ity of Technology

Delft Univers

Combined Optimization
of Trajectory and Design
for Dual Propulsion

Spacecraft

AES810 Thesis Space
Domas M. Syaifoel

o]
TUDelft

Combined Optimization
of Trajectory and Design
for Dual Propulsion

Spacecraft
AEDLB10 Thesis Space

by

Domas M. Syaifoel

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on 14 December 2020.

Student number: 4436024
Project duration: November 2019 — December 2020
Thesis committee: Dr. A. Cervone, TU Delft, supervisor

Dr. J. Guo TU Delft, committee chair
ir. R. Noomen TU Delft

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Abstract

Following the trend of miniaturization and standardization of satellite design, as well as recent successes in
the use of cubesats in interplanetary missions, a cubesat design capable of reaching another planet fully in-
dependently may lead to significant cost reductions for future missions. While efficient low thrust propulsion
systems exist, Earth escape using low thrust only leads to significant incident radiation doses when crossing
the Van Allen belts. As such, this report aims to present the design of a dual thrust cubesat, i.e. one which
employs both high thrust and low thrust propulsion systems, such that the transfer time and the number of
van Allen belt crossings is within requirements, while a final orbit around Mars remains attainable.

In doing so, this report explores the theory behind low thrust trajectory optimization, and attempts to
combine this with a general optimization scheme including both high thrust phases as well as the optimiza-
tion of the spacecraft system design. Implementation of such a scheme has not been shown to be useful:
issues in finding a good initial guess prevent convergence in many cases, and the proposed plan to alleviate
the encountered issues requires an iterative approach between system design and trajectory design. As such,
the proposed scheme has not been found to have any benefit over using existing trajectory design tools in an
iterative way.

A design approach is presented using the pykep trajectory optimizer developed at the European Space
Agency (ESA). Iteration between this tool, high thrust calculations, and system design budget calculations
allows for optimizing towards a feasible design that meets the requirements, starting from an arbitrary initial
guess. When a list of commercial off the shelf (COTS) components is available following the CubeSat standard,
it is possible to quickly generate a feasible design without significant prior work.

This report presents a full COTS design for a cubesat capable of reaching Mars independently from a
common piggyback launch orbit. The design in question is a 12 unit cubesat with a dry mass of 11.4 kg and a
wet mass of 14.8 kg. Launched into a geostationary transfer orbit, it can reach escape velocity though 9 Van
Allen belt passes, and reach Mars in less than 5 years.

Due to the constrained scope of the design, further work is needed to verify that the momentum dumping
budget, link budget, and thermal budget are indeed sufficient. It is further recommended to improve on the
work in this thesis, by finding an alternative integrated optimization scheme, or by including and automating
more features within pykep. Lastly, recommendations are given for integration, testing, and launch of the
proposed spacecraft design.

iii

Contents

Abstract iii
Nomenclature vii
List of Figures xi
List of Tables xiii
1 Introduction 1
2 Literature Study 3
2.1 Motivation e 3

2.2 SystemsDesign Lo e 3

2.3 TrajectoryDesign e e 4
2.3.1 Edelbaum’s Approximationo 4

23.2 DirectMethod e e e e e e e 5

23.3 IndirectMethod e e e e 5

2.3.4 Evolutionary Neurocontrol. L o 6

2.4 DualPropulsion Systems L.l e e e 6

2.5 Numerical ASPECtS L e e e e e e e e 7

2.6 Verification & Validation 7

2.7 Conclusion e e e e 8

3 Design Problem 9
3.1 Intended Achievement 9

3.2 DesignObjectives. L e e e e e 9

3.3 DesignRequirements. Lo 10

3.4 Derived Requirementst te e e e e e e e eee 11

3.5 SCOPE o e e e e e e 11

3.6 Design Process Overview o it te ee eeee e ee 11

3.7 UsingaBVPorOCPSolver e e e 12

3.8 UsingaTrajectory Optimizer o 0 o ittt e e e e 12

3.9 Conclusions. e e e e e e 13

4 Theoretical Approach 15
| 15

4.2 Accelerations L e e e e e e e 15

43 StateChanges. L e 16

4.4 StaticControl e e e e e e 17

4.5 Hamiltonian e e e e e e 17

4.6 Optimal Dynamic Control L e 17

47 CoStateS. . . . v . e 18
4.7.1 Derivation for EarthOrbits. 19

4.7.2 Derivation for Interplanetary Trajectories 19

4.8 OtherCostates v v v v v v e e e e e e e e e e e e e e 20

4.9 Conclusions. e e e e e e 21

5 Implementation 23
5.1 ImplementationusingaBVPSolver. 23
5.1.1 Automation of Derivations. 24

5.1.2 CostFunction e e e e e e e e e e e e 25

5.1.3 Differential Equation Function. 0oL, 25

5.1.4 Boundary Condition Function. oL 27

vi Contents

5.1.5 EliminationofVariables 27
5.1.6 Initial Guess and Coordinate Systems 28
5.1.7 Initial Guessfor Costate Values i i v v v it 31
5.1.8 FurtherISsues o v i i i e e e e e e e e e e e e e e e 32
5.1.9 Conclusion. e e e e e e 32

5.2 Implementationusingan OCPSolver. 32
5.2.1 SystemDefinition L Lo e 33
5.2.2 ISSUES oL e e e e e e e e e e e e e 33

5.3 Implementation using a Trajectory Optimizer 33
5.3.1 CustomProblemObject L e 34
5.3.2 Manuallteration. e e e e e e e e e e e 35

5.4 Conclusion of Implementation Attemptso 35
6 Resultant Design 37
6.1 OVEIVIEW o o ot e e e e e e e e e e e e e e e 37
6.2 Initial GUESS. e e e e e e e e e 37
6.2.1 HighThrust e e 38
6.2.2 LowThrust. e e e e e e e e 38
6.2.3 LaunchOrbit. e e e e e 38
6.2.4 MomentumDumping e 39
6.2.5 Solar Array Configuration L. L e 39
6.2.6 Initial Budget e 39

6.3 Initial Feasible Trajectory e e 40
6.4 Initial Feasible Combined Design. o oo 41
6.5 Initial Feasible COTSDesign 0 o0 i ittt et e 41
6.6 CurrentDesign L Lo e e e e e e 43
6.6.1 OnBoardComputer o v v i e e e e e e e e e e 43
6.6.2 ElectricPower System e e e e e e e 44
6.6.3 Communication L e e e e e e e e e e e 44
6.6.4 Attitude DeterminationandControl. 44
6.6.5 SolarArray. e e e e e 48
6.6.6 Electric Thruster. o o v v vt e e e e e e e e e e e 48
6.6.7 Chemical Thruster. i e e et e e e e 49
6.6.8 Radiation e e e e e e e 49
6.6.9 InterfaceLayout L e e 49
6.6.10 Spacecraft Modes e e e e 50
6.6.11 Alternatives e e e e e e e e e e e e e e e 51

6.7 Design Recommendations L. L L e 51
6.8 Verification and Validation e 51
6.8.1 RequirementValidation Lo 53
6.8.2 System Verification. Lo 53
6.8.3 SystemValidation L e 54
6.8.4 Conclusions L e e e e 54

7 Conclusion and Recommendations 55

Bibliography 59

Abbreviations

ADC Attitude determination and control subsystem
AU Astronomical unit

BVP Boundary value problem

CAD Computer aided design

COM Communication subsystem

COTS Commercial off the shelf

CPT Chemical thruster propellant subsystem
CTH Chemical thruster subsystem

CTR Structural subsystem

EPR Electric thruster propellant subsystem
EPS Electric power subsystem

ESA European Space Agency

ETH Electric thruster subsystem

GTO Geostationary transfer orbit

12C Interintegrated circuit

LEO Low Earth orbit

MBH Monotonic basin hopping

MPPT Maximum power point tracker

NASA National Aeronautics and Space Administration
OBC On board computer subsystem

OCP Optimal control problem

ODE Ordinary differential equation

PCA Patched conic approximation

PMP Pontryagin’s maximum principle

RAD Radiation shielding subsystem

SOI Sphere of influence

SOL Solar array subsystem

SQP Sequential quadratic programming

SSO Sun synchronous orbit

vii

Nomenclature

viii

Nomenclature

THR Thermal control subsystem
TID Total ionizing dose

TRL Technology readiness level

Latin Symbols

a Semi major axis

C Cost function

c Charged capacity

e Eccentricity

F Thrust

f Arbitrary function

f Slow equinoctial element
g Slow equinoctial element
g0 Standard surface gravitational acceleration
H Hamiltonian

h Slow equinoctial element
h Throttle control setting

i Inclination

Isp Specific impulse

k Slow equinoctial element
k Switching function

L Fast equinoctial element
M Mean anomaly

m Mass

n Numerator

p Power

p Slow equinoctial element
r Radius

t Time

u Velocity component

Vv Speed

v Velocity component

w Velocity component

b Position component

¥y Position component

Nomenclature

ix

z Position component
a Acceleration vector
q State vector
r Position vector
s Velocity vector

Greek Symbols
a Pitch angle
B Yaw angle
A Increment
A Costate
u Standard gravitational parameter
v True anomaly
Q Longitude of ascending node
) Argument of periapsis
10) Position angle
7 Ratio between circle circumference and diameter
0 Position angle
«a Dynamic control vector
A Costate vector

Other

0
Q)
()
()

First derivative with respect to time
Transposed
Chemical
Electric
Final
Gravitational
Initial
Iterated
Normal
Payload
Radial

Solar

Nomenclature

X
(s) Structural
) Tangential
\Y Gradient

Partial derivative

List of Figures

3.1 Overviewoftheoverall process. it e 11
3.2 Overview of the implementation from scratch, using the indirect approach and an existing BVP
SOLVEL. . . . o o e e e e 12
3.3 Overview of the implementation using pykepasis. 12
3.4 Overview of the implementation using a custom pykep problem object. 13
6.1 Layout of the initial guess, solar arrayinblue., 40
6.2 Interplanetary trajectory of the first feasible iteration using existing components, with axes in
AU. 42
6.3 Interplanetary trajectory of the current design, axesinAU. 44
6.4 Exploded view of the solar array configuration., 45
6.5 Internal view of the component configuration.. 46
6.6 Ilustration of the Hyperion CP400.85 OBC, courtesy of Hyperion Technologies. 47
6.7 Ilustration of the ISISIiEPS A, courtesy of ISISPACE. 47
6.8 Illustration of the Hyperion CubeCat, courtesy of Hyperion Technologies. 47
6.9 Illustration of the Hyperion iADCS400, courtesy of Hyperion Technologies. 48
6.10 Illustration of various sizes of the EXA deployable solar array, courtesy of the Ecuadorian Space
AGENCY. . . o o e e e 48
6.11 Ilustration of a group of four units of the Enpulsion IMF Nano, courtesy of Enpulsion Spacecraft
Technology. 49
6.12 Illustration of the Hyperion PM200, courtesy of Hyperion Technologies. 49
6.13 Interface layout of the components. e 50
6.14 State machine for the proposed spacecraftmodes. 51

List of Tables

6.1 Typical performance for the high thrust options under consideration. 38
6.2 Typical performance for the low thrust options under consideration. 38
6.3 Initialbudget. e e 40
6.4 Overviewofacronymsused.. e 40
6.5 TIterations up to the first successful trajectory calculation. 41
6.6 Set of iterations from the first successful trajectoryonward. 42
6.7 Overview of first feasible iteration using existing components. 42
6.8 Currentdesignbudgets. e 43
6.9 Some characteristics of the Hyperion CP400.850BC. 44
6.10 Some characteristics of the ISISTEPSA. 44
6.11 Some characteristics of the Hyperion CubeCat. 47
6.12 Some characteristics of the Hyperion iADCS400. 48
6.13 Overviewofmodes. e 52

xiii

Introduction

In 2008, Delfi-C® was launched, the first nanosatellite developed in the Netherlands, as designed and op-
erated by the Delft University of Technology. As a nanosat, the spacecraft has a considerably small size: it
consists of 3 units of the CubeSat form factor, which are cubic blocks of 10 by 10 by 10 cm.

The CubeSat standard is one of the steps in the ongoing miniaturization and standardization of spacecraft
and spacecraft components. This comes with significant savings in costs: the Delfi line of cubesats shows it
is feasible for an academic institution to design, build, and arrange the launch of a satellite. These savings are
due to several factors. The size of the completed spacecraft allows for inexpensive launches, as several similar
sized spacecraft are launched at once, sharing the expense. Standardization of the form factor allows for
low expenses for integration in the launch vehicle, and deployment from the vehicle. Standardization of the
components allows for spacecraft designers to select and combine existing components, rather than to design
all components from scratch. These components are commercially available, have been individually tested to
commercial standards, and are ready for integration immediately after acquisition. This is usually designated
as commercial off the shelf (COTS) components. The use of COTS components for cubesat missions further
reduces design, integration, and test costs.

The trend of miniaturization continues. After Delfi-C3, the TU Delft developed and launched Delfi-n3Xt,
and is currently developing Delfi-PQ satellite according to the PocketQube standard: cubes of 5 cm length. In
the meantime, the study society at the Aerospace Engineering faculty of the TU Delft, VSV ‘Leonardo da Vinci),
is working on its own cubesat, dubbed Da Vinci, in cooperation with the suppliers of cubesat components.

With spacecraft becoming smaller and more affordable, the space flight industry is looking at miniature
satellites for more prestigious missions. In 2018, NASA demonstrated the first use of cubesats beyond Earth
orbit with the Mars Cube One mission. These cubesats, however, relied on the propulsion system of the
launch vehicle to reach Mars; the cubesat’s internal propulsion systems were only used for trajectory correc-
tions and attitude control.

In this report, it is investigated whether it is feasible to design a miniature satellite in the same way as the
Delfiline, as an academic demonstration, using standardized components, and launched into an Earth orbit;
which can reach Mars by itself.

While other interplanetary targets could be considered with a lower AV requirements, such as the Moon
or certain asteroids, Mars is considered as the target of this study. As reasons for this, it must be noted that
Mars is a significant target for scientific research, including the aforementioned NASA mission. Furthermore,
a mission to Mars would be considered to be a prestigious achievement in the public eye, especially when
compared to current cubesat missions. Lastly, Mars is the target with the lowest AV requirement that can be
called an interplanetary mission, contrasted with other bodies in the solar system.

This leads to the main research question of this thesis:

What is a feasible design for a standalone cubesat mission to Mars?

The design of interplanetary cubesat missions is currently subject to research. However, no literature
has been found to present a cubesat design that extensively uses COTS components. As such, the goal of this
report is to investigate the feasibility of COTS designs for interplanetary missions, with a significant reduction
in expected cost.

2 1. Introduction

Instead, literature has been found that emphasizes the use of ‘dual thrust’ for such a mission, such as
Mani et al. [36], with dual thrust referring the combination of high thrust and low thrust propulsion systems.
The reason for this is intuitive. The use of low thrust propulsion has led to significant savings in propellant
mass, which is especially important for miniature spacecraft. These solutions are typically electric propulsion
systems which accelerate propellant to very high velocities, reducing the required propellant mass to reach
the same impulse.

However, the use of low thrust has several drawbacks. The difference in thrust leads to a longer transfer
time. This may lead to an unacceptable mission duration, or increase the requirements on radiation toler-
ance, due to prolonged exposure. This is especially the case when considering Earth escape using low thrust:
each time the spacecraft crosses the Van Allen radiation belt, it receives a radiation dose orders of magnitude
larger than during the rest of the transfer. As such, Mani et al. [36] suggest to use high thrust components to
reduce the time spent in highly radiative zones.

In order to do this, it is necessary to optimize the trajectory and systems design of the spacecraft together,
in order to reach a feasible design. This leads to the first research subquestion.

What is a useful framework for optimizing in tandem the trajectory and systems design of a dual
thrust spacecraft?

When such a theoretical framework is found, there are a number of options to develop a practical im-
plementation. While these options will be further discussed in chapter 3, this subquestion is listed here as
well.

Which implementation is useful for combined optimization of a dual thrust system?

Lastly, optimizing high thrust trajectories is computationally simple [26], but optimization of low thrust
trajectories is mathematically involved, and currently a popular research subject. As such, it is expected that
the optimization of the low thrust part of the trajectory will require the most effort, both in programming
effort and computational effort. In order to address this, a major part of the literature study was dedicated to
researching methods for optimizing low thrust trajectories. This leads to the third research subquestion.

What is a useful framework for optimizing low thrust trajectories?

As such, this report aims to answer these questions in reverse order. First, it is explored how low thrust
trajectories can be optimized. Then, it is attempted to combine low thrust optimization with high thrust
phases and systems design into a single framework. Lastly, this framework is used to design the mission to
Mars.

This report is organized as follows. First, chapter 2 summarizes the literature study, in order to gain an
understanding of low thrust trajectory optimization, dual thrust trajectories, and combined optimization of
trajectories and systems. Then, chapter 3 defines the design problem, including the objectives of the mission
and specific requirements, and the intended design process as conceived from the literature study. Then,
chapter 4 and chapter 5 describe the theoretical and practical aspects of this design process. The resultant
design is presented in chapter 6, after which the report concludes with a discussion in chapter 7.

Literature Study

This chapter summarizes the literature study, submitted previously as Syaifoel [61], using the same layout as
the literature study itself. As such follows a discussion on the motivation of this research, on considerations
regarding systems and trajectory design, on the use of dual propulsion, and on practical aspects regarding
numerical optimization and verification & validation.

2.1. Motivation

The motivation of this study derives from miniaturization and standardization of spacecraft components,
with many COTS products following the CubeSat standard [32]. Due to the limits in mass and size, the use of
low thrust propulsion systems is necessary for cubesats to reach similar distances to larger spacecraft.

