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Abstract: Optical aberrations affect the quality of light propagating through a turbid medium,
where refractive index is spatially inhomogeneous. In multiphoton optical applications, such as
two-photon excitation fluorescence imaging and optogenetics, aberrations non-linearly impair the
efficiency of excitation. We demonstrate a sensorless adaptive optics technique to compensate
aberrations in holograms projected into turbid media. We use a spatial light modulator to project
custom three dimensional holographic patterns and to correct for local (anisoplanatic) distortions.
The method is tested on both synthetic and biological samples to counteract aberrations arising
respectively from misalignment of the optical system and from samples inhomogeneities. In
both cases the anisoplanatic correction improves the intensity of the stimulation pattern at least
two-fold.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Computer generated holography (CGH) is a well-established technique to shape coherent light
into custom three-dimensional (3D) patterns. When encoded onto a programmable spatial light
modulator (SLM), CGH enables flexible projection technology. A wide range of applications
exploits this strategy, such as dynamically controlled optical traps for micromanipulation [1],
laser microsurgery [2], two-photon polymerization to produce micrometer-sized 3D structures
[3], and optogenetics stimulation of neurons in tissue [4]. Each of these applications relies on the
quality of the projected light field, in terms of intensity, precision and fidelity to the computed
version of the CGH. However, distortion of the modulated wavefront at any point in the optical
path can compromise the reconstructed hologram.

Aberrations arise in any non-ideal imaging system from misalignment and from propagation
through materials where the index of refraction varies spatially across the wavefront. In some
cases, aberrations affect the whole field of view (FOV) homogeneously. Those aberrations are
denominated isoplanatic and they can be modeled and compensated for in the design of the
instrument with a fixed optic. For instance, in photo-resist laser writing, aberrations originating
from the interface between the resist and the substrate are proportional to the mismatch of
refractive index at this interface, the depth of the focal point, and the numerical aperture (NA) of
the objective lens [5]. More generally, aberrations varying across the FOV are called anisoplanatic.
Sample-induced aberrations are a known problem for loss of signal and contrast in deep tissue
optical imaging, where both excitation and emission light are distorted when they propagate
through inhomogeneous and thick biological samples [6]. In multiphoton excitation, aberrations
reduce peak excitation intensity nonlinearly, leading both to inefficient excitation as well as losses
on the signal collection.

Adaptive optics (AO), a technique borrowed from astronomers who obtained high quality
images of stars and satellites deteriorated by atmospheric turbulence [7], can compensate for
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such distortions. An AO system may consist of three main components: a sensor to measure the
aberrations, an adaptive optical element to correct the wavefront distortions, and a controller to
feed the information obtained by the sensor to the adaptive element. An alternative to using a
wavefront sensor in closed loop is a sensorless approach in which information about the wavefront
can be determined indirectly (e.g., from the properties of two-photon excited fluorescence). Both
sensor-based and sensor-less AO approaches have been successfully integrated into different
microscope designs [8]. In widefield microscopy, a Shack-Hartmann wavefront sensor may
be used to measure the distortion on the fluorescent signal using guide stars, or fluorescent
landmarks with known shape [9]. Differently, wavefront sensors have been employed in light
sheet microscopy to correct the aberrations on the excitation light [10]. The approach most
commonly used in laser scanning microscopies, like laser scanning confocal microscopy, is to
obtain a single isoplanatic aberration correction for both the excitation light and fluorescence
signal over a relatively small FOV [11]. At the same time, sensorless AO has been widely
applied to correct excitation and or emission light in different microscopy techniques [12–14].
Recently, various research groups proposed anisoplanatic corrections to improve imaging in
more heterogeneous samples, such as intact organs [15–18].

In non-imaging applications, holographic projections are likewise subject to aberrations.
Stray photons may have unintended consequences in the case of laser writing or optogenetics.
In particular, in the case of optogenetics, chromophores are intentionally designed to perturb
the biology of the system rather than simply fluoresce. In fact, photostimulation conditions
in optogenetics are often more intense than conditions used in imaging, using longer dwell
times (millisecond vs. microsecond), so the effect of off-target photostimulation can be more
problematic. Inefficient excitation is also detrimental for photostimulation in living tissues where
one wants to use the minimum light needed to be effective.

Here we apply a sensorless AO approach to correct aberrations on holographic projections using
two-photon excited fluorescence (TPEF) as a readout. An optical module for photostimulation
with CGH is implemented, which we will call 2P-CGH in this paper. A computer generated
hologram (CGH) of the desired 3D excitation pattern is calculated and its phase is imposed on
a coherent wavefront at the rear pupil plane of an objective through a liquid crystal on silicon
spatial light modulator (LCoS-SLM). The SLM serves also as AO element to introduce bias
aberration into the stimulation light. The optimal AO corrections are determined through a simple
hill-climbing approach where a series of images is acquired under different bias aberrations. To
validate the method we demonstrate correction of anisoplanatic aberrations in 2D and 3D using a
series of samples with increasing complexity, including tissue. We show that our method can
improve the intensity of the stimulation pattern in both synthetic samples and fixed tissue by at
least a factor of two.

2. Materials and methods

2.1. Computer generated hologram calculation

The optical layout to project computer generated holograms is based on Fourier holography,
as shown in Fig. 1(a). The target field Uo(zi) is defined by user-selected points in a virtual
representation of the real space FOV, describing the 3D pattern of points at depths zi. The
hologram field Uh is related to the field at the focal planes through a discrete Fourier transform.
The phase of the hologram field is then addressed to the SLM and the hologram is reconstructed
optically by a spatial Fourier transformation by the objective lens. Holograms are calculated
with the Compressive Sensing Weighted Gerchberg-Saxton (CS-WGS) algorithm [19]. This
algorithm can generate holograms of point clouds arbitrarily distributed in the 3D FOV of the
optical system. As reported in [19], CS-WGS provides comparable results in terms of spot
brightness and uniformity as Gerchberg-Saxton and Weighted Gerchberg-Saxton approaches,
while reducing drastically the computational time.



