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Abstract—This paper deals with the design of an adaptive op­
timal controller for a fixed-wing Unmanned Aerial Vehicle(UAV) 
using an incremental value iteration algorithm. The incremental 
model is firstly introduced to linearize a nonlinear system. The re­
cursive least squares(RLS) identification algorithm is then used to 
identify the incremental model. Based on incremental control, the 
incremental value iteration algorithm is developed for a nonlinear 
optimal control problem. Moreover, this algorithm is applied to 
longitudinal attitude tracking of a fixed-wing unmanned aerial 
vehicle. Simulation results show that the designed adaptive flight 
controller is robust to variations in initial value of the angle of 
attack.

Index Terms—adaptive control, optimal control, UAV, value 
iteration.

I. Introduction

Value iteration is an effective algorithm to solve the 
Hamilton-Jacobi-Bellman (HJB) equation for infinite-time 
horizon optimal control problems [1]. Value iteration performs 
a recursive computation between policy evaluation and policy 
improvement, which is proved to converge to the optimal 
value function and policy [2]. Compared to policy iteration 
[3], value iteration requires less computational load, and the 
initial admissible control law is not needed. Value iteration 
algorithms have been successfully applied in satellite attitude 
control [4] and orbital maneuver problems [5].

Incremental control [6] can deal with nonlinear system 
control through linearization. The incremental model is ob­
tained by taking the Taylor Expansion of the original non­
linear system. Current works have focused on Incremental 
Nonlinear Dynamic Inversion [7], Incremental Backstepping 
[8], Incremental Sliding Mode Control [9], and Incremental 
Approximate Dynamic Programming(IADP) [10]. IADP can 
learn an optimal control policy, as well as the optimal value 
function, without knowing the system dynamics. A recursive 
least squares identification is commonly used in IADP to 
identify the incremental model.

Because IADP is a model-free method, it can be used 
in control problems with faults and uncertainties. In [4], a

satellite attitude control problem is considered with sloshing 
liquid fuel, which can be modelled as unknown internal 
dynamics. The designed controller can stabilize the attitude, 
while rejecting the effects of changing model parameters. In 
[11], the IADP algorithm is used to design a controller for 
an F-16 aircraft longitudinal model, with actuator faults and 
structural damages. In [12], the IADP algorithm is used to 
design an adaptive flight controller for a longitudinal airplane 
model, considering partial observability of measured states.

The main contributions of this paper are summarized as 
follows:

• The incremental value iteration is developed as a model­
free approach for a fixed-wing UAV attitude tracking 
problem.

• The uncertainties of wing lift and drag moments, caused 
by the change of center of pressure, is estimated by using 
RLS identification algorithm.

• The kernel matrix P in incremental value iteration is used 
to learn the optimal cost function of the flight controller, 
which is associated with the angle of attack tracking error 
and control effort.

The remainder of this paper is structured as follows. Section 
II introduces the incremental control method and the RLS 
identification algorithm, Section HI develops the incremental 
value iteration algorithm for nonlinear optimal control prob­
lems. Section IV introduces the longitudinal attitude dynamical 
model of a fixed-wing UAV. In Section V, the effectiveness of 
the adaptive optimal flight controller of the fixed-wing UAV 
using incremental value iteration algorithm is numerically 
verified. The conclusion of this paper is provided in Section 
VI.

II. Problem Formulation

A. Incremental Control

The discrete-time nonlinear system driven by control input 
is presented as

Xk+1 = f( x k,uk) , k e n ( 1 )
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where /  : I "  x R”  ^  1 “ is a smooth nonlinear function 
associated with state vector xk and input vector uk. n,m  
are positive integers denoting the dimensions of the state 
and control spaces, k represents the discrete-time index. N 
represents the set of nonnegative integers.

Taking the Taylor Expansion of (1) at state Xk as

*i+l = xk + Fk-\{xk -  **-l) +  Gk-l(uk -  Kfc-l)
+  O  [(**  ~ X k- i  f ,  {Uk -  M fc-l)2]

where F k_\ = d f(x ,u )/d x \Xk_1}Uk_l G M"x" is the system 
transition matrix, and Gk-  1 = d f(x ,u ) /  du\XkliUkl G R"xm is 
the input distribution matrix at time step k — 1 for discretized 
systems. O [(**— jc*_i )2, (m* — n*-i)2] are the higher order 
terms of the Taylor Expansion.