This includes the possibility of interplanetary missions using cubesats, although this is expected to re-
quire a high degree of optimization. Specifically, this alludes to optimizing both the systems design and the
spacecraft trajectory: this way, the trajectory is not optimized for a single set design, nor is the design opti-
mized for a single trajectory; but this is done in tandem. This is termed coupled optimization [36].

Furthermore, the low thrust performance of these systems leads to long transfer times, which may by itself
lead to unacceptable costs, as well as considerable radiative doses throughout the transfer and especially
during Van Allen belt crossings. As such, it is recommended to combine low thrust systems with high thrust
systems to trade off the advantages and disadvantages of both: this is termed dual thrust [37].

Overall, the optimization problem involves both the high thrust trajectory, low thrust trajectory, and the
system design itself. Of these aspects, optimization of high thrust trajectories is considered to be simple,
but low thrust trajectory is conceptually complex and computationally expensive [26]. As will be discussed
further, optimization of a low thrust trajectory requires either significant computational resources, and de-
pending on the approach, a more advanced knowledge of dynamics than high thrust trajectory calculations.
Because of this, the design of a low thrust trajectory has been found to not always converge, depending on
the initial guess. This hinders the implementation of an automated optimization scheme. Due to the relative
difficulty of low thrust optimization, a major part of the literature study is dedicated to this problem.

2.2. Systems Design
Systems design is considered a major part of the BSc and Space Flight MSc track at the Aerospace Faculty of
the Delft University of Technology. As such, it is not fully explained here.

However, it is necessary to look at the aspects which lend itself to optimization. For example, Leonard
[33] describes systems engineering as an iterative process, in which the design is continually adapted to the
requirements in an iteration loop. This approach is not always used. Spangelo et al. [58] perform a coupled
optimization of a low thrust trajectory and the systems design, but do so in a waterfall approach: first the
trajectory is optimized, then the spacecraft is optimized based on the resulting trajectory.

In order to optimize the systems design, it is necessary to define a parameter to optimize for. Often, this
is considered as overall mission cost, which at an early stage in the design process is based on estimates,
as seen in Mosher et al. [42], which incidentally stressed the need for COTS components to reduce design,
integration, and test costs. To make this estimation accurate, it is necessary to rely on a large data set, as seen
in approaches by Bearden [4], Aas et al. [2], and Aas et al. [1]. However, as the cost estimations in this thesis

4 2. Literature Study

are not expected to be as accurate as necessary, it is instead possible to take another metric which correlates
well with overall mission cost, such as system mass.

With the objective well defined, it becomes possible to numerically solve a system design problem using
an evolutionary approach, as shown in Mosher [40] and Mosher [41].

Coupled optimization is seen in literature as an extension of numerical system design. The specific ap-
proach differ, as expected, based on the method of optimizing the low thrust trajectory. Petukhov et al. [47]
use the indirect method, based on Pontryagin’s maximum principle (PMP) to calculate the trajectory, but op-
timize the design at a very high level by include some design variables as static parameters. Spangelo et al.
[58] and Spangelo and Longmier [57] use instead Edelbaum’s approximation, a less complex approach, which
is only valid for circular orbits. Lastly, [14] uses an evolutionary neural network approach to optimize a solar
sail spacecraft with each trajectory. These approaches are discussed further below.

2.3. Trajectory Design

In all found literature, trajectory design is based on Keplerian dynamics, with a single gravitational mass and
with thrust as the sole disturbing force. As such, aerodynamic, solar, and tidal disturbances are neglected.
Furthermore, all undisturbed orbits are Keplerian orbits in which only a single state variable, an anomaly,
changes over time. For interplanetary missions, the patched conic approximation (PCA) is used, in which
only the planet’s gravity is considered until the spacecraft leaves the planet’s sphere of influence (SOI), after
which only the Sun’s gravity is considered.

Like system design optimization, trajectory optimization requires a well defined objective. Often, AV is
minimized, equivalent to minimizing propellant mass; alternatively, travel time is minimized.

Trajectory optimization is equivalent to solving and optimizing a boundary value problem (BVP), which
is an ordinary differential equation (ODE) over time with constraints on both end points. Depending on the
mission type, the number of constraints at each boundary differs: a rendezvous problem has more constraints
than an orbit to orbit problem [48].

For high thrust trajectories, optimization is considered “mathematically relatively straightforward” [26].
Specifically, it can be considered as an instance of Lambert’s problem, which can be solved analytically using
for example Kriz [31].

2.3.1. Edelbaum’s Approximation
For low thrust trajectories between two circular orbits, which is a common use case for Earth orbiting space-
craft, Edelbaum’s approximation holds. This entails that thrust is at maximum throttle at all time, and the
thrust component in radial direction is zero. This leaves one control variable, the yaw angle S.

Kechichian’s algorithm gives an analytic solution to this problem, which is presented in Kechichian [23],
Kechichian [24], and Kluever [28]. Casalino and Colasurdo [9] expand Edelbaum’s approximation for variable
mass, specific impulse, and multiple revolutions. Kechichian’s algorithm is summarized as follows.

1. Given gravitational parameter g, and initial (;) and final () semi major axes q, calculate circular speeds

V.
V=yula 2.1

2. Given the total inclination change Ai, calculate initial yaw angle §;.

sin(Ain/2)
tanf; = - (2.2)
Vil Vi —cos(Ain/2)

3. Find the total AV.

Visinf;
AV = wcosﬁi—’,—m (2.3)
tan(Ain/2+ ;)
4. The transfer time ¢y depends solely on the thrust F.

tp=AVIF (2.4)

5. At any time ¢, find the instantaneous optimal yaw angle 3, velocity V and inclination i.

V; sin ;

B(t) = arctan isin i (2.5)

VicosB; —Ft

2.3. Trajectory Design 5

V(1) = \/V2 ~2V;Frcos b + F21? (2.6)

Ft—V;cosf; +1_2_ﬁ,-
b4

2
i(t) =i; +— arctan -
" Vi sin §;

(2.7)

For optimizing noncircular low thrust trajectories, two general approaches exist: the direct and indirect
method. In the direct method, the trajectory is discretized first, and then each discrete step is optimized with
continuity constraints. In the direct method, the trajectory is optimized as a whole. The direct method is
less accurate and less conceptually complex than the indirect method, with accuracy dependent on the step
size. To summarize, the direct method discretizes, then optimizes; while the indirect method optimizes, then
discretizes.

2.3.2. Direct Method
The direct method is presented in Sims and Flanagan [54] and Sims et al. [55]. Here, thrust in the trajectory
is at each step modeled as a single impulse; in other words, the low thrust problem is tackled as many high
thrust problems. Overall, the trajectory can therefore directly be solved as a nonlinear optimization problem,
constrained at both endpoints and constrained to be continuous between each step.

The direct method is executed as follows.

¢ Determine an initial and final state gy and g, given a number of time steps n.

» For each time step, generate an initial guess for the state vector at the midpoint of this time step, and
propagate from this state backwards to the beginning of the time step.

» For each time step, generate an initial guess for the dynamic control vector, . This vector determines
the impulse at the midpoint of the timestep, which changes the state vector after the impulse. Integrate
from this new state vector to the end of the time step.

¢ This leads to a constrained optimization problem. The constraints are such that discrepancies between
time steps are within a certain tolerance. The problem is optimized for minimum time, minimum mass,
or any other metric.

¢ This problem is then solved by a generic constrained optimization algorithm.

2.3.3. Indirect Method

The indirect method is based on PMP. Instead of optimizing the objective directly, it instead aims to optimize
a parameter called the Hamiltonian, which is related to but distinct from the parameter of the same name in
Hamiltonian mechanics. In optimal control theory, the Hamiltonian at any time depends on the performance
index, which in turn is based on the optimization objective at this time [22].

The practical use of the indirect method is shown most explicitly by Mengali and Quarta [39]. Much of the
approach is done analytically, including derivation of the dynamics, and the derivatives of the costates, and
the optimal values of the control variables. When this is not possible, a numerical scheme can also be used
[49]. Lastly, convenient implementations in vectors and matrices are presented in Betts [6].

The indirect method is summarized as follows.

1. For each state, introduce a costate. Thus, in addition to the state vector ¢q, there is a costate vector A.
2. Determine the derivative of each state from the dynamics, g.
3. At any time, the Hamiltonian H is found by summation of the products of state derivative and costate,
and can be appended with an arbitrary cost function C.
H=AT.q-C (2.8)

4. PMP states that, at any time, an optimal control law maximizes H. Such control laws are found by
analytic inspection of H, where possible, or by a numerical scheme alternatively. These laws depend
on the states and costates, the exact values of which are not yet known.

5. Determine the derivatives of the costates from the Hamiltonian: A = -VqH

6 2. Literature Study

6. Given an initial state and final state, there are multiple ways to solve the resultant boundary value prob-
lem. The simplest single shooting method generates an initial guess of the costates for a boundary, as
well as an initial guess for the total transfer time, then integrates towards the other boundary. Other
methods include multiple shooting, collocation, and dynamic programming.

7. This yields an constrained optimization problem, with a single tolerance constraint at the remaining
boundary. The optimization objective can be total transfer time, initial mass, or any other metric.

When the problem involves discontinuous thrust, one of the control variables is the throttle. From opti-
mizing the Hamiltonian, it is clear that at any point in time the throttle should either be fully closed or fully
open. This is denoted as ‘bang bang’ control, and controlled by a switching function. Due to the discontinu-
ous nature of the switching function, this problem is difficult to integrate accurately [5].

There are a few extensions to the indirect method. Firstly, PMP is also applicable using Edelbaum’s ap-
proximation [7]. This is accurate for circular orbits only, as such the thrust direction is constant [18]. Citing
these simplifications, Casalino [8] allows for a variable I;,, which may be useful implementing dual thrust.
For the parts where electrical thrust is considered, eclipses significantly affect electrical power. To address
eclipses, Kluever [28] presents an adaptation of Edelbaum’s approximation, using a method from Neta and
Vallado [43] to determine eclipse times. Furthermore, Whiffen and Sims [67] and Sauer [52] present control
methods based on PMP for reaching multiple targets.

2.3.4. Evolutionary Neurocontrol

Lastly, Ohndorf [44], citing Dachwald [13], considers evolutionary neurocontrol as an alternative optimiza-
tion method. Here, the control variables are linked to the state through a neural network, and the spacecraft’s
performance is simulated. This is optimized using a evolutionary approach: based on each simulation’s fit-
ness, a new generation of neural weights is generated which are evaluated in turn; through iteration this
converges to an optimal trajectory.

This approach is interesting, because it requires no prior knowledge of the system whatsoever. Instead,
the neural network learns the appropriate control output throughout iterations. This means that this method
is applicable to any control optimization problem, independent of the dynamics involved and without any
need to derive the dynamics beyond the basic state derivatives. The spacecraft design parameters are simply
additional to the neural weight parameters, so combined optimization is not more complex than trajectory
optimization, nor is dual thrust optimization more complex than single thrust problems.

Considering the novelty of this approach, as well as the requirements for a good understanding of artificial
intelligence design and for considerable computational power, it has not been chosen to explore this method
further in this thesis.

2.4. Dual Propulsion Systems

A dual propulsion system combines a high thrust system with a low thrust system. What constitutes a high
or low thrust system depends entirely on its implementation in relation to the spacecraft and the mission
geometry. For this report, the most important distinction is whether the thrust to weight ratio of any imple-
mentation is sufficient that a useful burn time is short enough to reasonably model as instantaneous. For
this report, this is considered sufficient if the burn time is less than 1% of the orbital period, which for a Low
Earth Orbit (LEO) of 500 km altitude would mean a burn time of less than a minute. For cubesat with masses
of tens of kilograms, significant orbit changes can be realised with short burns if the thrust is in the order of
Newtons.

Such thrust levels are available for systems generally based on chemical reactions: solid propellant with
mixed oxidizer and fuel, hybrid propellant with liquid oxidizer and solid fuel, bipropellant with liquid oxidizer
and liquid fuel, and monopropellant with a single liquid propellant activated by a catalyst. These systems
have typical I, values in the order of 100 s.

For propulsion systems based on electrical power, their thrust is generally much lower, in the order of
milliNewtons, with typically a higher I, in the order of 1000 s. These include ion thrusters, radio frequency
thrusters, electrospray thrusters, pulsed plasma thrusters, and vacuum arc thrusters.

Cold gas thrusters and resistojets are considered to have a relatively low thrust as well, but also have a
typically low .

For integration in a miniaturized system, Pallichadath et al. [46] note several aspects that are more criti-
cal due to this smaller form factor: specifically heat dissipation, volume constraints, and power constraints.

2.5. Numerical Aspects 7

These miniaturized propulsion systems are often reliant on micro electromechanical systems (MEMS) tech-
nology, a process that is more reminiscent of microchip lithography than mechanical assembly. Such im-
plementations are listed in Hitt et al. [20] and Silva et al. [53], the latter of which also presents aggregated
performance ranges. Lastly, Mani et al. [35] present an overview of electric propulsion applicable to cubesats,
as well as a table of useful comparable properties of different electric propulsion types. An in depth thruster
performance model is presented, citing Grondein et al. [19] and Chabert et al. [12].

Mission design using dual thrust is considered in literature as well: Kluever [27] and Kluever and Pierson
[29] consider using the chemical propulsion first, and electrical propulsion second. Furthermore, the distinc-
tion is stressed between solar and nuclear power, which affects the trajectory design. Alternatively, Oleson
et al. [45] consider dual systems, where the electric thrust is only used for station keeping. More recently,
Mani et al. [37], Mani et al. [36], and Mani et al. [38] present a full design of an interplanetary cubesat mis-
sion, using dual thrust. This design considers chemical thrust only for Earth escape, and electrical thrust for
the interplanetary transfer. Mani et al. explicitly stress the need for a “combined propulsion system-hybrid
trajectory design framework” as a global optimization procedure for interplanetary missions, and expect that
such a model will have major consequences for cubesat use in these missions. This is the main inspiration
for this thesis.

Some developments are discussed that are beyond the scope of the thesis. Rovey et al. [50] and Donius
and Rovey [16] present preliminary designs in which the low thrust and high thrust systems are combined
into a single thruster, and research into staging for miniaturized low thrust systems is currently underway [30].
These developments could lead to additional cost savings. Furthermore, Kluever [27] and Kluever and Pierson
[29] specifically address three body dynamics for lunar missions, citing a “hybrid method” of Edelbaum’s
approximation and the indirect method from Dixon and Biggs [15]. Lastly, Mengali and Quarta [39] use a
constant radial thrust as a simplification of dual thrust systems, which is applicable for a design combining
a thruster and a solar sail. This has the benefit of greatly simplifying the dynamics, as the solar sail only
effectively reduces gravitational effects, but is considered to simplistic to be useful for this thesis.

2.5. Numerical Aspects

An overview of a appropriate numerical methods is presented by Kim [26] citing Betts [6]. Overall, the found
literature recommends using a global heuristic method as a rough first pass, followed by a local optimization
method for finer control. Kluever notes that sequential quadratic programming (SQP) is an appropriate nu-
merical method, citing Dixon and Biggs [15]. Kim recommends simulated annealing and agrees with Kluever
that SQP is an appropriate local optimization method.

On the other hand, Dachwald [13] and Mosher [40] prefer to use evolutionary/genetic algorithms, which
has benefits when combining it with an evolutionary systems design approach.

Lastly, a wide array of alternative numerical optimization schemes is available, which are not further dis-
cussed here. However, many implementations are freely available and modifiable. These include scipy!,
a general library for scientific programming; pykep [21], a low thrust trajectory optimizer developed at the
European Space Agency (ESA); pygmo, the related optimization library; and gekko [3], an optimal control
problem solver developed at Brigham Young University. Common optimization algorithms included in these
projects are sequential least squares programming, included in scipy as s1sqp, and ipopt?.

2.6. Verification & Validation

Verification and validation of the design is typically done through comparison with previous results; with
either simpler of similar implementations.

For verification, Jiang et al. [22] and Dachwald [13] compare their resultant trajectory with trajectories
determined previously in older literature. For the systems engineering aspect, Mengali and Quarta [39] in-
spect the slope of a certain PMP parameter, such that the solution is at least locally optimal. For a newly
developed optimization model, most authors, including Mosher, Sims, and Whiffen, individually verify their
model against a previously developed model.

For the thesis, verification must be done through comparison with existing literature with both trajectory
and systems design.

Mosher et al. [42] use a database of flown missions to validate the system design result, and evaluates
the practical use of the model for the design of new missions, to validate the model itself. The resulting

Ihttps://www.scipy.org
2https://coin-or. github.io/Ipopt/

https://www.scipy.org
https://coin-or.github.io/Ipopt/

8 2. Literature Study

component requirements can also be compared to existing components [35].

For the trajectory, Ohndorf [44] justifies the use of the integration scheme and the optimization scheme,
and validates the trajectory against a large number of examples from literature.

For the thesis, the trajectory results must be compared with existing missions. Furthermore, the system
design must be compared with existing spacecraft; this may be difficult to perform at significantly high level of
detail, as few similar existing designs exist. Lastly, the designed components must be compared with available
components; as CubeSat components are highly standardized, comparisons can be made within very similar
contexts, which is considered useful.

2.7. Conclusion
The literature study provides useful starting point to develop a combined optimization framework for trajec-
tory design and systems design for a dual thrust system.

It provides an understanding of several low thrust trajectory optimization methods, including Edelbaum’s
approximation, the direct method, the indirect method (using PMP), and evolutionary neurocontrol. For
these, the indirect method has been subject to research for including systems design capabilities. Addition-
ally, evolutionary neurocontrol is a promising alternative, but only in the early stages of development.

It is concluded that the indirect method can be adapted to be used in dual thrust scenarios, by adding a
second thrust factor to the dynamics; and that system design can be implemented, by setting its parameters
as static control parameters.

