet and triplet state while leaving the singlet state untouched.

2.1.5. QUADRUPOLE MOMENT

Nuclear spins larger than 1
2 , i.e. consisting of multiple charges, have a non-spherical

charge distribution, giving rise to an electric field quadrupole moment Q. The surround-
ing electron cloud with field q can exert a torque eq on this moment, as illustrated by Fig.
2.3, which affects the spin of the nucleus. The corresponding effective spin Hamiltonian
term is

H quadrupole = I ·Q̄ · I (2.8)

with Q̄ the quadrupole tensor which can be expressed in matrix form as:

Q̄ = e2qQ

4I (2I −1)

−(1−η) 0 0
0 −(1+η) 0
0 0 2

 (2.9)

with 0 < η< 1 the in-plane anisotropy of the electric field gradient.

2.2. STM TECHNIQUES

2.2.1. IMAGING WITH THE STM
In order to detect such atoms on a surface we cannot use a light-based microscope as its
resolution is limited by the diffraction limit, which is much larger than the atomic limit.
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Figure 2.3: Schematic of nuclear spin interactions. If the distribution of protons deviates from being spherical,
the surrounding electron cloud exerts a torque qe on the protons, causing a quadrupole term in the effective
nuclear spin Hamiltonian. Next to that, surrounding electrons can dipole couple with the nucleus spin (Adipolar)
or super-exchange couple (AFermi)

Even electron microscopes, which replace light beams with smaller wavelength electron
beams, run into the diffraction limit when trying to image single atoms. The scanning
tunneling microscope (STM) is not based on reflecting wavefunctions and is, therefore,
not held back by the diffraction limit. Instead, it makes images by picking up currents of a
conducting sample with an atomically sharp tip [2]. This tip is attached to piezo-electric
crystals through which it can move in all cardinal directions with atomic precision.

The main type of measurement that we do with an STM involves tunneling currents.
For these measurements, the tip is not brought in direct contact with the sample of
interest but is rather hovering less than a nm above it as illustrated by Fig. 2.4a. As a
result of quantum mechanics, the electrons still have a finite chance to quantum tunnel
in between the tip and sample, which, when biased through a DC voltage, causes a small
current to flow. As this current depends exponentially on the distance between the sample
and the tip, we can measure relative differences in the height of the sample. We can do
this so precisely that we can detect the presence of a single atom on the surface. It makes
STM into a microscope at the atomic scale.

The STM can image in two modes: constant current and constant height mode. For
the former, a feedback loop with the piezo-electric crystal causes the tip to move such that
we always measure the same current. Then, the tip movement is a direct measurement
of the height differences of the surface. For the latter, the tip is held at the same place
such that now the measured current is a direct measurement of the height differences of
the surface. Fig 2.4b shows a typical constant height measurement in which the brighter
colors represent higher currents. The extrusions are the single atoms deposited on the
surface. We can further decouple the atoms from the surface by adding insulating islands
in between, such as layers of MgO. The island in Fig. 2.4b is such an island.
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To be more precise, the current the STM measures is the difference between a stream
of electrons from tip to sample and from sample to tip [3]

I = Is→t − It→s , (2.10)

Is→t (V ) ∝
∫ eV

0
e−k(ω)d fs (ω−eV )(1− ft (ω))ϱs (ω−eV )ϱt (ω)dω, (2.11)

It→s (V ) ∝
∫ eV

0
e−k(ω)d ft (ω)(1− fs (ω−eV ))ϱt (ω)ϱs (ω−eV )dω. (2.12)

The characteristic exponential dependence on the distance d between the sample and
the tip has k(ω) as corresponding decay constant. In the Wentzel-Kramer-Brillouin (WKB)
approximation, it holds that

k(ω) = 2
√

me (Φt −Φs −eV +ω), (2.13)

where me is the mass of the electron andΦt/s the work function of the tip/sample.
Furthermore, each of the two currents is a convolution of the densities of states ϱt/s

of the tip and sample respectively , integrated over the bias voltage V that we apply to the
junction. As a result, the STM can also probe changes in the electronic configurations
of both the tip and the sample. The temperature dependence of the density of states is
captured by the Fermi functions ft/s .

2.2.2. STM CONDITIONS TO IMAGE ATOMIC SPINS

The energy transitions of spins on a surface are in the order of meV. So, in order to image
and study these spins in a controlled way, the temperature of the STM must be low to limit
thermal excitations, and the vacuum must be high to limit interactions with surrounding
particles in the STM chamber.

Low temperatures can be reached with cryogenic liquids. The STM, as used in the
experiments referred to in Ch. 4 and 5, is a Unisoku USM-1300 cooled by liquid 3He.

2.2.3. LATERAL AND VERTICAL ATOM MANIPULATION

Thus far, we have only discussed imaging techniques. What makes the STM more than a
very advanced microscope is that the tip can also be used to make atomic structures of
interest [4]. Through the tip’s van der Waals force, we can drag atoms over an underlying
surface called lateral manipulation. Moreover, if we apply bias pulses to the tip, we can
pick up some of the atoms, such as Fe, and drop them at a specific place on the crystal
lattice. This is called vertical manipulation. As the spin interactions depend on the inter-
atomic distances(see 2.1.2 and 2.1.3), atom manipulation allows for large freedom in
engineering the spin interactions of spin systems [5].

2.2.4. INELASTIC TUNNELING SPECTRUM (IETS)
STM currents can also directly change the state of a system of study by exciting it inelas-
tically. Hereby, energy is transferred to the sample system through interaction with the
tunneling current. If we include inelastic excitation we can write the total net current



2.2. STM TECHNIQUES

2

13

SerifShow SVG Download SVG

dEnter LaTeX

SerifShow SVG Download SVG

\varrhosEnter LaTeX
SerifShow SVG Download SVG

a b c

Figure 2.4: STM imaging and spectroscopy. (a) schematic of a typical Scanning tunneling microscopy set-up.
ϱt and ϱs are the densities of states of the tip and the sample, and d is the distance between the STM tip and the
sample. (b) Image in constant height mode of Fe atoms on top of MgO on Ag(110), (c) dI /dV spectrum of bare
MgO and Fe on MgO as measured by Veldman et al. [7]

between the sample and the tip as [6]

I = Is→t − It→s (2.14)

Is→t =
∫ ∑

i , f
|T s→t

i f |2 fs (ω−eV )ϱs (ω−eV )(1− ft (ω−ωi f ))ϱt (ω−ωi f )dω (2.15)

It→s =
∫ ∑

i , f
|T t→s

i f |2 ft (ω)ϱt (ω)(1− fs (ω−eV −ωi f ))ϱs (ω−eV −ωi f ))dω, (2.16)

where the sum over i , f is over possible initial and final states of the sample system
as a result of the interaction. Ti f is the corresponding transfer matrix and ωi f is the
corresponding energy difference. fs/t are the Fermi distribution functions of the sample
and the tip respectively. They include the temperature broadening to the overall current.
In the specific case of spin excitations, the conservation of angular momentum requires
the electron responsible for the excitation to flip its spin.

The measured current increases suddenly when the bias is such that a new inelastic
excitation is possible. This is best visible in the differential spectrum dI

dV in which energy
excitations show up as jumps at the voltage that produces the onset energy for the ex-
citations. We can use the dI

dV spectrum to tell different spinful atoms apart as they have

distinct spin excitation spectra. As a example Fig. 2.4c shows a dI
dV spectrum of an Fe

atom with a step around 14 meV related to the first spin excitation.

2.2.5. SPIN-POLARIZED STM
We can change the tip in order to further change the measurement capabilities of the
STM. The tip can be terminated, for example, in a spin by picking up Fe atoms, using
the same technique as for vertical manipulation. The result is that ϱt becomes spin-
dependent, allowing spin-polarized measurements. The majority spin of the tip becomes
the polarization of the current. As a result, we can obtain images with spin contrast and
measure the orientation of single surface spins.

With a spin-polarized tip, we can also do spin pumping. In this case, we apply a bias
higher than the excitation energy as with IETS. Due to the spin polarization of the current,
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Δσ = 0
Δσ = -1

a b

Figure 2.5: Spin polarized STM. (a) Schematic of an STM setup with a spin-polarized tip. ϱt/s is the density of
states of respectively the tip and the sample. d is the distance of the tunnel junction. (b) Schematic to explain
elastic (∆σ= 0) and inelastic current (∆σ=−1) in the case of a spin-polarized tip. For a positive/negative bias
V , the tip majority/minority spin dominates the elastic current. For a positive bias, due to spin selection rules,
the inelastic current is higher than for a negative bias.

the excitations now have a preferred spin direction. Depending on the sign of the applied
bias ∆s =+1 transitions are preferred over ∆s =−1 or vice versa. This is illustrated by Fig.
2.5.

2.2.6. DC PUMP-PROBE
All the STM techniques described thus far are limited in measuring time-dependent
behavior. This is because, for a large signal-to-noise ratio, measurements often take much
longer than the dynamics of interest. Pump-probe spectroscopy, compatible with the
thus-far-described setup, provides a possible way around this limitation. Here, first, we
send a DC pulse to excite the system, then there is some waiting time τ, and then we
send a DC pulse to read out the system. The state at time t is obtained by time-averaging
many iterations with τ= t . When we subsequently sweep τ , we can measure the time-
dependent dynamics as we are only limited now by the length of the DC pulses , which is
in the range of ns. We can use the pump-probe technique specifically for atomic spins to
study how the spin state relaxes to thermal equilibrium after a spin excitation.

2.2.7. ELECTRON SPIN RESONANCE
The techniques thus far also have limited energy resolution due to the thermal broadening
as captured by the Fermi functions. To overcome this limit, one of the most recent
additions to the STM toolbox is electron spin resonance (ESR). For this technique, we
send a radio frequency (RF) to the STM junction , which in turn can coherently excite the
sample when the frequency is in resonance with the spin excitation energy of the sample
(see Fig. 2.6a). The exact mechanism behind ESR in the STM is still under debate , but
what is clear is that the RF voltage (VRF) results in an effective experienced oscillating
field with amplitude ∆B = cVRF which drives the spin transition. Here, c is a vector of
proportionality constants with units T/V. A model Hamiltonian of the form

HESR = (
cVRF sin

(
2π fRFt +φRF

)) ·S (2.17)
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has therefore been very successful in describing the spin excitation behavior, where S
is the vector of spin operators in the x, y , and z-direction. φRF is a potential additional
phase of the RF signal.

Under the influence of this Hamiltonian, any spin transition that can be achieved
through cVRF ·S is Rabi-driven as long as the signal frequency is close enough to the
energy gap of the transition.

Neglecting decoherence effects for now, the spin alternates phase coherently between
the two states of the transition with Rabi frequency:

Ω=
√

(c⊥VRF )2 + (| fRF − fESR|)2, (2.18)

where fESR is the ESR energy transition and c⊥ is the projection of c on the driven
spin excitation. When driving perfectly on-resonance, so fRF = fESR, the Rabi frequency
Ω0 = c⊥VRF . Driving off-resonance thus leads to a largerΩ (see Fig. 2.6d).

A straightforward way to detect ESR is through a spin-polarized measurement with a
DC bias. The Rabi oscillation is time-averaged out in such a measurement and results in a
change in the DC bias current. Sweeping over fRF at the resonance frequency the current
results in a peak or a dip at the resonance frequency, depending on the sign of the bias.
Part of the detection can also come from the RF signal as the changing conductance in the
junction to the the spin resonance interferes with it. This is called homodyne detection
and results in an asymmetric spectrum. Typical spectra for DC- and homodyne detection
are shown in Fig. 2.6b and c.

The first discovery of ESR in the STM was with a tip field radiating from a spin-
polarized tip and Fe atoms deposited on MgO on Ag [8]. Since then, different other
substrates have been tried but to no avail. This led to the belief that the substrate is
important for the mechanism. One of the prominent theories is that the substrate reacts
piezo-electrically to the RF voltage, hereby changing the size of the tunnel junction
periodically, resulting in a field gradient [9]. Such a mechanism would be similar to the
working of micromagnets in the ESR driving of spin qubits [10]. However, the change in
the size of the tunnel junction has not yet been observed. Some calculations claim that
this effect should be limited and that there might be other mechanisms at play. A more
general theory framework based on quantum transport showed that also variations in the
tunnel barrier height next to size could lead to Eq. 2.17 and does seem to have the right
order of magnitude [11, 12]. Still, as of today, any theory not including the substrate has a
hard time to explain why ESR thus far has only been measured on MgO.

2.2.8. PULSED ESR FOR QUBIT OPERATIONS
Recently, the ESR technique has been used in pulses to conduct coherent operations on Ti
on MgO on Ag, which act as an effective spin 1

2 . Treating the spin excitation as a quantum
bit, we can perform any single qubit rotation with ESR pulses [13]. We can send pulses of
a specific duration, to rotate the qubit with a specific angle around one of the axes, which
we can call the x-axis. Changing the additional phase φ allows Rabi rotation about any
axis in the x − y plane. Then, finally, combining three specific x and y rotation pulses
R with respective durations α,β and γ, we can do rotations about arbitrary axis n̂ with
duration θ [14]

R̂n̂ (θ) = R̂y (γ)R̂x (α)R̂y (β). (2.19)
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Figure 2.6: ESR-STM. (a) Schematic of electron spin resonance in a scanning tunneling microscope. The RF
signal causes the driving, the DC signal causes the DC-detection, and the RF signal causes the homodyne
detection. (b)/(c) Typical DC-measured(b)/homodyne(c) ESR resonance peak at resonance frequency f0 for
various driving strengthsΩ. (d) Evolution of the spin expectation values of a spin 1

2 as coherently driven through
electron spin resonance with various driving strengthsΩ and driving frequencies f .

2.2.9. DOUBLE ELECTRON-ELECTRON RESONANCE
The working of ESR-STM might make it seem as if it is only possible to drive spins located
directly underneath the tip. This is not true. Recent experiments have shown that spins
further away can be driven as long as they experience an oscillating local magnetic field
moment. We can achieve this by placing an additional Fe atom close to the remote atom
we probe. The main driving force is still the RF voltage sent to the tip, but now this signal
is mediated by the Fe atom spin, instead of by the tip field. In this way, we can build larger
spin structures around the STM tip, of which we can drive each spin independently. For
two spins, it is called the double electron-electron resonance(DEER) set-up. A schematic
overview of this set-up as well as the typical corresponding ESR spectrum is shown in Fig.
2.7.

2.3. SURFACE SCATTERING PROBLEMS
When we probe systems of interest with the STM, the results are always altered by the
surrounding bulk. We thus need to consider the full Hamiltonian

Ĥ =
(

Ĥsys V
V † Ĥsurf

)
(2.20)

as illustrated by Fig. 2.8a. Diagonalizing this Hamiltonian becomes an impossible task.
Fortunately, we can still evaluate the effective system Hamiltonian as altered by the

surface through the (retarded) Greens function

Ĝ(ω) = 1

ω− Ĥ + iη
. (2.21)

The effective Hamiltonian is the inverse of the Greens function of the system Hamiltonian,
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Figure 2.7: Double resonance ESR-STM. (a) Schematic of double electron-electron resonance in STM. (b)
Schematic of resonance spectrum of two spin STM-DEER spectrum. The inset shows the corresponding energy
diagram. The exchange coupling J between the Ti spins causes the peaks related to a spin-flip of each of the
individual atoms to split up. This also means the eigenstates slightly deviate from ↑↓ and ↓↑, hence the ∗’s.

Additionally, the resulting sets of spin are
√
∆ω2 + J 2 apart instead of just the difference in Zeeman splitting ∆ω.

which in turn, using the Schur complement, is equal to [15]

Ĥeff = Ĥsys + V̂ ĜsurfV̂
† = Ĥsys + Σ̂(ω), (2.22)

where Σ̂(ω) is the energy dependent self-energy. Because it is energy-dependent, a non-
linear eigenvalue equation needs to be solved to compute the spectrum. There are ways
to do so, but it is easier to plot the corresponding local density of states (LDOS) ϱ, which
can be found as

ϱ=− 1

π
Tr(Im(Ĝ)) (2.23)

The additional benefit is that this is the quantity that best matches the dI /dV spectrum
of the system as measured by an STM.

Alternatively, as illustrated by Fig. 2.8b we can solve the scattering problem of the
system. The surface has free electronic modes φ+e i k+ . They scatter from Hsys into modes
propagating away again from the interfaceφ−e−i k− . At every real space coordinate j away
from the interface, the surface wavefunction is a linear combination of these modes

ψsurf( j ) = Φ̂+Λ̂
j
+q++ Φ̂−Λ̂ j

−q−, (2.24)

whereΛ is a matrix with e i k on the diagonals and Φ̂ the matrix of φ.
Far from the interface, the surface approaches the bulk and the q+ and q− can be

related through a scattering matrix Ŝ. Combined, this gives a scattering problem of modes
which we can solve to findΨsys at energy ω, i.e. the spectrum [15]

(
Ĥsys −ω V̂ †Φ̂+Λ̂+

V̂ −V̂ Φ̂+

)(
Ψ̂sys

Ŝ

)
=

(−V̂ †Φ̂−Λ̂−
V̂ Φ̂−

)
. (2.25)
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Figure 2.8: Surface scattering problems. (a) illustration of the Greens function formalism of quantum transport,
(b) illustration of the scattering matrix formalism of quantum transport

2.4. HAMILTONIAN OF A CLASSICAL SPIN YSR STATE
One interesting scattering problem consists of spins on a superconductor. According to
BCS theory, the s-wave superconductor particle energy spectrum has a gap ∆ around the
Fermi level for which no states are available (see the bare superconductor spectrum of Fig
2.9a). States located at energies below ∆ in the metallic phase, become bunched up at the
energy ∆ at the superconducting phase, forming coherence peaks. This can be written in
a Bogliobov-de-Gennes (BdG) Hamiltonian [16]:

ĤBdG = (−ħ2∇∇∇2

2m
−µ+V )τz +∆τxσz . (2.26)

A classical spin, i.e. with Strong Hund coupling, on top of an s-wave superconductor
results in a Yu-Shiba-Rusinov (YSR) bound state, as s-wave electrons scatter from the spin
and get trapped through Andreev reflection in the spin-superconductor junction (see the
inset of Fig. 2.9a). One can model these bound states through a tight-binding scattering
problem as in Eq. 2.22. This involves using

Ĥsurf = ĤBdG,

Ĥsys =−BSσzτz ,

V̂ =−tYSRτz ,

(2.27)

where B is the Zeeman splitting of the atomic spin S pointing in the z direction that forms
the YSR state. In Fig. 2.9a we solve for the effective Hamiltonian using the framework of
Istas et al. [17] and plot the corresponding LDOS ϱ. The YSR state appears as a peak in the
particle-hole symmetric excitation spectrum. Additionally, the coherence peaks decrease
in size as the overall amount of particles must be conserved.

For an alternative model of YSR states, we can treat the spin as altering the supercon-
ductor. In that case

Ĥsys = ĤBdG,

Σ̂(ω) = t∗Y SRτz
1

ω−BSσzτz
tYSRτz

= (
|tYSR|2ω
ω2 −B 2S2 − BS|tYSR|2

ω2 −B 2S2σz )τz

(2.28)
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Figure 2.9: YSR states of classical spins (a) LDOS calculation of a single YSR state following Eq. 2.30 Arrows
indicate shifting of the YSR states with surface coupling J . The inset shows a schematic of the effective exchange
between Cooper pairs and the adatom spin, resulting in a YSR state, (b) dI /dV as measured by Schneider at al.
for Mn on Nb(110) [19] and (c) corresponding spatial distribution of the YSR state wavefunctions [19]

. Taking as an additional approximation that the original spin states are deep in the
gap, i.e. B ,∆≫ ω, which is equivalent to the zero-bandwidth approximation for the
superconductor and the case for classical spins [18], we can reduce the Σ̂ expression to

Σ̂(ω) ≈ |tYSR|
B

σzτz . (2.29)

Now, defining J ≡ |tYSR|
BS , we can write the total effective YSR Hamiltonian as

Ĥeff = ĤBdG + Jσz , (2.30)

which shows that YSR states can also be seen as resulting from some effective exchange J
between Cooper pairs and an atomic spin. It is an effective model that is well studied [18]
and shows resemblance with Kondo spin screening as known for normal metals, though,
here, for classical spins, it is not a many-body effect.

In general, even for classical spins, this is an oversimplification. All weakly bound
electrons that make up the total spin of the atom can interact with the surface and form
YSR states. The result is multiple in gap states with a clear orbital character reflecting the
orbital wavefunction of the original atom electron. This was measured through dI /dV by,
for example, Schneider et al. [19] (see Fig. 2.9b and c). Such measurements are performed
with a superconducting STM tip. These tips have a much higher energy resolution than
regular metal tips as ϱt is dominated by the superconducting coherence peaks and thus
only picks up ϱs at the energy of the coherence peaks. This is necessary to measure the
narrow YSR peaks.

