TU Delft

An Experimental Look at the Stability of Graph
Neural Networks against Topological Perturbations
The Relationship Between Graph Properties and Stability

Yigit Colakoglu

Responsible Professor: Elvin Isufi
Supervisors: Mohammad Sabbaqi, Maosheng Yang
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Yigit Colakoglu
Final project course: CSE3000 Research Project
Thesis committee: Elvin Isufi, Maosheng Yang, Mohammad Sabbaqi, Klaus Hildebrandt

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

GNNs are a powerful tool for learning tasks on
data with a graph structure. However, the topol-
ogy of the graph in which GNNs are trained is
often subject to change due to random, external
perturbations. This research investigates the rela-
tionship between 5 topological properties of graphs
(assortativity, density, edge connectivity, closeness
centrality, diameter) and how stable GNNs trained
on graphs with different topological properties are
against different perturbations. The analysis is con-
ducted by first synthetically generating graphs with
different topological properties and training a GNN
using the generated graphs. The synthetic graphs
are then perturbed, and the relative change in the
GNNSs’ output is measured. These results are fur-
ther supported by conducting the same process on
three popular GNN datasets: Cora, CiteSeer and
PubMed citations. Finally, relationships between
the graph properties under investigation and GNN
stability are inferred using the results obtained from
both synthetic and real-world datasets.

1 Introduction

Graphs are data structures that can be used to model inter-
actions between entities with different features, using pair-
wise connections. They are commonly used in many fields,
from the Internet of Things [20] to chemistry [8]. They are
instrumental in signal processing because they can represent
signals with complex structural information that cannot be
represented in Euclidean space.

Their extensive modelling abilities led to the creation of
techniques to analyze graph data that make use of not only
the node features but also the graph’s structural information
[2]. For this task, Graph Neural Networks (GNN) were devel-
oped. Graph Neural Networks are very similar to Euclidean
machine learning techniques in that they both try to minimize
a given risk function by tuning the model’s parameters. How-
ever, the main difference between them is that GNNs have an
extra input: the structure, i.e., the graph’s topology.

Even though the graph’s topology provides valuable con-
text for GNNs, they are subject to change. These minor al-
terations to a graph’s original topology are called perturba-
tions. In real-world applications, perturbations can come in
different forms from various sources and are primarily ran-
dom. However, regardless of these factors, a GNN’s ability
to be stable and output accurate information despite the per-
turbation is crucial in its applicability in the real world.

It is possible to set theoretical bounds to the impact a per-
turbation can have on a GNN output, which has been done
so in the past[13]. It was also shown that in practice, these
theoretical bounds appear to be rather loose[10]. However,
the research on the looseness of these theoretical bounds uses
public graph datasets, whose topologies graph properties are
constrained within a small range[17]. Therefore, the exact
nature of the relationship between different topological graph
properties and the stability of a GNN is still unknown.

The objective of this paper is to investigate how the stabil-
ity of graph convolutional networks (GCN) [11] are related
to different graph properties under the semisupervised node
classification problem. To achieve this, five different topo-
logical properties are analyzed using synthetically generated
graphs whose selected topological properties vary within a
predefined range. These graphs are then used to train a GCN,
and the output for the original graph topology is computed.
Finally, the deviation from the GCN’s original output is mea-
sured for different random perturbations applied to the graph.

This paper is structured as follows: Section 2 summarizes
other works it builds upon and provides some preliminary
information on the graph properties and GNN architecture
under investigation, which is necessary to understand the re-
maining sections. Section 3 explains in detail how the dataset
generation methods work and different perturbations are in-
troduced. Section 4 goes over the experimental setup. Sec-
tion 5 presents the results and follows with a discussion of
the results of the said experiment. Finally, after drawing the
conclusions from the research and discussing possible future
works, section 8 reflects on the paper from the perspective of
responsible research.

2 Background

This section elaborates on the existing literature and prelim-
inary information needed to understand the rest of the paper.
It starts by explaining how GCNs work and continues by pro-
viding an overview of the specific implementation of GCNs
being used in this research, namely topology adaptive graph
convolutional networks (TAGConv) [3]. Finally, it provides
definitions for different graph properties that are under inves-
tigation.

2.1 Graph Convolutional Networks

Graph convolutional networks (GCN) work very similarly to
convolutional neural networks. They model data by chaining
multiple layers of convolution filters and pointwise non-linear
functions. However, because of their non-Euclidean struc-
ture, the regular convolution operation cannot be applied to
graphs and needs to be swapped out with a more specialized
version.

The convolution operation used in GCNs called graph con-
volution, makes use of the graph shift operator S, which is an
n X n matrix where n is the number of nodes in the graph,
such that S;; is zero if the nodes ¢ and j are not connected and
not zero otherwise. Using the shift operator, calculating the
sum of k-hop neighbours of each node is possible via a ma-
trix multiplication S*x !, where x is the vector containing the
value of each node. The shift operator is often the Laplacian
of a graph, its adjacency matrix or their normalized counter-
parts [16].

Using the shift operator, the graph convolution can be de-
fined as a simple shift and multiply operation, where h is
the convolution filter with each element hy, representing the
weight of the k-hop neighbors [6]. Multiple graph shift oper-
ators can be chained together into several layers with a non-

'For the sake of simplicity, the definitions are provided for sig-
nals with only one feature.

linear pointwise function after each layer to create a graph
convolutional network. The equations (1) and (2) provide
formal definitions for the graph convolution and GCN:s, re-
spectively, where h is the filter for the /th layer and o () is
the pointwise non-linear function. 2

K
u = Z h;SFx, (D
k=0

x¢ = o(uy) 2)

2.2 Topology Adaptive GCNs

Topology adaptive graph convolutional networks (TAG-
Conv) [3] are GNN models that leverage the irregular struc-
ture of graph data. TAGConv uses the normalized graph
adjacency matrix as a shift operator. Each layer projects
nodes onto the next by calculating the weighted sum of up to
K*'"-hop neighbors, approximating spectral graph convolu-
tion with K-level polynomials of the adjacency matrix. The
main operation is described in (??), where D is the degree
matrix, A the adjacency matrix, X the graph signal, and W (*)
the weights for the k-th hop neighbors.