Design Problem

This chapter defines the problem, to which the design presented in chapter 6 should ultimately be a solu-
tion. First, the intent of the design is discussed. From this, general objectives are derived, as well as specific
requirements. Second, the design process is described, as determined to be applicable from the literature
study. From the literature study’s analysis on available numerical solvers, there are two general options in
consideration.

3.1. Intended Achievement
As discussed in the introduction, the ultimate goal of this thesis is to advance the use of standardized and
miniaturized spacecraft technology towards self-contained interplanetary missions, in the same way it is al-
ready possible for missions in Earth orbit.

To achieve this, it is considered to set an example mission: in turn, it is expected that all relevant aspects
will be encountered naturally. Specifically, this focuses on dual thrust, optimization of the trajectory, and
specific implementations of the spacecraft itself.

3.2. Design Objectives

From this intent, it is possible to determine some objectives of the design, which are listed below. Considering
the design problem as an optimization problem, these objectives form a general notion of optimality of the
design.

These objectives are not to be confused with requirements, i.e. the strictly defined criteria for a design to
be considered feasible. Instead, objectives are determined as an overall metric, towards which the design will
pushed as long as the requirements are met.

In other words, if the design problem is considered a constrained optimization problem, the requirements
form the constraints, and the objectives form in some way the evaluation function.

The objectives are as follows. It is considered that the more the spacecraft adheres to these objectives, the
more likely it is that the goal of this thesis is reached.

¢ OBJ-1: The spacecraft shall be optimized towards minimal cost.
¢ OBJ-2: The spacecraft shall be optimized towards minimal mass.
¢ OBJ-3: The spacecraft shall consist as much as possible of COTS components.

¢ OBJ-4: The spacecraft shall consist as much as possible of components with a high technology readi-
ness level (TRL).

* OBJ-5: The trajectory shall be optimized towards a minimal total radiation dose throughout the mis-
sion.

10 3. Design Problem

3.3. Design Requirements

From the objectives, the top level requirements are derived. These are considered to be ‘SMART", i.e. specific,
measurable, achievable, realistic, and time bound. The design is considered feasible if and only if it meets
these requirements, independent of possible improvements towards the objectives. On the other hand, by
pushing an infeasible design in the direction of the objectives, it is more likely that the design becomes feasi-
ble.

* REQ-1: The spacecraft shall be launched as a piggyback option or secondary payload.

Rationale: This allows for minimization of launch costs.

— REQ-1.1: The spacecraft shall adhere to the CubeSat standard.

Rationale: This is required for low cost piggyback launches, and allows for minimization of design,
acquisition, integration, and test costs.

— REQ-1.2: The spacecraft shall have a volume of at most 16 U.

Rationale: This is the maximum launch option as given by many launch providers available for a
request online, and a common size in literature for larger cubesats.

— REQ-1.3: The spacecraft shall have a mass of at most 21.3 kg

Rationale: This is the guideline maximum mass of a 16 U cubesat, according to the standard.
While more massive cubesats exist, adhering more strictly tot his standards will ensure compati-
bility with launch and deployment providers in terms of mass.

— REQ-1.4: The spacecraft shall be launched into an initial orbit for which piggyback options exist.
Rationale: This allows for minimization of launch costs.

¢ REQ-2: The spacecraft shall allow a payload of 1 U volume

Rationale: This is a common cubesat payload size, and sufficient for e.g. a single optical imager [10].

¢ REQ-3: The spacecraft shall allow a payload of 1.3 kg
Rationale: This is the guideline maximum mass of a cubesat unit, and sufficient for e.g. a single optical
imager [10].

* REQ-4: The spacecraft shall allow a payload to draw 1 W of operating power when not performing a
maneuver

Rationale: this is sufficient to power, for example, a single optical imager [10].

¢ REQ-5: The spacecraft shall reach a final orbit around Mars.
Rationale: An interplanetary mission is the goal of this case study. No restriction is given on the actual
final orbit, due to its dependence on the payload, which is beyond the scope of this study. While actual
final orbit affects the AV requirements, it is considered that any orbit around Mars is acceptable. This
means that different final orbits may be chosen to minimize the required AV'.

* REQ-6: The spacecraft shall reach its final orbit in at most 5 years.
Rationale: This is considered long enough to make a transfer possible, but short enough to account for
degradation of components. Additionally, it a common time span in similar feasibility studies.

¢ REQ-7: The spacecraft be launched in the year 2030 at the latest.
Rationale: A window is required for trajectory optimization; this is considered sufficiently close to lead
to a relevant design, as well as sufficiently ahead to allow enough time for development.

¢ REQ-8: The spacecraft shall not use hydrazine thrusters.

Rationale: This is a common sustainability constraint for new spacecraft concepts.

3.4. Derived Requirements 11

Initial guess (in terms of
parametersin terms of COTS
components)

Y
(Combined trajectory/design optimization problem

Change
parameters
Evaluation towards better
feasibility or

aptimality

A

Figure 3.1: Overview of the overall process.

3.4. Derived Requirements

Typically, further requirements are derived from the top level requirements, such as specifics on propulsion
or trajectory. However, in this report, these requirements are subject to optimization themselves. For each
design iteration, specific requirements may change: for example, if an iteration has an overall lower mass,
a propulsion system with a lower thrust may suddenly be a feasible design option. It is expected that these
requirement will change rapidly on iterations, and are interdependent between the many components. As
such, they will not be listed in advance.

Due to the nature of the proposed optimization procedure, only the few presented objectives and require-
ments are necessary to begin the design procedure; this is less than is typical for a systems design problem.

3.5. Scope

Itis necessary to consolidate the scope of the design, in order to limit the level of detail for such a preliminary
study. The main point of research lies in combination of system design and trajectory, as such the astrody-
namics will be considered fully.

Secondly, the propulsion system will be a main focus point. This includes: high thrust: type, propellant,
thrust, I sp» power; low thrust: type, propellant, thrust, I;,, power; propellant tanks; thermal requirements;
overall mass; and overall volume. Similarly, the power system is expected to be critically important for the
low thrust propulsion system, and will be considered fully. This includes: solar power input, eclipses, degra-
dation, power throughput, charged capacity, mass, and volume. Lastly, radiation avoidance is a major point
of optimization for the trajectory and the design. As such will be included the tolerances and degradation of
individual components.

For the remaining aspects of the design, the level of detail will be limited such that only the budgets will be
considered. For attitude determination & control, this includes estimations for required pointing accuracy,
power usage, mass, and volume. For the payload, power usage, mass, and volume are set as requirements.
For communication, a high level link budget is considered sufficient, in addition to power usage, mass and
volume. Thermal control and command and data handling are considered only qualitatively based on esti-
mates.

This level of detail is considered sufficient, as any lower level considerations would deal with detailed
design of individual components. The focus on this study is on the optimization aspect of general system
design and trajectory design, and restricting the scope will allow for more time allocated in this area.

3.6. Design Process Overview

In general, the design process is considered as solving a constrained optimization problem. The design re-
quirements form the constraints, so a design is feasible if it meats all constraints. Within the feasibility space,
the design is optimized towards the design objectives: minimal cost with metric with some uncertainty.

As such, the design process considers an “initial guess”, which is unusual for system engineering designs.
Then, from this initial guess, the design iterates first towards the feasibility space, and then within the feasi-
bility space towards an optimal point.

This means that the overall process can be depicted simplistically, as in Figure 3.1.

12 3. Design Problem

Combined design/trajectory o
optimization problem Pontryagin's |

maximum

principle

Boundary value problem Solution

BVP salver

Figure 3.2: Overview of the implementation from scratch, using the indirect approach and an existing BVP solver.

Design optimization problem

Trajectory
optimization problem
’ Manual high
thrust
calculation
Combined design/trajectory o Current A
optimization problem Manual use o’l design
existing lterate
routines (—‘ Y
Default pykep
lterate low thrust
calculation
lterate
(snowball
effect)

Figure 3.3: Overview of the implementation using pykep as is.

From the literature study, the number of global options for implementing the design was narrowed down
to two, each using freely available and modifiable software.

The first option is to write a new implementation of the indirect method from scratch, using static vari-
ables to encode system design parameters. This can be done in two ways, either using a boundary value
problem solver, such as included in the scipy package, or using a generic solver for optimal control prob-
lems (OCPs), such as gekko.

The second option is to use pykep, a full fledged low thrust trajectory optimization package. Here too,
there are two ways to use pykep: first by performing system design iterations manually, and running pykep
for iterations, secondly by implementing an automated system design optimization object in pykep.

This leads to the aforementioned research question, “Which implementation is useful for combined opti-
mization of a dual thrust system?”, which will be answered during the implementation phase.

3.7. Using a BVP or OCP Solver

The preferred implementation uses the theory as presented in the literature study. The spacecraft trajectory
is optimized using the indirect method, in which the direction and level of thrust are encoded as dynamic
control parameters. The system design parameters, such as thrust, I;,, power, and structural masses, are
encoded as static control parameters. As the Hamiltonian is defined to include the cost function as required,
the entire problem is optimized towards minimal cost, including the trajectory design and system design.
This process is depicted in Figure 3.2.

An alternative implementation uses gekko, which derives the optimal control laws automatically, but is
theoretically equivalent.

3.8. Using a Trajectory Optimizer

Currently, pykep’s implementation only supports single low thrust systems, and has no support for varying
system design parameters within an optimization problem. As such, pykep can be used as is, if used with
manual iterations, and manually calculating high thrust sections of the trajectory. This method does not
require writing a trajectory optimizer from scratch, but this also means it is not an automated solution. This
method is depicted in Figure 3.3.

Figure 3.3 requires additional explanation. Overall, the combined problem is split into two nested prob-
lems: a design optimization problem, with internally a trajectory optimization problem. This latter setup
is tackled as follows. From the current design, the trajectory is optimized, implemented within pykep, with
additional code for high thrust optimization. Firstly, pykep’s low thrust optimization process is an iterative

3.9. Conclusions 13

Combined design/trajectory

optimization problem Manual] Modified problem object — > Solution
programming internal solver
of problem
object

Figure 3.4: Overview of the implementation using a custom pykep problem object.

one. The result of this is iterated with the high thrust calculation to converge towards a feasible dual thrust
trajectory: the low thrust trajectory affects the high thrust trajectory and vice versa. The resultant complete
trajectory is in turn iterated with the system design: a trajectory change affects the design, and the design
affects the trajectory. Lastly, the system design itself must be iterated as well: a change is one component
affects the other components as well, this is known as the snowball effect. It is clear that this method uses
many nested iterations, which is its most important drawback.

Alternatively, it should be possible to adapt pykep, to automatically optimize two legs for a trajectory,
e.g. an escape trajectory and an interplanetary trajectory. This is possible, because pykep already has the
possibility to calculate multi-leg trajectories for the same spacecraft.

Internally, pykep works with problem objects as defined by the pygmo module, developed concurrently by
ESA. The specific trajopt objects describe low thrust trajectory optimization problems. It may be possible
to instantiate a new pygmo problem object using a similar definition to the trajopt objects, such that the
decision vector includes for example the optimal time of switching, and the propellant masses. This option
is depicted in Figure 3.4.

3.9. Conclusions
With the design problem defined, it is explicit what can be considered an acceptable design, and what con-
stitutes a ‘better’ design within the acceptable design range.

While the scope of the design is limited compared to a full system design exercise, this is necessary to
focus on the optimization aspect of general system design and trajectory design. In turn, this will ultimately
result in several recommendations in improving the design further under a larger scope.

Lastly, it should be noted this report considers this design problem, as well as design problems in general,
to be a constrained optimization problem which can be solved as such. This view follows the Systems Engi-
neering discipline in placing significant importance of the requirements and objectives of a design problem,
and may be a useful attitude as a solution based approach.

Theoretical Approach

Independent of the choice of implementation, it is necessary to present the theoretical aspects of a combined
dual thrust optimization problem. For an implementation from scratch, it is necessary to completely describe
the dynamics and optimal control laws. For the implementation using pykep, this has been done internally,
but an understanding is still necessary to use pykep: either to adapt the problem object or to iterate the
results manually.

This chapter describes the theoretical approach for coupled optimization of a dual thrust system, for any
implementation without loss of generality.

4.1. State

A spacecraft state vector g for a dual propulsion spacecraft includes 6 components related to position and
velocity. In terms of Kepler elements, there are 5 slow components and one fast component; in terms of other
coordinate systems, there are 3 position components and 3 velocity components. It must be noted that the
derivations here are made in terms of coordinate systems, but it is applicable to Kepler elements as well.

With coordinate systems, the state vector is divided in the position vector r, velocity vector s, the chemical
propellant mass m,, electrical propellant mass m,, and the current charged capacity of the electrical power
system (EPS), c.. All are variable in time .

q=|m 4.1)

It must be noted that battery charge is only relevant when eclipses are considered: otherwise, the power
usage of the electrical thruster can be assumed to equal the power output of the solar panels. This is not
necessarily a realistic assumption, however, it can be considered that a large fraction of the incident power
is used by the thruster, and any other power draws can be considered as losses in efficiency without further
complicating the dynamics.

Using the first derivative with respect to time, the dynamics are given as a differential equation.

s

. dg 4

== e 4.2)
Me
Ce

4.2. Accelerations

The state derivatives are expanded one by one. First, the acceleration is due to gravity ag, and due to the
chemical and electric propulsion systems.

15

16 4. Theoretical Approach

a=ag+ac+ae

Gravity is determined from Newton’s law, over planets (;).

e Mjrj—=r)
% = 2 iy —riP

For a single planet, with the origin at the planet’s center of mass, this reduces to.

a. =T
TS

(4.3)

4.4)

(4.5)

For both thrusts exist dynamic control vectors @, and a,, the control throttles k., and k., the maximum
thrust F, and F,. For both, the acceleration depends on the instantaneous mass, which includes the un-
changing structural mass m; and payload mass m,. The structural mass is considered a function of the static
control variables, the initial state, and the maximum used capacity; the payload mass is considered given.

acF;

a. =
Me + Me + Mg+ My

a.F,

a, =
Me + Me + Mg+ My,

lleeell <1

lleeell <1

4.3. State Changes

For the mass flows, the specific impulse I, is scaled with the standard Earth surface gravity go.

el Fe
8olsp,

c=

leellFe
gOIspe

(4.6)

4.7)

(4.8)

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

The change in charged capacity is dependent on the power usage and power generation, the latter of
which is considered to be inversely proportional to the square of the distance to the sun, denoted with sub-
script (;). The power generation is scaled with respect to the standard solar flux at 1 AU. The maximum

capacity ce,,,; depends on the maximum required use.

1AU)2

Ce= —||lxc||Pe+Ps(m
.

0<ce<cem

(4.14)

(4.15)

4.4, Static Control 17

4.4, Static Control
A static control vector w is introduced to contain all variables of optimization which do not depend on time.
[F,]
Fe
Ispc
w= |1, (4.16)
Pe
Ps
L Ir]

The last variable is the transfer time ;.
Finally, the cost function is considered to be the sum of functions of all static control variables.

C(w) = f(Fm Ispc) + f(Fev Ispev pe) + f(pm Ce,m) + f(tf) (4.17)

In addition, a cost should be added for the time spent in high-radiation zones zones, which can be deter-
mined from the given trajectory.

Cirad(w) =C(w) + f(r) (4.18)

The use of this cost function depends on the implementation. For an automated approach, the cost func-
tion is used as the target for optimization.

4.5. Hamiltonian

It is considered that this general problem can be solved using PMP [26]. PMP requires construction of the
Hamiltonian H, containing the derivative of the state, a costate vector A, and the cost function.

H=AT.g+Cw) (4.19)

A=|Am, (4.20)

ujlrj—r) a.F.+a,F,
llrj=rl® mc+me+mg+mp

H=2Ar-s+A5-|). (4.21)
J
[|acl|F, llaellF
—/lmc#_/lmge—e + A, (—Hae“pe"'ps
gOISPc golspe

+C(w) (4.23)

1AU)2)
(4.22)

[lrs—rll

4.6. Optimal Dynamic Control

Based on the theory of optimal control, H must be maximized. This means the direction of a; can be re-
stricted. From analytical inspection, it is clear that H is maximised if A5 and &, are in the same direction. The
same holds for «,. Therefore, we find the optimal direction for both . and «,.

a; a, As
o= = =
llacll llaell 1Al

It can be concluded from optimal control theory, that it will never be necessary to simultaneously fire
both thrusters in different directions. Instead, it is useful to introduce throttle settings & for both thrusters,
and use a general thrust direction unit vector a.

(4.24)

aj = lxhj (4.25)

18 4. Theoretical Approach

This simplifies H. Therefore, Hy, the part of H dependent on e, is shown.

@(hcFe+ heFo) As-Ay heFot hoFo

Hg = A -
Me+Me+ms+my Al me+me+mg+my
IR heFerheFe o heFethoFe
NAsll me+ me + mg+my, s Me+ Me + Mg+ My

For h;, H must be maximized as as well. This requires maximization of H, hj» i.e. the parts of H dependent
onh;.
J

h F;+ h,F, h.F, h,F,
Hy,; = 1Al e Am—— = A, —% — Ae PePe (4.26)
Me+ Me + Ms+myp 8olsp, 8olsp,
h.F, h.F,
Hp, = 1Al Ll —Am, —— 4.27)
Me+ Me+mMs+my, 8olsp,
heF, h,F,
Hp, = | Asll - —Am, —=% = A¢, hePe (4.28)
Mme+me+ms+mp 8olsp,
It is useful to introduce ‘switching functions’ k;, such that th =kjh;.
F, F,
ke =11A4ll - ~Am, — (4.29)
M+ Mg+ Mg+ My 8olsp,
F, F,
ke =112l ‘ -1 ‘ —Ae,Pe (4.30)

Me + Me + Mg+ My e golsp,

It appears that the switching functions for the two thrusters are different, so the thrusters will not neces-
sarily fire together. This shows that there may be a theoretical advantage to having two different thrusters.

