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Abstract

Cells of the most common organisms like plants and animals are filled with polymeric networks that
fulfil important functions of the cell. There is however no analytically solvable model that describes
diffusion in such a cell. This thesis presents a model for diffusion in polymeric environments, and some
predictions about the behaviour of the model are made and confirmed by simulations. Furthermore, the
Fokker-Planck equation of this problem is studied, in order to solve the problem. Certain approximations
are presented and solved, and it is investigated when the approximations are sound. Moreover, a method
is described that can derive a solution to an equation with certain boundary conditions, from a solution
to the same equation with different boundary conditions. This thesis also shows how this novel method
can be applied to this model to find a non-approximated solution to the equation, where this was not
possible without this method. Finally, it is described how a multitude of partial differential equations
that are linked to each other via the boundary conditions can be solved, can be solved using the method
described.
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Chapter 1

Introduction

F-actin networks are found throughout animal, plant and fungal cells. These polymer networks support
vital processes, such as muscle contraction, structural strength, cell division and protein transport. These
entangled polymers form complex protein networks throughout the cells and influence the diffusion prop-
erties of the cell cytoplasm. Since substances necessary for the function of cells, like oxygen, glucose and
proteins, transport mostly through diffusion, it is worth knowing about the diffusion properties of an
environment consisting of a viscous fluid such as cytoplasm and polymeric networks like F-actin.

An accurate and simple model for the diffusion of a particle in such a network is, however, hard to
find. Polymers are per definition highly complex objects and therefore create a high-dimensional problem.
The main way in which particles and the polymers influence each other is by short-scale repulsion, a
phenomenon hard to describe in a simple manner. It is for example not possible to approximate a
repulsion potential with a finite polynomial. Finally, thermal noise drives the motion of polymers and
the diffusing particles, meaning that the process becomes highly stochastic.

Several models have been created to describe diffusion in polymeric environments, however, no model
has yet proven to be accurate and to be solvable by analytical means[4][6]. In this thesis, a model is
developed, and the physical implications of the model are explored as well as the question of whether the
model can accurately describe the process. Furthermore, attempts at solving the model are presented.
During these attempts, methods are obtained that can be applied to a broader range of cases than just
this process.

In the model, a particle diffuses along one axis. Polymers are distributed along this axis at regular
intervals. In this way, a string of compartments is created, within which diffusion takes place. Particles
can also transfer to a new compartment. This means that there is not one potential for the entire string
of compartments, and so individual potentials were considered for each compartment. The Langevin
equation to this problem is then used to make predictions about the diffusion rates in several regimes,
which are later tested using simulations of this Langevin equation.

Moreover, the Fokker-Planck equation describing this process was derived and several approximations
to this equation are studied, as the equation does not prove easily solvable.

Since each compartment satisfies its own potential, we find one Fokker-Planck equation per com-
partment. These Fokker-Planck equations are of course connected, since the particles can hop change
compartments. This connection is trough the boundary conditions for each equation. A method is de-
veloped to make sure that such boundary conditions are met. This method inspired a similar but more
general method that can solve problems that are solved with other boundary conditions, but that cannot
be solved with the boundary conditions of interest. In this way, an exact solution can be acquired.

9
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Chapter 2

Description of situation and model

Throughout this thesis, we will describe the diffusion of a particle in a viscous fluid, that contains a
polymeric network. We will assume that the particle itself is a monomer, allowing us to solely regard
the translatory motion of the particle, and not concern ourselves with internal motion. While diffusion
takes place in three dimensions, we will study the problem in one dimension for simplicity. We consider
a periodic structure, with polymer strands perpendicular to the direction along which diffusion can take
place, separated by distances of 2L̄. The behaviour of the particle is only influenced by the two closest
polymer strands. The dynamics of the polymer chains which separate the compartments are governed
by the Rouse model, with an additional coupling term that describes the influence of the particle on the
polymers.

In the Rouse model, the polymer is divided into a number of beads which are considered to be
connected by springs. The beads will then move in certain fundamental modes, which satisfy a simple
harmonic potential. For each polymer strand, N/2 Rouse modes are considered, which gives us N relevant
modes per compartment. The centre of mass modes of the polymers are not taken into account, since
the polymers are fixed in the network at certain positions, inhibiting significant centre of mass motion.
Furthermore, we assume that the viscosity of the fluid is high, so the particle and the polymer cannot
accelerate significantly, and speed will be lost quickly. This is called the overdamped limit

2.1 Model equations

We will first describe the dynamics of the particle within a compartment, neglecting the fact that other
compartments are present. In the Rouse model, the polymer is described by the amplitude of several
fundamental modes, and the centre of mass mode. We will neglect the centre of mass mode, since we do

Figure 2.1: A sample of the network with the particle in green
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Figure 2.2: A small Rouse chain [5]

not expect the polymer to move about in the fluid, since it is tied at several points in a network. The
Rouse model prescribes that the monomer beads, with positions x = (x0, . . . , xN )T satisfy a potential
described by

Uh(x) = xTκx

κ accounts for the potential energy stored in the springs. For the matrix κ, only the values κij+κji matter,
so κ can be chosen symmetric. This means that it can be orthogonally diagonalised as κ = O−1K̄O.
The Rouse modes X̄ = (X̄0, . . . , X̄N )T are subsequently defined as X̄ = Ox. This means that the modes
satisfy a harmonic potential and are not coupled with each other. The first value along the diagonal
is zero and corresponds with the centre of mass mode. We will neglect this mode in further study as
described above. Looking at the particle position, we see that the particle is most likely trapped between
two polymer strands, and will have to cross a certain potential barrier when crossing a strand. The
simplest way to express such a potential is a harmonic potential. In this way, the particle potential is
similar to the mode potential, which will be expressed by writing X̄0 for the particle position The modes
and the particle thus satisfy a harmonic potential

Uh(X̄) =
1

2

N∑
0=1

K̄pX̄p
2

For p ≥ 1, X̄p is the amplitude of mode p, and K̄p is the strength of the harmonic potential, and can be
read from the diagonal of OKO−1. For p = 0, K̄0 is a measure of the strength of the harmonic potential.
It is important to be aware of the fact that X̄0 does not refer to the centre of mass mode as is commonly
the case.

We also expect some interaction between the beads of the polymer and the particle position. It is
hard to derive a specific form, so we assume the simplest form possible for the coupling potential:

Uc(x) = (STx)X̄0

Here S = (S0, S1, . . . , SN )T , where each Si indicates how strong and with what sign a bead couples
with the particle. Substituting x = O−1X, we can express this coupling potential in terms of the mode
displacements to find

Uc( ¯{Xp}) =
( N∑
p=1

s̄pX̄p

)
X̄0 (2.1)

Here Uc + Uh is the total potential of this system.
The equations of motion are then given by

mp
d2xp
dt̄2

= −γ̄ dxp
dt̄
− ∂U(x)

∂xp
+ ξ̄p(t̄) = 0

Here p = 0 . . . N , mp is mass of the bead with position xp, and γ̄ is the viscosity acting on each bead.
Furthermore, ξ̄ is thermal noise. A similar equation arises for X̄0. We have already mentioned that we
consider the overdamped limit, which means that the inertia is neglected to the viscosity. This gives:

γ̄
dxp
dt̄

= −∂U(x)

∂xp
+ ξ̄p(t̄)
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Writing this in matrix form, we see

γ̄
dx

dt̄
= −κx+ SX̄0 + ξ̄

Here ξ̄ = (ξ̄0, . . . , ξ̄N ). Substituting x = O−1X, we get

γ̄
dX̄

dt̄
= −OκO−1X̄ +OSX̄0 +Oξ̄

We will now remove the centre of mass mode from the equation and include the particle position X̄0. To
do this, we note that in the overdamped limit

γ̄0
dX̄0

dt̄
= −K̄0X̄0 − SO−1X̄ + Ξ̄0(t)

Here γ̄0 is the particle’s viscosity, and ξ̄0(t) is thermal noise acting on the particle. We find that the total
equation becomes

Γ̄T
dX̄

dt̄
= −Θ̄X̄ + Ξ̄

Here Γ̄ = (γ̄0, γ̄, . . . , γ̄)T , Ξ̄ = (Ξ̄0, (Oξ̄)1, . . . , (Oξ̄)N ) and

Θ̄ =


K̄0 s̄1 · · · s̄N
s̄1 K̄1 · · · 0
...

...
. . .

...
s̄N 0 · · · K̄N


Here (s̄1, . . . , s̄N ) = SO = (O−1ST )T . The last equality follows from the fact that Θ was orthogonally
diagonalised, and thus OT = O−1.

In these equations ξ̄p(t̄) is Gaussian white noise, where 〈ξ̄p(t̄)〉 = 0. For 〈ξ̄p(t̄)ξ̄q(s̄)〉, we resort
to the fluctuation-dissipation theorem. This theorem is a fundamental relation in statistical physics
which says that fluctuation and dissipation of energy are governed by the same physical process. In
this process thermal noise is the fluctuation, and the viscosity is the cause of dissipation of energy.
This theorem also quantitatively relates fluctuation and dissipation, which gives, and by the fluctuation-
dissipation theorem 〈ξ̄p(t̄)ξ̄q(s̄)〉 = 2Γ̄pkBTδpqδ(t−s). Due to the orthogonal nature of O, this also means
〈Ξ̄p(t̄)Ξ̄q(s̄)〉 = 2Γ̄pkBTδpqδ(t− s).

Physically we can interpret these results by saying that the system satisfies a potential

U =
1

2

N∑
p=0

K̄pX̄
2
0 + (

N∑
p=0

s̄pX̄p)X̄0

The equations of motion are then given by

γ̄p
dX̄p

dt̄
= − ∂U

∂X̄p
+ Ξ̄p(t)

Here γp = γ0 the damping constant of the particle for p = 0, and γp = γ the damping constant of the
beads for p ≥ 1. An important consequence of this derivation is that γp is the same for p ≥ 1

Once |X̄0| > L̄, the particles moves into the next compartment, where it satisfies the same equations,
but shifted by 2L̄

2.2 Dimensionless equation

We will now proceed to derive a dimensionless representation of these equations, in order to obtain a

clearer image of relevant quantities. To do this, we define the dimensionless quantities Xp = X̄p

√
K̄0

kBT
,

t = t̄ K̄0

γ̄0
, sp =

s̄p
K̄0

, γp =
γ̄p
γ̄0

, Kp =
K̄p

γpK̄0
and ξp(t) =

ξ̄p(t)

γp
√
K̄0kBT

.
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We then see that
dX

dt
= −ΘX + Ξ (2.2)

Here X = (X0, X1, . . . , XN )T and Ξ = (ξ0, ξ1, . . . , ξN )T . Furthermore

Θ =


1 s1 · · · sN
s1
γ1

K1 · · · 0
...

...
. . .

...
sN
γN

0 · · · KN

 (2.3)

Note that like ξ̄p, ξp is Gaussian white noise with 〈ξp(t)〉 = 0, but now with amplitude 〈ξp(t)ξq(s)〉 =
2
γp
δpqδ(t − s). The dimensionless compartment length is given L = L̄

√
X̄0

kbT
. Processes with the form

of equation 2.3 are called multidimensional Ornstein-Uhlenbeck processes. Throughout this thesis, the
methods used are sought to be valid for general cases of the Ornstein-Uhlenbeck processes, thus for
general Θ and Ξ whenever possible. Equation 2.2 is the Langevin equation of this process. It describes
single outcomes of a stochastic process, as functions of a noise function



Chapter 3

Predictions

Before attempting to solve this problem, we can make some judicious guesses about the expected be-
haviour of the particle. Diffusion-like processes are commonly described as:

σ2 = Dtα (3.1)

Here σ2 is the variance of the particle position. For regular diffusion, we find α = 1, which means

that d(σ2)
dt is constant. This implies that the diffusion behaviour does not change with increasing time or

variance. We also identify the cases where α < 1, called sub-diffusion, and α > 1, which is super-diffusion.
In these two cases, the rate of diffusion either decreases or increases with time. The three different cases
can be seen in figure 3.1. When a particle moves with a constant speed, we find ballistic motion, with

Figure 3.1: Variance of particle position for α = 1.2 (super-diffusion), α = 1 (regular-diffusion) and
α = 0.8 (sub-diffusion)

α = 2. Most super-diffusive processes are limited at α = 2 since the thermal noise inhibits the particle
from moving in one direction only. Experimental studies concerning F-actin find sub-diffusion for certain
cases [2], so we might expect some anomalous diffusion, or α 6= 1 to take place. The most interesting
cases are for α 6= 1, and otherwise D can be studied.

