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Summary

Climate change has led to an increased frequency of extreme rainfall events, creating significant chal-
lenges for polder regions where water has to be pumped out actively. Tractor pumps stand out as a
quick, flexible measure to improve polder discharge capacities. However, in extreme rainfall events,
where the need for tractor pumps exceeds available supply, strategic decisions must be made on where
to deploy them. This requires a data-driven methodology to support decision making. To achieve this,
flood modelling, damage assessment and pump allocation optimization are combined in this study. The
study aimed to create a framework that combines these in one integrated model and allocates a limited
set of tractor pumps to the polders where they reduce total economic losses most. The study focused
on the 18-20 June 2021 flood event, using 20 tractor pumps and 48 selected polders in Hoogheem-
raadschap Hollands Noorderkwartier. Polder flood damages were quantified through Depth Damage
Curves (DDCs), incorporating terrain and land use data from the WaterSchadeSchatter. A two-stage
Mixed Integer Linear Program was then formulated to determine optimal placement of tractor pumps,
where the First-Stage selected polders and the Second-Stage assinged pumps. The model systemati-
cally evaluated all possible allocation options, identifying which placements minimized total damage.

Key findings were that DDCs are not suited for assessing the impact of tractor pumps on polders in
linear programming models, as the relation between volume and water levels in a polder are nonlinear.
Instead, Volume Damage Curves (VDCs) are more appropriate, as they are able to quantify damage
per cubic meter, the variable that pumps directly influence. VDC derivatives were used to classify
polders into three types: Type 1 (always relevant), Type 2 (tipping point dependent), and Type 3 (low
priority). Of the 48 polders included in the study, 25 were classified as Type 3. Of these, only 2 received
pumps, and in both cases the prevented damage was minimal. In contrast, Type 1 and tipping point
exceeding Type 2 polders accounted for nearly all significant damage reduction. This suggests that
Type 2 polders below their tipping point, and Type 3 polders can be used for polder deselection and as
an alternative for the First-Stage model.

A shortcoming was that with the current VDC use, the maximum water volume is the primary driver
of damage, as the flood duration is assumed fixed. For agricultural and infrastructural areas, flood
duration strongly influences economic losses, suggesting that both the VDC construction and use in
the optimization model must be altered to incorporate duration as an influencing variable. VDCs that
do so require the direct damage term of every polder to be corrected for the flood duration. This can
be done for specific polder increments, where each increment is multiplied with a duration factor. After
every model run the accumulated duration for each increment should be stored and passed to the next
run, allowing the model to account for ongoing flooding.

Modeling duration in linear programming greatly increases the number of variables and constraints.
To keep the enlarged formulation solvable, the pump placement variable should be aggregated by
counting pumps only per type and time step instead of individual pump tracking. This change removes
the distinction between the First- and Second-Stage, rendering polder subset selection by the First-
Stage infeasible. Instead, the polder classification types can be used for subset selection before the
solver starts, so the enlarged single stage model still finishes in time for operational use.

To support real-time decisions, HHNK should develop a short horizon model that integrates improved
VDCs, forecasted rainfall, current water levels converted to polder volumes, and current pump place-
ments. As new data becomes available, the model should update pump allocation accordingly. The
current optimisation model can serve as a starting point for this operational tool.
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1
Introduction

1.1. Introduction
In June 2021, the waterboard Hoogheemraadschap Hollands Noorderkwartier (HHNK) was struck by
a large precipitation event, resulting in 100-140 mm of rainfall in a single weekend. The intensity and
magnitude of the precipitation and subsequent flooding came as a surprise. In many places, water in
the waterways rose above ground level and water remained between crops on the land. Consequently,
the water board implemented its existing water calamity plan: mobilizing field teams, adjusting water
inlets and weirs, maximizing drainage from the polders, and deploying additional tractor pumps. Local
farmers and contractors also contributed by installing their tractor pumps for extra discharge capacity.
In the evaluation of this event, the water board stated that flood control from a technical perspective was
successful. Most of the pumping stations discharged water to the maximum extent. While efforts largely
succeeded in limiting widespread damage, tractor pump placement lacked an overarching strategy and
was done on an ad hoc basis. As a result, some tractor pumps were deployed in suboptimal locations
[37].

As climate change increases the frequency of short, intense precipitation, conventional water infrastruc-
tures alone are insufficient to handle extreme situations. Water systems are not designed to handle
such extremes. As such, some polder systems can quickly become overwhelmed even though pump-
ing stations operate at maximum capacity. Tractor pumps stand out as a flexible, mobile resource that
can be moved and deployed with relative speed to locations where they are needed the most. HHNK
owns 20 tractor pumps with capacities ranging from 18 to 45m3/min and can hire more from contractors
if necessary.

The use of tractor pump currently relies on an ad-hoc “first-come-first-serve” approach, where opera-
tional field managers pick up a tractor pump at the depot if one is needed. This generally works in a
situation when not all 20 pumps are needed, but might fail to result in optimal placement if more than
20 pumps are needed. In an event like June 2021, where more than 20 pumps were needed, that re-
quires making choices on where to place the pumps. Currently, a coordinated procedure or framework
for the deployment locations is missing, and placement heavily depends on professional instincts and
experience of key individuals. HHNK acknowledges the lack of a coordination procedure [25], and is
looking for a methodology for strategic allocation in extreme events like June 2021.

1.2. Research Objective
In situations like the June 2021 flood, the main purpose of deploying tractor pumps is to limit flood
damage. Doing so requires quick, well-informed choices about where each pump has the greatest
effect. Manually exploring placement options for dozens of polders and twenty pumps is not feasible
within the narrow time window of a crisis. This study therefore aims to create a framework that, during
an emergency, links flood simulation, damage estimates and pump placement in one integrated model
and allocates a limited set of tractor pumps to the polders where they reduce total losses most.

1



1.3. Study Design 2

1.3. Study Design
To achieve this aim, the study integrates the three steps of flood simulation, damage estimation and
pump allocation within a single optimisation model, as shown in Figure 1.1. The proposed solution is
to use precomputed Depth Damage Curves for individual polders, feeding the model with precipitation
and initial conditions and letting the optimization algorithm choose between any combination of pump
placements. The model is only constrained by the number and capacities of the pumps. This proposed
approach reduces computation time, supports rapid scenario evaluation and offers a quantitative basis
for crisis communication while the event is still unfolding.

Setting up this framework involves identifying the necessary model inputs, integrating appropriate mod-
eling techniques and evaluating model performance. The June 2021 flood event serves as an exper-
imental environment to build and test the approach. It also serves as a setting for drawing practical
insights into polder selection. These insights are gathered through a design-based research (DBR)
approach [31]. DBR builds on existing theory by generating practically relevant knowledge through
iterative development [32]. This involves designing, testing, refining, and analyzing model results in
real-world context [26].

Figure 1.1: Conceptual framework. The dashed box shows the combination of flood maps and damage assessment in polder
specific depth damage curves. Instead of providing manual pump placements, the model determines pump placements itself,

aiming to minimise total flood damage.

1.4. Research Questions
This thesis aims to explore how a fixed number of tractor pumps can be allocated in a way that minimises
flood damage. The primary research question guiding this study is:

• What framework is required to optimize the allocation of tractor pumps to candidate polders?

The main research question will be guided by three sub-questions:

1. What are the main insights from applying the prototype to the 2021 flood event, in terms of model
performance and limitations?

2. What improvements are required in the damage assessment method and model structure to en-
hance scalability and usability?

3. What is needed to make the optimisation model usable as an operational decision-support tool
during emergencies?
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1.5. Structure of the Report
Chapter 2 describes how flooding happens in HHNK, details crisis response structure, and discusses
potential measures the waterboard can use in case of a calamity. Chapter 3 describes the modeling
framework, then discusses the operation of linear programming, how it constrains the modeling struc-
ture, and finally the coupling of flood modeling and damage assessment in this optimization context.
Chapter 4 details the construction of depth damage curves along with the other data and equations
that feed the linear model. Chapter 5 presents the optimization model results and discusses the alloca-
tion choices of the model, highlighting model functioning. Chapter 6 looks back at model performance,
points out current limitations, and suggests ways to refine the approach. Finally, Chapter 7 provides
the main conclusions and design principles for tractor pump allocation, as well as recommendations as
a result of the study results.



2
Context: Flooding in HHNK

This chapter provides the context for flood response in HHNK, covering day-to-day water management,
escalation to crisis operations, insights from the June 2021 event, the role of tractor pumps, and the 48
polders chosen for analysis.

2.1. Water Management in HHNK
Hoogheemraadschap Hollands Noorderkwartier (HHNK) is a waterboard located in the northwest of
the Netherlands. It covers the province of North-Holland north of the North Sea Canal, including the
island Texel, as shown in Figure 2.1. It is a governmental agency responsible for the regional water
management. Its tasks include:

• Flood protection, involving the maintenance and reinforcement of dikes and dunes.
• Maintenance of water systems such as dredging and mowing to keep waterways operational.
• Wastewater treatment, ensuring that (household) effluent is purified.
• Managing and mitigating both excess and shortages of water.
• Emergency management which includes dealing with major pollution incidents, extreme water
shortages or flooding and potential dike breaches.

Large parts of the area within HHNK’s jurisdiction lie below sea level (referred to as +0 mNAP), and
requires active water management to be maintain. HHNK’s region is divided into 230 polders, and over
the whole area of HHNK 363 polder pumping stations and 5422 weirs are located [36].

Figure 2.1: Boundary of HHNK, showing the boezem network and the 149 polders that are suitable for tractor pump placement.

4



2.2. Routine Water Management vs. Crisis Response 5

Each polder typically functions as a separate unit, often encircled by dikes. Water levels inside a
polder are regulated by weirs and pumping stations. Furthermore, polders are subdivided into subareas
(known as Peilgebieden), each with its own target water level that can vary within a polder. These target
levels are usually tailored to the adjacent land use, with different seasonal water levels (winter and
summer). Winter water levels are lower so that water from the saturated soil can flow to the waterways
and be discharged out of the polder. In summer, water is let into the polders and water levels are higher
so that water infiltrates the soil. Pumping stations are used to pump water out of the polder into large
water networks called boezem systems. The boezem system is a network of canals, water bodies
and reservoirs that provides storage and transportation of water between polders. It spans about 529
kilometres and sits at a slightly elevated water level, so that water can be let in the polders using gravity
and be discharged out of the system into the Markermeer, IJsselmeer, Waddenzee or North Sea Canal.

2.2. Routine Water Management vs. Crisis Response
HHNK has both a political and an administrative branch.

• The General Board is elected every four years and sets policy.
• The Executive Board, chaired by the Dijkgraaf, turns that policy into decisions for daily manage-
ment.

• The Administrative Organisation carries out those decisions. It consists of nine departments, four
for internal support and five for operational tasks: Water Systems, Water Chain, Water Safety,
Projects Advice and Research, and Crisis Response [10].

Under normal conditions, the responsibilities of HHNK are carried out from the daily task execution of
the departments. When an incident occurs the crisis management structure may be activated. The
structure of this activation is detailed in the ”Crisisbeheersingsplan” [36]. The crisis plan distinguishes
five alarm phases, numbered zero to four. Phase zero is the alert phase in which routine staff handle
the incident while the crisis organisation remains alert. Beyond the Phase 0, there are four escalation
phases, each activating multiple teams (see Table 2.1) [36]. Real crisis control starts with Alarm Phase
1, which is often initiated due to a phone call from an in-situ area manager. At this level, the WAT
(Waterbeheer Actie Team) becomes operational. The WAT is the operational team focusing on source
containment. It consists of a WAT leader, information coordinator, communications officer and crisis
management advisor, but can also call in specialists from relevant fields such as dike maintenance
(waterkeringen) or water level management (peilbeheer). At the second level the WOT (Waterschap
Operationeel Team) becomes active, which is a tactical team focusing on impact control. The WOT is
a separate team but has the same role holders. At the third level, the WBT (Waterschap Beleids Team)
becomes active, which is chaired by the Dijkgraaf. In this team strategic-level decisions and public
messaging are discussed. At the fourth and highest level, national agencies take the lead.

Table 2.1: Calamity alarm phases and active teams across the escalation phases. During the June 21 event, the alarm phase
was escalated to phase 1, with only the WAT team active.

Description Phase WAT WOT WBT
Incident with heightened vigilance, routine staff Alarm phase 0
Localized response, source containment Alarm phase 1 ✓
Coordination with municipalities; managing both source
and effects

Alarm phase 2 ✓ ✓

Regional crisis with significant societal andmedia impact.
Broader coordination with external agencies

Alarm phase 3 ✓ ✓ ✓

Interregional crisis with wide-ranging impact. Multi
agency leadership by DCC-IenW

Alarm phase 4 ✓ ✓ ✓

During a crisis, the crisis team (WAT team) should assume a guiding role, emphasizing pragmatism
and risk acceptance rather than accuracy. Actions must be taken without full knowledge of the situation.
The situation is chaotic, and there is often no time for hydrological calculations to estimate the situation.
Ideally, intervention measures should be identified beforehand. In the June 2021 case, a guiding central
coordination was missing [25].
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2.3. Findings from the June 2021 Evaluation
During the June 2021 flood event, the crisis response was escalated to Alarm Phase 1 due to extreme
precipitation exceeding designed discharge capacity, leading to widespread inundation and requiring
an emergency response. In theory, upscaling in alarm phase is meant to streamline communication
and manage physical challenges [41]. However, the only anticipatory criterion for upscaling remains
weather forecasts, which are often unreliable due to large discrepancies between predicted and actual
rainfall. In June 2021, rainfall fell in two stages: the first on Friday evening, with local quantities reaching
up to 90 mm (with forecasts predicting about 20 mm), and the second throughout the night of Saturday
and Sunday, with local amounts of around 50 mm. In total, up to 140 mm of precipitation fell during a
single weekend. Such events far surpass design norms, exceeding what the waterboard can effectively
control, and resulting in a reactive process of water crisis control.

After the June 2021 flood event, a large evaluation was done on the event. The main finding was that
the event was handled effectively. However, centralized leadership was lacking, with the WAT taking
a supporting rather than a steering role. The WAT lacked in-situ overview, forcing them to make deci-
sions without an understanding of the situation [37]. Without an information overview, decisions were
based on personal expertise, increasing the risk of misallocation of resources and delays in response.
Following the evaluation, recommendations were made to improve information availability for impact
forecasting, strengthening the robustness of water systems, and formulating strategies to reduce neg-
ative impacts during crises.

These findings from the evaluation are in line with a 2019 STOWA report, which reviewed 60 evalua-
tions over the last decade from all waterboards within the Netherlands. The report stated that while
waterboards are well-prepared to handle emergencies, they rely too much on the expertise of a few
individuals [41]. This was also the case in HHNK during the event. At the time, HHNK lacked decision-
support tools, making it dependent on expert judgment, which increases vulnerability if key personnel
are unavailable. Following the June 2021 evaluation, significant improvements have been made on
monitoring systems, but decision-making supporting tools or models are still absent. Developing struc-
tured decision-support systems would reduce reliance on individual expertise and ensure continuity in
crisis management, regardless of personnel availability.

Extreme precipitation, like that experienced in June 2021, can develop suddenly, requiring an imme-
diate response [41]. The watersystem infrastructure is not designed to handle extreme weather sce-
narios, as this would be costly. Consequently, it is impossible to completely avert occurring damage
from flooding. Instead, interventions should focus on limiting the impact of flooding. Given the highly
localized and intense nature of such rainfall, water boards must have predefined scenarios and a rapid
response framework to deploy measures effectively. Because such rainfall bursts develop with little
warning the water board must be ready to act quickly, using every measure available to limit impact.

Figure 2.2: A pumping station (gemaal), seen on the left, features a debris screen that can become clogged. On the right, a
tilting weir (kantelstuw) is shown. When the water levels rise above the channel, the weir becomes subemerged [1].
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2.4. What Happens and What Can The Waterboard Do?
In the waterboard, polder discharge capacities are dimensioned to discharge 10 m3min-1 per 100 ha.
This amounts to 14.4 mm/day, irrespective of polder size. This figure varies between polders, but this is
the number that most polders at least are able to achieve. This figure is significant for polders, as there
are little alternatives for water diversion there [41]. When 100 mm of precipitation occurs, it means that
a polder with a removal capacity of 14.4 mm/day needs 7 days to discharge this volume completely. In
those cases water accumulates in low-lying subareas (peilvakken in Dutch). Instead of draining away
dynamically, the water gradually fills the polder until pumps or other drainage systems can lower the
volume.

The waterboard is legally required to uphold the specified target levels in the polder (peilbesluit in Dutch).
To achieve this, it must actively remove water from the polders using every available measure. This
involves operating pumping stations at full capacity, closing inlets, clearing debris (preventing clogging,
see left figure 2.2), manually or digitally adjusting weirs, diverting water into designated water storage
areas and deploying emergency (tractor) pumps. The water board may also hire additional tractor
pumps from contractors.

Even with all measures active, damage and disturbances will occur. How much occurs depends on
the amount of precipitation and the elevation differences in combination with the landuse in the polders.
Low-lying fields flood more quickly. If these fields contain e.g. flower bulbs, the damage will be higher
than if it was potatoes. Since deep polders offer few diversion options, the only backup might be to
open designed water storage areas. In short, the crisis plan relies on rapid pumping and using every
bit of available storage throughout the polder [36].

2.5. Tractor pumps
Boosting polder discharge capacity above the pumping stations can be done with tractor driven pumps.
At present the strategy is simple: field staff collect a pump from the depot on a first come first serve basis
and install it where they think it will help most. In total, HHNK possesses 20 tractor pumps and 28 diesel
or electromotor pumps, stored at the depots in Anna Paulowna or Zwaagdijk. Because installing diesel
and electromotor pumps typically requires a significant time, these are unsuitable for rapid emergency
response. Tractor pumps can be deployed more quickly, although their capacity depends on both
tractor power and head conditions: higher static plus dynamic head reduces discharge capacity. The
available tractor pumps of HHNK are of four types:

• 9 Veneroni AT30-5 with a capacity of 18 m3/min;
• 4 BBA B300 with a capacity of 20 m3/min;
• 6 Veneroni AT400/5 with a capacity of 30 m3/min;
• 1 Veneroni AT500/5 with a capacity of 45 m3/min.

Figure 2.3: The BBA B300 centrifugal pump in operation [3]. The top pipe serves as the discharge side, while the suction side
is located at the back. HHNK owns four pumps of this type. The pump is connected to the tractor via the transmission

(aandrijfas in Dutch). The discharge capacity also depends on the tractor’s power.
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The Veneroni pumps are considered ’dumb’ pumps, lacking automatic controls or telemetry, and they
require full submersion to avoid pumping air (which can damage the pump). They are most suitable
for low static heads but can operate with steep embankments [17]. The pump body is lowered directly
into the water and the rotor in the pump is operated through a connection via a transmission shaft.
BBA B300 pumps are not installed in the water but on land, and are more suitable for higher head
applications.

According to the technical service, transportation, placement and installment of the pumps takes around
3-4 hours, but this of course depends on the location, the amount of people working shifts and the
capacity to transport the pumps. Installment location of the pumps in the polders is based on the
expertise of the people in the field, but is likely at one of the predetermined locations.

2.6. Study Area Selection
Figure 2.1 earlier in the chapter shows all 149 polders suitable for tractor pump placements. This
selection of polders was made by HHNK based on several characteristics:

• Land use;
• Total area;
• Location relative to a boezem branch.

From these 149 polders, a selection of 48 polders wasmade, as shown in Figure 2.4. This selection was
made in consultation with the water board, who visited farmers in every candidate polder and asked for
cooperation for the practical tractor pump placement locations and strategies. The 48 polders shown
in Figure 2.4 were the ones where the local farmers expressed the greatest willingness to cooperate.
Eventually, the aim is to extend the model to the full set of 149 polders.

Figure 2.4: A close-up view of Figure 2.1, highlighting the 48 selected polders and the locations of the two HHNK depots
where the tractor pumps are stored.



3
Theory Behind a Data-Driven
Pump-Allocation Framework

This chapter discusses the framework and the theory for the integration of flood modeling and damage
assessment into a single linear programming model.

3.1. Framework Overview
The framework is to combine flood modeling, damage assessment and pump allocation in an optimiza-
tion model. This is done with linear programming, which can test every possible pump placement in a
single run and find the global optimum. However, linear programming cannot call functions or models
directly into its process, so the underlying modeling and calculation techniques of flood modeling and
damage assessment must be directly incorporated in the linear programming model. The process of
incorporation is visualized in Figure 3.1 on the next page.

The model is not to determine exact pump locations within a polder. Instead, it selects between polders
to find those best suited for pump deployment. Internal flow dynamics are not included, each polder is
essentially represented as a ’bucket’. Based on these simplified representations, the model prioritizes
between polders to determine where pump deployment would be most effective.

Chapter 3: Theory
The constraints on the use of linear programming, which limit the options for flood modeling and dam-
age assessment representation in the model structure are discussed in chapter 3. The study uses a
representation of Stage Damage Functions as a means of damage assessment. In the Netherlands,
the WaterSchadeSchatter is a program that uses these functions. The structure and damage calcula-
tion setup of the WaterSchadeSchatter are discussed to construct Depth Damage Curves and Volume
Damage Curves for every polder, as these are suitable inputs for the linear programming model.

Chapter 4: Constructing Model Inputs and Formulating the Optimization Model
In this chapter, the focus is on constructing the model and model inputs required for the optimization
model and the 2021 Case Study. These include the construction of volume damage curves, the initial
volume, precipitation for the June 2021 event, and the polder removal capacities.
The chapter also details how the damage calculation is done in the linear programming model from the
volumes and VDCs, and which constraints to pump placement are applied.

9
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Chapter 5: June 2021 Case Study
Linear programming models are known to scale poorly, meaning that for added polders, timesteps or
other complexity the solve time grows rapidly. As such, the model choices have been made such as
the splitting into two stages. In the First-Stage, the model creates a subset of more promising polders
for more detailed calculation in the Second-Stage.

This chapter details the model functioning of both the First- and Second-Stage. This includes plotting
resulting variable values to interpret the functioning of the modeled functionalities, and stating the run-
time and model sizes. It also includes interpreting pump placements, damage values and identifying
influencing factors for polder selection in the First-Stage and the pump placement in the Second-Stage.

Chapter 6: Evaluation and Reflection on Model Functioning
Finally, the model functioning is evaluated. This chapter discusses suggested improvements on the
model inputs, structure and a proposed alternative for the subset selection of the First-Stage. The step
examines in depth the representation of the VDCs in the model structure, and how these in combina-
tion with the damage calculation can be improved upon to better represent the WaterSchadeSchatter
damage functionality. The chapter ends with a suggested improved model structure.

Figure 3.1: Visualization of the proposed pump-allocation framework.
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3.2. Need for Fast Quantitative Decision Support
Recent trends in flood management show a shift from purely resistance-based methods to risk- and
resilience-based management [38] [7]. Such approaches include non-structural measures that provide
great flexibility [28]. In HHNK, tractor pumps are an example of such a flexible measure. During the
June 2021 floods, HHNK deployed 18 pumps, and 32 were hired from private contractors. During the
event, pumps were regularly moved to more suitable locations, showcasing their flexibility [37].

To demonstrate the effect of any pump placement a quantitative workflow is required that couples
flood modelling with economic damage estimation [38]. By converting simulated flood depths into
economic losses and comparing scenarios with and without pumps, managers can justify their response
in economic terms. Models must therefore deliver clear recommendations within minutes, which is
possible when pre analysed data or simple rule sets replace full model reruns [27]. A quantitative basis
also supports centralised decisions, promotes shared understanding and mitigates stakeholder conflict
[34].

Flood simulation models can predict estimated flood extent. However, flood simulation models are
not flexible and modular, and are rarely used in flood disaster management. Studies by Leskens et
al. (2014) and others [16][35] show that complex or overly detailed models are discarded in hectic
disaster scenarios due to time constraints and information overload. This is due to a discrepancy in
what modelers provide and decision-makers want. Decision-makers discard information that increases
the complexity they already have to deal with.
Modelers assume that more detailed information improves the analysis and decision-making, whilst
users lack the time and resources to perform such analyses. Under time pressure, decision-makers
value clear, actionable insights rather than exhaustive technical details and comparisons of different
model outcomes. Solving the pump allocation task therefore calls for a mathematical programme that
can handle many possible pump placement choices under tight time limits.

3.3. Optimization Approach
3.3.1. From Simulation to Optimisation: Principles and Limits
Simulation models test one pump layout at a time. Meaning that they evaluate a predefined set of
conditions and pump placements (e.g. the simulation of pump placement in a hydrodynamic model).
Simulation models follow a sequential logic, meaning that decisions are made step-by-step based on
the current or past states of the system and user inputs [4]. Simulation models can represent real-
world processes better, but seldom find the best overall solution, because every new pump layout
needs another model run.

Mathematical optimisation turns the question around. It evaluates all candidate pump placements si-
multaneously and searches for the combination that minimizes (or maximizes) the objective. By consid-
ering all input options at once, optimization models can find globally optimal solutions. The downside
is that such models require all parameters to be explicitly defined and mathematically structured with
a specific objective (e.g. minimize damage through pump placement). This requires formulating a
problem into a declarative, more restricted way [4].

Optimization utilizes a declarative approach. This implies that a problem is formulated in terms of what
needs to be achieved instead of how to achieve it. In this approach a problem is described through de-
cision variables, constraints that define the limits of these variables at given indices (e.g. polder, pump
or timestep indices), and an objective function. Declarative modeling is highly structured. It requires
the problem to be fully specified before solving [16]. Solvers do not allow non-linear elements, such as
variable multiplication, meaning that desired functionalities must be explicitly formulated. This means
that the impact pump placement will have on the situation in a polder has to be known beforehand
through a predefined relation, or implied directly in the model. Optimization models provide powerful
decision-making capabilities, but they come with some limitations in the construction of the model:

• Explicit handling of variables is required; values are not assigned to variables until after the prob-
lem is successfully solved.

• Variables cannot be multiplied, as this causes non-linearity.
• Python modules or self constructed functions that calculate water levels cannot be called on
optimization variables.

• Variable values cannot be negative.
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• Condition logic, such as direct if-else statements, of variables is not possible. Conditional logic
has to be directly implement through constraints on indices. The modeler must specify locations
and durations for these constraints explicitly.

3.3.2. Type of Optimization Problem
The task is a scheduling problem: twenty tractor pumps must be assigned to forty-eight polders over
several time steps so that total damage is minimized [9]. Scheduling models are often used in project
management, where scarce resources are scheduled through predefined relations. Scheduling prob-
lems involves binary or discrete decision, as half a pump can not be allocated. Tractor pump are either
placed or not. They also happen in defined steps (e.g. every few hours). The problem is characterized
by:

• Binary or integer pump placement.
• Continuous polder water volume: There is precipitation entering the polder and volume being
discharged through existing pumping stations and additional tractor pumps.

• Continuous damage: Damage is calculated in relation with the water level in a polder.
• The objective function: the value that the model seeks to minimize.