The optimal value for &, and h, depends on k. and k., respectively.

1,k>0
h= (4.31)
{Qk<0

Note that the value of £ is irrelevant for k; = 0.

If eclipses are considered and the spacecraft is in eclipse, it must be confirmed that h, = 0 if p, = 0,
because the electrical thruster cannot fire if the battery is empty. If the thruster does fire in this case, an
additional constraint has to be added to the k. switching function.

Allin all, H is slightly simplified.

pilrj—r) h¢F; + heF,
H:/’lr-s+7ls-(z¥)+|l ==

7 llrj—r|3 M+ Me + M+ My,
hF, heF 1AU \?
= Ame < = Am, e _Acehepe"'icgps(—)
gOISpC gOIspg [lrs—rll
+ C(w)

4.7. Costates

Although the costates themselves cannot be directly expressed, the derivatives of the costates are found using
the gradient with respect to the state [26].

4.7. Costates 19
4.7.1. Derivation for Earth Orbits
A derivation within a single SOI is significantly less complex.
heF;+ heF,
H:/lr-s+/'ls'(i) || s|| L L
[l7]]3 M+ Mg+ M+ my
hF, heF,
= Am, gOCI < = Am, goeI ‘ —Achepe+Ac, ps+Clw)
SPc SPe
- 3 pr \\ r
Ar = Ve =0 (AS'(_nrnS)) _“AS'V’(W) 32
3 2_r
IrIP = r-Vlr|? 1rlf = r- (31171)
:ﬂﬂs'vrTzﬂ s*Vr TG (4.33)
3
—-r-3
=M5~Vr”r” r (6||r||r) 4.34)
[rll
3 3
-3
B Lt L 39
[rll
= —2pAlir|? (4.36)
This aligns with the findings of Jiang et al. [22].
4.7.2. Derivation for Interplanetary Trajectories
A derivation for a true multi-body simulation is more complex.
_ wiri—r) 1AU \?
A, =-V,H=-V, |2, Z% +)LCeps(—) (4.37)
7 lrj=rll llrs—rll
(Reorder last term.)
v Ay BN G anyty, — (4.38)
i G- ATTTETEN B Nre—rIP '
(Multiplication rule in first term.)
VPN | pfariiintih OY Z—“f(rf D) A pe AUV (4.39)
A\ e)V Ty e | AP Nre—rIP '
(Reduce first term.)
Z“’(r’ D) e, ps(LAUY, — (4.40)
A \Vr2 i |~ AeePs "rs—rIP '
(Reorder first term.)
Z TT) A pe QAU — (4.41)
Hiv ||r [T "lirs—riP '
(Chain rule.)
rj—r 2 1
=—As- Z,ujvr(rj—r)v(,j_,)—g —/lceps(lAU) Vr(rs—r)V(,S_r)IIrS—r||V||,X_,||—2 (4.42)
7 llrj—rll llrs—rl|

(Evaluate last term.)

20 4. Theoretical Approach

ri—r rs—r —2
=—A- Vr(rj =PV ——— | = A, ps(LAU)? - =1+ — 4.43
s (;M] r(rj—r) (rj r)||l‘j—r||3) cePs() re—rll I —rIP ()
(Simplify last term.)
rj—r 5 Fs—T
:—As~(Z/ijr(rj—T)V(rj_r)m)—ZAceps(lAU) m (444)
j
(Evaluate first term.)
lrj =7l = rj = P)V-pllr =P T
—As[Dpj--1 5 —2A¢, ps(1AU)? —4 (4.45)
7 llrj—rll llrs—rll
(Evaluate last derivative.)
3 2 IiTr 2
Vir-nllrj=rIl> =V, —pllrj=rll-3llr; —rl| =m-3llrj—rll =3(rj—nllrj—rll (4.46)
-
(Substitute.)
lrj—rlP® = rj=r)-30r; = n)llrj -l .
=AY -1 ! =] — 2, ps(1AU)? —4 (4.47)
7 llrj—rll [lrs—rll
(Simplify.)
llrj=rlP=@j—r)-3rj-nllrj—rl| -r
=As- i -2A 1AU)" —— 4.48
s (%‘,:u] ||rj—r||6 cePs() “ r||4 ()
llrj—rlP®=3llrj—rl® ST
:AS.(ZW R —2M¢, ps(1AU)? W (4.49)
J
=2lrj-rlP? o Ts—T
Zu] Iy —IF =2, ps 1AV g (4.50)
1 s— T
/1 ZA Z,U]m Zlgeps(lAU) m (4.51)
4.8. Other Costates
The remaining costates are simpler to derive, regardless of the complexity of the dynamics.
As=-VH=-A, (4.52)
: 0H 0 h.F;+ hF, heFe+ heF,
Ame=——=- (HASH T)zmsn " (4.53)
omg Me + Me + Mg+ My (me + me + mg + mp)
: 0H 0 hoF¢+ heF, heFe + heF,
Ame=—5—=~ (n sll—):n Sll < (4.54)
om, om, M+ Me + M + My (M + Me + M+ mp)?

The above shows that the costates for the propellant masses are identical. This reduces the number of
costates by one.

Am=Am, = Am, (4.55)
: 0H

Ae, = =0 (4.56)
dce

As such, A, is always zero, and can be ignored in all equations it appears in. This may mean that charged
capacity is not a useful parameter to include, although this may not be possible to simply remove this param-
eter, depending on the implementation.

4.9. Conclusions 21

4.9. Conclusions
From the theory alone, it is concluded that the thruster never need to fire in different directions simultane-
ously, and that 1., may need to be reworked depending on the implementation.

The determination of the costates concludes the theoretical aspects of optimal control. Each expression
is programmable within a model, but the usage differs depending on implementation and problem. This
includes choices of dimensionality, coordinate system, number of thrusters; as well as other considerations
such as solar distance, eclipses, degradation, tidal forces, and drag.

Implementation

This chapter describes the implementation attempts, to adapt the theory as determined in the previous chap-
ter to a design process as described in chapter 3.

5.1. Implementation using a BVP Solver

Building upon the theory in the previous chapter, it is thought possible to solve any optimization problem, in-

cluding combined optimization of dual thrust trajectories and systems design. By transforming the problem

into a boundary value problem, one should only need an algorithm to solve a generic BVP, such as scipy’s

solve_bvp function. It is considered out of the scope of this thesis to develop a BVP algorithm from scratch.
Such a process would work as follows.

1. Given: payload mass, mass function from parameters (thrust, Iy, ...), cost functions from parameters
(thrust, I, ...), cost functions from trajectory (time, radiation, ...), dynamics functions.

2. Derive the equations algebraically.

(a) Multiply the dynamics by a time scaling factor.
(b) Derive the Hamiltonian.

(c) Find the analytical expression for optimal thrust as done in section 4.6. If the dynamics are com-
plicated such that an analytic expressions cannot be found, a numerical method can be used.

(d) Simplify the Hamiltonian using the found expression optimal thrust, or, if this was not found, its
numerical approximation.

(e) Find the optimal thrust level, and its applicable switching function.

(f) Find the derivatives of the costates.

(g) Find the derivatives of H with respect to the static control parameters (time scaling, spacecraft
parameters, ...). If this is infeasible, a numerical method can be used.

3. Setup the boundary value problem numerically.

(a) Write the state and costate derivatives as a function of the states and costates.
(b) Write the boundary condition function; outputs zero when conditions are met.

(c) Set the derivatives of H with respect to static parameters to zero at boundary conditions. If a
numerical method is used, set the static parameters such that H is maximized instead.

4. Generate an initial guess.

5. Run the BVP solving algorithm.

23

24 5. Implementation

5.1.1. Automation of Derivations

While the derivations in the previous chapter are suitable for the general problem definition, generating the
costates anew for a specific problem is tedious. As such, it is possible to automate this process using an
symbolic programming language such as sympy.

A short introduction to sympy suffices. As a symbolic programming language, sympy allows manipulation
of algebraic variables in the same way that one would do so by hand. While a great array of functionality is
available, three specific functions are sufficient for this case. Firstly, symbols are instantiated using, for ex-
ample, r = symbols(’r’), such that r can take any real or complex value. This is comparable with matlab
syntax. Secondly, variables can be assigned a function of these symbols. For example, H = r + ... assigns
to H a function of r. In this case, variables can be substituted. For example, H = H.subs(r, sqrt(x**2
+ y*x2)), would replace any r in H with an equivalent expression. Lastly, diff (H, r) would return the
derivative of H with respect to r as a symbolic equation.

A simple example for a optimal control problem is given below. Note that this example uses a polar co-
ordinate system in two dimensions; a discussion on the use of coordinate systems can be found in subsec-
tion 5.1.6.

1. Define states, costates, constants, and control variables, and define the equations of motion.

from sympy import symbols, sin, cos, atan2, diff

r, rd, thd, m, 1lr, 1lrd, 1thd, 1lm = symbols(’r rd thd m 1lr 1lrd 1lthd 1m’)
a, h, £, isp, g0, mu = symbols(’a h f isp g0 mu’)

dr = rd

drd = -mu/r**x2 + h*sin(a)*f/m - rxthd**2
dthd = r*h*cos(a)*f/m + 2*rd*thd

dm = -h*f/isp/g0

2. Define the Hamiltonian.

H = dr*lr + drd*lrd + dthd*lthd + dm*lm - h
print(°H =, H)

>>> H = -fxh*1lm/(gO*isp) + lr*rd

+ 1lrd*(f*h*sin(a)/m - mu/r**2 - r*thd**2)
+ 1thd*(f*h*r*cos(a)/m + 2*rd*thd) - h

3. Inspect the Hamiltonian for the thrust angle control variable, in this case a. It is clear that H, =
(Iysina+1,cosa)-...,so His maximized if a = arctan, /1.

H = H.subs(a, atan2(1thd, 1rd))
print (°H =2, H)

>>> H = -fxh*1lm/(g0*isp) + lr*rd

+ 1lrd*(fxh*1thd/ (m*sqrt (lrd**2 + 1thd**2)) - mu/r**2 - rxthd**2)
+ 1thd* (fxh*1lrd*r/(m*sqrt (lrd**2 + 1thd**2)) + 2%rd*thd) - h

4. Find the switching function by taking the derivative of H with respect to h.

print(°’dHdh =’, diff(H, h))

>>> dHdh = f*lrd*1lthd*r/(m*sqrt(lrd**2 + 1thd**2))
+ fx1lrd*1thd/(m*sqrt (lrd**2 + lthd*x2)) - f*lm/(gO*isp) - 1

https://www.sympy. org

https://www.sympy.org

5.1. Implementation using a BVP Solver 25

5. Find the derivatives of the costates by taking minus the derivatives of H with respect to the respective
state.

print(’dlr =, -diff(H, r))
print(’dlrd =’, -diff(H, rd))
print (°dlthd =’, -diff(H, thd))
print(’dlm =’, -diff(H, m))

>>> dlr = -dt*f*h*lrd*lthd/(m*sqrt(lrd**2 + lthd**2))
- dt*lrd* (2*mu/r**3 - thd**2)

dlrd = -dt*lr - 2*xdt*1lthd*thd

dlthd = 2*dt*lrd*r*thd - 2*dt*lthd*rd

dlm = dtxf*h*xlrd*lthd*r/(m**2*sqrt(lrd**2 + 1thd**2))
+ dt*f*hxlrd*1thd/ (m**2*sqrt (lrd**2 + lthd**2))

This yields all the algebraic equations required to solve the optimal control problem.

5.1.2. Cost Function
The implementation of the cost function is dependent on the use case. In general, the cost function can be
implemented simply as part of the Hamiltonian, i.e. the overall cost function is subtracted from H.

The more complex the cost function is, the more difficult it becomes to find an algebraic expression for the
parameters derived above. As such, at this stage only a simple cost function have been considered, containing
a weighted sum of only the transfer time and spacecraft mass. Once this approach is shown to work, it can be
improved by adding a more elaborate cost function.

However, it already becomes apparent at this stage that finding a useful cost function is not necessarily
trivial. While simple cost functions such as dry mass or travel time can be simply defined, combining costs
requires finding, for example reasonable weights for a weighted average. In general, it can be considered that
such a weighted average can be set up using actual costs based on previous missions, for example an estimate
of cost per day of transfer time and a cost per kg of dry mass. At this stage of mission design, these estimates
can be very inaccurate, meaning this optimization procedure yields a false optimum. This discussion will be
continued when considering initial guesses.

5.1.3. Differential Equation Function
The second step entails substituting the derived equations into a format that the BVP solver can handle. This
requires a short introduction of the solve_bvp algorithm in scipy.

The call signature is solve_bvp(fde, fbc, t, q, p) withpand other parameters optional. The func-
tion fde is the differential equation function. This function takes the time span t, state vector q including
costates, and outputs the derivatives of the states. Additionally and optionally, it takes the static parameter p.
The majority of the work lies in writing out the required functions; a call of solve_bvp then simply returns
the solutions of the BVP.

An example without the static parameter would be the case for a boundary value problem where the final
time is known. The derivatives of the costates and the switching function can then simply be copied in.

1. Unpack the state vector g.
from numpy import sqrt, sin, cos, atan2, where

def fde(t, q):
r, rd, thd, m, 1lr, 1lrd, 1thd, 1m = q

2. Implement the angle control a and throttle control k as calculated previously, as function of the states
and costates. This means £ is set to 1 if the switching functions is positive, and to 0 otherwise. Note
that the where clause contains the switching function; it sets the throttle to 1 if the function is positive,
and to 0 otherwise.

a = atan2(1lthd, 1lrd)

26 5. Implementation

h = where(f*1lrd*1lthd*r/(m*sqrt(lrd**2 + lthd**2))
+ df*1lrd*1thd/ (m*sqrt (lrd**2 + 1thd**2))
- £¥lm/(g0*isp) - 1 > 0, 1, 0)

3. Write out the derivatives of the states, as defined previously, and of the costates, as calculated previ-
ously.

dr = rd

drd = -mu/r**2 + h*xsin(a)*f/m - rxthd**2
dthd = rxhxcos(a)*f/m + 2xrd*xthd

dm = -h*f/isp/g0

dlr = -fxh*lrd*1thd/(m*sqrt(lrd**2 + 1thd**2))

- 1lrd*(2*mu/r**3 - thd**2)

dlrd = -1r - 2*1thd*thd

dlthd = 2*lrd*r*xthd - 2*dt*xlthd*rd

dlm = fxh*lrd*1lthd*r/(m*x*2*sqrt(lrd**2 + lthd**2))
+ f*h*lrd*1lthd/ (m*x*2*sqrt (lrd**2 + 1thd**2))

return [dr, drd, dthd, dm, dlr, dlrd, dlthd, dlm]

The static parameter vector p can be used for any unknown variables that do not change over time. Most
importantly, this can be used to change the boundary value problem into a free time scenario. In this case,
one of the variables in p is dt, a scaling factor for the time step. If we present the boundary value problem
as ranging from ¢ = 0 up to ¢ = 1, and multiply each derivative with d ¢, we have implicitly defined a free final
time of d .

It must be noted that solve_bvp can freely change the parameters in p to any value, including zero and
negative values. In order to prevent any numerical issues, there are two important considerations. First, a
good initial guess must be given for p as well as for the states and costates. This is the most major drawback
of indirect methods. Secondly, one can restrict dt to strictly positive numbers above 1, for example by setting

dt=,/ pg + 1, which is positive and differentiable everywhere.
1. Unpack the state vector g.

from numpy import sqrt, sin, cos, atan2, where

def fde(t, q):
r, rd, thd, m, 1lr, 1lrd, 1lthd, 1m = q
dt = sqrt(pl0]**2 + 1)

2. Implement the angle control a and throttle control k as calculated previously, as function of the states
and costates. The difference here is that all terms in & are multiplied by d ¢.

atan2(1lthd, lrd)

= where (dt*f*1lrd*1lthd*r/(m*sqrt(lrd**2 + lthd**2))
dt*df*x1rd*1thd/ (m*sqrt (lrd**2 + 1thd**2))

- dtxf*1m/(gO*isp) - 1 > 0, 1, 0)

+ 5o

3. Write out the derivatives of the states, as defined previously, and of the costates, as calculated previ-
ously. Again, all derivatives are now multiplied by dt.

Additionally, it was intended that the static optimization variables, such as thrust and Iy, could also be
encoded in p in a similar manner.

5.1. Implementation using a BVP Solver 27

5.1.4. Boundary Condition Function

The solve_bvp routine requires a boundary condition function, fbc, which takes the calculated states at the
initial and final time, and returns for each the difference between the calculated state and the required state.
Here, the number of degrees of freedom becomes important.

When considering the simplest 2D case with states x, y, u, v, the boundary condition function should re-
turn 2-4 = 8 values: one extra costate for each state. If any of these states is free, for example the final value of
u is free, then instead set 1, to zero.

Additionally, when including dt as a static variable, the boundary condition function needs to return an
additional value, or the problem would be underconstrained. For time scaling, this value is well defined: the
function needs to return the complete Hamiltonian at the final time, which must be set to zero.

Some examples are given.