2.5. YSR BANDS AND TOPOLOGICAL SUPERCONDUCTIVITY
YSR states for spin chains on superconductors hybridize into a full YSR band structure.
The effective Hamiltonian in the single-orbital zero-bandwidth approximation takes the
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form of Eq. 2.30. Over the years, these chains have received a lot of attention as the
expected effective Hamiltonian is very close to the Kitaev model Hamiltonian for a s-wave
superconductor [20]

ĤKitaev = (−ħ2∇x

2m
−µ+V (x))τz +∆τxσz + J (x)σz + iασy∇x . (2.31)

This model describes superconductors with Cooper pairs consisting of identical spins
(p-wave pairing). The effective YSR Hamiltonian of eq. 2.30 only misses a term to break
spin projection symmetry to be of the same shape. We can for example generate this term
is we use a superconductor with strong spin-orbit coupling. Inversion symmetry breaking
at the superconductor surface then leads to Rashba spin-orbit coupling [21]

ĤRashba = iαRσy∇x , (2.32)

with Rashba strength αR.
In contrast to normal s-wave superconductors, the ĤKitaev bulk dispersion undergoes

a phase transition for J >
√
µ2 +∆2 that is accompanied by a gap opening in the disper-

sion. At the same time states appear exponentially localized at the ends of the chain
and pinned to the Fermi energy by particle-hole symmetry. These states are known as
Majorana bound states. They are spinless, chargeless, non-abelian anyons, meaning that
if we interchange them, the result is a unitary transformation more than just an overall
phase factor. Moreover, due to particle-hole symmetry, they are protected against local
energy perturbations, making them an interesting candidate to study quantum coherent
operations [22, 23].

For the systems in STM local traces have been found of the modes [24], but it is
difficult to draw conclusions from them as these traces can also belong to other states [25].
More conclusive evidence comes from global features like the opening of the bulk gap
. Recent technical improvements have made it possible to observe the bulk dispersion
[19, 26]. From these measurements it is clear that a gap in the dispersion, large enough to
conclusively detect Majorana bound states, has not been achieved yet. It requires further
study of the bulk dispersion to understand if and how this could still be done.

Even if the modes would be detected in an STM, it remains to be seen if any quantum
operations can be performed on them, as this requires the interchange of the states, for
which the slow STM tip as only probing possibility becomes a limiting factor.

2.6. THEORY FOR COHERENT ATOMIC SPINS
Another example of a scattering problem consists of atomic spins weakly coupled to
a metal. We can achieve this through the previously described thin insulating layers
such as MgO. The spins are then isolated quantum systems whose state, including the
quantum phase, we can control very well by STM. As such, they are promising for quantum
simulations.

2.6.1. DECOHERENCE
Unfortunately, the metal has free electrons that can scatter with the spins, causing the
spins to lose their quantum phase information over time.
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We can distinguish two types of processes here. First of all, electrons can inelastically
scatter. Here, the electrons that scatter with the spins exchange energy with each other,
causing the spins to thermally equilibrate over time with the metal. This is known as
relaxation. The scattering can also be elastic. Here, the electrons that scatter do not
exchange energy. They do, however, alter the phase of the spin randomly. This is known
as pure dephasing.

As both are statistical processes, they require a quantum state description following
the density matrix formalism. The density matrix ρ̂ of the spin system is of size Nsys×Nsys,
with Nsys the number of eigenstates of the system. We can express it in any basis, but it is
often represented in the energy basis where the states are the energy eigenstates. In this
basis the diagonal entries ρnn are the populations representing a statistical possibility
for the system to be in the corresponding eigenstate. On the off-diagonals ρnm are the
coherences representing the phase present between the two eigenstates the term connects.
ρ̂ has a trace of 1 as the states should be normalized. Furthermore, it is Hermitian. Any
effect of the surface on ρ̂ should remain this property and, therefore , must be a trace-
preserving and completely positive map.

Given these conditions, one can derive the equation describing ρ̂(t ) as a result of any
interaction with the environment:

d ρ̂

d t
=− i

ħ [Ĥsys, ρ̂]+∑
i

(
L̂i ρ̂L̂†

i −
1

2
{L̂†

i L̂i , ρ̂}

)
, (2.33)

where [., .] is the commutator and {., .} the anti-commutator. The first term is the unper-
turbed evolution by the Schrodinger equation, also known as von Neumann evolution.
The second term contains Lindblad jump operators, which include all the different inter-
actions the environment can have with the system. The whole is known as the Lindblad
equation [27].

An example of such a set of Lindblad operators is

L̂r =p
rnm |n〉〈m| , n ̸= m (2.34)

The result is a jump from energy eigenstate n to energy eigenstate m with strength rnm .
Inserting this operator, we find that the diagonal elements of ρ̂ become decoupled from
the off-diagonal elements. The diagonal elements follow

dρnn

d t
=∑

m

(−rnmρnn + rmnρmm
)

. (2.35)

The set of these equations tells how the populations are changing due to the rates rnm

and is therefore also known as the rate equations. The off-diagonal elements follow

dρnm

d t
=−i∆ωnmρnm + 1

2
(
∑

k ̸=n
rnk +

∑
k ̸=m

rmk ), (2.36)

where ∆ωnm is the energy difference between eigenstates n and m and represents the un-
perturbed quantum phase evolution following the standard time-dependent Schrödinger
equation. The second term represents the loss of phase because of inelastic scattering.
It is, therefore, known as non-adiabatic or inelastic decoherence. The operator in Eq.



2

22 2. BACKGROUND

2.34 is thus the form of any inelastic scattering process, changing the system’s eigenstate
probability distribution.

Another important example of a set of Lindblad operators is

L̂γ =
√
γnm

2
(|n〉〈n|− |m〉〈m|) (2.37)

describing a jump γnm in phase difference between eigenstates n and m. Inserting this
operator, we quickly find that it only affects the off-diagonal elements of ρ as the Lindblad
terms do not have any diagonal elements surviving:

dρnm

d t
=−i∆ωnmρnm −γnmρnm . (2.38)

This equation encapsulates any form of pure dephasing, where the coherences decay
exponentially with pure dephasing rate γnm . The Lindblad operator of Eq. 2.37 is thus the
form of any elastic scattering process , keeping the system energy the same but decreasing
its decoherence.

The Bloch sphere provides a useful illustration of both the elastic and the inelastic
decoherence of a two-level system. Using the basis defined by the eigenstates as a com-
putational basis , we can express any density matrix of a two-level system in Bloch sphere
coordinates:

(rx ,ry ,rz )Bloch = (Tr
(
ρσx

)
,Tr(

(
ρσy

)
,Tr

(
ρσz

)
), (2.39)

with Tr the matrix trace and σ the Pauli operators. The perfect superposition state then
lives on the equator on the Bloch sphere and oscillates with a frequency proportional to
∆ω of the two eigenstates. If we add inelastic decoherence, the state on the Bloch sphere
spirals to the ground state as illustrated by Fig. 2.10a. If, on the other hand, we add elastic
decoherence as in Fig. 2.10b, the state spirals to the exact middle of the Bloch sphere. The
state then loses coherence, but the eigenstate population spread remains unchanged.

2.6.2. RELATION BETWEEN DECOHERENCE AND SURFACE SCATTERING PROB-
LEMS

When electron scattering is the origin of the decoherence, we can make a connection with
the introduced scattering problems in section 2.3. For a free electron metal with a single
atomic spin state, we can use

Ĥsurf =
∑
s,k
ϵk ĉ†

s,k ĉs,k

Ĥsys =
∑

s
ϵσd †

s d̂s +Ud †
↑d↑d †

↓d↓

V̂ =∑
s,k

(V d †
s ĉs,k +h.c.)

(2.40)

for Eq. 2.20. Here, ĉ are the fermionic operator of the surface with ϵk the corresponding
wavenumber k dependent energies. d̂ are the fermionic operators of the system. U is the
Coulomb interaction we must overcome to place two opposite spins in the system. This
model is known as the Anderson impurity model [28].
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Figure 2.10: Bloch sphere schematic of relaxation and pure dephasing. (a) Schematic of relaxation to the
groundstate |n〉 of the superposition state |n +m〉. As a function of time, the state spirals both inwards and
down, representing, respectively, loss of energy and phase coherence. (b) Schematic of pure dephasing of the
superposition state |n +m〉. As a function of time, the state spirals towards the center of the Bloch sphere

Schrieffer and Wolf showed in 1966, through the now well-known Schrieffer-Wolf
transformation [29], that in the limit of large charging energy U the self-energy Σ̂ reduces
to

Σ̂Kondo =− J

4

∑
k,k ′

Ψ†
k ′ σ⃗Ψk ·Ψ†

d σ⃗Ψd , (2.41)

where J = 2|V |2U
ϵs (ϵs+U ) , σ⃗ the vector of Pauli matrices andΨ the field operators

Ψk =
(

ĉk,s

ĉk,−s

)
,Ψd =

(
d̂s

d̂−s

)
(2.42)

This ΣKondo is known as the Kondo exchange Hamiltonian [30].
It is often written as

Σ̂Kondo = J S⃗ · s⃗, (2.43)

where
s⃗ =∑

α

∑
kk ′,s

ĉ†
s,k σ̂

α
s,−s ĉ−s,k ′ , (2.44)

with α summing over x, y and z. S⃗ are the spin operators of the spin system of interest.
To understand the decoherence, we would like to know the time-dependent behavior

of Ĥsys +ΣKondo. Here, we can use that the metal interaction is weak, so V ≪ ϵs . We can
thus use J ≪ ϵs and solve for the influence of Σ̂Kondo on Ĥsys. Under Markov approxima-
tion (environment has no memory) and Born approximation (system and environment
are separable) , this type of problem where Σ̂ is of the shape

∑
α Aα⊗Bα was solved by

Bloch and Redfield in 1965 [31]. The resulting equation for ρ̂sys is

dρnm,sys

d t
=−i∆ωnmρnm(t )+∑

kl
Rnmk jρk j (t ), (2.45)
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where for Kondo interaction [32]

Rnmk j =
J 2

ħ2

∑
α

(−δm j
∑
p

Sαnp Sαpk gα(ωpk )+Sαnk Sαj m gα(ωnk )

−δnk

∑
p

Sαj p Sαpm g∗
α(ωp j )+Sαnk Sαj m g∗

α(ωm j )
) (2.46)

the Bloch-Redfield tensor with α again x, y and z and δ the Kronecker delta’s. The g that
are appearing here are the correlation functions of the environment operators B

gα(ω) =
∫ ∞

0
〈sα(τ)sα(0)〉e−iωnmτdτ (2.47)

Here, specifically, g is for free electrons and can be related to Ĝsurf as defined in Eq. 2.21
[33]:

gα(ω) =
∫ ∞

0
Ĝsurf(ω) f (ω,T )(1− f (ω,T ))e−iωnmτdτ (2.48)

with f (ω,T ) the Fermi distribution function. As such Ĥsurf can directly be related to the
time-dependent evolution of ρ̂sys.

Often, the system evolves much faster than Rnmk j . I n this limit, the coherence and
populations decouple into Eq. 2.35 with rates [32, 34]

rnm = 2

ħ
2 ∑
α
ℜ(gα(ωmn))|Sαmn |2

= 2

ħ
2 ωnm

e
ωnm
kB T −1

∑
α
|Sαmn |2

(2.49)

and a coherence equation

dρnm

d t
=−i (ωnm +∆nm)ρnm(t )− (γel

nm +γi nel
nm )ρnm(t ), (2.50)

which is a combination of Eq. 2.36 and Eq. 2.38, with additional energy renormalization
∆nm , which cannot be captured by the Lindblad formalism. The inelastic component is
thus equal to

γi nel
nm = 1

2
(
∑

k ̸=n
rnk +

∑
k ̸=m

rmk ) (2.51)

. The elastic decoherence or pure dephasing relates to g as

γel
nm = 1

ħ2

∑
α
ℜ(

gα(0)
)

(Sαmm −Sαnn)

= 1

ħ2

∑
α

kB T (Sαmm −Sαnn)
(2.52)

All in all, we thus see that we can express decoherence as a result of the scattering with
free electrons in an equation, which, except for a renormalization of energies, fits the
standard Lindblad shape.
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Standing wavefunctions Atomic wavefunctions
Pseudo-potential Quantum Espresso [35] OpenMx [36]

Full potential KKR [37]

Table 2.1: Limited overview of available DFT methods

2.7. DENSITY FUNCTIONAL THEORY FOR FIELD EMISSION RESO-
NANCES

In the above examples, a suitable phenomenological or effective model could be used
to describe the physics of the surface. This is not always the case. Often, the surface
Hamiltonian has many degrees of freedom, which all need to be included to evaluate
the influence of the surface. An example is field emission resonances on Cu2N. We thus
need to start from first principles: the separate electronic wavefunctions. A way to do
so is density functional theory (DFT), in which the ground state of the surface is found
self-consistently in mean-field theory by varying the electron density until the energy
of the system is minimized. Various theories exist. They differ in their initial guess of
the electronic wavefunctions and their description of the atomic potentials by which the
wavefunctions are bound.

Regarding the former, some theories start from standing wavefunctions, and others
start from atomistic wavefunctions. Regarding the latter, some theories use the full
atomic potential, but with a cut-off at a specific distance from the core. Other theories
use pseudo-potentials, which do not need a cut-off but approximate the potential far
from the core. We present a limited overview of the available methods in table 2.1.
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SHORT JUNCTION THEORY FOR

DISPERSION OF A

YU-SHIBA-RUSINOV CHAIN

The drop hollows out the rock
By frequent falling, not by force

Latin proverb

Rik Broekhoven, Kostas Vilkelis, Michael Wimmer, Antonio Manesco, Anton Akhmerov

Chains of magnetic atoms on s-wave superconductors have Yu-Shiba-Rusinov(YSR) bound
states, which hybridize into a bandstructure. STM experiments show this bandstructure
can only be described by models with an orbital based approach like density functional
theory (DFT). DFT-only methods are, however, computationally expensive.

Here, we present a method based on the method of short junctions to evaluate the effective
Hamiltonian of a YSR chain, when only the metal self-energy at the Fermi level is known.
It can be used to study the YSR bandstructure as a function of chain parameters such as
magnetization.

We benchmark our method with a finite size exact diagonalization of a single orbital model
and subsequently use it to evaluate the bandstructure of a atomistic spin-orbit model. Next
to the expected Rashba spin-orbit splitting, we find that the YSR bandstructure inherits
features of the metal Fermi surface which can only be captured by models with an orbital
approach.

Own contribution to work: Developed the Greens function part of the code, Performed the simulations, Wrote
the manuscript
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3.1. INTRODUCTION

Magnetic atoms on s-wave superconductors give rise to Yu-Shiba-Rusinov (YSR) bound
states living in the gap of the superconductor. When the atoms are arranged in a chain,
the corresponding YSR states can hybridize into YSR bands. Such bands are proposed to
become topological superconductors with Majorana zero modes if the spin symmetry
is sufficiently broken to cause a topological phase transition. [1–3]. A possible origin of
spin symmetry breaking is Rashba spin-orbit coupling, which originates from atomic
spin-orbit coupling in the superconductor. As a result of the topological phase transition
a gap opens up in the YSR dispersion.

In the past, many scanning tunneling microscopy (STM) experiments have been per-
formed on these systems to observe the presence of Majorana zero modes [4, 5]. However,
unambiguously probing Majorana zero modes is difficult. Therefore, a new generation
of experiments used quasiparticle interference to reconstruct the band structure and
verify, based on it, whether the chain has become a topological superconductor [6, 7]. In
contrast to the expectation, the measured YSR dispersion for Mn chains on Nb(110) does
not have a gap [6]. Moreover, the dispersion shows multiple YSR bands with each their
own orbital character.

The additional details observed in experimental works motivated revisiting the the-
oretical description of these systems with orbital based approaches, such as density
functional theory (DFT) [8, 9]. With this method, it is possible to evaluate the full in-
gap dispersion, including all relevant orbitals of the chain. Studying how the dispersion
of atomistic models changes with parameters allows for engineering the closing and
reopening of the gap.

However, DFT-only methods are computationally demanding, as they include many
degrees of freedom and require dense in-gap energy scans to evaluate the YSR dispersion.
On top of that, these methods are completely ab initio. Thus, they do not allow for
changing parameters, such as the magnetization of the chain, after a calculation has
finished.

Here, we present a method compatible with ab initio calculations to evaluate the
effective Hamiltonian of translational invariant chains. We use scattering theory in the
short junction limit to combine the self-energy of the superconductor with the chain
Hamiltonian. The in-gap spectrum depends only on the self-energy at the Fermi level. So
we only require the self-energy at a single energy. Moreover, we deliberately eliminate
modes of the superconductor that do not couple with the chain and hereby further
decrease the computational costs of our method. The method works for both orthogonal
and non-orthogonal basis sets.

We benchmark our method by showing that its eigenvalues coincide with simulations
of finite-size systems much larger than the coherence length. We subsequently analyze a
model with s- and p-orbitals for the superconductor coupled to a single spin. Starting
from atomistic spin-orbit coupling, we observe Rashba splitting at the metalic surface,
which opens up a gap in the YSR dispersion. Moreover, we observe that the dispersion
inherits features of the metal’s Fermi surface, which are not captured by standard toy
models of YSR chains. Finally, we change the magnetization in the evaluated effective
Hamiltonian to study the expected topological quantum phase transition.
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Figure 3.1: Short junction method. Comparison of the dispersion relations of (a) a ferromagnetic infinite chain
on a finite size superconductor with length L and (b) a ferromagnetic infinite chain in the short junction limit
coupled through virtual leads to a semi-infinite superconductor, (c) shows the 1D dispersions for the model
as defined by Eq. 3.32 ∆= 0.01t , µ= 0.5t evaluated for geometry (a) and using the short junction method for
geometry (b).

3.2. METHOD

We start from a tight-binding Hamiltonian of a chain of magnetic atoms on an s-wave
superconductor with Hl the Hamiltonian of the superconducting lead, Hc the Hamilto-
nian of the chain and Vcl the hopping between the lead and the chain. We terminate the
superconductor in the z-direction and take the chain to extend in the x-direction. The
Hamiltonian terms can then be further expressed as

H = Hl +Hc +Vcl (3.1)

Hl =
∞∑

x,y=−∞

( −1∑
z=−∞

H l
0 |x, y, z〉〈x, y, z|+H s

0 |x, y,0〉〈x, y,0| (3.2)

+
0∑

z=−∞

(
V l

x |x −1, y, z〉〈x, y, z|

+V l
y |x, y −1, z〉〈x, y, z|]

+V l
z |x, y, z −1〉〈x, y, z|+h.c.

))
,

Hc =
∞∑

x=−∞
H c

0 |x,0,1〉〈x,0,1| , (3.3)

Vcl =
∞∑

x=−∞
(V |x,0,0〉〈x,0,1|+h.c). (3.4)
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Here, x, y, z are the spatial positions on a square lattice and H c/l/s
0 is the onsite Hamil-

tonian of, respectively, the chain, the superconductor lead, and the lead unit cell of the
surface termination. As a result of unpaired electrons at the surface H s

0 ̸= H l
0. V l

x/y/z is
the hopping of the lead along each spatial direction. Finally, V is the hopping between a
surface cell of the superconductor and an atom of the chain.

The YSR bound state wave functionsΨY SR are the states of the superconductor that
scatter with the chain back to itself. We can divide the states of the superconductor in
the propagating quasi-particle modes moving towards the chain (φin) and the modes
propagating away from the chain (φout). At the position of the surface termination, the
state of the superconductor can thus be written as [10]

ψs = q inφs,in +qoutφs,out, (3.5)

with q in and qout the amplitudes of respectively the incoming and outgoing modes. We
furthermore define s as the unitary scattering matrix relating the normal metal part of q in

to qout

qout = sq in. (3.6)

r A is the corresponding Andreev reflection matrix for the superconducting modes. The
YSR bound state condition in the Bogilobov-de-Gennes (BdG) quasi-particle mode basis
then is[11]

α(E)

(
s 0
0 sT

)(
0 r A

r A 0

)
ΨY SR = EΨY SR . (3.7)

This equation is under the additional Andreev approximation that the Fermi wavelength
λF is much smaller than the coherence length ξ. This means that wavefunction matching
at the normal superconductor interface becomes an energy-dependent factor α(E) [12].