From an optimization perspective, this problem is formulated as a Mixed-Integer Linear Program (MILP
or MIP) due to the combination of binary pump placement and continuous volume and damage. In
Linear Programming, variables can either be free, where the models is allowed to determine the value
itself within a set range, or constrained. Constraints in the context of this study include pump availability,
pumping capacities and travel times.

3.3.3. Solving a MILP: Techniques and Considerations
An MILP is solved through Branch and bound methods. This combines branching (dividing the problem
into smaller sub-problems), relaxation of variables (temporarily ignoring integer constraints by lineariz-
ing them) and pruning (discarding branches of which the relaxed theoretical solution is worse than the
current best solution) to efficiently find exact solutions. A detailed description of the solver’s functional-
ity is included in Appendix D. The branch-and-bound approach systematically searches for the global
optimum while eliminating infeasible or suboptimal solutions and branches early in the process. Op-
timization solvers automatically select the appropriate variation of the Branch and Bound and Cutting
Plane techniques based on the model and variable structure.

Throughout the solving, a model is capable of calculation how close it is to optimality based on two
values: the bound (best relaxed theoretical solution) and the incumbent (current best feasible solution).
The percentage difference between these values is called the gap. When the gap reaches zero, the
global optimum is obtained. A global optimum indicates that mathematically proven the best possible
solution is reached [18]. Often in optimization, the model is stopped before reaching this optimum, as
proving true optimality takes quite long. The most commonly used stopping criterion is a predefined
time limit, or stating the desired allowable gap.

Figure 3.2: Visualization of a fictional Mixed Integer Problem (MIP) gap as an example [13]. The gap represents the
percentage difference between the best-found solution (incumbent, shown in blue) and the bound (red). Optimality is proven

when the gap reaches 0.
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The convergence and runtime of an optimization model is influenced by various factors, including vari-
able bounds, constraint selection, and model complexity. Tightening the bounds on variables reduces
the feasible region, leading to faster convergence by bringing the linear relaxation of the integer vari-
ables closer to the optimal solution. Model complexity must also be carefully managed, as adding detail
does not improve performance per se. The following considerations influence model efficiency:

• Feasible region size: Constraints and bounds, such as a max pumps per polder limit or maximum
volume per polder, reduce the number of possible solutions. Removing constraints expands the
feasible region, making the solver’s job more complex, increasing solve time.

• Problem tightness versus constraint count: Adding constraints can lead to an overly tight model,
potentially leading to suboptimal solutions. However, adding constraints can help the solver prune
infeasible or non-optimal areas. A well chosen constraint guides the solver towards a better
solution more quickly.

• Iterative model development: Optimization models are typically developed in iteratively, gradually
adding complexity.

3.4. Flood Modeling and Damage Assessment in Optimization Con-
text

3.4.1. Working Around Optimization Constraints
Flood-risk optimisation tools that couple flood hydraulics and economic damage are still scarce. Often,
the scarcity is due to lack of high-quality, localized data [40]. In the Netherlands, luckily, there is enough
data on high resolution available. When setting up an optimization model, it is important to have an idea
of what kind of model to formulate. A 2024 study on application of optimization methods in water system
operations stated that practical models should focus on making use of existing techniques instead of
development of new algorithms [4].

As stated in the previous section, it is not possible to incorporate user-defined functions or simulation
models directly into the optimization framework. Instead, the relation between the water level and dam-
age has to be formulated beforehand [40]. The workaround is to calculate the water level damage
relation beforehand, and to provide the model with these results. One of the techniques in linear pro-
gramming to do so is through piecewise-linear (PWL) approximation. PWL approximation is a method
to linearize 1D equations as a predefined relation.

3.4.2. Flood Modeling Choice for PWL Construction
To evaluate the effectiveness of tractor-pump placement, a flood model is required. Given the practical
and computational constraints, simplified conceptual methods are most suitable for integration in opti-
mization. There are several reasons for this. With the main reason being that hydrodynamic models
require setup and manual adjustments for each change. Since there are 48 polders and the damage
needs to be evaluated for dozens of water levels or flood scenarios, manually setting them up is not
feasible. Besides, conceptual models, although they lack flow dynamics, are easy to setup and fast to
calculate [29].

There are several low-complexity models, but not all are suitable in the context of optimizing pump
placement. For instance, the HAND method provides rapid inundation mapping, but struggles in situa-
tions with abrupt terrain changes like levees and areas with minimal gradients and complex drainage
systems. Topographic models such as the bathtub method rely solely on Digital Terrain Models (DTM)
and are suitable for low-gradient terrains such as polders [2]. The bathtub (or sometimes called planar
plane) method assumes that water spreads uniformly in the system, irrespective of flood dynamics.
Another method is the inclined plane, which simulates a sloped surface that can account for variations
in water level, it however is more computationally expensive and requires measurements to pick up on
the slope in field [19].

The bathtub model is most suited for rapid, large-scale screening of scenarios where dynamics are not
required. Inundation from heavy precipitation is often treated as static flooding [29], making the bathtub
method the most suitable choice given the constraints of optimization. Application of the planer method
is also in line with findings from the Evaluation of June 21, that stated that low lying polder regions were
most stressed during the event [37].
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3.4.3. Damage Assessment
Damage evaluation and economic assessment in the context of flooding is widely done with Stage
Damage functions (SDF). SDFs are tools that express the damage as a fraction or percentage of the
maximum potential loss with influencing parameters such as depth, duration, recovery time and season.
A benefit for using SDFs is that the relation between water level (also called the stage) and damage
is relatively straight forward. There are two types of Stage Damage Fucntions: empirical or synthetic.
Empirical functions are built with field surveys of historical events based on actual damages, whilst
synthetic functions use a what-if scenario, where hypothetical damages are assigned to groups or
landuses [14]. In synthetic curves, an estimated monetary value is given to classifications of land use.
The advantage of synthetic curves is that a high level of standardization is reached, and that it can be
used across diverse regions. The disadvantages are that they require high development effort, robust
data inputs and regular recalibration to account for changes in land use or damage costs per object
[20].

Both methods of SDFs include direct and sometimes indirect tangible costs. Direct tangible costs are
damages by direct contact with the water such as physical destruction of property, crops or infras-
tructure, whilst indirect tangible damages result from loss of profit, business interruption or costs of
relocation [21]. Often, intangible costs are excluded from damage assessments due to their difficulty
in quantification [28]. SDFs can be constructed through depth damage relations, or percent damage
relations, where factors are multiplied with a maximum damage value of the land use type.

Most studies opt for the empirical method of development due to limited data availability. However,
in the Netherlands, data availability is not an issue. In the Netherlands, two methods exist for dam-
age assessment that both use the synthetic approach: the Slachtoffer Schade Module (SSM) and the
WaterSchadeSchatter (WSS). The first was developed by the Ministry of Infrastructure and Waterman-
agement in 2000 and the second by STOWA in 2012. SSM is used for damage assessment of large
scale flooding and WSS is used for damage assessment small scale flooding. WSS is better suited
for calculating damage to agriculture and is generally used by waterboards as a means of damage
assessments for flooding (inundation) scenario’s [11].

How WaterSchadeSchatter works
WSS requires water levels (in m NAP) as input and is only a means of damage assessment and not
of flood mapping [39]. WSS is a web-based model that, when provided with a raster of m NAP water
levels, calculates the water depths at high resolution (0.25 m2) by subtracting the digital terrain model
(DTM). Land use for each individual cell is then cross-referenced with the water depths for each cell in
a damage functions, predefined in the form of parameters, and maximum damage values, calculating
the damage in each cell for a single scenario.

Damage values for cells are calculated as follows: all factors, such as water depth up to a maximum
of 30 cm (γdepth), duration (γduration), season (γseason) and recovery time (γrecovery time) are converted
into scaling factors. These factors are then multiplied with the direct or indirect damage values for each
cell, as shown in equation 6.4 below. The factors compound, leading to large variations in damage
outcomes between cells.

Damage = Max Direct Damage · γdepth · γduration · γseason + Indirect Damage per Day · γrecovery time (3.1)

For each land use, there are unique combinations for the scaling factors. For example, agriculture
cells are season dependent whilst buildings are not. In total, there are 154 land use types, with unique
combinations of maximum damage values and associated factors. Each land use type has a maximum
damage value, given as a minimum, average or maximum estimate, for both direct and indirect damage.
These values are then multiplied by a combination of scaling factors to calculate total damage. The
factors are obtained via interpolation. Table 3.1 and Figure 3.3 on the next page show how damage
values and SDF factors interact for two example land use types: Residential Function and Consumption
Potatoes.
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For the residential function, damage increases with greater inundation depth, whereas for potatoes
it does not matter whether the depth is 5 or 30 cm, as they are grown underground. Potatoes are an
agricultural product, meaning the loss is limited to the harvest value without any additional indirect dam-
age. To remove the indirect costs, the γrecovery time factor is zero. For buildings (such as a residential
function), the recovery time must be set manually for all cells and remains constant across them. In the
case of residential land use, the duration of flooding has no influence. A one hour flood results in the
same γdepth factor as a three day flood. For agricultural products, however, the duration does matter.
Twelve hours of flooding is not an issue, but three days can cause significant losses (see the top right
plot). Another factor that varies across land use types is the seasonal sensitivity.

Table 3.1: WSS direct and indirect damage values for two land use types as an example. Note the difference in units. The
factors for both types are shown in Figure 3.3.

Land Use Type Damage Type Unit Min. Value Avg. Value Max. Value
Woonfunctie
(Residential function)

Direct Damage /m2 163 271 380
Indirect Damage /m2/day 5 11 16

Consumptieaardappelen
(Consumption potatoes)

Direct Damage /ha 2432 8415 2622
Indirect Damage /m2/day 0 0 0

Figure 3.3: WSS factors for Consumption Potatoes (green) and Residential Function (blue). The topleft shows the factor
γdepth and the topright the factor γduration. The bottomleft and bottomright illustrate the factors γseason and γrecovery time,

respectively. Duration and season is of importance for field crops and horticulture, but not for buildings.

Limitations on the use of WaterSchadeSchatter
There are some limitations in the use of WSS as a damage assesment tool. The first being that infras-
tructure damage is assessed using separate road maps, where indirect economic losses from detours
are only calculated if an inundated section exceeds 100 m². A STOWA report found that most users
override the indirect damage for this category, as they often think the values are too large [11]. The
second is that damage does not increase beyond a water depth of 30 cm: a water depth of 1 meter
results in the same SDF value as a water depth of 50 cm [39]. The third is that WSS uses synthetic
curves that are deterministic, meaning that they do not account for uncertainty in the following three
categories:

• Object data, e.g. spatial errors;
• The maximum damage value of objects;
• The SDF construction and it’s associated parameter values [15].

However, since WSS is a tool maintained by STOWA, it benefits from regular updates, addressing con-
cerns about inaccuracy of object data and maximum damage values [20]. That leaves the uncertainty
in SDF construction and its associated parameters.
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Using the WaterSchadeSchatter data to Construct Depth Damage Curves
By supplying WSS with a series of water level rasters, the program calculates the maximum water
depth and duration of the flooding itself. This can be done by manually uploading the rasters to receive
either a csv or a raster for the damages in the provided area. However, this requires dozens of input
files per polder, which makes the process time-intensive when working with 48 polders.

As an alternative, WSS provides public access to its underlying datasets: land use maps, digital terrain
models, and the parameter tables that contain the factor values. Working with those files makes it
possible to reproduce the WSS calculation outside the web tool and to generate the same damage
numbers much faster. Using this data, it becomes feasible to compute total flood damage for a range
of uniform water levels in each polder. The result is a Depth Damage Curve (DDC) that expresses the
relationship between water level and total expected damage for a single polder.

3.4.4. Depth Damage Curves
DDCs in polders often have a distinct S-shaped curves, as shown in figure 3.4, which displays the
DDCs for polders Afdeling NS and Afdeling E. Most polders display single kinks in the curve, represent-
ing (critical) points where damage as a result of inundation accelerates. But some exhibit double kinks
or other patterns, like polder Afd. E in figure 3.4, representing more complex relations due to land use
features or varying terrain. A flat segment, where damage jumps almost immediately, usually means
that one large plot of land or one costly land-use class is inundated as soon as the water level reaches
that stage. These variations can provide insights into polder-specific profiles and inform targeted in-
tervention strategies. Observing these curves therefore helps to locate tipping points and to decide
where intervention can be most effective. The land-use composition is already directly embedded in
the curve, so separate land-use plots add limited extra insight, and it is known that greenhouses and
buildings dominate the monetary totals when flooded.

Figure 3.4: Top: Afdeling NS. Bottom: Afdeling E. In all plots, the y-axis represents the water level, ranging from the lowest
target level in the polder up to +2 meters.

The relationship between water level and damage is intuitive and easy to understand, as water levels
are quite concrete. This is also how decision-makers perceive the situation in the field, where insights
stem from water level readings of loggers. Ideally, these readings are used to form (complementary)
2D visualizations of inundated areas. This can be insightful if you want to avoid inundation at specific
areas, but still leaves two questions open:

• How will incoming (additional) precipitation translate into a rise of the curve?
• How much impact can an extra pump have on lowering the curve and as a result the damage?

One method to make these questions more insightfull is to add precipitation as a secondary y-axis.
Figure 3.6 does so for the same polders Afdeling NS and Afdeling E. In the figures, y-axes are limited
up to 200 mm (and the corresponding water level), as flooding beyond this precipitation magnitude is
extremely unlikely. The plots highlight a non-linearity between the water level and volume in the polder.
Although DDCs are clear for single polders, comparing the plots across polders is harder. Differences
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in elevation mean that the same water level can represent different precipitation volumes, and the
non-linear relation between water level and volumes hides the actual size of the polder in the curves.

Figure 3.5: Top: Afdeling NS. Bottom: Afdeling E. DDC (left) and DDC derivative (right) zoomed in for a precipitation depth of
up to 200 mm. A secondary y-axis has been added to show the corresponding precipitation (volume) relative to the water level.

Figure 3.6: Top: Afdeling NS. Bottom: Afdeling E. VDC (left) and VDC derivative (right) zoomed in for a precipitation depth of
up to 200 mm. The non-linearity has been removed, meaning that polders can now be compared directly.
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3.4.5. The Need for Volume Damage Curves
The non-linear relation between water level and volume leads to three main issues. First, it makes
visual comparison between polders and evaluation of pump placement effectiveness more difficult.
DDCs do not account for the size of polders, leading to significant variations in the values along the
x-axis that represent damage factors between polders. These differences are reflected in the varying
logarithmic scaling on the y-axis, which shows volume. Second, non-linearity increases the complexity
of the optimization model, removing the guarantee of finding a global optimum and requiring completely
different (slower) solution methods. Third, because tractor pumps and precipitation influence volume
rather than water level, using water level as the main variable requires an extra conversion step for
each optimization node.

Using water levels as the main variable may seem intuitive at first sight, but adds much complexity to
the optimization model. Instead, all three issues can be overcome when using Volume Damage Curves
(VDCs) instead of DDCs. The relation between volume and damage results in a more interpretable, and
easier to model alternative. This resolves the non-linearity and quantifies the increase in damage per
cubic meter of water, offering a direct link to the variable that tractor pumps and precipitation influence.



4
Optimizing Tractor Pump Deployment

This chapter explains the preparation of precipitation and pumping data, the construction of the Volume
Damage Curves from WSS land use and terrain maps, and the formulation of an optimization model
that assigns tractor pumps to polders for the June 2021 Case Study to minimize flood losses.

4.1. Model Input Workflow and Data Preparation
The optimization model relies on several inputs to accurately evalute flood damage and determine
optimal tractor pump placement for all timesteps. These include:

• Polder removal capacity.
• Hourly precipitation for the entire June 2021 event.
• The number of tractor pumps and their respective capacities
• Initial volume in a polder.
• The VDCs to relate water levels to the damage factor.

These five inputs directly feed into the final Optimization Model. The following subsections first address
the preparation of the precipitation data and the calculation of polder removal capacities. After that, a
separate section covers the construction of the VDCs and initial water volumes, as these involve more
elaborate processing.

Polder Removal Capacity
Polders in the Netherlands are designed to handle a standard discharge rate known as the ’maat-
gevende afvoer’ of 14.4 mm/day. In practice, this removal capacity is determined by the combined
discharge capacity of all pumping stations. To calculate the polder removal capacities, the capacities
of all pumping stations are summed per poldr. Minor adjustments were made according to a waterboard
survey, as detailed in Appendix C. All pumping station’s contribution are specified in this appendix, as
well as the total polder discharge capacities.

Precipitation
The precipitation data for the June 2021 event was obtained viaMeteobase, an online platform providing
hydrological data for water management purposes. This data consists of radar-based precipitation
measurements calibrated against readings from 216 ground stations [33]. The dataset spans three
days: June 18–20, and is provided as hourly .asc raster files. Using an open-source multiband zonal
statistics tool in QGIS [6], each raster band representing one hour was processed to calculate the mean
precipitation intensity (in mm) for each polder. The ’vector layer containing zones’ option of the tool was
used to assign precipitation values to specific polders, and the results were exported as a CSV file for
integration into the optimization model.

19
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Figure 4.1: Flowchart showing the workflow from the WSS raster input to the calculcation of the intial polder volumes and the
VDCs.
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4.2. Construction of Damage curves
4.2.1. Data Collection
In total, five data sources are used for the construction of the VDCs and initial volume, as can be seen
from Figure 4.1 on the previous page. The data sources used for the construction of the VDCs are the
landuse and the AHN3 Digital Terrain Model (DTM) of 2019 from the WSS database [24]. These were
the raster data closest available to the June 2021 event. The DTM and land use were downloaded by
the waterboard as mosaic tiles from the WSS Lizard Catalogue via an API key [23]. The land use from
this catalogue is specially created from a combination of various sources: the BAG register, TOP10NL,
BRP gewaspercelen, OSM, and CBS bodemgebruik.

All land use specifics, like themaximum damage values and the factor specifications for the construction
of de SDFs are specified in the configuration file [24]. This configuration file contains the factor and
asset values for the in total 154 land use types. The prices from the configuration table are based on
data from the period 2006–2015 and have not been updated since.

4.2.2. Data Preprocessing
The downloaded DTM mosaics are unedited by the waterboard, but DTM have been constructed from
the original AHN3 rasters [39]. Trees, buildings and vehicles have all been filtered out of the AHN3 to
remove false height values. These gaps were then filled as following:

• Greenhouses were filled with a floor level based on available data if available. Greenhouses that
did not have (enough) available pixel points were filled with a floor level basen on the median
pixel value from a 1-meter buffer around the greenhouse.

• Residental buildings were also filled via this buffering and filling technique, with the exception that
15 cm was added to the median value.

• Remaining blanks were filled with inverse distance weighted interpolation.

Minor adjustments were made on the WSS configuration file. The monetary values for three types
of potatoes were adjusted as these were found to be inconsistent with previous WSS reports [12].
The adjusted prices are based on the KWIN-AGV number from a 2024 inventory of the Wageningen
University [30].

The calculation of indirect damage to infrastructure cells relies on a specialized network map of road
segments and intersections. Indirect damage is assigned for a whole segment when more than 100 m2
of a road segment is inundated. However, this raster for road segments and intersections is not down-
loadable through the Lizard API. Therefore, indirect damage for highways (code 25), regional roads
(code 26), local roads (code 28) and railroads (code 31) classified with ’/section/day’ (’/wegvak/dag’ in
Dutch) have been excluded.

To format the data required for the generation of the VDCs, multiple steps were performed. First, the
configuration file was loaded as a pandas dataframe, with all the different factor values uploaded as
columns for each land use code. Then, land use types expressed in hectares (as can be seen in table
3.1) were converted to m2. Lastly, multiple processing steps were performed:

1. All mosaic raster files were merged into single raster files for landuse and the DTM using the
python GDAL library. These rasters have a grid size of 0.5x0.5 meter.

2. The merged DTM is resampled to a 5x5 m grid using the average value.
3. A loop was used to process the resampled DTM rasters, extracting 5x5 m point values for the

centre of the raster cells.
4. For each point, the corresponding land use, x and y coordinates were sampled. Note that while

the DTM was resampled, the land use data remained at its original 0.5x0.5 m resolution.
5. Each point is also assigned a corresponding polder name and target water level (zomerpeil, win-

terpeil) by sampling shapefiles containing these values. More about this in the sector below.
6. The sampled and processed point data for all polders are saved as one large CSV file.
7. This ’master’ CSV is split into smaller csvs for each unique polder. During this step, polder names

have also been standardized by removing spaces, apostrophes and dashes to ensure code func-
tionality. Unassigned points, which fell outside defined spatial boundaries, were exported to a
separate CSV file for verification.
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8. Each polder-specific CSV was then loaded into a Pandas dataframe, containing columns for land
use codes, target water level, and DTM height.

9. These dataframes were merged with the configuration file dataframe to include all factors for each
polder cell.

Target Level and Initial Water Volume
HHNK distinguishes five categories of water level control: Fixed, Flexible, Dynamic, Seasonal and
Dynamic Seasonal. The polder dataframe stores, for every raster cell, both the DTM and the summer
target water level. Only the summer target water level was used for the initial state of the model.

Since the control categories define water level regulation in different ways, a value was selected for
each category to serve as the summer target level, as specified in Table 4.1. This approach allows each
raster cell to be assigned a single target level. For each cell, the initial water depth was calculated as
the difference between the summer target level and the terrain elevation from the DTM. Multiplying this
depth by the cell area gives the initial water volume per cell. The total initial volume for a polder is then
the sum of all cell volumes within a polder.

Table 4.1: HHNK has five types of target water level control. This table shows the corresponding values used for the initial
water levels.

Target water
level

Fixed Flexible Dynamic Seasonal Dynamic Seasonal

Summer
level

Fixed Upper bound Upper bound Summer
level

Dynamic summer target
level

4.2.3. VDC Construction
The VDCs are constructed using a synthetic approach, using data from the WSS database. The syn-
thetic approach ensures that the individual cells reflect realistic economic values, and can be updated
when new land use maps, monetary values or factors are available. Unlike the standard WSS workflow,
where the maximum water level is uploaded for damage calculation, these curves were constructed di-
rectly to enable integration with the optimization model. The bathtub method with uniform water level
across the polder was chosen for its simplicity and compatibility, and coded such that the theoretical
VDCs simulate the damage ranging from the lowest target water level in the polder to 2 meters above
it, with 2 cm increments. Practically, this means that the factor depth is the only varying factor in the
individual SDFs of a cell. The other factors γduration, γseason and γrecovery time were fixed on 3 days,
June and 5 days respectively. This approach provides a practical solution that avoids manual uploads.

The volumes and damages were calculated incrementally for each polder, with 2 cm steps starting
at the lowest target level. For each (uniform) water level, the inundation depth relative to the DTM
is calculated. For each individual cell, the γdepth is interpolated for the respective land use. Then,
damage is calculated for each individual cell and then summed for all cells. Volumes and damages
were aggregated for each water level and stored as outputs arrays to be used in the optimization
model as inputs.

To reduce computational load, the raster cells were resampled from 0.25*0.25 m to 5*5 m resolution. At
the original resolution, the interpolation of the depth factors proved to be too computationally intensive,
regularly leading to crashes due to memory overload. By increasing the cell size, the number of calcula-
tions was reduced by a factor of 160. The coarser resolution significantly reduced the processing load,
making the method feasible on personal hardware. Additionally, the interpolation of the γdepth factor
was done through a custom interpolation, and done through vectorization instead of looping through
the cells for increased computation efficiency.
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4.3. Iterative Cycles in Model Development
Now that the relation between volume and damage has been established as input for the Piecewise
Linear (PWL) constraints in the optimization model, the model structure can be defined. The model is
formulated in Gurobipy, which is a module that can be added to python. It is an interface that uses the
Gurobi solver. The solver is accessed through an academic license. The gurobi solver uses algorithms
to automatically detect what sort of problem it is dealing with, and selecting the appropriate techniques
to solve the problem. As such, the user only has to specify the objective, the variables and constraints
on the variables, but not the solving techniques [8].

As explained in the introduction, this study follows a design-based research approach, meaning that
the optimization model was not constructed in a single step but refined iteratively through cycles of
building, testing, and evaluation. This required adapting the model structure and inputs based on
insights gained at each stage. Multiple modeling approaches were explored and discarded or improved
upon depending on their performance.

Tractor Pump Placement Variable
In a simplified test scenario, tractor pump placement was one dimensional with a single timestep (order
of O(p)), where pumps were placed for the entire duration of the event, without switching. This was
then expanded upon so that pumps are allowed to ’jump’ from one polder to another, by changing the
variable tractor pump placement toO(p∗t). For this configuration, pumps still all have the same capacity.
So the next step is to construction varying pumping capacities, which led to the binary variable order of
O(p ∗ t ∗ k), where k denotes the tractor pump. In this case, all tractor pumps are individually tracked,
with the k index denoting the specific pump. To each individual pump, a capacity can be assigned.

Water Balance, Pumping Stations and Infeasibility
The damage is determined by piecewise linear (PWL) constraints that interpolate damage based on
the maximum volume. Because the pumping station discharge is fixed, certain timesteps may lead to
negative volume in polders, causing model infeasibility. To adress this, a Slack Volume variable St,p

was introduced. This variable is the second variable of which the model is allowed to determine the
value. It is a continuous variable, which can take on any value between 0 and the polders pumping
station capacity. Through the use of this variable, the model can add water to a polder when needed
to prevent infeasibility. Theoretically, it can also add water when not needed, but adding water leads to
higher volumes, and thus damage values in a polder. As the models goal is minimize the damage, it
will automatically try to limit the added volume.

Pump Movement and Penalty Volume
In the simplified test scenario, tractor pumps were allowed to ’jump’ instantaneously between polders
without delay or cost. To address this unrealistic behavior, a method was required to incorporate travel
time from depot-to-polder, or from polder-to-polder. To model this, a binary Pump Movement variable
Yt,k,p was introduced, which identifies when pump k is assigned to polder p at time step t.

One approach to incorporating movement delay is through a downtime constraint, which explicitly pre-
vents pump operation for a fixed number of timesteps after movement. However, this method intro-
duces additional binary logic and can complicate the correct identification of pumpmovements. Instead,
a simplified and computationally efficient alternative was introduced using a Penalty Volume variable
Qt,p. With this alternative, pumps are still allowed to move instantaneously, but when movement occurs
(i.e., Yt,k,p = 1), a penalty volume is added to the receiving polder. This penalty volume offsets the
pump capacity for the arriving pump at that timestep, mimicking the delayed availability of the tractor
pump with limited increasing model complexity.

Full Scale Testing With a Two Stage Model
Full scale testing with all 48 polders resulted in runtime issues, with the first iterations taking multiple
days to reach a 10%GAP. To address these scalability concerns [4], a two-stage approach was adopted.
A two stage approach is a manner of preliminary screening [18]. The idea is not to necessarly find the
best solution, but to reduce a very large set of potential options to a more compact, promising subset.