K
Y =) D :A*D :DW® 3)
k=0

Compared to other GCN implementations, such as Cheb-
Net, TAGConv offers distinct advantages regarding flexibil-
ity and performance. It is a simple yet effective model used
in state-of-the-art applications of GNNs. Typically, GCNs
rely on analyzing the graph convolution spectrally and re-
sort to approximating the graph convolution operation using
Chebyshev polynomials of the graph Laplacian. To achieve a
high accuracy using this method, they often need to calculate
higher degree Chebyshev polynomials [1] to reach an accu-
racy comparable to TAGConv, or set some restrictions on the
graphs that can be used with their models [11]. This leaves
TAGConv as the most viable option for analyzing the stability
of GNNE.

2.3 Graph Properties Under Investigation

Many properties can be calculated from a graph. This paper
focuses on 6 of them. The definitions for each property under
investigation are provided below, as well as an example graph
in Figure 1 with values calculated for each property.

Diameter is the maximum shortest path between any pair of
nodes in a graph.

Edge Connectivity is the minimum number of edges that
need to be removed to make the graph disconnected.

Density is the ratio of the number of edges in the graph to
the number of possible edges.

Nominal Assortativity measures the ratio of nodes of the
same type being connected, rather than other ones [15].
It is calculated using the formula in equation (4), where

To emphasize the graph convolution, the pooling layers have
been left out of the equation.

Figure 1: A graph with: 8 nodes, a diameter of 4, connectivity of 1,
assortativity of 0.55 and centrality of 0.51

e;; is the fraction of edges that connect nodes of type ¢
to nodes of type j, and assortativity is A.

a; = E eij
J

b; = Z €ij 4)

K3
A= ZZ €ii — ZZ a;b;
1— Z i a; bl

Closeness Centrality is a metric that is inversely propor-
tional to the average distance of a node to every other
node in the graph [5]. Since closeness centrality is a
metric calculated per node, this research looks into the
average over all nodes.

3 Methodology

This section discusses the approach taken to measure the sta-
bility response of GNNs are trained on graphs with differ-
ent properties. It begins by outlining how stability will be
evaluated and the pipeline for the stability measurement pro-
cess. This is followed by a description of the algorithms
used to generate the synthetic graphs used in the experimen-
tal pipeline. Finally, it discusses which perturbation types are
being tested for and how they are simulated.

3.1 Measuring Stability

Stability on its own is a property that cannot be measured
directly, so one must resort to measuring different metrics,
which can be used to make inferences on the stability of a
model. One of such metrics is how much the output of a
trained GNN changes when it is given a perturbed topology
instead of the original one it was trained on. This difference
can be measured using the relative Euclidean distance be-
tween the two outputs, which is shown in equation (5), where
go(S, x) is the GNN gy’s output for a shift operator S and
signal z, S is the original graph’s shift operator and S, the
perturbed graph’s shift operator.

_ llge(8,%x) — 9o(Sp, %)l
196 (S, %) |2

(&)

Once the assessment technique is established, the pipeline
for measuring the stability of a GNN is straightforward. One
crucial aspect that must be kept in mind is that it is impossible
to measure a GNN’s stability using only one perturbation, as
many possible perturbations can exist on a graph. Instead, it
is essential to test multiple different perturbations to establish
an accurate representation of the GNN’s stability.

3.2 Graph Generation

One challenge that must be overcome to identify a correla-
tion between a GNN’s properties and its stability is obtaining
a set of graphs with high variance in many properties. How-
ever, previous literature has pointed out that existing graph
datasets lack diversity [17]. Therefore, it is necessary to gen-
erate graphs to obtain meaningful results synthetically. There
are many techniques to generate graphs, but in this research,
only two are used: the Stochastic Block Model (SBM) and the
Lancichinetti—-Fortunato—Radicchi Benchmark (LFR). There
is plenty of existing literature on using these models for GNN
testing [17; 21; 191, and this research follows them very
closely.

Stochastic Block Model

The stochastic block model (SBM) is a generative model that
focuses on the creation of graphs with communities [7], mak-
ing it suitable for generating synthetic graphs that will be used
for node classification. It brings with it is the problem of un-
realistic graphs, as they do not adhere to the power law, which
is why it is a better option to use its degree-corrected coun-
terpart [9].

To use degree-corrected SBM, it needs to be provided with
four arguments: the number of nodes in the graph, n, the
number of clusters in the graph, r, a X r matrix P such that
P;; is the expected number of edges within the cluster ¢ and
P;; where i # j is the expected number of edges between
clusters ¢ and j. Finally, for the degree-correction, a vector 6
where 6; is the expected number of edges for vertex ¢ must be
provided.

In order to make the random sampling for these parameters
more straightforward, the parameters described above will be
generated from those specified below, which are all real num-
bers.

* Minimum Degree (0,,,;,, = min;|6;|) The minimum
degree a node can have.

« Average Degree (/) The average degree over all nodes.

* p to q (p/q) The ratio of the expected number of nodes
within a cluster and in between clusters. This idea is
taken from the planted partition model [4], where the
diagonal and non-diagonal values of P are constant.

* Power Exponent () The exponent used for generating
a degree sequence that obeys the power law in graphs.

Given the values above, as well as the number of vertices
n and number of clusters r, the hyperparameters P and 6 can
be calculated using the procedure in (6) and (7). An overview
of how the P matrix can be derived is provided in Appendix
A.

nfp/q nd . nf
r(p/qtr—1) r(p/q+tr—1) r(p/q+r—1)
no nop/q o no
P— T(p/qfrrfl) T‘(p/q.ﬂ"*l) T(p/qurfl) (6)
71.0_ n'é n971.7/q
r(p/q+r—1) r(p/q+r—1) r(p/q+r—1)
X ~U(0,1)

o i (7)
0; = (07 = 0,0)X +6,7)5

min min

Lancichinetti-Fortunato-Radicchi Benchmark

Similarly to SBM, the Lancichinetti—Fortunato—Radicchi
Benchmark (LFR) also specializes in generating graphs with
known communities, with the added benefit of accounting for
heterogeneity in the generated graphs [12].