While making predictions about D and foremost α, we will identify several regimes.

15
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3.1 Large times

For timescales for which most particles have switched compartments a considerable amount of times,
the average squared displacement is mostly determined by the compartment in which a particle resides,
rather than the specific position within that compartment. If we only consider the compartment the
particle is in, we have a process that resembles a one-dimensional random walk, where at every time
step, the particle has the options to move either one unit of length to the right, or to the left. There are
however two important differences between this process and a simple random walk

One difference is that once a particle has entered a compartment, it does not have an equal chance
of leaving the compartment through either the left or the right-hand side of the compartment. When a
particle enters a compartment from the left-hand side, it initially is in the left-hand side of the compart-
ment, and we might thus expect the particle to have a larger chance of quickly exiting the compartment
on the left-hand side, than quickly leaving through the right-hand side. If a particle has entered the
compartment from the right-hand side, it is, of course, more likely to leave the compartment through this
side than through the left-hand side. Once a particle has reached the centre of the compartment, this bias
is mostly gone and is only preserved by the mode amplitudes. This implies that if the harmonic potential
is so strong that most particles cross the centre of the compartment before leaving the compartment,
this bias can be neglected. If this tendency of moving towards the previous compartment is significant
we obviously expect the diffusion to be slower. Looking at equation 3.1 the question arises of whether
this slow diffusion expresses itself in a low D, or in a low α. For a regular random walk, we find regular

diffusion and thus α = 1, which implies that dσ2

dt is constant and that the diffusion process does not
change with time or variance of the process. Looking at our bias, we have no reason to expect that the
bias would be more or less significant for larger t or σ2, as long as the average squared displacement is
large. We, therefore, predict the α to remain 1 under this alteration of Brownian motion, and thus we
expect D to be lower than for regular diffusion, due to this bias.

The second difference with a simple random walk is that the time between a change in compartments
is not a constant, but is a stochastic process itself. Like in the previous section, we do not expect this
difference to specifically change diffusion speed for larger or smaller times or variances, and thus we do
not expect this process to have an effect on α. Whether this stochastic waiting time would make D larger
or smaller, entirely depends on how the typical waiting times for the stochastic process compare to the
constant waiting time. It is, for instance, clear that if for a simple random walk the constant waiting
time is far larger than the waiting time the stochastic process is expected to yield, the simple random
walk will diffuse much slower than for this random walk with stochastic waiting time.

We can conclude that for large times we find something similar to a random walk, and thus expect
α = 1, implying regular diffusion. There are some ways in which this process differs from a random walk,
but these differences are not expected to alter α and cause sub- or super-diffusion

3.2 Short times, small coupling

We will now look at shorter timescales, in which most particles have not left the initial compartment. We
will find that we have entirely different behaviour for large and small coupling, and we will thus consider
them separately.

For small coupling, the diffusion process is governed by the harmonic potential of the particle. The
influence of the Rouse modes can be neglected. If a particle is initially situated in the centre of a
compartment, the harmonic force −X0 is small for small times, and the harmonic potential can be
neglected for very small times. We then have regular diffusion with α = 1. For larger times we expect the
variance to reach an equilibrium value, since at a certain point the strong harmonic force −X0 inhibits
further diffusion of the particle. This equilibrium can of course only take place if the standard deviation
in this equilibrium is significantly lower than the distance to the boundary of the compartment. If this
is not the case, many particles will have left the compartment before an equilibrium variance is reached.
We, therefore, expect that for large compartments, the diffusion coefficient changes from an initial α = 1,
to an eventual α = 0 belonging to constant variance. If L is not large enough, α will not reach 0, as too
many particles have crossed the first polymer strand into a second compartment by then. However, it is
reasonable to expect α to lower slightly as time increases.

In conclusion, we expect that for small coupling α will start at 1, then decreases towards 0, and will
then for longer time ranges increase to a value of 1 again.
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3.3 Short times, large coupling

In this section, the regime where the coupling between the polymer and the particle is significantly
stronger than the harmonic potential will be described. We will entirely neglect the harmonic potential
in this analysis. Without loss of generality, we will assume all coupling constants to be positive. Assume
that initially, the particle moves to the right slightly. All modes will be pushed towards negative values,
since the coupling force − sp

γp
X0 is negative. This causes −

∑N
p=1 spXp to become positive, thus pushing

the particle to the right. This on its turn violently pushes all the modes towards negative values. This
process repeats itself, constantly pushing the particle to the right, and the modes towards negative values.
The particle will thus be catapulted to the first polymer strand.

Since the forces scale with the displacement, the strength of this process increases. The particle
will enjoy super-diffusion, or an α larger than 1. We expect α to increase over time, as the strength
of the process increases with the increasing displacement. There is no reason for α to converge to any
specific value, so we could predict α to unlimitedly increase from an initial value of 1 until the standard
deviation is such that particle will enter new compartments. Solving the equation for no noise gives an
exponentially increasing particle position.

In the most cases of super-diffusion, α is limited at 2, since this describes the ballistic motion of
an unhindered particle. In processes that bear resemblance to diffusion, the particle is in some way
hindered, causing α to be lower than 2. In this case, however, the particle is not hindered at all. On
the contrary, its motion is only amplified due to coupling, which is the reason why this particle might
”diffuse” super-ballistically.

It is important to note that α will not increase indefinitely since at one point the compartment
boundaries are reached, so we might not observe the super-ballistic motion.

We can extend our time scale slightly, to also allow a particle to have crossed a polymer strand once.
We then find something remarkable. We have seen that particles are pushed towards a polymer strand
rather quickly. Once they reach this strand, they reach the next compartment. If a particle has crossed a
boundary from left to right, it has a negative value of X0 in the new compartment. The coupling process
then causes this value of X0 to rapidly become even more negative, until the same boundary is crossed
again. The particle is then through coupling again quickly pushed back to the polymer strand. The
particle is in this way confined to a polymer strand.

As a result, strong coupling causes the particle to quickly move from the centre of a compartment
to a polymer strand, where they are trapped by the coupling process. Subsequently, the particle might
diffuse from polymer strand to polymer strand, rather than from compartment to compartment. In this
way, strong coupling causes a process alike a process with large harmonic potential, with the difference
that the positions at which particles are trapped are at the polymer strands, instead of right in between
two polymer strands. This would imply the variance to quickly move to L2 from where regular diffusion
will take place.

Looking at α, we see that the process will start with free diffusion, and an α of 1. α will then increase
until a significant amount of particles are trapped at a polymer strand. When this happens, the variance
will reach a plateau and α will become 0. On even longer timescales, the particle will diffuse like a random
walk, and α will be 1.

This behaviour of residing at the polymer strands is not what we would physically expect. It is,
therefore, a reason to suspect that the model might be flawed. This does not have to be the case, as the
regime where the coupling is much stronger than the harmonic potential, clearly is not a relevant regime.
Still, this section is a reason to become weary of the model
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Chapter 4

Fokker-Planck equation

The Langevin description used above is an intuitive description of the process and is therefore easy to
formulate. This is the reason why we started by determining a Langevin description. One important
feature of this process is, however, not incorporated in this description. That feature is what happens
when the particle reaches the points X0 = L and X0 = −L. At these points, the particle crosses a
polymer strand and moves into a neighbouring compartment. It is then governed by the same system of
equations shifted in the X0 dimension by 2L, since the centre of the compartment now is at 2L instead
of at 0. This means that we in fact have

dX

dt
= −Θ

∞∑
i=−∞

H(X0 − 2iL)(X − (2iL, 0, . . . )T ) + Ξ

Here H is a block function with H(x) = 1 for −L < x ≤ L and H(x) = 0 for all other x. The
dynamics are governed by equation 2.2, where X0 is centred around the centre of the compartment the
particle is in. It is unclear what happens with the mode displacements when a new compartment is
entered, so it is chosen to reset those displacements to zero. This makes the process even more complex.
Such a periodic and at certain points non-continuous description can be incorporated in the Langevin
description, but due to the non-continuous nature of the equation, we do not expect an analytical result
can be obtained. Note that the result will of course be continuous, but that the forces acting on the
particle are not continuous with the particle position. Therefore, we resort to the Fokker-Planck equation
of this process.

The Langevin equation of a process describes specific realisations, whose outcomes are stochastic
due to the stochastic nature of the thermal noise. The Fokker-Planck describes the probability density
function of the particle position and the mode displacements, in a partial differential equation. This
equation has a t dimension with boundaries at 0 and infinity, N (Xp)p≥1 dimensions with boundaries at
minus and plus infinity and an X0 dimension with boundaries at −L and L. The initial condition forms
a boundary condition at t = 0, and for the p ≥ 1 modes, the boundary conditions are physical boundary
conditions, which imply that the probability density is 0 at plus and minus infinity. The boundaries for
X0 are more interesting. These boundaries are the reason for choosing the Fokker-Planck equation.

We will first look at an isolated compartment. We assume that the particle can move out of the
compartment, but can never enter the compartment again. Once the particle has reached a polymer
strand, it is removed from the system. The probability of residing at the boundaries is therefore zero.
We thus impose homogeneous Dirichlet boundary conditions of zero amplitude at the boundaries. This
boundary condition is referred to as absorbing.

Later in this thesis, we will study multiple adjacent compartments and the boundary conditions needed
to connect these compartments. These conditions are the continuity of probability flux and the continuity
of probability at the boundary. Eventually we will consider a set of partial differential equations, each
describing a different compartment. We will study this in more detail in later sections.
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4.1 Fokker-Planck equation

We can deduce the Fokker-Planck equation for a compartment from equation 2.2. The Fokker-Planck
equation for this equation is given by [7]:

∂p(X, t)

∂t
=

N∑
p=0

(
∂

∂Xp

(
(ΘX)pp(X, t)

)
+

1

2

∂2

∂X2
p

(
E
(
Ξp(t)

2
)
p(X, t)

))
Here (ΘX)p is the p’th value of ΘX. From this equation we directly derive the Fokker-Planck equation
we will use throughout this thesis

∂p(X, t)

∂t
=

N∑
p=0

(
Θppp(X, t) +

N∑
i=0

ΘpiXi
∂

∂Xp
p(X, t) +

1

γp

∂2

∂X2
p

p(X, t)
)

(4.1)

4.2 Escape rate

We will use the differential equation for p to determine the chance of a particle leaving the interval [−L,L]
on either side of the interval. We will derive an expression for the time derivative of the chance of the
particle being in the interval [−L,L].

We will integrate ∂p
∂t over all modes consecutively using the partial differential equation, to derive the

escape rate. For this process, we use mathematical induction on the well-ordered set {0, . . . , N}. This
procedure can be found in Appendix A. For the marginal probability density p(X0, t) of p(X, t) in X0

we find
∂p(X0, t)

∂t
= Θ00p(X0, t) + Θ00X0

∂p(X0, t)

∂X0
+

∂2p(X0, t)

∂X2
0

+
∂

∂X0

N∑
i=1

Θ0i

∫
Xip(X, t)d({Xj}j≥1)

Integrating this expression over the interval [−L,L], we find that the escape rate, is given by

− ∂

∂t

∫ L

−L
p(X0, t)dX0 = −∂p(X0, t)

∂X0
|L−L −X0p(X0, t)|L−L−

N∑
i=1

Θ0i

∫
Xip(X, t)d({Xj}j≥1)|X0=L

X0=−L)

(4.2)

Note that the X0p(X0, t)
L
−L, as well as the integral term, drop out for homogeneous Dirichlet, that is

absorbing, boundary conditions. Since we will not assume these boundary conditions when studying
multiple compartments, we will not drop those terms from the equation. From equation 4.2, it is easy to
distinguish the escape rate through the boundary on the left or right-hand side.

The ∂p(X0,t)
∂X0

term is typical of a diffusion process and is reminiscent of Fick’s and Fourier’s law, which
describe diffusion of mass and energy respectively, rather than probability.

The−X0p(X0, t) term implies that the more likely it is for a particle to be positioned at the boundaries,
the smaller the escape rate. This might seem contradictory, as we might expect a higher escape rate when
the probability is high in a certain compartment. This scaling, however, is represented, as in all diffusion
systems, by the place derivative as previously discussed. The term −X0p(X0, t) therefore represents the
force that results from the harmonic potential in X0, that makes the particle tend to the centre of the
compartment. This force obviously decreases the probability flux out of the compartment and scales with
p at the boundary.