¢ A fixed time BVP, with initial states (...0), final states (...f), and target states (...). The # component is
free at both boundaries: as such the costate is returned to be set to zero, rather than the state itself.

def fbc(q0, qf):
x0, yO0, u0, vO, 1x0, 1yO, 1luO, 1vO
xf, yf, uf, vf, 1xf, lyf, luf, 1lvf
return [x0 - x0t,

qo0
qf

yo - YOt,
1u0,

v0 - vOt,
xf - xft,
yf - yft,
1uf,

vE - vft]

* A free time BVP It is necessary to calculate the throttle control at the final state in order to determine
the Hamiltonian.

def fbc(q0, qf, p):
x0, y0, u0, vO, 1x0, 1y0, 1u0O, 1vO = qO0
X, y, u, v, m, 1x, ly, lu, lv, 1m = gf
dt = sqrt(p[0]**2 + 1)

h = where(dt*luxly/sqrt(lv**2 + ly**2)
+ dtxlv**2/sqrt (lv#*2 + ly**2) - 1 > 0, 1, 0)

H = dtxh*luxly/sqrt(lv**2 + ly**2)
+ dtxh*lv**2/sqrt (lvx*2 + ly**2) + dt*lx*u + dt*ly*v - h

return [x0 - xO0t,

yo - YOt:
1u0,

v0 - vOt,
x - xft,
y - yft,
1u,

v - vit,
H]

5.1.5. Elimination of Variables
At this stage, it may become apparent that variables are unneeded. For example, considering a 2D trans-
fer problem from one circular orbit to another. When using a Cartesian coordinate system, there are four
variables x, y, u, v.

All four variables are relevant for the derivatives: the derivatives of x and y are u and w, and the derivatives
of u and w depend on gravity, which depends on position.

28 5. Implementation

However, for the boundary conditions, some issues arise. It is not relevant at which point in the orbit the
transfer starts and ends, just that the shape of the initial and final orbit is as required. Therefore, there are
only 3 boundary conditions, while there are 4 variables.

1. Radius r = \/x% + y2 equals required radius.
2. Speed equals circular orbital speed /p/r.

3. Velocity direction is perpendicular to radius vector.

There is also no costate directly related to the position in the orbit, which could be set to zero, so the
system cannot be solved using a BVP solver.

Instead, it is possible to use a polar coordinate system with state r,6, 7,0. When implementing the dy-
namics, it becomes clear that the inclusion of 6 as a state is problematic. First, 8 is free at both boundary
conditions, which can be solved by setting Ag to zero instead. However, we see that Ag is also zero, meaning
that Ay is zero everywhere.

The reason for this is that 8 is not relevant anywhere in the dynamics. This may not be initially obvious
from looking at the dynamics equations, as 8 does appear, but it makes sense intuitively: @ is irrelevant for the
dynamics dependent on gravity, and irrelevant for the dynamics dependent on control. If we were to include,
for example, lunar perturbations, which is dependent on 6, then 6 would appear in the dynamics and Ay
would not be zero everywhere. This issue appears similarly for A,, using the general derivation in chapter 4.

Additionally, the reason that the system becomes numerically unsolvable, even though 6 may just be
‘ignored;, is that the inclusion of a zero-everywhere vector leads to singular Jacobian, such that the direction
in which to converge is undefined.

To conclude, including 8 makes this problem numerically unsolvable, even though encoding the full po-
sition of a spacecraft seems logical when coming from a Cartesian coordinate system.

5.1.6. Initial Guess and Coordinate Systems
With the derivatives and boundary conditions implemented, solve_bvp, like all boundary value problem
solvers, needs an initial guess to start. Depending on the accuracy of this initial guess, the solver may take
longer to converge, or fail to converge at all.

The difficulty of determining a sufficiently close initial guess depends on the problem and on the coordi-
nate system used.

1. Cartesian

A Cartesian coordinate system is simple to implement in both 2D and 3D. From here on, the variables
added for 3D systems are enclosed in parentheses.

X

r=\y (5.1)
(2)
u

s=| v (5.2)
(w)

The Cartesian coordinate system is especially difficult to obtain a good initial guess without much ex-
perience with designing trajectories. The most important reason for this is that Cartesian coordinates
vary wildly throughout the transfer. The values switch signs often, and it is not possible to place up-
per and lower bounds on individual state variables: for example, an absolute | x| coordinate within the
radius of Earth is fine if | y| is outside the radius of Earth, but not otherwise.

Cartesian coordinates are not necessarily unbounded: each state variable can be made dimensionless
by dividing by a certain constant, e.g. dividing positional values by the radius of Earth, such that the
expected possible values lie within a previously determinable range. However, this does not affect the
difficulty of finding a good initial guess.

5.1. Implementation using a BVP Solver 29

2. Polar/Spherical

A spherical coordinate system can be implemented in 3D, or as a polar system in 2D.

,

r=10 (5.3)
@]
.

s=| 6 (5.4)
()

In a two dimensional transfer problem, a polar system is more suitable for finding an initial guess. For
example for circular-to-circular transfers, r is always positive and easily bounded; as shown 6 may be
eliminated, 7 goes smoothly from zero to positive to zero, and 6 is always positive and easily bounded.

In this case, a good initial guess would be a linearly increasing r, a half-period sinusoidal 7, and a
linearly decreasing 6.

However, once the orbital position becomes important, 8’s periodicity may become an issue. Either 6
must be bound between 0 and 27, becoming discontinuous, or the boundary condition function must
acknowledge periodicity.

Furthermore, the dynamics become more complicated. This is not an issue by itself, but the more
complicated the dynamics are, the more complicated the derivatives of the costates become. While
these are derivable automatically, it may become very difficult to determine an optimal control law for
the control vector from visual inspection of the Hamiltonian.

For a polar coordinate system, the dynamics are as follows?.

drldt P
. |aorar| | ro
©D= N ariar| T | i -ré?
aglar] [2i0+r6

(5.5)

Here, 7 depends on gravity and thrust, and depends on thrust only.

For 3D implementations, the last variable ¢ remains bounded, but becomes more difficult to present
an initial guess for. Furthermore, in 3 dimensions in general, it is beneficial to determine the opti-
I =

mal control law in terms of velocity costate vector as shown in section 2 e.g. a3p = [ax ay ag

T . . . S
[ar a; an] . Here (;), () and (,) stand for radial, tangential and normal, respectively, which is
customary for disturbance vectors in a spherical coordinate system. The control vector in terms of
trigonometric functions would become

hsina
asp = | hcosacospf
hcosasinf

for which the optimal control law would be more difficult to decipher.

3. Kepler Elements

Alternatively, the dynamics state of r and s can instead be given in terms of the Kepler elements. The
distinction between position variables and velocity variables is lost, and the gravitational influence is
no longer considered part of the dynamics, but implicitly included in the coordinate system.

The Kepler elements are semi major axis a, eccentricity e, inclination i, longitude of ascending node Q,
argument of periapsis w, and any anomaly, e.g. true anomaly v.

2http://pioneer.netserv.chula.ac.th/~anopdana/211/24rtheta.pdf

http://pioneer.netserv.chula.ac.th/~anopdana/211/24rtheta.pdf

5. Implementation

(5.6)

In this system, all states but v are constant throughout time if thrust and external disturbances are
zero. If thrust and disturbances are considered, all vary slowly throughout time. Furthermore, a and e
are bounded and positive, the other variables are bounded. This further reduces the difficulty of finding
a good initial guess.

Furthermore, this system is useful when considering a transfer between orbits, where the actual posi-
tion in the initial and final orbit is irrelevant. An orbit is fully described by taking all variables except v.
In a 2D case between elliptical orbits, and in any 3D case, the anomaly at any point in time is relevant
during the transfer, so v cannot be eliminated; instead, v is free at each boundary so A, is set to zero.

However, v is a periodic variable with the same issues as before. Furthermore, the variables become
singular when the orbit approaches circularity or equatoriality, which were previously considered sim-
plifications. Because of this, the dynamics are usually immediately given in terms of equinoctial ele-
ments in literature.

Simplified dynamics are available, however, which are used to derive Edelbaum’s approximation [25].
In this formulation, only circular orbits are considered, as well as only tangential and out-of-plane
thrust; radial thrust is considered safe to exclude. These dynamics are as follows, derived from the
mean anomaly M.

V=yyla (5.7)

a 2an, 1V
i | Ay cos(w+ M)V 5.8
Q |- Apsin(w + M)/ V/sin(i) :

w+M Via-Apsin(w + M)/ V/tan(i)

Note here that A indicates the acceleration in radial (), normal (,,), or tangential (;) direction, such that
T
a=[Ar A A

. Equinoctial Elements

Equinoctial elements are a variation of parameters on the Kepler elements, in the same way that Ro-
driguez parameters extend upon Euler angles for rotation. Using equinoctial elements, a singularity
only occurs at circular, equatorial, retrograde orbits, which is sufficient for almost all applications. That
is to say, singularities still exist, but have been ‘postponed’ to a state that is rarely reached, at the cost of

more complex dynamics equations [25].

a(l-e?)
ecosw+Q
esinw +Q

tani/2cosQ

tani/2sinQ
Q+w+v

(5.9)

N IR HT

This system is relevant only for 3D orbits. Like Kepler elements, all but one are constant for unperturbed
motion, in this case L, and all vary slowly through perturbed motion.

However, the dynamics become very involved [25].

5.1. Implementation using a BVP Solver 31

s#=1+n*+k? (5.10)
w=1+fcosL+gsinL (5.11)
r=plw (5.12)

PN 6.13

2pgAilw
q(ArsinL+ ((w+1)cosL+ f)A;/w—(hsinL—kcosL)gA,/w)
g(=ArcosL+ ((w+1)sinL+g)A;/w+ (hsinL—kcosL)gA,/w)
qs?Ay/2/w-cosL
qs®A,/2/w-sinL
w?\/uplp*+qlw- (hsinL—kcosL)A,

(5.14)

Finding the optimal control law with respect to becomes a very involved process. Relevant matrices
of costate derivatives are presented in Applied Numerical Astrodynamics by A. Kechichian (2018) [25],
however these are all derived for specific use cases. It is not thought feasible to automatically derive the
costate equations for an arbitrary cost function.

5. Quaternions

The use case for equinoctial elements is immediately reminiscent of the Rodriguez parameters in space-
craft attitude control. As such, it is of interest to see if quaternion representations are applicable for
orbital mechanics as well. It appears there are a few, and only very recent, papers on this, e.g. Sapunkov
and Chelnokov [51] and Libraro [34].

It is expected that the use of quaternions would significantly ease the process of finding a good initial
guess. While the individual components do switch sign, their implementation would be nonsingular,
continuous, non-periodic, and bounded between —1 and 1. In fact, if the implementation of an angular
position is similar to the implementation of attitude, the allowed magnitude of any state would be 1,
restricting the possible values to the unit hypersphere.

Although quaternions would make deriving nonsingular dynamics much simpler, using it would prob-
ably require work far beyond the scope of this research.

5.1.7. Initial Guess for Costate Values

The generation of initial guesses for the costates is more troublesome still than for the states. In most cases,
not even the boundary conditions of the costates are known. They are only known when the state itselfis free;
in which case it is also possible that this state may be eliminated.

It appears that the only consistent strategy is to use the costates of previously calculated results for similar
trajectories. However, these are not available when redoing a calculation with different values for e.g. thrust
or Iy, for which the trajectory changes drastically. In this case, itis better to converge to the desired trajectory
iteratively, i.e. slowly changing the static parameters from a known case to the desired case, recalculating the
trajectory at every step. Because of this, it is no longer feasible to consider a joint optimization scheme as a
single boundary value problem.

An alternative approach reduces the solving procedure to single-shooting algorithm, which removes the
need for a algorithm such as solve_bvp.

In this case, we consider the initial values of the costates as optimization parameters, along with static
variables such as such as expected transfer time.

Using the initial states and costates, and knowing the optimal control law depending on the current states
and costates, the system is integrated until the final time, and the difference between the required final state
and actual final state is returned. This means that the problem is now posed as an (iterative) optimization
problem with the initial values of the costates and the transfer time as unknowns.

As such, the costate values only have to be guessed at the initial time, rather than throughout the transfer,
reducing the potential degrees of freedom. However, the initial guesses still need to be guessed accurately
enough for the system to converge.

32 5. Implementation

5.1.8. Further Issues
It was considered that static control variables, such as values for thrust and I5, could be included in the
parameter p . However, this leads to several problems.

Firstly, any value in p is by design allowed to vary without bounds. While it is possible to restrict values to
certain ranges, as was done in the case of dt, it is not clear if adding such boundaries reduces the program’s
chance of convergence.

Secondly, for each static control variable, solve_bvp requires one and only one additional boundary
condition. There are multiple expected possibilities, and it has not been possible to confirm, which, if any,
is correct. For example, the derivative of the Hamiltonian w.r.t. the static control variable must be zero:
this has not been verified to be a sufficient boundary condition. Furthermore, the second derivative of the
Hamiltonian w.r.t. the static control variable must be positive: this is not implementable as a single-valued
condition. It has also not been verified if it is sufficient to implement this boundary condition at the final
boundary, as was the case for dt, or if in this case the boundary should instead be set at the initial time, or at
both.

Thirdly, and most importantly, this method remains very sensitive to the initial guess. This is dependent
on the choice of coordinate system, as shown above, but remains an issue for any coordinate system.

Fourthly, an integrated approach would be very sensitive to the objective function, which is based entirely
on estimates at the phase of design where such a system is used. This means that any potential design would
be very sensitive to parameters with a low confidence in accuracy.

5.1.9. Conclusion
The most important issue lies with the need for a good initial guess, such that an automated approach cannot
be guaranteed to be stable, and will need manual intervention, so the advantage of an automated approach
is lost.

The need for an initial guess can be solved by an iterative approach, which again removes the advantage
of having a single combined optimization problem.

In conclusion, for any automated system using boundary value problem solvers, it has not been possible
to present a solution with benefits over an iterative scheme with existing low thrust optimization methods.

5.2. Implementation using an OCP Solver

The OCP solver gekko is one of the many freely available dynamic system solvers. Like the rest, it works by
transforming the dynamic system into an optimization problem, which is then solved internally; in gekko’s
case using ipopt.

It is considered that the use of gekko is theoretically equivalent to the use of scipy, while reducing the
chance of practical issues. That is to say, if the implementation fails in gekko as well, it would support the
conclusions on the theoretical nature of the encountered issues, rather than e.g. programming mistakes.

The conceived use of gekko is as follows.

1. Given: payload mass, mass function from parameters (thrust, Iy, ...), cost functions from parameters
(thrust, Isp, ...), cost functions from trajectory (time, radiation, ...), dynamics functions.

2. Set the states as State Variables.

3. Set the dynamic controls as Control Variables.
4. Set the static controls as Fixed Variables.

5. Set the dynamics as Equations.

6. Set the boundary conditions as Equations.

7. Set the cost function as Objective.

8. Run the OCP solver.

5.3. Implementation using a Trajectory Optimizer 33

5.2.1. System Definition
It is simply possible to implement variables as gekko objects such as State Variables (e.g. velocity), Control
Variables (e.g. thrust level), or Fixed Variables (e.g. Is,), without assigning specific values, and they will be
handled as such. State variables will be integrated over time, control variable will be varied within defined
bounds, and fixed variables will be changed to meet the objective, but will be constant in time.

An introduction to gekko’s syntax is given using some examples.

from gekko import GEKKO

model = GEKKOQ)

a = model.CV(1b=0, ub=2#model.pi) # With lower and upper bound
x = model.SV()

dt = model.FV(1b=1, ub=10000)

dt.STATUS = 1 # Allows varying

The dynamics are simply implemented as equations. Derivations of e.g. costates, where necessary, are
done internally using sympy as well. For example:

model.Equation(x.dt() == u) # dt means derivative
model.Equation(u.dt() == -x*mu/(x**2 + y**2)**1.5 + h*model.cos(a)*f/m)

Boundary conditions are set using either a fix constraint or an equation.

model.fix(x, 0, x0)
model.Equation(y*[1, 0, 0, 0, 0] == yO)

5.2.2. Issues
Similar to the implementation is scipy, this implementation returns several issues.

There are two implementation issues with the boundary conditions, namely that the fix constraints lead to
warnings that the constraint fails, while the equation constraints lead to the problem being overconstrained.
However, in either case, the simulation does run.

Because of this, gekko fails to converge at all. The main issue with intermediate solvers such as gekko
lies in their use as black box solvers. This means that, whenever something is wrong, the user needs to guess
how the errors relate to the input. While it is not feasible to determine how these issues occur in this case, it is
logical to assume that it is the same as in the scipy implementation. It is considered that this is, again, due to
the lack of a good initial guess, such that the problem is initialized randomly, and the chance of convergence is
random as well. Because of this, the use of gekko has no computational advantage over deriving and solving
the BVP using other methods.

The use of gekko is no longer considered useful for this study, due to its black box nature and its equiva-
lence in functionality to a BVP solver as discussed above.

5.3. Implementation using a Trajectory Optimizer

ESA’s pykep is a full solver for trajectory optimization problems. In that sense, pykep is even more so a black
box than a general optimal control problem solver. However, pykep is used in practice for the preliminary
design of space missions, in contrast to most other available software.

Defining and solving an low thrust transfer problem can be done in few lines of code. However, pykep’s
documentation is incomplete and outdated, so it may be useful to present an overview of its usage, as derived
from example code and experimentation.

In general, use of pykep follows.

1. Setup a trajopt trajectory optimization object.

2. Load this as a pygmo problem object. The pygmo project is ESA’s system for generic optimization, and
used as backend in pykep.

3. Setup the optimization algorithm, and determine the optimization parameters.

4. Run the algorithm.

34 5. Implementation

The simplest working case has been found to be as follows.

import pykep as pk

import pygmo as pg

traj = pk.trajopt.direct_pl2pl()

grad = pk.examples.add_gradient(traj, with_grad=True)
prob = pg.problem(grad)

pop = pg.population(prob, 1)

algo = pk.examples.algo_factory(’slsqp’)

pop = algo.evolve(pop)

print (prob.feasibility_x(pop.champion_x))

This contains several steps.

1. A trajopt object is instantiated. This is essentially a function, taking parameters such as departure
time and initial and final states, and returning values such as feasibility.