When the model is first created, the nodes are fully dis-
connected and nothing regarding the topology of the graph
is known. Initially, a degree sequence is generated using the
parameters k.., the maximum degree in the sequence av-
erage degree k and the power law exponent 7. Once the
degree sequence for vertices is defined, the size of clusters is
then calculated according to the power law, this time using the
minimum and maximum community SiZes Cy,n» Cmas and the
exponent 7. Each node is then assigned to a community, and
the graph is wired together. Once this step is complete, the
entire graph is rewired without changing the node sequence
such that the ratio of a node’s edges to outside its community
and its total degree is equal to a mixing constant 0 < p <1,

One caveat of using the LFR Benchmark is that enforcing
a fixed number of classes is not straightforward. Instead, in
this work, the LFR benchmark is coerced into generating a
graph with 7 communities by providing LFR with k4. = 7,
Crnin = % and ¢,q0 = 27" Since all the other parameters

for LFR are just real numbers, they can easily be sampled ,
just like in SBM.

Overlaying Signal on Generated Graph Topologies

Once the graph topology is generated, features must be as-
signed to each node in the graph in a manner that is consistent
with the graph’s topology, meaning nodes of the same class
should have reasonably similar features. In order to gener-
ate n features over a graph with r classes, the first step is to
randomly select r points in the n-dimensional space, using a
multivariate normal distribution with 0 mean and a covariance
matrix with o, on the diagonal and 0 everywhere else. Call
these points p1, io... 1. Once 7 points are selected, and the
features for each node of any class ¢ are randomly assigned
features by sampling from a multivariate normal distribution
with mean p; and a covariance matrix with oy on the diag-
onals. The variables o, and oy can be adjusted to control
the distance between the centres of different classes and the
proximity of features within the same class.

3.3 Perturbing Graphs

There are two types of topological perturbations that can oc-
cur on a graph with unweighted edges: addition and deletion

Figure 2: An illustration of the rewiring perturbation. The original
edges (u,v) and (¢, s) are replaced by the edges (u,t) and (v, s),
maintaining the degree sequence of the graph.

of edges. This research analyzes the impact of both of those
perturbations and rewiring, a particular perturbation scenario
that involves both the addition and deletion of edges. When
perturbations are introduced, it is always ensured that there
are no parallel edges in the graph and no self-loops are cre-
ated.

Addition and deletion perturbations can simply be intro-
duced by randomly adding and deleting edges while adhering
to the aforementioned criteria. However, simulating rewiring
is slightly more involved. For rewiring, the objective is to add
and remove edges to a graph so that the degree of each node
remains the same. Because it leaves the degree sequence of
the graph unchanged, it is a type of perturbation that is con-
siderably harder to detect and thus can be used in adversarial
attack [14], making it a notable perturbation to test for. In or-
der to simulate this perturbation, four distinct edges, u, v, t,
s, are selected at random such that the edges (u,v) and (¢, s)
exist, but (u,t) and (v, s) do not. Following this, the edges
(u,v) and (¢, s) are deleted and instead the edges (u,t) and
(v, s) are introduced. This way, the degree sequence of the
graph remains unchanged. This process is also described in
figure 2.

4 Experimental Setup

This section goes over how the experiments are set up by pro-
viding detailed information on all three aspects of the experi-
mental process: the datasets, the GNN and the perturbations.
It starts by providing the hyperparameters used for generat-
ing synthetic datasets and the relevant properties of both syn-
thetic and real-world datasets used in the experiment. It then
continues by outlining the training process for TAGConv and
the hyperparameters used. Finally, it goes over the testing
process by detailing the amount and size of the perturbations
introduced.

4.1 Datasets

In order to evaluate the relationship between graph properties
and GNN stability, a dataset with a sufficient range and va-
riety of graph properties is necessary. Therefore, synthetic
datasets are generated using SBM and LFR. 2500 graphs
from each model, 5000 graphs in total, are sampled for the
synthetic dataset. In order to achieve variety in graph proper-
ties, the hyperparameters of each graph generation model are
sampled randomly, within the ranges shown in Table 1. The
two parameters that did not change between synthetic graphs
are the number of classes, which is 8 and the number of fea-
tures for each node, which is 16.

Parameter SBM LFR
Min Max | Min Max

Vertices 256 1024 | 256 1024

Average Degree 20 40 20 40

O¢ 60 120 | 60 120

oy 4 10 4 10

Minimum Degree | 5 10 N/A

p/q 1 100 N/A

Power Exponent 1 10 N/A

T N/A 2 8

Ty N/A 1 4

I N/A 0 1

Table 1: Hyperparameters ranges used for graph generation. The
actual hyperparameters were sampled uniformly from the provided
ranges.

After testing the synthetic dataset, the results obtained are
compared to real-world datasets in order to ensure that they
are valid not only in a theoretical context but also in a theo-
retical context. For this, 3 graph datasets with different graph
properties were chosen: CiteSeer, Cora and PubMed. The
properties for the synthetic graph datasets, as well as the real
ones, are shown in Table 2.

4.2 GNN Model and Training

In order to achieve interpretable results, the model used, as
well as its hyperparameters remain the same while testing
the stability of different datasets. The model used to train
on the graphs is a TAGConv GNN with 4 layers, 3 of which
are TAGConv layers with K = 3, and the final one is a lin-
ear classification layer. The first layer accepts input with n
features, where n is the number of features on each node and
outputs 4 features. The second layer also outputs 4 features.
Finally, the last layer outputs 2 features, which are then fed to
a linear classifier. In between each layer, a hyperbolic tangent
tanh is placed as the activation function.