The first stage is a simplified model: tractor pumps have generic capacities (O(p ∗ t)), and no travel
penalties are imposed, allowing pumps to instantaneously jump between polders. This stage identifies
which polders benefit most from tractor pump placement for damage reduction potential and reduces
the number of polders to be considered. The second stage is a more detailed optimization model with
subset of polders and pump tracking (O(p ∗ t ∗ k)). This model includes real-world constraints such as
travel time and individual tractor pump capacities.
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4.4. Final Model Iteration
4.4.1. First-Stage
The goal of the first stage optimization is to generate a selection of polders to continue with in the second
stage. It should serve as a quick indication that finds where the tractor pumps can have the largest effect
as damage reduction without complex constaints. As such, pumps are allowed to instantaneously jump
from polder to polder without forced travel time. All pumps are given the same capacity of 24.5 m3/min,
which is the average of the 20 available tractor pumps. The optimization serves as an indication and
due to its coarse nature the objective value of the best solution has limited usefullness, since this best
solution is without the constraints that reflect real world application. The goal of the model is to minimize
the total damage over all polders, which if formulated as the following objective function:

Minimize
P∑

p=1

Dp +

T∑
t=1

P∑
p=1

c ·Xt,p (4.1)

WhereDp is the damage in a polder as a result of the maximumwater volume for all timesteps, obtained
through the VDC. Xt,p is the pump count, an integer variable stating how many pumps are placed in
each polder and each timestep and c is an (arbitrary) parameter stating the cost of pump operation per
timestep, which is modelled as 1000 euros per timestep. This was added so that the model doesn’t
place pumps when there is no more damage reduction to be obtained. While the first-stage optimiza-
tion simplifies real-world constraints, such as instantaneous pump relocation and uniform tractor pump
capacities, it is well suited to identify polders with high potential for damage reduction.

Table 4.2: Overview of Variables and Parameters. Decision variables are those the model is free to optimize, while other
variables are fixed or constrained. {..., ...} indicates integer or binary variable, [..., ...] indicates continuous range.

Type Name Abbreviation Domain/Value Nature
Decision Variable Pump Count Xt,p {0, 1, 2, 3, 4} Integer
Decision Variable Slack Volume St,p [0,PSp] Continuous
Variable Maximum Volume V max

p [0, 200 mm] Continuous
Variable Water Volume Vt,p [0, 200 mm] Continuous
Variable Damage Dp [0, V DC(200 mm)] Continuous
Parameter Average Pump Capacity Xcap 24.25m3/min -
Parameter Operational Cost c 0.001 -
Parameter Precipitation Pt,p - -
Parameter Pumping Station Capacity PSp - -

The model, of which the code is provided in Appendix G, is subject to the following constraints:

• The total tractor pumping capacity (TPt,p):
It is an integer variable, determining the count of tractor pumps per polder, per timestep. Xcap

represents the capacity of pump (24.5 m3/min). It is a free variable, so the model is allowed to
determine the value.

TPt,p = Xt,p · Xcap (4.2)

• Maximum of 20 tractor pumps for each timestep:
no more than 20 pumps can be deployed for all polders at any timestep.

sum(Xt,p) ≤ 20, ∀ t (4.3)

• Maximum of four tractor pumps per polder:
This constraint is set to prevent excessive deployment of tractor pumps in a single polder at a
given timestep.

Xt,p ≤ 4, ∀ t, p (4.4)
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• Water Balance Equation:
The volume at the initial timestep Vinit,p is set as the summer target water level.. The volume
at subsequent timesteps is determined by the volume of the polder in the previous timestep, the
precipitation, pumping station capacity and placed tractor pumps. Additionally, the Slack Volume
St,p is added to prevent infeasibility.

Vt,p =

{
Vinit,p, t = 0

Vt−1,p + Pt,p − PSp − TPt,p + St,p, t > 0
(4.5)

• Maximum Water Volume:
This is an auxiliary variable that tracks the maximum water volume V max

p . The maximum water
volume is the value used for the interpolation of the damage through the PWL-constraint.

V max
p ≥ Vt,p, ∀ t, p (4.6)

• Damage Calculation:
As stated in the previous paragraph, Gurobi is unable to call functions during the optimization.
Therefore the Damage (Dp) in each polder for a range of volumes is computed beforehand as
a set of points. Between these points linear segments are enforced, so that a piecewise linear
function (PWL) is formed. This is an integrated type of function for Gurobi. From this function,
the damage can be interpolated for any volume within the range of the PWL function.

Dp = PWL(V max
p ,DDCp) (4.7)

4.4.2. Second-Stage
The first-stage optimization produces a 2D array representing the number of pumps placed for each
timestep and polder. To identify polders where tractor pumps have the most impact, the total number
of placements across all timesteps is calculated for each polder. Since each timestep in the first stage
represents 3 hours, a polder qualifies for selection if the total pump placements exceed five timesteps,
which corresponds to at least 15 hours of pumping. This threshold can be met in various ways, such
as a single pump operating for multiple timesteps, multiple pumps operating simultaneously for fewer
timesteps, or any combination where the cumulative pumping time reaches 15 hours.

This results in a list of polders where tractor pumps can have the largest impact. These polders serve
as the input for the second-stage optimization, which incorporates more detail while focusing on fewer
polders. To further improve computational efficiency, the timestep duration in the second stage is
increased to 6 hours, reducing the number of timesteps to 12 (instead of 24).

The objective of the second stage remains largely same as the first stage: to minimize damage over
all polders by placing 20 tractor pumps, but now of varying capacities.

Minimize Z =

P∑
p=1

Dp +

T∑
t=1

K∑
k=1

P∑
p=1

c ·Xt,k,p (4.8)

In the second stage, several key changes are made to enhance realism:

1. Individual Pump Tracking: the decision variable Pump Count (Xt,p) is replaced with Pump As-
signment (Xt,k,p), a binary variable where k represents the specific pump. This allows the model
to handle pumps with varying capacities.

2. Pump Movement and Travel Time: pumps can no longer instantaneously jump between polders.
A Pump Movement variable (Yt,k,p) is introduced to track whether a pump moves to a specific
polder during a timestep. Travel time is now added as a generic 3-hour (1 timestep) movement
penalty using the variable Penalty Volume (Qt,p).

3. Fictional initial timestep (t = 0): A fictional timestep with zero precipitation is added to account
for variables which depend on the state at t− 1.

Unlike the first stage, where pumps could move instantaneously between polders, this stage incorpo-
rates travel time. To add a penalty, it must first be known when a pump arrived in a new polder. This
is done through a binary Pump Movement (Yt,k,p) variable. This variable tracks whether a pumps has
moved into a polder at a given timestep. If Yt,k,p = 1, a movement penalty is enforced.
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Instead of modeling individual travel times between each polder, a generic 3-hour penalty (half a
timestep) is applied whenever a pump moves. This is done through a Penalty Volume (Qt,p), which
adds a fictional water volume equivalent to 3 hours of pumping capacity of that specific pump to the
destination polder. Since timesteps are 6 hours long, this effectively means that pumps operate at
half capacity in the timestep they arrive. For example, if a pump moves to a new polder at t, it would
only be able to pump for the equivalent of 3 hours instead of 6. This ensures that while pumps can
move instantly, their effectiveness is reduced upon arrival, mimicking real-world travel delays without
introducing complex movement constraints. If specific travel times were modeled for each polder, the
number of variables and constraints would increase from O(t ∗ k ∗ p) to O(t ∗ k ∗ p2). Additionally, the
Penalty Volume variable ensures that complex intertemporal constraints such as minimum downtime
are avoided. Aditionally, a fictional timestep t = 0 with zero precipitation is added. This is introduced
since the movement variable Yt,k,p depends on the state at t− 1.

Table 4.3: Overview of Variables and Parameters in the Second Stage Optimization. Decision variables are those the model is
free to optimize, while parameters are fixed inputs. Note that the Pump Count (O(t*p)) has been changed to Pump Assigned

(O(t*k*p))

Type Name Abbreviation Domain/Value Nature
Decision Variable Pump Assignment Xt,k,p {0, 1} Binary
Decision Variable Slack volume St,p [0,PSp] Continuous
Variable Pump Movement Yt,k,p {0, 1} Binary
Variable Water Volume Vt,p [0, 200 mm] Continuous
Variable Penalty Volume Qt,p [0, 45 ∗ 60 ∗ t] Continuous
Variable Maximum Water Volume V max

p [0, 200 mm] Continuous
Variable Damage Dp [0, V DC(200 mm)] Continuous
Parameter Pumping Station Capacity PSp - -
Parameter Tractor Pump Capacity Capk Varies per pump -
Parameter Operational Cost c 0.001 -
Parameter Precipitation Pt,p − -
Parameter Pumping Station Capacity PSp - -

The second stage model is subject to the following constraints:

• Pump Assignment:
This constraint ensures that each pump can only be assigned to at most one polder per timestep.

P∑
p=1

Xt,k,p ≤ 1, ∀ t, k (4.9)

• Maximum of 20 tractor pumps for each timestep:

sum(Xt,k,p) ≤ 20, ∀ t (4.10)

• Maximum of 3 pumps per polder:

K∑
k=1

Xt,k,p ≤ 3, ∀ t, p (4.11)

• Pump Movement Tracking:
The Pump Movement (Yt,k,p) variable identifies when a pump is relocated. If a pump moves to a
new polder at timestep t the variable is set to 1, allowing movement penalties to be enforced.

Yt,k,p ≥ Xt,k,p −Xt−1,k,p, ∀ t > 0, k, p (4.12)

• Penalty Volume:
this constraint calculates the cumulative effect of pumps being moved to the polder over the
penalty duration of 0.5 ∗ S. It is calculated as the sum of the capacities of pumps. S represents
the number of timesteps, and can be changed to reflect the duration of a timestep.

Qt,p =

K∑
k=1

S−1∑
d=0

0.5 ∗ Capk · Yt−d,k,p, ∀ t, p (4.13)
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• Movement Restriction:
To discourage excess pump relocation, each pump is allowed to move at most once from the
depot to a polder and once between polders. This constraint (significantly) reduces the feasible
solution space, improving computational efficiency.

T∑
t=1

P∑
p=1

Yt,k,p ≤ 1, ∀ k (4.14)

• Initial Pump Assignment:
This constraint sets the initial condition at the fictional timestep t = 0, ensuring that no pumps are
assigned at the fictional timestep.

P∑
p=1

X0,k,p = 0, ∀ k (4.15)

• Water Balance Equation:
The water balance remains the same, with the exception of that the total trator pumping capacity
of formula 4.2 is now changed to reflect the binary nature of the Pump Assignment Xt,k,p and
varying capacities.

Vt,p =

{
Vinit,p, t = 0

Vt−1,p + Pt,p + St,p − PSp −
∑K

k=1 Xt,k,p · Capk +Qt,p, t > 0
(4.16)

• Maximum Water Volume:
V max
p ≥ Vt,p, ∀ t, p (4.17)

• Damage Calculation: The damage function remains identical to the first stage, using a Piecewise
Linear (PWL) function to interpolate damage based on V max

p .

Dp = PWL(V max
p ,VDCp) (4.18)



5
Case Study

This chapter applies the optimization framework to the June 2021 Case Study, reporting solver per-
formance, pump allocation patterns, and the associated flood-damage reductions. It also sets out the
baseline conditions that serve as the reference for all optimized scenarios.

5.1. Model Performance
First-Stage Model: Size and Runtime
The First-Stage model serves as a screening tool for the Second-Stage optimization. It assumes instan-
taneous pumpmovement between models, rendering the objective function less realistic. However, the
model is not intended to capture detailed dynamics. Instead, its purpose is to identify polders that are
more susceptible to flood damages. With the purpose of quick screening, the model was restricted to
a maximum runtime of 1 hour. Figure 5.1 shows the solver’s progress over this 1 hour period. In this
figure, the orange line represents the bound (the optimal value of the relaxed problem) and the blue
line represents the incumbent (the best solution found).

Figure 5.1: First Stage model logfile results visualized. The model quickly identifies the best solution but does not converge.

The model finds the best solution within 10 seconds. After this point, neither the incumbent nor the
bound improved. The gap of this final solution was 1.1%. This behavior is as expected, given that there
is no penalty for pump relocation. This assumption creates a large solution space with many combi-
nations yielding similar objective values, which makes it difficult for the solver to tighten the bounds
and converge. Details on the solvers performance are provided in Appendix J. The appendix shows
the logfile, which includes the number of work units used. This metric is independent of the user’s
hardware, providing a measure of computational demand. For the First-Stage model, 5437 work units
were consumed, reflecting the small computational effort needed to identify acceptable solutions within
the given constraints.

28
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Preliminary Screening for Second-Stage
To verify the consistency of the First-Stage outcomes, the five best solutions were stored and analyzed.
Each solution includes the objective function value, and the complete set of decision variables. Tabel
5.1 shows the cumulative number of pump placements (total pump count over all time steps). All five
solutions resulted in identical total pump count per polder. This indicates that while the timing of pump
placement may differ, the solver consistently identifies the same polders as priority locations.

A threshold of five or more total pump placements was used to select polders for the Second-Stage
model. This threshold was determined through trial and error. Six polders were not selected despite
receiving pumps. These include: Afd. AB (9 hours), Afd. I-Zuid (3 hours), Obdam (12 hours), Polder
de Woudmeer (9 hours), Speketerspolder (9 hours) and Wimmenummerpolder (6 hours). For each
of these polders, pump placement was short and dispersed over the timesteps. This pattern can be
observed in Figure 5.8, which shows irregular pump deployment for these six polders. It suggests
that these polders were only occasionally beneficial for pump placement and did not provide sustained
damage prevention over multiple time steps.

Table 5.1: First-Stage results, showing cumulative pump counts per polder for the five best runs. Each number totals the sum
of all pump placements over all timesteps. Bold polders are selected for the Second-Stage. Identical totals per solution across

the five runs confirm a stable selection.

Polder Name Totals Per Solution Polder Name Totals Per Solution
Aagtdorperpolder [6, 6, 6, 6, 6] Egmondermeer [14, 14, 14, 14, 14]
Afd. AB [3, 3, 3, 3, 3] Groeterpolder [0, 0, 0, 0, 0]
Afd. C [0, 0, 0, 0, 0] Grootdammerpolder [0, 0, 0, 0, 0]
Afd. D [0, 0, 0, 0, 0] Hargerpolder [0, 0, 0, 0, 0]
Afd. E [0, 0, 0, 0, 0] Hensbroek [0, 0, 0, 0, 0]
Afd. F [0, 0, 0, 0, 0] Lage Hoek [0, 0, 0, 0, 0]
Afd. H-ON [15, 15, 15, 15, 15] Leipolder [0, 0, 0, 0, 0]
Afd. I-noord [8, 8, 8, 8, 8] Obdam [4, 4, 4, 4, 4]
Afd. I-zuid [1, 1, 1, 1, 1] Oosterzijpolder [0, 0, 0, 0, 0]
Afd. KP [0, 0, 0, 0, 0] Philisteinsepolder [0, 0, 0, 0, 0]
Afd. LQ [0, 0, 0, 0, 0] Polder de Berkmeer [0, 0, 0, 0, 0]
Afd. NG [10, 10, 10, 10, 10] Polder de Woudmeer [3, 3, 3, 3, 3]
Afd. NMR [16, 16, 16, 16, 16] Polder Schagerwaard [26, 27, 27, 27, 27]
Afd. NS [16, 16, 16, 16, 16] Polder Valkkoog [0, 0, 0, 0, 0]
Afd. OT-PV [39, 39, 39, 39, 39] Ringpolder [26, 26, 26, 26, 26]
Afd. W [14, 14, 14, 14, 14] Sammerspolder [26, 26, 26, 26, 26]
Afd. Z [15, 15, 15, 15, 15] Slootgaardpolder [0, 0, 0, 0, 0]
Afd. ZG-ZM [30, 30, 30, 30, 30] Speketerspolder [3, 3, 3, 3, 3]
Baafjespolder [7, 7, 7, 7, 7] ’t Hoekje [18, 18, 18, 18, 18]
Bergermeer [9, 9, 9, 9, 9] Ursem [0, 0, 0, 0, 0]
Boekelermeer [0, 0, 0, 0, 0] Vennewaterspolder [0, 0, 0, 0, 0]
Callantsoog [37, 37, 37, 37, 37] Verenigde Polders [0, 0, 0, 0, 0]
Damlanderpolder [9, 9, 9, 9, 9] Wimmenummerpolder [2, 2, 2, 2, 2]
De Kaag [0, 0, 0, 0, 0] Wogmeer [0, 0, 0, 0, 0]
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Second-Stage Model: Size and Runtime
The Second-Stage model introduces more realism, and great complexity compared to the First-Stage.
It limits each polder’s maximum number of tractor pumps to three instead of 4. It uses larger 6-hour
time steps instead of 3-hour timesteps to prevent excessive switching and decrease computational
demands. Additionally, each pump now has an individual capacity. Specifically, there are 9 pumps with
a capacity of 18m3/min, 4 with 20m3/min, 6 with 30m3/min and one with 45m3/min. This requires
tracking each pump individually. When a pump is assigned to a polder, a penalty volume equivalent to
half a timesteps pumping capacity is added to polder. This simulates a generic 3-hour downtime due to
travel constraints, forcing pumps to remain in one polder for longer periods. The model only focusses
on the 19 selected polders from the First-Stage, which are shown in bold in Table 5.1. By narrowing the
scope and number of timesteps, the computational demands are decreased, allowing incorporation of
more realistic constraints.

Despite the reduced number of polder (19 out of the 48), and fewer timesteps (12 instead of 24), the
Second-Stage model is larger. The explicit tracking of each pump’s location introduces a large number
of binary variables. This resulted in a computational effort amounted to 45,504 work units over a 12-
hour runtime limit. The increased computational demand is largely driven by linearization of the binary
variables and piecewise linear interpolation of the VDCs.

Figure 5.2: Second-Stage model logfile results visualized. The model continues to converge even after 12 hours. It takes
around 10 minutes to find a solution within 5% of its best solution after 12 hours. Note that this is not the same as the gap but a

comparison of incumbents.

Figure 5.2 shows the solver’s progress. The model steadily improved throughout the 12-hour period,
ultimately reaching an objective value of 39.51. Of this, 30.6 was attributed to the 19 selected polders
and 8.91 to the 29 unselected polders. The final gap was 1.0%, and kept decreasing towards the end of
the model run, indicating further convergence. Despite the addition of the penalty volumes, the Second-
Stage model achieved a lower objective value than the First-Stage model. There are two causes for
this result:

• By concentrating on the subset of 19 polders, this allowed the model to deploy resources more
effectively, allowing pumps to stay in high-impact polders longer.

• The varied pump capacities, instead of a generic 24.5 m3/min enables more nuanced decision-
making. Larger pumps are deployed to polders with high damage potential, whilst smaller pumps
manage other moderate-risk polders.
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5.1.1. Slack Volume Functioning to Prevent Infeasibility
The Slack Volume is a free variable included in both the First-Stage and Second-Stage models to
prevent negative water volumes. Negative water volumes would cause the model to become infeasible.
The variable is bounded by the total pumping station capacity of the polder. The need for the Slack
Volume is necessary as pumping station discharges are treated as constant. In timesteps where the
fixed discharge would exceed the maximum available volume, negative values would result.

Conceptually, the variable mimics pumping stations turning off, or operation at a reduced capacity. The
variable does not include a direct penalty in the objective function, but it does indirectly affect results.
Additional volume leads to greater damage through the interpolation of the VDCs. As such, the model
keeps the Slack Volume at a minimum, using it only when necessary.

Figure 5.3: Visualization of Slack Volume functioning for 8 selected polders from the First-Stage model. The top heatmap
shows water volume [mm]. The bottom heatmap shows the injected Slack Volume [m3].

Figure 5.3 shows how the variable works for a selection of eight polders from the First-Stagemodel. The
upper heatmap shows the water volume in millimeters, which is the volume in the polder independent
of the polder size. The figure reveals that all polders reached zero volume at timestep 5. To prevent
infeasibility, the model injects volumes with the Slack Volume variable in the timesteps leading up to
timestep 5. This shows that the variable functions as intended: it prevents infeasibility by injecting just
enough volume when required. However, two notable behaviours can be observed:

1. The injection of volume does not occur at the moment it is needed, but can happen in any timestep
prior to it.

2. In some polders, volume is injected in final timesteps of the simulation.

Both of these points are related to how the model calculates the damage in the polder. This is because
flood damage is determined based on the maximum volume encountered. As such, the precise timing
of the injection does not influence the objective value. Further explanation on the damage calculation
from the maximum volume is provided in Section 5.3.2.
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5.1.2. Pump Movement Tracking and Penalty Volume in the Second-Stage
As described in Section 3.3, explicit modeling of polder-to-polder travel time would result in too large a
model for the evaluation of three days. Instead, the Second-Stage model tracks pump movement, and
includes a generic penalty that simulates 3-hour travel time. This penalty is applied every time a pump
is newly assigned to a polder, including deployment at the first timestep, as the initial location is the
depot. The penalty is equal to the pumps capacity of 3 hours, corresponding to half a timestep. The
penalty reflects the capacity of the specific pump being assigned, and is meant to discourage frequent
relocation of pumps. The approach works as intended, which can be confirmed through the heatmaps in
Figures 5.4 and 5.5. The first figure shows the arrival of the pumps, with their corresponding capacities.
The second figure shows the penalty volume added in cubic metres.

Figure 5.4: Visualization of the Pump Movement (Yt,k,p) variable for all polders and timesteps in the Second Stage
Optimization. Color coded by the number of pumps that arrived (1, 2 or 3).

Figure 5.5: Visualization of the Penalty Volume (Qt,p) variable for all polders and timesteps in the second stage Optimization.
Comparing this figure with figure 5.4 shows that the penalty volume is based on half the cumulative capacity of the arrived

pumps.
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Figure 5.6: Visualization of the baseline damage factor for all polders. Most damage occurs in the regio Zijpe (all polders
starting with Afd., as well as Callantsoog and ’t Hoekje). Other outliers include the Ringpolder and Sammerspolder.
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5.2. Baseline and Optimized Damage Factors
The baseline scenario represents the case where only the fixed pumping stations are active, with no
deployment of tractor pumps. It serves as the reference scenario for evaluating the effectiveness of the
optimization models. The damage factors are shown for all polders in Figure 5.6, and summarized in
Table 5.2. Since these factors represent the total damage for an entire polder, larger polders generally
display higher values. Figure 5.6 also includes the names of all 48 polders, enabling easier comparison
with other figures.
The total damage factor of the Baseline scenario is 55.59 [-], with the largest contributors being:

• Afd. NMR (6.72)
• Ringpolder (6.23)
• Afd. OT-PV (5.42)
• Sammerspolder (3.68)

Notably, 24 polders had a damage factor below 0.5. The combined damage factors of just Ringpolder
and Afd. NMR alone equaled that of these 24 polders combined. This highlights large variation in
damage factors between polders.

Figure 5.7: The left figure shows the total precipitation for the entire duration of the event. The right shows the deselected
polders (shaded) and the prevented damage factors by the Second-Stage model.

The majority of the precipitation was concentrated closer to the coast. With the eastern polders Lage
Hoek, Polder de Berkmeer, De Kaag, Obdam, Hensbroek, Wogmeer and Ursem received the lowest
total volume of precipitation. Figure 5.7 illustrates this pattern, with the right-hand side showing the
polders selected for the Second-Stage model. The eastern, low-precipitation polders were deselected.
Southern polders close to the coast experienced the larges precipitation volumes. Notably, some of
these polders such as Philisteinsepolder, Wimmenummerpolder, Damlanderpolder and Grootdammer-
polder have low removal capacities (10.3, 10.7, 10.0 and 10.1 mm/d, respectively). However, despite
having low removal capacities, these polders had damage factors of 0.12, 0.57, 0.19, and 0.05, indi-
cating low vulnerability to flood damages.
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Table 5.2: Polder characteristics, baseline damage factors and damage prevented in the First- and Second-Stage optimization
models. Highlighted green values represent polder with higher prevented damage in the Second-Stage, red value denote

polders which were selected, but where no pumps were allocated to. Gray rows correspond to polders that were not selected
for the Second-Stage optimization.

Polder
Removal
Capacity
[mm/d]

Area
[ha]

Total
Precipitation

[mm]

Initial
Volume
[mm]

Damage
Baseline

[-]

Prevented
Damage

First-Stage
[-]

Prevented
Damage

Second-Stage
[-]

Aagtdorperpolder 12.7 284 144 0 1.10 0.08 0.00
Afd._AB 17.2 543 122 1 0.74 0.01 0
Afd._C 14.0 316 124 3 0.43 0 0
Afd._D 48.9 56 134 1 0.01 0 0
Afd._E 13.3 563 103 2 1.39 0 0
Afd._F 19.8 138 128 3 0.19 0 0
Afd._H_ON 20.5 498 124 2 2.11 0.27 0.24
Afd._I_noord 19.2 202 151 4 0.56 0.26 0.19
Afd._I_zuid 16.7 69 137 1 0.23 0.02 0
Afd._KP 15.0 356 101 3 0.14 0 0
Afd._LQ 15.4 299 121 26 0.09 0 0
Afd._NG 18.1 215 123 1 0.97 0.23 0.19
Afd._NMR 25.0 692 123 1 6.72 0.57 0.91
Afd._NS 16.6 208 108 3 2.53 1.10 1.11
Afd._OT_PV 14.5 586 115 3 5.42 2.08 2.24
Afd._W 18.1 159 102 2 2.12 1.88 1.73
Afd._Z 27.1 791 107 5 2.60 0.60 1.16
Afd._ZG_ZM 16.6 381 125 5 2.51 1.64 1.72
Baafjespolder 17.2 461 121 0 0.66 0.13 0.25
Bergermeer 23.1 846 124 3 1.66 0.12 0.00
Boekelermeer 16.4 334 107 0 0.45 0 0
Callantsoog 17.5 739 99 4 2.09 1.75 1.65
Damlanderpolder 10.7 282 152 0 0.57 0.11 0.00
De_Kaag 14.1 409 76 0 0.09 0 0
Egmondermeer 16.1 714 130 1 1.98 0.22 0.06
Groeterpolder 11.5 301 138 0 0.04 0 0
Grootdammerpolder 10.3 461 152 0 0.12 0 0
Hargerpolder 15.3 361 114 0 0.04 0 0
Hensbroek 15.2 567 66 0 0.04 0 0
Lage_Hoek 20.9 327 78 0 0.03 0 0
Leipolder 14.7 94 104 0 0.00 0 0
Obdam 42.9 905 71 1 0.72 0.03 0
Oosterzijpolder 12.5 1127 106 0 1.64 0 0
Philisteinsepolder 10.1 285 159 0 0.05 0 0
Polder_de_Berkmeer 15.1 287 73 0 0.05 0 0
Polder_de_Woudmeer 17.6 327 88 3 0.21 0.04 0
Polder_Schagerwaard 16.7 659 91 0 1.55 0.94 0.98
Polder_Valkkoog 14.1 512 111 0 0.35 0 0
Ringpolder 14.4 1425 115 0 6.23 0.76 1.53
Sammerspolder 18.5 451 142 0 3.68 0.80 1.62
Slootgaardpolder 19.2 570 79 0 0.35 0 0
Speketerspolder 14.2 405 83 0 0.25 0.02 0
t_Hoekje 19.3 388 105 1 1.64 0.43 0.67
Ursem 16.1 1065 57 0 0.07 0 0
Vennewaterspolder 13.6 338 130 0 0.38 0 0
Verenigde_Polders 13.8 916 127 0 0.52 0 0
Wimmenummerpolder 10.0 115 157 1 0.19 0.02 0
Wogmeer 13.5 691 56 0 0.08 0 0

In Table 5.2, the shaded polders were deselected for the Second-Stage. The table shows the polders
removal capacties, areas, total precipitation and initial volumes, as well as the damage factors for the
baseline, First-Stage and Second-Stage models. It can be obseved that polders seem to be selected
irrespective of size, total precipitation or other straightforward metrics. These variables alone do not
explain the magnitude of the damage factor, as expected. Instead, the damage patterns are influenced
by the interaction between local terrain elevation and land use types in each polder. Because these
interactions are unique for each polder, a generalized regression analysis is unsuitable. Instead, each
polder requries individual assessment necessary to understand damage accumulation and to analyse
the rationale for selection and pump placement in the optimization models.
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Figure 5.8: Pump count visualization for the five best solutions, showing pump placement for the five best solutions from table
5.1. The x-axis represents the timesteps (three hours per timestep). Instantaneous pump movement between polders is clearly

visible. Also note that after timestep 18, no pumps are placed.