Eq.(2) can be rewritten in an incremental formulation as

Axk+1 = F k_iAxk + Gk-\A u k + 0(Axl,Aul) (3)

where Axt+i =  xk+\ — xk is the state increment at time index 
k+ 1  with respect to k. Axk =  xk — xk_\,Auk = uk — uk_\ are 
the state and control increments at time index k with respect 
to k — 1.

By assuming a high sample frequency, the higher-order 
terms O [(je* — xk- i ) 2,(uk — Ujt_i)2] can be omitted [6], such 
that

Axk+\ m F k-iA xk + Gk-\A u k (4)

B. Recursive Least Squares Identification
The augmented system state and system matrices are defined 

as •
Axk

X x- II

Auk

> 1 II [Pk-1

(5)

*k- i

where F k_i,G k- i  are the approximations of F k- \ ,G k- \ .  
The one-step prediction of Axk+1 is

M [+1 =X*r 0 *_!

The error between Axk+1 and Ax +̂1 is defined as

(6)

ek = AxTk+l- A x Tk+l

The estimate of the augmented system matrices 0* 
updated as

=  ®&-i +
Ak- \X k

K + X ÏA k~\Xk
ek

(7)

l is

(8)

where A*_i is the equal weighted estimation of covariance 
matrix Cov(®k — ©k-i). which describes the confidence of 
the estimated ©k. A n  is updated by

A*
1
K A n A n * fc * fc A n ~

K + X kAk~iXk _
(9)

where K G (0,1) is the forgetting factor. The value of K 
provides a balance between noise rejection and time-varying 
parameter estimation. When K —> 1, the RLS algorithm be­
comes equally weighted and behaves better at noise rejection; 
when jc —> 0, the RLS algorithm shows more adaptation to 
new measurements, and thus adapts better to time-varying 
parameters. For a satisfying performance in practice, k is 
suggested to be assigned as 0.9 < K < 0.995.

III. Adaptive Optimal Control

This section develops the incremental value iteration algo­
rithm for the optimal control problem of a nonlinear system. 
The approximated cost function is firsdy derived which is a 
function associated with the control increment. As a result, the 
optimal control increment in an analytical form is obtained. 
Finally, the incremental value iteration algorithm is provided.

A. Incremental Value Iteration
Incremental value iteration algorithm combines incremental 

control and value iteration to solve the HJB equation for non­
linear system infinite-time horizon optimal control problems. 
Incremental control utilizes RLS identification algorithm to 
obtain a linear system model online, which is used in value 
iteration to derive an optimal control solution.

The utility function is defined as

r{xk, uk) =  (xk - x f ) TQ(xk - 4 ef) +  ukRuk (10)

where Q and R are positive definite matrices, and xTk f is the 
reference signal for the system state. The cost function is the 
cumulative sum of utility function starting from state xk driven 
by a policy

V(k) = '£ y l- kr(xl,u l) (11)
l=k

where the discount factor y G (0, 1) represents the importance 
of future utility functions.

The Bellman equation [1] is then derived as

V(k) = r(xk,uk) + yV (k+ l)  (12)

Remark 1: The discount factor y < 1 makes sure that the 
sequences of discounted future utility functions converge to 0 
as / —> °°, which is a finite-horizon optimal control problem. 
Intuitively, the future utility values do not have the same 
importance as near-horizon utility values. When y =  1, as in 
typical infinite-horizon optimal control problems, the bound of 
V (k) goes to infinity and the stability result fails. The value of 
y affects the convergence rate of value iteration. The smaller 
y is, the faster the value iteration algorithm converges.