The training process is also invariant across the testing of
each graph. For a given graph, the nodes are split into two
sets: training and testing at a ratio of 70% to 30%. The train-
ing set is populated such that 70% of the nodes from each
class belong to it in order to ensure that there are samples
from each node type in the training set. The testing set is then
used to measure how well the model generalizes and whether
it overfits. After the dataset is split, the model is trained for
300 epochs, using the Adam optimizer with a learning rate of
0.01 to optimize the cross entropy loss function for classifi-
cation accuracy.

4.3 Perturbations

As explained in methodology, a graph can have different er-
ror responses to the the same type of perturbation, depending
on the graph’s topology and which edges the perturbation ef-
fects. Therefore, in order to obtain an accurate estimate of
a GNN’s stability, this research will apply the same pertur-
bation, i.e., the same type and size multiple times, each one
affecting a different random subset of edges.

In total, the three types of perturbations are tested: addi-
tion, deletion, and rewiring, and different sizes of each per-

LFR SBM Citeseer Cora | Pubmed

Max Mean Min Max Mean Min - - -

Assortativity | 0.8855 0.8715 0.8453 | 0.9221 0.7515 0.0029 0.6707 | 0.7711 0.686
Centrality 0.4724 0.388 0.3359 | 0.5227 0.3916 0.3223 0.3516 | 0.2189 0.1603
Connectivity 0 0 0 21 8.5068 0 0 0 2
Density 0.0606 0.0234 0.0096 | 0.1129 0.0125 0.0254 0.0016 | 0.0029 0.0005
Diameter 17 11.068 7 8 4.1356 3 28 19 18

Table 2: Comparison of Graph Properties Across Synthetic and Real-world Datasets. Maximum (Max), Mean, and Minimum (Min) values
for assortativity, centrality, connectivity, density, and diameter metrics are presented for synthetic datasets generated using LFR and SBM

models alongside real-world datasets CiteSeer, Cora, and PubMed.

turbation type. A perturbation’s size is calculated relative to
the graph’s size, such that for addition and deletion, the edges
created and removed are calculated as a percentage of the to-
tal number of edges in the graph. For rewiring, the pertur-
bation’s size is also calculated relative to the graph’s number
of edges, however, since rewiring is an operation that oper-
ates on two edges, the number of rewiring operations in a
rewiring perturbation is calculated as a percentage of half of
the existing edges in the graph. As an example, for a graph
with 100 edges, a 10% addition, deletion and rewiring pertur-
bation would involve 10 addition, 10 deletions and 5 rewiring
operations, respectively.

In the final experiment, each GNN is tested for perturbation
sizes 1%, 5%, 10%, and 20%, for each perturbation type. For
synthetic graphs, each combination of type and size is tested
with 15 different versions. Since there are many graphs in the
synthetic dataset, 15 variations are sufficient to understand
the impact of a perturbation type and size. However, when
testing with real-world datasets, since there is only one graph
in each one and some of them are relatively large, each per-
turbation type-size combination is tested 100 times.

5 Results

This section showcases the results of the experiments. It uses
the measurements obtained from the synthetic datasets in or-
der to identify how different graph properties impact the sta-
bility of the GNN against different perturbation types. It then
discusses why the results do not indicate a notable correlation
between diameter and GNN stability. Finally, it compares the
results from the synthetic data with results from real-world
data, discussing possible reasons why the results diverge.

5.1 Different Perturbations vs. Properties

Looking at the results obtained from the synthetic dataset, it
is possible to identify relationships between graph properties
and perturbation types. This section lists some of such rela-
tionships.

Assortativity
The most significant relationship that can be seen in the re-
sults is the one between assortativity and addition perturba-
tion. As a general trend, as assortativity increases, the Eu-
clidean distance, i.e., the error between the non-perturbed and
perturbed GNN output, also increases.

Looking at Figure 3, it can be seen that both the error and
its variance increase as the assortativity rises, with the rate of

change in error increasing proportionally to the perturbation
size.

The behaviour is unexpected from an intuitive standpoint,
as the more connections that exist between nodes of the same
type, the more robust the topology would be. However, this
effect could be caused by the fact that as the graph becomes
more assortative, the topology also carries more information
about the node types. This would mean that the GNN is able
to make more use of neighbouring nodes in order to classify a
node, which in turn results in the model placing more empha-
sis on the graph’s topology. This results in the model being
more sensitive to perturbations, as the perturbations would
end up adding unexpected erroneous information to the topol-
ogy, which the model relies on but has not trained to account
for. There exist training techniques that introduce addition
perturbations in between different epochs in order to coun-
teract this effect [22], and this behaviour serves to emphasize
the importance of such training methods, especially on graphs
with high assortativity.

Contrary to addition perturbations, highly assortative
graphs are more resilient to deletions. When edges are re-
moved, the error between the non-perturbed and perturbed
GNN output decreases as assortativity rises. Robust connec-
tions within nodes of the same type help maintain graph sta-
bility, making the GNN less affected by deletions. Figure
7 showcasing the relationship of assortativity and error from
deletion can be found in appendix B.

Density and Edge Connectivity

There is also a note-worthy pattern between the error caused
by deletion perturbations and the density and edge connectiv-
ity of a graph. One would expect that the more edges there
are in the graph, i.e., the more connected it is, the more re-
silient it becomes to deletions. However, this does not appear
to be the case, as can be seen in Figure 4. Instead, as the den-
sity goes up, the error increases and the confidence intervals
get wider. Meanwhile, higher values of edge connectivity re-
sult in an overall decrease in the error, as well as a significant
decrease in the standard deviation of errors. The change in
the standard deviation of errors for different in-edge connec-
tivity values can be found in Figure ??, in Appendix B. This
behaviour makes it harder to introduce adversarial perturba-
tions to graphs with higher edge connectivity, as it is harder
to disconnect such graphs.