3.2.1. SHORT JUNCTION LIMIT
The accumulated dynamical phase in the impurity is negligible because typical coherence
lengths ξ ∼ 100nm are much larger than the impurity site (a ∼ 1 Å). Therefore, short-
junction approximation applies, and the Andreev spectrum of Eq. 3.7 then simplifies
to[11]:

A A†ΨY SR =
(

E

∆

)2

ΨY SR , (3.8)

with A = 1
2 (r A s−sT r A). Note that the energy E scales with∆, meaning that all in-gap states

are gap-independent in this limit. Assuming perfect Andreev reflection, so r A diagonal
in the electron-hole block with scalars |r A | = 1, the Andreev reflection drops out of the
spectrum and the only unknown is the energy-independent normal metal scattering s.

3.2.2. VIRTUAL LEADS: MODE REDUCTION
Because the superconductor has a large Fermi surface, the total transmission between the
superconductor and the impurity is bounded by the number of orbitals in the impurity.
Therefore, we simplify the normal state scattering problem by decomposing it into a scat-
tering matrix from the impurity chain to the surface cell (sc ) and a scattering matrix from
the surface cell to the lead (ss ). Each describes scattering with current conserving virtual
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leads at the superconductor-chain interface (see Fig. 3.1). We single value decompose
the superconductor-chain hopping V =UAU †

B into a hopping UA belonging to sc and a
hopping UB belonging to ss . We have freedom in choosing the UA and UB but pick it such
that all the non-trivial degrees of freedom of the hopping appear in UB . We arrive at

V = IV †
c , (3.9)

where Vc is now of shape Nc ×M and I is of shape Nl ×M with Nc/s the size of Hc/s and
M of rank V .

When we furthermore consider Vc to be approximately time-reversal symmetric (TRS),
we find that the full scattering problem of ss becomes time-reversal symmetric, making it
skew-symmetric ss =−sT

s . We can now do the following cosine-sine decomposition [13]
respecting skew-symmetry:

ss =
 Uvl 0

0 Us

 r̃ ⊗σy t̃ ⊗σy 0
−t̃ ⊗σy r̃ ⊗σy 0

0 0 I ⊗σy

 Uvl 0

0 Us

T

, (3.10)

where r̃ , t̃ are diagonal real-valued matrices that quantify reflectance/transmission at the
virtual/physical lead interface and Uvl and Us unitary matrices. Note that if we apply Us

to the spectrum as in Eq. 3.8 we find

A =Us (s − sT )U T
s

A A† =U T
s (s − sT )(s − sT )†U∗

s ,
(3.11)

where for the last equality we use that U is unitary. Using that the spectrum does not
change by unitary transform and U T

s U∗
s = I we can now see that Us drops out of the spec-

trum. This is a direct consequence of the lead fully respecting time-reversal symmetry. We
can thus evaluate s̃ and treat it as s. We evaluate s̃ by making use of current conservation.
The modes of the lead and chain scattering problems must be the same. As a result, we
can combine the two scattering problems by solving the corresponding Dyson equation.
We find

s = (

(
r̃ 0
0 I

)
−

(
t̃ ((s̃c ⊗σy )−1 − r̃ )−1 t̃ 0

0 0

)
⊗σy , (3.12)

where sc =Uvl (s̃c ⊗σy )U T
vl .

The only non-trivial eigenvalues (norm < 1) are in the first block meaning that, as
suspected, the computation can be significantly reduced to be of the size of the norm of
V . We thus reduce the scattering matrix to

sred = (r̃ − t̃ ((σy ⊗ s̃c )−1 − r̃ )−1 t̃ )⊗σy

= (r̃ − t̃U T
vl (s−1

c − rvl )Uvl t̃ )⊗σy .
(3.13)

Because t̃ =
p

1− r̃ 2′ and the reflection at the virtual lead r can be decomposed as
Uvl ˜rvlU

T
vl the only remaining unknowns are rvl and sc .
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3.2.3. VIRTUAL LEADS: SEPARATE SCATTERING PROBLEMS
We can solve for rvl and sc by evaluating the corresponding scattering problems explicitly
in the basis (ψ̄c ,ψ̄l ) we defined by Vc :

ψ̄c =ψc (3.14)

ψ̄s =V †
c ψs , (3.15)

where ψc/s are the orbital wavefunctions of the chain and metal lead, respectively. The
scattering matrices couple the in and out going modes φ̄c/s,in/out of ψ̄c/s together as

ψ̄c/s = φ̄c/s,outsc − φ̄c/s,in (3.16)

ψ̄c/s = φ̄c/s,inrvl − φ̄c/s,out. (3.17)

These modes are the virtual modes of the virtual leads. They must obey current conserva-
tion and time-reversal symmetry. In this basis the current expectation value becomes

〈ψ| I |ψ〉 = 〈ψ|
(−iV 0

0 iV

)
|ψ〉 = (

ψ̄c ψ̄s
)
σy

(
ψ̄c

ψ̄s

)
. (3.18)

Virtual modes that obey time-reversal symmetry and current conservation are then

φ̄c,in = 1p
2

, φ̄s,in =− ip
2

(3.19)

φ̄c,out =
iσyp

2
, φ̄s,out =

σyp
2

. (3.20)

Here, the σy are to respect TRS. We then arrive at the following two scattering equations(
H c

0 iσy

−1 σy

)(
ψc

sc

)
=

(
1
−i

)
(3.21)(

H s,eff
0 −Vc

−V †
c 1

)(
ψs

rvl

)
=

(
Vcσy

iσy

)
, (3.22)

, where in the latter equation Hs,eff is the effective superconductor surface cell Hamilto-
nian as a result of the bulk of the superconductor.

We can solve these equations and find Fisher-Lee relationships for sc and rvl : [10]

sc = iσy (1+ i Hc )−1(1− i Hc ) (3.23)

rvl =−iσy (1+ iΣ0))−1(1− iΣ0), (3.24)

. Here, we have substituted the Fermi level normal metal self-energy Σ0 as we can write it
as

Σ0 =Vc (H s,eff
0 )−1V †

c =VcG0V †
c . (3.25)

G0 is the Fermi level Greens function at the position of the surface termination. We
can obtain G0 and thus Σ0 from solving a standard scattering problem of a Hamiltonian
coupled to a lead.
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3.2.4. SCATTERING THEORY FOR SURFACE PHYSICS
In order to ensure that the system we model is much larger than the coherence length,
Σ0 has to be the self-energy of the full translational invariant metal [14]. We start with
evaluating the Fermi level Green’s function G0 of the metal surface consisting of Hl and
surface termination of the metal Hs . Because of the translational invariance of the metal
in two of the three coordinates, we can recognize this problem as a 1D lead Hl (kx ,ky , z)
coupled to a scattering region Hs (kx ,ky , z = 0). Choosing z to be the direction breaking
translational invariance, we can evaluate

Hl (kx ,ky , z) =
∫ ∞

−∞

∫ ∞

−∞
Hl (x, y, z)e i (kx x+ky y)d xd y. (3.26)

We can solve the corresponding 1D scattering problem using kwant [15] to find G0(kx ,ky , z =
0). The self-energy of the metal at the position of the chain is then equal to the Shor com-
plement of the metal lead:

Σ0(kx , y = 0, z = 0) =
∫ π

−π
V (kx ,ky )G0(kx ,ky , z = 0)V (kx ,ky )†dky , (3.27)

with V the non-translational invariant hopping in the y-direction between the metal and
the chain.

Knowing Σ0, we can solve for sc and rvl in eq. 3.24 and eq. 3.23, insert their result in
eq. 3.13 to find the overall scattering matrix, and finally solve the short junction eq. 3.8
for the YSR dispersion.

3.2.5. NON-ORTHOGONAL BASIS
We now generalize our method to non-orthogonal basis sets to deal with Hamiltonians
derived from ab initio calculations. It is defined by an overlap matrix not equal to the
identity Di j = 〈φi | |φ j 〉 as well as a transformation P to a corresponding orthogonal basis
ψ:

ψi =
∑

j
P∗

i jφi . (3.28)

Transformation from an operator M in the orthogonal basis to an operator M̃ in the
non-orthogonal basis follows in general

M̃ = DP †MPD (3.29)

The corresponding operator eigenvalue equation is

M̃ψ= EDφ. (3.30)

In the current presented method, there are two places where we might expect a change
when there is a non-orthogonal overlap matrix. First of all in the short junction part.
This part is based on solving the scattering problems of Eq. 3.21 and 3.22 in the basis as
defined by Eq. 3.18. Inserting the non-orthogonal equivalent of the current operator in
the current expectation equation we arrive at

〈φ|DP †I PD |φ〉 = 〈φ|
(−i Ṽ 0

0 i Ṽ

)
|φ〉 = (

φc φl
)
σy

(
φc

φl

)
, (3.31)
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where we can again decompose the hopping as Eq. 3.9. As this equation takes the same
shape as for an orthogonal basis the same holds for the scattering problems and their
corresponding Fisher-Lee relations ships Eq. 3.23 and 3.24. The short junction part thus
stays the same.

The other part where the orthogonal basis might be different is the evaluation of the
self-energy at the Fermi level. It is found by solving the Greens function of the lead in the
non-orthogonal basis. The corresponding eigenvalue equation follows Eq. 3.30 which for
E = 0 takes the same shape of the orthogonal basis. So also the self-energy at Fermi can
be calculated in the same manner as in section 3.2.4.

We conclude that in the regime where the short junction method holds the YSR
dispersion is approximately independent of the overlap matrix D .

3.3. SINGLE ORBITAL MODEL
We demonstrate the working of the method using a single orbital model of YSR dispersion.
We model the lead as

H l
0 = H s

0 =µσ0

V l
x/y/z =−tσ0,

(3.32)

where σ are the Pauli matrices, t is the hopping and µ the onsite potential. For the surface
termination, we use the same Hamiltonian. We model the chain as well as a tight-binding
system but now with a Zeeman term B for the spins:

H c
0 =µcσ0 +Bσz . (3.33)

The chain and bulk are coupled with a simple single-order hopping

V =−tcσ0. (3.34)

We find the corresponding effective Hamiltonian and plot the dispersion relation in Fig.
3.1c. We compare the result with the dispersion coming from the exact diagonalization of
a finite geometry of size L = 200 in y- and z-direction, which is still translational invariant
along the direction of the chain. In order to ensure that we can apply the short junction
theory, we use a BdG gap of 0.01t for this exact calculation, which corresponds to a gap
of 1 meV for typical t = 0.1 eV. We can see that the dispersion coming from the short
junction method follows the same trend as the dispersion coming from the finite-size
system, while being more smooth. Our method thus agrees with the exact solution while
not having additional finite-size effects.

3.3.1. SCALING WITH GAP SIZE
We furthermore compare the YSR eigenenergies of finite-size calculations Efinite to the
short junction method Eshort junction in Fig. 3.2(a) as a function of L/ξ. We observe a
non-monotonic behavior of ϵ = |Efinite(k = 0)−Eshort junction(k = 0)|/∆ when ξ≫ L due
to finite-size effects. Moreover, Andreev approximation breaks when ξ≲ λF , resulting
in larger ϵ. Away from these two extreme cases, we observe a monotonic behavior of
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Figure 3.2: Benchmark of the short junction method. (a) ∆ scaled norm of the difference between YSR
energies obtained using the short junction method and those obtained using diagonalization of a finite system
Hamiltonian with increasing length L from 50 to 200 and parameters µ = 0.5, µc = 0, tc = 1, and B = 1 all
expressed in the hopping t . All is evaluated for k = 0 and plotted logarithmically for various ∆. Dotted lines
is the expected error ∆/2µ of the short junction method, (b) ∆ scaled norm of the difference between YSR
energies obtained using the 2D short junction method and those obtained using 2D finite size calculation of
length L = 2000 plotted next to norm of the energy difference of short junction method with the same finite size
calculation but then with overlap D t = 0.3. All are plotted logarithmically such that the expected linear scaling
of the difference is visible.

ϵ. Finally, because the lowest-order correction to short-junction approximation is ∼
∆2/2µ, we conclude that the short-junction approximation performs better than finite-
size calculations as long as Andreev approximation holds.

3.3.2. NON-ORTHOGONAL BASIS
Finally, we test that the short junction method is approximately independent of non-
orthogonal overlap D of the eigenstates as was concluded in section 3.2.5. In order to
mostly disentangle the effect of an overlap from finite size effects, we need to simulate
larger finite structures. This would become too computationally expensive for 3D struc-
tures. So, we perform this test on a 2D model. The 2D model is the same as Eq. 3.32
but then without the y-direction, i.e. the direction perpendicular to the chain, and with
an additional hopping term DV

x,z coming from the overlap with D t the magnitude of the
corresponding overlap:

Hl , 2D = Hs, 2D =µσ0,

V l , 2D
x,z =−tσ0

DV
x,z = D tσ0

(3.35)

The integral of Eq. 3.27 is removed for the overall computational scheme. The overlap
contribution is linear in energy (3.30) so the additional error due to finite overlap scales

in first order as D t ∆2

2µ .
We demonstrate the scaling of the error again with k = 0. The difference now has

three contributions: the Andreev approximation error, the error because of finite D t , and
the remaining general finite size error, F (E ,∆), for small ∆. In total it can be written as

ϵ∝ (c1E ∆2

2µ + c2D t E ∆2

2µ +F (∆,E)). We expect the error thus to scale linearly with ∆ and to
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shift along the ∆ axis with D t in the region where F (∆,E) is negligible. Fig. 3.2B confirms
this expectation. For ξ≲ L the logarithmic error ϵ/∆ between the short junction method
and finite size calculations of size L = 2000 scales linearly and shifts with D t . For L ≲ ξ , ξ
becomes too big, leading to additional contribution of F (E ,∆). As a result ϵ stops to scale
linearly here. Still, as expected, ϵ shifts approximately along ∆with D t .

Overall, the error remains of the size of the Andreev approximation error. It is thus
indeed justified to neglect the influence of finite D .

3.4. ATOMIC SOC
As a next showcase of our method, we examine a model with s and p orbitals and atomistic
spin-orbit coupling in the p-orbitals. We use

Hsoc =αL ·σ (3.36)

as Hamiltonian for atomistic spin-orbit coupling. Here, σ are the Pauli matrices and L
are the orbital momentum operators for orbital momentum equal to 1. A natural basis
to express them is in the eigenvalues mL of the projection on z. We prefer the p-orbital
basis however as that diagonalizes the other terms of the tight-binding Hamiltonian. The
unitary that relates the two bases is

Usoc =
mL = 1 mL = 0 mL =−1

px −i 0 −i
py 1 0 −1
pz 0 1 0

. (3.37)

We furthermore include a general onsite term, direct hopping between same oriented
p-orbitals and sp-hopping to mix the p-orbitals. The total bulk Hamiltonian then is

H l
0 =

∑
l
µσ0 +UsocHsocU †

soc,

H s
0 =∑

l
(µ+∆µ)σ0 +UsocHsocU †

soc,

V l
a = (−tpa ,pa − tpa ,s + ts,pa )σ0,

(3.38)

with a = x, y , z and µl and tl1,l2 respectively the onsite term and hopping for orbitals
s, px , py and pz . We have also used that all p-orbitals are anti-symmetric so sp- and
ps-hopping have a sign difference. To correctly simulate the termination of the surface,
Hs must be of the same shape as Hl but with surface potential µ+∆µ representing the
surface excess of electrons.

The termination of the surface combined with sp-hopping causes the orbitals at
the surface to mix. The result is a non-zero angular momentum at the surface. Hsoc

can couple to this angular momentum, which in turn leads to Rashba splitting at the
surface[16, 17].

HRashba = iαR k×σ (3.39)

In Fig. 3.3A we plot on a logarithmic color scale the surface spin contrast of the kx -
dependent density of states as achieved through

Sy = Tr
[
Sy Im

(
G(kx ,ky )

)]
(3.40)



3.5. CONCLUSIONS

3

39

where Sy is the spin 1/2 operator to rotate the spin to y so that according to eE. 3.39 any
Rashba splitting must be visible in kx . We can indeed see that the splitting is only present
in the x part of the spectrum. We thus conclude that we are able to simulate Rashba
spin-orbit coupling starting from bulk spin-orbit coupling.

We combine this result with a chain as defined by Eq. 3.33 and use

V =−tpz ,sσ0 (3.41)

as hopping, because the overlap with the pz -orbital is the biggest. 3.3B shows the cor-
responding YSR dispersion as a function of α and B . When we increase B there is a
quantum phase transition with the gap closed at k = 0 for B = 0.48. Other Fermi crossings
are present for α= 0 but are gapped out as expected for finite α. We can thus correctly
capture bulk physics (Hsoc) in the YSR dispersion.

Note as well that already for this simple model with s and p-orbitals the expected
YSR dispersion is highly non-trivial showing features in the range of just a few k points.
It is a direct result of the non-trivial surface spin density of the Fermi surface. We thus
conclude that the YSR dispersion in general absorbs the complexity of the bulk Fermi
surface meaning that a correct treatment of the bulk is necessary to model YSR dispersion.
Toy models do not capture these features.

ba

Figure 3.3: Atomistic spin-orbit coupling. (a) Logarithmic difference between y-projected surface spin density
of states of the atomistic spin-orbit model with α= 0.2, µc = 0, µ=−1, ∆µ= 2 and tc = 1 all in units of t . (b)
In-gap YSR dispersion as a function of atomic spin-orbit of the bulk α and field B . We choose the values of B
such that a quantum phase transition is visible for B = 0.48. Furthermore, we use tc = 1.

3.5. CONCLUSIONS
We have presented a method to evaluate the dispersion of YSR states based on the theory
of short junctions. The theory is guaranteed to not suffer from finite size effects, interfaces
well with ab initio calculations as it works for a non-orthogonal basis, and allows for
changing of parameters without the need for additional ab initio calculations. On top of
that, the method only needs the self-energy at the Fermi level to evaluate the full in-gap
band structure.



3

40 REFERENCES

The method outperforms finite size calculations in terms of accuracy as expected for
systems that are smaller than the coherence length. As the method is based on Andreev

approximation it does have an error scaling as ∆2

2µ , but for realistic gap sizes this error is
negligible.

Our method can also capture the presence of Rashba splitting at the surface for a
model with atomic spin-orbit coupling and s− and p-orbitals. The corresponding YSR
dispersion has features that do not appear in dispersions coming from toy models. This
shows that the dispersion of YSR chains in general depends heavily on the complexity of
the Fermi surface of the metal the chains are placed upon.

The presented method is expected to be particularly fruitful when coupled with ab
initio calculations to study YSR dispersion when many orbitals are involved.

3.6. CODE AND DATA AVAILABILITY
All research data and code supporting the findings described in this chapter are available
in 4TU.ResearchData at: DOI 10.4121/c773957e-b628-4962-817a-9a213bdf06db.
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LIFETIME OF CONFINED VACUUM

RESONANCES

Rasa Rejali, Laetitia Farinacci, David Coffey, Rik Broekhoven, Jeremie Gobeil, Yaroslav. M.
Blanter and Sander Otte

Atomically engineered artificial lattices are a useful tool for simulating complex quantum
phenomena, but have so far been limited to the study of Hamiltonians where electron-
electron interactions do not play a role—but it’s precisely the regime in which these inter-
actions do matter where computational times lend simulations a critical advantage over
numerical methods. Here, we propose a new platform for constructing artificial matter
that relies on the confinement of field-emission resonances, a class of vacuum-localized
discretized electronic states. We use atom manipulation of surface vacancies in a chlorine-
terminated Cu(100) surface to reveal square patches of the underlying metal, thereby
creating atomically precise potential wells that host particle-in-a-box modes. By adjusting
the dimensions of the confining potential, we can access states with different quantum
numbers, making these patches attractive candidates as quantum dots or artificial atoms.
We demonstrate that the lifetime of electrons in these engineered states can be extended
and tuned through modification of the confining potential, either via atomic assembly or
by changing the tip-sample distance. We also demonstrate control over a finite range of
state-filling, a parameter which plays a key role in the evolution of quantum many-body
states. We model the transport through the localized state to disentangle and quantify the
lifetime-limiting processes, illustrating the critical dependency of the electron lifetime on
the properties of the underlying bulk band structure. The interplay with the bulk bands
gives rise to negative differential resistance.

Parts of this chapter have been published as , Confined vacuum resonances as artificial atoms with tunable
lifetime, ACS Nano, 16, 7(2022) [1]

Own contribution to work: Performed the DFT calculations for Fig. 4.4d, e, f and g and helped making these
figures. Wrote section 6. Assisted on writing section 2.