The reconstruction of the exact cost functions V(k) and 
V (k+  1) in Eq.(12) is a challenge in approximate value 
iteration. For this purpose, a parameterized approximator is 
commonly used, at the cost of introducing an approximation
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error. More details on approximation errors are discussed in 
Section IE. This paper adopts a quadratic cost function to 
approximate the exact cost function as follows:

V(k) = eTkPek (13)

Because V (£ + 1) =  ek+1Pek+k, where ek+\ is not available 
at time index k, one has to predict ek+\ using the constructed 
linear incremental model. To this end, the exact ek+\ is derived 
as

«*+1 =*fc+i -**+i
= xk + F k+1Axk + Gk-\A u k + A¡me -* T f -  l
=  (xk - x?f) +  F k- 1Ax* +  Gk-iA u k + Aims ~  Axf+i 
= ek + F k_iAxk + Gk-\A u k +  AIME -  Axjj.6̂

(14)

where A¡me = (Fk~i — F k_i)Axk + {Gk- \  — Gk-\)A uk +  
o (a4 M )  is the total error of using incremental model 
approximation and RLS estimation.

Omitting Ajme and the increment of reference signal A x ^ : , 
the prediction of ek+\ is calculated as

«¡t+i =  ek + F k-\A xk +  Gk-\A u k (15)

Then, the modified approximated cost function, denoted as 
V (k + 1), is defined as

V (k + l)  = e{+lPek+i (16)

Using V (k + 1) in Eq.(16) to construct exact V(fc+1) in 
Eq.(12) , one has

V{k)~r(xk,uk) + yv \e k+l)
= ek Qek + ukRuk + yel+lPek+i 
= ek Qek + (b*_i + A«jt)r /?(iijt_i + A uk)
+ 7(ek+Fk~\Axk + Gk_]Auk)TP(ek + Fk_iAxk + Gk_]Auk)

(17)

Remark 2: In Eq.(17), the quadratic function ek+lPek+i is 
used to construct the exact cost function V (k + 1), i.e.V (k +
1) =  1 Pek 11. This approximation can be divided into
two parts: the first part is using ek+1Pek+k to approximate 
V (k + 1) =  YT-k+]"/ kr(x i ,ui)> the second part is using ek+\ 
to approximate ek+\. The approximation error of V(k) de­
creases at each step of value iteration. The approximation error 
of ek+\ depends on the RLS identification algorithm.

The optimal approximated cost function V*(k) is defined 
as

V*(k) = min \elQek + (h*_i + Auk)TR(uk_1 +Auk) + yV*{k+1)1 
&uk L J

(18)
The optimal control increment Au*(k) is given as

Au*(k) =argmin \e1k Qek + {uk_i + Auk)rR{uk_l + AU*)+ )#*(£+1)1
(19)

The best estimate for the optimal control increment is given 
by dV(k)/d(Auk) = 0

dty(fc) * T . A
w 2R^Uk~l +  ̂ uk) +2yGk_ xP(ek + F k_iAxk + Gk-iAuk)

= 2(R+ y& l^PG ^ i  )Aa*+ 2  +  yGTk_lP(ek+ Pk_kA**)]

=  0
(20)

From Eq.(20), one has

2(R + yCrk_ lPGk_\)Auk + 2 [r k * _ i +y€rk_-iP{ek+ F k_iAxk)̂  = 0  

{R + yC?k_-iPGk-i)A uk =Ruk- i+ y G Tk_lP(ek + Fk-iA xk)

Auk = {R + yGTk_iPGk- 1)-1 \Ruk_l —yGl_1P(ek + Fk_iAxk)\
(21)

Therefore, the optimal incremental control Au\ is given as

Auk = {R+yGk_xPGk^ y l i i « n  + yGk_1P(ek + F k_iAxk)\
(22)

a. Policy Improvement. The policy improves for the current 
kernel matrix P‘:

Au\ = -{R + yG Tk iPiGk_ \)~ i \Ruk_i + yGTk ^ ' ( e .  + F ^ A x ,) ]  

K  = uk-i+ A u {  (23)

b. Policy Evaluation. The cost function kernel matrix P can be 
evaluated and updated recursively with the Bellman equation 
for each iteration ¿ =  0, 1,... until convergence:

eTkPi+'ek «  e[Qek + (iik)TRu[ + yeTk+^P‘ek- i  (24)

Remark 3: The optimality of the control policy in Eq.(23) 
is partially achieved by adopting a changing kernel matrix 
Pl. Using Eq.(24) improves the precision of value function 
approximation, resulting into an improved matrix Pl+\  which 
makes V(ek) closer to V(ek). Therefore, the control derived 
by V(ek) in Eq.(20) is closer to the optimal control derived by 
V(ek). Meanwhile, there exists various approximation errors 
between exact value iteration and incremental value iteration.