This behaviour can be explained by how TAGConv works,
which is by approximating the graph convolution operation

EEm Addition (1.00%)
BN Addition (5.00%)

= Addition (10.00%)
BN Addition (20.00%)

0.6

0.5

0.4 |||

Error
=)
w

Assortativity

Figure 3: Box plot displaying how the average error to the addition
of edges changes with assortativity, shown for different perturbation
sizes.

up to the K" hop neighbour of a given node. As a graph gets
denser, any given node is likely to have more nodes connected
to it, assuming the edges are somewhat evenly distributed.
This effect grows for each hop to the next neighbour, mean-
ing as a graph gets denser, the number of nodes affecting the
prediction for a node increases significantly. However, this
also makes it such that when a single edge is deleted, the
amount of nodes that are being disconnected is also signifi-
cantly higher. This results in less stability and higher errors
as graphs get denser.

Centrality and Density

The final graph property that has a notable impact on GNN
stability is the graph’s average closeness centrality. As stated
in section 2, closeness centrality is a metric defined inversely
to the shortest distance a node has to every other node in
the graph, meaning a node with a high closeness centrality
is closer to every other node in the graph, and thus, is more
central. Therefore, a higher closeness centrality means that
most nodes are close to every other node, and the graph is
more tightly connected.

The expected relationship between centrality and stability
would be a positive one, i.e., stability increases with central-
ity. This is not the behaviour shown by the synthetic graphs.
In the results obtained, which can be seen in Figure 5, the
impact of centrality is highly dependent on the density of the
graph as well as the size of the perturbation. For small per-
turbation sizes, graphs with higher centrality exhibit higher
stability. Meanwhile, for larger perturbations, an increase in

centrality has a detrimental effect on stability, which is am-
plified in graphs with high densities.

As stated in the previous section, the impact of deletion
is higher for graphs with higher density. This is because for
graphs with higher density, the deletion of an edge results in
more nodes being disconnected from each other. For low-
density graphs, when a deletion occurs, not many nodes are
disconnected. Thus, a higher centrality can compensate for
the few number of node disconnections, resulting in a de-
crease in error as centrality goes up. Meanwhile, for graphs
with high densities, high centrality has a lapsing effect on sta-
bility. This could be because more nodes can be reached from
any node by following a short path. As each node has a higher
number of edges connected to it due to high density, centrality
amplifies the impact of increasing density in graphs.

Centrality is the only property that exhibits a shift in be-
haviour as perturbation size increases. This relationship is
similar to the one observed between density and centrality,
discussed in the previous paragraph, and thus can be ex-
plained in the same manner. For small perturbations, high
centrality graphs can compensate for the impact of small per-
turbations since the few edges being removed are not enough
to disconnect enough nodes, and the disconnected nodes can
still be reached via a short path. However, as the perturbation
gets bigger, high centrality starts having an adverse effect on
stability as a result of the same effect as the one explained for
density.

After interpreting the results for closeness centrality, one
thing becomes apparent: graph density, centrality, and pertur-
bation size are all linked to the stability of the graph, and there
exist thresholds which define whether an increase in central-
ity is detrimental or beneficial to a graph’s stability.

Diameter

The final property under investigation, diameter, led to more
inconclusive results compared to its counterparts. This was
mainly because it was not possible to create graphs with high
diameter and high density using general-purpose graph gen-
eration algorithms such as SBM and LFR. However, even
though the results were not definitive, the general trend is that
graphs with lower diameters appear more stable compared to
graphs with higher diameters. This is presumably because
graphs with low diameters are better connected and, thus, are
more resilient to perturbations. Figure 10, displaying the re-
lationship between density and diameter, can be found in Ap-
pendix B.

5.2 Impact of Rewiring

Given that rewiring perturbations are a specific form of per-
turbation that can be composed of addition and deletion oper-
ations, its impact on the GNN should also be similar to both
addition and deletion perturbations. This is indeed the case
for the synthetic graphs. Even though the impact of rewiring
is strikingly similar to addition perturbations, which is likely
caused by addition causing an overall larger error than dele-
tion, it can be seen that the impact of rewiring falls in between
those of deletion and addition. This can be seen in Figure 11
in Appendix B.

Edge Connectivity

—— (-0.021, 7.000]

perturbation = Deletion (1.00%) perturbation = Deletion (5.00%)

0.008

0.006

Error

0.004

0.02 0.04 0.08 0.08 0.10 0.02 0.04 0.08 0.08 010

Density Density

—— (7.000, 14.000]

(14.000, 21.000]

perturbation = Deletion (10.00%) perturbation = Deletion (20.00%)

0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10
Density Density

Figure 4: Plots showcasing how the mean error of each graph from deletion perturbation responds to density for graphs with different edge
connectivity and perturbation sizes. The lines are fit to the data using linear regression, with the light colour hues around them representing

the confidence intervals of 95%.

5.3 Real-World Dataset Comparison

After perturbing the real-world graph datasets, the errors
caused by the perturbations are measured, and the mean er-
ror for each graph dataset, perturbation type and size can be
found in Table 3. Unsurprisingly, the behaviour shown by the
real-world datasets is different from the one observed for syn-
thetic graphs, especially for addition perturbation. In general,
it can be said that for any perturbation type, the stability is
ordered such that CiteSeer > Cora >PubMed.

Type Size Cora CiteSeer PubMed
1.00% 0.1493 0.1645 0.1088
Addition 5.00% 0.3286 0.3483 0.2403
10.00% 0.4397 0.4567 0.3154
20.00% 0.5656 0.566 0.3965
1.00% 0.0272 0.0267 0.0221
Deletion 5.00% 0.0689 0.079 0.0549
10.00% 0.1129 0.1354 0.0871
20.00% 0.2052 0.2553 0.1531
1.00% 0.0659 0.0775 0.0405
Rewire 5.00% 0.1534 0.1732 0.0982
10.00% 0.2251 0.2445 0.1491
20.00% 0.3338 0.3458 0.2287

Table 3: Mean error values for each real-world graph dataset
(Cora, CiteSeer, PubMed) across different types (Addition, Dele-
tion, Rewire) and sizes (1%, 5%, 10%, 20%) of perturbations.