2. Many solvers for nonlinearly constrained problems require the problem to present a gradient, including
slsqp and ipopt. This can be done as a finite difference scheme using the add_gradient function
from the example module. Other solvers, such as nlopt or heuristic methods do not use the gradient.

3. The function, with gradient, is converted to a pygmo problem object.

4. A population of solutions is generated randomly. For deterministic solvers, the population size can be
1, while for heuristic solvers this can be as many as required.

5. An algorithm must be instantiated. The simplest way to do this is using the algo_factory function
from the example module. Using s1sqp is sufficient for Earth to Mars transfers or few-revolution orbits
in general. For many revolutions, this is not sufficient; in which case one can use a heuristic method.
For example, one can use differential evolution, or use s1sqp within a monotonic basin hopping (MBH)
scheme [68][11]. Both options are activated as shown below.

algo2 = pg.algorithm(pg.algorithms.de())
algo3 = pg.algorithm(pg.algorithms.mbh (

algo=pk.examples.algo_factory(’slsqp’)
))

6. Finally the problem is solved by evolving the population. The found optimum is not always a feasible
trajectory; for functions such as s1lsqp, this depends on the initial guess; for heuristic methods, this is
random. The more revolutions, the less likely a feasible optimum is found.

5.3.1. Custom Problem Object

As is, pykep has a number of problem objects available for the optimization of single thrust trajectories. It is
conceivable to write a custom problem objects for dual thrust propulsion, coupled optimization of systems
design, or both. However, there are a number of expected issues.

Firstly, while pykep does allow for customized optimization problems, each existing problem is built
around direct and indirect transcription of trajectory ‘legs’: for each of these legs, pykep internally allows
only a single value for thrust and I;,; and the number of legs cannot be changed during optimization.

Secondly, pykep currently has no support for optimizing trajectories up to escape velocity, with is espe-
cially relevant for the cubesat design in question. As such, a possible design trajectory would be limited to
separating the thrust, for example, high thrust for an escape trajectory, and low thrust for the interplanetary
transfer.

Thirdly, pykep has no support for cost functions depending on trajectory, which would be especially rele-
vant to consider the transfer through radiative zones. To make this approach useful, it would be necessary to
add this functionality, but generating a radiative model from scratch is beyond the scope of this research.

As such, writing a useful problem object may require altering the internal workings of the program. Chang-
ing the internal workings of pykep, while allowed under its license, would be beyond the scope of this thesis,
considering the size of the program and the lack of documentation. Lastly, even if these issues are avoided,
pykep remains fully dependent on the accuracy of an initial guess, so using pykep in an automated scheme
would remain as unstable as the implementation attempts presented before.

5.4. Conclusion of Implementation Attempts 35

5.3.2. Manual Iteration
One way to avoid the aforementioned issues is to use the assumption mentioned before, which is an assump-
tion which may be necessary to include even when implementing a custom problem object, namely that high
thrust is used for Earth escape, and low thrust is used for the interplanetary transfer. This approach assumes
that the high thrust system must be used up completely first; and the low thrust system afterwards.

Such an approach would work as according to Figure 3.3.

1. Given an iteration (or for the first iteration, a guess) for a high level systems design.
2. Use existing pykep routines to find an optimal Earth to Mars trajectory.

3. Using this trajectory, find an optimal high thrust trajectory for Earth escape, using high thrust calcula-
tions, which is simply implementable.

4. Tterate between the two trajectories until convergence.

5. Using the new total trajectory, iterate the systems design until convergence. For example, this can be a
change in propellant mass or radiation shielding.

6. Iterate the systems design for the given trajectory until it converges. This is necessary because, e.g.
a required increase in propellant mass causes a further increase in propellant mass, due to the larger
structural mass. This is often dubbed the “snowball efect”.

7. With the new systems design, restart from 2. to find a new trajectory.

This entire sequence is repeated until, as is expected, the difference between iterations becomes increas-
ingly smaller. The number of iterations depends on the required accuracy; for this study, it was opted not to
optimize further beyond the used accuracy of the mass budget, which is in the order of grams.

At this point, the design can either be accepted, or be changed. For example, it may be considered that
a different design option is preferable after all. In this case, the design option can simply be replaced, and
the process can be restarted; after which the design will iterate towards a new optimum, which will be either
better or worse. If iterations are fast enough, these changes can quickly be evaluated or reversed.

Lastly, it must be considered that the level of detail can be increased between iterations. This allows for
a very high level initial guess, which is easier to implement. Increasing the level of detail midway allows
multiple people to work on different aspects, in the spirit of concurrent design.

5.4. Conclusion of Implementation Attempts
It has not been proven possible to present an automated solution to jointly optimize dual thrust trajectories
and systems, which does not rely on manual guessing or iteration.

It is still possible that such an approach exists, either using methods that have not been discussed, or after
considering the discussed methods more carefully. However, with the current knowledge and resources on
this topic, it is not thought to be feasible to continue working on these attempts.

As such the attempts to find an integrated approach will be abandoned. A manual approach using existing
features in pykep will be used instead.

This answer the research question posed last: currently, the most useful implementation relies on manual
iteration using existing pykep functionality.

Resultant Design

This chapter describes the design at various iterations of the design process. It starts with considerations for
an initial guess, as well as a general overview of the design options. Secondly, a number of milestones are
shown. Lastly, the final considered iteration is presented in detail.

6.1. Overview

The manual implementation using pykep is an iterative approach. Similar to the initially proposed imple-
mentation in scipy, it starts from an initial guess, after which the trajectory and systems design are continu-
ously iterated.

The initial guess must first be generated. This is done based on preliminary design option choices, how-
ever, because it is expected that these options change, it is not necessary to set these design options as final.
The initial guess is described below.

After this, the first milestone lies in finding a feasible trajectory using the on the initial guess. Once this
has been found, further trajectory iterations are generated faster and more consistently.

Then, the next milestone is reached when a feasible combined design is found, in which both the design
budget and trajectory meet the performance requirements.

A next milestone is considered for a combined design, using COTS components. At this point, the require-
ments are met, and the design problem is considered solved. However, the design can still be iterated further.
Additionally, design options can be switched and iterated to investigate their effect on the design.

For this thesis, it is considered sufficient to optimize one step further beyond the first design that meets
all requirements. This entails performing one design option switch, if required, when all requirements are
met, and then iterating until convergence.

6.2. Initial Guess

For the initial guess, there are four major decisions on design options. Note that this design option being
chosen at this stage does not mean that this option is kept throughout the design process: it is only used as
an initial guess, and while it is likely that it will remain the chosen solution, it may change if the requirements
cannot be met.

The decisions that are made in advance, as initial guess, are as follows:

1. The type of thrusters for the low and high thrust system respectively.

2. The choice of launcher, and thus initial parking orbit, which significantly affects the AV requirements.
3. The choice of actuation for the attitude determination and control (ADC) system.

4. The choice of how the solar array will be placed upon the spacecraft.

Smaller decisions will be detailed when relevant. However, as mentioned before, derived requirements
are expected to change rapidly, such that such a trade off may apply to only a single specific iteration.

37

38 6. Resultant Design

| FIN] Iy sl Reignitable TRL

Solid 50 250 X 9
Liquid monopropellant 1 250 v 7
Liquid bipropellant 1 290 v 4

Table 6.1: Typical performance for the high thrust options under consideration.

FIN] I, [s] TRL
Cold gas 0.1 70 9
Resistojet 0.03 100 -
- Electric - - 4
- Solar thermal - - 3
Solar sail - - 3
Ion thruster 0.005 3000 7
Hall thruster 0.05 1800 6
Electrospray 0.0015 1800 5
Pulsed plasma 0.0005 1000 5
Vacuum arc 0.000002 3000 4
Radio frequency 0.001 1000 4

Table 6.2: Typical performance for the low thrust options under consideration.

Note that, for the trajectory, the initial guess is randomly selected by pykep, from a range between pre-
programmed lower and upper bounds. Within this range, the trajectory optimization solver is deemed likely
to converge by the authors of pykep. However, the choice remains fully random within this range and may
still fail to converge.

6.2.1. High Thrust
High thrust options are taken from Mani et al. [36], Silva et al. [53], and Casini et al. [10], as summarised in
Syaifoel [61].
General options are in Table 6.1. Note that for COTS components, other variables such as mass, volume,
etc. may vary drastically from manufacturer to manufacturer. The TRL relates to miniaturized systems only.
Each of these options is eligible be considered for an iteration: a considerable array of COTS options exist.
Hydrazine options are not considered, nor widely available as COTS cubesat components. Solid propellant
thrusters are still under consideration, even though they are not reignitable: a single burn may be sufficient
if thrust and I, or propellant mass are large enough. For the initial consideration, liquid bipropellant is
considered leading, because of the highest possible ;.

6.2.2. Low Thrust
These options are taken from Mani et al. [36], Silva et al. [53], and Casini et al. [10], and as summarised in
Syaifoel [61], as well. Typical values are presented in Table 6.2. Note that, again, these are typical values con-
sidered for generating an initial idea; the performance of actual existing COTS components varies drastically.
Not all options are represented in the available COTS components. Very low TRL components are not
available as technology demonstrations either, as such they will not be considered further.
At this stage, the highest I, is considered leading; this may change later. As such, ion thrusters are con-
sidered for now.

6.2.3. Launch Orbit

For launch orbits, only the options are considered for which piggybacking is commonly available. Expected
launch costs are also considered, which can be estimated albeit without verification; as such the selection is
based mainly on AV requirements. From commercial availability online, it appears that most launch options
target Low Earth Orbit (LEO), Sun Synchronous Orbit (§SO), and Geostationary Transfer Orbit (GTO).

It appears that LEO and GTO are the most commonly available piggyback options for a commercial or
educational cubesat launcher. The other orbits do occasionally allow a dual launch, which may be more cost
effective if the opportunity arises, especially a Lunar or Mars injection. However, in general, these options are
considered too costly.

6.2. Initial Guess 39

For the initial design, a GTO option is considered the most economical for both the AV budget as well as
the launch cost budget.

6.2.4. Momentum Dumping

Integrated ADC components are available, however, all are designed for maneuvering in Earth orbit. As such,
most rely on magnetorquers to dump any momentum stored in the reaction wheels. One option to resolve
this is to include separate thrusters.

Alternatively, it may be useful to use the main thrusters to dump momentum. This will require the space-
craft to have multiple thrusters or thrusters with vectoring capabilities. In case of a low thrust interplanetary
transfer, where a thruster might be firing almost constantly, this is considered to be the most effective solu-
tion, as it does not require any additional components.

The magnetorquer system remains useful for momentum dumping in Earth, furthermore it is an inex-
pensive, simple and well tested system. It is proposed that any ADC system will include a magnetorquer
for momentum dumping in planetary orbits. The other parts of the ADC systems, such as star trackers and
reaction wheels, are considered to work in interplanetary space.

6.2.5. Solar Array Configuration
The low trust system is expected to draw a considerable amount of power. There are some options in advance
for the configuration of the solar array.

Firstly, a body mounted array is the simplest and lightest solution, and commonly used in cubesats. How-
ever, it is not expected to yield sufficient power.

Secondly, a body folded array uses a single deployable hinge for each panel. Such a system remains sim-
ple, and has been flown on several cubesats such as the Delfi C3. A single deployable solar panel can double
the total solar area.

Lastly, more complex deployable systems increase the solar area further, at the cost of higher weight and
complexity. Such systems are customly developed as in Mani et al. [36], allowing the solar array to be as large
as required. However, for our purposes, it is necessary to constrain the solar array to a cubesat form factor, as
well as to consider COTS options. Therefore, the input power becomes a constraining factor.

For this research, a singly deployable solar array is considered as an initial guess. While a solar thermal
thruster is not considered any longer, the configuration of a solar concentrator array would be of interest for
any future missions with solar thermal propulsion.

6.2.6. Initial Budget

An initial design guess is made. This is not meant to be a realistic or even feasible budget for the space-
craft; instead, the initial guess is needed to find an initial interplanetary trajectory, which in turn provides an
estimate for the propulsion requirements, which in turn drives the design.

The initial design guess is as in Figure 6.1, a 16 unit cubesat such that each component is assigned one or
more units with the maximum allowed unit mass of 1.33 kg. Note that this is not a requirement, but an initial
guess as well: while the mass of a cubesat mass can exceed this value, and sometimes does, this is considered
areasonable starting point for the mass of individual components which fit in one unit.

The guess includes four cubesat units per propellant type. Furthermore, the solar array is considered to
have a single body body mounted panel, three simply deployable panels, and one doubly deployable panel,
such that the solar area is maximized while maintaining simplicity. Lastly, two thrusters are included for each
level of thrust, such that the thrust vector leads through the center of the spacecraft.

The solar panels were configured such that all faces contain a panel, which can fold out with simple hing-
ing. This yields 40 face units of solar panel. The communication system (COM) is at the solar face, i.e. towards
the approximate direction of Earth from Mars, payload is shielded from the sun.

This design leads to the budget estimate as listed in Table 6.3. Power is currently only considered for elec-
tric thrust and spacecraft: this is not at all accurate, but it will change as iterations occur and better estimates
become available per component. In this figure and table, acronyms are used to refer to the components as
listed in Table 6.4.

As such THR and RAD are initially ignored. Additionally, as there are two types of propellant, it is conve-
nient to use the designations M0, M1, and M2 instead of “wet mass” and “dry mass”. This is done as follows.
MO is the dry (not considering potential attitude thrusters) mass of the spacecraft, with electrical propellant
and chemical propellant depleted. This is the mass at the final orbit. M1 is the mass of the spacecraft with
chemical propellant depleted and a full electrical propellant tank. This is the mass at Earth escape. Lastly,

40

6. Resultant Design

Mass [kg] Volume [U] Power [W]
OBC 1.33 1 0
EPS 1.33 1 0
COM 1.33 1 0
ADC 2.66 2 0
SOL 1.60 - -74
ETH 2.66 2 50
CTH 2.66 2 0
EPR 1.33 2 -
CPR 5.32 4 -
STR 2.25 - -
TOT 25.13 16 -24

Table 6.3: Initial budget.

OBC
EPS
SOL
COM
ADC
STR
THR
RAD
ETH
CTH
EPR
CPR

On board computer, the processing unit that handles commands, data storage and data transfer.
Electrical power system, the unit that regulates storage and distribution of power.

Overarching designation for the solar arrays.

The communication system.

Attitude determination and control, considered as a singular unit.

Overarching designation for the structural components.

Overarching designation for the thermal control system.

Overarching designation for radiation shielding.

The electric thruster system.

The chemical thruster system.

Overarching designation for the storage and distribution of propellant for the electric thruster.
Overarching designation for the storage and distribution of propellant for the chemical thruster.

Table 6.4: Overview of acronyms used.

M2 is the wet mass of the spacecraft. This is the mass after launch. To summarize: MO + Mgpg = M1, and M1
+ MCPR =M2.

6.3. Initial Feasible Trajectory
Using the presented initial guess, iterations are done as described. The initial goal is to achieve a successful
trajectory calculation. As noted, finding a feasible trajectory at all is a difficult numerical problem by itself,
especially when presented with a bad initial guess. However, once a trajectory is found, it can be used as start-
ing point for following iterations; if these iterations differ only slightly, the likeliness of successfully finding a
trajectory rises drastically, and the time it takes to return a result reduces as well.

The results of these first steps are listed in Table 6.5. Note that a failure indicates that the trajectory cal-
culation simply fails to generate a feasible solution. How this is mitigated is listed in the table as well, done
either by changing the problem object, or by changing the algorithm settings.

COM | ADC ADC | PAY
EPS | CPR CPR | OBC
EPT | CPR CPR | EPR
ETH | CTH CTH | ETH

Front Back

Figure 6.1: Layout of the initial guess, solar array in blue.

6.4. Initial Feasible Combined Design 41

Iteration | Change Result Notes
1 Failure Failure means failure to converge.
2 | Change to slsqp Failure = Different algorithms have differ-

ent convergence properties.
3 | Change to ipopt, increase num- Failure = Higher number of segments more

ber of segments likely to converge.

4 | Change to slsqgp Failure

5 | Change to ipopt, set initial guess Failure = Check to eliminate singularities.
to very high mass

6 | Change to slsqp, reset mass Failure

7 | Change to ipopt with MBH Failure = Use monotonic basin hopping to

find other local optima, new start-
ing point found.
8 | Change to slsqp, new starting Failure Low constraint violations, increas-

point ing tolerance may resolve.
9 | Increase tolerance Success Low accuracy: trajectory inconsis-
tent by visual inspection.
10 | Reduce tolerance Success Low accuracy: trajectory inconsis-

tent by visual inspection.

11 | Reduce tolerance Success

Table 6.5: Iterations up to the first successful trajectory calculation.

It is necessary to quantify the “low constraint violations” and “low accuracy”. During iteration, it may
become apparent that the constrained optimization problem, to which pykep reduces the transfer problem,
just barely fails to converge. In other words, the “constraint violations” are logged in an order of magnitude
less than the expected accuracy of the problem setup. This accuracy is partially dependent on the number of
discretization nodes, and thus it is allowed to increase the margin for violating constraints such that the solu-
tion is still accepted. This is preferred to raising the number of nodes to a value higher than a reasonable value
for the accuracy of the study, e.g. it makes little sense to use thousands of nodes and increase computation
time drastically, while the mass of the spacecraft is uncertain in the order of 100 g.

The reason that constraint violations occur at all, is that the low thrust transfer problem is “infeasible al-
most everywhere” in the mathematical sense, meaning that the solutions are single points rather than ranges
[21]. As such, a numerical scheme will never reach such a point exactly, so a constraint violation margin is
necessary to reach any solution at all.

However, when the margin is set too high, the resultant trajectory will be inconsistent, which is clearly
visible as ‘jumps’ between affected nodes. As such, it is necessary to find a margin which leads both to a
feasible solution which is also consistent. This is done in the first few iterations: once this margin is found, it
remains unchanged until the accuracy of the study increases and it becomes fruitful to increase the number
of discretization nodes as well.