Research Article Vol. 30, No. 16 / 1 Aug 2022 / Optics Express 29130

Isoplanatic phase (d)

SLM Fourier lens 

Holographic projection
z1 z2 z3

z’1 z’2 z’3

++

(a)

Anisoplanatic phase

(b) Simulated focal plane

(c)

f f

Computer generated hologram

Virtual object

d)

Fig. 1. Computer Generated Holography combined with Adaptive Optics. (a) Concept
of CGH and optical transformation needed to project a 3D digital hologram. Uh: spatial
2D Fourier transform of the target pattern Uo defined at different depths zi, applied by lens
of focal length, f . Each circle at the SLM represents the specific phase to generate the
point at the chosen depth. (b) Left: Phase corresponding to vertical coma introduced as
isoplanatic aberration to all the points in a grid pattern of 16 points. Right: Simulated image
of the grid pattern affected by vertical coma with coefficient w = 1 µm. (c) Left: Phase
of the local aberrations introduced in the grid pattern. Each circle in the grid represents a
different aberration expanded in the Zernike base from oblique astigmatism to secondary
coma. Right: Simulated image of the grid pattern with local aberration with coefficient w
= 1 µm applied to each point. (d) Implementation of CGH projection module (red lines)
including widefield imaging path for measurement of TPEF (green lines; DM: dichroic;
ETL: electrically tunable lens), not to scale.
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For a CGH with N spots, the field at the SLM is calculated as the superposition of the fields
generating each individual spot:

Uh =

N∑︂
n=1

uo,n · e−i(φPOS,n+φn) (1)

where uo,n is the amplitude of the field associated with the nth spot at the focal plane, ϕn is a
constant term and ϕPOS,n is a phase describing the position. The position ϕPOS,n is determined by
combination of tip, tilt and defocus localizing each of the N points in 3D space:

ϕPOS,n(x, y) = 2π
λf

· (xn · x′ + yn · y′) + znπ

λ2f 2 · (x′2 + y′2) (2)

where xn, yn, zn are the coordinates of each point, x′, y′ are the SLM coordinates, f is the focal
length of the optical system and λ is the wavelength of the light source. Any iterative calculation
of the hologram field aims at maximizing the quality of the hologram by optimizing the value of
the phase term ϕn.

The approach here described allows to include in the hologram field (Eq. (1)) a phase term,
ϕAO,n, representing the full-pupil phase applied to the sub-hologram for each point n to compensate
local optical aberration [15]. Hence, the CGH phase encoding for a 3D distribution of points
with their corresponding aberrations correction is computed as :

ϕCGH = arg(
N∑︂

n=1
e−i(φPOS,n+φAO,n+φn)) (3)

Here the aberrations are encoded in the CGH using a modal representation. Specifically the
aberration phase is expanded as a linear combination of Zernike polynomials as follows:

ϕAO =

N∑︂
j=1

wj · Zj with j =
k(k + 2) + m

2
(4)

where Zj is the Zernike polynomial function, j is the index of the expansion and wj is the
coefficient or weight. Zernike modes are a set of basis functions defined on a circle, in this case
corresponding to the objective back aperture. We follow the ANSI order where the index j carries
information about the radial (k) and angular (m) indices of the Zernike polynomials. Zernike
modes with the same radial index k belong to the same aberration order [20]. These polynomials
are widely used [21] and easily applicable. The low order modes are directly linked to identifiable
aberrations such as defocus and spherical aberration allowing for clear interpretation of the
results. The coefficients wj of the Zernike polynomials are calculated in units of the wavelength
and are hereby reported in µm.

The 3D CGH can include an isoplanatic phase term ϕAO,n which is the same across all the
points in the field of view. This case is depicted in Fig. 1(b) where a uniform vertical coma
aberration (Z8) with coefficient w = 1 µm is superimposed to the CGH on the SLM. The left image
shows the phase of the coma aberration addressed to the SLM. The right shows a simulation of a
16-point grid pattern extending over a FOV of 80 µm at focal plane z = 7 µm in the sample, here
all the points are affected by the same aberration.

Alternatively, as shown in Fig. 1(c) anisoplanatic aberrations are encoded in the CGH. Here
distinct aberration phases are targeted to different location of the FOV. The left image shows
different aberration phases, from oblique astigmatism (Z3) to horizontal secondary coma (Z18)
with the same coefficient w = 1 µm, for each point of the same grid shown in Fig. 1(b). The right
image displays the image of the grid simulated at the focal plane where each point is degraded by
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different aberrations. The following equation describes the calculation to obtain the simulated
images:

Isim = |F {eiφcghei zπ
λ2 f 2 ·(x′2+y′2)}|2γ (5)

where ei zπ
λ2 f 2 ·(x′2+y′2) is a propagator factor to have the focal plane at a specific z plane, F is the

Fourier transform applied to propagate the field from the pupil plane to the focal plane, γ is
used to apply a gamma correction to enhance the features of the spots. The simulated images in
Fig. 1(b) and 1(c) were generated with γ = 0.5.

2.2. Imaging system

The optical setup shown in Fig. 1(d) uses short pulsed near-infrared (NIR) light emitted by a
Ti:Sapphire laser mode-locked (Coherent, Mira 900-F) tuned to a central wavelength of 800 nm
with 76 MHz repetition rate. Power at the sample is controlled by adjusting the angle between a
Glan-Laser Calcite Polarizer (GLP, Thorlabs, GL5B) and a half-wave plate (HWP). The beam
is magnified by a telescope (lenses L1, f=25.4 mm and L2, f=150 mm) to fill the chip of the
LCoS-SLM (Meadowlark Optics, P1920-600-1300-HDMI, pixel size: 9.2 µm) placed in a plane
where the wavefront is nominally flat. The SLM is illuminated obliquely with an angle of 4.6◦ to
be able to separate the modulated beam from the incident one. A mechanical shutter (S, Uniblitz,
LS2S2Z1) installed at the focal point of lens L1 temporally gates the NIR illumination with a
response of 2 ms. A second telescope (lenses L3, f=250 mm and L4, f=500 mm) magnifies the
beam to fill the back aperture of the water immersion objective lens (O, Olympus XLUMPLFLN,
20X/NA 1.0). In the focal plane of lens L3, an inverse pinhole (IP, custom tungsten deposition,
diameter 1.3 mm, on glass window of thickness 0.5 mm) blocks the zero-order diffraction spot.
The focal lengths of lenses L3 and L4 are chosen to match the dimension of the SLM image at the
back aperture of the microscope objective and the SLM chip. In this case the lateral resolution is
only limited by the objective NA. TPEF is collected through the objective, transmitted through
a low-pass dichroic mirror (Semrock, FF01-720/SP-25) and finally the image is formed by a
tube lens (L5, f=300 mm). The image is relayed to the sCMOS camera (Andor, Zyla 4.2)
by a 1:1 telescope (L6 and L7, f=150 mm) and an electrically-tunable lens (ETL, Optotune
EL-16-40-TC-VIS-20D) lens which scans the signal at different depths. Brightfield (BF) images
are acquired by transmission of a white light LED (Thorlabs, LEDW25E) placed at the opposite
side of the objective.

As reported previously [22] the precision to address a CGH to a specific target depends on the
number of pixels in the SLM and gray scale values available. We use a LCoS-SLM with 1920 x
1152 pixels so that the number of pixels in the shorter axis permits a spatial accuracy better than
1 µm and also a high number of degrees of freedom when the SLM is used as adaptive element
to correct for high-order aberrations. Regions of interest (ROIs) for generating the CGH can be
located anywhere within the FOV which is a combination of lateral and axial FOV. The lateral
FOV, defined the maximum tilt that can be applied on the first order of diffraction, is 391 µm.
The theoretical axial FOV is 166 µm, where the SLM is the limiting factor for generating the
CGH. Nonetheless, a trade off between the available lateral and axial FOV exists since increasing
the axial displacement of a feature decreases the accessible amount of lateral displacement.
Limitations in the applicable corrective patterns arise from aliasing as discussed in Supplement 1
(Section S1).