5.2. Baseline and Optimized Damage Factors 37

Figure 5.9: Pump placement visualization for the Second-Stage. The x-axis represents the timesteps (six hours per timestep).
The gray rows represent polders that are not selected by the First-Stage Model. Also note that after timestep 9 (comparable

with timestep 18 in the First-Stage), no pumps are placed.
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5.3. Interpreting Pump Placements
5.3.1. Pump Placements in the First- and Second-Stage
Several observations can be made when comparing pump placements from the First- and Second-
Stage models. Aagterdorperpolder, Bergermeer and Damlanderpolder received pumps in the First-
Stage, but were not selected in the Second-Stage. These three polders are marked red in Table 5.2.
In these polders, the First-Stage prevented relatively little damage: 0.08, 0.12 and 0.11, respectively.
This is low compared to prevented damage factors in other polders.

In contrast, in polders such as Afd. NMR, Afd. Z, Ringpolder and Sammerspolders significant damage
was prevented through pump placement. These polders are marked green in the same table. Notably,
these polders are among the largest of the in total 48 polders, measuring 692, 791, 1425 and 451
hectares respectively. This demonstrates that larger polder can still be prioritized, despite the intuitive
assumption that tractor pumps would be more effective in smaller polders.

Figure 5.9 shows that certain polders received a high number of pumps (e.g. Afd. ZG-ZM in which
a damage factor of 1.72 was prevented), but Afd. W for instance received relatively few pumps but
has almost the same damage prevention. This again highlights that tailored pump deployment can
significantly impact placement effectiveness. It also suggests that at high-level, there is no clear or
consistent relationship between simple metrics and damage prevention outcomes.

5.3.2. Damage Value Calculation and the Link to Maximum Volume
Although Figures 5.8 and 5.9 provide a visual overview of pump placements in the First- and Second-
Stage models, interpreting these placements requires indivual attention to the polders. Allocation de-
cisions are not immediately intuitive or directly interpretable. To better understand these placement
decisions and identify patterns, this section focuses on how flood damage is computed in the model,
and how this relates to the optimization structure.

Pump placement results from the interaction between the (free) decision variable Pump Placement and
the objective function. As discussed earlier in Sections 5.1.1 and 5.1.2, the model primarily prevents
damage by avoiding increases in the maximum water volume in a polder. This is expected, as the
VDCs have one free influencing factor: γdepth. This factor represents the maximum water volume over
the entire simulation period.

The use of VDCs that depend solely on γdepth as the influencing factor reveals a limitation: the opti-
mization model focuses exclusively on minimizing the maximum water volume. As a result, no pump
placements occur after the maximum volume peak. This behaviour is clearly visible when comparing
the precipitation pattern in Figure 5.10 and pump placements of both stages in Figures 5.8 and 5.9.
In the latter two figures, no pumps are allocated after timestep 18 in the First-Stage model or after
timestep 9 in the Second-Stage model. These timesteps correspond to approximately 06-20 00:00 in
the figure below. Notice the black dotted line, that shows the cumulative mean precipitation over all the
polders. At this point, the final precipitation occurs, and in all polders, the maximum water volume in
the baseline is reached. Consequently, the model allocated pumps so that the maximum water volume
of the this point is lowered. However, after this point, the maximum volume has already been reached,
so there is no incentive for further pump allocation. This is the direct result of how the objective function
in relation to the VDC has been formulated, where the γduration factor is fixed.

Figure 5.10: Average precipitation pattern of the 48 selected polders, showing both the pattern and the cumulative
precipitation. All polders reached their maximum water volume in the early morning (Saturday to Sunday night).
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The behaviour that no pumps are placed after reaching the maximum volume can shown by plotting the
pump placements with the polder volumes of both the Baseline and Second-Stage model. This is done
below for two example polders: Afd. Z and Afd. ZG-ZM in Figures 5.13 and 5.12. The orange lines
show Baseline volumes, while the blue lines and shaded areas indicate optimized volumes and periods
of pump operation, respectively. In both cases, pump placement was so that the second volume peak
at timestep 9 did not exceed the first volume peak.

Figure 5.11: Water volume over time in polder Afd. Z. The orange line shows the baseline volume, while the blue line shows
the optimized volume. The shaded area indicates the period of pump deployment. The dotted horizontal line represents the

maximum water volume reached in the baseline scenario.

Figure 5.12: Similar plot but for polder Afd. ZG-ZM.

This highlights two issues:

• The curernt use of the VDCs and objective function formulation do not account for pump place-
ment after volume maxima.

• As a result, the model wil not place pumps if no precipitation is given as an input, even if water
volumes are high. This becomes problematic in short simulation horizons (e.g. when only two or
three timesteps are evaluated). This neglects the effect pump placement can have on post-peak
pumping, to reduce the flood duration.

The plotted results reveal a shortcoming of the model in using a fixed γduration: pump placement is
strictly tied to the maximum volume in this evaluation of this study, but will also be tied to the fore-
casted precipitation in a short-term decision-support model when using the VDCs in the current format.
The approach fails to capture operational value of post-peak interventions, ignoring the effect of flood
duration and the potential for pumps to reduce damage even if no precipitation is expected.

5.3.3. Polder Damage Profiles
Despite the limitations of damage calculation discussed in the previous section, it is still possible to
extract practical insights from the models inputs and ouputs. One such approach is to derive damage
profiles, which are the derivatives of the VDCs. While the solver directly uses the VDCs during the
optimization, visually comparing different VDCs is quite challenging. A better interpretable alternative
is to plot the VDC slopes of polders and compare those. These damage profiles provide a better
interpretable figure of how rapidly damage increases per unit of water volume, and thus how much
benefit can be gained from additional pump placement.
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In VDCs, the slope indicates the damage sensitivity. A ’flat’ section represents increasing damage in
the polder. In the damage profile, this is represent as a peak or large value. The derivative value can
be used as a proxy for determining the effectiveness of pump placement. A high damage profile value
indicates that reductions in volume can yield significant damage reduction. Figures 5.13 and 5.14 show
these damage profiles and volumes for polder Afd. Z and the Baafjespolder. These figures now include
the damage profile added as a secondary x-axis on top.

Figure 5.13: Water volumes and damage profile for Afd. Z, showing pump placement to prevent the occurrence of the damage
peak.

Figure 5.14: Baafjespolder volume and damage profile highlighting a sharp damage increase at around 80 mm.

In Afd. Z (Figure 5.13), three pumps were deployed in early timesteps to keep the second volume at
timestep 9 from rising above the volume in timestep 3. This avoided entering a section with large slope
values, where volume increases would lead to high damage increases. In Baafjespolder (Figure 5.14),
the derivate values are more moderate across the entire volume range. The model can not prevent
the volume at timestep 9 from exceeding the volume at timestep 3 and prioritizes other polders where
pump deployment yields greater damage reduction per unit volume.
In contrast, the damage profile of the Aagtendorperpolder (Figure 5.15) demonstrates a stable slope,
seen as a less fluctuating damage profile. This means that pump placement in this polder is suitable
for the entire volume range. However, the damage profile is lower than other polders, making it a less
attractive candidate for pump deployment.

Figure 5.15: Gradual damage increase in Aagtendorperpolder, indicating a relatively steady damage increase per added
volume.
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5.3.4. Classification System and Damage Tipping Points
From the damage profiles of the polder discussed in the previous section, several patterns can be
distinguished. The Aagtendorperpolder, for instance, shows a relatively stable damage profile, where
the damage increase remains nearly constant across the entire volume range. In contrast, Afd. Z and
Baafjespolder are characterized by minimal damage up to approximately 50 mm and 60 mm of water
volume, respectively. However, when the volume increases above these point, damage increases
rapidly.

Because the damage profiles closely align with pump placement decisions, it could be used as a basis
for polder classification and identification of certain damage tipping points. These are points where
a steep increase in the VDC derivative is visible. Below this point, benefit for damage prevention by
pump placement is limited. Above it, each unit of pumped water can prevent substantial damage from
occuring. The categories presented below are based on visual inspection of the VDCs rather than on
a quantitative basis. They serve as a practical initial classification that can later be refined. Based on
the visual inspection, three polder types can be distinguished:

• Type 1: Polders that should always be evaluated, as damage occurs at every volume stage.
• Type 2: Polders that should be evaluated only if the water volume exceeds a tipping point.
• Type 3: Polders that do not require evaluation, as the derivative values remain low, indicating
minimal benefit from pump placement

Figures 5.16, 5.17 and 5.18 show examples for each type. All plots use the same axes limits for easy
comparison. In some cases, Type 1 and Type 3 polders may appear similar. In such cases, the choice
was made to classify assign them to Type 1. Type 1 polders should always be taken into consideration.
The magnitude of the damage profile varies depending on the volume depth, but some level of damage
occurs across the entire range.

Figure 5.16: Type 1 polders, showing a damage profile in which damage more or less occurs at every volume.

Most Type 2 polders show unique damage profiles, sometimes with pronounced outliers. In Figure
5.17, all four polders show a clear tipping point, a volume beyond which damage begins to accumulate.
In Afd. Z, this transition to damage is gradual, but in the other three polders, this is quite abrupt.

Figure 5.17: Type 2 polders, which often have unique profiles, with tipping points below which little damage occurs.
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Type 3 polders are characterized by a comparatively low damage increase across all volume depths.
The derivative of the VDC remains small, indicating that additional volumes lead only to marginal in-
creases in damage. Consequently, the benefit of placing a tractor pump in these polders is minimal.

Figure 5.18: Type 3 polders, which do not require evaluation as damage remains negligible.

Figure 5.19: All damage profile types as well as the prevented damage from the optimization models. Notice that most polders
that were not selected for the second stage are Type 3 polders.
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5.4. Revisiting Results: Polder Types as a Method for Placement
Deselection

The First-Stage optimisation filters the full set of 48 polders to 19 polders. However, the method of
damage calculation is still omitting flood duration effects. Incorporating these will inevitably lead to a
larger model. In the Second-Stage model, 19 polders and 12 timesteps produce a runtime of at least
15 minutes to obtain a reasonable gap. Other events may involve all 149 polders suitable for tractor
pump placement, or additional pumps from contractors. As forthcoming improvements to the damage
calculation will expand the model size, the screening into a subset of more promising polders is even
more important. The three polder types provide such a screening method, not for polder selection but
for deselection (i.e. creating a promising subset). It offers a fast way to omit polders with limited pump
placement benefit and can be used either before the First�Stage model or replace it altogether if future
model expansions make the two-stage setup impractical.

Table 5.3: Polder Types, First-Stage selection and pump allocation results.

Type Total Selected by
First-Stage

Polders with
Pumps Note

Type 1 11 9 8

Type 2 12 7 7 3 of the 5 not selected did
not reach the tipping point

Type 3 25 3 2

5.4.1. Type 3 Polders: Exclusion
Type 3 polders are characterized as polders with limited damage potential. This is apparent by their
consistently low derivative values on the VDCs. This makes them a logical starting point as an exclusion
criteria to obtain a smaller subset. Out of the 25 identified Type 3 polders, only three were selected for
inclusion in the Second-Stage model: the Baafjespolder, Bergermeer and Egmondermeer. However,
in the selection:

• Bergermeer did not receive any pumps in the Second-Stage;
• Egmondermeer received one 18m3/min pump for six timesteps, resulting in 0.06 damage factor
prevention;

• The Baafjespolder received one 30 m3/min pump over six timsteps, resulting in 0.25 damage
factor prevention.

Compared to damage prevention observed in other polder types, these values are quite small. Looking
at the selection of the polders and allocation of pumps more broadly:

• A total of 29 polders were not selected for the First-Stage;
• 32 out of the in total 48 polders were not allocated any pumps;
• Out of these 32, 22 were classified as Type 3;
• There are in total 25 Type 3 polders, of which only two were allocated pumps in the Second-Stage.

These numbers suggest that polders with Type 3 damage profiles were largely excluded by the First-
Stage, and when included, only received limited pump allocations and damage prevention.
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Table 5.4: Polder characteristics and pump allocation results for polders classified as Type 3.

Polder Type
Removal
Capacity
[mm/day]

Area
[ha]

Total
Precipitation

[mm]

Damage
Baseline

[-]

Prevented
Damage

Second-Stage
[-]

Afd._AB 3 17.2 543 122 0.74 0
Afd._C 3 14.0 316 124 0.43 0
Afd._D 3 48.9 56 134 0.01 0
Afd._F 3 19.8 138 128 0.19 0
Afd._LQ 3 15.4 299 121 0.09 0
Baafjespolder 3 17.2 461 121 0.66 0.25
Bergermeer 3 23.1 846 124 1.66 0
De_Kaag 3 14.1 409 76 0.09 0
Egmondermeer 3 16.1 714 130 1.98 0.06
Groeterpolder 3 11.5 301 138 0.04 0
Grootdammerpolder 3 10.3 461 152 0.12 0
Hargerpolder 3 15.3 361 114 0.04 0
Hensbroek 3 15.2 567 66 0.04 0
Lage_Hoek 3 20.9 327 78 0.03 0
Leipolder 3 14.7 94 104 0.00 0
Obdam 3 42.9 905 71 0.72 0
Oosterzijpolder 3 12.5 1127 106 1.64 0
Philisteinsepolder 3 10.1 285 159 0.05 0
Polder_de_Berkmeer 3 15.1 287 73 0.05 0
Polder_de_Woudmeer 3 17.6 327 88 0.21 0
Polder_Valkkoog 3 14.1 512 111 0.35 0
Ursem 3 16.1 1065 57 0.07 0
Verenigde_Polders 3 13.8 916 127 0.52 0
Wimmenummerpolder 3 10.0 115 157 0.19 0
Wogmeer 3 13.5 691 56 0.08 0

5.4.2. Type 2 Polders: Tipping Points
Type 2 polder are defined by a distinct tipping point in their damage profile. This makes pump placement
only beneficial if the water volume surpasses this volume point.
Out of the twelve identified Type 2 polders, five were not selected by the First-Stage model:

• Afd. KP, Speketerspolder and Vennewaterspolder did not exceed their tipping point during the
event, and were not selected.

– Afd. KP has a tipping point at around 100 mm, while the maximum water volume only
reached 70 mm.

– Speketerspolder has a tipping point at around 60 mm, but the maximum volume was 51 mm.
– Vennewaterspolder has a tipping point of 120 mm and a maximum volume of 99 mm.

• Boekelermeer has a unique damage profile. It shows limited damage sensitivity, except for a
single outlier between approximately 35-50 mm, shown in Figure 5.20. Outside this range, the
damage increase per unit volume is low. In the baseline scenario, the maximum volume reached
70 mm. As the maximum volume is well beyond the ’damage peak’, placement of pumps did not
significantly reduce damage, and it was not selected.

• Afd. E has a similar damage profile as Boekelermeer, characterized by a damage peak with a
maximum volume well above this peak.
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Figure 5.20: VDC and damage profile for Boekelermeer. Most damage accumulates between 35–50 mm of volume. Volumes
above this peak result in little additional damage.

Visualizing the damage derivative, water volume and pump placement for Callantsoog in Figure 5.21
clearly shows how the model tries to prevent the tipping point from being exceeded. Callantsoog re-
ceived 99 mm of total precipitation. In the baseline scenario, the maximum volume reached was 63
mm. With a tipping point at approximately 45 mm, the model placed pumps to ensure the maximum
volume remained below this point. This resulted in significant damage prevention (1.65).

Figure 5.21: Polder volumes for Callantsoog. The dotted line indicates the maximum volume of the optimized scenario, which
corresponds to observed tipping point.

Table 5.5: Overview of Type 2 polders. Polder that were not selected for the Second-Stage model are shown in gray. Polders
with highlighted green volumes were polders of which the tipping points were not reached, explaining the non-selection.
Volumes that are highlighted red are cases when pumps were placed to reduce the volume to below the tipping point.

Polder Type
Tipping
Point
[mm]

Removal
Capacity
[mm/day]

Maximum
Volume
Baseline
[mm]

Maximum
Volume

Optimized
[mm]

Damage
Factor
Baseline

[-]

Prevented
Damage
Factor
[-]

Afd._E 2 40 13.3 75 1.10 0
Afd._I_noord 2 80 19.2 111 100 0.56 0.19
Afd._KP 2 100 15.0 70 0.14 0
Afd._Z 2 35 27.1 52 43 2.60 1.16
Afd._ZG_ZM 2 45 16.6 93 60 2.51 1.72
Boekelermeer 2 40 16.4 70 0.45 0
Callantsoog 2 45 17.5 63 45 2.09 1.65
Damlanderpolder 2 80 10.7 128 128 0.57 0.00
Polder_Schagerwaard 2 35 16.7 53 37 1.55 0.98
Ringpolder 2 35 14.4 65 56 6.23 1.53
Speketerspolder 2 60 14.2 51 0.25 0
Vennewaterspolder 2 120 13.6 99 0.38 0
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Beyond volume-based analysis, identifying which land use types contribute to damage calculation can
provide additional insights. The WSS database distinguishes 159 individual land use types. For clarity
these have been grouped into seven broader categories. Appendix B lists every specific land use type
and shows how each one has been assigned to a category. The seven categories are:

• Water, grass and nature;
• Infrastructure;
• Field crops;
• Horticulture;
• Recreation;
• Greenhouses;
• Buildings.

By comparing the categorized VDCs of the different land uses categories with the damage profile and
the volumes, it is possible to identify which categories drive damage in a polder. These figures are
shown for all polders selected for the Second-Stage in Appendix H. This is shown for all polders in the
appendix, but visualized in Figure 5.22 for a single polder. in Afd. ZG-ZM, damage initially stems from
field crops up to 40 mm, but transitions to buildings beyond that.

Figure 5.22: Afd. ZG-ZM. The upper plot presents the damage profile alongside the baseline and optimized water volumes, as
well as the corresponding pump placements. The lower plot displays the contribution of different land use categories to the total

damage. Initially, damage arises primarily from field crops, while beyond 50 mm of water volume, buildings drive damage
increases.
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5.4.3. Type 1 Polders
Out of the 11 polders classificied as Type 1, two were not selected by the First-Stage model: Afd.
I-zuid and the Slootgaardpolder. Both show damage profiles that would normally justify inspection,
yet other factors made them less attractive for pump allocation. Afd. I-Zuid is small (69 ha), with a
gradually increasing derivative at larger volumes. Due to the small size, a single pump would ’push’ the
maximum volume down to these lower ranges, making alternative polders more suitable for allocation.
Slootgaardpolder, on the other hand, received relatively little precipitation (79 mm). Slootgaardpolder
received 79 mm of rain during the event, which is on the lower range of all the polders, and has a
discharge capacity of 19.2 mm per day. That combination kept the maximum water volume to 36 mm,
so additional pumps were unnecessary.

Aagtdorperpolder (Figure 5.23) was selected, but ultimately did not receive any pumps. Compared to
other Type 1 polders, its damage derivative values are lower. This suggests lower damage potential
per unit of additional volume. It was classified as a Type 1 polder, but an argument can be made for
classifying it as a Type 3 polder.

Figure 5.23: Volume and pump allocation (no allocation) for Aagtdorperpolder. Although this polder has a consistent damage
profile, the relatively low derivative values may have limited its selection for pump allocation.

Table 5.6: Overview of Type 1 polders. All polders show high damage potential across the full precipitation range.

Polder Type
Removal
Capacity
[mm/day]

Area
[ha]

Total
Precipitation

[mm]

Damage
Baseline

[-]

Prevented
Damage

Second-Stage
[-]

Aagtdorperpolder 1 12.7 284 144 1.10 0.00
Afd._H_ON 1 20.5 498 124 2.11 0.24
Afd._I_zuid 1 16.7 69 137 0.23 0
Afd._NG 1 18.1 215 123 0.97 0.19
Afd._NMR 1 25.0 692 123 6.72 0.91
Afd._NS 1 16.6 208 108 2.53 1.11
Afd._OT_PV 1 14.5 586 115 5.42 2.24
Afd._W 1 18.1 159 102 2.12 1.73
Sammerspolder 1 18.5 451 142 3.68 1.62
Slootgaardpolder 1 19.2 570 79 0.35 0
t_Hoekje 1 19.3 388 105 1.64 0.67

In several Type 1 polders, significant damage was prevented:

• ’t Hoekje experienced a high baseline damage factor (1.64) due to large areas of land used for
flower bulb cultivation, which in classification from the methodology is categorized under horticul-
ture. The small size of the polder increased the effectiveness of pump placement, resulting in
significant damage reductions (0.67 prevented).

• Afd. NS, Afd. NMR and Afd. OT-PV where 1.11, 0.91 and 2.24 was prevented. These damages
in these polders were primarily linked to extensive horticulture land use.

• In Afd. W, houses in the village ’t Zand inundate at around 80 mm of precipitation, leading to large
damages (2.12 baseline and 0.38 prevented).
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• Sammerspolders had a high baseline damage factor of 3.68, which was reduced by 1.62. Dam-
age in this polders stems from both horticulture and recreation land uses.

Figure 5.24: Sammerspolder. The top plot shows the baseline volume and optimized volumes, with pump placement indicated
by gray shading. The model places pumps to ensure the maximum volume never exceeds the initial, unpreventable volume

peak. The bottom plot shows that around 70 mm, recreational land use areas begin flooding.



6
Evaluation and Reflection

This chapter reflects on the functioning of the current model, and describes the transition from a single
event case study to a (real time) short horizon model. It discusses how incorporating flood duration,
altering the damage calculation, and reducing model size can improve both performance and practical
applicability.

6.1. General Points
Study Approach
Using the WSS browser tool provides a method for estimating damage, but it does not help to quickly
identify effective measures. However, since WSS provides access to its data, using this data in an
optimization setting became the goal of this study. A key step was constructing VDCs and using them to
interpolate variable values through PWL constraints. The main focus of this research was investigating
how damage calculation through the VDCs could be used in an optimization model to support decision
making in emergency flood management. The study is still ongoing, as further work is needed to refine
the damage calculation by including flood duration as an influencing parameter and to improve the
VDCs themselves.

Findings from this study are based on a case study. This makes results comparable to real-world insight,
but can also introduce potential biases that might influence conclusions. To address this, the results
chapter maintained a broad and generalizable perspective. Findings should be viewed as foundational
rather than definitive. The research provides a proof of concept, but further refinement is necessary to
develop a fully operational deployment tool.

Future Work: From Single Event Case Study to Short Horizon Model
The evaluation of the June 2021 event proved sufficient for this project, primarily because no context
or prepared inputs were available at the time, and this was the most relevant event available. For a
first proof of concept the single event focus kept the scope manageable. Future work, however, should
shift toward a short horizon model that can be run quickly for different sets of input data, for example
varying numbers of pumps or different precipitation forecasts. Monitoring runtime will be essential to
keep the model useful in an operational setting. Upcoming improvements should therefore concentrate
on runtime feasibility and on incorporating (real time) field data as model inputs.

From the literature study, it was apparant that models assisting decision makers should be flexible and
modular to accomodate changes. While the model is modular, allowing for updates (e.g., new VDCs,
additional pumps), it still lacks flexibility. Decision-makers often hesitate to adopt tools that are inflexible
or slow [16], so further development should aim for practical performance and the integration of field
data.

In its present form, the model functions as a deterministic optimization model: all inputs remain un-
changed throughout each run. This is best explained as:

• No uncertainty in model data input (e.g. precipitation).
• Fixed tractor pump capacity and pumping station capacity.
• Fixed number of tractor pumps.
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• Fixed amount of timesteps and length of a timestep
• Fixed nature of parameter constraints, such as: a generic travel time, maximum of three pumps
per polder and one allowed relocation per pump.

The deterministic nature is not necessarily a limitation, provided that runtimes remain acceptable. In
that case, the model can be used to explore multiple input scenarios, such as varying forecasts and
number of pumps available. Rapid model runs are important if the model is to support uncertainty in
the inputs, even if uncertainty is not directly included in the model structure.

6.2. Setup of VDCs, Notes and Improvements
Updating the VDCs
Setting up the VDCs was labor intensive but straightforward. They were set up using 2019 AHN3 and
land use data from WSS, and would need updating to current land use data if applied to scenarios
beyond the June 2021 flood event.

Damage Factor
Damage estimates in this study are based on a simplified methodology that assumes a uniform water
level, inundation duration of 3 days and a recovery time of 5 days for all cells within a polder. While
these assumptions produce absolute damage figures necessary for optimization models, the primary
goal is relative prioritization rather than pinpointing exact financial losses. Using absolute damage
figures allows for direct comparison between polders, but it does not account for localized variations in
flood duration (soil saturation of crops), or drainage efficiency. To this end, the damage estimates are
scaled down to a more abstract indication factor.

Indirect Damages Infrastructure
Indirect infrastructure damage is dependent on the type of infrastructure land use: railways and high-
ways result in much larger losses than regional or local roads. According to the WaterSchadeSchatter
manual, rerouting losses (known as omrijdschade in Dutch) are based on a separate network map
containing individual road sections and intersections. For each road section, if more than 100 m2 is
flooded, indirect losses are triggered, irrespective of the inundation size. However, this network map
is not publicly available, and the size and definition of the road sections are unknown. As a result,
this study could not identify or calculate indirect infrastructure losses and has therefore omitted them
entirely.

Flood Modeling Approach for the VDC Construction
An important finding of this study is that optimization models need a direct link between the variable
to be controlled (water volume) and the resulting damage. Since the relationship between volume and
the water level is nonlinear, an additional step is needed to estimate pumping impact on the water
level. In this study, VDCs were used directly, so that the polder’s surface area is already accounted
for. As the direct VDC relation can be used, this also means that the uniform water level assumption
can be replaced. Normally, flood routing depends on elevation gradients, sinks and existing waterways
(drainage networks), as well as the impact structures have on local water levels. Since the VDCs are
necessary for the optimization model, and not the DDCs, the VDCs could alternatively be constructed
from inundationmaps of simulationmodel runs (e.g. specific iteration time of precipitation events, called
herhalingstijd in Dutch). Such inundation maps incorporate local flow routes, levees and terrain slopes,
showing more accurate flooding patterns across the polder. Using these can help refine the VDCs so
they better reflect actual terrain based inundation.
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6.3. Reflections on Model Functioning and Improvements
Optimization problems grow rapidly in complexity and seemingly simple additions can be very difficult
to formulate mathematically. The only reason the Second-Stage model manages to find a solution in
manageable time (5% GAP in 25 minutes) is that the First-Stage screening reduces the polder count
from 48 to 19 (found within 13 seconds). The growth in size and complexity is apparent when compar-
ing the number of variables for the first and Second-Stage models: the First-Stage model had 1751
continuous and 1027 integer variable with 3 hour timesteps, whereas the Second-Stage model had
1061 continious and 9445 integer variable with 6 hour timesteps.