43



4

44 4. FER

4.1. INTRODUCTION

Artificial lattices serve as quantum simulators for realizing and studying fundamental
properties of real materials, with the advantage that the relevant interactions can be
precisely controlled. While different experimental approaches, such as using ultra-cold
atoms [2], optical lattices [3, 4], or trapped ions [5], have been successfully implemented
in the study of artificially constructed systems, atom manipulation casts the scanning
tunneling microscope (STM) as a particularly appealing platform: the scanning probe
framework uniquely allows for creating and characterizing the electronic properties of
2D artificial matter on the atomic scale [6]. Typically, atomic impurities are patterned
to construct a potential landscape that mimics a specific physical system, with the aim
of studying model Hamiltonians. This approach has led to the realization of a wide
range of novel states in, for instance, Dirac materials, like the Lieb lattice [7, 8] and ar-
tificial graphene [9, 10], as well as higher order topological insulators [11, 12], among
others [13–17]. These studies offer rare insight into the parameters that govern the elec-
tronic behaviour of these systems, but are restricted by the short electron lifetime of the
constituent artificial atoms to the limiting case in which electron-electron interactions do
not play a role. Additionally, short electron lifetimes limit the available energy resolution;
the most popular STM approach so far, which relies on confining surface states, lacks
flexibility in tuning this parameter [18–20].

Here, we explore a new platform for realizing artificial lattices, based on confining field-
emission resonances (FERs): a class of quantized electronic states localized in the vacuum,
between the surface and the probe tip, that arise in the high bias regime, i.e. exceeding
the sample work function. We show that confining potentials can be engineered to enable
the study of states with different orbital character [10, 21, 22], with precise control over
the energy and quantum numbers of the states. We study the electron lifetime of these
states, and demonstrate that we can finely tune it—and consequently, to some extent, the
average occupation—by adjusting the tip-height or patch dimensions. The ability to tune
the lifetime and occupation of artificial atoms is a critical first step towards simulating
many-body quantum states driven by electron-electron interactions. We also observe
specific voltage-current characteristics, namely negative differential resistance, which
are analogous to those of resonant tunneling diodes [23], making the confined FERs also
suitable to possible applications in creating customizable, atomic scale diodes.

4.2. EXPERIMENTAL METHOD

We use atom manipulation of single vacancies in the chlorine-terminated Cu(100) surface
to engineer lateral confinement of field emission resonances. By coordinating chlo-
rine vacancies— which are easily manipulable and thus suited to large scale atomic
assembly [7, 14–16, 24]—adjacent to each other, we construct patches of exposed copper,
surrounded by areas of homogeneous, monolayer chlorine coverage (Fig. 4.1a). The bare
and chlorinated Cu(100) surfaces host FERs at bias voltages exceeding the local work
function, at 4.6 V [25] and 5.7 V [26], respectively. These resonances can be readily mod-
elled with a one-dimensional potential in the out-of-plane direction (Fig. 4.1, see 4.8.2
for details). The work function difference between the two surfaces results in a shift in the
measured resonance energies (Fig. 4.1c), in accordance with previous studies [27–30].
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Spectroscopy acquired at the center of the 7×7 patch (dimensions defined in unit
cells of the chlorine lattice) exhibits additional resonances, in comparison to the bare and
chlorinated Cu(100) surfaces (Fig. 4.1c). As shown in Fig. 4.1d, these additional resonances
belong to a series of sub-resonances following each primary FER, and can in fact be
resolved for each primary FER, up to and including the the fourth primary resonance.
We use the principal quantum number nz to describe the primary FERs. Note that
the additional modes are only observed above the energy of the first resonance on bare
Cu(100) (Fig. 4.1c). The full in-plane structure of the confined modes for the larger patches
is best visualised by differential conductance maps taken at voltages corresponding to
the sub-resonances of the first FER on the 7×7 patch, as shown in Fig. 4.1e. The observed
states can be recognised as two-dimensional particle-in-a-box modes, with quantum
numbers nx and ny , and can be accurately reproduced by the eigenstates of a finite
potential well [31]. Similar to previous works [22], the nodal patterns of the first three
modes are analogous to the orbitals of an two-dimensional atom, with the first state
corresponding to the s-like state, and the second to the p-like, and subsequently the
d-like state. Finally, we note that the energy of the FERs depends on the patch size: as
the patch size is increased, the FER energy shifts down, tending toward the limit of bare
Cu(100). All in all, the assembled patches can be seen as atomically precise potential wells,
wherein the energy, spacing, and order of the states can be tuned by adjusting the shape
and size of the confining potential. We note that the single vacancy [7, 14–16] stands out
as an exception, as the necessary change in the local work function cannot take place on
such small length-scales: as such, the vacancy acts as a scattering center, rather than a
confinement potential.

4.3. LOWEST ENERGY FER LIFETIME
In order to characterize the electron lifetime, we consider the transport through these
confined states: two electron baths, one on the tip side and another on the sample side,
act as decoherent sources, the contributions of which we can disentangle by investigating
the evolution of the differential conductance spectra as a function of conductance set-
point, as shown in Fig. 4.2a. With increasing conductance setpoint, we observe a slight
shift in the energy of the FERs, which is explained by the increased out-of-plane confine-
ment (Fig. 4.1b), as well as the appearance of negative differential resistance (NDR). The
appearance of NDR at high conductance setpoints gives us qualitative insight into the
coupling of the resonances with the substrate and tip.

We consider a transport model describing the resonant tunneling of independent
electrons from (to) the tip and sample through a level localized between the two potential
barriers ([31] and 4.2a, inset). In this framework, the current through a single resonance
is given by:

Ii =
2GQħ

e

Γi
t (z,V )Γi

s (z,V )

Γi
t (z,V )+Γi

s (z,V )

(
π

2
+ tan−1

(
2(eV −Ei (z,V ))

ħ(Γi
t (z,V )+Γi

s (z,V ))

))
, (4.1)

where the quantum of conductance is GQ = e2/(π×), Γi
t and Γi

s are, respectively, the tip
and sample decay rates for the i th resonance, and Ei its energy, whose shift with bias
voltage we will initially neglect for simplicity. In general, the tip and sample decay rates
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Figure 4.1: Confinement of field-emission resonances. (a) STM constant-current topography (600 mV, 300 pA)
of square, atomically assembled patches of Cl vacancies, with sizes indicated in unit cells. (b) Potential landscape
(blue) between sample (left) and tip (right) for a finite bias voltage V . Amongst the wave functions (grey)
calculated for this potential, are the first three field-emission resonances (red). Inset: schematic of the tip-
sample junction. (c) Constant-current differential conductance spectra acquired for bare Cu(100) (grey, 250 pA
current setpoint), the chlorine monolayer (turquoise, 100 pA), and the center of the 7×7 patch (black, 100 pA).
The first peak on the chlorine monolayer (3.5 V), being below the surface work function, corresponds to an
image-potential state. (d) Stacked constant-current (100 pA) differential conductance spectra taken along a
line crossing the center of each patch (shown in inset), with the corresponding patch size indicated (top). A
correction is applied to the data to rectify the asymmetry of the tip electric field [31] White lines indicate the
patch boundaries. (e) Calculated LDOS of the particle-in-a-box states (|Ψ|2), obtained using a finite well model
(top row). Normalized [32] constant-current (100 pA) differential conductance maps acquired for the 7×7 patch
at the resonance energies of the first principal FER (nz = 1, (nx ,ny ) = (1,1)) and the following sub-resonances.
White squares delineate the spatial extent of the simulated potential well (top row) and the physical patch
(bottom row).

are both distance and voltage dependent. For the former, this dependence is derived by
considering the transmission through the tunnel barrier. The sample decay rate, however,
encapsulates an effective barrier that depends on the surface band-structure, and the
relationship between Γs and V is non-trivial; we approximate this dependence as either
constant or linear, depending on the width of the voltage window we consider. The
differential conductance, in turn, can be obtained by differentiating the current with
respect to voltage, and contains terms that scale with the derivatives of the decay rates
and the energy of the resonance [31].

We can gain quantitative insight into the tip and sample decay rates by focusing strictly
on the first principal FER (Fig. 4.2b inset): this allows us to drastically reduce the number
of free variables to a single resonance, and consequently to meaningfully account for the
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effects of the changing level E0; additionally, we simplify Γs (V ) to a constant in the narrow
voltage range around the resonance. By fitting the measured differential conductance at
each conductance setpoint to our model, we can extract a value for the tip and sample
decay rates as function of conductance setpoint (Fig. 4.2b and c).

In Fig. 4.2b, we see that Γs increases with conductance setpoint, which can be related
to the FER wave function: in general, decay to the bulk is governed by the overlap of the
vacuum-localized state to the substrate, which is in turn determined via the penetration
of the state into the bulk, the evanescent tail of the bulk states into the vacuum, and the
diminished electronic screening in the area between the surface and the vacuum [33, 34].
Bringing the tip closer causes a redistribution of the weight of the wave function toward
the surface, rendering the scattering channels to the bulk more efficient [35], leading to
an increase in Γs . More precisely, we consider that the sample decay rate should scale
linearly with the wave function overlap of the FER with the sample [33], and for simplicity
we assume its increase to be inversely proportional to the tip-sample distance. Given the
exponential dependence of current with distance, we thus expect an inverse logarithmic
dependence of the sample decay rate on the conductance setpoint. The fit in Fig. 4.2b
shows this simple relation describes the change in Γs appropriately.

The evolution of the tip decay rate with conductance setpoint is straightforward:
this rate should scale exponentially with the tip-sample distance, meaning it should be
linear with the conductance setpoint and intercept with the origin, as we see in Fig. 4.2c.
Importantly, the changes in the decay rates impact the overall occupation of the state.
The occupation is determined by the ratio of the tip decay rate to total decay rate Γs +Γt ,
meaning that the occupation of the state can be tuned via the tip-height, as shown in
Fig. 4.2c: the occupation linearly increases with the conductance setpoint. In effect, this
means that the competing factors determining the time-average occupation—the rate
of tunneling electrons versus the increase in the lifetime-limiting rate, Γs —results in the
state filling increasing as the tip is brought closer.

4.4. HIGHER ENERGY FER LIFETIMES
We now extend our scope to account for transport through the higher energy states—
around 5.6 V (nz = 1, (nx ,ny ) = (2,1), (1,2)) and 6 V ((3,1), (1,3)), respectively. To do so,
we assume the resonances are independent, i.e. that the total current is determined by
the sum of the currents Ii through each resonance; additionally, we explicitly account
for the voltage-dependence of Γs (V ) as linear to first approximation. As seen in Fig. 4.2b
(inset), our model successfully reproduces the key features of the measured differential
conductance over the entire voltage range, with, in particular, the presence of NDR
between ∼ 5.6 to 6 V. In this window, we find dΓs/dV < 0. In fact, we find it is necessary to
have a decreasing sample decay rate with increasing voltage to engender NDR, indicating
once again that the decay path to the sample crucially depends on the electronic wave
function of the FER.

While the decay rates can be tuned by changing the out-of-plane confinement of the
wave function, the in-plane confinement plays the dominant role in setting an upper
bound on the lifetime. Typically, field-emission resonances are delocalized (Bloch-like)
in the directions parallel to the surface and thus form bands [36]. In that case, the
electron lifetime is affected by interband scattering, wherein the excited electron escapes
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Figure 4.2: Extracting tip and sample decay rates. (a) Constant-height differential conductance spectra
obtained at the center of the 5×5 patch for a range of conductance setpoints ((250 pA → 32 nA), 6.2 V). Inset:
schematic of the double-barrier potential (dotted line) implemented in the rate equations, with the decay rates
to the tip and sample, Γt and Γs , indicated. (b) Inset: constant-height differential conductance (light blue,
shaded) acquired at the center of the 5×5 patch (32 nA, 6.2 V). Calculated d/I dV using a resonant tunneling
model for a single level (navy, dotted line) or several, independent levels (green solid line). (b), (c) Sample (b,
yellow circles) and tip (c, green circles) decay rates extracted for the first principal resonance as a function of
conductance setpoint, fitted (solid grey line) to an inverse natural logarithm and a line, respectively. The tip
decay rate is evaluated at the energy of the peak of the first principal field emission resonance. (c) Average
occupation versus conductance setpoint (orange circles), and the corresponding linear fit (solid grey line).

into the metal (sample or tip), or scatters with an electron in a different band; and
intraband scattering, in which case the electron changes velocity [33, 37]. We can expect
the introduction of lateral localization to affect decay through these channels in two
opposing ways: the increased confinement causes the bands to split into quantized states,
strongly attenuating intraband decay, while the simultaneous broadening of the k-space
distribution increases the available interband decay paths to the bulk. We assess the
degree to which the in-plane confinement precisely affects the lifetime by investigating
the transport characteristics of different sized patches.

Performing the same conductance-dependent measurements, we see a marked change
in the relative strength of the NDR based on the dimensions of the confining patch, as
shown in Fig. 4.3a. The relative NDR strength, which we define as the ratio of negative
area to the total area under the differential conductance spectrum, stays fairly constant
as a function of conductance setpoint for patches of larger size, such as the 7×7 and
5×5. In contrast, the smallest patch (2×2) does not exhibit any NDR at low conductance
setpoints; at a conductance setpoint of ∼0.5 nS, the relative NDR strength becomes non-
zero and monotonically increases thereafter. The same general trend holds for the 3×3:
exponentially increasing NDR strength with increasing conductance setpoint. In fact, the
NDR is directly related to the change in the sample decay rate as a function of voltage,
and we can see this variance in Γs in the strength and conductance-dependent behaviour
of the NDR for the different patches.

As before, to quantify the change in the sample decay rate, we extract Γs by fitting
equation (4.1) to the first principal FER of each patch, for a discrete range of conductance
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Figure 4.3: Tuning of the lifetime. (a) Relative strength of the negative differential resistance as a function of
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setpoints (Fig. 4.3b). We see that both the magnitude of the sample decay rate, and
its rate of change over this conductance setpoint range, vary according to patch size.
The electrons localized above the smallest patch experience the largest sample decay
rates, meaning scattering to the bulk becomes more efficient due to the increased spatial
confinement.

The lifetime of these localized electrons, τ, is determined by the tip and sample decay
rates, such that τ−1 = Γ−1

s +Γ−1
t . The tip contribution exponentially tends to zero as a

function of the tip-sample distance, meaning the intrinsic lifetime (at zero conductance
setpoint, namely when the tip is infinitely far away) is determined by the sample decay
rate at zero conductance. Approximating the lifetime by the linewidth of the resonance
is not valid here, as the potential in the out-of-plane direction changes as we perform
spectroscopy, leading to a changing resonance energy as a function of the applied voltage
that artificially broadens the peak.

As shown in Fig. 4.3c, the extracted lifetimes monotonically increase as a function
of patch size up to N = 7, the maximum patch dimension studied in this work. Notably,
the lifetime for the confined states is roughly 2-4 times longer than the lifetime of the
first resonance on bare Cu(100), extracted using the same method and in fair agreement
with previously reported values [31]. This also indicates that there must be a patch size
with an optimally long lifetime, after which τ begins decreasing with patch size, tending
toward the freely-propagating Cu(100) limit. Indeed, the degree to which the confinement
prohibits the different decay paths at play is ultimately a delicate balance: the smaller
the patch, the fewer states available for scattering between different resonances, but
the larger the k-space overlap with the bulk states. Notably, the lifetime-limiting rate
for all the patches shown here is Γs , which in our case is approximately three orders of
magnitude larger than the tip decay rate Γt (Fig. 4.2c).
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4.5. MODEL OF THE NEGATIVE DIFFERENTIAL RESISTANCE
To better determine the role of the in- and out-of-plane confinement on the lifetime, we
investigate the spectral weight of the localized resonances in k-space and compare this to
the bulk band structure of copper. We calculate the wave functionΨ, which we assume to
be separable, in the directions parallel and perpendicular to the (100) direction to obtain
the corresponding k-space distribution. First, we consider the out-of-plane direction,
where the confinement is set by the tip-sample distance and the applied voltage. We
restrict our focus to the calculated wave-function,Ψ(z), for the first principal FER and the
resulting Fourier transform,Ψ(k⊥), shown in Fig. 4.4a. The k⊥ values with a significant
spectral weight span the entirety of the first Brillouin zone (BZ) (±1.75 Å).

Along the in-plane directions, we consider the wave functionsΨ(x) andΨ(y) corre-
sponding to the first ((1,1)) particle-in-a-box mode for the 3×3 and 7×7 patches (Fig. 4.4b
and c). As expected, the k∥-space distribution widens as the patch size decreases. Fur-
thermore, as shown in Fig. 4.4c, this broadening also takes place when the quantum
numbers (nx ,ny ) of the in-plane mode increase. This is due to changes in the apparent
barrier height: compare, for instance, the first and second particle-in-a-box modes—
since the latter lies at higher energy than the former, it experiences a shallower finite well.
Such considerations allow us to visualize how the factors considered so far—such as the
tip-sample distance, the lateral extent of the patch, the apparent height of the in-plane
barrier—impact the distribution of the state in k-space, and consequently its overlap with
the bulk states.

To better illustrate this, we consider the band structure of bulk copper along the high
symmetry lines [38], specifically at the experimental energies of the particle-in-a-box
modes (Fig. 4.4d). The lifetime of the confined electrons depends directly on, and is
limited by, the number of bulk states available for direct tunneling—the more bands we
cross at the energy of the resonance, with k-values falling within Ψ(k), the shorter the
lifetime to first order. In this energy range, we cross several bulk bands along the high
symmetry lines (X → W, W → L, L → Γ, Γ→ K); however, the efficiency of these decay
paths is scaled by the spectral weight ofΨ(k) at the crossing points. In other words, the
efficiency of the decay paths is scaled by the probability of having an electron with the
right momentum for direct tunneling into that bulk state.

Accordingly, in Fig. 4.4e and f, we consider the intensity of the k-space wave function
along various cross-sections of the first BZ (Fig. 4.4d, inset). Interestingly, the highest
spectral weight is along the Γ→ X direction—across both the lateral (Fig. 4.4e) and vertical
(Fig. 4.4f) cross-sections—relative to the other high symmetry lines; however, this direc-
tion does not present any band crossing along the high symmetry lines at the energy of
the resonances. In fact,Ψ(k) carries little, if any, spectral weight along the other directions
where it does cross the bulk bands. This is illustrated in Fig.s 4.4e and f, where we see that
Ψ(k) has practically zero intensity along the energy isosurfaces (at 5 V and 6 V) of bulk
Cu, calculated using density functional theory (DFT) (see 4.8.4 for details). This is quite
remarkable: although the lateral confinement of the states introduces direct tunneling
paths to the bulk that are not present for the laterally freely-propagating case, we can
consider the contribution to be minimal in this case. Additionally, the added confinement
acts to largely hinder the role of intraband inelastic scattering, as the available states for
scattering are substantially reduced: the FERs no longer form bands, but are rather quan-
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tized and well-separated in energy, according to the physical dimensions of the patch.
These two effects ultimately amount to a considerable enhancement of the lifetime of the
confined states.

These considerations also shed light on the dependence of the sample decay rate Γs

with bias voltage—which, as we previously found, is critical in engendering NDR. Namely:
with increasing voltage, the localized resonance is pushed to higher energies, causing
a shift in the crossing points with the bulk bands. In turn, this shift translates into the
decay channels being scaled by a slightly different spectral weight. To illustrate this effect,
we can consider the crossing along the Γ→ K direction: as the bias increases, the FER
shifts up in energy, meaning that the crossing point for the lower band moves away from
the Γ point, closer to the K point. Fig. 4.4e and f show that this shift is accompanied by a
decrease in the spectral weight ofΨ(k), meaning the total overlap between the localized
state and the bulk bands decreases. The emergence of the upper band around ∼4.5V,
however, further complicates the picture, illustrating that the overall rate of change of the
decay rate is hard to estimate. However, by qualitatively considering the evolution of the
k-space overlap, we can already grasp the complexity of the dependence of Γs on the bias
voltage.

To get a quantitative estimate of the change in the sample decay rate, we calculate
the weighted k-space wave function overlap for each DFT-calculated crossing point
throughout the entire BZ, and relate that to a dimensionless sample-decay rate via Fermi’s
golden rule (Fig. 4.4g, see section 4.8.3 for details). For this, we consider the calculated
k-space wave function of the 5×5 patch for the first (1,1), second (2,1), (1,2), and fourth
(3,1), (1,3) particle-in-a-box modes—the only states with non-zero intensity at the center
of the patch (see Fig. 4.1d and 4.2a). As shown in Fig. 4.4g, we see that the calculated
sample decay rate for all three states monotonically decreases, i.e. that the overlap ofΨ(k)
with the bulk bands decreases with increasing voltage, so that dΓs/dV is negative—the
ratio of this rate of change to the intercept is in good agreement with our quantitative
results from the double barrier model (Fig. 4.2). The sample decay rate associated with
each state is strictly only applicable in the voltage range in which that state is measured,
roughly delineated in Fig. 4.4g by the shaded areas. All in all, we can confidently attribute
the NDR to the effects of the bulk band structure. Additionally, we should also note that
the NDR is consistently observed with different tips, and is not observed for laterally
propagating FERs [31, 39, 40], which do not have direct tunneling paths to the bulk
available to them.