2.3. Sensorless AO correction of the holographic stimulation

AO using direct measurement of the wavefront, e.g., with a Shack-Hartmann sensor, is generally
limited to a single isoplanatic patch. For correction over multiple isoplanatic patches in the CGH,
we instead chose a modal-based sensorless approach. Each aberration mode is imparted as a trial
correction by the AO element and an image of the sample is acquired. The result is a collection

https://doi.org/10.6084/m9.figshare.20202119
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of images for each of the optical aberration with a different bias coefficient. The best coefficient
is chosen measuring a metric that quantifies image quality.

Sensorless methods require some a priori information about the system, such as a mathematical
model describing how the corrective phase influences the chosen metric. For TPEF, the intensity
of the fluorescence is known to depend quadradically on the peak intensity of the excitation light.
Since we use widefield microscopy to capture fluorescence excited by the reconstructed CGH,
we calculate the TPEF intensity of each spot in the pattern as the sum of gray scale pixel values
within a bounding region,

IF =
∑︂

i
I2
i . (6)

In the ideal case of diffraction-limited spots in the CGH, the resulting TPEF spots should also
be minimized in dimension. Bearing these two criteria in mind, we propose two different metrics
M1 and M2, that combine the TPEF intensity with a feature that quantifies the spot shape. The
metric M1 combines the intensity IF and the diameter D, determined as the maximum dimension
of a single-spot CGH as shown in the following equation:

M1 =
IF

D
(7)

where the diameter D is taken to be the larger of the vertical or horizontal axes of the single-point
image at the focal plane. On the other hand metric M2 combines the intensity the intensity IF and
the area A of a single-spot CGH as shown in the following equation:

M2 =
IF

A
. (8)

Both area and diameter are measured after a threshold of 1
e · Imax is applied. By dividing

the intensity IF with either the diameter or the area of the spot, we ensure that these combined
metrics reach the maximum when the spot is more confined. Although the metric M1 is sensitive
to the variation of the spot shape on the lateral direction, the metric M2 takes into account also
any variation of the spot on oblique directions. For such reason metric M2 is more robust to
correct for aberrations that severely impair the shape of the points.

The metric is integrated in an optimization algorithm scheme. The optimization scheme
affects both speed and efficiency of the correction. Those are equally important factors to correct
aberrations in turbid samples. Here we use an hill-climb algorithm that sequentially loops
over the Zernike polynomial base and explores a pre-defined range of bias coefficients for each
Zernike polynomial. The corrections found are sequentially applied to each Zernike term before
moving to the next one. The optimal coefficient is found by fitting the metric data points with
a combination of a Lorentzian function with a line (Eq. (10)). Piston, tip, tilt and defocus are
excluded in the optimization process because these are defined in the positioning of the points
(Eq. (2)) and may lead to loss of fidelity in the CGH as they cause displacement of the ROIs [23].

2.3.1. Isoplanatic correction

Isoplanatic corrections represent an average correction for the whole FOV. This correction may
be optimal for points near the middle of the FOV, but sub-optimal for points near the edges. The
pseudo-code in Algorithm 1 and Fig. 2 highlight the main steps to implement such corrections.

2.3.2. Anisoplanatic correction

The pseudo-code for Algorithm 2 gives the key steps of the algorithm for anisoplanatic AO. Being
an extension of the previous case to multiple point-like features in the FOV, the anisoplanatic
algorithm provides local corrections. This feature is an important factor to compensate spatially
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Algorithm 1. Isoplanatic correction pseudo-code

be minimized in dimension. Bearing these two criteria in mind, we propose two different metrics185

𝑀1 and 𝑀2, that combine the TPEF intensity with a feature that quantifies the spot shape. The186

metric 𝑀1 combines the intensity 𝐼𝐹 and the diameter 𝐷, determined as the maximum dimension187

of a single-spot CGH as shown in the following equation:188

𝑀1 =
𝐼𝐹

𝐷
(7)

where the diameter 𝐷 is taken to be the larger of the vertical or horizontal axes of the single-point189

image at the focal plane. On the other hand metric 𝑀2 combines the intensity the intensity 𝐼𝐹190

and the area 𝐴 of a single-spot CGH as shown in the following equation:191

𝑀2 =
𝐼𝐹

𝐴
. (8)

Both area and diameter are measured after a threshold of 1
𝑒
· 𝐼𝑚𝑎𝑥 is applied. By dividing192

the intensity 𝐼𝐹 with either the diameter or the area of the spot, we ensure that these combined193

metrics reach the maximum when the spot is more confined. Although the metric 𝑀1 is sensitive194

to the variation of the spot shape on the lateral direction, the metric 𝑀2 takes into account also195

any variation of the spot on oblique directions. For such reason metric 𝑀2 is more robust to196

correct for aberrations that severely impair the shape of the points.197

The metric is integrated in an optimization algorithm scheme. The optimization scheme198

affects both speed and efficiency of the correction. Those are equally important factors to correct199

aberrations in turbid samples. Here we use an hill-climb algorithm that sequentially loops200

over the Zernike polynomial base and explores a pre-defined range of bias coefficients for each201

Zernike polynomial. The corrections found are sequentially applied to each Zernike term before202

moving to the next one. The optimal coefficient is found by fitting the metric data points with203

a combination of a Lorentzian function with a line (Eq. 10). Piston, tip, tilt and defocus are204

excluded in the optimization process because these are defined in the positioning of the points205

(Eq. 2) and may lead to loss of fidelity in the CGH as they cause displacement of the ROIs [23].206

2.3.1. Isoplanatic correction207

Isoplanatic corrections represent an average correction for the whole FOV. This correction may208

be optimal for points near the middle of the FOV, but sub-optimal for points near the edges. The209

pseudo-code in Algorithm 1 and Figure 2 highlight the main steps to implement such corrections.210

Algorithm 1: Isoplanatic correction pseudo-code
initialization: calculate CGH with CS-WGS algorithm and select 1 point to correct
for Zernike order 𝑗 in [1, 𝑁] do

for Zernike weight 𝑤𝑖 in [−𝑤, 𝑤] do
add isoplanatic aberration 𝑤𝑖 · 𝑍 𝑗 on SLM
acquire camera frame
get ROI centered around the chosen point
calculate metric on the ROI

fit metric values and find optimal weight 𝑤 𝑗

load found optimal weight for Zernike 𝑍 𝑗 as isoplanatic correction onto the SLM
acquire the corrected image

2.3.2. Anisoplanatic correction211

The pseudo-code for Algorithm 2 gives the key steps of the algorithm for anisoplanatic AO. Being212

an extension of the previous case to multiple point-like features in the FOV, the anisoplanatic213

(b) (c)

(a)