The increase in integer variables originates from the change in the formulation of the pump placement
parameter from an order of magnitude O(t · p) in the First-Stage to O(t · k · p) in the Second-Stage.
Although the number of timesteps is halved, the parameter now has to account for 20 different pumps,
increasing the number of integer variables tenfold. In linear programming, integer variables are first
relaxed and then tightened using the cutting plane technique. Binary variables are bounded by 0 and 1,
but integer or continuous variables require manually specified bounds. The tighter these bounds, the
smaller the feasible solution space, which allows the cutting plane method to converge more quickly.

6.3.1. The Importance of Tight Constraints and Bounds
Tightening Variable Bounds
Solver performance is influenced by the size of the solution space. Tight bounds and constraints are
therefore essential for model convergence speed. Even variables with fixed values, such as the auxil-
iary maximum volume variable that is assigned using ’==’ constraints, benefit from tight bounds. These
bounds can be set either before the start of the model, or during the model run. For instance, updat-
ing the upper bound of the volume at each timestep based on the precipitation and volume of t − 1 is
effective. This is quite a powerful option, and not fully exploited in the current model. There are still
significant potential gains in model performance by further updating these bounds in the framework.

Piecewise Linear Constraints
Solver performance can also be improved by refining the definition of piecewise linear (PWL) con-
straints, constructed from the VDC points. Currently, these use 2 cm increments over a 2 m range.
Duplicate volume points were removed since PWL constraints require unique pairs, and the curves
were trimmed to a maximum volume corresponding to 200 mm of precipitation. Reducing the number
of points significantly reduces the computation time, as more points slow down interpolation time. Using
the 2 cm increments results in a clustering of points at the lower volume range due to the nonlinear re-
lation of water level and volume. A more efficient approach would be to tailor the points for each polder;
for instance, using ten-centimetre steps for the initial points followed by smaller increments at higher
volumes, perhaps following a logarithmic scale. Overall, selecting suitable PWL inputs and variable
bounds enhances model performance as it allows for more efficient exploration of feasible solutions.

6.3.2. Reflection on Damage Assessment with Flood Duration
For most land use categories such as buildings, greenhouses and recreation, flood damage is more
influenced by water depth than by flood duration. In contrast agriculture or infrastructure experience
damage in proportion to how long they remain flooded. For agriculture the key issue is oxygen depletion
in the root zone, which happens over time. Agriculture like field crops or horticulture are highly sensitive
to how long crops remain submerged and in which season the flooding occurs [39]. Because flood
duration is currently fixed in the VDCs, the model only minimizes the peak (maximum) flood volume.
The result of this fixed duration is twofold:

• The model could overvalue the damages on agricultural land uses.
• There is no incentive for the model to allocate pumps after the maximum volume is reached.

How much the model could overvalue the damage is best shown, as done in Figure 6.1. This figure
shows the VDC for the polder Afd. H-ON, which has intensive horticulture land use. If flood duration is
included, the model might continue allocating tractor pumps after the maximum volume. However, the
flood duration factor depends on the land use type. The average values for the seven used land use
categories are shown in Table 6.1.
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Figure 6.1: VDC of polder Afd. H-ON showing the spread in damage for all flood durations. It highlights the influence of
duration to damages in agricultural areas.

Table 6.1: Table shows the average duration factor per land use category, based on the original 154 land use types from the
asset values configuration file [24]. Actual values may vary per polder, depending on local land use composition.

Category 1 hour 12 hours 1 day 3 days 20 days
Water, grass and nature 0 0 0 0 0
Infrastructure 0.25 0.70 0.90 1.00 1
Field crops 0 0 0.20 0.45 1
Horticulture 0 0.57 0.67 0.87 1
Recreation 0.20 0.95 1 1 1
Greenhouses 1 1 1 1 1
Buildings 1 1 1 1 1

6.4. Improvements in the Linear Programming Model
Improvements to the model primarily involve incorporating flood duration in the damage estimation
and reducing the calculation time. The first improvement requires a change in the VDC construction
and objective function calculation, while the second depends on a different time horizon, number of
evaluated polder and the pump placement variable modeling.

6.4.1. How to Incorporate Flood Duration in the Damage Calculation
The WaterSchadeSchatter calculates flood damage in a single cell as follows:

Damage = Max Direct Damage · γdepth · γduration · γseason + Indirect Damage per Day · γrecovery time (6.1)

Within WSS the flood duration is evaluated for every raster cell. In the current optimization model,
however, the VDC is implemented as a one-dimensional function of water depth alone, with damage
obtained by interpolating the maximum stored volume. To correctly adjust the damage formule in the
VDC format to include flood duration, the formula must be split into direct and indirect terms, since the
duration should only be applied to the direct damage term.

Damagedirect = Max Direct Damage · γdepth · γseason (6.2)

Damageindirect = Indirect Damage per Day · γrecovery time (6.3)

New Singe Polder Objective = Damagedirect · γduration + Damageindirect (6.4)

Where the γduration is interpolated from the flood duration in hours. Additionally, the duration factor
varies with the land use (as seen in Table 6.1), and the time that different parts of a polder are inundated
is not uniform. Because the VDCs have aggregated all raster cells into a single curve, assigning a
unique duration to each individual cell is not possible. A practical workaround for modelling this for
VDCs is to evaluate duration per water level or volume increment. Within one increment the cells
roughly get flooded at the same times, for which an average duration can be calculated. Capturing this
requires three steps:

1. Split the VDCs into separate curves for each land use category.
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2. Define increments for which the flood duration is tracked.
3. Interpolate γduration for every land use category and increment.

These steps enable the model to represent both depth and duration in the objective function.

The proposed improved methodology for the optimization model is shown in Figure 6.3. It details
splitting the VDCs into four land use categories:

1. Infrastructure
2. Field Crops
3. Horticulture
4. Buildings, Greenhouses and Recreation

For the first three categories, the direct and indirect damage is split as in Equations 6.2 and 6.3. The
indirect damage for the these three categories can still be calculated as in the current model structure:
use the maximum water volume to identify if it is flooded and using a fixed γrecovery time. For the direct
damages, the duration factor must be used as a correction factor on the increments.
For the fourth land use category, the damage calculation can remain the same as is currently done:
interpolate the damage from the maximum water volume using PWL constraints. This VDC would
contain both the direct and indirect damage.

Define Increments for Flood Duration Tracking
The current aggregrated VDC representation prevents us from applying land use specific duration fac-
tors, as we only want to correct the ∆Damagefactor of that increment. A proposed solution is present-
ing the VDCs as seperate increments. This is shown conceptually in figure 6.2. To track flood duration
for different increments (sections between the thresholds), we can define thresholds (A, B, C, etc.) and
calculate how long the thresholds remain flooded. So that for each increment, the duration can be
computed. Coding this is challenging because linear programming does not support logical operators
such as if or else statements. A workaround is needed, which can be implemented using the Big M
approach.

Figure 6.2: VDC of Afd. H-ON, showing how thresholds can be added to include the duration factor approach. The arrow
between Threshold B and C indicate an increment.

Interpolating the Duration Factor with Big M Constraints
Conditional statements can be enforced through auxiliary binary variables and using indicator (Big M)
constraints. This logic works as follows:

x ≥ y −M(1− b)

x ≤ y +Mb

b ∈ {0, 1}

Here, b is a binary variable that indicates when x (volume) exceeds y (threshold). The parameter M
should be a large value, for example the corresponding to 200 mm of precipitation. Assume that b = 1
indicates whether the volume is above threshold B. If x > y, then bmust be 1 to satisfy both constraints.
The other way around, if x < y, the large value of M forces b to be 0. Then by summing b across all
timesteps, the entire duration for increment AB can be calculated. This method can be made to function
for as many increments as desired.
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Figure 6.3: Suggested improved model methodology to incorporate duration in the optimization model.
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Finalizing the Updated Objective Function
Once the duration is known, the duration factor (γduration) for the example of Afd. H-ON (table 6.1) can
be interpolated using a piecewise linear (PWL) constraint for every increment:

durationAB =
∑

b ∗ size timestep (6.5)

γAB
duration = PWL(durationAB , arrayγduration

) (6.6)
Uncorrected damageAB

direct = damage(B)− damage(A) (6.7)
DamageAB

direct = Uncorrected damageAB
increment ∗ γAB

duration (6.8)

The same procedure applies to every increment and every land use category.

To obtain the polder total, the corrected damage values are summed for all increments, after which the
indirect term is added. Indirect damage depends only whether a cell is flooded, with the user-specified
yrecovery time. The factor is uniform in the polder and calculated once:

damageindirect = PWL(V max, V DCindirect) (6.9)

In the formulas below, T denotes the volume threshold and n the increment index.

Damageinfrastructure = damageinfrastructureindirect +
∑
n

damage
Tn+1−Tn

direct · γTn−Tn+1

duration,infrastructure (6.10)

Damagefield crops = damagefield crops
indirect +

∑
n

damage
Tn+1−Tn

direct · γTn−Tn+1

duration,field crops (6.11)

Damagehorticulture = damagehorticultureindirect +
∑
n

damage
Tn+1−Tn

direct · γTn−Tn+1

duration,horticulture (6.12)

For recreation, greenhouses and buildings the duration factor is 1, irrespective of the duration, so the
existing damage calculation remains suitable:

Damagerecreation,greenhouses,buildings = PWL(V max, V DC) (6.13)

Summing the direct and indirect damages for all landuse categories finally becomes:

Damagesingle polder = Damagerecreation, greenhouses, buildings + Damagefield crops+

Damagehorticulture + Damageinfrastructure (6.14)

This formulation preserves linearity in het model, allows depth and duration to be influential in polder
damages, and leaves the indirect damage term in a polder unchanged.

6.4.2. Solution to Increased Model Size When Duration Enters the Objective Func-
tion

Introducing the flood-duration interpolation terms from the previous section increases the number of
PWL interpolations that have to be calculated for each polder. This means that each branch and bound
node becomesmuchmore ’expensive’. Currently, for each node, there is 1 PWL constraint interpolation.
But with flood duration, the number is (n + 1) ∗ 3 + 1. Where n is the number of increments. If one
polder has 40 increments this means 124 interpolations. So the number and size of the increments have
to be carefully considered. With the increased number of interpolations, keeping the pump placement
variable of orderO(t ·k ·p), with realistic calculation time is no longer realistic. A straightforward solution
is to return the pump placement variable to O(t · p) and replace the individual pump indices with four
generic capacity classes of 18, 20, 30 and 45 m3 min−1, as is done in the First-Stage. All modeled
constraints must then be rewritten to fit this aggregated representation.

This down-scaling has two important consequences: Individual pumps can no longer be tracked and
the difference between First- and Second-Stage disappears. As a result, there can no longer be a
subset selection of promising polders. Without subset selection the model size depends directly on the
number of polders, the number of time steps and the chosen number of polder increments. The current
VDCs use 2 cm steps as input for the VDC points, as shown in the grid on Figure 6.1. This create very
small increments at low volumes and an excessive number of PWL points. The selection of increment
steps, whether by water level or by volume, thus becomes a key design choice in future improvements.
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6.4.3. Reducing the Number of Polders: Screening Strategy With Polder Damage
Profiles

In future improvements, all 149 polders suitable for pump placement will need to be evaluated. Be-
cause a model of reduced placement variable order can no longer can distinguish between a First- and
Second-Stage, subset selection based on a two stage approach is no longer possible. Instead, the
classification system with Type 1, 2, and 3 polders can serve as a replacement. This system does not
identify the best polders but helps to deselect or exclude polders where pumps offer minimal benefit
(Type 3) or where damage remains below a tipping point (Type 2). In this way, the classification func-
tions as a preselection method that reduces the solution space. The currently constructed damage
profiles and polder classification is based based on a fixed flood duration of 72 hours. For this duration,
the γduration is quite large, as can be seen in Figure 6.4. Because shorter durations result in smaller
damage factor values, the seventy-two-hour scenario is conservative. Since damages cannot increase
when duration shortens, profiles with already low damage are suitable for exclusion.

The method can still be improved. They could be classified using all durations, as shown in figure 6.4.
It should also be noted that the polder types stem from visual analysis, which is qualitative. Despite its
simplicity, this system is a starting point, which can be adapted or refined over time.

Figure 6.4: Damage profile for all uniform flood durations in polder Afd. H-ON. The red line is the currently used duration.

6.4.4. Wrapping up: Short-Horizon Model
In addition to the polder selection and a smaller pump placement variable size, improvements should
focus on constructing a short-horizon model. The current case study approach of a 3-day window was
fine for initial concept creation, but with the use of dynamic flood duration and the increased model
size, runtimes will not be feasible with 25 timesteps (First-Stage) or 13 timesteps (Second-Stage). This
Short-Horizon model should use at most three timesteps (t=0, +6h, +12h), which can be run with real
time initial conditions and forecasts.

Model Inputs
To run the model on a short time horizon, it requires measured input data instead of generic initial
conditions. The following components are needed:

• Initial water volume. HHNK has the Vullingsgraad program, which estimates the current filling in
each polder based on logger data. This can serve as the starting point for each model run.

• Expected precipitation. In Appendix I, a script is included that shows how KNMI forecasts can be
downloaded and spatially allocated to individual polders.

• Current pump placements. Knowing where tractor pumps are located in the field allows the user
to fix their placements in the model. This reduces the number of free variables in the optimization
model and leads to faster solving time.

• Polder discharge capacity. More accurate measurements of this capacity improve the realism of
the model results.

• User interface. A clear interface is needed to manage both data input and output. LP models
require structured input files and produce long variable lists that are not interpretable without
post processing. Possible features include a map to toggle pump locations and sliders to adjust
timestep length and number of steps.
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Linear Programming or Alternative Path Forward
For practical use, code based models that do not use a solver, where the user or techniques such
as Monte Carlo decided the pump placements, could be an alternative to a LP approach. Models
constructed without a solver offer faster runtimes, can incorporate uncertainty in precipitation forecasts
and allow for better modelled detail such as polder-to-polder travel times.

However, code based models require the user to provide the pump placements, and with up to 149
polders and 20 pumps, that could be a large number of placements. Even larger if an increased allowed
number of pumps in a single polder. The drawback of manual pump placement is that it could lead to
suboptimal placements, particularly when decisions in early timesteps influence later placements. This
reflects a tradeoff: code based models are easier to work with and have more flexibility, but may not
produce optimal solutions that optimization models can.



7
Conclusion

7.1. General Conclusions from Case Study
This thesis set out to answer the main research question: “What framework is required to optimize the
allocation of tractor pumps to candidate polders?” Adressing this question demands a model that links
inundation damage in polders to the preventive effect tractor pumps can have through pre-computed re-
lations, and then to search for the pump placement set that minimizes the total damage over all polders.
The required precomputed relations are Volume Damage Curves (VDCs), one for each polder, con-
structed from terrain elevation, land use, land use asset values and the WaterSchadeSchatter method
of damage calculation. The VDC format allows direct integration in an optimization model, so that no
simulation or damage assessment is needed during the optimization run. Pump placement is optimized
with a Linear Programming (LP) model that allocates the available tractor pumps over all polders and
timesteps under modeled constraints. Using the VDCs for damage calculation, it selects the combi-
nation of placements that minimizes the total damage. The model was tested on the three day flood
in Hoogheemraadschap Hollands Noorderkwartier from 18 to 20 June 2021, with 48 selected polders
and 20 tractor pumps of varying capacities.

Answers to the Sub-questions
1. What are the main insights from applying the prototype to the 2021 flood event, in terms

of model performance and limitations?

Succesfull aspects

• VDCs are well suited to form the basis of the LP model.
• The Two-Stage approach worked well: the First-Stage produced a subset of 19 candidate
polders, after which the Second-Stage tracked individual pumps in greater detail.

• The Slack Volume variable prevented infeasibility caused by negative volumes.
• Introducing specific pump-to-polder travel times is infeasible, but a generic three hour travel
penalty was succesfully introduced.

• The study introduced polder classification based on the derivative of each VDC, which labels
polders as Type 1 (always relevant), Type 2 (tipping point dependent) or Type 3 (low priority),
and these categories closely mirror which polders are deselected by the first-stage model.

Observed shortcomings

• Damage in each polder is currently linked only to the maximum volume. As a result, there
is no incentive to deploy pumps after the volume peak.

• Inundation duration is fixed at 72 hours in the current VDCs, which can overestimate agri-
cultural damage.

• Individual pump tracking in the Second-Stage, with binary variables of order O(t ·k · p) limits
scalability.

These findings call for adjustments to both the VDC construction and the structure in the optimiza-
tion model.
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2. What improvements are required in the damage assessment method and model structure
to enhance scalability and usability?

• Deaggregate the VDCs into land use categories. For the VDCs containing agriculture and
infrastructure, split the VDC further into direct and indirect damage parts, and correct the
direct damage for the flood duration per elevation increment.

• Calculate the inundation duration and its representing factor with Big M constraints and piec-
wise linear interpolation.

• Replace the Two-Stage approach with a faster single stage with a Pump Placement variable
of order O(t · p).

• Use the polder classification types to preselect a polder subset before solving, so that the
runtime remains manageable.

These changes require new input data for each polder before the model can be used in practice.
3. What is needed to make the optimisation model usable as an operational decision support

tool during emergencies?

• Run the model with a short horizon of three timesteps: now, +6 hours and +12 hours.
• Feed the model with real-time initial volumes derived from water levels and with precipitation
forecasts assigned to polders.

• Store inundation duration for every polder elevation increment after each run so that the next
run include them as initial duration.

• Allow an option to ’override’ pump placements, so that they can be fixed for future timesteps.

Although the framework still needs refinement, it offers a good basis for tractor pump allocation. With
the proposed data updates, model reformulation and real time inputs it can evolve into a practical
decision support instrument for flood response.

7.2. Recommendations
Recommended Follow-Up Work for Model Development

• Update and Refine VDCs
Incorporate the most recent AHN5 elevation and land use data to ensure accurate flood damage
estimation.

• Include Indirect Damages for Infrastructure
Indirect losses for infrastructure is still missing, because the separate road maps could not be
downloaded through the Lizard API and manually setting up the maps and identifying when a
100 m2 floods in the aggregated polder csvs proved too difficult.

• Reconstruct the VDCs into Four Categories
Split the VDCs into four land use categories: Infrastructure, Horticulture, Field Crops and a com-
bined group for Greenhouses, Buildings and Recreation. For the first three categories, separate
direct and indirect damages and construct the direct group without the fixed γduration factor.

• Consider Constructing the VDCs with Improved Flood Dynamics
Instead of assuming a uniform water level based on the lowest-filling principle, using inundation
maps provides a more realistic representation of flood routing. Because VDCs do not require
a uniform water level, they can use inundation maps generated from hydrodynamic simulations
based on precipitation scenarios with specific return period (herhalingstijd in Dutch).

• Calculate Flood Duration per Elevation Increment Dynamically
Add flood duration as a model input and choose non-uniform increment steps, concentrating
model detail where damages rise fastest.

• Redesign the model to accomodate the pump placement variable of order O(t · k)
The current Second-Stage tracks individual pumps, giving the variable a size of O(t · k · p) and
lengthening solution times. Reformulate the model so each pump type is counted only per time
step, keeping runtimes short enough to test multiple precipitation or initial condition scenarios.
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Recommendations for HHNK
• Define Threshold for Pump Allocation
Decide at what water level in the polder tractor pump allocation becomes optional (for example:
< X mNAP no pumps are assigned). Also specify when and where pumps should not be placed
using the classification systems and the Tipping Points.

• Extend and/or Improve the Damage Profile Classifications
Apply the Type 1, 2 or 3 classification system to all polders in the region, as the current analysis
covered only 48 out of 149. The classification method of the damage profile can be adjusted as
needed. This supports faster identification of high-impact polders and helps exclude low-return
areas from the pump allocation process.

• Account for Polder Discharges
Pump placement also depends on the discharge capacity of individual polders. In this study,
the total discharge was estimated by summing the maximum capacities of all relevant pumping
stations and applying a correction based on an HHNK discharge survey (Appendix C). Collect
measured outflow per polder to replace these estimates and improve model accuracy.

• Develop a Short Horizon Model
Include the initial volume via the ’Vullingsgraad’, the latest KNMI precipitation forecast, and cur-
rent pump positions so the model knows whether a pump must stay in place. Limiting the number
of time steps keeps run time short while still allowing for uncertainty in rainfall and pump perfor-
mance.

Broader Recommendations for Other Water Boards
• Construct VDCs or DDCs for each Polder
Even if tractor pumps are not part of the calamity response strategy, building VDCs or Depth
Damage Curves reveals the water levels or rainfall volumes at which damage accelerates and
helps to identify polder tipping points.

• Use WaterSchadeSchatter Data Directly for Quick Damage Calculation Even if tractor pumps are
not part of the calamity response strategy, WSS land-use layers, asset values, and the damage
formula behind its portal can be freely obtained. By downloading these datasets instead of up-
loading flood maps, it is possible to compute expected damage with other simplified flood scripts.
If resource allocation is not the objective, the calculation can be done with conventional non-LP
code.
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A
Polder Selection

The light blue (9) and yellow (48) polders in figure A.1 are those for which motorkap posters have
already been made. The posters for the brown polders are set to be constructed somewhere in 2025.
For this study, only the places where posters have already been made have been included in this study.
These nine light blue polders were excluded from the analysis because the removal capacity from the
polders was either unknown by the waterboard, or used other methods of discharge such as weirs or
free drainage. This is visualized in figure C.1 from Appendix C.

Figure A.1: Selection of polders by HHNK that are suitable for tractor pump placement.
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B
Aggregation of WSS Landuse

Categories

Table B.1: Categories showing which landuses and configuration file section number are added to the category.

Category Landuse and configuration file section number
Water, gras and
nature

bassins (35), berm (44), bezinkbak (34), binnenwater (51), bos (39), bos / natuur
(43), braak (73), buitenwater (52), gras (42), groenvoorziening (40), natuur (115),
niet ingevuld (14), opslagtank (33), overig (24), overig gras/groen (41), overige
gebruiksfunctie (13), spoorberm (45), transformatorstation (32), vliegveld (30),
water (50), water (156), water (254)

Infrastructure Fietspad (166), Voetpad (165), lokale_weg (28), overige wegdelen (29), re-
gionale_weg (26), snelweg (25), spoor (31), verkeerseiland (27)

Field crops aardbeien_op_stelling (55), aardbeien_open_grond (56), aardperen (57), akker-
bouw (59), andijvie (60), asperges (62), augurk (63), blasrammenas (64),
bloemkool (68), boerenkool (69), bospeen (72), broccoli (74), bruinebonen
(75), chinesekool (77), cichorei (78), consumptieaardappelen (79), courgette
(80), erwten (83), gerst (86), granen (87), groente_in_open_grond (90), haver
(91), hennep (92), ijsbergsla (93), kapucijners (94), klaver (98), knoflook
(99), knolselderij (100), knolvenkel (101), komkommer (102), koolraap (103),
koolrabi (104), koolzaad (105), kruiden (106), luzerne (108), mais_corncob (109),
mais_energie (110), mais_korrel (111), mais_snij (112), mais_suiker (113), pak-
soi (117), pastinaak (118), peulen (120), pompoen (121), pootaardappelen (122),
prei (123), pronkbonen (124), rabarber (126), radijs (127), rode_bieten (129),
rodekool (131), rogge (132), schorseneren (134), selderij (135), sla (138), sojabo-
nen (139), sperziebonen (140), spinazie (141), spitskool (142), spruitjes (144),
suikerbieten (145), tarwe (146), triticale (148), voederbieten (154), weidehooi
(157), zetmeelaardappelen (163)

Horticulture appelen (61), blauwebessen (65), bloembollen (66), bloembollen_en_sierteelt
(67), boom_en_heesterkweek (70), bos_en_haagplanten (71), buxus (76), cran-
berry (81), frambozen (84), fruitteelt (85), kersen (95), kersen_zuur (96), kerst-
bomen (97), laanbomen (107), miscanthus (114), notenbomen (116), peren (119),
pruimen (125), rodebessen (130), rozen (133), vaste_planten (152), wijndruiven
(158), zwartebessen (164)

Recreation bedrijventerrein (16), begraafplaats (20), dagrecreatief terrein (17), glastuinbouw
(22), sportterrein (19), verblijfsrecreatief terrein (18), volkstuinen (21), woonge-
bied (15)

Greenhouses kas (7)
Buildings bijeenkomstfunctie (9), celfunctie (3), gezondheidszorgfunctie (12), industriefunc-

tie (4), kantoorfunctie (5), logiesfunctie (8), onderwijsfunctie (11), sportfunctie
(10), winkelfunctie (6), woonfunctie (2)
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C
Pumping Station Specifics

The polders excluded from the figure A.1 are the polders: Koegras, Huisduinen, Hazepolder West,
Mosselwiel, Oningepolderde landen onder Egmond Binnen, ’t Zijer Eilant, Afd. W - Mosselwiel, West-
erkogge, Waterberging LQ.
The removal capacity of the Ringpolder was manually altered, as there are no pumping stations in this
polder. The polder contains a large weir capable of large quantities of discharge. According to the
waterboard, the discharge capacity of this polder is ranges from 14.4 to 22 mm/day. Therefore, the
capacity is manually adjusted to 22 mm/day for this polder. Another polder that was manually altered
was Obdam, which initially showed a removal rate of 42.9 mm/day based on a pumping capacity of 100
m3/min, this was changed to 22 mm/day (with a matching capacity of 51.3 m3/min) based on capacity
from figure C.1.

Table C.1: All pumping stations capacities.