For the
∑N
i=1 Θ0i

∫
Xip(X, t)d({Xj}j≥1)|X0=L

X0=−L) term, it is important to note that
∫
Xip(X, t)d({Xj}j≥1) =

E(Xi|X0)p(X0, t). This term thus scales with the sum over all modes, of the product of the coupling
constant between the mode and particle position, and the expected value of the mode displacement at the
boundary. The term is, therefore, a measure of the expected force that all modes exerts on the particle
through coupling. This coupling force can push the particle to the centre of the compartment or towards
the boundary. In this way, the coupling force influences the probability flux. The term also scales with
the marginal probability density at the boundary, since the d coupling force has more impact when the
particle has a larger probability of residing at the boundary.



Chapter 5

Approximations to Fokker-Planck
equation

We will first consider the partial differential equation in one compartment. The equation then satisfies
absorbing boundary conditions. These mean that the probability of finding the particle at the boundary
is zero. This physically means that as soon as a particle hits the boundary, it is removed from the system,
and will not return to the cell.

A common approach to solving the equation would be to apply separation of variables. This method
is not possible in this form of the equation, since mixed terms like Xi

∂p
∂Xp

appear in the equation. A

common way to solve this problem is to change the variables into a system that does not contain these
coupled terms. This would equal diagonalising Θ. The problem is then that the boundaries of the
compartments are not specified by a value of one variable, such as X0 = L, but depend on a number of
variables. The bounding planes then are not orthogonal to the axis belonging to some variable, and so
after diagonalising the equation, separation of variables is still not applicable.

We will proceed to rewrite the Fokker-Planck equation into a different form and investigate certain
possible approximations, which drop the mixed terms. This allows separation of variables. The reason
why these approximations are not made in the original equation is because this removes aspects of the
process from the equation, while we hope that in this different form, we can drop mixed terms while still
conserving the properties of the process.

5.1 Analogous representation

We write p = exp(XTHX)q for a certain matrix H, and then study the function q, in order to remove
mixed terms. From derivations in Appendix B we find:

∂q

∂t
=

N∑
p=0

(
∂2q

∂X2
p

1

γp
+

∂q

∂Xi

N∑
j=0

( 2

γp
(Hpj +Hjp) + Θpj

)
Xj

+q(X, t)

(( N∑
j=0

(Hpj +Hjp)Xj

)( N∑
j=0

( 1

γp
(Hpj +Hjp) + Θpj

)
Xj

)
+

2

γp
Hpp + Θpp

))
We now have mixed terms in the forms ∂q

∂Xi
Xj and XiXj . By choosing H cleverly, we can try to

eliminate as much of these two terms. If we want to remove the term with the first derivative, we need
2
γp

(Hpj + Hjp) + Θpj = 0 for all p and j. This is only possible if Θijγi = Θjiγj . Fortunately this is

the case, which is the direct result of the fluctuation-dissipation theorem. The theory derived from this
analogous representation is therefore no longer valid for general Θ and Ξ. We choose Hpj = −γp4 Θpj ,
and find

∂q

∂t
=

N∑
p=0

(
∂2q

∂X2
p

1

γp
+ q(X, t)

(
− γp

4
(ΘX)2

p +
Θpp

2

))
(5.1)

This equation still contains the mixed term (ΘX)2
p. Certain approximations will be studied that

overcome this problem.
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22 CHAPTER 5. APPROXIMATIONS TO FOKKER-PLANCK EQUATION

5.2 Small compartment

For small compartments, the length over which p and therefore q changes, becomes relatively short, while

the expected typical amplitude of p and so of q will not be smaller. This could cause ∂2q
∂X2

0
to be far larger

than ∂2q
∂X2

p
for p ≥ 1, and so we could neglect ∂2q

∂X2
p

for p ≥ 1. We then find

∂q

∂t
=

∂2q

∂X2
0

1

γp
+ q(X, t)

N∑
p=0

(
− γp

4
(ΘX)2

p +
Θpp

2

)
Substituting q = exp(−λt)Q(X), the eigenfunction equation is of the form

∂2Q(X)

∂X2
0

1

Q(X)
= cX2

0 + f({Xp}p≥1)Y0 + g({X0}p≥1)− λ

Parabolic cylinder functions solve the equation ∂2f
∂x2 = ax2 + bx+ c− λ [1] As a result, this eigenfunction

equation is solved by parabolic cylinder functions where {Xp}p≥1 act at as parameters and X0 as the
variable, multiplied by a function of {Xp}p≥1. Note that the eigenvalue will therefore generally depend
on {Xp}p≥1. Eigenfunctions will thus decay at different rates for different {Xp}p≥1.

5.3 Large compartment

For a large interval, on the contrary, we expect ∂2p
∂X2

0
and so ∂2q

∂X2
0

to be relatively small. We can then

neglect this term. Since the equation then does not contain any X0 derivatives, we can multiply any
solution q with an arbitrary function f(X0) and obtain a different solution. This adjusted equation,
therefore, does not predict much about the X0 behaviour. Since we are mostly concerned about the X0

dependency, neglecting the second X0 derivative will not generate fruitful results.

5.4 Small mode displacement

We will now consider the case where the mode displacement of the polymer is relatively small compared
to the amplitude of the particle. Note that this cannot hold for an entire domain since the region around
X0 = 0 will always be included. Furthermore, large parts of our domain do have large mode amplitudes,
but we assume that the probability there is so small, that any mistakes made there are not significant.

The approximation we will make neglects all the {Xp}p≥1 terms in the (ΘX)p term. This would be
valid for small mode displacement. This approximation gives:

∂q

∂t
=

N∑
p=0

(
∂2q

∂X2
p

1

γp
+ q(X, t)

(
− γp

4
Θ2
p0X

2
0 +

Θpp

2

))
We see that mixed terms such as XpXj are not present in this equation, which means we can apply
separation of variables. Before we continue solving this equation, we transform this new equation back
to an altered equation for p, to enable us to check whether the made approximation is sound. We find
the equation:

∂p

∂t
=

N∑
p=0

(
1

γp

∂2p(X, t)

∂X2
p

+

N∑
j=0

ΘpjXj
∂p(X, t)

∂Xp
+ p(X, t)

(
Θpp +

γp
4

(
(

N∑
j=0

ΘpjXj)
2 −Θp0X

2
0

)))

The approximation thus adds a term p(X, t)
(∑N

p=0
γp
4

(
(
∑N
j=0 ΘpjXj)

2−Θp0X
2
0

))
. This term is small for

regions of relatively small displacement, which means that this approximation is sound. It is important
to note that we have not ignored coupling, while we have removed the difficulties that coupling causes by
introducing mixed terms. Since this not easily achieved in the equation for p, we can see why we would
go through the hassle of studying the function q.
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We will now solve this altered equation with homogeneous boundary conditions and a source term,
from we will deduce the Green’s function. We will denote the source term in the p domain as V (X, t).
In the q domain, this adds a term Ṽ (X, t) = exp(−XTHX)V (X, t).

Looking at our approximated equation for q, we see find the eigenfunction equation

N∑
p=0

(
∂2Q(X)

∂X2
p

1

γp
+Q(X)

(
− γp

4
Θ2
p0X

2
0 +

Θpp

2

))
+ λQ(X) = 0 (5.2)

We will apply separation of variables and substitute Q(X) = R(X0)S({Xp}p≥1), which gives

1

S({Xp}p≥1)

N∑
p=1

(∂2S({Xp}p≥1)

∂X2
p

1

γp

)
+

1

R(X0)

∂2R(X0)

∂X2
0

+

N∑
p=0

(−γp
4

Θ2
p0X

2
0 +

Θpp

2
) + λ = 0

This gives parabolic cylinder functions for R(X0) for countably infinite eigenvalues. S({Xp}) is solved by

exp(i
∑N
p=1 ωpXp). This creates an N -fold uncountably infinite set of eigenvalues, and allows standard

Fourier analysis.
Let Bn be solution to the equation

∂2Bn(X0)

∂X2
0

+ (−
N∑
p=0

γp
4

Θ2
p0X

2
0 + µn)Bn(X0) = 0

Note that this equation is a regular Sturm-Liouville equation. Thus, the eigenfunctions form a complete
set. The solutions for equation 5.2 are then given by

Bn,{ω}(X) = exp(i

N∑
p=1

ωpXp)Bn(X0)

With eigenvalues λ =
∑N
p=1

ω2
p

γp
−
∑N
p=0

Θpp

2 +µn Since the eigenfunctions Bn and the complex exponentials

exp(i
∑N
p=1 ωpXp) both form complete sets on their respective domains, we deduct that the eigenfunctions

Bn,{ω} form a complete set themselves on [−L,L]×RN . Hence, we know that the solution to the equation
for q can be written as

q(X, t) =

∞∑
n=1

∫
RN

bn,{ω}(t)Bn,{ω}(X)d{ωp}p≥1

Since the eigenfunctions as well as q satisfy the same homogeneous boundary conditions, we can differ-
entiate term-by-term with respect to X and t. This gives:

∞∑
n=1

∫
RN

dbn,{ω}(t)

dt
Bn,{ω}(X)d{ωp}p≥1 =

−
∞∑
n=1

∫
RN

λn,{ω}bn,{ω}(t)Bn,{ω}(X)d{ωp}p≥1 + Ṽ (X, t)

We can also express Ṽ as a sum of eigenfunctions, in order to derive differential equations for the
coefficients bn,{ω}.

Ṽ (X, t) =

∞∑
n=1

∫
RN

cn,{ω}(t)Bn,{ω}(X)d{ω}p≥1

Here

cn,{ω}(t) =
( 1

2π

)N 1

〈Bn, Bn〉

∫ L

−L

∫∫
RN

Ṽ (X, t)Bn(X0) exp(−i
N∑
p=1

ωpXp)d{Xp}p≥1dX0

We then get the following equation for bn,{ω}:

dbn,{ω}

dt
= −λn,{ω}bn,{ω} + cn,{ω}(t)
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This is easily solved by

bn,{ω} = exp(−λn,{ω}t)(bn,{ω}(0) +

∫ t

0

exp(λn,{ω}τ)cn,{ω}(τ)dτ)

Furthermore, bn,{ω}(0) can be computed in a similar way to cn,{ω}(t), giving

bn,{ω}(0) =
( 1

2π

)N 1

〈Bn, Bn〉

∫ L

−L

∫∫
RN

q(X, 0)Bn(X0) exp(−i
N∑
p=1

ωpXp)d{Xp}p≥1dX0

Then q is given by

q(X, t) =
( 1

2π

)N ∫ L

−L

∫∫
RN

∞∑
n=1

Bn(X0)Bn(X̃0)

〈Bn, Bn〉(
p(X̃, 0)

∫∫
RN

exp(i

N∑
p=1

ωp(Xp − X̃p)) exp(−λn,{ω}t)d{ω}

+

∫ t

0

Ṽ (X̃, τ)

∫∫
RN

exp(i

N∑
p=1

ωp(Xp − X̃p)) exp(−λn,{ω}(t− τ))d{ω}dτ

)
d{X̃p}p≥1dX̃0

We see ∫∫
RN

exp(i

N∑
p=1

ωp(Xp − X̃p)) exp(−λn,{ω}t)d{ω} =

exp(−µnt+

N∑
p=0

Θpp

2
t)

N∏
p=1

√
πγp
t

exp
(
− (Xp − X̃p)

2γp
4t

)
We can conclude

q(X, t) =

∫ L

−L

∫∫
RN

(
q(X̃, 0)G̃(X, t, X̃, 0) +

∫ t

0

Ṽ (X̃, τ)G̃(X, t, X̃, τ)dτ)

)
d{X̃p}p≥1dX̃0

Here G̃ is the Green’s function for q, given by

G̃(X, t, X̃, 0) =
( 1

4πt

)N/2( N∏
p=1

√
γp

)( ∞∑
n=1

Bn(X0)Bn(X̃0)

〈Bn, Bn〉
exp(−µnt)

)

exp
(
−

N∑
p=1

(Xp − X̃p)
2γp

4t
+

N∑
p=0

Θpp

2
t
) (5.3)

Moreover, G̃(X, t, X̃, τ) = G(X, t− τ, X̃, 0). Note that G̃ is symmetric under exchange of X and X̃.
Looking back at the p domain, we easily see

p(X, t) =

∫ L

−L

∫∫
RN

(
p(X̃, 0)G(X, t, X̃, 0) +

∫ t

0

V (X̃, τ)G(X, t, X̃, τ)dτ)
)
d{X̃p}p≥1dX̃0

Now G is given by G = exp(XTHX − X̃THX̃)G̃. Note that the Green’s function is no longer
symmetric under exchange of X̃ an X.