Fig. 2. Definition of image-based metric influences correction. (a) Left: 40 x 40 pixel
patch around the ROI is used for optimization.Scale bar: 2 µm. Middle: 10x10 patch to
quantify the IF metric. Scale bar: 0.2 µm. Right: binary image to measure the area metric.
Scale bar: 2 µm. (b) Top: Progression of sub-images acquired as a function of spherical
aberration (15 values of coefficients for Z12). Scale bar: 50 µm. Middle: binarized version
of the progression to compute the area metric. Scale bar: 50 µm. Bottom: progression of
the 10 x10 patches around the ROIs to calculate the IF metric. Scale bar: 5 µm (c) Metric
values as a function of different bias spherical aberration, for Z12. Area: red dots; IF : green
circles; combined metric (M2): blue squares; dashed lines: Lorentzian fit.
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inhomogeneous aberrations induced by turbid media such as biological tissues. A drawback
compared to the isoplanatic correction process is that the CGH is recalculated after optimization
of each aberration mode to encode the corrections just found. This extra step increases the total
optimization time by a factor 2.6.

Algorithm 2. Anisoplanatic correction pseudo-code

algorithm provides local corrections. This feature is an important factor to compensate spatially214

inhomogeneous aberrations induced by turbid media such as biological tissues. A drawback215

compared to the isoplanatic correction process is that the CGH is recalculated after optimization216

of each aberration mode to encode the corrections just found. This extra step increases the total217

optimization time by a factor 2.6.218

Algorithm 2: Anisoplanatic correction pseudo-code
initialization: calculate CGH with CS-WGS algorithm select 𝑛 points to optimize
for Zernike order 𝑗 in [1, 𝑁] do

for Zernike weight 𝑤𝑖 in [−𝑤, 𝑤] do
add isoplanatic aberration 𝑤𝑖 · 𝑍 𝑗 on SLM
acquire camera frame
for point ℎ in [1, 𝑛] do

retrieve patch centered around each point ℎ in the FOV
measure the metric on each patch

fit metric and find optimal weight 𝑤 𝑗 for each point in [1, 𝑛]
calculate CGH with CS-WGS with 20 iterations adding the correction 𝑤 𝑗 · 𝑍 𝑗 found
for all points 𝑛

calculate CGH with CS-WGS with 100 iterations adding all 𝑁 Zernike phases with their
optimal weights found for all points 𝑛

acquire the corrected image

2.4. Image processing219

To compare the TPEF images before and after AO correction, the intensity of ROI sub-images are220

normalized with respect to the corrected ROI sub-image (𝐼𝑛) with the following normalization221

formula:222

𝐼𝑛𝑜𝑟𝑚 =
𝐼 𝑖 − 𝐼𝑛

𝑚𝑖𝑛

𝐼𝑛𝑚𝑎𝑥 − 𝐼𝑛
𝑚𝑖𝑛

(9)

where 𝐼 𝑖 is the intensity of pixel 𝑖 in the image to normalize and 𝐼𝑛
𝑚𝑖𝑛

and 𝐼𝑛𝑚𝑎𝑥 are pixels with,223

respectively, minimum and maximum value in the corrected image. The intensity improvement224

is quantified at each ROI in the normalized image through a line profile across the pixel of225

maximum intensity. The line profile data points are then fitted with a combination of a Lorentzian226

function with a line as follows:227

𝐿 (𝑥) = 𝑎 · 𝜎2

(𝑥 − 𝑥0)2 + 𝜎2 + 𝑏𝑥 (10)

where 𝑎 is the amplitude, 𝑥0 the center of the curve, 𝜎 the width of the curve and 𝑏 the slope228

of the line. The uncertainty on each fit parameter is given by the square root of the diagonal229

elements of the covariance matrix [24]. The same function is also used to fit the measured metric230

values.231

2.5. Sample preparation232

Anisoplanatic correction of CGH was performed on both synthetic and biological samples. The233

synthetic sample was a fluorinated ethylene propylene (FEP, Bola, S2022-04) tube with an234

internal diameter of 0.8 mm and an outer diameter of 1.6 mm. The FEP tube is attached to a235

needle (B. Braun, 100 Sterican, 21G x 1 1⁄2”) and to a syringe (Braun, Omnifix F Solo 1 ml) and236

filled with a diluted solution of fluorescein (Invitrogen, F 1300) dissolved in demineralized water.237

2.4. Image processing

To compare the TPEF images before and after AO correction, the intensity of ROI sub-images are
normalized with respect to the corrected ROI sub-image (In) with the following normalization
formula:

Inorm =
Ii − In

min
In
max − In

min
(9)

where Ii is the intensity of pixel i in the image to normalize and In
min and In

max are pixels with,
respectively, minimum and maximum value in the corrected image. The intensity improvement
is quantified at each ROI in the normalized image through a line profile across the pixel of
maximum intensity. The line profile data points are then fitted with a combination of a Lorentzian
function with a line as follows:

L(x) = a · σ2

(x − x0)2 + σ2 + bx (10)

where a is the amplitude, x0 the center of the curve, σ the width of the curve and b the slope
of the line. The uncertainty on each fit parameter is given by the square root of the diagonal
elements of the covariance matrix [24]. The same function is also used to fit the measured metric
values.

2.5. Sample preparation

Anisoplanatic correction of CGH was performed on both synthetic and biological samples. The
synthetic sample was a fluorinated ethylene propylene (FEP, Bola, S2022-04) tube with an
internal diameter of 0.8 mm and an outer diameter of 1.6 mm. The FEP tube is attached to a
needle (B. Braun, 100 Sterican, 21G x 1 1

2
′′) and to a syringe (Braun, Omnifix F Solo 1 ml) and

filled with a diluted solution of fluorescein (Invitrogen, F 1300) dissolved in demineralized water.
The colour of the solution was vibrant dark yellow with an optical density of 0.056 in 0.8 mm



Research Article Vol. 30, No. 16 / 1 Aug 2022 / Optics Express 29136

path length measured through a spectrometer (BioDrop, µLITE). The same type of FEP tube is
used to hold biological samples.

The biological sample was made from fixed tissue of zebrafish embryos. Zebrafish embryos
were obtained by inbreeding adult fish from the casper strain [25]. Larvae were euthanized at 5
days past fertilization (dpf), fixed in a 1:1 solution of embryo water (60 µg/ml) with 0.0002%
methylene blue and 4% para-formaldehyde in phosphate saline buffer (PBS) for 2 hours, rinsed 3x
in PBS, and stored in PBS at 4◦C until the experiment. For the experiment they were mounted into
a straightened FEP tube in a solution of 1.5% low-melting temperature agarose (Sigma-Aldrich,
A4018) in embryo water and fluorescein.