Polder Pumping Station Name Pumping Station Capacity
Aagtdorperpolder Aagtdorperpolder 25
Afd. AB AB 65
Afd. C C 30.8
Afd. D D 19
Afd. E E 52
Afd. F F 19
Afd. H-ON H 35
Afd. H-ON ON 36
Afd. I Noord I Noord 27
Afd. I zuid I Zuid 8
Afd. KP KP 37
Afd. LQ LQ 32
Afd. NG NG 27
Afd. NMR Grote R 27.1
Afd. NMR NM Zuid 70
Afd. NMR Kleine R 10
Afd. NMR NM Noord 13
Afd. NS NS 24
Afd. OT-PV O 12
Afd. OT-PV OT-PV 39
Afd. OT-PV PV 8
Afd. W W 20
Afd. Z Z Uit 110
Afd. Z Z In 39
Afd. ZG-ZM ZG 27
Afd. ZG-ZM ZM Afvoer 16.9
Baafjespolder Baafjespolder 55
Bergermeer Defensiegemaal 50
Bergermeer Bergermeer 86
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Polder NAAM MAXIMALECA
Boekelermeer Boekel Boekelermeerpolder 38
Callantsoog Koetensluis 45
Callantsoog Rechtendijk 45
Damlanderpolder Damlander 21
De Kaag Kaagpolder Opmeer 40
Egmondermeer Egmondermeer 80
Groeterpolder Groeterpolder 24
Grootdammerpolder Grootdammer 33
Hargerpolder Hargerpolder 38.4
Hensbroek Hensbroek 60
Huisduinen Huisduinen 11
Koegras Callantsoogervaart 20
Koegras Kooypunt 10
Lage Hoek De Lage Hoek 47.4
Leipolder Leipolder 9.6
Obdam Obdam 100
Oosterzijpolder De Leije, Heiloo 12
Oosterzijpolder Boekel Oosterzijpolder 86
Philisteinsepolder Philisteinsche molen 20
Polder de Berkmeer Berkmeer 30
Polder de Woudmeer Woudmeer 40
Polder Schagerwaard Schagerwaard 76.2
Sammerspolder Sammerspolder 58
Slootgaardpolder Slootgaard 76
Speketerspolder Speketer 40
’t Hoekje t Hoekje 48
’t Hoekje Burger 4
Ursem Ursem 119
Valkkoog Valkkoog 50
Vennewaterspolder Vennewaterspolder 32
Verenigde Polders De Rekere 88
Wimmenummerpolder Wimmenummer 8
Wogmeer Wogmeer Boven 65

Table C.2: Final adjusted polder removal capacities.

Polder Max. Capacity [m3/min] Area [ha] Removal rate [mm/day]
’t Hoekje 52 388 19.3
Aagtdorperpolder 25 284 12.7
Afd. AB 65 543 17.2
Afd. C 30.8 316 14.0
Afd. D 19 56 48.9
Afd. E 52 563 13.3
Afd. F 19 138 19.8
Afd. H-ON 71 498 20.5
Afd. I-noord 27 202 19.2
Afd. I-zuid 8 69 16.7
Afd. KP 37 356 15.0
Afd. LQ 32 299 15.4
Afd. NG 27 215 18.1
Afd. NMR 120.1 692 25.0
Afd. NS 24 208 16.6
Afd. OT-PV 59 586 14.5
Afd. W 20 159 18.1
Afd. Z 149 791 27.1
Afd. ZG-ZM 43.9 381 16.6
Baafjespolder 55 461 17.2
Bergermeer 136 846 23.1



67

Polder Max. Capacity [m3/min] Area [ha] Removal rate [mm/day]
Boekelermeer 38 334 16.4
Callantsoog 90 740 17.5
Damlanderpolder 21 282 10.7
De Kaag 40 409 14.1
Egmondermeer 80 714 16.1
Groeterpolder 24 301 11.5
Grootdammerpolder 33 461 10.3
Hargerpolder 38.4 361 15.3
Hensbroek 60 567 15.2
Lage Hoek 47.4 327 20.9
Leipolder 9.6 94 14.7
Obdam 51.3 336 22.0
Oosterzijpolder 98 1127 12.5
Philisteinsepolder 20 285 10.1
Polder Schagerwaard 76.2 659 16.7
Polder Valkkoog 50 512 14.1
Polder de Berkmeer 30 287 15.1
Polder de Woudmeer 40 327 17.6
Ringpolder 142.6 1426 14.4
Sammerspolder 58 451 18.5
Slootgaardpolder 76 570 19.2
Speketerspolder 40 405 14.2
Ursem 119 1065 16.1
Vennewaterspolder 32 338 13.6
Verenigde Polders 88 916 13.8
Wimmenummerpolder 8 115 10.0
Wogmeer 65 691 13.5
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Figure C.1: Discharge capacity for each polder of HHNK.



D
Optimization methods

The linear programming in continuous variables consists in optimizing a criterion, otherwise called
objective function, calculated from some of the variables using a formula, while assuring that constraints
on the variables are met. In LP, constraints are linear and the program is solved through the Simplex
algorithm [22].

The placement of pumps is classified as a Mixed Integer Programming problem (MIP). Such a problem
contains both integer and continuous variables. If the objective function is expressed with only linear
forms, the problem is termed a Mixed Integer Linear Programming (MILP) [42]. MIP or MILP problems
are not solved directly since integer constraints make the feasible region difficult to analyze.

Integer (linear) programming is when the decision space should be expressed in integer variables
instead of variables in R+. These problems do not admit polynomial algorithms to solve them. It is
necessary to propose alternative solutions to the simplex algorithm, which rely on traversals in a tree
of solutions, such that at each node of the tree, some routines are executed. This is called branching.
A combination of both techniques is called mixed-integer programming, in such a program, integer
variable constraints are ’relaxed’ so that they become continuous within certain bounds [22].

Branch-and-Bound is a method used to solve optimization problems by systematically breaking the
problem into smaller sub-problems. It consists of systematic enumeration of candidate solutions by
means of state space search. The method avoids evaluating all candidate solutions by discarding
sub-problems that cannot contain the optimal solution.

1. Branching: The problem is divided into smaller sub-problems or ”branches” based on the deci-
sion variables. This forms a tree structure, where the root node represents the entire problem
(top node) and each branch represents a partial solution or a restriction on decision variables.
The process of creating sub-problems from a node is called branching. Leaf nodes are the bot-
tommost nodes, where no more branching can occur. These nodes are where you evaluate the
solution quality and check whether it is better than the current solution.

2. Bounding: For each sub-problem (node in the tree), a bound on the best possible solution in
that branch is computed. If the bound is worse than the best solution found so far (known as
the ”incumbent”), the entire branch is discarded or pruned, as it cannot lead to a better solution.
Upper bound for minimization problem.

3. Pruning: Branches that cannot improve on the current best solution (incumbent) are pruned. This
reduces the number of candidate solutions that need to be evaluated. The algorithm stores the
best solution found at each step, and only explores branches that have the potential to contain a
better solution than the current best.

Effectively, the technique recursively splits the search space into smaller spaces and minimizes f(x)
on those spaces. It keeps track of the bounds on the minimum and ‘prunes’ the search space to
eliminate candidate solutions. Branching methods create a tree during solving. It consists of dividing
the feasible set of a problem into subsets, where each node represents a subproblem that only searches
the subset at that node. The process of creating sub problems from a node is called ’branching’. For
each subproblem, a lower bound (for a minimization problem) is computed. The lower bound is the
best possible outcome within that subproblem and may correspond to a non-feasible solution (such

69



70

as having fractional variables). The lower bound is calculated with the Simplex algorithm. Within this
branch there will not be an integer solution with an higher value than this lower bound. The algorithm
also keeps track of the best feasible solution, which is called the incumbent. The algorithm compares
the lower bound of the current branch to the incumbent solution’s value, if the lower bound is worse than
the incumbent, it ’prunes’ the tree, discarding the branch. This is done because no feasible solution
within that subproblem can be better than the current incumbent [8].

The branch-and-cut method combines the branch-and-bound and the cutting plane method. With the
cutting plane method, additional constraints (cuts) are implemented to the relaxed problem to eliminate
fractional solutions of the solution space, iteratively converging to a feasible integer solution [42].

NP-hard stands for Non-deterministic Polynomial-time hard. For NP-hard problems, the time required
to find an optimal solution increases exponentially with the size of the problem. This makes finding
exact solutions intractable for large problems, as even computers would take an impractical amount
of time to solve them. Relaxation is a technique used to make NP-hard problems easier to solve by
simplifying certain constraints. Specifically, relaxation involves loosening or relaxing some of the strict
requirements of the problem so that it becomes easier to solve (often turning it into a polynomial-time
problem). One common relaxation technique is to remove the integer constraint, allowing the variables
to take on any real (continuous) value between 0 and 1 (for example, 0Xi1 instead of Xi0, 1). This
transforms the original problem into a linear programming (LP) problem, which is solvable in polynomial
time.

MIP Branch and Cut Branch-and-Cut is a method to solve ILP or MILP problems, it combines the
branch-and-bound and cutting planes techniques. Since the technique is exact, it guarantees opti-
mality. By relaxing the problem, the MIP becomes a linear program (LP), which can be solved more
efficiently using methods like the Simplex algorithm (more common) or Interior Point methods. In every
Branch-and-Bound step, after solving the relaxed LP, if the solution involves fractional values a cutting
plane algorithm is used. Cutting planes are additional linear constraints added to the LP relaxation to
reduce the feasible region and eliminate parts that don’t contain feasible integer solutions. The method
identifies regions of the feasible set that violate the integer constraint. It adds a cut (a new constraint)
to exclude that fractional solution while preserving the integer solution. This process is repeated iter-
atively, (progressively) tightening the LP relaxation until an integer solution is found or the relaxation
cannot be further improved. Advantages: Fewer branches need to be explored in compared to pure
branch-and-bound. The method is effective in solving large-scale integer and mixed-integer problems
because it significantly reduces the search space through cuts.



E
Code for the Creation of Polder VDCs

E.1. Functions for the Creation of the Master CSV
1 import geopandas as gpd
2 import numpy as np
3 import pandas as pd
4 import os
5 from osgeo import gdal
6 from shapely.geometry import Point
7

8 # Base directory containing subregions
9 output_folder = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\05_Lizard\\csvs"
10 base_folder = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\05_Lizard\\subregions"
11

12 # Set the target resolution for resampling
13 target_resolution = 5 # in meters
14

15 # Function to merge raster tiles
16 def merge_rasters(raster_files):
17 src_ds = gdal.Open(raster_files[0])
18 dst_ds = gdal.Warp('/vsimem/merged.tif', raster_files, format='GTiff', dstNodata=-999)
19 return dst_ds
20

21 # Function to resample AHN raster to the target resolution
22 def resample_ahn_raster(ahn_ds):
23 # Get the original transform and size
24 original_transform = ahn_ds.GetGeoTransform()
25 original_projection = ahn_ds.GetProjection()
26

27 # Calculate the new dimensions
28 width = int((ahn_ds.RasterXSize * original_transform[1]) / target_resolution)
29 height = int((ahn_ds.RasterYSize * -original_transform[5]) / target_resolution)
30

31 # Create the target raster
32 target_ds = gdal.GetDriverByName('GTiff').Create('/vsimem/resampled_ahn.tif', width,

height, 1, gdal.GDT_Float32)
33

34 # Set the new transform
35 new_transform = (original_transform[0], target_resolution, 0, original_transform[3], 0, -

target_resolution)
36 target_ds.SetGeoTransform(new_transform)
37 target_ds.SetProjection(original_projection)
38

39 # Set the nodata value for the output band
40 target_band = target_ds.GetRasterBand(1)
41 target_band.SetNoDataValue(-999)
42

43 # Resample the data
44 gdal.ReprojectImage(ahn_ds, target_ds, original_projection, original_projection, gdal.

GRA_Average)
45

46 return target_ds
47

48 # Sample data from AHN and Landuse
49 def sample_raster_data(ahn_ds, landuse_ds):

71
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50 sampled_data = []
51

52 # Get the transform of the AHN dataset
53 original_transform = ahn_ds.GetGeoTransform()
54 nodata_value = ahn_ds.GetRasterBand(1).GetNoDataValue()
55

56 # Loop through each pixel in the AHN dataset
57 for row in range(ahn_ds.RasterYSize):
58 for col in range(ahn_ds.RasterXSize):
59 ahn_value = ahn_ds.ReadAsArray(col, row, 1, 1)[0, 0]
60

61 # Check if the AHN value is valid
62 if ahn_value == nodata_value: # Assuming 0 means no data or invalid
63 continue
64

65 # Get coordinates of AHN pixel
66 x_geo = original_transform[0] + col * original_transform[1]
67 y_geo = original_transform[3] + row * original_transform[5]
68

69 # Get corresponding landuse value (sampling from landuse dataset)
70 landuse_value = landuse_ds.ReadAsArray(
71 int((x_geo - landuse_ds.GetGeoTransform()[0]) / landuse_ds.GetGeoTransform()

[1]),
72 int((y_geo - landuse_ds.GetGeoTransform()[3]) / landuse_ds.GetGeoTransform()

[5]),
73 1, 1)[0, 0]
74

75 sampled_data.append((x_geo, y_geo, ahn_value, landuse_value))
76

77 return sampled_data
78

79 def assign_polder_name(sampled_data_df, shapefile_path):
80 # Load the polders shapefile using geopandas
81 polders_gdf = gpd.read_file(shapefile_path)
82

83 # Check and ensure both the sampled data and polders are in the same CRS
84 sampled_gdf = gpd.GeoDataFrame(sampled_data_df,
85 geometry=[Point(xy) for xy in zip(sampled_data_df['X'],

sampled_data_df['Y'])],
86 crs=polders_gdf.crs) # Reproject to match the CRS of

polders_gdf
87

88 # Perform a spatial join (using 'intersects' to account for points on polygon boundaries)
89 joined_gdf = gpd.sjoin(sampled_gdf, polders_gdf[['NAAM', 'geometry']], how='left',

predicate='intersects')
90

91 # Add the polder name to the original DataFrame
92 sampled_data_df['Polder'] = joined_gdf['NAAM']
93

94 # Check for missing data (in case some points are outside all polders)
95 if sampled_data_df['Polder'].isnull().any():
96 print("Warning:␣Some␣points␣were␣not␣assigned␣a␣polder␣name␣(they␣may␣be␣outside␣the␣

polders).")
97

98 return sampled_data_df
99

100 def assign_water_levels(sampled_data_df, peilvakken_path):
101 # Laad de peilvakken shapefile met geopandas
102 peilvakken_gdf = gpd.read_file(peilvakken_path)
103

104 # Zorg ervoor dat de sampled data en peilvakken dezelfde CRS hebben
105 sampled_gdf = gpd.GeoDataFrame(
106 sampled_data_df,
107 geometry=[Point(xy) for xy in zip(sampled_data_df['X'], sampled_data_df['Y'])],
108 crs=peilvakken_gdf.crs
109 )
110

111 # Reset index om duplicaten in de index te vermijden
112 sampled_gdf = sampled_gdf.reset_index(drop=True)
113

114 # Voer een ruimtelijke join uit om winterpeil en zomerpeil toe te wijzen
115 joined_gdf = gpd.sjoin(sampled_gdf, peilvakken_gdf[['winterpe_1', 'zomerpei_1', 'geometry

']], how='left', predicate='intersects')
116

117 # Verwijder eventuele duplicaten in de spatial join
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118 joined_gdf = joined_gdf[~joined_gdf.index.duplicated(keep='first')]
119

120 # Reset de index van joined_gdf om verdere conflicten te voorkomen
121 joined_gdf = joined_gdf.reset_index(drop=True)
122

123 # Voeg de winterpeil- en zomerpeilwaarden toe aan de oorspronkelijke DataFrame
124 sampled_data_df['Winterpeil'] = joined_gdf['winterpe_1']
125 sampled_data_df['Zomerpeil'] = joined_gdf['zomerpei_1']
126

127 # Controleer of er ontbrekende data is (punten buiten de peilvakken)
128 if sampled_data_df[['Winterpeil', 'Zomerpeil']].isnull().any().any():
129 print("Warning:␣Some␣points␣were␣not␣assigned␣water␣levels␣(they␣may␣be␣outside␣the␣

peilvakken).")
130

131 return sampled_data_df
132

133 # Process each subregion
134 def process_subregion(subregion_folder, output_folder, shapefile_path, peilvakken_path):
135 ahn_folder = os.path.join(subregion_folder, 'ahn3_tiles')
136 landuse_folder = os.path.join(subregion_folder, 'landuse2019_tiles')
137

138 ahn_tiles = [os.path.join(ahn_folder, file) for file in os.listdir(ahn_folder) if file.
endswith('.tif')]

139 landuse_tiles = [os.path.join(landuse_folder, file) for file in os.listdir(landuse_folder
) if file.endswith('.tif')]

140

141 # Merge the AHN raster tiles
142 ahn_ds = merge_rasters(ahn_tiles)
143

144 # Resample the AHN raster to 5x5 meters
145 ahn_resampled_ds = resample_ahn_raster(ahn_ds)
146

147 # Merge Landuse tiles
148 landuse_ds = merge_rasters(landuse_tiles)
149

150 # Sample AHN and Landuse data
151 sampled_data = sample_raster_data(ahn_resampled_ds, landuse_ds)
152

153 # Convert sampled data to a DataFrame
154 df = pd.DataFrame(sampled_data, columns=['X', 'Y', 'AHN', 'Landuse'])
155

156 # Assign the polder name to each point
157 df = assign_polder_name(df, shapefile_path)
158

159 # Assign water levels (winterpeil and zomerpeil) to each point
160 df = assign_water_levels(df, peilvakken_path)
161

162 # Save the sampled data to CSV
163 subregion_name = os.path.basename(subregion_folder)
164 output_path = os.path.join(output_folder, f'{subregion_name}_sampled_data.csv')
165 df.to_csv(output_path, index=False)
166

167 print(f'Saved:␣{output_path}')

E.2. Create Master CSVs
1 # List of subregions to process
2 subregions = ['01texel', '02wmr', '03wf', '04kop', '05schermer', '06ad', '07waterland', '08

beemster']
3

4 # Base directory containing subregions
5 output_folder = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\05_Lizard\\csvs"
6 base_folder = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\05_Lizard\\subregions"
7

8 # Shapefile containing polders
9 # shapefile_path = "polders_indeling.shp"
10 shapefile_path = "polders_selectie_edit.shp"
11 peilvakken_path = "peilvakken_streefpeilen.shp"
12

13 import time
14

15 # Process each subregion
16 for subregion in subregions:
17 start_time = time.time()
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18 print(start_time)
19

20 subregion_folder = os.path.join(base_folder, subregion)
21 process_subregion(subregion_folder, output_folder, shapefile_path, peilvakken_path)
22

23 end_time = time.time()
24 elapsed_time = end_time - start_time
25 print(f'Processing␣time␣for␣{subregion}:␣{elapsed_time:.2f}␣seconds')

E.3. Splitting the Master CSVs into polder CSVs
1 import pandas as pd
2 import os
3

4 # Define the file paths
5 csv_path = 'csvs/00_beemster_schermer_kop_wf_sampled_data.csv' # Replace with the path to

your CSV
6 output_folder = 'csvs_polders_combined' # Replace with the path to where CSVs should be

saved
7

8 # Load the CSV
9 df = pd.read_csv(csv_path)
10

11 # Get rows with no polder name (NaN or empty)
12 unassigned_points = df[df['Polder'].isna() | (df['Polder'] == '')]
13

14 # Drop rows where 'Polder' is NaN or empty for valid export
15 df = df[df['Polder'].notna() & (df['Polder'] != '')]
16

17 # Get unique polder values
18 polders = df['Polder'].unique()
19

20 # Ensure the output folder exists
21 os.makedirs(output_folder, exist_ok=True)
22

23 # Export each polder's data as a separate CSV file
24 for polder in polders:
25 # Create a valid file name by replacing unwanted characters
26 valid_polder_name = polder.replace("␣", "_").replace("'", "").replace("-", "_")
27

28 # Filter for the current polder
29 polder_df = df[df['Polder'] == polder]
30

31 # Define output path for the CSV
32 csv_path = os.path.join(output_folder, f'points_{valid_polder_name}.csv')
33

34 # Save to CSV
35 polder_df.to_csv(csv_path, index=False)
36

37 print(f"Saved␣{csv_path}")
38

39 print('hello')
40 # If there are unassigned points, save them to a separate CSV
41 if not unassigned_points.empty:
42 unassigned_csv_path = os.path.join(output_folder, 'unassigned_points_00combined.csv')
43 unassigned_points.to_csv(unassigned_csv_path, index=False)
44 print(f"Saved␣{unassigned_csv_path}")
45

46 print("All␣valid␣polders␣have␣been␣exported␣as␣CSV␣files.")

E.4. Merge Polder CSVs with WSS Configuration File Into Dataframe
1 import configparser
2 from collections import defaultdict
3 import geopandas as gpd
4 import numpy as np
5 import pandas as pd
6 import os
7 from osgeo import gdal
8 import matplotlib.pyplot as plt
9

10 # Create a ConfigParser object
11 config = configparser.ConfigParser()
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12

13 # Read the .cfg file
14 config.read('WSS_tabel.cfg')
15

16 data = []
17

18 # Process configuration file
19 for section in config.sections():
20 if 'omschrijving' in config[section]:
21 # Initialize row dictionary
22 row = {'omschrijving': config[section]['omschrijving']}
23

24 # Collect direct and indirect values
25 row['Landuse'] = float(section)
26 row['direct_eenheid'] = config[section]['direct_eenheid']
27 row['direct_gem'] = float(config[section]['direct_gem'])
28 row['direct_min'] = float(config[section]['direct_min'])
29 row['direct_max'] = float(config[section]['direct_max'])
30 row['indirect_eenheid'] = config[section]['indirect_eenheid']
31 row['indirect_gem'] = float(config[section]['indirect_gem'])
32 row['indirect_min'] = float(config[section]['indirect_min'])
33 row['indirect_max'] = float(config[section]['indirect_max'])
34

35 # Collect gamma values for months
36 gamma_maand = eval(config[section]['gamma_maand'])
37 months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'okt', 'nov'

, 'dec']
38 for i, month in enumerate(months):
39 row[f'gamma_{month}'] = gamma_maand[i]
40

41

42 # Collect gamma values for inundatieduur
43 gamma_inundatieduur = eval(config[section]['gamma_inundatieduur'])
44 row.update({
45 'gamma_inundatieduur_1': gamma_inundatieduur[0],
46 'gamma_inundatieduur_12': gamma_inundatieduur[1],
47 'gamma_inundatieduur_24': gamma_inundatieduur[2],
48 'gamma_inundatieduur_72': gamma_inundatieduur[3],
49 'gamma_inundatieduur_480': gamma_inundatieduur[4],
50 })
51

52 # Collect gamma values for herstelperiode
53 gamma_herstelperiode = eval(config[section]['gamma_herstelperiode'])
54 row.update({
55 'gamma_herstelperiode_0': gamma_herstelperiode[0],
56 'gamma_herstelperiode_6': gamma_herstelperiode[1],
57 'gamma_herstelperiode_24': gamma_herstelperiode[2],
58 'gamma_herstelperiode_48': gamma_herstelperiode[3],
59 'gamma_herstelperiode_120': gamma_herstelperiode[4],
60 'gamma_herstelperiode_240': gamma_herstelperiode[5],
61 })
62

63 # Collect gamma values for inundatiediepte
64 gamma_inundatiediepte = eval(config[section]['gamma_inundatiediepte'])
65 row.update({
66 'gamma_inundatiediepte_000': gamma_inundatiediepte[0],
67 'gamma_inundatiediepte_001': gamma_inundatiediepte[1],
68 'gamma_inundatiediepte_005': gamma_inundatiediepte[2],
69 'gamma_inundatiediepte_015': gamma_inundatiediepte[3],
70 'gamma_inundatiediepte_030': gamma_inundatiediepte[4],
71 })
72

73 # Append the row to the data list
74 data.append(row)
75

76 # Convert the list of dictionaries to a DataFrame
77 df_config = pd.DataFrame(data)
78

79 ########### Waarden en eenheden directe schade in zelfde eenheid zetten
80 ha_mask = df_config['direct_eenheid'] == '/ha'
81 df_config.loc[ha_mask, 'direct_gem'] /= 10000
82 df_config.loc[ha_mask, 'direct_min'] /= 10000
83 df_config.loc[ha_mask, 'direct_max'] /= 10000
84 df_config.loc[ha_mask, 'direct_eenheid'] = '/m2'
85 df_config.loc[ha_mask, 'omschrijving'] = df_config.loc[ha_mask, 'omschrijving'].str.replace('
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/ha', '/m²')
86

87 ########## Indirecte schade snel-, regionale-, lokale- en spoorwegen verwijderen (was per
wegvak)

88 ha_mask = df_config['indirect_eenheid'] == '/wegvak/dag'
89 df_config.loc[ha_mask, 'indirect_gem'] = 0
90 df_config.loc[ha_mask, 'indirect_min'] = 0
91 df_config.loc[ha_mask, 'indirect_max'] = 0
92

93 df_config.head(10)

E.5. Functions for the Damage Calculations
1 def vectorized_interpolation(depth, f_x_pts, f_y_pts_matrix):
2 n_cells = depth.shape[0]
3 n_pts = len(f_x_pts)
4

5 # Find indices where depth would be inserted
6 indices = np.searchsorted(f_x_pts, depth) - 1
7 indices = np.clip(indices, 0, n_pts - 2)
8

9 # Get x0, x1
10 x0 = np.take(f_x_pts, indices)
11 x1 = np.take(f_x_pts, indices + 1)
12

13 # Get y0, y1
14 y0 = f_y_pts_matrix[np.arange(n_cells), indices]
15 y1 = f_y_pts_matrix[np.arange(n_cells), indices + 1]
16

17 # Compute slopes and interpolate
18 slope = (y1 - y0) / (x1 - x0)
19 factor_depth = y0 + slope * (depth - x0)
20

21 # Handle depths outside the interpolation range
22 factor_depth = np.where(
23 depth <= f_x_pts[0],
24 f_y_pts_matrix[:, 0],
25 np.where(
26 depth >= f_x_pts[-1],
27 f_y_pts_matrix[:, -1],
28 factor_depth
29 )
30 )
31

32 return factor_depth
33

34 def calculate_damage(df_merged):
35 from scipy.interpolate import interp1d
36 # Land use categories (as before)
37 landuse_categories = {
38 'no_damage': [13, 14, 24, 30, 32, 33, 34, 35, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 73,

115, 156, 254],
39 'infrastructure': [25, 26, 27, 28, 29, 31, 165, 166],
40 'field_crops': [108, 109, 111, 157,
41 86, 87, 91, 105, 132, 146, 148,
42 112,
43 145, 154,
44 55, 56, 57, 59, 60, 62, 63, 64, 68, 69, 72, 74, 75, 77, 78, 80, 83, 90,

92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 106, 110, 113, 117, 118,
120, 121, 123, 124, 126, 127, 129, 131, 134, 135, 138, 139, 140,

141, 142, 144,
45 163, 79, 122],
46 'horticulture': [125, 130, 158, 164, 61, 65, 81, 84, 85, 95, 96, 116, 119,
47 66, 67, 114, 133, 152,
48 70, 71, 76, 97, 107],
49 'nature_recreation': [15, 16, 19, 22,
50 17, 18, 20, 21],
51 'greenhouses': [7],
52 'buildings': [3, 10, 2, 4, 5, 6, 8, 9, 11, 12]
53 }
54

55 # Convert mNAP and other relevant columns to arrays
56 mNAP = np.array(df_merged['AHN'])
57 landuse = np.array(df_merged['Landuse'])
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58

59 # Extract water levels
60 winterpeil = np.array(df_merged['Winterpeil'].fillna(-9999))
61 zomerpeil = np.array(df_merged['Zomerpeil'].fillna(-9999))
62

63 # Identify valid water levels
64 valid_winter_mask = (winterpeil > -20) & (~np.isnan(winterpeil))
65 valid_zomer_mask = (zomerpeil > -20) & (~np.isnan(zomerpeil))
66