5.5 Large mode displacement

A similar approximation as in the previous section could be made for large modes, where terms featuring
X0 are neglected from (ΘX)2

p. This still leaves mixed terms XiXj where i, j ≥ 1, and leads to particularly
advanced linear algebra. Once it became clear that this approximation does not lead to an easy solution,
this approximation was not further explored. Moreover, the case where the particle hardly moves, while
the modes displace vigorously is not a scenario of interest.



Chapter 6

Extension to multiple compartments

For this section, we will assume that the Green’s function for homogeneous Dirichlet, or absorbing,
boundary conditions is given.

To truly understand the diffusion properties of the particle, we need to find its behaviour across
multiple compartments, rather than within a compartment. While for multiple compartments, the par-
tial differential equations do not satisfy absorbing boundary conditions, the Green’s function for these
boundary conditions can help us determine the solution to the partial differential equations.

6.1 Boundary conditions for multiple compartments

We will consider a finite linear sequence of adjacent compartments. We need boundary conditions for
the places where the compartments are joined, and for the boundaries of the outer compartments. From
the study of thermodynamics and diffusion, we know that fluxes, in general, are continuous, as otherwise
accumulation at a point of discontinuity will appear. In this case, we similarly require continuity of
probability flux. Thus if i denotes the compartment number, we have for any i:

−∂pi(X0, t)

∂X0
(L, t)− Lpi(L, t)−

N∑
l=1

Θ0l

∫
Xlpi(L, . . . , t)d({Xj}j≥1)

=
∂pi+1(X0, t)

∂X0
(−L, t)− Lpi+1(−L, t) +

N∑
l=1

Θ0l

∫
Xlpi+1(−L, . . . , t)d({Xj}j≥1)

In thermodynamics and diffusion, we also see that the conserved property (heat energy and concentration
respectively) is required to be continuous across the boundaries, as Fourier’s law and Fick’s law are only
valid for a continuous conserved property. Since the probability flux as described in the previous section
also has a term reminiscent of Fourier’s and Fick’s law, we will also require a continuous probability
density. Thus:

pi(L, t) = pi+1(−L, t)

For each strand of polymer in between compartments, we then have two boundary conditions. Since these
conditions are applied to two differential equations, one for each compartment, we have one condition
per boundary per compartment. If we also impose a condition at each of the two outermost edges of the
entire stretch of compartments, we have two boundary conditions per compartment. This is exactly the
number of conditions needed for the uniqueness and existence of a solution.

What is left is now to determine boundary conditions at the outer edges. Since we expect the
number of compartments chosen such that the probability density is low in the last compartment, it
sounds reasonable to impose homogeneous boundary conditions at the outermost edges. Any type of
homogeneous boundary conditions will do, but since the Green’s function satisfies absorbing boundary
conditions, we will impose these absorbing, homogeneous Dirichlet conditions at the outermost boundaries
for simplicity.
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6.2 Ansatz

We will write our solution p as the sum of a function ph that satisfies the absorbing boundary conditions,
and a function pb that does not satisfy the original boundary conditions, and serves to make p satisfy the
new set of boundary conditions. We will derive ph for a given pb, and then investigate how pb as to be
chosen.

The Fokker-Planck equation can be written as ∂p
∂t = L(p) for a linear operator L. This L is not

concerned with the compartment size. In general we find

∂ph
∂t

= L(ph) + L(pb)−
∂pb
∂t

So ph satisfies the equation with an additional source term V = L(ph)− ∂pb
∂t . Using the Green’s function

from equation 5.3 and G = G̃ exp(XTHX − X̃THX̃), we write

ph =

∫
p0(X̃)G(X, t, X̃, 0)dX̃ +

∫ t

0

∫ (
L(pb(τ))− ∂pb

∂t
(τ)
)
G(X, t− τ, X̃)dX̃dτ

We have two boundary conditions, so we will need two distinct time-dependent components, in order to
control the behaviour at the boundaries. We will therefore propose

pb = A(t)a+B(t)b

Here A(0) = B(0) = 0. We will now try to obtain ordinary differential equations for A and B by
demanding that the boundary conditions previously described are satisfied. We then see

p(X, t) = A(t)a+B(t)b+

∫
p0(X̃)G(X, t, X̃, 0)dX̃ +

∫ t

0

∫ (
A(τ)L

(
a(X̃)

)
+B(τ)L(b(X̃))

−∂A
∂t

(τ)a(X̃)− ∂B

∂t
(τ)b(X̃)

)
G(X, t− τ, X̃)dX̃dτ

We can retrieve the marginal probability density by integrating over all modes This yields

p(X0, t) = A(t)

∫
a d({Xj}j≥1) +B(t)

∫
b d({Xj}j≥1)+∫

p0(X̃)
(∫

G(X, t, X̃, 0)d({Xj}j≥1)
)
dX̃ +

∫ t

0

∫ (
A(τ)L

(
a(X̃)

)
+B(τ)L

(
b(X̃)

)
−∂A
∂t

(τ)a(X̃)− ∂B

∂t
(τ)b(X̃)

)(∫
G(X, t− τ, X̃)d({Xj}j≥1)

)
dX̃dτ

Due to the homogeneous Dirichlet boundary conditions of the Green’s function, we find:

p(L, t) = A(t)

∫
a(L, {Xj}j≥1)d({Xj}j≥1) +B(t)

∫
b(L, {Xj}j≥1)d({Xj}j≥1)

Through a similar argument we find

N∑
l=1

Θ0l

∫
Xlp(L, . . . , t)d({Xj}j≥1) = A(t)

N∑
l=1

Θ0l

∫
Xla(L, . . . )d({Xj}j≥1)+

B(t)

N∑
l=1

Θ0l

∫
Xlb(L, . . . )d({Xj}j≥1)

We can also differentiate the equation for p(X0, t) to find

∂p(X0, t)

∂X0
= A(t)

∫
∂a

∂X0
d({Xj}j≥1) +B(t)

∫
∂b

∂X0
d({Xj}j≥1)+∫

p0(X̃)

∫
∂

∂X0
G(X, t, X̃, 0)d({Xj}j≥1)dX̃ +

∫ t

0

∫
(A(τ)L(a(X̃)) +B(τ)L(b(X̃))−

∂A

∂t
(τ)a(X̃)− ∂B

∂t
(τ)b(X̃))

∫
∂

∂X0
G(X, t− τ, X̃, 0)d({Xj}j≥1)dX̃dτ
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6.3 Adjacent compartments

We can decompose the last equation in terms such as
∫ t

0
A(τ)( ∂

∂X0

∫ ∫
L(a(X̃))G(X, t−τ, X̃, 0)d({Xj}j≥1)dX̃)dτ .

Note that this is a convolution of A with the function ( ∂
∂X0

∫ ∫
L(a(X̃))G(X, t, X̃, 0)d({Xj}j≥1)dX̃).

There are three terms that that determine the probability density or probability density flux at the
boundaries, these are the marginal probability density, the place derivative thereof, and the term related
to expected displacement. In all three of these terms, only products of one of the functions A and B
with time independent functions, and time convolutions of the functions A and B appear. We see that
we will presumably not derive differential equations for A and B, but convolution equations. This is an
important drawback of this method. To study these equations, we will study the Laplace transforms of
the equations instead, since these convolutions then turn into multiplications. We define

F (X0, X̃, s) = L{
∫

∂

∂X0
G(X, t, X̃, 0)d({Xj}j≥1)}

The transform of the probability flux can be derived from the last equations and the convolution
property of the Laplace transform, and is given by

L{ΦR(p)} = −L{A}

(∫
∂a

∂X0
(X0, . . . )d({Xj}j≥1) +

∫
L(a(X̃))F (L, X̃, s)dX̃

−s
∫
a(X̃)F (L, X̃, s)dX̃ + L

∫
a(L, . . . )d({Xj}j≥1) +

N∑
l=1

Θ0l

∫
Xla(L, . . . )d({Xj}j≥1)

)

−L{B}

(∫
∂b

∂X0
(L, . . . )d({Xj}j≥1) +

∫
L(b(X̃))F (L, X̃, s)dX̃

−s
∫
b(X̃)F (L, X̃, s)dX̃ + L

∫
b(L, . . . )d({Xj}j≥1) +

N∑
l=1

Θ0l

∫
Xlb(L, . . . )d({Xj}j≥1)

)

−
∫
p0(X̃)F (L, X̃, s)dX̃

Here ΦR is the flux through the right side. A similar expression is found for the flux through the left-
hand side. The Laplace transform for the probability at a boundary trivially follows from the equation
for p(L, t), and is given by:

L{p(L, t)} = L{A(t)}
∫
a(L, {Xj}j≥1)d({Xj}j≥1) + L{B(t)}

∫
b(aL, {Xj}j≥1)d({Xj}j≥1)

A similar expression can be obtained for the left-hand boundary It is important to note that both the
probability flux and the probability at the boundary are linear functions of the Laplace transforms of A
and B. From the continuity of probability flux and probability, we thus find two linear equations relating
the Laplace transforms of A and B for two adjacent compartments. When the Laplace transforms of Ai
and Bi are given, it is easy to compute the transforms of those functions for the next compartment.

6.4 Obtaining Laplace transforms

We now have linear equations of the Laplace transforms of the governing functions. We can say that:(
Ai+1(s)
Bi+1(s)

)
= T (s)

(
Ai(s)
Bi(s)

)
For a certain s dependent matrix T and compartments for which p0 = 0. Typically, this will be the
case for all compartments but one, since we expect to know the initial position exactly. We will assume
that the compartment indices run from −J to J . From the boundary conditions at the outer edges of
our system, we can express L{B} in terms of L{A} for the outermost edges, and so we can express
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(AJ(s), BJ(s))T in terms AJ(s). By applying T (s)1−J to this vector we get L{A1} and L{B1} as a
function of L{AJ}. We can in a similar manner determine the transforms of the governing functions in
the compartment −1 of L{A−J}. The boundary conditions in the central compartment then give us four
linear equations, allowing us to solve for the transforms AJ , A−J , A0 and B0. Since all other transforms
of A’s and B’s are expressed in the transform of AJ or A−J , we can in this way solve for the transforms
of all A’s and B’s.

6.5 Inverse Laplace Transforms

The question of inverting the Laplace depends largely on the Green’s functions and whether these func-
tions yield a T that is easily raised to a power. Eigenfunction based Green’s functions form rational
polynomials in s, that are conserved under matrix manipulation. These rational polynomials can be
inversely transformed. This procedure is described in section 8.3.



Chapter 7

Changing boundary conditions

The main reason why we have not yet found a Green’s function for our non-approximated one compart-
ment problem is that we could not diagonalise Θ, since we cannot choose the boundary conditions for
the diagonalised variables such that the solution satisfies the original boundary condition. In the last
section, however, we have encountered a procedure that makes a solution satisfy certain boundary con-
ditions, by using a Green’s function for other boundary conditions. We will try to apply this procedure
by diagonalising Θ and solving the problem for boundary conditions at infinity, instead of the absorbing
boundary conditions at X0 = L and X0 = −L. We will first look at one compartment, before diverting
our attention to multiple compartments.

7.1 Method

It is easy to derive eigenfunctions for the problem when we assume the same boundary conditions for
the modes and the position, as the problem can be diagonalised Suppose we have eigenfunctions fn with
corresponding eigenvalues λn.

We can again write our solution p as the sum of a function ph that satisfies the original boundary
conditions, and a function pb that does not satisfy the original boundary conditions and serves to make
p satisfy the new boundary conditions.

In general we find
∂ph
∂t

= L(ph) + L(pb)−
∂pb
∂t

So ph satisfies the equation with an additional source term V = L(ph)− ∂pb
∂t . Then we know

p = ph + pb = pb +

∞∑
n=1

fne
−λnt

〈f2
n〉

(
〈p0fn〉+

∫ t

0

eλnτ 〈
(
L(pb(τ))− ∂pb

∂t

)
Bn〉dτ

)
In order to make p satisfy the new boundary conditions, we have to control pb. Since we will deal

with two boundaries, we need two distinct time-dependent components in pb. We will therefore propose

pb = A(t)a+B(t)b

Here A(0) = B(0) = 0. Then
p = A(t)a+B(t)b+

∞∑
n=1

fne
−λnt

〈f2
n〉

(
〈p0fn〉+

∫ t

0

eλnτ
(
A(τ)〈L(a)fn〉+B(τ)〈L(b)fn〉 −

∂A

∂τ
〈afn〉 −

∂B

∂τ
〈bfn〉

)
dτ

)
It is important to note that terms like 〈L(a)fn〉 and 〈bfn〉 are constants, only depending on n.