IV. Fixed-wing UAV Dynamical Model 
A. Longitudinal attitude dynamics

The longitudinal dynamical model is given as [13]

16 = F fdf +  dCpLw cos(0 — yw) +  dcpDw sin(0 yw') 2̂5) 
-  dsLs cos (0 -  ys) -  dsDs sin(0 -  %)

where I  is the moment of inertia about center of gravity, 0 
is aircraft pitch angle, Ff is fuselage aerodynamic force, dcp 
is center of pressure moment arm, LS,DS are stabilator lift 
and drag forces, df is fuselage moment arm, ds is stabilator 
moment arm. yw is angle made by wing velocity and wing 
horizontal velocity, ys is angle made by stabilator velocity and 
stabilator horizontal velocity. yw,y5 are defined as

ywyw = arctan — (26 )

Authorized licensed use limited to: TU Delft Library. Downloaded on May 16,2023 at 09:52:57 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Incremental Value Iteration Algorithm 
Required Input:
state xk,xk+\, state reference xj f̂,xj^ 1 
Initialization:
Choose maximum iteration number i„ax 
Choose discount factor y, cost function matrices Q,R  
Choose initial kernel matrix P°, initial control uo 
Choose initial system matrices ©0 =  [fo; Go]'7 
Choose initial covariance matrix Ao, forgetting factor K 
RLS Identification:

2: A*ifc+i =x*+i - x k 
3: ek = A*it+1 -  
4: ê*  =  Ô*_! +

5: A* = At-1 -
K+XlAt^X^ 

^k-lXkXl^k-l
K+X%Ak-iXk

Value Iteration:
for Î =  0 tO imax
1: ek < -xk - j t f f  
2: ek+l < -xk+1 - x f '
3: Au‘t  <- - ( R  + yGk_ ,P 'G k^ ) - 1 [Ruk^  + yG Tk_ ,P '{ek + P k^ /S x k)] 
4: iijj < -«*_! + A14
5: Solve ek Pl+lek =  ek Qek + (u'k)TRu,k +  yèl+lPiêk+i, obtain i “+ 1 
end for

and ao is the prestall lift coefficient slope for the airfoil. 
According to Ref. [13], the value Q ,a=0 is set to be 0.4.

The drag on the perching UAV wing, denoted as Dw is 
presented as

Dw =
1
2C.D,vP(-*w + ÿ w ) S w c w (36)

where Cpw is a dimensional aerodynamic coefficient composed 
of profile drag and induced drag components for angles of 
attack between zero and the onset of stall [14]:

Cd„ = cdw +
c2L\V

7tewARy,
(37)

Profile drag Cdw is assumed to be constant at 0.05. Cdw is 
modeled as a line extending to 1.2 at 15 deg angle of attack 
[13]. Parameters ew,ARw are given in Table I. Cj^ is calculated 
as in [13].

ys = arctan — (27)
xs

and (xw,yw) and {xs,ys) are positions of wing and stabilator 
surface area centroids in a longitudinal body axis [13]:

{xw,yw) = (x+ dwcos0 ,y +  dwsin0) (28)

C. Stabilator and fuselage aerodynamics

The lift and drag on the stabilator, LS,DS are expressed in 
terms of dimensionless aerodynamic lift and drag coefficients, 
i.e., CLs and CDs [14]:

Ls = ^CLsp(i?s + tf)S scs (38)

(xs,ys) =  (x-d jC O se^-iisSm O ) (29)

The angles of attack of the wing (a*,), the stabilator (as), 
and the fuselage (a /)  are:

«W — 0 Yw H- &i (30)

as = 0 - y s + $ (31)

Ds = ^CDsp(^s + $ )S scs (39)

where Cis is assumed to be a linear function of stabilator angle 
of attack, as follow

CLs = tias (40)

otf =  0 — arctan(— ) (32) where T] is found using the classic equation based on Prandtl’s 
lifting-line theory:

where a,- is the wing incidence angle measured relative to 
the longitudinal body axis, <j) is the stabilator deflection, and 
(.Xf,yy) is the position of the fuselage centroid.