3. Results

3.1. Comparison of sensorless AO metrics for widefield TPEF

We first tested each of the metrics in the isoplanatic correction algorithm (Fig. 2). From each
TPEF image, a 40x40 pixel sub-image was retrieved around a single ROI selected for isoplanatic
correction (Fig. 2(a), left). The metric IF was calculated from a 10x10 pixel patch centered
around the ROI (Fig. 2(a), middle), while the area to compute the metric M2 is evaluated on the
binary image (Fig. 2(a), right). This image was obtained by applying a threshold to the original
sub-image. A range of 15 bias coefficients in the interval [−3, 3] µm was explored for each
Zernike polynomial. Those trial aberrations were sequentially applied to the point chosen for the
correction and an image collected as shown in the progression of 40x40 sub-images in Fig. 2(b),
top. Once a progression of images as function of the bias aberration was acquired, we measured
different metrics using Eq. (6) – Eq. (8). As seen in Fig. 2(c), each metric gives a different
optimal coefficient to correct spherical aberration (Z12).

3.2. Experimental validation of anisoplanatic AO

To validate the anisoplanatic AO method, we calculated a test pattern with specific aberrations
simulated computationally. We then experimentally applied either the isoplanatic and aniso-
planatic algorithm to optimize the reconstructed hologram based on its TPEF image. The test
pattern consisted of a 16-point grid covering an area of 150 x 150 µm, where spherical aberration
(Z12) was introduced at point 1 and point 7 with weights w = -2 µm and w = 2 µm, respectively.
This CGH was projected into a chamber filled with fluorescein solution, where sample-dependent
aberrations were expected to be minimal. Figure 3 shows the results of both isoplanatic and
anisoplanatic algorithms using the intensity-diameter metric, M1. For both algorithms, the
correction procedure started with Z12 and then cycled through Zernike coefficients up to the
third aberration order (from Z3 to Z9). This order of modes was chosen a priori because first
correcting for dominant modes improves the accuracy of the final correction [26]. In the initial
TPEF image of the hologram (Fig. 3(a), left), points 1 and 7 are visibly distorted due to the added
spherical aberration. As expected, when isoplanatic correction was performed for point 7, the
intensity of point 7 improved by a factor of 10.6 whereas all the other points were degraded by
this correction (Fig. 3(a), middle). In contrast, when anisoplanatic correction was performed on
all points, the intensity of all spots improved by an average factor of 2.7 (Fig. 3(a), right).

Analysis of the retrieved Zernike coefficients, shown in Fig. 3(b), showed that the spherical
aberrations (Z12) retrieved for points 1 and 7 under anisoplanatic algorithm (orange bars) were w =
2.34 µm and w = −1.87 µm, respectively, while contributions for other orders were non-zero. For
comparison of the retrieved and simulated aberrations, we also obtained a baseline anisoplanatic
correction of the system using a 4x4 test pattern with no added spherical aberration (blue bars).
A slight positive spherical aberration was found in the baseline at the locations of points 1 and 7,
respectively, w = 0.26 µm and w = 0.15 µm. This can explain why the retrieved coefficients for
spherical aberration is slightly higher than w = 2 µm for point 1, and slightly higher than w =
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Fig. 3. Isoplanatic and anisoplanatic corrections applied to CGHs projected into free
solution. (a) TPEF images of 16-point grid CGH. Left: grid with −2 µm and 2 µm spherical
aberration at points 1 and 7 respectively. Middle: grid with isoplanatic correction at point
7. Right: grid with anisoplanatic correction. The images are normalized with respect to
themselves and they are enhanced by a factor of 3 to help the visualization. Scale bar: 25 µm.
(b) Bar plot of Zernike coefficients for points 1 and 7. Blue bars correspond to the baseline
anisoplanatic correction of the grid CGH; gray and orange bars, respectively, correspond
to isoplanatic and anisoplanatic corrections of the CGH with simulated aberration. (c)
Anisoplanatic phase maps at each point in the grid. (d) xy image and yz image of point 1 and
7 before and after anisoplanatic correction. Scale bar xy: 750 nm, scale bar yz: 1 µm. (e) xy
(upper) and yz (bottom) line profiles of point 1 and 7 before and after correction. Blue dots:
corrected line profile; orange dots: aberrated line profile; continuous lines: Lorentzian fit of
the data points.
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−2 for point 7. We estimated the error on the Zernike coefficient as the standard deviation in
the lower orders (Z3–Z9) recovered from the three independent corrections for point 7 (baseline,
isoplanatic, and anisoplanatic) to be 0.10 µm. Therefore, these data show that the anisoplanatic
method accurately retrieves the applied Z12 coefficient. The anisoplanatic corrective phase
patterns applied to the SLM are depicted in Fig. 3(c).

Closer inspection of the xy and yz projections of the TPEF image of point 1 (Fig. 3(d)) illustrates
the improvement in intensity and shape after the anisoplanatic correction in both the lateral and
axial direction. Both images are normalized with respect to the corrected image and the aberrated
images are shown with a reduced dynamic range for the pixel values for visualization purposes.
The intensity improvement and the spot size are quantified on the intensity profiles (Fig. 3(e))
taken from a line profile across the pixel of maximum intensity. The dashed lines on the images
in Fig. 3(e) reveal that spherical aberration displaced the point laterally along the y direction as
well as axially. The axial displacement is compensated in the corrected image where intensity is
also recovered. The small lateral displacement is most likely due misalignment between the rear
pupil of the objective and the SLM plane.

The shape and size of the TPEF spots improved for all the points in the grid. Table 1 shows
the reduction in mean lateral and axial dimensions determined as the full width half maximum
(FWHM) of a Lorentzian fit to the measured line profile. The FWHM of points focused in the
dye solution is an indication of the resolution of the holographic projections because the TPEF
image of point-like features are the convolution between the excitation and emission point spread
functions (PSFs). Since the sample is a homogeneous solution, TPEF can be generated throughout
the geometrical focus. We can take the dimensions of the squared intensity distribution I2

ex as
the upper bound for the spot diameter expected from an ideal Gaussian excitation focus with
waist wo =

λ
πNA and Rayleigh range zR =

nwo
NA , where n represents index of refraction. The lower

bound for the FWHM of the spots detected is limited by the dimension of the Airy disk of
fluorescence generated by an infinitesimally small TPE focus, given by Rxy ≈ 2

3
1.22λ
NA , and depth

of field Rz =
2nλ
NA2 , where λem = 520 nm. Noting that the size of the optimized TPEF spots is still

larger than either the theoretical beam waist or PSF, we can conclude that the AO optimization of
the excitation beam alone does not produce a diffraction-limited image. This can be expected
because the system does not correct for aberrations in the pathway of the fluorescence.

Table 1. Dimensions of two-photon excited fluorescence spots. FWHM values
are the mean and standard error on the mean of spots in Fig. 3(a).