Looking at boundary conditions, we see that these boundary conditions typically are linear functions
M of p. We will therefore study what happens when a linear function is applied to p. We again use the
Laplace transform since we are dealing with convolutions.

Then
L{M(p)} = L{A}M(a) + L{B}M(b)+

29
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∞∑
n=1

M(fn)

〈f2
n〉(s+ λn)

(〈p0fn〉+ 〈L(a)fn〉L{A}+ 〈L(b)fn〉L{B} − 〈afn〉sL{A} − 〈bfn〉sL{B}) =

L{A}
(
M(a) +

∞∑
n=1

(〈L(a)fn〉 − s〈afn〉)M(fn)

〈f2
n〉(s+ λn)

)
+ L{B}

(
M(b) +

∞∑
n=1

(〈L(b)fn〉 − s〈bfn〉)M(fn)

〈f2
n〉(s+ λn)

)
+

∞∑
n=1

〈p0fn〉M(fn)

〈f2
n〉(s+ λn)

If we consider the case of absorbing boundary conditions, we seeM(p) =
( ∫

p(L,X1, . . . , XN )d{Xj}j≥1,
∫
p(−L,X1, . . . , XN )d{Xj}j≥1

)T
.

Then we have

0 = L{A}
(
a(L)+

∞∑
n=1

(〈L(a)fn〉 − s〈afn〉)fn(L)

〈f2
n〉(s+ λn)

)
+L{B}

(
b(L)+

∞∑
n=1

(〈L(b)fn〉 − s〈bfn〉)fn(L)

〈f2
n〉(s+ λn)

)
(7.1)

+

∞∑
n=1

〈p0fn〉fn(L)

〈f2
n〉(s+ λn)

Of course we have the same equation for−L. Here we have used p(L) to denote
∫
p(L,X1, . . . , XN )d{Xj}j≥1.

The same notation is used for other functions, such as a and fn
We can see that our solution will be a function of rational polynomials is s, only involving the four

elementary operators. The solution will, therefore, be a rational polynomial itself. This polynomial can
be simplified to a sum of terms (s+ ci)

−1 and a constant, and so the functions A and B can be recovered
from the transform. This analytical process can be executed computationally, so a large number of
eigenfunctions can be considered.

We can now direct our attention to the boundary conditions for multiple cells. These boundary con-
ditions are continuous probability flux and probability at the boundaries. We will denote the probability
densities as well as the functions A and B with the subscript i to denote the number of the compartment.

L{Ai}
(
a(L) +

∞∑
n=1

(〈L(a)fn〉 − s〈afn〉)fn(L)

〈f2
n〉(s+ λn)

)
+

L{Bi}
(
b(L) +

∞∑
n=1

(〈L(b)fn〉 − s〈bfn〉)fn(L)

〈f2
n〉(s+ λn)

)
+

∞∑
n=1

〈p0
i fn〉fn(L)

〈f2
n〉(s+ λn)

= L{Ai+1}
(
a(−L) +

∞∑
n=1

(〈L(a)fn〉 − s〈afn〉)fn(−L)

〈f2
n〉(s+ λn)

)
+

L{Bi+1}
(
b(−L) +

∞∑
n=1

(〈L(b)fn〉 − s〈bfn〉)fn(−L)

〈f2
n〉(s+ λn)

)
+

∞∑
n=1

〈p0
i+1fn〉fn(−L)

〈f2
n〉(s+ λn)

From continuous probability flux, we see as similar expression

L{Ai}
(

ΦR(a) +

∞∑
n=1

(〈L(a)fn〉 − s〈afn〉)ΦR(fn)

〈f2
n〉(s+ λn)

)
+

L{Bi}
(

ΦR(b) +

∞∑
n=1

(〈L(b)fn〉 − s〈bfn〉)ΦR(fn)

〈f2
n〉(s+ λn)

)
+

∞∑
n=1

〈p0
i fn〉ΦR(fn)

〈f2
n〉(s+ λn)

= −L{Ai+1}
(

ΦL(a) +

∞∑
n=1

(〈L(a)fn〉 − s〈afn〉)ΦL(fn)

〈f2
n〉(s+ λn)

)
−

L{Bi+1}
(

ΦL(b) +

∞∑
n=1

(〈L(b)fn〉 − s〈bfn〉)ΦL(fn)

〈f2
n〉(s+ λn)

)
−
∞∑
n=1

〈p0
i+1fn〉ΦL(fn)

〈f2
n〉(s+ λn)
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When the Laplace transforms of Ai and Bi are given, it is easy to compute the transforms of those
functions for the next compartment. This expression can then again, for a finite number of eigenfunctions,
be analytically evaluated by a computer.

The method described in section 6.4 can be applied to determine the Laplace transform. The terms
in the matrix T are rational polynomials, and so any calculation done involves an elementary operation
performed on rational polynomials. When no zeros or poles are shared by two rational polynomials, any
elementary operation will double the order of polynomials in the denominator and numerator. If we thus
consider a moderate number of eigenfunctions, and therefore a moderate polynomial order in T , we will
still obtain rational polynomials of very large orders for L{A} and L{B}, if we consider a number of
compartments.

Seeing that L{A} and L{B} have to be rational polynomials, another possible method arises.
We know the basic form of L{A−M}, a rational polynomial. We can therefore assume a certain

function L{A−M}, from which we calculate L{B−M}. We can then iteratively calculate all the transforms
of the A’s and B’s one step at the time until we reach compartment M . The boundary condition at this
compartment can then be evaluated. Repeating this process for different guesses of L{A−M} in our
leftmost compartment, we can find a L{A−M} that will make this system suffice the rightmost boundary
condition. We can then derive all original functions A and B from the transforms, and in this way also
the probability density in the entire system. Since the degrees of the polynomials in L{A−M} can be
large, it might take numerous guesses until a satisfying L{A−M} is found. The method used to retrieve
the time-functions from the Laplace transforms is described in the next chapter.

7.2 Applications

The first way in which we can apply this method is, of course, to the equations dealt with in this thesis.
This will be done in the next chapter. This section was however brought to be as general as possible,
and we will try to describe some possible applications of this method.

This method can use the solution of a differential equation with certain boundary conditions to derive
a solution satisfying different boundary conditions. In the method described above, we made use of
two controlling functions, A and B, since we were dealing with a boundary condition at two points in
space. This method can, of course, be extended to any finite number of boundary conditions and the
same number of controlling functions. The method as described here will not work as easily when the
boundary consists of an infinite number of points, such as when that boundary is a line or a plane. In that
case functions like A will also have to depend on variables parametrising the boundary, rather than only
on time. This will make matters much more complicated. In almost any multi-dimensional problem, we
have infinite boundaries, so this method will most likely work solely for one-dimensional problems. For
these problems, however, eigenfunctions can be calculated by direct integration, and not all the hassle of
the method described above is necessary.

The method is therefore not as generally applicable as hoped. The question arises as to why it
was effective in this situation. The main reason is that the equation is multidimensional, but that the
boundary conditions are reduced to one dimension. The conditions do not depend on a specific value,
but on the integral over N dimensions of the functions. This means that information is lost in these
boundary conditions. Furthermore, the boundary condition includes an exotic term, which concerns
expectation values of the mode displacement. This non-standard term calls for non-standard measures.
This method would, therefore, be effective in other situations where the boundary conditions are not of
the same dimension as the problem. So far, no such situation has been found. This does not exclude the
possibility of these instances.
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Chapter 8

Application of changing boundary
conditions

We will now try to apply the general method described in the previous section to our problem.

8.1 Eigenfunctions

We will first derive the eigenfunctions fn, as described in the previous section. The following equation

N∑
p=0

(
ΘppP (X) +

N∑
i=0

ΘpiXi
∂

∂Xp
P (X) +

1

γp

∂2

∂X2
p

P (X)

)
+ λP (X) = 0 (8.1)

The eigenfunctions satisfy physical boundary conditions, that is zero at infinity. From equation 2.2, the
Langevin equation, we can see that a diagonal Θ gives N + 1 independent equations, which simplifies
the equation. We will try apply this diagonalisation to the Fokker-Planck equation, hoping that this will
allow for separation of variables. In order to orthogonally diagonalise Θ, the matrix has to be symmetric.
This means that we require γp = 1. The particle and the beads thus deal with the same dampening
constant. For the following section, we will assume that this is true. Suppose we have an orthogonal
diagonalisation

Θ = MΛM−1 (8.2)

Assume that Bn,p satisfies the eigenfunction equation

B′′n,j(x) + djxB
′
n,j(x) + λn,jBn,j = 0 (8.3)

We will substitute P =
∏N
j=0Bnj ,j((M

−1X)j) in the eigenfunction equation for p, which is given by:

If we first divide equation 8.1 by P , and then make the substitution, we find as described in Appendix
C:

N∑
j=0

1− Λjj

dj

Bnj ,j

(
(M−1X)j

) ∂2Bnj ,j

∂x2

(
(M−1X)j

)
+ λ−

N∑
j=0

Λjj
dj

λnj ,j +

N∑
p=0

Θpp = 0

This means that if we choose dj = Λjj , this P is an eigenfunction with eigenvalue λ =
∑N
j=0(λnj ,j−Θjj).

If we now have a bijection l → N → NN+1, we can easily find eigenfunctions Bn with eigenvalues λn.
Writing l(n) = (l1(n), . . . lN (n))T , we have Bn =

∏N
j=0Blj(n),j((M

−1X)j) as eigenfunctions. We know

that the transformed variables (M−1X)j are linearly independent. Since we have N+1 of these variables
and N + 1 dimensions, we see that the variables (M−1X)j span RN+1. If the functions Bn,j form a
complete set on C(R) for each j, we can therefore conclude that the eigenfunctions Bn form a complete
set on C(RN+1).

We will now try to find these functions Bn,j . For moderate coupling, the eigenvalues of Θ will be
determined mostly by the harmonic terms along the diagonal. Since these are all positive, we expect
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the eigenvalues Λjj to be positive for moderate coupling. If we then apply the substitution Bn,j(x) =
exp(−a2x

2)Dn,j(x) to equation 8.3, we find

D′′n,j(x) + (Λjj − 2a)xD′n,j(x) + a(a− Λjj)x
2Dn,j(x) + (λ− a)Dn,j(x) = 0

Here the substitution dj = Λjj has already been made. If we wish to remove the term featuring x2, we
can either choose a = 0, or a = Λjj . Since a = 0 does not change the equation at all, we choose a = Λjj
and find:

D′′n,j(x)− ΛjjxD
′
n,j(x) + (λ− Λjj)Dn,j(x) = 0 (8.4)

We see that this equation is similar to the Hermite equation[1], with the difference that this equation
features Λjjx instead of 2x, like the Hermite equation. To rewrite this equation to the required form, we
substitute Dn,j(x) = D̄n,j(cx) and find

D̄′′n,j(x)− Λjj
c2

xD̄′n,j(x) +
λ− Λjj
c2

D̄n,j(x) = 0

Then
Λjj

c2 = 2 gives c =
√

Λjj/2 as possible solution. Furtermore, the equation is then solved by

D̄n,j = Hn(x), with
λ−Λjj

c2 = 2n. Hn here is the n’th physicist’s Hermite equation. Equation 8.3

is then solved by Bn,j(x) = exp(−Λjj

2 x2)Hn(x
√

Λjj/2) with eigenvalues λn = Λjj(n + 1). Note that
lim

x→±∞
Bn,j(x) = 0 as required. Furthermore, the Hermite polynomials form a complete set on C(R).