Based on the results from synthetic data, the expected error
from the addition of the datasets would be Cora >PubMed
>CiteSeer, since the assortativity of Cora is the greatest and
PubMed has a much lower centrality compared to CiteSeer.
Because the actual results are not in that order, there must
be additional factors in play. From a preliminary analysis of
the graph visualizations shown in Figure 8 in Appendix B,

the first main difference between the graphs is the number
of connected components present in each. More specifically,
Cora has 78, CiteSeer has 438 and PubMed has 1 connected
component in total. This difference in graph topologies can
be used to explain the mismatch between synthetic and nat-
ural results. Mainly because it is sensible that addition can
have a more significant impact on graphs with many con-
nected components, as it can connect two components that
were previously disconnected.

This hypothesis is further supported by the fact that Cora
has lower errors for smaller perturbations, but the difference
between Cora and CiteSeer decreases as perturbation sizes
get larger. Looking at Figure 3, it can be seen that the impact
of assortativity becomes more significant as perturbation size
grows. This results in Cora’s error increasing faster than Cite-
Seer’s since it has a higher assortativity, allowing it to match
CiteSeer’s error.

The response to deletion is marginally more in line with
the behaviour observed from the synthetic dataset. As the
dataset has significantly less density, PubMed is the most
robust dataset against deletion. This follows from the syn-
thetic results. However, looking at Cora and CiteSeer, Cite-
Seer performs significantly worse than Cora, even though it
has a lower density and higher centrality. Even though this
is not necessarily a deviation from synthetic results, espe-
cially since CiteSeer has a lower assortativity, it is possible
that the difference between assortativity is not the only rea-
son behind this behaviour, and just like in addition, the more
disconnected topology of the graph could hypothetically play
arole in these results.

6 Conclusions

This work analyzes the relationship between various graph
properties and the stability of GNNs. In particular, it mea-

—— (0.010, 0.044]

perturbation = Deletion (1.00%) perturbation = Deletion (5.00%)

0.008

0.007

0.006

0.005

Error

0.004

0.003

_
0.002
0.001 \

035 0.40 045 050 035 0.40 045 050

Closeness Centrality Closeness Centrality

Density
(0.044, 0.079]

—— (0.079,0113]

perturbation = Deletion (10.00%) perturbation = Deletion (20.00%)

/

—_—
035 0.40 045 0.50 035 0.40 045 0.50

Closeness Centrality Closeness Centrality

Figure 5: Plots showcasing how the mean error of each graph from deletion perturbation responds to density for graphs with different edge
connectivity and perturbation sizes. The lines are fit to the data using linear regression, with the light colour hues around them representing

the confidence intervals of 95%.

sures the stability of TAGConv, a GCN model, against
three different types of perturbations: addition, deletion, and
rewiring. This is achieved by measuring the relative Eu-
clidean distance between the GNN output for the unperturbed
and perturbed graph topologies.

To obtain a comprehensive set of results, a preliminary
analysis is conducted on a synthetic dataset, which was gen-
erated using two graph generation models: SBM and LFR.
The results from the synthetic dataset lead to the conclusion
that as graphs become more assortative, they become more
vulnerable to addition perturbations but are more resilient
against deletion. Meanwhile, the opposite was the case for
density and centrality. The synthetic results have also shown
that the relationship between rewiring and graph properties is
a combination of deletion and addition. This aligns with the
fact that rewiring is just a special combination of addition and
deletion perturbations.

The results from the real-world datasets were partially con-
sistent with those obtained from the synthetic dataset. The
inconsistencies that were present between the real result and
synthetic results, which were anticipated, were likely caused
by additional features that were not tested within the scope of
this paper, such as the number of connected components in
graphs. However, the conclusions that were drawn from the
synthetic analysis were still mostly applicable to real-world
data, especially for deletion perturbations.

Ultimately, this work is a preliminary analysis of how
graph properties can impact the stability of a GNN. It can
be used as a baseline for creating techniques to estimate the
stability of a GNN based on several heuristics and assess its
stability before being deployed in public applications.

7 Future and Related Work

While this paper serves as a preliminary analysis of the im-
pact of different graph properties on the TAGConv GCN im-
plementation, it also opens up numerous possibilities for fu-
ture research. The landscape of graph neural networks and
graph topologies presents many avenues for exploration, and
this work can catalyze more in-depth studies into the stability
properties of different graph topologies.

Firstly, research into different graph properties is neces-
sary, as there are many more properties than those analyzed
here. This research has shown that the number of connected
components likely impacts stability against addition pertur-
bations without explicitly testing for it. Moreover, it was im-
possible to generate graphs with certain properties, leaving
them as a question for further analysis. For instance, it was
not possible to sample graphs with high density and high di-
ameter, leading to inconclusive results regarding the impact
of diameter.

This work can also be extended to include different GNN
architectures such as graph attention networks (GAT) and dif-
ferent implementations of GCNs such as ChebNet to uncover
novel interactions between graph topology and GNN archi-
tectures. Additionally, how different graph topologies impact
the stability of different GNN tasks remains an open point for
research.

Of the possible avenues for further research mentioned
above, preliminary research into them has already been con-
ducted by our team. Alex Brown has studied how different
perturbation types and strategies impact the stability of TAG-
Conv GNNs, and Vladimir Rullens and Khoa Nguyen ex-
plored the stability properties of different GNN architectures
for various tasks.

8 Responsible Research

This section critically reviews the rest of the paper from the
perspective of responsible research. It evaluates the research
from three perspectives ethical considerations, reproducibil-
ity and citations.

8.1 Ethical Considerations

The nature of this research is not one that generates many eth-
ical questions. This is because all the data used in the exper-
iments were either synthetically generated, or were datasets
generated from public academic indexes, that are commonly
used in GNN research. Therefore, the data used in the paper
does not prompt for any ethical inquiries.