67 # Initialize depth arrays
68 depth_winter = np.zeros_like(mNAP)
69 depth_zomer = np.zeros_like(mNAP)
70

71 # Calculate depths where valid
72 depth_winter[valid_winter_mask] = np.maximum(winterpeil[valid_winter_mask] - mNAP[

valid_winter_mask], 0)
73 depth_zomer[valid_zomer_mask] = np.maximum(zomerpeil[valid_zomer_mask] - mNAP[

valid_zomer_mask], 0)
74

75 # Calculate initial volumes
76 cell_area = 25 # Area per cell (m²)
77 init_vol_winter = np.sum(depth_winter * cell_area)
78 init_vol_zomer = np.sum(depth_zomer * cell_area)
79

80 # Define water levels for damage calculation
81 min_winterpeil = np.min(winterpeil[valid_winter_mask])
82 test_wlvl = np.linspace(min_winterpeil, min_winterpeil + 2, 100)
83

84 # Extract variables from df_merged
85 y_max_min = np.array(df_merged['direct_min'])
86 y_max_gem = np.array(df_merged['direct_gem'])
87 y_max_max = np.array(df_merged['direct_max'])
88

89

90 y_1_u = np.array(df_merged['gamma_inundatieduur_1'])
91 y_12_u = np.array(df_merged['gamma_inundatieduur_12'])
92 y_24_u = np.array(df_merged['gamma_inundatieduur_24'])
93 y_72_u = np.array(df_merged['gamma_inundatieduur_72'])
94 y_480_u = np.array(df_merged['gamma_inundatieduur_480'])
95

96 y_herstel_24 = np.array(df_merged['gamma_herstelperiode_24'])
97 y_herstel_48 = np.array(df_merged['gamma_herstelperiode_48'])
98 y_herstel_120 = np.array(df_merged['gamma_herstelperiode_120'])
99

100 y_max_ind = np.array(df_merged['indirect_gem']) # Corrected variable name
101

102 y_jun = np.array(df_merged['gamma_jun'])
103

104 # Depth factors for inundation depth
105 y_wlvl_000 = np.array(df_merged['gamma_inundatiediepte_000'])
106 y_wlvl_001 = np.array(df_merged['gamma_inundatiediepte_001'])
107 y_wlvl_005 = np.array(df_merged['gamma_inundatiediepte_005'])
108 y_wlvl_015 = np.array(df_merged['gamma_inundatiediepte_015'])
109 y_wlvl_030 = np.array(df_merged['gamma_inundatiediepte_030'])
110

111 # Prepare dictionaries for combinations
112 damage_types = {'min': y_max_min, 'gem': y_max_gem, 'max': y_max_max}
113 durations = {'1u': y_1_u, '12u': y_12_u, '24u': y_24_u, '72u': y_72_u, '240u': y_480_u}
114 herstelperiodes = {'24h': y_herstel_24, '48h': y_herstel_48, '120h': y_herstel_120}
115

116 # Initialize the damage dictionary
117 damage = {}
118

119 # Prepare output lists
120 cum_vol_wlvl = []
121 cum_area_wlvl = []
122

123 som_area = len(mNAP) * cell_area # Total area
124

125 f_x_pts = [0, 0.01, 0.05, 0.15, 0.3, 10] # Depth points for interpolation
126 f_y_pts = np.vstack([y_wlvl_000, y_wlvl_001, y_wlvl_005, y_wlvl_015, y_wlvl_030, np.

ones_like(y_wlvl_000)]).T #actual factors for all cells
127

128 landuse_percentages_wlvl = {wlvl: {cat: 0 for cat in landuse_categories} for wlvl in
test_wlvl}
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129

130 # Iterate over each water level
131 for wlvl_idx, wlvl in enumerate(test_wlvl):
132 depth = np.maximum(wlvl - mNAP, 0)
133 area_cells = np.where(depth > 0, cell_area, 0)
134

135 factor_depth = vectorized_interpolation(depth, f_x_pts, f_y_pts)
136

137 # Volume and area calculations
138 volume_cells = depth * cell_area
139 area_cells = np.where(depth > 0, cell_area, 0)
140

141 total_vol = np.sum(volume_cells)
142 total_area = np.sum(area_cells)
143

144 # Append to cumulative lists
145 cum_vol_wlvl.append(total_vol)
146 cum_area_wlvl.append(total_area)
147

148 # Categorize flooded area by land use
149 for category, landuse_codes in landuse_categories.items():
150 mask1 = np.isin(landuse, landuse_codes) # Cells belonging to this category
151 flooded_area = np.sum(area_cells[mask1])
152 total_area_category = np.sum(cell_area * mask1) # Total area of this category
153 percentage = (flooded_area / total_area_category * 100) if total_area_category >

0 else 0
154 landuse_percentages_wlvl[wlvl][category] = percentage
155

156 # Iterate over combinations
157 for damage_type_name, y_max_array in damage_types.items():
158 for duration_name, duration_array in durations.items():
159 for herstel_name, herstel_array in herstelperiodes.items():
160 combination_name = f"jun_{damage_type_name}_{duration_name}_{herstel_name

}"
161

162 # Initialize arrays to store damage per cell
163 damage_direct = y_max_array * factor_depth * duration_array * y_jun *

cell_area
164

165 # Calculate indirect damage per cell
166 damage_indirect = np.where(damage_direct > 0, y_max_ind * herstel_array *

cell_area, 0)
167

168 # Total damage per cell
169 total_damage_cells = damage_direct + damage_indirect
170

171 # Initialize damage per category
172 damage_by_category_step = {cat: 0 for cat in landuse_categories}
173 damage_by_category_step['total'] = np.sum(total_damage_cells)
174

175 # Categorize damage by land use
176 for category, landuse_codes in landuse_categories.items():
177 mask = np.isin(landuse, landuse_codes)
178 damage_by_category_step[category] = np.sum(total_damage_cells[mask])
179

180 # Store damage for this combination and water level
181 if combination_name not in damage:
182 # Initialize lists for each category
183 damage[combination_name] = {cat: [] for cat in

damage_by_category_step}
184 for cat in damage_by_category_step:
185 damage[combination_name][cat].append(damage_by_category_step[cat])
186

187 return cum_vol_wlvl, cum_area_wlvl, test_wlvl, som_area, init_vol_winter, init_vol_zomer,
damage, landuse_percentages_wlvl

188

189 import time
190

191 # Initialize an empty dictionary to store damage results if not already done
192 damage_dict = {}
193

194 # folder_path = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\05_Lizard\\
csvs_polders_combined"

195 folder_path = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\05_Lizard\\csvs_polders"
196
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197 # Create a list to store polder names
198 polder_names = []
199

200 # Define land use categories for percentages (should match calculate_damage)
201 landuse_categories = {
202 'no_damage': [13, 14, 24, 30, 32, 33, 34, 35, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 73,

115, 156, 254],
203 'infrastructure': [25, 26, 27, 28, 29, 31, 165, 166],
204 'field_crops': [108, 109, 111, 157,
205 86, 87, 91, 105, 132, 146, 148,
206 112,
207 145, 154,
208 55, 56, 57, 59, 60, 62, 63, 64, 68, 69, 72, 74, 75, 77, 78, 80, 83, 90,

92, 93, 94, 98, 99, 100, 101, 102, 103, 104, 106, 110, 113, 117, 118,
120, 121, 123, 124, 126, 127, 129, 131, 134, 135, 138, 139, 140,

141, 142, 144,
209 163, 79, 122],
210 'horticulture': [125, 130, 158, 164, 61, 65, 81, 84, 85, 95, 96, 116, 119,
211 66, 67, 114, 133, 152,
212 70, 71, 76, 97, 107],
213 'nature_recreation': [15, 16, 19, 22,
214 17, 18, 20, 21],
215 'greenhouses': [7],
216 'buildings': [3, 10, 2, 4, 5, 6, 8, 9, 11, 12]
217 }
218

219 def calculate_landuse_percentages(df, landuse_categories):
220 """
221 Calculate the percentage of each land use category.
222 """
223 total_count = len(df)
224 percentages = {}
225 for category, codes in landuse_categories.items():
226 category_count = df['Landuse'].isin(codes).sum()
227 percentages[f'{category}_percentage'] = (category_count / total_count) * 100 if

total_count > 0 else 0
228 return percentages

E.6. Calling the Damage Functions for Individual Polders
1

2 counter = 0
3

4 for iteration, file_name in enumerate(os.listdir(folder_path)):
5 if file_name.startswith('points_') and file_name.endswith('.csv'):
6 file_path = os.path.join(folder_path, file_name)
7 df = pd.read_csv(file_path)
8

9 counter += 1
10

11 # Data cleaning and processing
12 df['Landuse'] = df['Landuse'].fillna(254)
13 df['Landuse'] = df['Landuse'].replace(0, 254)
14 df['Landuse'] = df['Landuse'].replace(253, 254)
15

16 # Merging df_config with dataframe
17 df_merged = pd.merge(df, df_config, on='Landuse', how='left')
18

19 df_merged.sort_values(by='AHN', inplace=True)
20 df_merged = df_merged.reset_index(drop=True)
21

22 # Extract the text using slicing
23 polder_name = file_name[7:-len('.csv')] # Get text from index 7 to the end minus the

length of suffix
24 print(f"Iteration␣{iteration}:␣Polder␣Name:␣{polder_name}")
25

26 # Store the polder name in a list for later use
27 polder_names.append(polder_name)
28

29 start_time = time.time()
30

31 # # Calculate damage, volume, and area for the polder
32 vol_df_merged, area_df_merged, wlvl, tot_area, init_vol_winter, init_vol_zomer,

damage, landuse_percentages_wlvl = calculate_damage(df_merged)
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33

34 landuse_percentages = calculate_landuse_percentages(df_merged, landuse_categories)
35

36 # Store the damage, volume, area, and landuse percentages in the dictionary
37 damage_dict[polder_name] = {
38 'volume': vol_df_merged, # Volume for each test_wlvl
39 'area': area_df_merged, # Flooded area for each test_wlvl
40 'wlvl': wlvl,
41 'total_area': tot_area,
42 'init_vol_winter': init_vol_winter,
43 'init_vol_zomer': init_vol_zomer,
44 'landuse_percentages': landuse_percentages ,
45 'landuse_percentages_wlvl': landuse_percentages_wlvl , # Percentages per wlvl
46 'damage': damage # Add the damage data here
47 }
48

49 end_time = time.time()
50 elapsed_time = end_time - start_time
51 print(f'Processing␣time:␣{(elapsed_time␣/␣60):.1f}␣minutes')

E.7. Store the Polder Dictionaries
1 # Define the folder path for saving .npy files
2 folder_path = "C:\\Users\\Pchva\\Documents\\ENVM4000\\3_Coding\\04_dicts_new"
3

4 # Loop through each polder in the damage_dict
5 for name, data in damage_dict.items():
6

7 # Define the file path for saving the modified data
8 file_path = os.path.join(folder_path, f"{name}.npy")
9

10 # Save the modified dictionary to an .npy file
11 np.save(file_path, data)
12

13 # Optional: print to confirm each file saved
14 print(f"Saved␣{name}␣data␣to␣{file_path}")



F
First-Stage code

1 import gurobipy as gp
2 from gurobipy import GRB
3 import numpy as np
4

5 # Initialize the optimization model
6 model = gp.Model("PolderOptimization_FirstStage_Aggregated")
7

8 num_timesteps = len(polders_dictionary['Aagtdorperpolder']['precipitation_3hr'])
9 num_polders = len(polders_dictionary)
10 total_pumps = 20 # total number of pumps
11

12 # Suppose we use uniform pump capacity for first stage
13 avg_pump_capacity_m3min = 24.25 # from previous calculation
14 pump_capacity_m3h = avg_pump_capacity_m3min * 60 * 3
15

16 # Decision variable: pump_count[t,p] integer
17 pump_count_1st = model.addVars(num_timesteps, num_polders, vtype=GRB.INTEGER, lb=0, ub=5,

name="pump_count")
18 infiltration_1st = model.addVars(num_timesteps, num_polders, vtype=GRB.CONTINUOUS, lb=0, name

="infiltration_1st")
19

20 water_volume_optimized_1st = model.addVars(num_timesteps, num_polders, lb=0, name="
water_volume_optimized")

21 max_water_volume_optimized_1st = model.addVars(num_polders, lb=0, name="
max_water_volume_optimized")

22 max_polder_damage_optimized_1st = model.addVars(num_polders, name="
max_polder_damage_optimized")

23

24 for p in range(num_polders):
25 max_polder_damage_optimized_1st[p].UB = dam_upper_bound[p]
26 max_water_volume_optimized_1st[p].UB = vol_upper_bound[p]
27 for t in range(num_timesteps):
28 water_volume_optimized_1st[t,p].UB = vol_upper_bound[p]
29 infiltration_1st[t,p].UB = infiltration_upper_bound[p]
30

31 # Constraint: total pumps per timestep must at most 20
32 for t in range(num_timesteps):
33 model.addConstr(gp.quicksum(pump_count_1st[t, p] for p in range(num_polders)) <=

total_pumps, name=f"total_pumps_{t}")
34

35 # Compute total pumping capacity: total_pump_pumping_capacity[t,p] = pump_count[t,p] *
pump_capacity_m3h

36 total_pump_pumping_capacity = {
37 (t, p): pump_count_1st[t, p] * pump_capacity_m3h
38 for t in range(num_timesteps)
39 for p in range(num_polders)
40 }
41

42 max_pumps_per_polder = 4 # Example: At most 3 pumps per polder at any timestep
43

44 # Constraint: at most max_pumps_per_polder pumps can operate per polder at any timestep
45 for t in range(num_timesteps):
46 for p in range(num_polders):
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47 model.addConstr(pump_count_1st[t, p] <= max_pumps_per_polder , name=f"
max_pumps_per_polder_{t}_{p}")

48

49 net_inflow_array_1st = np.zeros((num_timesteps, num_polders))
50

51

52 # Add constraints for each polder
53 for p, (polder, data) in enumerate(polders_dictionary.items()):
54 sum_inflow = 0
55 sum_gemalen = 0
56 volume_array = data['volume']
57 wlvl_array = data['wlvl']
58 damage_array = np.array(data['damage']['jun_gem_72u_120h']['total']) / 1000000
59 area_array = data['area']
60 area = data['total_area']
61 gemalen_capacity = data['gemalen_cap'] * 60 * 3
62 precip_gen = data['precipitation_3hr']
63 initial_volume = data['init_vol_zomer']
64

65 # Remove duplicates if function defined
66 volume_array, damage_array, wlvl_array, area_array = remove_duplicates_across_arrays(

volume_array, damage_array, wlvl_array, area_array, area)
67

68 for t in range(num_timesteps):
69 net_inflow = precip_gen[t] * area / 1000 - gemalen_capacity
70 net_inflow_array_1st[t, p] = net_inflow
71

72 if t == 0:
73 model.addConstr(water_volume_optimized_1st[t, p] == initial_volume)
74 else:
75 model.addConstr(water_volume_optimized_1st[t, p] == water_volume_optimized_1st[t

-1, p] + net_inflow -
76 total_pump_pumping_capacity[(t, p)] + infiltration_1st[t,p])
77

78 model.addConstr(max_water_volume_optimized_1st[p] >= water_volume_optimized_1st[t, p
])

79

80 sum_inflow += net_inflow
81 sum_gemalen += 2*gemalen_capacity
82

83 if sum_inflow > sum_gemalen:
84 model.addConstr(infiltration_1st[t,p] == 0, name=f"infiltration_no_overflow_{t}_{

p}")
85 else:
86 model.addConstr(infiltration_1st[t,p] <= gemalen_capacity, name=f"infiltration_{t

}_{p}")
87

88 # Damage PWL
89 model.addGenConstrPWL(max_water_volume_optimized_1st[p], max_polder_damage_optimized_1st[

p], volume_array, damage_array)
90

91 # Cost per hour of pump operation (assuming each pump_count[t, p] represents one pump)
92 cost_per_pump = 0.001
93 operational_cost = gp.quicksum(pump_count_1st[t, p] * cost_per_pump for t in range(

num_timesteps) for p in range(num_polders))
94 damage_reduction = gp.quicksum(max_polder_damage_optimized_1st[p] for p in range(num_polders)

)
95

96 # Objective: minimize the optimized damage
97 total_objective = damage_reduction + operational_cost
98 model.setObjective(total_objective, GRB.MINIMIZE)
99

100 # Solver parameters
101 model.setParam("TimeLimit", 3600) # 1 hour time limit
102 # model.setParam("Heuristics", 0.1) # Focus more on heuristics
103 model.setParam("MIPFocus", 1) # Focus on finding feasible solutions
104 model.setParam("PoolSolutions", 5) # Collect up to 10 solutions
105 with open('First_stage.log', "w") as file:
106 file.write("") # Clear the log file
107 model.setParam("LogFile", "First_stage.log")
108

109 # Optimize the model
110 model.optimize()
111

112 if model.status in [GRB.OPTIMAL, GRB.TIME_LIMIT, GRB.INTERRUPTED]:
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113 print("First␣stage␣optimization␣completed.")
114 # Analyze pump_count solution to determine key polders
115 else:
116 print("No␣feasible␣solution␣found␣in␣Gurobi␣Optimizer␣version␣11.0.1␣build␣v11.0.1rc0␣(

win64␣-␣Windows␣11.0␣(22631.2))first␣stage.")



G
Second-Stage code

1 import gurobipy as gp
2 from gurobipy import GRB
3 import numpy as np
4

5 model = gp.Model("PolderOptimization")
6

7 tractor_pumps = [18, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 30, 30, 30, 30, 30, 30,
45]

8 tractor_location = ["Anna␣Paulowna", "Kwadijk", "Anna␣Paulowna", "Anna␣Paulowna", "Kwadijk",
"Anna␣Paulowna", "Anna␣Paulowna", "Anna␣Paulowna", "Anna␣Paulowna", "Anna␣Paulowna", "
Anna␣Paulowna", "Kwadijk", "Kwadijk", "Anna␣Paulowna", "Anna␣Paulowna", "Kwadijk", "Anna␣
Paulowna", "Anna␣Paulowna", "Anna␣Paulowna", "Anna␣Paulowna"]

9 tractor_type = ["Veneroni␣AT30-5", "Veneroni␣AT30-5", "Veneroni␣AT30-5", "Veneroni␣AT30-5", "
Veneroni␣AT30-5", "Veneroni␣AT30-5", "Veneroni␣AT30-5", "Veneroni␣AT30-5", "Veneroni␣AT30
-5",

10 "BBA␣B300", "BBA␣B300", "BBA␣B300", "BBA␣B300", "Veneroni␣AT400/5", "Veneroni
␣AT400/5", "Veneroni␣AT400/5", "Veneroni␣AT400/5", "Veneroni␣AT400/5", "
Veneroni␣AT400/5",

11 "Veneroni␣AT500/5"]
12

13 S = 1 # Penalty duration in timesteps
14 par_t_step = 6
15 pump_capacities = 60 * par_t_step * np.array(tractor_pumps)
16 num_timesteps = len(next(iter(selected_polder_data.values()))['precipitation_6hr'])
17 num_polders = len(selected_polder_data)
18 num_pumps = len(tractor_pumps)
19

20 # Variables
21 pump_assignment = model.addVars(num_timesteps, num_pumps, num_polders, vtype=GRB.BINARY, name

="pump_assignment")
22 pump_moved_to_polder = model.addVars(num_timesteps, num_pumps, num_polders, vtype=GRB.BINARY,

name="pump_moved_to_polder")
23

24 infiltration = model.addVars(num_timesteps, num_polders, lb=0, vtype=GRB.CONTINUOUS, name="
infiltration_1st")

25 penalty_volume = model.addVars(num_timesteps, num_polders, lb=0, name="penalty_volume")
26

27 water_volume_optimized = model.addVars(num_timesteps, num_polders, lb=0, name="
water_volume_optimized")

28 max_water_volume_optimized = model.addVars(num_polders, lb=0, name="
max_water_volume_optimized")

29 max_polder_damage_optimized = model.addVars(num_polders, ub=10, name="
max_polder_damage_optimized")

30

31

32 for p in range(num_polders):
33 max_polder_damage_optimized[p].UB = dam_upper_bound[p]
34 max_water_volume_optimized[p].UB = vol_upper_bound[p]
35 for t in range(num_timesteps):
36 water_volume_optimized[t,p].UB = vol_upper_bound[p]
37 infiltration[t,p].UB = infiltration_upper_bound[p]
38 penalty_volume[t,p].UB = 45*60*par_t_step
39

40 # Constraints
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41 # Initial pump assignment (all pumps unassigned at time 0)
42 for k in range(num_pumps):
43 model.addConstr(gp.quicksum(pump_assignment[0,k,p] for p in range(num_polders)) == 0,

name=f"initial_assignment_{k}")
44

45 # 1 polder per pump per timestep
46 for t in range(num_timesteps):
47 for k in range(num_pumps):
48 model.addConstr(gp.quicksum(pump_assignment[t,k,p] for p in range(num_polders)) <= 1,

name=f"assignment_limit_{t}_{k}")
49

50 max_pumps_per_polder = 3
51 for t in range(num_timesteps):
52 for p in range(num_polders):
53 model.addConstr(gp.quicksum(pump_assignment[t,k,p] for k in range(num_pumps)) <=

max_pumps_per_polder , name=f"max_pumps_per_polder_{t}_{p}")
54

55 # Detect movement
56 for t in range(1, num_timesteps):
57 for k in range(num_pumps):
58 for p in range(num_polders):
59 # Define pump_moved_to_polder
60 model.addConstr(pump_moved_to_polder[t,k,p] >= pump_assignment[t,k,p] -

pump_assignment[t-1,k,p], name=f"moved_to_polder_{t}_{k}_{p}")
61

62 # Add constraint: each pump can be moved at most once during the time horizon
63 for k in range(num_pumps):
64 model.addConstr(
65 gp.quicksum(pump_moved_to_polder[t, k, p] for t in range(1, num_timesteps) for p in

range(num_polders)) <= 2, name=f"max_one_move_{k}")
66

67 # Calculate penalty_volume
68 for t in range(num_timesteps):
69 for p in range(num_polders):
70 penalty_terms = []
71 for k in range(num_pumps):
72 for d in range(S):
73 if t - d >= 0:
74 penalty_terms.append(pump_moved_to_polder[t - d, k, p] * (pump_capacities

[k]*0.5))
75 if penalty_terms:
76 model.addConstr(penalty_volume[t, p] == gp.quicksum(penalty_terms), name=f"

penalty_volume_{t}_{p}")
77 else:
78 model.addConstr(penalty_volume[t, p] == 0, name=f"penalty_volume_{t}_{p}")
79

80 net_inflow_array = np.zeros((num_timesteps, num_polders))
81 tot_pump_capacity = np.zeros((num_timesteps, num_polders))
82

83 for p, (polder, data) in enumerate(selected_polder_data.items()):
84 volume_array = data['volume']
85 wlvl_array = data['wlvl']
86 damage_array = np.array(data['damage']['jun_gem_72u_120h']['total'])/1e6
87 area_array = data['area']
88 area = data['total_area']
89 gemalen_capacity = data['gemalen_cap'] * 60 * par_t_step
90 precip_gen = data['precipitation_6hr']
91 volume_array, damage_array, wlvl_array, area_array = remove_duplicates_across_arrays(

volume_array, damage_array, wlvl_array, area_array, area)
92 initial_volume = data['init_vol_zomer']
93

94 baseline_vol = initial_volume
95 max_vol = baseline_vol
96

97 for t in range(num_timesteps):
98 net_inflow = precip_gen[t]*area/1000 - gemalen_capacity
99 net_inflow_array[t, p] = net_inflow
100

101 if t == 0:
102 model.addConstr(water_volume_optimized[t,p] == initial_volume, name=f"

initial_volume_{t}_{p}")
103 else:
104 total_pump_pumping_capacity = gp.quicksum(pump_assignment[t,k,p] *

pump_capacities[k] for k in range(num_pumps))
105
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106 model.addConstr(water_volume_optimized[t,p] == water_volume_optimized[t-1,p] +
net_inflow - total_pump_pumping_capacity

107 + penalty_volume[t,p] + infiltration[t,p], name=f"water_balance_{
t}_{p}")

108

109 baseline_vol += net_inflow
110 if baseline_vol > max_vol:
111 max_vol = baseline_vol
112

113 model.addConstr(max_water_volume_optimized[p] >= water_volume_optimized[t,p], name=f"
max_vol_opt_{t}_{p}")

114

115 sum_inflow += net_inflow
116 sum_gemalen += 1.5*gemalen_capacity
117

118 if sum_inflow > sum_gemalen:
119 model.addConstr(infiltration[t,p] == 0, name=f"infiltration_no_overflow_{t}_{p}")
120 else:
121 model.addConstr(infiltration[t,p] <= gemalen_capacity, name=f"infiltration_{t}_{p

}")
122

123 model.addGenConstrPWL(max_water_volume_optimized[p], max_polder_damage_optimized[p],
volume_array, damage_array, name=f"pwl_damage_optimized_{p}")

124

125 pump_operation_cost = 0.001
126 move_penalty = 0.02
127 damage_reduction = gp.quicksum(max_polder_damage_optimized[p] for p in range(num_polders))
128 operational_cost = gp.quicksum(pump_assignment[t, k, p] * pump_operation_cost
129 for t in range(num_timesteps)
130 for k in range(num_pumps)
131 for p in range(num_polders))
132

133 total_objective = damage_reduction + operational_cost # + total_movement_penalty
134 model.setObjective(total_objective, GRB.MINIMIZE)
135

136 model.setParam("PoolGap", 0.20)
137 model.setParam("PoolSolutions", 5)
138 model.setParam("TimeLimit", 12*3600)
139 with open('second_stage.log', "w") as file:
140 file.write("") # Clear the log file
141 model.setParam("LogFile", "second_stage.log")
142

143 model.optimize()
144

145

146 if model.status == GRB.OPTIMAL:
147 optimized_damage_total = sum(max_polder_damage_optimized[p].X for p in range(num_polders)

)
148 print(f"Optimized␣Total␣Damage:␣{optimized_damage_total}")
149 else:
150 print("No␣optimal␣solution␣found.")
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Second-Stage Water Volume and

Pump Placement
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Figure H.1: Aagtdorperpolder

Figure H.2: Afd. H-ON
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Figure H.3: Afd. I-noord

Figure H.4: Afd. NG
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Figure H.5: Afd. NMR

Figure H.6: Afd. NS
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Figure H.7: Afd. OT-PV

Figure H.8: Afd. W
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Figure H.9: Afd. Z

Figure H.10: Afd. ZG-ZM
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Figure H.11: Baafjespolder

Figure H.12: Bergermeer
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Figure H.13: Callantsoog

Figure H.14: Damlanderpolder
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Figure H.15: Egmondermeer

Figure H.16: Polder Schagerwaard
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Figure H.17: Ringpolder

Figure H.18: Sammerspolder
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Figure H.19: ’t Hoekje