As a result the functions Bn,j are complete set on C(R) and thus the functions satisfying the ansatz

P =
∏N
j=0Bnj ,j((M

−1X)j) form a complete set on C(RN+1) as explained above. We conclude that the
solutions of equation 4.1 with physical boundary conditions at infinity are given by

p(X, t) =

∞∑
n=1

cn

( N∏
j=0

exp(−Λjj
2
x2)Hlj(n)

(
(M−1X)j

√
Λjj/2

))
exp(−

N∑
j=0

λlj(n)t)

8.2 Implications of negative eigenvalues

In the derivation of the eigenfunctions of equation 4.1, it was assumed that Θ only has positive eigenvalues.
While this assumption is not a strange assumption, it is worthwile to investigate the case of a negative
eigenvalue of Θ. Equation 8.3 for a negative value of dj = Λjj , is similar to equation 8.4 and can in
a similar manner be shown to yield Hermite polynomials as result. All Hermite polynomials but the
first, divert to plus or minus infinity for infinite |x|. Moreover the time evolution of this eigenfunction is
exp(−Λjjt) = exp(|Λjj |t).

This means that the probability density becomes larger for values far from the origin and increases
in time for this eigenfunction. This would imply that if there is a negative eigenvalue Λjj such that
(M−1)j0 6= 0, we would see that with increasing time, the probability density becomes small at the
initial position while it would become increasingly large for positions further from the origin. This can
be interpreted as a particle that does not diffuse in a random manner but is actively steered to the sides.

In the previous section it was argued that negative values would not occur for situations with small
coupling. The described behaviour of a particle being pushed to the sides is therefore only possible for
situations with larger coupling. This is all in line with the predictions made in section 3.3, which said
that for large coupling, particles are super-ballistically pushed to either the right or the left side.

In section 3.3, it was also argued that this behaviour is not in line with the expected physical behaviour
and that this model can only be applied to situations where the coupling is not too large compared to
the harmonic forces. We can now specify this criterion of being too large, by demanding that Θ has no
negative eigenvalues. In all simulations presented in this thesis, s1 was kept low enough to ensure that
this criterion was met, except when explicitly stated. The demand of only positive eigenvalues is a major
restriction on the model presented in this thesis.

8.3 Computation of controlling functions

This section will present how the method in the previous section is implemented. A Matlab script was
used for the evaluation of certain integrals, and to perform algebraic operations on rational polynomials.
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This script is included in Appendix E. These operations are done through analytical means, rather than
by simulations of any kind. We have first applied the method to obtain a solution to the equation with
absorbing boundary conditions, limiting ourselves to one compartment. For the sake of easy programming,
only one mode was considered at first. Furthermore, a(X) = X0 exp(−K1X

2
1 ) and b(X) = exp(−K1X

2
1 )

were chosen as they are the most elementary functions in X0, multiplied by the factor exp(−K1X
2
1 ) which

ensures that this function is integrable along the X1 direction.
Equation 7.1 linearly relates L{A}, L{B} and the initial condition, in order to satisfy zero probability

at L. A similar relation can be obtained for −L. This yields the matrix equation(
Π11(s) Π12(s)
Π21(s) Π22(s)

)(
L{A}(s)
L{B}(s)

)
=

(
e(s)
f(s)

)
Here Πij , e and f are all given by c0 +

∑∞
n=1

cn
s+λn

for different sets of coefficients {cn}. Only a
finite number eigenvalues were considered, which means that all terms in the matrix equation can be
written as a rational polynomial. It was chosen to use just 5 eigenfunctions at first. Since the inverse of a
2-dimensional matrix can be directly calculated with basic elementary operations, Π can be inverted with
s as a parameter. The elements of Π−1 are then again given as rational polynomials. Multiplying Π−1

with (e(s), f(s))T gives L{A}(s) and L{B}(s) as rational polynomials. Any zero-pole pairs resulting from
the fact that all terms in the matrix equation have the same poles were eliminated, and consequently,
the functions A and B were calculated from their Laplace transforms.

In order to do this, it was noted that rational polynomials like L{A} can be written as a sum of
terms dn/(s − pn), where pn are the poles of L{A}. The coefficients dn are related through a matrix
equation. Since L{dn exp(pnt)} = dn/(s − pn), this partial fraction expansion directly yield the time-
functions belonging to the Laplace transforms. While no 2 poles lay especially close to each other, the
matrix turned out to be highly singular, with condition numbers of about 10−19, and three-quarters of the
eigenvalues approximately zero. Changes in parameters did not help this problem, so the high singularity
is definitely not chance. A reason for this high singularity was not found since the poles were not that
close to each other.

If this problem is solved, the last hurdle is taken in solving this model one compartment, and an
attempt can be made at solving the model for multiple compartments. If this is the case, it means
that a solvable model is found. Since no such model is present as of yet, this could be an interesting
development, especially if the accuracy of the model is further explored. For now, the method cannot be
applied.

The intention was to apply this method to solve for multiple compartments after doing this for one
compartment, but since that step proved not possible, the final step of multiple compartments has been
made.
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Chapter 9

Results approximation of
Fokker-Planck equation

In section 5.4, an approximation was described in the case of small Rouse mode displacement. A Green’s
function to the modified equation was also presented. Using this Green’s function, the marginal proba-
bility density in X0 was determined for initial conditions of a Dirac delta function at X0 = 0. No sources
were considered. The total probability density in the compartment, or the chance of the particle being
in the compartment, is displayed in figure 9.1. The parameters used were N = 10, L = 1,K1 = 1, γ = 1
and s1 = 0.1, and 11 eigenfunctions were considered.

Figure 9.1: The probability of the particle being in the initial compartment when initially at the centre,
according to the small mode displacement. N = 10, L = 1, γ = 1 and s1 = 0.1

It is clear that the curve in the figure is not what one would expect, as the probability obtains values
of over 1.5, which is of course not physically possible. The parameter domain is algorithmically searched
for parameters that do not yield probabilities larger than 1, and those parameter combinations have not
been found. For any parameter choice studied, probabilities significantly higher than 1 were found.

In section 5.4 it was found that the approximation adds a term p(X, t)
(∑N

p=0
γp
4

(
(
∑N
j=0 ΘpjXj)

2 −

Θp0X
2
0

))
to ∂p

∂t . This term is always positive and therefore it is not surprising that the probability

becomes larger than it should. It is, of course, a shame that the magnitude of this increase is such that
non-physical results are obtained.

Since this approximation yields results which are clearly not close to the truth, it becomes clear that
true cases of small mode displacement cannot be found. The principal way in which mode displacements
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can be kept small is by increasing the harmonic constants Kp. The problem is that the approximation does

not necessarily hold when the mode displacementXj is small, but when p(X, t)
(∑N

p=0
γp
4

(
(
∑N
j=0 ΘpjXj)

2−

Θp0X
2
0

))
is small. This means that ΘpjXj is small for all values p and j, and that thus KjXj is small.

This term is minus the harmonic force on the mode. The harmonic force competes with thermal noise,
so when the harmonic force stays of constant magnitude, typical values of KjXj will also remain equally
large. Large values of Kj cannot make the mode displacement small, as in reality KjXj has to be made
small.

We can see that a smaller noise term can also decrease typical mode displacement. Small noise can
be obtained by a large value of γ since the noise on the modes scales inversely with γ. We however also

see that p(X, t)
(∑N

p=0
γp
4

(
(
∑N
j=0 ΘpjXj)

2 − Θp0X
2
0

))
scales with γ. This cancels the effect of a lower

mode displacement.
We can conclude that although the approximation made in section 5.4 generate an analytically deriv-

able Green’s function, the conditions for the approximation to hold cannot be satisfied. This further
increase the need for an exact solution as described in section 8.



Chapter 10

Verification of predicitions

In section 3, a few predictions have been made concerning α. In this section, these will be tested using
simulations. These simulations were made using the forward Euler method since it is the simplest method
for these types of simulations. Implicit methods such as backward Euler are not viable options due to the
non-continuous nature of the force a particle experience across the boundaries. The equation that needs to
be solved each time-step can have multiple solutions, as the particle can be in two different compartments
at the end of each time step. Other more complex methods such as the Runge-Kutta method might also
experience such problems, and it was chosen to dedicate time to obtaining analytical solutions, rather
than study the application of methods like Runge-Kutta to this non-continuous and stochastic process. It
is also worth noticing certain methods are advantageous over forward Euler, mostly because they decrease
the number of time-steps needed. Using less time-steps means that fewer evaluations of the stochastic
variable Ξ are made per simulation. These methods thus call for a larger number of simulations, in order
to make an equally accurate result. Every time a variance was computed, 500 realisations were used
since this number found a balance between speed and accuracy. The Matlab script used is included in
Appendix D When a particle crossed a boundary, the mode displacements were set to zero, to express
that it is unknown how mode displacements in different compartments are related. Generally, we have
used Kp = K1p

−α where α = 1 + 2ν and ν is the Flory exponent [3]. We assume a similar structure for
sp.

10.1 Large times

It was predicted that for large times, regular diffusion will take place, implying an α of 1. All simulations
done have verified that for timescales in which most particles have switched compartments a number of
times, the diffusion is indeed linear. Plots of these simulations will not be particularly enlightening to
the reader and are therefore not included.

10.2 Small times, small coupling

When the harmonic force is dominant over the coupling force, it was predicted that initially, regular
diffusion will take place. For infinitely large compartments the variance will reach an equilibrium value.
If L2 is much higher than this equilibrium variance, we expect that for relatively short times, the initial
regular diffusion will change into a constant variance. If L2 is much lower than the equilibrium variance,
the initial regular diffusion is still present when the particles cross the first polymer strand. At this point,
the particle will experience regular diffusion since we are dealing with the large time regime. We will thus
get regular diffusion across the entire time domain. For values of L2 closer to the equilibrium variance,
things can get more interesting. It is not clear what values of L2 form the difference between these two
length scales, only that they will be of the order of magnitude of the equilibrium variance. Simulations
have been made for a range of values of L. Here N = 10, γp = 1, K1 = 1 and s1 = 0.1. s1 has deliberately
been chosen low, to ensure that the coupling is indeed small. These simulations can be found in figure
10.1. The final variance decreases as L increases, and the equilibrium variance is found to approximately
2. The first prediction made, was that for short L regular diffusion would occur, and that no anomalous
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Figure 10.1: Plot of variance for different values of L. The final variance is largest for low values of L.
Sub-diffusion is evident around the equilibrium variance. Here N = 10, K1 = 1, γ = 1 and s1 = 0.1
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behaviour will take place. This is supported by figure 10.1, where we clearly see that for L = 1 regular
diffusion occurs. It is worthwhile to note that the deviation from regular diffusion is smaller for small
values of L2.

Next, it was predicted that a plateau would be reached for large values of L. It is clear that such as
plateau is reached for L = 7 and L = 6. For L = 6, the variance is just leaving the plateau within this
time scale, while for L = 7, the plateau will only be departed for longer times. At first, regular diffusion
occurs, but as the variance approaches the equilibrium variance, diffusion slowly stops and α becomes
0. The values of L2 of 36 and 47 are significantly larger than the equilibrium variance of around 2 as
required.

The last regime the predictions tackled in the section 3.2 was the regime with values of L2 not
significantly larger nor smaller than the equilibrium variance. No concrete predictions could be made for
this regime other than that it would be a mixture of the two regimes.

It is clear that initially, the variances follow the curve of L = 7, the curve with the plateau. Each
curve leave the plateaued curve at some point in time, from where they will continue to diffuse with
α = 1. The larger L, the later this point. The L = 1 curve leaves the plateaued curve as soon as the
L = 7 curve starts to show sub-diffusion, while the L = 6 curve only leaves the plateaued curve after that
plateau has been reached.

Considering that for example L2 for L = 3 is more than four times as large as the equilibrium variance,
and that the deviation from regular diffusion is rather small for that value of L, we can conclude that
rather large compartments are required to experience some form of anomalous diffusion. Furthermore,
for every value of L, sub-diffusion only occurs on a limited time range. For both large and short times,
regular diffusion is always found.

We can conclude the sub-diffusion is possible in this model, but that this is only present for specific
situations, and only happens during the transition from the particles being in the first compartment to
them being in the next.

10.3 Small times, large coupling

In section 3, it was argued that remarkable behaviour will take place when the coupling dominant over
the particle’s harmonic potential. The particle could super-ballistically move towards a polymer strand.
To verify this, simulations have been made with a range of values for s1 and L = 1, K1 = 1 and γ = 1.
A simulation has also been made for an infinite compartment, enabling the study of the development of
α over time.

From figure 10.2, we can see that for large values of s1, the particle ”diffuses” at enormous rates, with
α’s of 4.5 for s1 = 1000. This super-ballistic diffusion stops at a variance of 1, which is equal to L2. This
confirms the prediction from section 3.3 that read that particles would quickly move to either the left or
right-hand polymer, where they would be trapped.