6.4. Initial Feasible Combined Design

With a feasible trajectory option, the second goal is to achieve a feasible system design, using parametric
values for the components (i.e. not existing components). The remaining iterations optimize the trajectory
and design parameters, until the difference is mass budgets is less than the considered accuracy, in this case
in the order of grams.

In this stage, it has not yet been necessary to make any design choices: it has been sufficient to increase or
decrease propellant masses and solar array output where necessary, iterating for the changes in mass overall.

This yields the first feasible combination of trajectory and system design, shown as iteration 17 in Ta-
ble 6.6.

6.5. Initial Feasible COTS Design

The first feasible combined design is continued to be iterated using existing components. This is done by re-
placing all components by the existing components with the most similar characteristics, leaving as variables

42 6. Resultant Design

Iteration | Thrust [N] Isp [s] M1 [kg] MO [kg] Time [days]
11 0.2 3000 20 16.5 1310
12 0.001 3000 20 16.5 1825
13 0.002 1500 20 13.6 1693
14 0.002 1500 20 13.6 1013
15 0.0014 3050 20 16.5 1825
16 0.0014 3050 14.4 11.9 1610
17 0.0014 3050 14.1 11.7 1166

Table 6.6: Set of iterations from the first successful trajectory onward.

Component(s) mlkgl VI[U] PI[W] FN] Iy [s]
OBC | Hyperion CP400.85 0.1 -
EPS ISISiEPS A 0.2 1
COM | Hyperion CubeCat 1.4 1 15
ADC | 2xHyperion iADCS400 34 2 12
SOL | 4x2UISIS + 8 x EXA DSA 2.7 - -64
STR ISIS 16 U cubesat structure 2.3 - -
ETH JPL MiXi 0.2 1 50 | 0.0014 3050
CTH | Aerojet Rocketdyne MPS130 1.3 1 - 1 240
MO 11.6 6
EPR Custom tank 2.5 2
M1 14.1 8
CPR | Custom tank 1.1 1
M2 15.2 9

Table 6.7: Overview of first feasible iteration using existing components.

the propellant masses and their respective structural masses, and continuing iterations until the require-
ments are again met.

It must be noted that finding similar components is somewhat arbitrary, as a decision must be made
between, for example, a more similar dry mass or a more similar thrust value. However, the setup of this
procedure allows for switching out components between iterations, and thus the choice for a ‘wrong’ com-
ponent, i.e. one that ultimately prevents the design budgets to close, can simply be undone. Additionally, it
must be noted that an initial guess, as made in subsection 6.2.6, could also be done with COTS components
immediately. The procedure as described in this report allows for a fast design setup if it is known beforehand
that COTS components are preferred.

Replacement with COTS components and iteration until the requirements are met, results in the design
as shown in Table 6.7, with the trajectory as shown in Figure 6.2. The transfer window is from May 2029 to Jan-
uary 2034, with a transfer time of approximately 1700 days. In this figure, the grey inner circle represents the
orbit of Earth, the outer circle represents the orbit of Mars. Red parts of the orbit indicate powered segments,
while blue parts indicate ballistic coasting. Note that, in accordance with the assumption made previously to
use pykep, all power segments are low thrust, because high thrust was used exclusively to escape Earth.

Figure 6.2: Interplanetary trajectory of the first feasible iteration using existing components, with axes in AU.

6.6. Current Design 43

Component Margin [%] Mass [kg] With margin [kg] Volume [U]
PAY Placeholder 1.000 1.000
OBC | Hyperion CP400.85 5 0.007 0.007 0.100
EPS ISISiEPS A 5 0.184 0.193 0.265
COM | Hyperion CubeCat 5 1.330 1.397 0.960
ADC | Hyperion iADCS400 5 1.700 1.785 0.673
SOL | 10xEXADSA +2xISIS 1U 5 0.910 0.956
STR | ISIS 12U CubeSat Structure 5 1.500 1.575
ETH | 2xModified Enpulsion Nano 10 1.360 1.496 1.650
CTH | 2xModified Hyperion PM200 10 2.200 2.420 1.954
MO 5 10.829 11.370
EPR | In Modified Enpulsion Nano 20 1.830 2.196 3.991
M1 13.200 13.566
CPR | In Modified Hyperion PM200 20 0.989 1.186 0.914
M2 14.752 11.506

Table 6.8: Current design budgets.

For the sake of meeting the requirements, this design is sufficient. However, iterating further can lead to a
more optimal solutions, with a lower mass or different cost metric. In this case, it is clear that the design is not
optimal: only 9 of the available 16 cubesat units of volume are occupied. Notable as well is that approximately
half of the trajectory is coasting, which means transfer time may be improved. As such, the design is iterated
further to optimize volume usage.

6.6. Current Design

Using the previous iteration, a design option switch is made by replacing the 16 U cubesat structure to a 9
U cubesat structure. From this, the iteration procedure begins anew. Meanwhile, the the level of accuracy is
increased step by step.

After a number of iterations, the design converges to a volume budget that consistently requires more
than 9 units. As such, a switch is made again, this time to a 12 U cubesat structure. Iterating this further leads
to the final design iteration for this thesis.

Thisiteration is presented in Figure 6.3. Note that here the component mass accuracy in grams is required,
due to difference in order of mass between components. However, for miniature COTS products at high TRL,
mass accuracy is considered relatively high. The budgets are considered using ESA’s margin guidelines [59].
As applicable: 5% on mass and power budgets for COTS components; 10% on mass and power budget for
modified COTS components; 5% on total dry mass for harness. Regarding propellant and AV, ESA recom-
mends stacking margins of 5% for calculation inaccuracies, additional 5% for electric trajectory inaccuracies,
and 2% for propellant residuals; this is instead replaced by an overestimate 20% margin on propellant. Note
also that a power budget is now given per spacecraft operating mode, and listed in subsection 6.6.10.

The system design agrees with the trajectory design as presented in Figure 6.3. Again, the grey inner
circle represents the orbit of Earth, the outer circle represents Mars. Red parts of the orbit indicate powered
segments, blue parts indicate ballistic coasting. In this iteration, the transfer time is the limiting requirement:
the transfer time is ®1810 days, almost exactly 5 years, and almost all of the trajectory is with low thrust at
maximum throttle. The launch window starts in December 2026, and ends in November 2031.

The design is further presented on separate pages. Figure 6.4 shows the external view of the satellite:
two sides are covered with deployable solar panels, all other sides are either shielded with the aluminium
panels included with the cubesat structure, or shield panels with cutouts for the ADC, COM, and payload.
Deployment of the solar panels is more explicitly shown in Figure 6.10. Figure 6.5 shows the design without
solar panels, shield panels, and internal structure. Components are presented as a simplified dimensions,
because a CAD model is not freely available in most cases.

6.6.1. On Board Computer

The Hyperion CP400.85 is considered as the OBC, as mass, power and volume requirements are sufficient;
with the lowest mass of the components under consideration. Volume is small enough to consider the CP400.85
with the EPS to occupy one cubesat unit, although in practice it is less. Storage and data handling perfor-

44 6. Resultant Design

e
-153 9

-0.5 -
0o -1.0

0.5 -

10 .5 -15

Figure 6.3: Interplanetary trajectory of the current design, axes in AU.

Hyperion CP400.85

Mass [g] 7
Stack height [mm] 10
Idle power [W] 0.55
Peak power [W] 1
Radiation tolerance [krad] 25

Table 6.9: Some characteristics of the Hyperion CP400.85 OBC.

mance is more than sufficient, as this is limited by the communication system. Some characteristics and
illustrations are presented in Table 6.9 and Figure 6.6 [65].

6.6.2. Electric Power System

For the EPS, the ISIS iEPS A component is considered as the lightest available system. Power storage is not a
constraining factor: in Earth eclipse, power draw from the chemical thruster is sufficiently low. With the EPS’s
22.5 Wh storage, the burn time is limited by heat dissipation rather than power storage. In interplanetary
space and around Mars, eclipses do not have a significant effect on power availability. Some characteristics
and illustrations are presented in Table 6.10 and Figure 6.7 [56].

6.6.3. Communication

While the design of the communication system is out of the scope of this report, two remarks can be made re-
garding the inclusions of the Hyperion CubeCat. Firstly, its performance and operating characteristics (=1500
nm wavelength and =15 W power draw) are similar to an ongoing NASA study for deep space optical trans-
missions, which can be received on Earth with a 5 m diameter telescope [60]. Alternatively, the CubeCat is
designed for inter satellite communication, so a relay system around Mars can also be used. In both cases,
the pointing accuracy is the limiting factor. Some characteristics and illustrations are presented in Table 6.11
and Figure 6.8 [63].

6.6.4. Attitude Determination and Control

The pointing accuracy of the Hyperion iADCS400 is less than 30 arcseconds for a 12 U cubesat, which meets
the 1800 arcsecond pointing requirement of the CubeCat. This means that at least, satellite to satellite com-
munication is possible in planetary orbit; direct communication to Earth is subject to more research. Addi-
tionally, while it is beyond the scope of this research, it is considered safe to assume that the accuracy of the

ISISiEPS A

Mass [g] 189
Stack height [mm] 27
Storage [Wh] 22.5
Throughput power [W] | 4x20
Number of MPPTs 6

Table 6.10: Some characteristics of the ISIS iEPS A.

4 x EXA DSA SOL at flat deployment

6 x EXA DSA SOL at 45 deg deployment

\
\
\

46

6. Resultant Design

Scale: 1

\

5

Isometric view front

\2 X Modified Hyp PM200 CTH/CPR

Hyp CP400.85 OBC

T~
ISIS iEPS A,////’//i“\\\ l\\EQz/
QU [Jo
1U_PAY g ~—"

Scale:

Isometric view bottom
Scale: 1:5

Figure 6.5: Internal view of the component configuration.

g

Isometric view back
:5

Hyp iADCS400

"._Hyp CubeCat COM

1

6.6. Current Design

Figure 6.6: Illustration of the Hyperion CP400.85 OBC, courtesy of Hyperion Technologies.

Figure 6.7: Illustration of the ISIS iEPS A, courtesy of ISISPACE.

Hyperion CubeCat

Mass [g] 1330
Stack height [mm] 96
Idle power [W] 1
Peak power [W] 15
Pointing accuracy [mrad] 8.7

Table 6.11: Some characteristics of the Hyperion CubeCat.

Figure 6.8: Illustration of the Hyperion CubeCat, courtesy of Hyperion Technologies.

48 6. Resultant Design

Hyperion iADCS400

Mass [g] 1700
Stack height [mm] 68
Idle power [W] 1
Peak power (saturated) [W] 50
Determination accuracy [mrad] 0.15
Control accuracy [mrad] << 18

Table 6.12: Some characteristics of the Hyperion iADCS400.

Figure 6.9: Illustration of the Hyperion iADCS400, courtesy of Hyperion Technologies.

iADCS400 star tracker and solar trackers, in combination with an optical payload, is sufficient for celestial
navigation [10], with an expected 3¢ of 1000 km [38].

Momentum dumping is provided internally using magnetorquers. When magnetorquers are ineffective,
such as in interplanetary space, momentum dumping is instead provided by differential thrust of the low
thrust systems. When this is insufficient, the high thrust systems can assist in cold gas mode, using any
leftover propellant, as well as their vectoring capabilities.

Some characteristics and illustrations are presented in Table 6.12 and Figure 6.9 [62].

6.6.5. Solar Array

The EXA deployable solar array quadruples the potential solar surface, which is sufficient to run the electric
thruster at almost full capacity at Mars’ distance from the sun; taking into account its degradation lifetime of
5 years. Ten EXA units are used, of which six at a 45 degree deployment angle and 4 at flat deployment. Two
single unit ISIS solar panels are used to cover the remaining panels.

The ISIS panels each have a mass of 50 g and generate 2.3 W when exposed to direct sunlight incident
normally. The EXA solar arrays each have a mass of 135 g and generate 16.8 W when exposed to direct incident
sunlight normally. They are self deploying upon a pin signal. An illustration is presented in Figure 6.10. Note
that the largest version is used with three external panels, which fold in on the body in a zigzag shape [17].

6.6.6. Electric Thruster

Two Enpulsion Nano thrusters are selected, in order to both reduce travel time and align the thrust vector with
the center of mass. The Nano is an indium field emission thruster with a variable performance dependent on
voltage and power setting. Extrema per thruster are at either 0.3 mN and 4500 s, or at 0.35 mN and 3500 s.
The former is selected in to reduce propellant mass. As the Nano contains its own propellant, it is proposed

Figure 6.10: Illustration of various sizes of the EXA deployable solar array, courtesy of the Ecuadorian Space Agency.

6.6. Current Design 49

Figure 6.12: Illustration of the Hyperion PM200, courtesy of Hyperion Technologies.

to modify it to contain more propellant, rather than to design an separate tank system. The Nano has been
demonstrated in orbit, and has no limit on its burn time. An illustration is presented in Figure 6.11, while four
units are pictured, two are used in total in the proposed design [66].

6.6.7. Chemical Thruster

Similarly, two Hyperion PM200 nitrous oxide and propene liquid bipropellant thrusters are selected, modi-
fied to contain additional propellant. This component has a thrust of 0.5 N and an I, of 285 s. It needs to
cooldown for a second every 11 seconds, which results in an average total thrust of 0.9 N. This can be in-
creased by a heatsink, for example using the larger tank to take up heat, although the difference may not be
significant enough to warrant the costs for this. By using high thrust calculations, it requires 5 passes though
pericenter to reach escape velocity, which equals 9 passes through the van Allen belts. This uses a burn time
(including cooldown) of 600 s and neglects gravity losses in favour of the 20% propellant margin [36]. An
illustration is presented in Figure 6.12 [64].

6.6.8. Radiation

Lastly, all components are rated for the radiation environment in LEO. More specifically, the ADC is rated for
a total dose of 45 krad and the OBC is rated for a total dose of 25 krad. The solar panels are rated for at least 4
years in LEO. For all components, information is lacking on their performance and reliability over time with
respect to the total ionizing dose. This makes it difficult to assess the effect of the radiation outside Earth’s
magnetosphere. However, it is considered that most of the total radiation dose for outbound spacecraft is
acquired during passage of the van Allen belts. The result for the high thrust Earth escape trajectory of 9 van
Allen belt passes is therefore considered to be sufficiently low, compared to e.g. Mani et al. [38], such that the
components are not expected to degrade much faster than rated for.

6.6.9. Interface Layout
The interface layout is illustrated in Figure 6.13.

By using the CubeSat standard, the components are connected simply through the cubesat bus. The EPS
is powered by the solar panels directly. The iEPS module support six independent power inputs through

50 6. Resultant Design

Deployment
switch
Activation
h 4
10 x SOL via
> EPS =
MFPT FPower in via
MPPT

g 0OBC — Master

> COM —
Power 12C via
CubeSat > ADC — CUEL?SSaI

bus

= PAY 1

> 2xETH —

—» 2xCTH —

Figure 6.13: Interface layout of the components.

maximum power point trackers (MPPTs); this is sufficient, as 6 different input voltages are expected from the
solar array configuration. The EPS distributes the power to at least the OBC, and to other components when
commanded by the OBC.

Data handling happens simply though the data bus: all components support the I2C communication
standard with the OBC as master. Since all components are self contained, and in the case of the thruster
modules self pressurized, there is no need for a separate layout for pressure tanks, valves, etc.

6.6.10. Spacecraft Modes

For the power budget, it is necessary to define a number of spacecraft modes, which manages the level of
activity and power draw of each component. In case the electric thruster is active, it receives all leftover
power it can draw: this is often its optimal power draw of 40 W, but at a Mars distance from the sun, this can
be 37 Wwhen many other components are active. Note that vertically, all components are connected through
the cubesat bus: this is standardized, which is one of the advantages of the CubeSat standard.

A short description of each mode is presented in Table 6.13. A schematic for mode changes follows in
Figure 6.14. All modes have a link to safe mode if: the current mode completes its objective, a critical error
occurs, the OBC reboots, the battery charge is low, or momentum storage is full.

Power usage is estimated per mode. Based on the respective datasheets of the current design, it is consid-
ered which components are enable and thus draw power, and which components are active and thus draw
peak power instead of idle power. For modes where peak power is used, it is considered that this peak power
is used throughout the entire duration of this mode. While this is an overestimate of the power draw, the solar
array area is large enough to meet even this overestimate with a significant margin: the power needed to drive
the electric thrusters is much larger than the other components. In fact, the battery receives a net charge in
almost all cases. Even right after deployment when the EXA solar panels are still stowed, the spacecraft slowly
charges during countdown mode. In the worst case scenario, namely firing the chemical thrusters in eclipse,
the spacecraft should be able to run at peak power for 30 minutes before the batteries are empty. This will
never happen, because the chemical thrusters do not need to fire in eclipse, they, the both the duration of an
eclipse and of a burn are less than 30 minutes.

6.7. Design Recommendations 51

Deployment switch
—— | STARTUP

Timing or
reboot or Ml whi fring.
battery low CGHEMIGAL ELEGTRIC 9 » DUAL
¥ THRUST THRUST 7
COMMUNI | SAFE t 1
CATION [* Timing or Timing v
downlink
buffer PAYLOAD
full Momentum
storage full
A 4
MAGNETIC > COLD GAS
DUMP Dump rate DUMP
insufficient

Figure 6.14: State machine for the proposed spacecraft modes.

Thus, it can be concluded that the budget closes for mass, volume and power use.