I
KNMI HARMONIE Cy43

The precipitation forecast of KNMI is never exactly up to date, and always lags 1 or 2 hours. So to
calculate the precipitation forecast, the current time has to be calculated and found from the latest
forecast and the forecast 6 hours in the future (in this case) has to be found. The GRIB data can
be obtained via commands and codes. In the case of precipitation, this code is 181 [5]. Then, the
timeRangeIndicator can be set to either 4 for cumulative precipitation (from the start of the .tar file) or
0, per hour precipitation. This the code below the cumulative is calculated. The steps are as follows:

1. The (zipped) .tar folder is extracted.
2. Using pygrib, the precipitation values are extracted for the timeframes and georeferenced in

WGS84.
3. The relevant forecasts (6 hours in the future in this case) is extracted and converted to raster.
4. Precipitation mean per polder is calculated given a polder GeoJSON file for the polder locations

(WGS84).
1 import os
2 import tarfile
3 from datetime import datetime, timedelta
4 import pytz
5 import numpy as np
6 import pygrib
7 import rasterio
8 from rasterio.transform import from_origin
9 from rasterstats import zonal_stats
10 import geopandas as gpd
11

12 # Define paths
13 extract_dir = "data/results"
14 results_dir = "data/results"
15 geojson_path = 'data/source/polders.geojson'
16 reprojected_geojson_path = 'data/source/polders_reprojected.geojson'
17 output_geojson = 'data/source/polders_with_precipitation.geojson'
18 output_tiff = 'precipitation.tif'
19

20 # Extract GRIB files from TAR archive
21 tar_path = [file for file in os.listdir(extract_dir) if file.endswith(".tar")][0]
22 with tarfile.open(os.path.join(extract_dir, tar_path), "r") as tar:
23 tar.extractall(extract_dir)
24

25 # Filter and load GRIB files
26 grib_files = [file for file in os.listdir(extract_dir) if file.endswith("_GB")]
27 latest_forecast = datetime.strptime(grib_files[0].split("_")[2], "%Y%m%d%H%M")
28 current_time = datetime.utcnow().replace(tzinfo=pytz.utc)
29 delta_time = current_time - latest_forecast
30 time_6h = current_time + timedelta(hours=6)
31

32 # Calculate forecast intervals
33 gribfile_now = f"{int(delta_time.total_seconds()␣//␣3600):03d}00"
34 gribfile_6h = f"{int((time_6h␣-␣latest_forecast).total_seconds()␣//␣3600):03d}00"
35

36 # Get GRIB files for the desired timeframes
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37 grib_files_filtered = [file for file in grib_files if file.split("_")[3] in [gribfile_now,
gribfile_6h]]

38 values_list, lats, lons = [], None, None
39

40 # Extract precipitation data from GRIB files
41 for grib_file in grib_files_filtered:
42 with pygrib.open(os.path.join(extract_dir, grib_file)) as grbs:
43 for grb in grbs:
44 if grb.typeOfLevel == 'heightAboveGround' and grb.indicatorOfParameter == 181:
45 values = grb.values[::-1]
46 lats, lons = grb.latlons()
47 values_list.append(values)
48

49 # Create a GeoTIFF from precipitation data
50 transform = from_origin(lons[0, 0], lats[0, 0] + values.shape[0] * (lats[1, 0] - lats[0, 0]),
51 lons[0, 1] - lons[0, 0], lats[1, 0] - lats[0, 0])
52 metadata = {
53 'driver': 'GTiff', 'count': 1, 'dtype': 'float32', 'width': values.shape[1],
54 'height': values.shape[0], 'crs': 'EPSG:4326', 'transform': transform
55 }
56 with rasterio.open(output_tiff, 'w', **metadata) as dst:
57 dst.write(values.astype(np.float32), 1)
58

59 # Reproject GeoJSON to match raster CRS
60 def reproject_geojson(src_path, dst_path, target_crs):
61 gdf = gpd.read_file(src_path)
62 gdf.to_crs(target_crs).to_file(dst_path, driver='GeoJSON')
63

64 reproject_geojson(geojson_path, reprojected_geojson_path , 'EPSG:4326')
65

66 # Calculate zonal statistics for each polder
67 polders = gpd.read_file(reprojected_geojson_path)
68 with rasterio.open(output_tiff) as src:
69 stats = zonal_stats(polders, src.read(1), affine=src.transform, all_touched=True, nodata=

src.nodata, stats='mean')
70

71 # Add precipitation statistics to GeoJSON
72 polders['mean_precipitation'] = [stat['mean'] for stat in stats]
73 polders.to_file(output_geojson, driver='GeoJSON')
74 print("Average␣precipitation␣added␣to␣polders␣GeoJSON.")



J
Logfile First Stage

Gurobi 11.0.1 (win64) logging started Fri Jan 31 14:56:08 2025

Set parameter LogFile to value "test_First_stage.log"
Gurobi Optimizer version 11.0.1 build v11.0.1rc0 (win64 - Windows 11.0 (22631.2))

CPU model: AMD Ryzen 7 4700U with Radeon Graphics, instruction set [SSE2|AVX|AVX2]
Thread count: 8 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 4825 rows, 3696 columns and 10656 nonzeros
Model fingerprint: 0xdca6eabd
Model has 48 general constraints
Variable types: 2496 continuous, 1200 integer (0 binary)
Coefficient statistics:

Matrix range [1e+00, 4e+03]
Objective range [1e-03, 1e+00]
Bounds range [6e-03, 3e+06]
RHS range [2e-01, 9e+05]
PWLCon x range [2e-02, 3e+06]
PWLCon y range [0e+00, 3e+01]

Presolve removed 3920 rows and 918 columns
Presolve time: 0.03s
Presolved: 905 rows, 2778 columns, 6973 nonzeros
Presolved model has 48 SOS constraint(s)
Variable types: 1751 continuous, 1027 integer (13 binary)

Root relaxation: objective 3.970998e+01, 1674 iterations, 0.01 seconds (0.01 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 39.70998 0 110 - 39.70998 - - 0s
H 0 0 99.3450424 39.70998 60.0% - 0s
H 0 0 42.9522744 39.70998 7.55% - 0s

0 0 39.80295 0 65 42.95227 39.80295 7.33% - 0s
0 0 39.81941 0 60 42.95227 39.81941 7.29% - 0s
0 0 39.83671 0 61 42.95227 39.83671 7.25% - 0s

H 0 0 42.7304410 39.94132 6.53% - 0s
0 0 39.94132 0 59 42.73044 39.94132 6.53% - 0s
0 0 40.00686 0 51 42.73044 40.00686 6.37% - 0s
0 0 40.12618 0 52 42.73044 40.12618 6.09% - 0s
0 2 40.12618 0 52 42.73044 40.12618 6.09% - 0s

H 220 240 42.6958403 40.23159 5.77% 20.3 1s
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H 228 240 42.6522459 40.23159 5.68% 20.0 1s
H 236 240 42.5636423 40.23159 5.48% 19.9 1s
H 312 338 42.4590410 40.23159 5.25% 18.1 1s
H 355 402 42.4375315 40.23159 5.20% 16.7 1s
H 526 569 42.4236784 40.23159 5.17% 14.5 2s
H 615 624 42.3279863 40.23159 4.95% 14.1 2s
H 1745 1416 42.3204105 40.23159 4.94% 10.7 3s
H 1752 1412 42.3190544 40.23159 4.93% 10.6 3s
H 1760 1311 42.2896668 40.23159 4.87% 10.6 3s
H 1877 1447 42.2820686 40.23159 4.85% 10.5 3s
H 1990 1519 42.2775334 40.23159 4.84% 10.6 3s
H 1990 1517 42.2756457 40.23159 4.84% 10.6 3s
H 2615 1901 42.1290126 41.18203 2.25% 10.5 5s
H 2615 1806 42.1290125 41.18203 2.25% 10.5 5s
H 3000 1957 42.1265134 41.55299 1.36% 11.4 6s
H 3011 1867 42.1002787 41.55299 1.30% 11.4 6s
H 3023 1781 42.0942339 41.55299 1.29% 11.4 6s
H 3043 1705 42.0936001 41.55299 1.28% 11.3 7s
H 3045 1630 42.0929158 41.55299 1.28% 11.3 7s
H 3049 1559 42.0895175 41.55299 1.27% 11.3 7s
H 3200 1589 42.0423683 41.55299 1.16% 10.9 8s
H 3208 1531 42.0403485 41.55299 1.16% 10.9 8s
H 4332 2187 42.0403485 41.55299 1.16% 8.9 9s
H 4360 2121 42.0403484 41.55299 1.16% 8.9 9s

4507 2151 41.90363 139 107 42.04035 41.55299 1.16% 8.7 10s
H 4509 2095 42.0378949 41.55299 1.15% 8.7 10s
H 5005 2349 42.0378948 41.55299 1.15% 8.3 11s
H 5030 2291 42.0378948 41.55299 1.15% 8.3 11s
H 5500 2856 42.0378948 41.57036 1.11% 7.9 13s

6172 3418 41.77555 144 130 42.03789 41.57036 1.11% 7.5 15s
8714 5945 41.78404 106 131 42.03789 41.57052 1.11% 6.7 20s

11297 7626 infeasible 129 42.03789 41.57066 1.11% 5.9 26s
11936 8668 41.83370 206 134 42.03789 41.57066 1.11% 5.7 30s

...

948513 782291 41.62854 97 148 42.03786 41.57332 1.11% 4.0 3531s
949324 783462 41.87537 189 115 42.03786 41.57332 1.11% 4.0 3540s
950940 784563 41.65331 97 140 42.03786 41.57332 1.11% 4.0 3550s
952328 785507 41.87149 258 117 42.03786 41.57332 1.11% 4.0 3558s
953474 785794 41.84086 154 132 42.03786 41.57332 1.11% 4.0 3567s
953856 786759 41.62854 77 146 42.03786 41.57332 1.11% 4.0 3577s
955261 787738 41.87725 222 112 42.03786 41.57332 1.11% 4.0 3590s
956341 789161 41.69585 128 147 42.03786 41.57332 1.11% 4.0 3600s

Cutting planes:
Gomory: 123
Implied bound: 10
MIR: 76
Flow cover: 20
RLT: 1
Relax-and-lift: 2

Explored 958157 nodes (3874363 simplex iterations) in 3600.35 seconds (924.04 work units)
Thread count was 8 (of 8 available processors)

Solution count 5: 42.0379 42.0379 42.0379 ... 42.0379

Time limit reached
Best objective 4.203786117178e+01, best bound 4.157332163341e+01, gap 1.1051%
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Logfile Second Stage

Gurobi 11.0.1 (win64) logging started Thu Jan 30 16:47:56 2025

Set parameter LogFile to value "Ssecond_stage.log"
Gurobi Optimizer version 11.0.1 build v11.0.1rc0 (win64 - Windows 11.0 (22631.2))

CPU model: AMD Ryzen 7 4700U with Radeon Graphics, instruction set [SSE2|AVX|AVX2]
Thread count: 8 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 6095 rows, 10659 columns and 39919 nonzeros
Model fingerprint: 0xa2a5cae1
Model has 19 general constraints
Variable types: 779 continuous, 9880 integer (9880 binary)
Coefficient statistics:

Matrix range [1e+00, 2e+04]
Objective range [1e-03, 1e+00]
Bounds range [1e+00, 3e+06]
RHS range [1e+00, 8e+05]
PWLCon x range [4e-01, 3e+06]
PWLCon y range [0e+00, 3e+01]

Presolve removed 130 rows and 153 columns
Presolve time: 0.09s
Presolved: 5965 rows, 10506 columns, 44166 nonzeros
Variable types: 1061 continuous, 9445 integer (9147 binary)

Root relaxation: objective 2.420623e+01, 28193 iterations, 2.10 seconds (2.67 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 24.20623 0 377 - 24.20623 - - 2s
0 0 26.78435 0 602 - 26.78435 - - 9s

H 0 0 33.4691527 26.82019 19.9% - 15s
0 0 26.83049 0 596 33.46915 26.83049 19.8% - 15s
0 0 26.88009 0 576 33.46915 26.88009 19.7% - 18s
0 0 26.89114 0 556 33.46915 26.89114 19.7% - 19s
0 0 26.89116 0 572 33.46915 26.89116 19.7% - 20s
0 0 26.93982 0 605 33.46915 26.93982 19.5% - 23s
0 0 26.99880 0 588 33.46915 26.99880 19.3% - 27s
0 0 27.00150 0 584 33.46915 27.00150 19.3% - 28s
0 0 27.00150 0 608 33.46915 27.00150 19.3% - 28s
0 0 27.02171 0 612 33.46915 27.02171 19.3% - 32s
0 0 27.02256 0 614 33.46915 27.02256 19.3% - 34s
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0 0 27.02257 0 622 33.46915 27.02257 19.3% - 34s
0 0 27.03133 0 589 33.46915 27.03133 19.2% - 37s

H 0 0 33.2737387 27.03133 18.8% - 37s
0 0 27.03161 0 612 33.27374 27.03161 18.8% - 38s

H 0 0 33.1853307 27.03425 18.5% - 40s
0 0 27.03425 0 670 33.18533 27.03425 18.5% - 40s

H 0 0 32.1597155 27.03577 15.9% - 41s
0 0 27.03577 0 645 32.15972 27.03577 15.9% - 41s
0 0 27.03748 0 654 32.15972 27.03748 15.9% - 42s
0 0 27.03795 0 686 32.15972 27.03795 15.9% - 46s

H 0 0 31.9978276 27.03961 15.5% - 49s
H 0 0 31.8736718 27.03961 15.2% - 49s

0 0 27.03961 0 734 31.87367 27.03961 15.2% - 50s
0 0 27.03961 0 685 31.87367 27.03961 15.2% - 50s
0 2 27.03961 0 676 31.87367 27.03961 15.2% - 57s
1 4 27.05387 1 675 31.87367 27.05387 15.1% 637 60s
3 6 27.15889 2 674 31.87367 27.15889 14.8% 4482 83s
7 10 27.27491 3 655 31.87367 27.15889 14.8% 22361 101s

21 18 27.28456 5 774 31.87367 27.27876 14.4% 19568 117s
29 26 27.53036 6 762 31.87367 27.27876 14.4% 21374 120s
45 38 27.53218 7 668 31.87367 27.27876 14.4% 17407 129s
53 46 27.69948 8 637 31.87367 27.27876 14.4% 16475 132s
61 55 27.71204 9 660 31.87367 27.27876 14.4% 15077 135s

H 65 55 31.8270770 27.27876 14.3% 14362 135s
H 68 55 31.7494492 27.27876 14.1% 13903 135s
H 71 57 31.6335976 27.27876 13.8% 13629 138s

81 62 27.72064 11 601 31.63360 27.27876 13.8% 12359 146s
92 71 27.79388 11 635 31.63360 27.27876 13.8% 12317 151s

H 101 82 31.5824083 27.27876 13.6% 11809 159s
H 105 82 31.5703042 27.27876 13.6% 11925 159s
H 111 82 31.5157358 27.27876 13.4% 11565 159s
H 112 90 31.4776232 27.27876 13.3% 11537 178s

120 103 28.00261 13 546 31.47762 27.27876 13.3% 12162 182s
133 116 28.19446 13 599 31.47762 27.27876 13.3% 11595 186s

H 146 125 31.3752108 27.27876 13.1% 11086 198s
155 142 28.00265 15 459 31.37521 27.27876 13.1% 11711 202s
172 157 28.05518 17 490 31.37521 27.27876 13.1% 11044 207s
187 170 28.04894 18 517 31.37521 27.27876 13.1% 10702 215s

H 191 170 31.3739251 27.27876 13.1% 10565 215s
200 187 28.07686 20 537 31.37393 27.27876 13.1% 10467 220s

H 236 221 31.3739250 27.27876 13.1% 9691 230s
251 240 28.05218 25 550 31.37393 27.27876 13.1% 9463 235s
270 264 28.05295 26 520 31.37393 27.27876 13.1% 9229 241s
294 288 28.07375 27 483 31.37393 27.27876 13.1% 8888 246s

H 305 288 31.3687520 27.27876 13.0% 8698 246s
318 309 28.06659 29 502 31.36875 27.27876 13.0% 8583 251s
339 330 28.06689 30 521 31.36875 27.27876 13.0% 8370 257s

H 360 353 31.3570544 27.27876 13.0% 8206 262s
H 374 353 31.3519768 27.27876 13.0% 8078 262s

383 382 28.06715 34 501 31.35198 27.27876 13.0% 8008 267s
H 412 406 31.3519762 27.27876 13.0% 7737 274s

436 435 28.09946 40 499 31.35198 27.27876 13.0% 7546 281s
465 466 28.09981 43 523 31.35198 27.27876 13.0% 7391 288s

H 487 466 31.3519754 27.27876 13.0% 7237 288s
496 496 28.22810 45 514 31.35198 27.27876 13.0% 7207 295s
530 516 28.24111 48 491 31.35198 27.27876 13.0% 7021 302s

H 537 516 31.3519753 27.27876 13.0% 6981 302s
550 553 28.23811 49 492 31.35198 27.27876 13.0% 6931 309s
587 597 28.23311 51 406 31.35198 27.27876 13.0% 6764 316s
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...

160925 90246 30.54113 96 351 30.60160 30.28522 1.03% 3853 37754s
162002 90710 30.45017 72 694 30.60160 30.28539 1.03% 3853 38025s
162863 91229 30.49768 51 947 30.60160 30.28604 1.03% 3856 38298s

H163273 91229 30.6016046 30.28619 1.03% 3855 38298s
163720 91880 30.55204 88 568 30.60160 30.28635 1.03% 3858 38530s
164643 92425 30.38042 55 793 30.60160 30.28684 1.03% 3857 38780s
165412 93057 30.56620 67 702 30.60160 30.28721 1.03% 3859 39062s
166366 93823 30.30823 55 871 30.60160 30.28765 1.03% 3860 39348s
167444 94542 cutoff 57 30.60160 30.28805 1.02% 3860 39635s
168407 95354 30.52518 77 625 30.60160 30.28827 1.02% 3859 39902s
169426 96143 30.54119 150 311 30.60160 30.28854 1.02% 3859 40170s

H169675 96143 30.6016043 30.28860 1.02% 3859 40170s
170561 96675 30.59338 57 909 30.60160 30.28877 1.02% 3855 40445s
171301 97328 30.58526 105 332 30.60160 30.28888 1.02% 3860 40706s
172297 98134 30.44904 93 456 30.60160 30.28892 1.02% 3860 40969s
173417 98660 30.47598 64 863 30.60160 30.28905 1.02% 3858 41230s
174472 99359 30.43938 69 639 30.60160 30.28957 1.02% 3855 41492s
175499 100015 30.36983 51 925 30.60160 30.28979 1.02% 3855 41757s
176606 100192 30.58671 60 776 30.60160 30.28997 1.02% 3852 42009s

H176681 100021 30.6010771 30.28997 1.02% 3852 42009s
176883 100513 30.38313 49 834 30.60108 30.28999 1.02% 3851 42289s
177736 100951 30.37215 45 1149 30.60108 30.29049 1.01% 3853 42570s
178391 101415 cutoff 61 30.60108 30.29093 1.01% 3858 42816s

H178531 101415 30.6010771 30.29098 1.01% 3859 42816s
179131 102249 30.55911 49 884 30.60108 30.29100 1.01% 3860 43137s
180437 102340 30.56203 83 790 30.60108 30.29146 1.01% 3858 43200s

Cutting planes:
Gomory: 864
Lift-and-project: 18
Cover: 3
Projected implied bound: 2
MIR: 129
StrongCG: 5
Flow cover: 136
Inf proof: 7
Zero half: 5
Relax-and-lift: 2

Explored 180638 nodes (696979574 simplex iterations) in 43200.12 seconds (45403.57 work units)
Thread count was 8 (of 8 available processors)

Solution count 5: 30.6011 30.6016 30.6016 ... 30.602

Time limit reached
Best objective 3.060107707818e+01, best bound 3.029157436085e+01, gap 1.0114%
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Table L.1: Aagterdorperpolder characteristics

Aagterdorperpolder Type 1
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 12.7 284 144
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 115.7 1.10
Optimized 115.7 1.10 0 0
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Table L.2: Afd. AB characteristics

Afd. AB Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 17.2 543 122
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 86 0.77
Optimized 86 0.77 0 0
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Table L.3: Afd. C characteristics

Afd. C Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

50 14.0 316 124
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 96 0.44
Optimized 96 0.44 0 0
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Table L.4: Afd. D characteristics

Afd. D Type 1
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

65 mm 48.9 56 134
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 59 0.01
Optimized 59 0.01 0 0
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Table L.5: Afd. E characteristics

Afd. E Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 13.3 563 103
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 76 1.4
Optimized 76 1.4 0 0
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Table L.6: Afd. F characteristics

Afd. F Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 19.8 138 128
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 88 0.19
Optimized 88 0.19 0 0
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Table L.7: Afd. H-ON characteristics

Afd. H-ON Type 1
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 20.5 498 124
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 82.0 2.16
Optimized 80.0 2.11 0.049 12960
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Table L.8: Afd. I-noord characteristics

Afd. I-noord Type 1
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

70 19.2 202 151
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 113.2 0.59
Optimized 108.4 0.50 0.086 12960
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Table L.9: Afd. I-zuid characteristics

Afd. I-zuid Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 16.7 69 137
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 102 0.24
Optimized 102 0.24 0 0
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Table L.10: Afd. KP characteristics

Afd. KP Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

80 15.0 356 101
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 71 0.14
Optimized 71 0.14 0 0
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Table L.11: Afd. LQ characteristics

Afd. LQ Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 15.4 299 121
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 114 0.09
Optimized 114 0.09 0 0
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Table L.12: Afd. NG characteristics

Afd. NG Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 18.1 215 123
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 85.1 0.98
Optimized 81.7 0.95 0.033 10800
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Table L.13: Afd. NMR characteristics

Afd. NMR Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 25.0 692 123
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 70.0 6.92
Optimized 62.0 6.17 0.751 74520
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Table L.14: Afd. NS characteristics

Afd. NS Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 16.6 208 108
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 75.2 2.57
Optimized 49.6 1.64 0.927 61560
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Table L.15: Afd. OT-PV characteristics

Afd. OT-PV Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 14.5 586 115
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 86.7 5.49
Optimized 56.9 3.26 2.226 190080
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Table L.16: Afd. W characteristics

Afd. W Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 18.1 159 102
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 64.7 2.14
Optimized 37.7 0.50 1.642 48600
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Table L.17: Afd. Z characteristics

Afd. Z Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

30 27.1 791 107
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 54.4 2.94
Optimized 48.7 2.24 0.699 48600
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Table L.18: Afd. ZG-ZM characteristics

Afd. ZG-ZM Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

40 16.6 381 125
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 94.3 2.57
Optimized 62.2 1.00 1.57 136440
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Table L.19: Baafjespolder characteristics

Baafjespolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

60 17.2 461 121
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 82.6 0.66
Optimized 78.6 0.57 0.088 30600
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Table L.20: Bergermeer characteristics

Bergermeer Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 23.1 846 124
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 75.4 1.65
Optimized 75.4 1.65 0 0
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Table L.21: Callantsoog characteristics

Callantsoog Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

40 17.5 739 99
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 65.0 2.23
Optimized 45.4 0.45 1.782 158760
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Table L.22: Damlanderpolder characteristics

Damlanderpolder Type 1
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

80 10.7 282 152
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 128.2 0.57
Optimized 128.2 0.57 0 0
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Table L.23: De Kaag characteristics

De Kaag Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 14.1 409 76
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 46 0.09
Optimized 46 0.09 0 0
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Table L.24: Egmondermeer characteristics

Egmondermeer Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 16.1 714 130
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 94.5 1.98
Optimized 94.0 1.97 0.011 6480
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Table L.25: Groeterpolder characteristics

Groeterpolder Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 11.5 301 138
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 113 0.04
Optimized 113 0.04 0 0
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Table L.26: Grootdammerpolder characteristics

Grootdammerpolder Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 10.3 461 152
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 129 0.12
Optimized 129 0.12 0 0
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Table L.27: Hargerpolder characteristics

Hargerpolder Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 15.3 361 114
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 80 0.04
Optimized 80 0.04 0 0
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Table L.28: Hensbroek characteristics

Hensbroek Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 15.2 567 66
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 34 0.04
Optimized 34 0.04 0 0
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Table L.29: Lage Hoek characteristics

Lage Hoek Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 20.9 327 78
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 38 0.03
Optimized 38 0.03 0 0
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Table L.30: Leipolder characteristics

Leipolder Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 14.7 94 104
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 72 0
Optimized 72 0 0 0
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Table L.31: Obdam characteristics

Obdam Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 42.9 905 71
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 38 0.34
Optimized 38 0.34 0 0
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Table L.32: Oosterzijpolder characteristics

Oosterzijpolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

130 12.5 1127 106
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 78 1.64
Optimized 78 1.64 0 0
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Table L.33: Philisteinsepolder characteristics

Philisteinsepolder Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 10.1 285 159
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 136 0.05
Optimized 136 0.05 0 0
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Table L.34: Polder de Berkmeer characteristics

Polder de Berkmeer Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 15.1 287 73
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 41 0.06
Optimized 41 0.06 0 0
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Table L.35: Polder de Woudmeer characteristics

Polder de Woudmeer Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 17.6 327 88
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 51 0.21
Optimized 51 0.21 0 0
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Table L.36: Polder Schagerwaard characteristics

Polder Schagerwaard Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 16.7 659 91
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 53.6 1.56
Optimized 38.0 0.66 0.9 124560
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Table L.37: Polder Valkkoog characteristics

Polder Valkkoog Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 14.1 512 111
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 81 0.36
Optimized 81 0.36 0 0
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Table L.38: Ringpolder characteristics

Ringpolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 14.4 1425 115
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 82.8 9.04
Optimized 62.0 5.76 3.282 321300
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Table L.39: Sammerspolder characteristics

Sammerspolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 18.5 451 142
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 100.1 3.68
Optimized 79.6 3.03 0.651 103680
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Table L.40: Slootgaardpolder characteristics

Slootgaardpolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 19.2 570 79
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 36 0.36
Optimized 36 0.36 0 0
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Table L.41: Speketerspolder characteristics

Speketerspolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 14.2 405 83
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 51 0.25
Optimized 51 0.25 0 0
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Table L.42: ’t Hoekje characteristics

’t Hoekje Type 1
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 19.3 388 105
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 64.3 1.71
Optimized 42.8 1.12 0.592 92520
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Table L.43: Ursem characteristics

Ursem Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 16.1 1065 57
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 57 0.11
Optimized 23 0.11 0 0
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Table L.44: Vennewaterspolder characteristics

Vennewaterspolder Type 2
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

120 13.6 338 130
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 99 0.38
Optimized 99 0.38 0 0
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Table L.45: Verenigde Polders characteristics

Verenigde Polders Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 13.8 916 127
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 96 0.52
Optimized 96 0.52 0 0
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Table L.46: Wimmenummerpolder characteristics

Wimmenummerpolder Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 10.0 115 157
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 135 0.19
Optimized 135 0.19 0 0



152

Table L.47: Wogmeer characteristics

Wogmeer Type 3
Storage
Capacity
[mm]

Removal
Capacity
[mm/d]

Area
[ha]

Precipitation
[mm]

0 13.5 691 56
Maximum Volume

[mm]
Damage
[m euro]

Damage Prevented
[m euro]

Cumulative Pump Capacity
[m3]

Baseline 27 0.09
Optimized 27 0.09 0 0
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