It was predicted that once this variance of L2 was reached, regular diffusion would occur, as particles
now diffuse from polymer strand to polymer strand. This is not visible in figure 10.2, most probably
because this does not happen on the time scale studied. To best visualise the diffusion from a polymer
strand, the particles are now at X0 = L for t = 0, rather than at X0 = 0. In figure 10.3 we can
see that linear diffusion indeed holds for smaller values of s1, but that for s1 = 100, further diffusion
is not found in this time scale. A similar situation occurs as in for small coupling, where the particle
displacement reaches an equilibrium variance. This equilibrium variance happens to be far lower that
the inter-polymer distance, so diffusion does not take place. It is expected that for very large timescales,
diffusion will eventually take place. This is not simulated, due to computational limitations.

In section 8.2, it was claimed that this super-diffusive behaviour takes place for all values of s1 for
which Θ has negative eigenvalues. From the values of s1 plotted in figure 10.2, all values of s1 but s1 = 0.1
yield at least one negative eigenvalue, but super-diffusion is not visible for all these values. When super-
diffusion does occur, it takes time for this effect to start, and it is, therefore, reasonable to assume that by
the time a process with for example s1 = 1 could start this super-diffusion, a variance of L2 has already
been reached. To verify whether even relatively low values of s1 that yield negative eigenvalues cause
super-diffusion or even super-ballistic motion, we will simulate this process for an infinite L. In this way,
there is ample time for super-diffusion to develop. This simulation is visualised in figure 10.4. It is clear
that the even in a log-log plot, the variance shows an exponential curve, reaching α = 22 for s1 = 1.
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Figure 10.2: The variance of the particle position plotted for L = 1, K1 = 1, γ = 1 and various values
of s1. s1 = 1000 has been plotted with a finer time scale, since this was required to obtain accurate
simulations

This means that α increases indefinitely, even for relatively small values of s1 where only one eigenvalue
is negative.

A similar simulation was also made for s1 = 0.1 where all eigenvalues were positive, and it turned out
that even on large timescales, super-diffusion did not occur, as visible in figure 10.5. In this figure, it is
clear that variance increases linearly with time until an equilibrium variance is reached. We can conclude
that the condition of no negative eigenvalues is a sharp rule rather than an order of magnitude guess.
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Figure 10.3: Plot of the variance of the particle position for L = 1, γ = 1, K1 = 1 and a range of values
s1

Figure 10.4: Plot of the variance of the particle position for an infinite compartment, with L = 1, γ = 1,
K1 = 1 and s1 = 1. Super-diffusion is clearly visible
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Figure 10.5: Plot of variance of particle position for an infinite compartment, with L = 1, γ = 1, K1 = 1
and s1 = 0.1. It is clear that the variance reaches a plateau



Chapter 11

Effects of polymer concentration

The previous chapter dealt mostly with α, and while the power of diffusion is more interesting that the
diffusion speed D, we will still quickly study this variable. In enviroments with high concentration of
polymers, D is seen to behave as D ∝ exp(−vc) [8]. Here v is some constant, and c is the percentual con-
centration of polymers. We would thus expect that in this model D ∝ exp(−v′L̄−1) or D ∝ exp(−v′L̄−3).
We will test our model with this empirical paper, by simulating this experiment.

We would like to choose parameters by which we vary L̄ and keep all other factors constant. Since
we want the maximum potential values to be constants for varying L̄, we see that K̄0 ∝ L̄−2 and that
S̄1 ∝ L̄−1. The dimensionless variables L and γ remain constant under this varying concentration, while
K1 ∝ L̄2 and S1 ∝ L̄. Simulations were carried out over a range of values of L̄. The parameters were
chosen such, that for L̄ = 1, we have L = 1, γ = 1, K1 = 1 and s1 = 0.1. The other parameters scale
as described above. The specific values of L̄ are irrelevant, only the dimensionless quantities assigned to
those values of L̄. A linear timescale was used with a maximum time of 5 and 10000 time steps. This
lead to figure 11.1. If this model complies with the experimental results, we should see a straight line
with a downward slope, since the vertical axis has a logarithmic scale.

Figure 11.1: Diffusion coefficient for a range of compartment lengths, with a linear scale for the horizontal
axis and a logarithmic scale for the vertical axis. Here L = 1, γ = 1, K1 = 1 and s1 = 0.1 for L̄ = 1,

It is clear that on this variable range, no clear relation between the coefficients can be observed. It is
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unclear whether the x-axis should display L̄−1 or L̄−3, however we can see that changing the x-axis will
not create a logical result. It is therefore natural to conclude that this model does not satisfy the same
relation as is observed in practice. It is, however, noteworthy that based on the experimental study, we
expect a clear relation for concentrations in the order of 50%, while the difference between a concentration
of 0.1% and 0.2% will not be as clear. Not observing a clear relation could therefore also hint at not
finding the right range of values of L̄. The range displayed is not the only range tested, and no relation
was found for any range.



Chapter 12

Conclusion

The goal of this thesis was to describe a model, test it for accuracy and solve the model.

Right after the model was presented, predictions have been made about the expected behaviour of
the model. It was found that the model can describe anomalous diffusion on a relatively short time
scale, the scale where particles are just crossing the first polymer. Anomalous diffusion on a longer time
scale was clearly not a possible result, which means that the model cannot explain anomalous diffusion
over lengths of more than the polymer separation. Furthermore, it was found that for certain parameter
regimes, super-ballistic motion was possible. Since super-ballistic motion is obviously not something a
diffusing particle would likely experience, it became clear that the relevant parameter regime is not a
regime that can be taken seriously for this model. Later a criterion was developed to test whether a
certain parameter combination can be applied to this model. This unexpected behaviour is a reason to
become weary of the model.

Later, the Fokker-Planck equation of this model was studied and certain approximations were explored.
One approximation was the small-mode displacement approximation, which proved solvable, and so a
Green’s function was obtained. It became however clear that for every parameter choice, probability was
not conserved, and that the total probability increased with time. Closer study of the made approximation
showed that the conditions for the approximations cannot be satisfied by any parameter choice.

Next, the problem of multiple compartments was studied, and it was reasoned that the model requires
continuous probability flux and continuous probability across the boundaries of the compartments. In
order to impose these boundary conditions on the equations, the probability density was written as the
sum of a function that satisfied homogeneous Dirichlet boundary conditions, and two other functions that
could be controlled in order to make sure that the sum of these three functions satisfied the appropriate
boundary conditions. The impact of the controlling functions was described as a source term, enabling
the use of the Green’s function for homogeneous Dirichlet boundary conditions. The controlling functions
necessary to make the probability density satisfy the right boundary conditions were found to satisfy a
certain convolution equation. From this equation, the Laplace transforms and eventually the controlling
functions could be retrieved. This method could not easily be tested since no Green’s function satisfying
the right boundary conditions was available.

The method of adding functions to a function with certain boundary conditions to change those
boundary conditions was then made more generally applicable and was able to derive an analytic solution
to the Fokker-Planck equation with homogeneous boundary conditions. This solution would be a solution
to the original, non-approximated equation. It was also shown how the method could be applied to the
problem of a long stretch of compartments. When applying this method, far along in the process of
applying the method, a highly singular matrix had to be inverted in order to invert a Laplace transform,
thus disabling the possibility of an accurate result. The cause of this high singularity is not found and is
a problem worth further study, since solving that problem would mean a solution to the set of equations.

The main objective of this thesis was to describe, test and solve a model. The model made is for the
largest part intuitive, while the coupling between polymers and the particle was no more than a guess.
The coupling proved to lead to strange effects such as super-ballistic diffusion for certain parameter
regimes. Although this behaviour was not present for most parameter choices, the presence of these
anomalies is a good argument against the accuracy of this model. The model proved not even easy to
solve since it features an array of partial differential equations, which are not easily solved on themselves.
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Connecting different partial differential equations also created difficulties. Despite these difficulties, a
method of solving the problem was obtained, which experienced certain practical difficulties. Should
these issues be resolved, we have a model that somewhat describes the problem, otherwise, we are stuck
with an unsolvable model with some undesired properties.



Appendix A

Marginal probability density

We will repeatedly integrate the differential equation for p to determine the time derivative of the marginal
probability density of p.

Define In as p integrated over all modes N + 1− n ≤ p ≤ N . Note that I0 = p. Assume
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This is the initial assumption evaluated in k + 1. Since this assumption for k = 0 is equivalent to the
main differential equation, it follows from mathematical induction that this assumption is valid for all k.
Note that IN is the marginal probability distribution p(X0, t)of p(X, t) in X0 and that
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Appendix B

Analogous representation

In order to make sure that separation of variables can be used for P , we evaluate p(X) = q(X)exp(XTHX),
for some (N + 1)× (N + 1) matrix H. We then find
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Appendix C

Substitution of P

Making the substitution as described in section 8, we find
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Taking a look at the next term, using the fact that M is orthogonal and that thus M−1 = MT , and
that γp = 1, we see:
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The term involving the sum over l 6= j therefore completely drops out of the equation. The final equation
thus gives:
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Appendix D

Simulation Script

The following script was used to simulate the Langevin equation

1 f unc t i on [ Var , t ]=sim ( vars ) ;
2 N=10;
3 nu=0.588;
4 alpha=1+2∗nu ;
5 gammabar=1;
6

7 Lbar=vars (1 ) ;
8 Gamma Pbar=vars (2 ) ;
9 k 1bar=vars (3 ) ;

10 s 1bar=vars (4 ) ;
11

12 Xi amp=[2/gammabar ;2/Gamma Pbar∗ ones (N, 1 ) ] ;
13 K pbar=k 1bar ∗ ( 1 :N) .ˆ(− alpha ) ;
14 S pbar=s 1bar ∗ ( 1 :N) .ˆ(− alpha ) ;
15 Theta=diag ( [ 1 K pbar ] ) ;
16 Theta ( 1 , 2 : end )=S pbar ;
17 Theta ( 2 : end , 1 )=S pbar /Gamma Pbar ;
18

19 Xbelow0 =[1;
20 z e r o s (N, 1 ) ] ; gammas=[gammabar ones (1 ,N) ∗Gamma Pbar ] ;
21

22 %i n t e g r a t i o n parameters
23 t 0 =0;
24 Y 0=Xbelow0 ;
25 t end =1;
26 nt =1000;
27 r e a l i z a t i o n s =500;
28

29 dt=(t end−t 0 ) /( nt−1) ;
30 Y=ze ro s (N+1,nt ) ;
31 Y( : , 1 )=Y 0 ;
32 X=ze ro s ( nt , r e a l i z a t i o n s ,N+1) ;
33 Nce l l=ze ro s ( r e a l i z a t i o n s , nt ) ;
34 n c e l l=ze ro s (1 , nt ) ;
35 t=l i n s p a c e ( t 0 , t end , nt ) ;
36

37 %i n t e g r a t i o n
38 f o r n=1: r e a l i z a t i o n s ;
39 f o r i =2: nt ;
40 Y( : , i )=Y( : , i −1)+(−Theta∗Y( : , i −1)∗dt+s q r t ( dt ) ∗Xi amp .∗ randn (N+1 ,1) ) ;
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41 i f Y(1 , i )>=Lbar ;
42 Y(1 , i )=Y(1 , i )−2∗Lbar ;
43 Nce l l (n , i )=Nce l l (n , i −1)+1;
44 Y( 2 : end , i ) =0;
45 e l s e i f Y(1 , i )<=−Lbar ;
46 Y(1 , i )=Y(1 , i )+2∗Lbar ;
47 Nce l l (n , i )=Nce l l (n , i −1)−1;
48 Y( 2 : end , i ) =0;
49 e l s e ;
50 Nce l l (n , i )=Nce l l (n , i −1) ;
51 end
52 X( : , n , : )=Y( : , : ) ’+[2∗Lbar∗Nce l l (n , : ) ; z e r o s (N, nt ) ] ’ ;
53 end
54 end
55 Mean=mean(X( : , : , 1 ) ’ ) ;
56 Var=var (X( : , : , 1 ) ’ ) ;



Appendix E

Application of changing boundary
conditions

This script was used when obtaining an exact solution to the Fokker-Planck equation.