Moreover, the ethical considerations associated with the
potential misuse of this research are mitigated by the overall
benefits and advancements it brings to the field of graph neu-
ral networks. The insights gained can enhance the robustness
and stability of GNN applications by highlighting potential
vulnerabilities, allowing researchers and practitioners to ad-
dress these weaknesses proactively. By focusing on improv-
ing the security and reliability of GNNs, the research con-
tributes positively to the field, ensuring that the technology
can be deployed more safely and effectively in various appli-
cations. This proactive approach to potential risks, coupled
with the open and transparent use of public datasets, high-
lights the ethical soundness of the research.

8.2 Reproducibility

During the entire research process, especially in the experi-
mentation phase, reproducibility was kept in mind. The entire
experimental pipeline has been designed in a way that it can
be re-executed from scratch, and the code for the entire pa-
per is shared online publicly?. The repository where the code
is shared comes with extensive documentation on how to run
the experiments, and how to tweak the parameters for further
testing.

Aside from the code, the second most important aspect of
the research is the data used, and the models that are trained
on this data before being tested. Even though the data can
be re-generated using the code shared, since the graphs and
perturbations are random, it is not guaranteed that the same
results will be yielded. Therefore, the data and the models
used in the experiments are also shared publicly in an online
repository 4. This repository also contains more fine-grained
information, such as the Euclidean distance and cosine sim-
ilarity between model outputs for each perturbation applied,
to every graph.

8.3 Citations

The research makes use of several different open source li-
braries and tools in order to ease the development process.
During the development process of the experimental pipeline,
it was ensured that the licenses of the used libraries allowed
for their use in academic and/or non-commercial cases, and

3https://github.com/arg3t/GNN _stability_and_features
*https://huggingface.co/datasets/arg3t/ GNN _stability_and_features

whether citations were required. In the case that the tool’s li-
cense called for a citation, such as CosmoGraph, it was cited
in the bibliography accordingly.

References

[11 Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering, February 2017.
arXiv:1606.09375 [cs, stat].

[2] Xiaowen Dong, Dorina Thanou, Laura Toni,
Michael M. Bronstein, and Pascal Frossard. Graph
signal processing for machine learning: A review and
new perspectives. CoRR, abs/2007.16061, 2020. arXiv:
2007.16061.

[3] Jian Du, Shanghang Zhang, Guanhang Wu, Jose
M. F. Moura, and Soummya Kar. Topology Adap-
tive Graph Convolutional Networks, February 2018.
arXiv:1710.10370 [cs, stat].

[4] Santo Fortunato. ~Community detection in graphs.
Physics Reports, 486(3-5):75-174, February 2010.
arXiv:0906.0612 [cond-mat, physics:physics, g-bio].

[5] Linton C. Freeman. Centrality in social networks con-
ceptual clarification. Social Networks, 1(3):215-239,
January 1978.

[6] Fernando Gama, Elvin Isufi, Geert Leus, and Alejandro
Ribeiro. Graphs, Convolutions, and Neural Networks.
CoRR, abs/2003.03777, 2020. arXiv: 2003.03777.

[7] Paul W. Holland, Kathryn Blackmond Laskey, and
Samuel Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109-137, June 1983.

[8] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangy-
ong Chen, Ben Liao, Zhe Wang, Chao Shen, Dong-
sheng Cao, Jian Wu, and Tingjun Hou. Could graph
neural networks learn better molecular representation
for drug discovery? A comparison study of descriptor-
based and graph-based models. Journal of Cheminfor-
matics, 13(1), February 2021. Publisher: Springer Sci-
ence and Business Media LLC.

[9]1 Brian Karrer and M. E. J. Newman. Stochastic block-
models and community structure in networks. Phys.
Rev. E, 83(1):016107, January 2011. Publisher: Ameri-
can Physical Society.

[10] Henry Kenlay, Dorina Thanou, and Xiaowen Dong. In-
terpretable Stability Bounds for Spectral Graph Filters,
February 2021. arXiv:2102.09587 [cs].

[11] Thomas N. Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks,
February 2017. arXiv:1609.02907 [cs, stat].

[12] Andrea Lancichinetti, Santo Fortunato, and Filippo
Radicchi. Benchmark graphs for testing community de-
tection algorithms. Physical Review E, 78(4):046110,
October 2008. arXiv:0805.4770 [physics].

[13] Ron Levie, Elvin Isufi, and Gitta Kutyniok. On
the Transferability of Spectral Graph Filters. CoRR,
abs/1901.10524, 2019. arXiv: 1901.10524.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Yao Ma, Suhang Wang, Lingfei Wu, and Jiliang Tang.
Attacking Graph Convolutional Networks via Rewiring.
CoRR, abs/1906.03750, 2019. arXiv: 1906.03750.

M. E. J. Newman. Mixing patterns in networks.
Physical Review E, 67(2):026126, February 2003.
arXiv:cond-mat/0209450.

Antonio Ortega, Pascal Frossard, Jelena Kovacevic,
José M. F. Moura, and Pierre Vandergheynst. Graph
Signal Processing: Overview, Challenges, and Applica-
tions. Proceedings of the IEEE, 106(5):808-828, May
2018.

John Palowitch, Anton Tsitsulin, Brandon Mayer, and
Bryan Perozzi. GraphWorld: Fake Graphs Bring Real
Insights for GNNs. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’22. ACM, August 2022.

N. Rokotyan, O. Stukova, D. Kolmakova, and
D. Ovsyannikov. Cosmograph: GPU-accelerated Force
Graph Layout and Rendering, 2022.

Neil Shah. Scale-Free, Attributed and Class-Assortative
Graph Generation to Facilitate Introspection of Graph
Neural Networks. San Diego, 2020.

Namita Shrivastava, Amit Bhagat, and Rajit Nair. Graph
Powered Machine Learning in Smart Sensor Networks.
pages 209-226. January 2022.

Mustafa Yasir, John Palowitch, Anton Tsitsulin, Long
Tran-Thanh, and Bryan Perozzi. Examining the Effects
of Degree Distribution and Homophily in Graph Learn-
ing Models, July 2023. arXiv:2307.08881 [cs].

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Wood-
ford, Meng Jiang, and Neil Shah. Data Augmen-
tation for Graph Neural Networks, December 2020.
arXiv:2006.06830 [cs, stat].