4.6. CONCLUSION
By laterally confining field-emission resonances through atomic assembly of single chlo-
rine vacancies, we present a new platform for creating artificial atoms. We demonstrate
control over the lifetime and occupation of these artificial atoms by adjusting the con-
fining potential, implemented via modification of the tip-sample distance or the lateral
dimensions of the patch. The ability to tune the occupation is a key parameter of control
in the study of quantum many-body states that evolve as a function of the state filling. We
show that the lifetime of field-emission resonances, unlike that of surface states, can be
prolonged via lateral confinement, up to nearly four times the freely-propagating case.
This extension of the lifetime enhances the available energy resolution, and, in conjunc-
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Figure 4.4: Distribution in k-space. (a) Calculated out-of-plane component of the real space wave function
|ψ(z)| for the first principal FER nz = 0 (left), and the corresponding Fourier transform (right), at tip-sample
distance z = 2.4 nm. (b), (c) Calculated in-plane component of the real space wave function (left) for the (b) 3×3
(c) and 7×7 patches, showing the first (nx ,ny ) = (1,1) ((b), red; (c), pink) and second (1,2), (2,1) ((c), purple)
modes, with the corresponding Fourier transforms (right). Dotted lines indicate ±π/a bounds. (d) Bulk band
structure of Cu along high symmetry lines, with the experimental resonance energy of the (1,1) state for the
3×3 (red) and 7×7 (pink), as well as the (1,2)/(2,1) state of the latter (purple), denoted by solid lines. Inset:
schematic of the first Brillouin zone of Cu. (e, f) Intensity of the 3×3 wave function in k-space across Brillouin
zone slices indicated in inset of (d). Solid contour lines delineate an order of magnitude change in the intensity.
Corresponding DFT-calculated constant-energy isolines shown for bulk Cu bands, taken 5 V (black line) and 6 V
(red line) above the Fermi level. (g) Calculated sample decay rate as a function of bias voltage, shown for the
first three resonances probed in the center of a 5×5 patch, corresponding to the (1,1) (mauve line), (2,1)/(1,2)
(brown line), and (3,1)/(1,3) (grey line) modes. The shaded areas correspond to the voltage range in which the
respective modes are typically measured, delineating Γs in that range.

tion with control over the state filling, is a first step towards studying electron-electron
interactions with artificial lattices. Further prolonging the lifetime to approach a state
occupation of 1 for reasonable setpoint currents can be pursued via several avenues: such
as finding an underlying bulk crystal that hosts FER bands closer to the Fermi energy,
or one that is semi-conducting or even insulating. These considerations make confined
vacuum resonances a promising platform for creating and studying artificial lattices.

4.7. EXPERIMENTAL METHODS
Sample preparation and experimentation were performed in ultrahigh vacuum systems
with a base pressure of 10−10 mbar (Unisoku USM1300s, SPECS Joule-Thompson-SPM).
The Cu(100) crystal was cleaned via repeated cycles of argon sputter at 1 kV and an-
nealing to 600◦ C. The chlorinated copper surface was prepared by thermal evaporation
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(2-3 minutes) of anhydrous CuCl2 powder heated to 300◦ C onto a warm Cu(100) crys-
tal. The crystal was heated to 150◦ C for ∼ 10 minutes before and after deposition [24].
The coverage and sample quality were verified via LEED (where possible) and STM.
Atom manipulation of chlorine vacancies was implemented using a procedure previously
outlined [24]. Differential conductance measurements were performed using standard
lock-in detection techniques.

4.8. SURFACE TRANSPORT SIMULATION DETAILS

4.8.1. MODELLING THE IN-PLANE CONFINEMENT

The engineered lateral confinement of the field emission resonances, which physically
arises from the work function difference between the bare and chlorinated Cu(100) sur-
faces, can be simply modelled using a finite, slanted square potential well. The depth
of the potential well is set by the work function difference ∆φ = 1.1± 0.1 eV between
the two surfaces [26]. It is also possible to estimate ∆φ from the energy shift of the first
field-emission resonance on each surface [29, 30]; this method also yields a difference of
roughly 1 V (see Fig. 4.1c ). Since the work function change cannot occur with an infinitely
sharp slope, we assume the potential well is slanted: we consider that the slope is set by
∆φ, as well as by the Fermi wavelength of the tunneling electrons, which is roughly 1.5
units cells at 5V.

We calculate the expected energy of the observed resonances by numerically solving
the Schrödinger equation [41] for this potential; this gives us the energy spacing between
the main and sub resonances. The total potential landscape, which also has an out-
of-plane component, described by the trapezoidal potential barrier at the tip-sample
junction, is separable, meaning the eigenenergies for each direction can be simply added.
For ease of comparison between the energies calculated for the in-plane confinement
and those measured, we subtract the out-of-plane component by defining the energy
axis relative to the energy of the first field-emission resonance. As shown in Fig. 4.5, the
comparison between the energies extracted from the measured constant-height dI /dV
to those obtained numerically is fair. Note that the third in-plane confinement mode
is absent in the measured dI /dV spectrum obtained at the center of the patch, as this
point corresponds to the intersection of the two nodal planes for the (nx ,ny ) = (2,2)
state. As such, we also compare the results of the calculations to the energies of the
constant-current dI /dV maps shown in Fig. 4.1e, we have good agreement.

4.8.2. MODELLING THE OUT-OF-PLANE CONFINEMENT

The field emission resonances are modelled with a one-dimensional potential [42, 43].
The sample potential (z ≤ 0) is taken to be periodic in the bulk, with a periodicity set by
a/2, the distance between two atomic layers in the out-of-plane direction, where a is
the lattice constant. The potential beyond the surface atomic layer is modelled with a
potential well (0 ≤ z ≤ z1) and subsequently, an exponential decay of the potential towards
the tip vacuum level. (z1 ≤ z ≤ zim). To account for the tip (at ztip) [42], we add the linear
potential, Vlin(z), between the tip and sample (z1 ≤ z ≤ ztip), caused by the applied voltage,
and account for the contact potential by including the tip (φt ) and sample work functions
(φs ). The long-range image potential, Vim(z), which accommodates multiple images in
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Figure 4.5: Comparison of calculated and measured eigenenergies of the particle-in-a-box states of the
laterally confined field-emission resonances. (a) Constant-height differential conductance spectrum (con-
ductance set-point at 250 pA/6.2 V) acquired at the center of the 7×7 patch, as indicated in the inset. Dotted
lines indicate the energy of the first main resonance (5.02V) and the following sub-resonances. (b) Resonance
energies extracted from point spectroscopy performed at the center of the 7×7 patch (green circles); we compare
this to the energies of the constant-current (100 pA) differential conductance maps (red squares) shown in
Fig. 1e of the main text, as well as the energy calculated for each state using a finite potential well model (orange
circles). In each case, we define the energy axis relative to the energy of the first field-emission resonance.

both tip and sample, is also included, giving rise to the following total potential (Fig. 4.6)
across the tip-sample junction:

V (z) =


A10 + A1 cos

( 2π
ã

)
z ≤ 0

A20 + A2 cos(βz) 0 ≤ z ≤ z1

Vlin(z)+ A3 exp(−α(z − z1)) z1 ≤ z ≤ zim

Vlin(z)−Vim(z) zim ≤ z ≤ ztip,

(4.2)

where
Vlin(z) = E f ,s + s(eV +φt )+ (1− s)φs , (4.3)

given E f ,s is the sample Fermi energy, and s = (z − z1)/(ztip − z1). We chose to define the
potential relative to the tip Fermi level, meaning E f ,s = −eVbias. Additionally, we can
define the image potential as:

Vim(z) = (
1−exp(−λ(z − zim)

) e2
(
2Ψ(1)−Ψ(η)−Ψ(1−η)

)
16πϵ0

(
ztip

im − zim

) , (4.4)

where η= (z − zim)/(ztip
im − zim), e the electron charge, ϵ0 the vacuum permittivity, andΨ

is the digamma function.
For a terminated metal surface, the parameters A1 and A10 determine the width and

position of the surface-projected band gap, respectively, whereas the parameters A2 and
β reproduce the experimental values of the binding energies of the image stakes in the
absence of the tip. We set A10 = −eVbias − A1, as we chose the tip vacuum level as our
reference, and assign A1, A20, A2, β, and z1 = 5π/(4β) to their corresponding values
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Figure 4.6: Potential used to calculate the energies and the wavefunctions of the field-emission resonances.
(A1, A10, ã) are the model parameters to reproduce the bulk band gap and (A2 and ztip) the model parameters
to reproduce the experimental binding energies.

previously determined for a terminated Cu(100) surface, in the absence of the tip [43].
By forcing the potential and its derivative to be continuous everywhere (except at the tip
position, ztip), we can analytically determine the values for the remaining parameters (A3,
α, λ, zim) in terms of already known parameters.

A20 = A10 + A1 − A2

A3 = A20 + A2 cos(βz1)−Vlin(z1)

α= eVbias +φt −φs

A3(ztip − z1)
+ βA2

A3
sin(βz1)

λ= 2α

zim = −1

α
ln

( −λe2

16πϵ0 A3

)
+ z1

We note that the tip image plane is not well defined in the above potential (and hard

to estimate from experiment); we assign ztip
im ≈ ztip −0.3 Å. Solving the time-independent

Schrödinger equation [41] using this potential (equation 4.2) results in the calculated
wave-functions shown in the Figs. 4.1 and 4.4.

4.8.3. ESTIMATING THE SAMPLE DECAY RATE

To first order, the sample decay rate for each field emission resonance follows Fermi’s
golden rule:

Γs = 2π

ħ |〈 f |H ′ |i 〉 |2ρE f . (4.5)
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The initial state |i 〉 =∑
kψ(k) |k〉⊗ |0〉 denotes a filled FER with k-space distribution ψ(k),

and Cu in the ground-state; and the final state | f 〉 = |0〉⊗ |k′〉 indicating an unfilled FER
and the Cu in first excited state, at the energy of the FER. Note that we have introduced
the notation |k〉 = ĉ†

k |0〉, with ĉ†
k the fermionic creation operator for quasi momentum

k = (kx ,ky ,kz ).

Since the decay is dominated by elastic scattering, the Hamiltonian connecting the
initial and final states can be written as H ′ =∑

k J ĉ†
k′ ĉk. Here, J is the coupling between

the FER and sample; we assume J does not vary with k. Finally, the density of states
of the bulk sample is denoted by ρE f = 1

V

∑
m δ(E f −ϵmk), with V the volume, m the Cu

band index and ϵmk the corresponding dispersion. When we substitute this in the above
expression for the sample decay rate, we find:

Γs (V ) = 2π

ħ
∑
k′
| 〈k′| 〈0| J

∑
kk′

c†
k′ck |0〉

∑
k
ψ(k) |k〉 |2 1

V

∑
m
δ(Ei (V )−ϵmk) (4.6)

= 2π

ħ J 2
∑

k
|ψ(k)|2 1

V

∑
m
δ(Ei (V )−ϵmk) (4.7)

∝
∫

B Z
dk|ψ(k)|2 ∑

m
δ(Ei (V )−ϵmk), (4.8)

where the proportionality comes from the constant J 2

2πh . This expression can be simply
understood as the overlap in k-space between the Cu band structure and the bound state,
at the resonance energy of the latter. This energy depends on bias according to [31]:

Ei (V ) =βi (eV )2/3. (4.9)

Here, we approximate the tip and sample work functions to be the same. We can deter-
mine βi by assuming that the center of the resonance (measured via differential conduc-
tance spectroscopy) is equal to Ei at that bias V (see Fig. 4.2). Additionally, we assume
the FER k-space distribution ψ(k) remains approximately constant while the applied bias
or tip-sample distance is changing. We can then evaluate the integral numerically using
the Blöchl tetrahedron method for Brillouin zone (BZ) integration [44], as implemented
in dfttools [45], with the Cu dispersion coming from DFT, and the FER wave function as
calculated in sections 4.8.1 and 4.8.2. We note that prior to integration, we fold the part of
the wave functions with finite weight outside the first BZ back onto the first BZ.

4.8.4. DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS

To calculate the bulk band structure of Cu, we use plane-wave density-functional theory
with a standard ultrasoft scalar relativistic pseudopotential and PBE exchange correlation
functional, as implemented in the Quantum ESPRESSO package [46]. Plane wave energy
cutoffs were set to 120/1080 Ry (wave function/density). We initialised the atoms on a
FCC lattice with lattice constant 3.61 Å. Self-consistent calculation was done on a 4x4x4
k-point grid and followed by non self-consistent Gamma-point Brillouin zone sampling
on a 32x32x32 k-point grid. The visualization of constant-energy surface cuts was done
with FermiSurfer [47].
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5
COHERENT SPIN DYNAMICS

BETWEEN ELECTRON AND NUCLEUS

WITHIN A SINGLE ATOM

Lukas M. Veldman, Evert W. Stolte, Mark P. Canavan, Rik Broekhoven, Phillip Willke,
Laetitia Farinacci and Sander Otte

The nuclear spin, being much more isolated from the environment than its electronic
counterpart, presents opportunities for quantum experiments with prolonged coherence
times. Electron spin resonance (ESR) combined with scanning tunneling microscopy (STM)
provides a bottom-up platform to study the fundamental properties of nuclear spins of
single atoms on a surface. However, access to the time evolution of nuclear spins remained
a challenge.

Here, we present an experiment resolving the nanosecond coherent dynamics of a hyperfine-
driven flip-flop interaction between the spin of an individual nucleus and that of an
orbiting electron. We use the unique local controllability of the magnetic field emanating
from the STM probe tip to bring the electron and nuclear spins in tune, as evidenced by a
set of avoided level crossings in ESR-STM. Subsequently, we polarize both spins through
scattering of tunneling electrons and measure the resulting free evolution of the coupled
spin system using a DC pump-probe scheme. The latter reveals a complex pattern of
multiple interfering coherent oscillations, providing unique insight into hyperfine physics
on a single atom level.

Parts of this chapter have been published as Coherent spin dynamics between electron and nucleus within a
single atom, Nature Communications, 15.1, 7951(2024)
Own contribution to work: Advised on model that was used for each simulation, conducted simulations for
Figs. 5.2d and e and checked simulations done by other co-authors. Wrote section 5.7.2
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5.1. INTRODUCTION
Nuclear spins have shown great promise as building blocks for quantum information in
molecular spin qubits [1, 2], NV centers[3, 4], and donors in silicon[5]. They also are an
excellent resource for quantum simulation[6], magnetic sensing[7, 8] and spintronics[9],
and are potentially scalable via engineered molecular and atomic networks[10, 11] Their
key advantage arises from their longer coherence times compared to their electron spin
counterpart[12], though the intricacies of the decoherence channels depend on the
exact interaction with the environment which is hard to control in ensemble averaging
techniques. Scanning tunneling microscopy (STM) constitutes an excellent means of
investigation here, as it permits to address individual electron spins in electron spin
resonance (ESR) experiments with sub-nanometer resolution[13, 14], offering atomically
precise information on their environment[15, 16], and providing a pathway towards
coherent control of the spins states[17, 18]. In recent years, interactions involving the
nuclear spin were measured indirectly by probing the hyperfine coupling in ESR-STM
between the nucleus and the surrounding electrons[19]. In addition, the nuclear spin of
individual Cu atoms could be polarized via spin pumping induced by the spin-polarized
tunneling current[20]. However, accessing the coherent dynamics involving the nucleus
remained challenging, due to its weak coupling to the tunneling electrons.

In this work, we show the free, coherent evolution between the nuclear spin and
the electron spin in a single hydrogenated titanium atom. By fine-tuning the electronic
Zeeman energy using the local field of the probe tip[21], we identify a parameter space
where electronic and nuclear spin states hybridize. In a second step, we probe the free
coherent evolution of the coupled system by electric DC pump-probe experiments[22].
Here, we reveal an emerging beating pattern, that originates from multiple quantum
oscillations with different frequencies at the points of hybridization.

5.2. SYSTEM OF STUDY
We use a commercial low-temperature STM equipped with high frequency cabling to
send both RF signals and nanosecond DC pulses down to the tip. The sample system
consists of Ti atoms deposited on bilayer MgO islands grown on Ag(100), that become
hydrogenated by residual hydrogen[15, 16]. For all measurements, we use spin-polarized
tips that are created by picking up co-deposited Fe atoms onto the tip apex. We study
individual Ti adsorbed onto the oxygen sites of MgO – well-isolated from neighboring
spins using atom manipulation (see Fig. 5.1a) – which exhibit an effective electron spin
Ŝ with magnitude S = 1

2 [15] and an anisotropic g-factor g [16]. Throughout this work,
we focus on 47Ti isotopes, which carry a nuclear spin Î with magnitude I = 5

2 . Along the
principal axes of the crystal field (x, y, z) with z out of plane), the system is described by
the following Hamiltonian:

Ĥ = ∑
i=x,y,z

(
µB gi

(
Bext , i +Bt i p, i

)
Ŝi + Ai Ŝi Îi +Qi Î 2

i

)
, (5.1)

where µB is the Bohr magneton, and A and Q (see Sec. 5.7.1)[19] are the hyperfine
coupling and quadrupole contributions, respectively. The first term describes the Zeeman
energy of the electron spin with contributions from both the external Bext and the tip-
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Figure 5.1: Single atom nuclear polarization. (a) STM topography of the single 47TiH studied in this work. A
schematic drawing shows the magnetic STM tip above the electron spin (blue) and nuclear spin (red) of the
single atom. (b) Energy diagram of the spin states of a single 47TiH. In the high field regime, the eigenstates
resemble Zeeman product states. ESR transitions (green arrows) can be driven between states with equal nuclear
spin. (c) ESR-STM measurements at different applied DC bias (T = 1.5 K, Bext = 1.5 T, VRF = 25 mV, Iset = 2.5 pA,
f0 = 11.5−12.56 GHz). Line traces at 35 mV, 80 mV and 120 mV are shown with fits using six Fano lineshapes
scaled by the Boltzmann factor in order to extract an effective temperature.

induced magnetic field Btip. We neglect the effect of either of these fields on the nuclear
spin, since their contributions are small compared to the other terms. In Fig. 5.1b we show
the general behavior of the interplay between the hyperfine coupling and an external
magnetic field. In the low field regime, the hyperfine coupling energy dominates and
the system displays avoided crossings between the different energy levels indicating
superposition states. In the high field regime, we retrieve the Zeeman spin states as
eigenstates.

5.3. STATE INITIALIZATION VIA SPIN PUMPING
We start our investigation by applying a magnetic field of 1.5 T, which is large compared
to the hyperfine interaction, in order to drive ESR transitions between the individual spin
states of a 47Ti atom. Similar to measurements of Ti on a bridge binding site of MgO
[23, 24], we find a large anisotropy in the hyperfine coupling A = [11, 11, 128] ± 2 MHz.
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Since we aim for a regime in which the hyperfine interaction competes with the Zeeman
splitting of the electron, the experiments are performed with an out-of-plane magnetic
field.

For certain magnetic tips , we observe that the hyperfine-split ESR peaks have different
intensities, which indicates a strong polarization of the nuclear spin. This effect is well
known in bulk NMR techniques as hyperpolarization[25, 26] and has been observed before
on the atomic scale for single Cu atoms on MgO[20]. The phenomenon is explained by
taking into account inelastic spin scattering events between the tunneling electrons and
electron spin which are transmitted to the nucleus via the hyperfine flip-flop interaction.
As shown in Fig. 5.1c, we find that the polarization is strongly dependent on the applied
bias voltage while measuring at constant current. We believe that this may be due to the
bias-dependent efficiency of the spin scattering channels involved, but a more complex
mechanism involving the Ti orbital excitation[16] or Pauli spin blockade[27] may be at
play. We find that the effective temperature of the nuclear spin population drops below
10 mK at voltages larger than 100 mV, more than two orders of magnitude lower than
the actual experimental temperature of 1.5 K. While the effect of nuclear spin pumping
has been observed for Cu on MgO[6], we here utilize it to overcome a major limitation:
in previous ESR-STM experiments, the frequency ranges investigated were chosen to be
compatible with sufficient spin population contrast set by the Boltzmann distribution at
the experimental temperature. Finally, we point out that high bias voltages are key for
efficient nuclear spin pumping, which – with few exceptions[28] – has usually not been
used in previous experiments involving Ti on MgO.