Raw FWHM [µm] Corrected FWHM [µm] 2wo [µm] Ideal PSFem [µm]

Lateral 0.93 ± 0.24 0.75 ± 0.05 0.51 0.42

Axial 1.85 ± 0.44 1.50 ± 0.11 0.67 1.38

3.3. Correction on synthetic sample: FEP tube filled with fluorescein

Next we characterized anisoplanatic AO in an aberrating sample, a FEP tube filled with a
fluorescein solution (Fig. 4(a)). The FEP tube has an index of refraction of n = 1.344 at 589 nm,
which is near to that of water (n = 1.3324) so introduces relatively weak aberrations compared to
sample containers made of other common materials (e.g. borosilicate glass) [27]. We expected the
cylindrical geometry of the capillary to affect vertical astigmatism [28]. A CGH was calculated
for a 4x4 grid with a spacing of 25 µm between points. The TPEF image of the CGH grid
projected into the sample is showed in Fig. 4(b), left.

On this image we performed the anisoplanatic correction with the metric M2, correcting up
to the eighth aberration order, corresponding to Zernike coefficients Z3–Z44. The correction
process took 30 minutes, corresponding to calculation of 43 unique CGH and acquisition of 630
images testing 15 weights per order for 42 orders. The resulting corrected image is reported in
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Fig. 4. Anisoplanatic correction on sample-induced aberrations in FEP tube. (a) Top and
side view sketches of the synthetic sample, a FEP tube with 0.4 mm thick wall. (b) Left:
TPEF image of 16 points grid used to retrieve anisoplanatic correction. Right: Corrected
TPEF image. Scale bar is 25 µm (c) Local phase maps retrieved for each point in the grid. (d)
Line profiles across the pixel of maximum intensity of aberrated (orange dots) and corrected
(blue dots) points show a 2-fold gain in intensity for most of the corrected points. Continuous
lines show Lorentzian fit of data points.

Fig. 4(b), right. The corrective phase maps shown in Fig. 4(c) provide a full characterization of
the sample-induced aberrations across the central 100 µm of the FOV. As anticipated, vertical
astigmatism (Z5) was one of the dominant aberrations given the cylindrical geometry of the
sample under examination. (See Supplement 1, Section S2.) Moreover, we also found a prominent
contribution for spherical aberration (Z12). As visible from the corrective phase maps (Fig. 4(c)),
specific ROIs also had contributions from higher-order aberrations, as in the case of 3 µm
coefficient for Z36 at point 11. The lines profiles across the pixel of maximum intensity for
the raw (orange) and corrected (blue) spots represented in Fig. 4(d) reveal an average intensity
improvement factor of 2.07 ± 0.33.

We then asked whether the AO corrections obtained for one hologram would be sufficient to
optimize a novel point cloud pattern extending over the same FOV. We calculated a second CGH
of 12 points randomly distributed over the same 100 x 100 µm area, shown in Fig. 5(b), left,
together with the location of reference points from the grid CGH (red dashed lines). For each
point in the random pattern, the corrective phase was calculated as a distance-weighted average
of the local corrective phases found for all points in the reference grid. The weight coefficient
was inversely proportional to the distance between the point to correct and each point in the
reference grid CGH, as described in Fig. 5(a) and by the following formula:

wi =

∑︁
k

wk
dki∑︁

k
1

dki

(11)

https://doi.org/10.6084/m9.figshare.20202119
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where wi is the coefficient of a given Zernike mode for a point i in the random pattern, wk are the
coefficients of a given Zernike mode for all the k points in the reference pattern, and dki is the
distance between point i and point k.
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Fig. 5. Distance-weighted anisoplanatic correction on 2D and 3D CGH projected into FEP
tube with uniform fluorescent solution. (a) Calculation of the distance-based coefficients
to apply the distance-weighted average anisoplanatic correction to point i using reference
points k, where dik is the distance between points. (b) Left: TPEF image of 12 points
randomly distributed across the same FOV of the reference grid (dashed red lines). Right:
TPEF image corrected with the distance-weighted averaged anisoplanatic approach. (c)
Local phase maps applied to each point in the random pattern. (d) Comparison of maximum
intensity as a function of each measured spot before (orange dots) and after (blue circles) AO
correction. (e) 3D plots of the reference (green squares) and random (red dots) coordinates
for the CGHs. (f) Left: Maximum intensity projection of TPEF image of 10 points randomly
distributed in 3D over a FOV of 100 x 100 x 50 µm3. Right: Same image corrected with
a distance-weighted average of the anisoplanatic corrections for the reference 3D pattern
laying. (g) Comparison between maximum intensity before (orange dots) and after (blue
circles) the weighted averaged anisoplanatic correction (h) Lateral (top) and axial (bottom)
distance between the center of the spots before and after correction. The dashed lines show
the average values. Scale bar is 25 µm.
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Comparison of the TPEF images of the random points before and after AO correction (Fig. 5)
indicates that the distance-weighted anisoplanatic correction improves the spot intensity. The
resulting corrective phase maps in Fig. 5(c) are more homogeneous between the random ROIs
compared to the ROIs in the reference grid. The weighted average of points from across the
whole FOV can be seen as diluting each local correction. Nonetheless, by applying aberrations
based on the distance-weighted average correction, the random points increased their average
TPEF signal by a factor of 2.07 ± 0.17 on average, as depicted in (Fig. 5(d)). Since the average
intensity improvement is comparable to the one obtained on the reference grid (Fig. 4), we
can conclude that the reference set of anisoplanatic corrections sampled at 25 µm intervals are
sufficient to correct for different patterns covering the original FOV. In a sample with greater
complexity, the needed sampling distance can be expected to change. However, for points that
are closer together we observed a coupling of the corrections even if the ROIs belong to different
anisoplanatic patches. (See Supplement 1, Section S3.)

The same approach can be extended to a 3D pattern. To test this experimentally, we first
retrieved anisoplanatic corrections for a reference 3D CGH made of 10 points randomly distributed
over a volume of 100 x 100 x 50 µm3 where the axial direction was sampled at a spacing of ∆z =
7 µm (Fig. 5(f)). Here we optimized up to the fourth aberration order, corresponding to Zernike
modes in the interval Z3–Z14, testing 9 bias coefficients in the interval [−2, 2] µm for each mode.
This smaller number of optimization parameters still provided good intensity improvement for
this sample, while also reducing the number of measurements overall. In this case the correction
process took 26 minutes. In three dimensions the correction process was longer compared to the
two dimensional case since it was necessary to acquire an image at each depth by changing the
ETL voltage. Hence, the optimization time increases linearly with the number of the z depths
explored.

As in the 2D case, all points in the 3D reconstruction improved in TPEF intensity at the focal
plane. On average the improvement factor was 1.76 ± 0.25, as reported in Fig. 5(g). Figure 5(h)
shows that the ROIs after correction are displaced with respect to their positions in the original
volume. Displacements were calculated as the distance between the centroids of spots retrieved
from the starting image and centroids of spots retrieved from image following AO. The average
lateral displacement was 0.6 µm while the average axial displacement was 0.9 µm. Lateral
displacement can be introduced by Zernike polynomials (Eq. (4)) with odd k index and m = ± 1,
such as coma aberration, while the axial shift can be addressed to radial Zernike modes with
even k and m = 0.