9 Appendix
A Deriving the P Matrix for Stochastic Block Model

As a requirement of the library used to generate the SBM graphs’, a P matrix that contains the average number of expected
edges in between each class is needed. This section attempts to derive this matrix by constructing it for a small example with 3
classes and generalizing it afterward. ~

Take a graph with 3 classes, 7 = 3, with n nodes and a target mean degree of 6, with p/q as the ratio of intra-class edges to
inter-class edges. A naive first approach to take in order to ensure the final graph has a mean degree of ¢ and class edge ratio
of p/q is drawing a graph with 6 edges in between each cluster pf edges within a cluster, such a graph can be found in Figure
6. Notice that the edges are directed in the graph shown, as the P matrix applies to directed graphs, the only difference is that it
must be symmetric for undirected graphs.

npf

npf nph

Figure 6: A sample graph with 3 different clusters, visualized. Each node represents a cluster of nodes, and the edges represent the expected
number of edges between the clusters. The mean degree of the graph is, @ and the ratio of intra-class to inter-class edges is p/q.

However, calculating the average degree over all nodes for this first iteration of the graph, it can be seen the mean is not in

fact 6 but §3(p + 2q). Therefore, the number of edges must be corrected by a factor of g5 in order to achieve a mean

degree of 6.

In the » = 3 example, the constants 3 and 2 were introduced into the equation due to the number of classes. For a graph with
an arbitrary number of clusters r, connected together using the aforementioned naive strategy, the factor of correction would
be (r(p + (r — 1)q))~!. This is because an arbitrary class r,, would have n(r — 1)qf edges leaving from it, and coming from
other clusters, as well as npf edges within itself. This means in total there are nfr(p + (r — 1)q) edges and in order to achieve
a mean number of edges of), the number of edges should be corrected by the factor (r(p + (r — 1)q)) L.

As a final step, in order to have the expected number of edges on each entry of the matrix, the matrix is multiplied with n,
the number of edges. And in order to simplify it, p is set to p/q and ¢ = 1. These final touch-ups result in the matrix shown in
Section 3.

>graph-tool: https://graph-tool.skewed.de/

B Additional Figures and Results

B Deletion (1.00%) mmm Deletion (10.00%)
Bm Deletion (5.00%) Emm Deletion (20.00%)

0.15

Error
o
B

Assortativity

Figure 7: Box plot displaying how the average error to deletion of edges changes with assortativity, shown for different perturbation sizes.

I
(a) Cora (b) CiteSeer (c) PubMed

Figure 8: The 3 real world graph datasets under investigation, visualized using CosmoGraph[18]. A node’s color represents its class.

perturbation = Deletion (1.00%)

0.10

0.08

Error

0.06

0.04

0.02

0.02 0.04 0.06

Density

0.08

0.10

perturbation = Deletion (5.00%)

—— (-0.021,7.000]

Edge Connectivity
—— (7.000, 14.000]

perturbation = Deletion (10.00%)

—— (14.000, 21.000]

perturbation = Deletion (20.00%)

/

///

0.04

0.06
Density

0.08 0.02 0.04

0.06
Density

0.08

0.10 0.02 0.04 0.06

Density

0.08 0.10

Figure 9: Plots showcasing how the variance of the error from deletion perturbation responds to density, for graphs with different edge
connectivity and perturbation sizes. The lines are fit to the data using linear regression, with the light color hues around them representing the

confidence intervals of 95%.

Addition
577

330

383

337

1.90

143

397

350

503

157
210 |
163
117
).70
)23
277 |8
330
383
337
7.90
743
5.97
350
503
557
510
163
7
370
323

-05

Diameter

370
323

Heatmap of Diameter and Density vs Error

Deletion

-0.14

012

0.10

0.08

Figure 10: Heatmap showing how the average error changes with density and diameter,
highlights the absence of graphs with high density and diameter in the synthetic dataset.

Rewire

16.77 -0z
16.30

15.83

15.37

14.90

14.43 -0:
13.97
13.50
13.03
1257
12.10
11.63
147
10.70
10.23
977
930
883
837
7.90

Error
Diameter

697
6.50

557
463

417
370

0c

shown for different perturbation types. It also

Heatmap of Assortativity and Density vs Error

Addition Deletion Rewire
291 091 oo
188 -05 088 088
185 085 - 0200 085
281 081 081 0z
178 078 078
275 075 075
172 072 0175 072
169 04 069 069
166 066 066 0z
163 063 063
260 060 0150 060
157 057 057
154 054 054 ,
)51 03 gom §'051 0z
148 5 = 048 0125 5 £ 048
145 il 5 045 i} 5 045
142 Goa Goa
139 039 039 0
136 036 0100 036
132 02 032 032
129 029 029
126 026 026
123 023 0075 023 01
120 020 020
217 0417 047
114 01 014 014
21 011 0,050 011 oc
208 008 008
205 005 005
202 002 002
Density

Figure 11: Heatmap showing how the average error changes with density and assortativity, shown for different perturbation types. It can be
seen that the impact of rewiring is very similar to addition but with less error. This is caused by the fact that rewiring is a combination of
addition and deletion.

	Introduction
	Background
	Graph Convolutional Networks
	Topology Adaptive GCNs
	Graph Properties Under Investigation

	Methodology
	Measuring Stability
	Graph Generation
	Stochastic Block Model
	Lancichinetti–Fortunato–Radicchi Benchmark
	Overlaying Signal on Generated Graph Topologies

	Perturbing Graphs

	Experimental Setup
	Datasets
	GNN Model and Training
	Perturbations

	Results
	Different Perturbations vs. Properties
	Assortativity
	Density and Edge Connectivity
	Centrality and Density
	Diameter

	Impact of Rewiring
	Real-World Dataset Comparison

	Conclusions
	Future and Related Work
	Responsible Research
	Ethical Considerations
	Reproducibility
	Citations

	Appendix
	Deriving the P Matrix for Stochastic Block Model
	Additional Figures and Results