B. Wing aerodynamics
The wing lift force Lw is calculated as [14]

Dw =  2 -̂'LwP{^w yw)s wCw (33)

T] = Bo
i+r]o/{nesARs)

(41)

where rjo is the lift coefficient slope in the prestall region for 
the NACA 0009 airfoil. Cd, is the drag coefficient composed 
of airfoil profile drag and induced drag components, as follow:

cds = cds + ClD>s
Tte^ARg

(42)

where Ci^ is assumed to be linear:

D-Lyj =a(Xw + CiaQ

where a is given by Prandtl’s lifting-line theory [14]:

where Cd is assumed to be constant at 0.010 [15].
The aerodynamic force is calculated as 

(34) y

Ff = î a f p ( i1d + y2f )DL (43)

a = ao
l+ a o /(n ewARw)

where it is assumed that Ff is linear with respect to angle of 
(35) attac between 0 and 15 deg angle of attack [16].
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Y. N u m e r i c a l  S i m u l a t io n

The aircraft simulation model is trimmed such that its 
center of gravity is in the longitudinal plane during the 
flight. The reference a£ef is set to be ^  sin(0.47rr).
In order to excite the RLS identification process, a persistent 
excitation signal is added into the control input as n¿ =  
0.3e_i [sin(—20f) +  sin(10f) +  cos(30f)]. The physical coeffi­
cients of the UAV arer provided in Table I.

t a b l e  I
Aircraft Physical Coefficients

Parameter Value
Mass m 0.88kg
Moment of inertia I 0.30
Wingspan Sw 1.41m
Wing chord cw 0.21m
Wing centroid to center of gravity 0.29m
Wing aspect ratio ARW 6.7
Stabilator span Ss 0.40m
Stabilator chord cs 0.11m
Stabilator aspect ratio ARS 3.6
Stabilator moment arm ds 0.49m
Fuselage length L 0.38m
Fuselage diameter D 0.064m
Fuselage moment arm d f 0.53m
Density of air p 1.20kg/m3

A. Robustness to Initial Values o f 0Cq

The robustness of the adaptive flight controller to different 
initial values of the angle of attack a/o is investigated, in 
order to demonstrate the its performance in different real 
flight conditions. Specifically, the initial values are set to be 
OC/o =  —10°,—5°,0°,5°, 10°. Figures 1,2 show that the flight 
controller can track the reference signal with different initial 
a/o in less than 2.5s, while keeping the pitch rate 6 stable. 
The tracking errors are large before 4s because the persistent 
excitation signal disturbs the control input. Although the PE 
signal is added into the control input, figures 1,2 show that 
it does not affect the tracking performance.

B. Kernel Matrix P
The kernel matrix P indicates the performance of the 

incremental value iteration algorithm. P can learn the original 
nonlinear cost function and thus guide the controller to max­
imize the cost function. As shown in Figure 3, the elements 
Pn,Pi2,Pn,P22 at a fixed time t = 3s converge to the optimal 
values after 300 value iterations.

C. Identification o f System Matrix and Control Matrix

The online identification results using the RLS identification 
algorithm from Section II-B are shown in Figures 4, 5. F  
is the identified system matrix of the incremental model and 
G is the identified control matrix of the incremental model. 
Figures 4, 5 show that the estimated system matrix and 
control matrix converge in less than 0.3s. As a result, the 
derived control policy in Eq.(23) uses the estimation F , G 
to calculate the optimal control command. The convergence

Fig. 1. Angle of Attack ay Tracking.

Fig. 2. Pitch Rate 9.

Fig. 3. Kernel Matrix P at t =  3s.
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responses demonstrate the fast estimation performance of RLS 
identification algorithm.

VI. CONCLUSIONS
The incremental value iteration is introduced to design an 

adaptive flight controller for fixed-wing unmanned aerial ve­
hicles. A detailed derivation of the incremental value iteration 
algorithm is provided, leading to an approximated optimal 
controller in analytical form. Simulation results on a UAV 
longitudinal flight control problem verify that the designed 
optimal controller can track the angle of attack reference 
signal, while keeping the optimality of the cost function.
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