3.4. Correction on fixed biological sample

Finally, to validate our method on highly aberrated samples we applied the anisoplanatic correction
to a CGH projected through approximately 140 µm of tissue in the tail of a 5 dpf zebrafish embryo
embedded in a mixture of 1.5% low-melting temperature agarose and fluorescein. As shown in
Fig. 6(a), top, each point targets a different anatomical location in the tail. The lateral points are
projected through muscles areas whereas the middle point passes through the notochord. The
CGH extends over a lateral FOV of 115 µm. The TPEF signal generated behind the tissue, is
degraded as shown in Fig. 6(a), second row. The middle point is brighter compared to the lateral
ones revealing the inhomogeneity of the tissue.

To compensate for the aberrations we initially applied to each point the local corrections
found for the same pattern projected into the FEP tube filled with fluorescein. Those corrections
accounting for FEP-induced aberration already improve our pattern projected into the tissue
as shown in Fig. 6(a), third row. Further improvement was achieved when we corrected for
tissue-induced aberration by using as starting point the pattern corrected for the FEP-induced
aberrations. This final result is shown in Fig. 6(a), bottom. To retrieve those corrections we
optimized up to the eighth aberration order, corresponding to Z3–Z44, using the intensity-diameter

https://doi.org/10.6084/m9.figshare.20202119
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Fig. 6. Anisoplanatic correction through fixed zebrafish tissue. (a) Brightfield image of the
embryo tail (lateral view) showing the location of the targeted ROIs in cyan extending over a
lateral FOV of 115 µm. Also shown are TPEF images of the uncorrected CGH projected
into the embryo tail (row 2), and TPEF image following correction of FEP tubing only (row
3) and correction of both FEP tube and tissue (row 4). Scale bar is 25 µm. (b) Zoom in of xy
images of the ROIs. Top: Aberrated case, bottom: corrected for FEP and tissue. Scale bars:
1 µm. (c) xy line profiles across the dashed lines in c. Blue dots: corrected, orange dots:
aberrated, continuous lines: Lorentzian fit on the data points. (d) Corrective phase maps for
each point. Upper row: FEP-induced aberrations, bottom row: tissue-induced aberrations.
(e) Intensity improvement as function of the order of Zernike correction, tested in order of
index in FEP tube only (FEP) or mounted issue (sample + FEP). (f) Bar plot of Zernike
coefficients for each ROI corrected for FEP and tissue.
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combined metric M1 (Eq. (7)). The correction process took 24 minutes. Analysis of the xy
profile of TPEF for each ROI, shown in Fig. 6(b), reveals that all three points improve in terms
of intensity and shape. However, the correction has a stronger impact on the middle point than
the lateral points, as confirmed by the intensity profiles in Fig. 6(c). The average intensity
improvement was 3.09 ± 0.26.

Figure 6(d) shows the contribution to each local corrective phase in the case of FEP-induced (top)
and tissue-induced (bottom) aberrations. In this experiment we observed that the improvement of
the metric M1 as function of Zernike order is different than in the case of FEP-induced aberrations.
Here, as expected, we have an increase of about 2-fold when we use more than 10 Zernike modes
and after this increase the correction reaches a plateau with little additional improvement from
higher orders (see Fig. 6(e), top). On the other hand, the correction of tissue-induced aberrations
starting from the FEP parameters, led to greater contributions from higher-order modes. From
the bar plot of the Zernike coefficients in Fig. 6(f), we observed that vertical astigmatism (Z5)
has a prominent contribution, as well as higher order aberrations (Z27, Z35 and Z36).

Inspection of the full sequence of bias corrections tested during optimization, shown in the
Supplemental document (See Supplement 1, Section S4, Fig. S4), casts doubt whether the
hill-climbing algorithm finds a global maximum value across all Zernike modes. For comparison,
the same experiment was also carried out by correcting for aberrations directly on the tissue
without performing the extra step to compensate for the FEP tube. This approach provided a
lower average improvement in the TPEF intensity, limited to a factor of 1.59 ± 0.04, as reported
in Supplemental document (See Supplement 1, Section S4, Fig. S5).

4. Discussion

Anisoplanatic adaptive optics has already been shown to improve image quality in laser scanning
confocal microscopy where the anisoplanatic approach is used to correct the one-photon excitation
light of scanning lattice microscope using confocal detection [15]. There the anisoplanatic
corrections were encoded, together with the spots forming the scanning lattice, as a CGH on a
SLM. Differently, in this paper we applied anisoplanatic AO to arbitrary CGH projections using
two-photon excited fluorescence as an indirect measure of peak pulse intensity. We demonstrated
that correction of local aberrations in point-cloud CGHs projected into either synthetic and
biological samples improved the TPEF signals by at least 2-fold. We also characterized the
limitations of the approach using widefield camera-based imaging. While the dimensions of
features in the corrected point cloud CGHs, quantified as FWHM of the TPEF spots, improved
compared to the case before correction, diffraction limited spots were not obtained due to the
residual aberrations in the fluorescence emission path of our optical system. In fact, the TPEF
images depend on the convolution between the stimulation and the emission PSFs. Since the
method described here addresses only aberrations in the stimulation path, images obtained
following AO correction still appear aberrated, (e.g., the quality of AO-corrected spots projected
into tissue in Fig. 6(a) is lower than spots projected into less complex sample of Fig. 4(b)).
Remaining distortions could be compensated by installing an adaptive element along the detection
path [15].

In this paper anisoplanatic adaptive optics is performed in a sensorless scheme, hence it does
not require any additional component to measure the wavefront. This scheme supports a very
simple optical setup where the adaptive optics element is the same SLM used to project and
correct CGHs. Aberration corrections are simply included as a modification of a target CGH.
This aspect highlights an advantage of sensorless approaches over direct wavefront sensing. In
the latter, the wavefront distortion is directly measured (e.g. with a Shack-Hartmann sensor) on
the light emitted by a guide star or on light back-scattered from the sample. Measured distortions
are corrected through an adaptive element in a plane conjugated with both the objective rear pupil
and the wavefront sensor. As demonstrated by Wang, et al. [29], direct wavefront sensing enables
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to recover diffraction limited resolution in living zebrafish embryos over large volumes (240 µm3)
in both laser scanning confocal and two-photon excited fluorescence microscopy. Nonetheless,
wavefront sensors add an extra layer of complexity to the existing microscope and can introduce
non-common-path errors. Scattering could make a wavefront sensor solution unfeasible when
the scattering components prevail over the ballistic components in the wavefront measurement.
Most importantly, Shack-Hartmann sensors measure the aberration of only one isoplanatic patch
at a time [10] making it difficult to implement for anisoplanatic field corrections.