5.4. TUNING ELECTRON-NUCLEAR SPIN ENTANGLEMENT
Owing to the spin pumping we can investigate a much lower frequency regime, down
to ~50 MHz, in which the level of entanglement between the electron and nuclear spins
can be tuned. In Fig. 5.2a, we show the different calculated contributions to the energy
diagram of a 47Ti in a low-field regime. For the calculations we use A = [10,10,130] MHz
and Q = [1.5,1.5,-3] MHz in accordance with the measurements performed in a vector field
(see Sec. 5.7.1). When the total electronic Zeeman energy – due to the external and tip
magnetic field – is comparable to the hyperfine splitting, multiple avoided level crossings
occur in the spectrum. The number of avoided crossings has increased compared to
Fig. 5.1b which is due to a misalignment between the external field and the tip field.
More precisely, an additional avoided crossing appears around Btip = 23 mT, involving a
superposition of states that differ only in the electron spin projection, while the nuclear
spin is the same. This electron-only hybridization will be of importance below.

We identify these tuning points in our experiment by performing ESR measurements
in the low field regime using an external field of merely 20 mT (Fig. 5.2b). Here, in
order to fine-tune the coupled spin system, we vary the tip-induced magnetic field by
changing the DC voltage while keeping the current constant. This effectively tunes the
junction conductance G. At relatively large tip fields (G ≥ 20 pS) multiple ESR peaks are
visible in addition to several very sharp (~3 MHz) NMR type resonances around 60 MHz.
Below G ≈ 20 pS, the ESR and NMR transitions start to mix and overlap, accompanied
by a redistribution of their intensities as shown in the close-up measurements in Fig.
5.2c. This is consistent with the presence of avoided level crossings between the energy
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Figure 5.2: ESR and NMR-type measurements in the low-field regime. (a) Energy diagram of the atomic
eigenstates as a function of hyperfine coupling, quadrupole moment, external and tip-induced magnetic field.
(b) ESR-STM measurements showing ESR and NMR-type transitions (T = 400 mK, Bext = 20 mT, VRF = 40 mV,
Iset = 2 pA). The bottom close-up is a separate dataset showing the splitting of the NMR transitions and a curve
upwards of the bottom ESR transition signaling the avoided level crossing. (c) Simulations of the ESR-STM
measurements (see 5.7.2 for details).

levels, as expected from Fig. 5.2a and modelled in Figs. 5.2d and E. In Fig. 5.2c, we also
observe that the NMR type resonances are split into multiple peaks. We attribute this to
the quadrupole interaction that slightly shifts the energy of each nuclear spin state[19]
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Figure 5.3: Free evolution measurements and Lindblad simulations. (a) Pump-probe data for different tip-
atom distances set by the junction conductance (Vset = 130 mV, T = 400 mK, Bext = 15 mT). (b) Lindblad
simulation of the free time evolution of the electron spin when initialized to |↓,− 5

2 〉. (c) Corresponding Lindblad
simulation of the free time evolution of the nuclear spin. The calculations also show the onset of an additional
oscillation in the nuclear spin at around 13 mT. However, since the period is an order of magnitude longer than
the coherence time of the electron spin, it is not visible in our measurements.

For the simulations we consider both ESR and NMR transitions with separately scaled
intensities (see 5.7.2).

5.5. PROBING COHERENT SPIN DYNAMICS
Having identified 10 to 20 pS as the appropriate tip-atom distances for inducing super-
position states, we perform DC pump-probe experiments to explore the coupled spin
dynamics. In order to increase signal amplitudes, we decrease the external field to 15
mT so that the superposition states are induced at closer tip-atom distances while using
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the same microtip. We use a two-pulse pumping sequence to initialize both electron
and nuclear spin states. During the pump pulses, spin polarized electrons cause spin-
flip excitations in the atom by scattering with the atom’s electron spin [29]. Due to the
hyperfine coupling, the excitations will also affect the nuclear spin, polarizing it in the
same direction[20]. Consequently, the combined system will be projected to a Zeeman
state, |↓ , −5/2〉 which is not necessarily a stationary eigenstate of the Hamiltonian of
Eq. 1. To probe any dynamics that might occur after the pump pulses, we then let the
system evolve freely during a waiting time after which the electron spin is read out by
a 5 ns probe pulse. By varying the waiting time over the course of many iterations, the
dynamic evolution of the electron spin is measured[8].

Using this pulse scheme we observe electron spin dynamics that, as shown in Fig. 5.3a,
depend on the tip magnetic field. When the STM tip is close (i.e., at large conductance
values) we observe fast, low-amplitude oscillations that become slower and stronger
as the tip is retracted. This is the expected behavior when the system moves through
an avoided crossing[22]. However, around G = 17 pS a beating pattern appears due to
interference with a second frequency. At this point, the dynamics also appear to be longer
lived compared to the single frequency oscillation. Upon further retraction of the tip,
below G = 15 pS, no spin dynamics are detected anymore. The observed dynamics occur at
slightly higher conductance values compared to the detected avoided crossing measured
using ESR in Fig. 5.2. We attribute this difference to both the slightly lower external field
used for the pump-probe measurements as well as the absence of a DC bias voltage in the
pump-probe experiment, which has been shown to shift the electron energy levels[28].

Figs. 5.3b and C show the simulated time evolution of the Sz and Iz expectation
values for the electron and the nuclear spin, respectively. The calculations are performed
considering the Hamiltonian shown in equation (1) and using the Liouville-von Neumann
equation starting from the |↓ , −5/2〉 state[30]. We find excellent agreement between
the data from the experiment and the electronic spin calculations, with, in particular, a
beating pattern that arises when the electron and nucleus states are entangled. While
the electron shows an interference pattern, the simulation shows that the dynamics of
nuclear spin are dominated by a ~40 ns oscillation.

To understand the origin of the different oscillations, we further analyze the com-
position of the three eigenstates forming the avoided crossings: states |4 〉, |5 〉 and
|6 〉. In Fig. 5.4a, we show an enhanced view of the relevant region of the eigenstate

energies marked by the grey box in Fig. 5.2a. We then take two exemplary traces from the
pump-probe data presented in Fig. 5.3a and match the frequencies present in the spin
dynamics to the energy splitting between the eigenstates. From the composition of the
eigenstates at these particular tip-field amplitudes we derive the nature of the different
dynamics (see Sec. 5.7.3).

At a relatively large setpoint conductance of 21.5 pS, the pump-probe data fitted in Fig.
5.4c show a single damped sinusoid of roughly 75 MHz. This frequency matches both the
energy of the lowest ESR transition measured at the avoided crossing point in Fig. 5.2b as
well as the calculated energy splitting between states |5 〉 and |6 〉 at the relatively large
tip field of roughly 24 mT (rightmost dotted line in Fig 5.4a). At this field, states |5 〉 and
|6 〉 are split in energy by the in-plane component of the tip field and approximate the

spin superposition states |↑ , −5/2〉± |↓ , −5/2〉. Therefore, the reduced density matrix
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Figure 5.4: Origin of the beating pattern. (a) Zoom-in on the relevant avoided level crossings of Fig. 2a. The
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state |↓,− 5

2 〉 at 20.5 mT tip field. (e) Reduced density matrix of the initial state |↓,− 5
2 〉 at 23.7 mT tip field.

of the initial state |↓ , −5/2〉, shown in Fig. 5.4E, is dominated by coherences in the
subspace between states |5 〉 and |6 〉. We can thus attribute the dominant frequency in
the dynamics to a Larmor precession of the electron spin due to the in-plane component
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of the tip field as depicted in the top Bloch sphere in Fig. 5.4a.
In contrast, at a setpoint conductance of 17.7 pS, we need three damped sinusoids to

fit the data shown in Fig. 5.4b: two independent frequencies, 65.9 MHz and 19.8 MHz as
well as their sum. These frequencies match the energy splitting between the three states
|4 〉, |5 〉 and |6 〉 at roughly 20 mT (leftmost dotted line in Fig 5.4a). The reduced density

matrix of the initial state at this field, shown in Fig. 5.4d, show finite coherences between
all three states. This means that in addition to the Larmor contribution described above,
there are two additional terms. One is a flip-flop dynamic between electron and nucleus
as the subspace between states |4 〉 and |5 〉 is dominated by |↑ , −5/2〉± |↓ , −3/2〉
(middle Bloch sphere in Fig. 5.4a). The other is an oscillation of the nuclear spin as the
subspace between states |4 〉 and |6 〉 is dominated by |↓ , −5/2〉± |↓ , −3/2〉 (bottom
Bloch sphere in Fig. 5.4a).

The reduced coupling of the nuclear spin to the environment, compared to the dynam-
ics of only the electron spin, is expected to result in an enhanced coherence time[8, 31, 32].
Indeed, fits to the data shown in Fig. 5.4b result in an effective coherence time of 84 ±
5 ns, whereas the oscillation in Fig. 5.4c has an effective coherence time of only 22 ± 1
ns. However, we point out that this is only a lower limit to the intrinsic coherence time
of the combined electron-nucleus spin system. We believe that the main source of spin
decoherence in our experiment is fluctuations of the magnetic field emanating from
the tip caused by mechanical vibrations in the setup on the sub-picometer scale. The
observed changes in coherence time may in part result from a decreased sensitivity to
this magnetic tip field noise since the energy levels in Fig. 5.4a diverge less at 21 mT than
at 23 mT, akin to a clock-transition[33, 34]. We expect that eliminating these vibrations
may result in longer coherence times in pump-probe measurements.

5.6. DISCUSSION
Developing single atom quantum information processing requires thorough understand-
ing of the underlying electron and nuclear spin dynamics. This demands initialization,
tuning and readout tailored on the atomic length scale. Using pump-probe spectroscopy,
we revealed the collective coherent dynamics of the internal spin dynamics inside a single
atom. The magnetized STM tip functioned in this work as a control knob to locally tune
the nature of these dynamics. This technique has the potential to be extended to a great
variety of on-surface atomic or molecular spin system. Moreover, the prospect of STM for
engineering bottom-up atomic designer assemblies can provide an integral atomic-scale
understanding into the fundamentals of complex coherent spin dynamics.

5.7. SIMULATION DETAILS

5.7.1. HAMILTONIAN PARAMETERS
The Hamiltonian used to calculate the eigenstates of the Ti spin system as well as the
energies of the ESR transitions and the coherent evolution dynamics is presented in Eq.
5.1. In table 5.1 we summarize the parameters used to calculated the eigenstates of the
system.
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A (x, y, z) Q (x, y, z) Bext Btip

(10, 10, 130) MHz (1.5, 1.5, -3) MHz 0.015 to 1.5 T 0 to 35 mT

Table 5.1: Hamiltonian parameters

In Fig. 5.5we plot the probability amplitude of the energy eigenstates in the basis of

the Zeeman product states:
∣∣〈s,n

∣∣ψ〉∣∣2, s and n being the z-components of the electron
and nuclear spins, respectively. There, we can clearly see the influence of the tip field
on the energy eigenstates. At large fields (panel a), the Zeeman energy dominates over
the hyperfine coupling and the energy eigenstates coincide with the Zeeman basis states.
When we lower the applied tip field, the hyperfine coupling starts to compete with the
Zeeman energy and we observe avoided crossings between the energy eigenstates as a
function of applied field (also Fig. 5.2a). In panel B of Fig. 5.5, we show the eigenstates
at the first avoided crossing of 23.7 mT tip field. There, energy eigenstates |5 〉 and |6 〉,
form superpositions of two Zeeman product states |↑ , −5/2〉 and |↓ , −5/2〉. At 20.5 mT
tip field (panel C), we find a more complex situation where states |4 〉, |5 〉 and |6 〉 form
different superpositions of the Zeeman basis states |↑ , −5/2〉, |↓ , −3/2〉 and |↓ , −5/2〉.

5.7.2. SIMULATIONS OF ESR RESULTS
ESR simulations were done by generating Fano functions for each possible spin transi-
tion between two eigenstates. The eigenstates were calculated using the Hamiltonian
presented in the main text, using the experimental external field of 20 mT out of plane.
The amplitude Inm of a transition between states |m〉 and |n〉 was calculated by:

Inm ∝ (
∣∣V ESR

nm

∣∣2 +p
∣∣V N MR

nm

∣∣2
)∆P nm

{
Bt i p · (〈n

∣∣Ŝ∣∣n〉−〈
m

∣∣Ŝ∣∣m〉)}
. (5.2)

This amplitude consists of three components. The part between curly brackets is
the readout strength, which scales with the difference in expectation value of each spin
between the two states, projected onto the measurement axis. The first part corresponds



5.7. SIMULATION DETAILS

5

71

to the driving amplitude between the two states. To achieve a result that matches the
experiment we distinguish here between ESR and NMR type transitions and add them
with a separate scaling factor p. The two different driving terms are modelled by [35]:

V ESR
nm = 〈

n
∣∣∇Bt i p · Ŝ

∣∣m〉
V N MR

nm = 〈
n

∣∣∇Bt i p · Î
∣∣m〉 (5.3)

We found the simulations to match the experimental results best when using a ratio
p = 10. This difference in driving amplitudes may be explained by the nuclear spin having
significant longer relaxation and coherence times than the electron spin, since as in eq.
S3 of Ref. [35] in the weak driving limit the ESR signal scales with T1T2 of the driven spin
transition.

The population difference ∆Pnm is calculated by finding the steady state solution
to the time dependent rate equations for the coupled spin system connected to a spin
polarised bath (tip, t) and a spin average bath (sample, s)[36]:

dPn(τ)

dτ
=∑

m
rnmPm(τ)− rmnPn(τ). (5.4)

Here, in general, the rates r include all possible spin scattering processes between the
free electrons of the two baths and the coupled spin system. However, since the nuclear
spin is weakly coupled to the environment compared to the electron spin, we neglect all
direct scattering processes with the nuclear spin. Moreover, tip-tip scattering events are
neglected as the experimental tip-sample distances are comparatively large. This leaves
only the following electron spin scattering rates

rnm = r s→s
nm + r t→s

nm + r s→t
nm (5.5)

The first rate is bias-independent and describes spontaneous relaxation due to sample
electrons scattering with the Ti electrons spin and returning to the sample:

r s→s
nm =

∫
f (ε)

(
1− f (ε)

) ∑
σ,σ′

∣∣∣〈n,σ
∣∣∣Ĥ s

∣∣∣m,σ′
〉∣∣∣2

dε. (5.6)

The second and third are bias-dependent and describe scattering of tunnelling elec-
trons between tip and sample:

r s→t
nm =

∫
f (ε)

(
1− f (ε)+V

) ∑
σ,σ′

ρt
σ

∣∣∣〈n,σ
∣∣∣Ĥ s

∣∣∣m,σ′
〉∣∣∣ ∣∣∣〈n,σ

∣∣∣Ĥ t

∣∣∣m,σ′
〉∣∣∣dε (5.7)

r t→s
nm =

∫
f (ε+V )

(
1− f (ε)

) ∑
σ,σ′

ρt
σ′

∣∣∣〈n,σ
∣∣∣Ĥ t

∣∣∣m,σ′
〉∣∣∣ ∣∣∣〈n,σ

∣∣∣Ĥ s

∣∣∣m,σ′
〉∣∣∣dε (5.8)

Here, in all cases the first part concerns the Fermi statistics of the baths with f (ε)
being the Fermi-Dirac function and V the bias. The second term is the transition element
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of each specific scattering process, where σ sums over all possible initial and final states
of the scattering bath electron, which can either be +/- ½. The tip-dependent transition
elements are appropriately weighted by the tip polarization η as captured in the tip spin
density ρt

σ = 1
2 + ησ.

For each of the transition elements the governing Hamiltonians H are Kondo Hamil-
tonians

Ĥ t/s = Jt/s Ŝ · σ̂t/s (5.9)

Where Ŝ is the surface electron spin and σ̂t/s the local spin density of the tip or sample
bath and Jt/s the coupling between the bath and surface spin. We find the best agreement
with experiment using ϱs Js = 0.1 and ϱt J t = 10−5, with ϱt/s the bath electron density,
confirming it is justified to neglect r t→t .

5.7.3. SPIN DYNAMICS SIMULATIONS
To simulate the expected time dynamics of the coupled electron-nuclear spin system we
solve the Liouville–von Neumann equation using a python package called QuTiP[30]. We
solve for the Hamiltonian presented in the main text for different values of the applied
tip field while keeping the experimental external field value external field constant at the
experimental value of 15 mT :

d ρ̂(t )

d t
=− i

×
[
Ĥ , ρ̂(t )

]
. (5.10)

The density operator is constructed from the presumed initial state after the pump
pulse sequence as follows:

ρ̂ = |↓ , −5/2〉 〈↓, −5/2| (5.11)

As mentioned in the main text, the dominant source of decoherence in our experi-
ments results from stochastic fluctuations of the magnetic field of the STM tip due to
mechanical vibrations in the setup on the sub-picometer scale. To emulate this effect, we
convolve the simulated data in the tip field axis with a 2 mT Gaussian.

From the match between experiment and simulation presented in Fig. 5.3 in the
main text, we conclude that the initial state indeed must be dominated by the spin state
|↓ , −5/2〉.

5.8. DATA AVAILABILITY
The raw data generated in this study as well as the analysis and simulation code have been
deposited in a Zenodo database under identifier https://doi.org/10.5281/zenodo.
8316339.
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A true gentleman leaves no puzzle unsolved
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Rik Broekhoven, Curie Lee, Soo-Hyon Phark, Sander Otte, Christoph Wolf

Certifying quantum entanglement is a critical step toward realizing quantum-coherent
applications. In this work, we show that entanglement of spins can be unambiguously
evidenced in a scanning tunneling microscope with electron spin resonance by exploiting
the fact that entangled states undergo a free time evolution with a distinct characteristic
time constant that clearly distinguishes it from the time evolution of non-entangled states.
By implementing a phase control scheme, the phase of this time evolution can be mapped
back onto the population of one entangled spin, which can then be read out reliably using
a weakly coupled sensor spin in the junction of the scanning tunneling microscope. We
demonstrate through open quantum system simulations with currently available spin
coherence times of T2 ≈ 300 ns, that a signal directly correlated with the degree of entangle-
ment can be measured at temperatures of 100–400 mK accessible in sub-Kelvin scanning
tunneling microscopes.

Parts of this chapter have been published as, Protocol for certifying entanglement in surface spin systems using a
scanning tunneling microscope, Npj Quantum Information, 10, 92 (2024)

Own contribution to work: Conducted the idea, performed the analytics and simulations, and co-wrote the
manuscript
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6.1. INTRODUCTION

Recent advances in quantum control of surface spin systems have shown that this plat-
form can be used to design quantum-coherent systems by tailoring the interaction of indi-
vidual spins using the scanning tunneling microscope (STM) and atom manipulation.[1, 2]
In such a system, quantum coherent control of single and multiple spins has been
achieved by electron spin resonance (ESR), which is facilitated by resonant electric fields
in the STM. [3–8] When combining the atomic manipulation aspect and quantum coher-
ent control, one can envision that this platform can be used to implement a reconfigurable
quantum simulator in hardware using only a few atoms and an ESR-STM. By utilizing up
to three titanium (Ti) atomic spins, some of us have demonstrated fundamental quantum
gate operations such as controlled-NOT (CNOT) and controlled-controlled-NOT (CC-
NOT) gates on two layers of magnesium oxide (MgO) [9]. The next logical step is to certify
entanglement in this atomic qubit platform, which is a strong prerequisite for studying
quantum-coherent phenomena beyond individual quantum gate operations[10]. This,
however, is not straightforward in the ESR-STM since it only allowsfor time-averaged sin-
gle spin readout with long measurement times (ms or kHz),[11] compared to the typical
time-scale for coherence time (T2) of only several hundred nanoseconds.[4, 12] Previous
works [13] have suggested to use the magnetic susceptibility as entanglement witness,
however no experimental realization of this idea has yet been shown. Alternatively, one
could exploit the fact that states that are not eigenstates of the system undergo a time evo-
lution that can be probed by the time-averaging measurement of the STM as previously
shown for the free time-evolution of spins initialized by bias voltage pulses in a system
tuned to singlet-triplet eigenstates.[14] In a similar manner one can use radio-frequency
pulses in an ESR-STM to create entangled states that are no longer eigenstates in the
Zeeman basis of the constituent spins, and therefore will undergo a time evolution that is
distinctively different from the evolution of non-entangled states. This approach, also
called phase reversal tomography,[15] has been previously applied to phosphorous donor
semiconductor qubits[16]. Here, we present how to adapt and optimize this method for
ESR-STM, which relies on the fact that ESR-STM has highly sensitive population read
out[6]. By using open quantum systems simulations and parameters compatible with
typical experiments we demonstrate that surface spins can be entangled with high fidelity
at sufficiently low temperature.