1 c l e a r a l l
2 vars =[1 1 1 0 . 1 ] ;
3

4 N=1;
5 nu=0.588;
6 alpha=1+2∗nu ;
7 gammabar=1;
8

9 Lbar=vars (1 ) ;
10 Gamma Pbar=vars (2 ) ;
11 k 1bar=vars (3 ) ;
12 s 1bar=vars (4 ) ;
13

14 Xi amp=[2/gammabar ;2/Gamma Pbar∗ ones (N, 1 ) ] ;
15 K pbar=k 1bar ∗ ( 1 :N) .ˆ(− alpha ) ;
16 S pbar=s 1bar ∗ ( 1 :N) .ˆ(− alpha ) ;
17 Theta=diag ( [ 1 K pbar ] ) ;
18 Theta ( 1 , 2 : end )=S pbar ;
19 Theta ( 2 : end , 1 )=S pbar /Gamma Pbar ;
20 [M, Lambda]= e i g ( Theta ) ;
21 Mmin=inv (M) ;
22

23 Xbelow0=ze ro s (N+1 ,1) ;%i n i t i a l p o s i t i o n
24 gammas=[gammabar ones (1 ,N) ∗Gamma Pbar ] ;
25

26 %%
27 %p0=@(X) d i r a c (X( 1 , : ) ) .∗ d i r a c (X( 2 , : ) ) ;
28 a=@(X) X( 1 , : ) .∗ exp(−Theta (2 , 2 ) ∗X( 2 , : ) . ˆ 2 ) ;
29 b=@(X) exp(−Theta (2 , 2 ) ∗X( 2 , : ) . ˆ 2 ) ;
30 %%
31 ne ig =3;
32 x=l i n s p a c e (−Lbar , Lbar ) ;
33

34 %%Eigen func t i ons
35 Bnotnormed= @(x , n , j ) exp(−Lambda( j , j ) ∗x .ˆ2/2 ) .∗ hermiteH (n , x∗( s q r t (Lambda( j ,

j ) /2) ) ) ;
36

57
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37 i n t e g r a l s=ze ro s ( neig , l ength (Lambda) ) ;
38 f o r n=1: ne ig ;
39 f o r j =1: l ength (Lambda) ;
40 f= @( x ) Bnotnormed (x , n , j ) . ˆ 2 ;
41 i n t e g r a l s (n , j )=i n t e g r a l ( f ,− In f , I n f ) ;
42 end
43 end
44

45 Bb= @(x , n , j ) i n t e g r a l s (n , j ) .ˆ(−1/2) .∗ exp(−Lambda( j , j ) ∗x .ˆ2/2 ) .∗ hermiteH (n , x
∗( s q r t (Lambda( j , j ) /2) ) ) ;

46 ns=allcomb ( 1 : neig , 1 : ne ig ) ;
47 lambdab=@(n , j )Lambda( j , j ) ∗(n+1) ;
48 Bn=@(X, n) Bb(Mmin( 1 , : ) ∗X, ns (n , 1 ) ,1 ) .∗Bb(Mmin( 2 , : ) ∗X, ns (n , 2 ) ,2 ) ;
49 lambda=@(n) lambdab ( ns (n , 1 ) , 1 )+lambdab ( ns (n , 2 ) , 2 )−sum( diag ( Theta ) ) ;
50 h=1e−4;
51

52 %%
53 i n tx=l i n s p a c e (−5 ,5) ;
54 Labn=@(X, n) ( t r a c e ( Theta ) ∗a (X)+diag ( [ ( a (X+repmat ( [ h ; 0 ] , 1 , i scolumn (X)+(1−

i scolumn (X) ) ∗ l ength (X) ) )−a (X) ) /h ; ( a (X+repmat ( [ 0 ; h ] , 1 , i scolumn (X)+(1−
i scolumn (X) ) ∗ l ength (X) ) )−a (X) ) /h ] ’∗Theta∗X) ’+(a (X+repmat ( [ h ; 0 ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) )−2∗a (X)+a (X+repmat ([−h ; 0 ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) ) ) /(hˆ2)+ ( a (X+repmat ( [ 0 ; h ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) )−2∗a (X)+a (X+repmat ( [0 ;−h ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) ) ) /(hˆ2) ) .∗Bn(X, n) ;

55 abn=@(X, n) a (X) .∗Bn(X, n) ;
56 Lbbn=@(X, n) ( t r a c e ( Theta ) ∗b(X)+diag ( [ ( b (X+repmat ( [ h ; 0 ] , 1 , i scolumn (X)+(1−

i scolumn (X) ) ∗ l ength (X) ) )−b(X) ) /h ; (b(X+repmat ( [ 0 ; h ] , 1 , i scolumn (X)+(1−
i scolumn (X) ) ∗ l ength (X) ) )−b(X) ) /h ] ’∗Theta∗X) ’+(b(X+repmat ( [ h ; 0 ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) )−2∗b(X)+b(X+repmat ([−h ; 0 ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) ) ) /(hˆ2)+ (b(X+repmat ( [ 0 ; h ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) )−2∗b(X)+b(X+repmat ( [0 ;−h ] , 1 ,
i scolumn (X)+(1− i scolumn (X) ) ∗ l ength (X) ) ) ) /(hˆ2) ) .∗Bn(X, n) ;

57 bbn=@(X, n) b(X) .∗Bn(X, n) ;
58 p0bn=@(X, n) p0 (X) .∗Bn(X, n) ;
59 h=waitbar (0 , ’ double i n t e g r a l s ’ ) ;
60 f o r n=1: l ength ( ns ) ;
61 waitbar (n/ l ength ( ns ) ,h , ’ double i n t e g r a l s ’ ) ;
62 f o r index =1: l ength ( x ) ;
63 Labnn=@( y ) Labn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) ;
64 Labints (n , index )=mean( Labnn ( in tx ) ) ∗10 ;
65 abnn=@( y ) abn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) ;
66 ab in t s (n , index )=mean( abnn ( in tx ) ) ∗10 ;
67 Lbbnn=@( y ) Lbbn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) ;
68 Lbbints (n , index )=mean(Lbbnn( in tx ) ) ∗10 ;
69 bbnn=@( y ) bbn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) ;
70 bbint s (n , index )=mean( bbnn ( in tx ) ) ∗10 ;
71 Bnbnn=@( y ) Bn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) . ˆ 2 ;
72 Bnbints (n , index )=mean(Bnbnn( in tx ) ) ∗10 ;
73 %p0bnn=@( y ) p0bn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) ;
74 %p0bints (n , index )=i n t e g r a l ( p0bnn,− In f , I n f ) ;
75 end ;
76 end ;
77 c l o s e (h) ;
78 Labint=2∗Lbar∗mean( Labints ’ ) ;
79 ab int=2∗Lbar∗mean( abints ’ ) ;
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80 Lbbint=2∗Lbar∗mean( Lbbints ’ ) ;
81 bbint=2∗Lbar∗mean( bbints ’ ) ;
82 Bnbint=2∗Lbar∗mean( Bnbints ’ ) ;
83 %p0bint=2∗Lbar∗mean( p0bints ’ ) ;
84 %%
85 Bint=ze ro s ( l ength ( ns ) , l ength ( x ) ) ;
86 a in t=ze ro s (1 , l ength ( x ) ) ;
87 bint=ze ro s (1 , l ength ( x ) ) ;
88 f o r index =1: l ength ( x ) ;
89 an=@( y ) a ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] ) ;
90 bn=@( y ) b ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] ) ;
91 a in t ( index )=i n t e g r a l ( an,− In f , I n f ) ;
92 bint ( index )=i n t e g r a l (bn,− In f , I n f ) ;
93

94 f o r n=1: l ength ( ns ) ;
95 Bnn=@( y ) Bn ( [ x ( index ) ∗ ones (1 , l ength ( y ) ) ; y ] , n ) ;
96 Bint (n , index )=i n t e g r a l (Bnn,− In f , I n f ) ;
97 end ;
98 end ;
99 %%

100 [ topleftnum , t o p l e f t d e n ]= largepolsum ( lambda ( 1 : l ength ( ns ) ) ’ ,− ab int .∗ Bint ( 1 :
l ength ( ns ) , end ) ’ . / Bnbint , Bint ( 1 : l ength ( ns ) , end ) ’ .∗ Labint . / Bnbint ) ;

101 tople ftnum=topleftnum+a in t ( end ) ∗poly(−lambda ( 1 : l ength ( ns ) ) ) ;
102 [ toprightnum , topr ightden ]= largepolsum ( lambda ( 1 : l ength ( ns ) ) ’ ,− bbint .∗ Bint ( 1 :

l ength ( ns ) , end ) ’ . / Bnbint , Bint ( 1 : l ength ( ns ) , end ) ’ .∗ Lbbint . / Bnbint ) ;
103 tople ftnum=topleftnum+bint ( end ) ∗poly(−lambda ( 1 : l ength ( ns ) ) ) ;
104 [ botleftnum , b o t l e f t d e n ]= largepolsum ( lambda ( 1 : l ength ( ns ) ) ’ ,− ab int .∗ Bint ( 1 :

l ength ( ns ) ,1 ) ’ . / Bnbint , Bint ( 1 : l ength ( ns ) ,1 ) ’ .∗ Labint . / Bnbint ) ;
105 botle ftnum=botle ftnum+a in t (1 ) ∗poly(−lambda ( 1 : l ength ( ns ) ) ) ;
106 [ botrightnum , botr ightden ]= largepolsum ( lambda ( 1 : l ength ( ns ) ) ’ ,− bbint .∗ Bint ( 1 :

l ength ( ns ) ,1 ) ’ . / Bnbint , Bint ( 1 : l ength ( ns ) , end ) ’ .∗ Lbbint . / Bnbint ) ;
107 botrightnum=botrightnum+bint (1 ) ∗poly(−lambda ( 1 : l ength ( ns ) ) ) ;
108

109 [ topnum , topden ]= largepolsum ( lambda ( 1 : l ength ( ns ) ) ’ , z e r o s (1 , l ength ( ns ) ) , Bint
( 1 : l ength ( ns ) , end ) ’ .∗ p0bint . / Bnbint ) ;

110 [ botnum , botden ]= largepolsum ( lambda ( 1 : l ength ( ns ) ) ’ , z e r o s (1 , l ength ( ns ) ) , Bint
( 1 : l ength ( ns ) ,1 ) ’ .∗ p0bint . / Bnbint ) ;

111 %%
112 Anum=conv ( botrightnum , topnum)−conv ( toprightnum , botnum) ;
113 Aden=conv ( botrightnum , tople ftnum )−conv ( toprightnum , bot le ftnum ) ;
114

115 Bnum=−conv ( botleftnum , topnum)+conv ( topleftnum , botnum) ;
116 Bden=conv ( botrightnum , topleftnum )−conv ( toprightnum , bot le ftnum ) ;
117

118 %%
119 at=po l2 func (Anum, Aden) ;
120 bt=pol2 func (Bnum, Bden) ;
121 marg ina lp robab i l i t y=@( t ) a in t ∗ at ( t )+bint ∗bt ( t ) ;
122 f o r n=1: l ength ( ns ) ;
123 n
124 ant=pol2 func ( conv (Anum,[− ab int (n) Labint (n) ] ) , conv (Aden , [ 1 lambda (n) ] ) ) ;
125 n+100
126 bnt=pol2 func ( conv (Bnum,[− bbint (n) Lbbint (n) ] ) , conv (Bden , [ 1 lambda (n) ] ) ) ;
127 marg ina lp robab i l i t y=@( t ) marg ina lp robab i l i t y ( t )+(ant ( t )+bnt ( t )+p0bint (n) ∗

exp(−lambda (n) ∗ t ) ) ∗Bint (n , : ) /Bnbint (n) ;
128 end
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Two functions are called upon in the process, these are included below.

1 f unc t i on [ f ] = po l2 func ( numerator , denominator )
2 [ r , p , k]= re s i due3 ( numerator , denominator ) ;
3 f=@( t ) sum( r .∗ exp ( t ∗p) ) ;

1 f unc t i on [ c o e f f s , po les , k ] = re s i due3 (u , v )
2 po l e s=roo t s ( v ) ’ ;
3 u=u/v (1 ) ;
4 matrix=ze ro s ( l ength ( v ) ) ;
5 matrix ( : , 1 )=v ’ ;
6 f o r j =1: l ength ( po l e s ) ;
7 matrix ( 2 : end , j +1)=poly ( [ po l e s ( 1 : j−1) po l e s ( j +1:end ) ] ) ’ ;
8 end
9 matrix=matrix . / repmat (u ’+(u’==0) ,1 , l ength ( v ) ) ;

10 s o l=matrix \( ones ( l ength ( v ) ,1 )−(u’==0) ) ;
11 c o e f f s=s o l ( 2 : end ) ’ ;
12 k=s o l (1 ) ;
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