Notably, a recent work by Ancora and colleagues [30] presents a new method to measure
locally the wavefront in a widefield microscope pupil and to apply anisoplanatic correction of
aberration through a multi-region deconvolution approach. The aberration detection is based on
a spinning subpupil aberration measurement (SPAM) where a subaperture is scanned across the
microscope’s pupil via a motorized device and it is able to measure local PSFs. This module can
be integrated in the detection path of any fluorescent microscope as described in [31] where it is
integrated into a light sheet microscope. Here, the SPAM module operates in closed loop with a
deformable lens to correct the aberrations in the center of the FOV while the residual distortions
at the edges are compensated with the multi-region deconvolution approach.

Sensorless approaches have been realized in many flavors, from pupil segmentation zonal
methods to modal-based AO. In pupil segmentation strategies, the objective pupil is divided into
sub-regions to measure and correct aberrations. Those sub-regions are sequentially illuminated to
measure the local wavefront slope from the image shift. Ji, et al. [8] implemented this technique
in a two-photon microscope and corrected for complex aberrations in mouse cortical slices at
400 µm depth to provide near diffraction-limited resolution imaging. A generalized framework
for sensorless approaches by Booth, et al. [32] concluded that in general pupil segmentation
zonal methods, whereas they provide better performances for high order aberration, they are less
robust to noise than modal methods.

As shown in a recent work by May, et al. [18], sensorless sample-conjugated AO enables to
correct scattering on multiple anisoplanatic patches distributed over large FOVs for application
on two-photon imaging on both fixed and living microglia in mouse hippocampal tissue. Here
local corrections are provided within short time scales on the order of 10 s. Such correction speed
is achieved thanks to the algorithm used for the correction search, which is a fast converging
phase retrival method called Dynamic Adaptive scattering compensation Holography (DASH)
[33]. Moreover the use of the photomultiplier tube (PMT) detector enables to collect fluorescent
signals at a faster rate than an sCMOS camera.

In the work presented here, the speed of the optimization is constrained by the number of
images acquired to assess the optimal correction as well as by the complexity of the aberration.
When the sample introduces severe distortions an higher number of Zernike modes has to be
included increasing the optimization time. The speed factor is particularly limiting when dealing
with samples where the fluorescent signal comes from a limited pool of proteins. Here the
results can be impaired by sample drift, photobleaching and other phenomena resulting in loss of
intensity during the optimization process, as reported in Supplemental document (See Supplement
1, Section S5, Fig. S6). Moreover a faster optimization translates in a decreased exposure of
the sample. This is a critical aspect when handling living samples where photodamage, both
thermal and photochemical, could impair the normal physiology of the sample under investigation
[34]. To speed up the correction process, we could retrieve an anisoplanatic correction on a
reference CGH that samples the FOV and then apply this reference correction to other patterns,
as demonstrated in Section 3.3. Applied to the context of holographic photostimulation in living
tissue, the reference corrections would best be retrieved on the TPEF signal from guide-star
fluorophores (e.g., beads injected in the tissue). The caveat of this solution is that the guide-stars
need to be adequately distributed over the same FOV of the target ROIs to provide sufficient
sampling of the local aberrations.

https://doi.org/10.6084/m9.figshare.20202119
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Another improvement to increase the speed of the correction process on complex samples,
was to perform a step-wise correction of first the sample holder (e.g., FEP tube) and use these
values as a starting point for tissue correction. We found this approach improved the overall
performance of the optimization process compared to a single-step correction of the full sample.

The AO algorithm itself may be sped up in several ways. For example, the calculation of
CGHs can be accelerated by use of a GPU, as recently proposed by Pozzi, et al. [35]. During the
optimization process an updated CGH is calculated after each Zernike mode correction. This
step takes several seconds and this dead time could be reduced in the order of milliseconds by
introducing the GPU calculation. Moreover, a non-iterative algorithm based on convolutional
neural network with unsupervised learning is also available to compute CGHs at video rate
reducing at least 10 times the computational time with respect to standard iterative algorithms
as Gercheberg-Saxton [36]. A further possibility to speed up the whole correction algorithm
is to replace the sequential search of Zernike modes, which is quite inefficient, with a smarter
search algorithm. As shown in Supplemental document (See Supplement 1, Section S4, Fig.
S4), most Zernike coefficients tested in the hill-climbing search algorithm yielded low metric
values, whereas it may be more efficient to vary more than one coefficients value in combination,
or in non-sequential order. For instance, in the work of Verstraete, et al. [37], the range of the
coefficients explored for each Zernike mode is based on the previous measurement with a random
perturbation to ensure an adequate exploration of the bias coefficients space.

Another limiting factor of our method is cross-talk between different modes. This drawback
arises from lack of orthogonality in the polynomial base used to model the aberrations. In
fact, orthogonality is a necessary property to express the metric as a quadratic function of the
chosen base [23]. In our case, Zernike polynomials are not an orthogonal basis with respect to
either of our combined metrics M1 and M2, and the order in which the modes are optimized
and applied matters. Other aspects to consider are the accuracy of the correction, which is
affected by different parameters such as noise and cross-talk between the modes. The major
factors contributing to noise in such experiments are Poisson photon noise and changes of the
sample over the optimization time, mainly due to sample drift and photobleaching. Noise in the
image can induce the algorithm to find a wrong maximum. This effect is mitigated when the
maximization of the metric is realized through a fitting process [38], but the number of data
points per mode also affects the accuracy of the fit and, ultimately, the performance of the AO.
As discussed in [26], the number of measurements for each point needs to be greater than the
number of fit parameters.

Finally, we note some displacement of the spots after correction. For instance, with the
distance-weighted average anisoplanatic correction to a 3D CGH, we observed that the corrected
points were displaced laterally and axially from their original position. The shift is likely due to
the polynomial base used, which does not guarantee invariance of the geometrical center of the
PSF during the correction. This is a common problem in non-linear excitation schemes where the
the PSF is non-linearly proportional to the light intensity. A solution to this problem could be to
develop a polynomial base that conserves the first moment of the square intensity or implement
an experimentally-calibrated shift-less basis set [39].

5. Conclusions

Sensorless adaptive optics techniques have been extensively employed to improve signal and
optical resolution in the context of imaging though turbid samples. In this paper we apply
sensorless AO techniques to correct local aberrations in the context of projection of multi-point
holograms through turbid media. We demonstrated an anisoplanatic AO approach that can
compensate for both system and sample-induced aberrations in synthetic and biological samples.
Our strategy does not require additional elements to an existing optical setup for holographic
projections, but rather uses optimization of two-photon excited fluorescence as a guide star.

https://doi.org/10.6084/m9.figshare.20202119
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We can envision applications in optical trapping, parallel laser writing through two-photon
polymerization and parallel photostimulation of optogenetics actuators in living cells or intact
animals. If integrated with a light sheet microscope as a setup for optogenetics, the stimulation
module presented can simultaneously excite multifocal points targeted to regions of interest
within the sample, while the light sheet microscope provides flexibility to readout fluorescence
signals, e.g., image calcium activity from small samples, such as larval zebrafish.
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