6.2. CREATING AND MEASURING ENTANGLEMENT

It has been established that ESR-STM provides a universal gate set based on single-spin
(or qubit) phase control [17] and controlled-NOT gates.[9] In the following, we will discuss
how to create entanglement in a surface spin system and subsequently measure it. We
start from two weakly interacting spins, which can be realized in the experiment by using
two Ti atoms.[2, 6] We require that the interaction between these spins is sufficiently weak
so that their combined eigenstates can be written in good approximation as Zeeman
product states, e.g. |↑〉A ⊗|↑〉B = |↑↑〉, where ↑ (↓) denotes the ground (excited state) of
each spin, the subscripts A,B label the two spins, and ⊗ denotes the tensor product. As
shown in Fig. 6.1a, two spins |↑↑〉 can be entangled by a Hadamard gate H followed by a
negative controlled-NOT gate (CNOT=|↑〉〈↑|⊗1+|↓〉〈↓|⊗σx ), resulting in an entangled
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state |↑↓〉+ |↓↑〉. In order to detect this entanglement, we can now exploit the fact that the
entangled state is not an eigenstate of the Zeeman product basis and thus undergoes a free
evolution.[14] During this evolution the state picks up a phase at a rate that is proportional
to the energy splitting between |↑↓〉 and |↓↑〉 (Fig. 6.1b). The accumulated phase is distinct
from the free evolution of any other non-entangled state and thus allows to uniquely
witness the state as being entangled. In particular, states that are maximally correlated
but not entangled have no accumulated phase. We can measure the phase through a Bell
state disentanglement measurement, realized by a CNOT followed by a Hadamard, which
projects the phase onto one of the two spins followed by read-out of that spin. To be more
precise the |↑↓〉+ |↓↑〉 is projected upon |↑↓〉 whereas |↑↓〉− |↓↑〉, which has a phase of π, is
projected upon |↑↑〉. The full protocol is illustrated in Fig. 6.1a. By repeating the scheme
with increasing delay times between the entanglement and disentanglement sequences
we can probe the full phase accumulation during free evolution. For the maximally
entangled state it shows up as a slow (relative to the Larmor frequencies of the individual
spins) variation of 〈Sz〉 as shown in Fig. 6.1c obtained from an analytical solution of the
4x4 density matrix shown in the inset. This variation can be read-out through the sensor-
spin, where 〈Sz〉∝∆I ESR , i.e. the change in the tunneling current at spin resonance in
the ESR-STM experiment[6]. In contrast, the maximally correlated state will result in a
flat signal (Fig. 6.1d). To directly and unambiguously evidence entanglement, one has to
ensure that the measurement gives an oscillation of spin A whereas spin B stays constant.
In a practical implementation, probing free evolution might be slightly disadvantageous
when the evolution time is either very short and approaches typical rise and fall times of
the signal generator, or very long and rivals the coherence times T2. Fortunately, the effect
of free evolution can also be captured by adjusting the phase φ on the second CNOT gate
X

(
φ

)
such that φ= τ/∆E . In the following, we will use such as phase-sweep instead of a

delay-time sweep.

6.3. IMPLEMENTATION
We will now discuss some details of the implementation. All simulations were carried out
using the QuTiP package in the Lindblad formalism using collapse operators parameter-
ized by T1 and Tφ for energy relaxation and pure dephasing of each spin, respectively (see
Methods) [18]. The total system consists of three spin 1/2 (labeled A, B , R in Fig. 6.2a),
which are exchanged coupled to one another sufficiently weakly so that the state diagram
can be written in good approximations as Zeeman product states (details of the system
can be found in the methods section). We emphasize that only spins A and B will be the
target of this entanglement scheme while spin R acts as sensor for the readout. The Fe
atoms are added in the experiment to provide the local field gradients for driving ESR of
the remote spins (A and B)[6, 9].

To achieve the desired gate sequence for entanglement, we first combine two rotations
(labeled as X π

2
,Yπ, where X ,Y denote the rotation axes and the subscript specifies the

rotation angle) to perform a Hadamard gate and then a single-frequency pulse Xπ to
perform a CNOT (Fig. 6.2b). Note that in general in this system a single driving frequency
always performs a conditional operation while an unconditional NOT gate requires multi-
frequency driving [9]. We found that at low enough temperatures single-frequency driving
can be used for all gates due to negligible population in the excited states (Fig. 6.2b).
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Figure 6.1: Sequence of quantum logic gates to demonstrate entanglement in ESR-STM. (a) vshows the pulse
scheme using a quantum gate notation. From left to right this scheme applies a Hadamard gate to spin A, a
negative CNOT gate, a pulse delay (or phase sweep) gate, followed by an disentangling gate scheme. Finally,
both states can be measured to determine their respective populations. (b) the Bloch sphere shows the time-
evolution of the entangled state on the equator. (c) expected measurement signal for spin A and spin B when
entangled and, in contrast, (d) the same measurement for two spins that are not entangled as emphasized by
the density matrix in the inset.

This no longer holds true at elevated temperatures, where excited states can have non-
negligible populations. In such a case, the Hadamard gate results in an admixture of
entangled states reflecting the excited state population. To avoid this, we also use single
frequency driving for the Hadamard gate, which ensures that only the targeted fraction of
population will be entangled, at the loss of overall signal amplitude. We have confirmed
that this maximizes the readout of the sensor spin in our scheme and does not influence
the outcome of the entanglement.

We drive all spins on resonance using a control field of the formΩcos(ωRF t +φ)σ̂x ,
withΩ the Rabi rate, ωRF the angular radio-frequency resonant with a desired transition,
φ an adjustable phase and σ̂x the Pauli matrix. It was previously shown that this approach
leads to efficient ESR in excellent agreement with the experiment [6]. For disentanglement
we use the same gate sequence but in opposite order while matching the initial phase of
each subsequent pulse to the phase of the previous pulse. The upper 3 panels of Fig. 6.2c
show the expectation values for the spin operator 〈S〉 under these driving fields. We note
that the appearance of filled areas is due to crosstalk of the driving frequencies of the
pulses and the very fast Larmor precession (10-20 GHz) of each individual spin (see inset),
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due to the choice that we implemented the simulation in a lab frame of reference. φ of
the second CNOT was chosen to be π, so that it mimics half a free evolution in the entan-
gled state resulting in a spin flip of A at the end of the scheme whereas spin B remains
unchanged. At the point where the spin should be entangled the expectation value of
〈Sz〉 for A and B are 0, indicating that the spins lie at the equator of their Bloch spheres.
To further confirm entanglement we also plot the concurrence C , which is bounded
by 0 for non-entangled and 1 for maximally entangled states.[19] For a bipartite qubit
density matrix ρAB , C is straightforward to calculate and at the point of entanglement
the concurrence approaches 1 for the chosen parameter set.

Read-out of the final target spin states is achieved by a long RF pulse on R conditioned
on the spin state to be read out. In this part of the sequence quantum properties like
the phase of the pulse play a lesser role, as the coherence of R is known to be limited by
the conduction electrons.[6] Fig. 6.2b shows the transition that is driven for read-out of
spin A. In the ESR-STM experiment a long DC voltage pulse could be used to measure
the resulting oscillation as a change in the tunneling current ∆I ESR. We set a fast decay
time (T1 = 20 ns) for R mimicking this DC pulse and make sure the measurement pulse
is relatively long (tmeas = 100 ns) such that R quickly reaches the steady state and the
signal becomes only dependent on the spin which is read out. Note that we consider this
relaxation only during the read-out since for the other parts of the scheme the DC pulse
would not be present. The bottom panel of Fig. 6.2c shows the evolution of the sensor
spin during read-out of spin A. The oscillation of A as a function of φ serves as a witness
of entanglement and in Fig. 6.2c φ=π so that this oscillation is at its maximum. We refer
to the maximum variation of the sensor spin as the measurement contrast WR . Due to the
nature of the steady state it is at most half the amplitude of 〈Sz〉 of A. We see that in the
present case the integrated signal of 〈Sz〉 of R approaches 0.5 within the measurement
time. This shows that when the concurrence is 1 the read-out scheme gives the correct
output for WR . A detailed discussion of the direct relation between WR and C can be found
in Sec. 6.10.1.

6.4. RESULTS
The results in Fig. 6.3 demonstrate the concept in two ways: Fig. 6.3a shows the entire en-
tanglement protocol while Fig. 6.3b contrasts the results for non-entangled spins. We will
first consider results without any relaxation of spins A and B and at a very low temperature
of 10 mK. Larmor frequencies, exchange couplings, and Rabi rates must be chosen such
that we stay in the weakly coupled regime while limiting crosstalk, i.e. unwanted driving
of other transitions depending on the realistic resonance line widths in the experiment.
In addition, we want the Larmor frequencies to be as high as possible to ensure most of
the population is in the ground state. Here, we limited the frequency range to 10−20
GHz which is routinely achieved for single Ti spins on MgO surfaces (S = 1/2) in ESR-STM
setups.[4, 20, 21] The system parameters are the same as in Fig. 6.2a. In Fig. 6.3c-f we show
two resulting quantities: first, the variation of each target spin as directly obtained from
the density matrix, which is evidence of the entanglement but is not accessible with the
ESR-STM. Second, we show the expected readout signal WR , which is a direct observable of
the experiment since for the sensor spin 〈Sz〉∝∆I ESR. Contrasting both shows that while
WR is reduced, clearly the signal on the sensor spin directly reflects the spin dynamics in
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Figure 6.2: Two-spin entanglement scheme using sensor spin read-out. (a) Two relatively long-lived spins
(A, B) are entangled while a third, short-lived sensor spin (R) is used for the read-out. Each pair of titanium
and iron (Fe) atom serves as an effective qubit in the ESR-STM experiment. (b) energy level diagram showing
CNOT (red), Hadamard (blue) spin control and read-out (purple). (c) actual pulse scheme as implemented in
the simulations as well as expectation values along x, y, z for each spin involved in case of φ=π . The top panel
shows the implemented pulse scheme where X and Y represent the rotation axis and the subscript the rotation
angle. The next two panels show the time-evolution of spins A and B under driving, followed by the concurrence
C which serves as direct measure of entanglement in the simulation. The last panel shows the time-evolution
of the sensor spin when reading out spin A as well as the corresponding time-averaged entanglement witness
WR (tmeas). The entanglement witness reaches the steady state within the first ≈ 40 ns of the measurement time.
Idealized parameters were used for clarity: T = 10 mK,Ω = 0.04 GHz, T R

1 = 20 ns, no relaxation for A and B , and
Larmor frequencies and exchange couplings are in GHz as indicated in panel (a)
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the measurement scheme. We note that in this scheme the phase of the second Hadamard
is swept by the equal amount of the free time-evolution, such that φ = ωτ, where ω is
the angular frequency associated with the entangled state. While the pulse sequence in
Fig. 6.3a can be directly implemented, a real ESR-STM measurement also requires an
empty cycle (’B-cycle’), which can be implemented as shown in Fig. 6.3b. In this cycle,
the background current of the experiment can be measured by simply not entangling
the states, which is achieved by removing the Hadamard gate during the entanglement
step. We note that the choice of the B-cycle gate sequence is not unique and several
different B-cycles are used in ESR-STM experiments (see also supplementary information
VI). Finally, in Fig. 6.3e we show that the method is not limited to the (|↓↑〉 , |↑↓〉) subspace.
Here, we initialize the system in |↑↓〉 such that the H and CNOT gate bring the overall
target state to |↑↑〉+ |↓↓〉. Note that here we drive |↑↓〉 to |↓↓〉 for H. The major difference
in Fig. 6.3e when compared to Fig. 6.3c is that now the oscillation appears in the read-out
of |↑A↓B 〉 instead of |↓A↑B 〉. This in turn allows to identify all the different Bell states in
this system.

H

SB

SA

X X(φ)

H

SB

SA

X X(φ)

H

|↓↑⟩+|↑↓⟩

|↑↑⟩

|↑↑⟩+|↓↓⟩

|↑↓⟩

A- Cycle B- Cyclea b

c d

e f

Figure 6.3: Simulations of two-qubit entanglement in ESR-STM. showing expected measurement outcomes,
where we compare the expectation values 〈Sz 〉 on each spin (inaccessible in the experiment) as well as the
indirect readout WR of these values through the sensor spin. From top to bottom (panels a,c,e) we compare the
entangled subspace for different initial states (|↑↑〉 , |↑↓〉). The panels b, d, f on the right side shows simulations
for the same system but for not entangled states (achieved by removing the Hadamard gate), which could serve
as empty cycle for the lock-in detection in the ESR-STM experiment. The system parameters are as shown in
Fig. 6.2a, T = 10 mK, no relaxation for spins A, B , and T1 = 20 ns for the sensor spin during read-out
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We now turn to the effect of finite lifetime T1 and elevated temperatures relevant
to typical ESR-STM experiments. Previous works have shown that the coherence of Ti
spins on two monolayers of MgO deposited on Ag is lifetime limited such that T2 = 2T1,
which allows us to discuss the first results without considering additional pure dephasing
[6, 9, 17]. As can be seen in Fig. 6.4a the T2 time of the two entangled spins (taken here
to be identical) has a rather modest influence in the experimentally relevant range of
T2 > 300 ns. This is illustrated as well by Fig. 6.4b, which shows a slice at T = 0.1 K. Such
low temperatures are typically achieved by using a dilution refrigerator equipped ESR-
STM which can reach base-temperatures close to 20 mK[22, 23]. Clearly, in all cases a
T2 of around 300 ns allows for efficient entanglement detection. Temperature is a more
critical parameter since the system is initialized purely by temperature. Temperatures that
are high compared to the energy splitting of the eigenstates cause excited energy states
to be populated. The effect of this is twofold: i) the system is not fully initialized to the
ground state which reduces C and WR . ii) parts of the population that are in excited states
additionally reduce C , but do not participate in WR . Though this effect is in general small
at elevated temperatures it is non-negligible. This becomes apparent in Fig. 6.4c where
we show another slice of Fig. 6.4a but now for T2 = 300 ns. Above 300 mK the concurrence
as well as WR drastically drop and the concurrences reaches 0 at 700 mK. At the same
time, WR seems to have a non-zero value, indicating entanglement in a not-entangled
system. For WR to stay an appropriate witness of entanglement we need to subtract
an offset with upper bound O = p

p↑↑↓p↓↑↑ where p are the eigenstate populations in
thermal equilibrium (see supplementary information IV). The offset can be calculated
straightforwardly from the initial populations and is defined such that WR −O cannot be
negative, resulting in a reliable witness of entanglement for all temperatures. This is why
for all simulations, including Fig. 6.4a and b we report WR −O.

The same physical principles apply to all systems purely initialized by temperature.
To avoid these limitations, alternative systems where the initialization is achieved by e.g.
pumping and independent of system temperature should be used.

We now investigate the relation between C and WR−O in Fig. 6.4d where we plot WR−O
against C for T sweeps at various T2. The underlying relation is linear as in the ideal zero
temperature limit(see supplementary information I, III and V). The solid lines in Fig. 6.4d
are the linear dependencies that best match the data (details are in Table 6.1). The dashed
line is the analytic solution in the limit of infinite T2 (see supplementary information III).
Finally, in Fig. 6.4e we plot WR −O against C for T2 sweeps at various temperatures. We see
here that the dependence can best be fitted with a logarithmic scaled power law, which
reflects that for lower T2 there is more decay of the read-out than of the concurrence
(see supplementary information II and V). Solid lines in Fig. 6.4e represent fits of the

form WR −O = C 2

2a lnC (C a −1) (details are in Table 6.2). The dashed line is the analytic
solution in the limit of zero T (see supplementary information II). Deviations from the fits
can be attributed to missing terms in O (see supplementary information IV), additional
remaining cross-talk in the driving pulse scheme and exchange mixing terms between
spin eigenstates causing a more complicated relation between driving strengths and Rabi
times.



6.4. RESULTS

6

85

a
b

c

d e

Figure 6.4: Influence of finite lifetime and temperature on the entanglement. (a) shows WR −O as function
of temperature and decoherence time T2 (where T2 = 2 ·T1) (b) slice of (a) showing WR −O together with the
concurrence C for T = 0.1 K as achievable by dilution refrigerators. (c) slice of (a) showing WR −O together with
C for T2 = 300 ns. Clearly, temperature is a critical factor and the concurrence drops drastically above 0.3 K. We
also plot WR such that the difference of subtracting O becomes apparent. (d) relation of C and WR −O for three
different T2. Solid lines are linear fits. The dashed line represents the analytical limit for T2 →∞ (e) relation of
C and WR −O for four different temperatures. Solid lines are logarithmic weighted power law fits. The dashed
line represents the analytical limit for T → 0. The system parameters are as shown in Fig. 6.2a
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Finally, we address the influence of noise on the entanglement detection. First, we
consider the influence of quantum noise causing pure dephasing, such that the coherence
time is no longer lifetime limited but reduced by additional processes leading to an
effective coherence time of 1/T ∗

2 = 1/T2 + 1/Tφ. Tφ is the time constant of the pure
dephasing process. In the following, T2 = 2T1 = 300 ns as typical for the experiments.[9]
As show in Fig. 6.5a and b even fast dephasing processes with a dephasing time around
T ∗

2 = 75 ns still allow for sufficient concurrence and WR −O. It is not surprising that
longer T ∗

2 times are desirable as this is generally the case in quantum coherent systems,
but it is encouraging that in the typical experimental range of T ∗

2 ≈ 300 ns [6, 9, 17]
concurrence and WR −O are still relatively high. Second, we consider the influence of
classical noise. Experiments have indicated that despite the excellent mechanical stability
of STM systems, slow variation of the tip height can occur during the measurement. In our
setup, such a variation would change the local magnetic field of the sensor and thereby
the resonance frequency f0 of the sensor.[6, 24] We employ a simple noise model by
imposing a Gaussian distribution (µ = f0,σ = 30 MHz) on the sensor and perform 100
calculations. We analyzed the resulting variation of WR −O shown in Fig. 6.5c for three
representative cases: The best case scenario (T = 0.01K, T2 =∞ for the target spins) gives
the highest contrast and detection should be easy and reliable. In the intermediate case
(T = 0.1K, T2 = 300 ns) WR −O is narrowly peaked around 0.28, which should still give a
very reliable readout. In the case of high temperature and short T2 (T = 0.4K, T2 = 300
ns) WR −O is small (≈ 0.045), it is, however, still very narrowly distributed which indicates
that with appropriate care in the measurement this could still be measurable.

6.5. CONCLUSION
In this work we have shown by open quantum systems simulations that two exchange
coupled and relatively long-lived spins can be entangled and that the entanglement can be
directly measured by ESR-STM using a third, weakly coupled sensor spin. Our simulations
indicate that temperature is critical to achieve high degree of entanglement and WR , due
to the fact that the populations are initialized into thermal equilibrium. Systems that can
be initialized more independently from temperature as usually done in optical qubits in
trapped ion systems for example, could overcome the strict temperature requirement.
For physical spins on surface systems available today, such as the widely studied Ti on
MgO/Ag(001), entanglement should be achievable and in principle measurable with
T2 = 300 ns for the quantum spins and T1 ≈ 20 ns for the sensor spin at temperatures up
to 400 mK. High degrees of entanglement C ≈ 0.8 and corresponding read-out can be
reached when using a dilution refrigerator at T ≈ 100 mK.

6.6. SIMULATION DETAILS

6.6.1. SYSTEM HAMILTONIAN
All calculations were performed using a converged time step depending on the pulse
scheme but such that it was always smaller than 8 ps. Following previous works,[6] we
modeled each spin as an on-site energy term 2π fL,i Sz,i with fL,i the i -th Larmor frequency,
and pairwise isotropic exchange coupling terms Ji , j S i ·S j . ESR driving is achieved by ap-
plying the necessary single frequency driving termsΩk cos(ωk (t − t start

k )+φk )σx,i (t start
k <
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a b

c

Figure 6.5: Influence of noise on the entanglement. (a) shows the achievable concurrence and WR −O as
function of pure dephasing time Tφ. (b) shows C and WR −O as function of T2 for a fixed T2 = 300 ns for the
two spins and T = 0.1 K. (c) achievable readout contrast WR −O as function of Gaussian magnetic field noise
causing fluctuations of the resonance frequency of the sensor spin with σ= 30 MHz for three representative
cases characterized by T and T2.

t < t end
k ), with ωk the frequency the pulse is send at matching the desired energy tran-

sition, t start
k and t end

k the start and end times of the pulse and φk is an adjustable phase.
Ωk is the on-resonance Rabi rate, k = 1. . . N the index of driving frequency terms. The
maximum number of driving terms in our simulation was N ≤ 7. The total system Hamil-
tonian can be written as follows:

Htot =
3∑

i=1
2π fL,i Sz,i+

3∑
i=1

3∑
j>i

Ji , j S i ·S j+
∑
k

3∑
i=1
Ωk cos(ωk (t − t start

k )+φk )σx,i (t start
k < t < t end

k )

(6.1)
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6.6.2. LINDBLAD EQUATION

We solved a Lindblad equation for the reduced density matrix ρ of the following form

dρ

d t
=− i

ħ [Htot,ρ]+∑
l

(
LlρL †

l − 1

2
L †

l Llρ−
1

2
ρL †

l Ll

)
(6.2)

The last term on the right hand side are the collapse operators for our system. We
used two sets of collapse operators L Kondo +L φ to model spin energy relaxation as well
as pure dephasing.

6.6.3. COLLAPSE OPERATORS

The first set of collapse operators was defined acting on the coupled 3 spin system in order
to model Kondo spin relaxation, known to be the main source of decoherence for these
system [4, 25, 26]. We arrive at these terms by writing the known rate equation (see for
example Eq. 4 of supplementary of [27]) in Lindblad form. The operator acting between
energy level m and n of the system is

L Kondo
m,n =

√∑
l
|Jl

∑
si ,s f

〈m, si | s ⊗Sl |n, s f 〉 |2
ϵmn

eϵmn /kB T −1
|m〉〈n| . (6.3)

Here the first sum is over the l different atomic spins and the second sum is over the
initial (si ) and final (s f ) state of the itinerant electron spin interacting with these spins. S
and s are the respective spin operators. ϵmn is the energy difference between m and n of
the three-spin system. Finally, Jl is the strength of the interaction with each atomic spin.
In low temperature approximation it relates to the isolated l-th spin relaxation time T1,l

and energy of its Larmor frequency ϵl as (see Eq. 69 of [26])

Jl =
√

1

ϵl T1,l
. (6.4)

The second set of operators is for pure dephasing. Here, the standard operators are
used relating the pure dephasing rate to the pure dephasing time Tφ,l via the Pauli-z
matrix for the l-th spin, i.e. σz,l =1⊗11 . . .1⊗l σz ⊗l+11 . . .

L
φ

l =
√

1

2Tφ,l
σz,l . (6.5)

6.6.4. READ OUT

For read-out long pulses were sent resonant with transitions of SR . The expectation value
of SR was averaged in 16000 time steps for a time of 100 ns. In order to have a converged
expectation value a Rabi strength was used double the other strengths used in the scheme.
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T2 (ns) a b
300 0.36 ± 0.03 -0.03 ± 0.02
600 0.44 ± 0.02 -0.05 ± 0.02
900 0.47 ± 0.02 -0.05 ± 0.02

Table 6.1: Fitting results of WR −O = a+bC , for the
data shown in Fig. 6.4e. Uncertainties represent
the 2σ confidence interval

T (K) a
0.1 2.43 ± 0.23
0.2 0.43 ± 0.24
0.3 -0.60 ± 0.15
0.4 -0.90 ± 0.10

Table 6.2: Fitting results of WR −O = C 2

2a lnC
(C a −

1), for the data shown in Fig. 6.4e. Uncertainties
represent the 2σ confidence interval

6.6.5. FITTING RESULTS
The relations between WR −O and C in Fig. 6.4d were fit using WR −O = a +bC reflecting
the up to first order linear dependence as derived in supplementary information III
and IV. The fitting results are reported in Table 6.1. The relations between WR and C

in Fig. 6.4e were best fit using a logarithmic weighted power law function of the form

WR −O = C 2

2a lnC (C a −1). The fitting results are reported in Table 6.2. Derivations are in
supplementary information II and IV.

6.6.6. CONCURRENCE
For concurrence calculation first the partial trace over SR was taken leaving the reduced
matrix in the target spin basis. Then for each entanglement scheme the maximum was
reported.

6.7. CODE AND DATA AVAILABILITY
The underlying code for this study is available and can be accessed via Ref. [28]. All data
generated or analyzed during this study are included in Ref. [29].
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6.10. APPENDIX

6.10.1. DERIVATION OF THE RELATION BETWEEN WR AND C
In this section we derive the analytical relation between readout contrast WR and the
concurrence C by starting from a general description of the entangled state.
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DERIVATION OF C FOR EVERY POSSIBLE ENTANGLED STATE

Every state in the entanglement subspace can be written as:

ψent =α |↑↓〉+
√

1−α2 |↓↑〉 , (6.6)

with 0 ≤α≤ 1. The corresponding density matrix is:

ρent =α2 |↑↓〉〈↑↓|+ (1−α2) |↓↑〉〈↓↑|+α
√

1−α2(|↓↑〉〈↑↓|+ |↑↓〉〈↓↑|) (6.7)

Taking the partial trace we find the reduced density matrix is

ρ1 =α2 |↑〉〈↓|+ (1−α2) |↓〉〈↓| (6.8)

Inserting this in the definition of the concurrence gives:

C ≡
√

2[1−Tr (ρ2
1)] (6.9)

=
√

2[1− (α4 + (1−α2)2] (6.10)

=
√

−4α4 +4α2 (6.11)

= 2α
√

1−α2 (6.12)

DERIVATION OF WR FOR EVERY POSSIBLE ENTANGLED STATE

WR is equal to the radius of the Bloch sphere corresponding to the state in the subspace.
It can be expressed as

WR = 0.5sin(φ), (6.13)

with φ the polar angle [0,π].
This phase can be expressed in terms of the z-coordinate on the Bloch sphere as

φ= arccos(z/0.5), (6.14)

which in turn be expressed in terms of α of the state in the entanglement basis as

z = 0.5(α2 − (1−α2)). (6.15)

Here, α2 is the probability to be in |↑↓〉. Substituting both in the expression of WR

yields:

WR = 0.5sin(arccos(2α2 −1))) (6.16)

=
√
α2 −α4, (6.17)

where for the last equality we used the fact that sin(arccos(x)) =
p

1−x2.

CONCLUSION

Looking at both results we can conclude that in the ideal case: WR = 0.5C .
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6.10.2. WR (C ) WITH T1 DECAY
From the time stamp that maximum concurrence is reached until the read-out pulse
WR is already decaying with respect to the ideal 0.5C . Since WR is the phase in the

entanglement subspace the decay goes with T2 = 2T1 as e
− ttot

2T1 where ttot is the total time
between maximum entanglement and readout.

During the read-out time (tmeas) the excited-state of oscillation decays with e
− tmeas

T1

whilst the ground state stays the same. Given that WR is averaged over tmeas this leads to:

WR = C

2tmeas
e
− ttot

2T1

∫ tmeas

0
d te

− t
T1 (6.18)

= C T1

2tmeas
e
− ttot

2T1 (1−e
− tmeas

T1 ) (6.19)

In other words, one can find WR (C ) from C (T1).

DERIVATION OF THE RELATION BETWEEN T1 AND C

Setting T1 the same for both target spins the density matrix after the Hadamard time (tH)
is:

ρH =
 1

2 + 1
2 (1−e

− tH
T1 ) 1

2 e
− tH

T2

1
2 e

− tH
T2 1

2 e
− tH

T1

 (6.20)

which is a general density matrix with additional relaxation to the ground state and
dephasing. Next we can evaluate the density matrix after the CNOT time (tCNOT):

1−e
− tCNOT

T1 0 0 0

0 1
2 e

− ttot
T1 1

2 e
− ttot

T2 0

0 1
2 e

− ttot
T2 ( 1

2 + 1
2 (1−e

− tH
T1 ))e

− tCNOT
T1 0

0 0 0 0

 (6.21)

It is the effect of the CNOT with additional relaxation and dephasing. The total time ttot

is here equal to tH + tCNOT. The final state can be recognised as a ensemble of the ground

state with population 1− e
− tCNOT

T1 plus a pure state with phase 1
2 e

− ttot
T2 and population

e
− tCNOT

T1 .
We can extract the concurrence from the fact that energy eigenstates have 0 contribu-

tion to the concurrence and for a pure state the concurrence is equal to 2 times the phase
in the entanglement subspace. With that,

C = (1−e
− tCNOT

T1 )×0+e
− ttot

T2 (6.22)

From which follows:

− 1

T1
= 2

ttot
ln(C ), (6.23)

where we have used that T2 = 2T1.
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CONCLUSION

Substituting in Eq. 6.19 we arrive at:

WR = C 2

2a lnC
(C a −1), (6.24)

where we redefined the constant as a = 2 Tmeas
ttot

.

6.10.3. EFFECT OF FINITE TEMPERATURE ON WR (C )
C (T )

As a result of finite temperature the system is not fully initialized in the |↑↑↑〉 population
from the start. In the following we assume in all cases that the temperature is low enough
so that only single spin excitations are populated at any temperature. This agrees with
the results of our simulations. In that case the only non-zero populations are p↑↑↑, p↓↑↑,
p↑↓↑ and p↑↑↓.

After the Hadamard pulse the density matrix in the reduced single spin space is

ρH =
(

p↑↑↑+p↑↓↑
2

p↑↑↑−p↑↓↑
2

p↑↑↑−p↑↓↑
2

p↑↑↑+p↑↓↑
2

)
(6.25)

This can be understood as the density matrix of H applied to ↑↑↑ plus the density
matrix of H applied to ↑↓↑ (which have opposite phases).

Notice that as a result the total phase is the difference between the two populations
and thus decreases with higher temperature.

Next, it can be found that after the CNOT the reduced density matrix of the target
spins is


p↑↑↓ 0 0 0

0
p↑↑↑+p↑↓↑

2
p↑↑↑−p↑↓↑

2 0

0
p↑↑↑−p↑↓↑

2
p↑↑↑+p↑↓↑

2 0
0 0 0 p↓↑↑

 (6.26)

of which the total concurrence can be evaluated to be

C = max(p↑↑↑−p↑↓↑−2
√

p↑↑↓p↓↑↑,0). (6.27)

Using the Boltzmann probability we can finally express the concurrence in terms of
temperature:

C = max(
1−e

− ϵ↑↓↑
kB T

Z
−2

√√√√e
− ϵ↑↑↓+↓↑↑

kB T

Z
,0) (6.28)

with Z the total partition function of the 4 non-zero populations.
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Figure 6.6: Readout contrast offset. Offset O of the readout contrast as a function of T2 and T for tRabi = 25 ns
and tmeas = 100 ns

DERIVING WR (C )
Like in the ideal case (Section I) the read-out is equal to the radius of the Bloch sphere
in the singlet-triplet subspace WR = 0.5(p↑↑↑ − p↑↓↑). However, now, due to the finite
temperature, C has an additional term leading to an effective offset O in the relation
between WR and C .

WR = C

2
+√

p↑↑↓p↓↑↑. (6.29)

Showing that we should expect an up to first order linear behavior of WR (C ) as a result
of temperature

6.10.4. EXPLANATION OF OFFSET IN FIGURE 4C
Combining Eq. 6.19 and Eq. 6.29 we can find that given a relaxation T1 of the target spins
the total expression for WR as function of T is

WR = (C +2
p

p↑↑↓p↓↑↑)T1

2tmeas
e
− ttot

2T1 (1−e
− tmeas

T1 ). (6.30)

meaning that the offset of WR is

O = T1
p

p↑↑↓p↓↑↑
tmeas

e
− 5tRabi

8T1 (1−e
− tmeas

T1 ), (6.31)

where is used that ttot = 5
4 tRabi. Since C cannot be negative the same holds for WR −O

and thus the appropriate offset corrected read-out is max(WR −O,0)
From figure 6.6 evaluated for a Rabi strength of 0.04 Ghz and a measurement time

of 100 ns, it is clear that the offset is in general small compared to WR and mostly T -
dependent. The terms that are not T -dependent further reduce O hence O =p

p↑↑↓p↓↑↑ is
a good upper bound to use.

6.10.5. EXPLANATION OF THE FITS IN FIGURES 4D AND 4E
We combine all previous results in a fit function for figures 4D and 4E. For figure 4E we
combine Eq. 6.24, Eq. 6.29 and Eq. 6.31 into
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WR −O = C 2

2a lnC
(C a −1). (6.32)

where the temperature dependence is part of C and the rest of the function captures
the T1 dependence.

For figure 4D we combine Eq. 6.19, Eq. 6.29 and Eq. 6.31 into

WR −O = a +bC (6.33)

Here a is based on the equations not strictly necessary but used to make the fits
converge. It can account for sources of error left outside the scope of this derivation like
undesired off-resonance driving of energy transitions.

6.10.6. ALTERNATIVE CHOICES FOR B-CYCLE

ba

c d

Figure 6.7: alternative choices of B-cycle. (a) and (b) show alternative pulse schemes for the B-cycle of the
measurement. (a) does not contain any gate sequences whilst (b) performs some superposition (but not
entanglement). The variation of the respective expectation values of 〈Sz 〉 as well as the signal obtained from the
sensor spin are shown in panels (c) and (d)

As discussed in the main text the choice of the empty cycle ("B-cycle") is often take
such that it removes all background signal in the ESR-STM experiment. As such, the
choice is not unique and as long as the background can be reliably extracted any B-cycle
choice is equivalent. In Fig. 6.7, we show that alternative B-cycles used in the experimental
reference by Yu Wang and coworkers can be also implemented in our protocol. For details
of the experiment please refer to the supplement of Ref. [9]. We emphasize that the



REFERENCES

6

95

readout of the ESR current in the STM gives the difference of signals in the two cycles. In
all cases shown here the B-cycle leads to a reliable removal of the (flat) signal background
and any B-cycle choice is valid.
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7.1. CONCLUSION
We have presented three models for atomic systems on a metal surface and have shown
that understanding the surface is essential to understand the systems and their limita-
tions.

For chains of magnetic atoms on a superconductor we have presented a model based
on short junction theory to evaluate the YSR dispersion. We have shown that we can
evaluate the effective Hamiltonian of the YSR chain from just the self-energy at the Fermi
level. By comparing with exact calculation of a single orbital model we have proven that
our model works and has a negligible remaining error. We proceeded with a model with
atomistic spin-orbit coupling and managed to evaluate the Rashba split YSR dispersion.
This dispersion consists of features of the corresponding metal Fermi surface that go
beyond simple toy models proving that an orbital description is essential for modeling
YSR dispersion.

For field emission resonances in chlorine vacancies on vacuum we have shown that
there can be a negative differential resistance, which can be attributed to the specific
shape of the Fermi surface of copper and its overlap with the FER wavefunction.

For coherent spins on a surface we have shown that we can initiate a coherent flip-flop
operation between a titanium nucleus and nuclear spin when we tune the spins and
initialize them through spin-pumping. We can probe this flip-flop as it is faster than
the decoherence by the metal free electron spins. Our model of the decoherence is in
agreement with that.

Next to this, we have presented a protocol, compatible with STMs at sufficiently low
and preferably mK temperatures, to coherently entangle two remote titanium spins with
each other and read out the entanglement through a sensorspin. We have shown through
modeling that, given the decoherence of free electrons of the metal as well as decoherence
from tip shaking, this protocol still works and allows to probe whether the two remote
spins have been entangled.

7.2. OUTLOOK

7.2.1. YSR CHAINS
The presented short junction method is expected to be especially powerful when com-
bined with density functional theory. One would then start with a atomic orbital based
slab calculation on a geometry as represented by Fig. 7.1. From this result we can extract a
unit cell at the surface of the metal and in the bulk of the metal. We can combine these in
Eq. 2.22 to evaluate the corresponding Fermi Level self-energy and use this as input to the
short junction method to evaluate the YSR dispersion. In this way we could study the gap
closing and opening when we vary parameters and compare the results with previously
performed density functional theory studies. We could proceed to study chains with
different orientation on the surface to see what the influence of the orientation is.

7.2.2. FER
For field emission resonances the next step has already been made. After the work that
has been presented here was completed, the higher order orbital wavefunctions of the
FER were studied and two FER’s were coupled with each other, which was shown to map
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Figure 7.1: YSR DFT geometry. Geometry for the metal as could be used in DFT calculations of YSR dispersion
with the bulk unitcell (Hbulk) and surface unitcell (Hsurf) highlighted. The dotted circle represent the way to
couple the metal through the chain (Hchain) through virtual leads.

well on a tight binding model.

7.2.3. COHERENT SPINS: DECOHERENCE IN EQUAL DISTANCE SPIN CHAINS
With spin flip-flop interactions experimentally confirmed between single spins on a
surface [1] and between a nucleus spin and an electron spin, a natural follow-up question
is whether we can exchange spins in a chain of spins and how the decoherence scales in
these chains. Below we present some initial modeling results.

We start with an exchange-coupled spin- 1
2 chain with all identical Larmor frequencies

ωchain, identical exchange coupling Jchain and identical Kondo coupling JKondo to the
surface:

Hchain =
N∑

i=1
JchainS i ·S i+1 +ωchainS i , (7.1)

HKondo =
N∑

i=1
JKondoSi ·σi . (7.2)

As explained in section 2.6.2, the decoherence rate γ can be divided into an inelastic
contribution (γinel) and an elastic contribution(γel). These two contributions are inde-
pendent of each other. γinel scales with the energy relaxation rate according to Eq. 2.51.
γel is of the form of Eq. 2.52.

We evaluate the corresponding spin excitation values as a function of the time when
we flip the first spin at time t = 0. The inset of Fig. 7.2a shows a schematic of a chain
of 4 spins at a temperature of 0.4 K. The excitation will travel through the chain until it
decoheres due to the spin scattering with the metal. As expected, the excitations travel
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back and forth along the chain. However, we also see that the excitations increase in
magnitude towards the end of the chain (purple spin). This is a result of the finite size, as
the corresponding spin excitation modes have antinodes at the ends of the chain.

b c

a

Figure 7.2: Decoherence times in equal distance spin chains. (a) Schematic of a spin chain with Kondo scatter-
ing with the surface. (b) Decoherence time plotted as a function of chain length for increasing temperatures.
Solid dots include all decoherence channels. The unfilled dots are only for inelastic decoherence. Furthermore,
ρ J = 8×10−3 and B = 0.4 T. (c) Ratio of inelastic decoherence time vs. total decoherence time for spin chains
corresponding to Fig. (b)

We also track the total quantum coherent phase of the system with an exponential fit
to extract the overall decoherence time T2. We plot the result with solid dots for various
temperatures in Fig. 7.2b as a function of the chain length. As the chains get longer,
the decoherence times approach a minimum value for all temperatures. This is to be
expected because, in the limit of long chains, the phase decoheres after a characteristic
decoherence length, which, given a constant velocity at which the spin excitation is
traveling, results in a characteristic decoherence time.

To get a better understanding of the decoherence, we also plot T inel
2 in Fig. 7.2b in

unfilled dots. The elastic component does not exist for N = 2 independent of temperature.
This ties in with the fact that two perfectly tuned spins form a clock transition [2]. For
longer chains in the high- and low-temperature limits, T inel

2 coincides with T2. In contrast,
in the intermediate temperature range (≈ 0.2 K), the two decoherence times are further
apart.

Though this means that in terms of decoherence time the elastic component is most
significant in the (≈ 0.2 K) region, it does not mean that the elastic component is not
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present at higher temperatures. This can be seen in Fig. 7.2c, where we plot the ratio
T inel

2 /T2 now as a function of temperature for each chain length. While it remains the case
that the elastic component is the biggest at 0.2 K, it is still very much present at higher
temperatures. Only in the low-temperature limit the elastic component becomes truly
negligible. Still, it is remarkable that the plotted ratio does not scale monotonously when
we increase the temperature. Instead, it increase towards a maximum around 0.2 K and
then gradually decreases again towards the high-temperature limit. This can be attributed
to the complex shapes of the decoherence rates in Eq. 2.49 and Eq. 2.52, but further
research is required to understand this in more detail. We also note that the maximum
gets more pronounced and shifts gradually to lower temperatures with increased chain
length. Finally, in the high temperature limit, the ratio seems to show an even-odd effect
as the values for increasing chain length are not evenly spaced.

Having an insight into the contribution of elastic decoherence is useful as, according
to Eq. 2.52, it does not depend on the energy transitions of the system and thus can be
seen as the minimum amount of decoherence that will always be present.

7.3. CODE AND DATA AVAILABILITY
All research data and code supporting the findings described in this chapter are available
in 4TU.ResearchData at: DOI 10.4121/c773957e-b628-4962-817a-9a213bdf06db.
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