6.6.11. Alternatives

Whether alternatives to the listed components can be proposed depends on the component itself and on
the results of further iterations with alternative components. For the OBC, it is very likely that many other
components would work: the requirement for data throughput and storage depends on the payload and is
limited by downlink performance instead, but alternatives have been found to be heavier. For the EPS, power
storage is not critical, but other components with a similar throughput, such as the Endurosat EPS have been
found to be heavier, which affects the mass budget through iterations. No other component has been found
that could replace the CubeCat as COM module, although the design of the communication system beyond
the link budget is recommended for further research. Simple patch antennas could work, but exclusively with
a Mars relay in place, which significantly increases mission complexity. Similarly, the ADC system was found
to be the most compact that meets pointing requirements for a cubesat of this size, alternatives such as the
CubeSpace ADCS could work through further iterations. Lastly, many other solar array configurations could
work, although the current solution maximizes the area for the number of MPPTs available.

6.7. Design Recommendations

There are a number of design recommendations to ensure this design can be completed. Each of these has
been discussed before.

Firstly, it is necessary to confirm that the proposed modifications to the thruster tanks can be realised
without needing to adapt the rest of the design further. As of now, it is assumed that enlargement of the tanks
in the axial direction is not constrained by the pressure in the tanks, as such the wall thickness is not expected
to increase significantly.

Secondly, it must be confirmed that the individual components can survive at least 5 years of radiative
doses in interplanetary space and around Mars. While each component is listed to last more than 5 years of
LEO radiation, it is difficult to estimate lifetimes for an interplanetary transit, considering the lack of docu-
mentation on ionizing doses and the availability of radiative models for the specified trajectory. In all, the
aspects of spacecraft design beyond the scope of this report, such as thermal control, data handling, and
communication, must be investigated in depth.

Lastly, it is recommended to research the options for a Venus gravity assist to Mars. For the current case,
this did not seem promising, but this may be different for different initial guesses for design and trajectory.

6.8. Verification and Validation

In systems design, verification and validation are important parts of the design process, for both the driving
factors for the design as well as the design itself.

52 6. Resultant Design

Startup Mode: activated by the deployment switch, the EPS is active by hardware design as soon as it receives
solar power. It activates the OBC merely to countdown until deployment, as required by cubesat deployment
guidelines.

Active: EPS, OBC (countdown).

Estimated power use: 0.5 W.

Safe Mode: activated from startup mode if the countdown completes, or if the OBC reboots, or if the battery
is low.

Safe mode activates from other modes if the current mode completes its objective, a critical error occurs, OBC
reboots, battery is low, or momentum storage is full while the current mode cannot handle this.

Solar panels deploy, if not already deployed. ADCS activates, solar panels are pointed at the Sun.

Battery

Active: EPS, OBC, ADC (point at Sun), SOL (deploy), COM (passive).

Estimated power use: 10 W peak, 3 W nominal.

Payload Mode: activates according to timing.
Active: EPS, OBC, ADC (point at target), PAY (capture).
Estimated power: 8 W peak.

Communication Mode (Downlink): activates according to timing, downlink buffer state.
Active: EPS, OBC, ADC (point at Earth or relay), COM (active).
Estimated power: 23 W peak.

Magnetic Dump Mode: Activates if momentum storage is full.
Active: EPS, OBC, ADC (magnetorquers on).
Estimated power: 7 W peak.

Cold Gas Momentum Dump Mode: Activates if momentum storage is full and magnetorquer dump rate is
insufficient.

Active: EPS, OBC, ADC (magnetorquers on), CTH (cold gas, vectoring).

Estimated power: 40 W peak.

Chemical Thrust Mode: Activates according to timing.
Active: EPS, OBC, ADC (point prograde), CTH (liquid bipropellant, vectoring).
Estimated power: 40 W peak, 32 W nominal.

Electric Thrust Mode: Activates according to timing.
Active: EPS, OBC, ADC (point prograde), ETH (max power).
ETH power available at Mars distance from Sun: 72 W at peak draw, 80 W at nominal draw (ideal is 80 W).

Dual Thrust Mode: Activated from Electric Thrust Mode if momentum storage is full and magnetorquer and
differential thrust dump rate is insufficient.

Active: EPS, OBC, ADC (point prograde), ETH (max power), CTH (cold gas, vectoring).

ETH power available at Mars distance from Sun: 46 W at peak draw, 74 W at nominal draw (ideal is 80 W).

Table 6.13: Overview of modes.

6.8. Verification and Validation 53

6.8.1. Requirement Validation
The few top level requirements have been validated as both being in the correct form, as well as following
the objective of this thesis. As such the requirements are well defined and supported by rationales linked to
similar feasibility studies.

As for the internal requirements for each component specifically, this could not be validated per se. How-
ever, each internal requirement was linked to a specific numeric value. For a final ‘converged’ iteration, all
these requirements are met, so the design is internally consistent.

6.8.2. System Verification
The design meets the requirements set previously. A list is given to denote requirement compliance.

* REQ-1: The spacecraft shall be launched as a piggyback option or secondary payload.

Met: subrequirements met.

— REQ-1.1: The spacecraft shall adhere to the CubeSat standard.
Met: design follows the 12U CubeSat standard.

— REQ-1.2: The spacecraft shall have a volume of at most 16 U.
Met: design follows the 12U CubeSat standard.

— REQ-1.3: The spacecraft shall have a mass of at most 21.3 kg
Met: design has a wet mass (M2) of 14.8 kg.

— REQ-1.4: The spacecraft shall be launched into an initial orbit for which piggyback options exist.
Met: piggyback launches to GTO orbits are commercially available.

¢ REQ-2: The spacecraft shall allow a payload of 1 U volume
Met: design starting point.

* REQ-3: The spacecraft shall allow a payload of 1.3 kg
Met: design starting point.

e REQ-4: The spacecraft shall allow a payload to draw 1 W of operating power when not performing a
maneuver

Met: design starting point. Payload may draw 1 W at all times.

¢ REQ-5: The spacecraft shall reach a final orbit around Mars.

Met based on estimates, needs additional research: AV budget closes for a transfer orbit from GTO to
a Mars ballistic capture. AV budget for momentum dumping closes based on estimates; needs further
investigation. Radiative tolerance is considered sufficient based on estimates; needs more data and
testing.

¢ REQ-6: The spacecraft shall reach its final orbit in at most 5 years.

Met: total transfer time is 1810 days, slightly less than 5 years.

¢ REQ-7: The spacecraft shall be launched in the year 2030 at the latest.

Met: the launch window starts in December 2026.

¢ REQ-8: The spacecraft shall not use hydrazine thrusters.

Met: chemical thruster uses nitrous oxide and propane, electrical thruster uses indium.

Some additional notes must be made to the expected compliance with REQ-5: the ability to reach a Mars
orbit. While the AV budget for the transfer has been an integral part of the optimization procedure, the AV
budget for momentum dumping has been considered only from estimates, although from historical trends it
should fall within the AV margins; the same holds for radiation tolerance of the components. As such these
values were held fixed during optimization.

54 6. Resultant Design

The calculated trajectory passes pykep’s internal verification assertions, and aligns with transfer times
and AV requirements as presented in, for example, Mani et al. [36]. The design itself is difficult to verify fur-
ther, as no similar cubesat mission could be found, which is the case especially regarding propulsion systems.
The overall layout of the design is very similar to other cubesat layouts, but this is due to the standardized na-
ture of the cubesat format.

As mentioned before, the addition of a radiation model to the trajectory optimization software would
require additional data on the total ionizing dose (TID) in such trajectories for the selected components. Sec-
ondly, a better optimization of the AV budget for momentum dumping requires a per iteration calculation of
the moments of inertia, for example in an automated CAD environment; and a model disturbances depen-
dent on spacecraft shape and trajectory. This might not have significant advantages over an approach using
estimates and margins.

Similarly, the development of navigation software dependent on a star tracker, solar trackers and poten-
tially optical payloads is left as future work.

For further verification, it is recommended that each component is subjected to further testing, specifi-
cally regarding radiative and thermal tolerance beyond Earth orbits. This holds for the integrated model as
well.

6.8.3. System Validation

For the spacecraft itself, the development of an actual cubesat mission to Mars would provide final validation
of the design presented in the latter part of this thesis. This would show that a payload can be delivered to
Mars using a piggyback launched cubesat. For the sake of this thesis, analyses on e.g. stakeholders and risk
were left aside; these should be considered for a validation mission.

For the development of a framework to design dual thrust spacecraft and trajectories, the presented de-
sign gives an initial indication that the framework is useful and can lead to optimized results. Validation of
this framework first requires further completion: the inclusion of more variables in each iteration, further
automation, and finally further use in the design of different missions.

6.8.4. Conclusions

The design presented in this chapter solves the design problem as stated in chapter 3, and thus answers
the first research question on the feasibility of a standalone cubesat mission to Mars. While an automated
optimization method was not completed for this thesis, the manual strategy has proven sufficient. During
the design process, it has become apparent that the feasibility of interplanetary cubesat missions does is
indeed very dependent on the optimality of the trajectory and the systems design.

While much additional work is recommended before the design can be finalized, the presented design is
seen as a good starting point for further work. Additionally, the design is complete in terms of components
and integration, such that integration tests could conceivably be performed next.

Lastly, the design shows the convenience that results from the use of COTS systems, which significantly
reduces the time needed per iteration.

Conclusion and Recommendations

It can be concluded that, while an automated approach based on optimal control has not been successful, a
manual approach based on the same concepts has resulted in a feasible design.
It is useful to return to the research questions as listed in the introduction.

What is a useful framework for optimizing low thrust trajectories?

From the literature study, it is concluded that there are, in general, four optimization strategies for low
thrust trajectories. Firstly, Edelbaum’s approximation is a simple solution for a simplified use case, but this
use case is common for Earth orbiting missions. It is useful for fast calculations in use cases where its as-
sumptions hold. Secondly, the indirect and direct methods do not rely on the same assumptions, and are
therefore used for the optimization of general trajectories. Both transform the optimal control problem into
a boundary value problem, but in different ways: the direct method discretizes a low thrust trajectory as
many high thrust ones, the direct method finds an analytic expression for the optimal control at any point in
time. Regardless, both must be numerically solved as a constrained optimization problem, and therefore dis-
cretized. Lastly, the novel evolutionary neurocontrol method is considered a promising alternative. It works
by linking control variables with the spacecraft state through a neural network, which is optimized though an
evolutionary scheme. In general, the direct and indirect methods are popular subjects of research, and both
are used heavily in industry to design mission trajectories.

What is a useful framework for optimizing in tandem the trajectory and systems design of a dual
thrust spacecraft?

The indirect method is found to be solvable with static control variables as the dynamic control variables;
these can be used to encode system parameters, making it the first choice for this thesis. For a numerical im-
plementation using a BVP solver, the general equations for a dual thrust spacecraft are derived. Additionally,
this provides an understanding of the internal workings of general OCP solvers and higher level trajectory op-
timization programs. Further derivations are automated in sympy, and the resultant system is implemented
using a BVP solver in scipy. Alternative implementations are considered as well. Firstly, general OCP solver
gekko is used using the same equations, internally performing derivations and optimization, and theoreti-
cally equivalent to the scipy implementation. Secondly, it is proposed to use pykep’s low thrust capabilities
in combination with manual high thrust and system design calculations. Lastly, it is proposed to implement
a custom problem object in pykep, with the same high thrust and system design capabilities. The latter two
options are considered most promising.

Which implementation is useful for combined optimization of a dual thrust system?

Several issues are encountered when implementing the indirect method in scipy. Most importantly, it
has not been possible to get the system to converge. The initial guess of the states can be implemented using
any coordinate system, but different issues appear depending on the system used. For the costates, however,
strategies to determine an consistent initial guess rely on an iterative approach. For each change in spacecraft
properties, this guess is invalid and must be recalculated. This means that an integrated optimization method
as proposed has no benefits over a nested optimization scheme using existing means.

55

56 7. Conclusion and Recommendations

The lack of a consistent method to find a useful initial guess is also apparent in the implementation using
gekko. In a similar fashion, it has not been possible to get the system to converge. It is assumed that this is
due to the same issues; the black box nature of OCP solvers makes it easier to implement, but more difficult
to investigate issues.

Lastly, manual use of pykep’s existing functionality is without issues, but requires some assumptions in
the use case. Most importantly, it is necessary to assume that all low thrust propellant is used first, and the
high thrust system used only later. This is a reasonable assumption, but removes the possibility of investi-
gating intermittent or even dual usage. Implementing a custom problem object within pykep is expected to
remove the need for these assumptions, but will likely require a rewrite of pykep’s internal working, which
is beyond the scope of this thesis. As such, a manual implementation using existing pykep functionality is
considered the most useful for this report. For future studies, however, it remains useful to consider the ad-
ditional requirements as given below.

What is a feasible design for a standalone cubesat mission to Mars?

A possible design is generated using the selected implementation. Based on an arbitrary single unit pay-
load, the design is started from an initial guess, which is unusual in system design, and repeatedly iterated
together with its trajectory. From the first feasible COTS design, due to the overestimated volume budget, it is
decided to switch the cubesat structure, and iterate to convergence once more. The resultant design itself is
a 12 U cubesat with a wet mass under 15 kg, and a dry mass of 11.4 kg. The design consists of high TRL COTS
components, most of which are unmodified. For the COTS thruster components, only the propellant tank
size needs to be adjusted. In all, one side of the spacecraft contains deployable solar panels, while payload
and ADC ports are on the opposite side. The resultant trajectory includes a high thrust Earth escape from
GTO, with 9 passes through the Van Allen belts. This is followed by a low thrust orbit to Mars of slightly less
than 5 years, of which almost all is powered flight.

This concludes the research questions for this thesis. Additionally, recommendations have been given
throughout this report, and are summarised here. Firstly, it is recommended that further research is done to-
wards finding an integrated optimization procedure, as was attempted in this report. This may be a variation
on the approach presented here, or it can be based on the evolutionary model as discussed further. Sec-
ondly, it is recommended that the procedure used in the second part of this report is tested further in other
mission designs. Recommendations were given towards a higher level of automation, and the inclusion of
models such as a radiative model, such that more variables can be evaluated at each iteration. Thirdly, it is
recommended that the cubesat design presented in this report is developed further. This is said with regard to
further iterations of the design itself, and confirmation of estimations on radiation tolerance and momentum
dumping. Itis further recommended to increase the scope of the design, specifically towards thermal control,
communication, and trajectory options. Lastly, it is recommended that an independent interplanetary cube-
sat mission be undertaken by an academic institute, such as the TU Delft. While the costs of such a mission
would be above that of a LEO missions such as the Delfi family, it would not be several orders of magnitude
greater, considering the material costs and launch costs. Such a demonstration of cubesat technology would
likely yield great prestige to the institute that does so, and advance research and investment towards small
scale satellite missions.

Postface

While a preface is more common in these types of documents, it seems more logical to place a discussion at
the end of the report. This discussion relates to the personal aspects of the MSc thesis, and to personal views
on the quality of the work produced.

First and foremost, the entirety of the thesis work has been a learning experience unlike any previous
course work and project work, in the BSc track and the first year of the MSc track. Starting with the literature
study, the choice for a subject without any prior knowledge has led to a considerable difficulty throughout the
first six months of the project. However, it has been an enlightening process to gradually understand more
and more of optimal control theory and optimization techniques in general. This has resulted in a different
personal view on astrodynamics and on the nature of design problems in general. As control theory and
system design have been personal favourite parts of aerospace engineering, this has been a great opportunity
to combine them. It has also been a learning experience to work on this project individually, as individual
work is remarkably uncommon throughout the aerospace tracks, both in the BSc and the MSc. Specifically, it
has been difficult but insightful to learn to balance the reliability on oneself with the availability of others.

The inability to present a full fledged optimization system as intended has been experienced as a signif-
icant setback, and continues to leave doubts on the usefulness of this thesis and its contribution to further
studies. However, the presented spacecraft is the result of what has become a personal design philosophy,
and is presented with confidence that an institution such as the TU Delft could have an interplanetary mis-
sion for students to work on, if it is willing to make the investments.

Ir has become an additional personal goal to continue the work done for this thesis. It should be possible
to at least finish a low thrust trajectory optimizer, without any further features like dual thrust and systems
design, for personal use. Completing and maintaining a working system would be a valuable learning expe-
rience in addition to the attempts so far, and such a program may be useful for any future projects.

The use of fast generation and evaluation of solutions, which ended up being the core of this thesis, seems
like a useful design view for future projects as well. Especially the idea of using a neural network for optimiz-
ing control was an interesting introduction to artificial intelligence. Looking back, this path could have been
explored instead of the attempts presented in this report, but it cannot be said weather this would have been
more fruitful. Regardless, these ideas can be interesting to implement in any future coursework at the Control
& Simulation department.

Lastly, the design of low thrust trajectories remains an active field in research and industry. In fact, pykep
is currently in active development, and internship opportunities exist for work on these systems specifically.
Perhaps the experience gained in this thesis can be of use.

Iwould like to end this report by expressing my gratitude to the many people whose companionship, sup-
port, and love I have had the pleasure to receive. I wish to thank my parents and my brother for their support
not only throughout my time at university, but as long as I can remember. I wish to thank my good friend
with whom I started the BSc in 2015, adventured through the minor in 2017, and will soon finish the MSc
track. I wish to thank my friends whom I spent time with for giving me the opportunity to relax, and whom I
lived with for giving me a feeling of home, especially throughout the last few months of social isolation. I wish
to thank my supervisor, for his support and guidance for this thesis, not unlike during the Design Synthesis
Exercise two years ago; our correspondence was always fast, professional, and straight to the point, which I
very much appreciated. Lastly, I wish to thank the reader, whoever they may be. I hope there will be more
from me to read in the future.

Domas Syaifoel
Wassenaar, December 2020

57

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8

(91

(10]

(11]

(12]

(13]

(14]

[15]

Bibliography

Christina Aas, Barry TC Zandbergen, Rob] Hamann, and Eberhard KA Gill. Scales: A system level tool
for conceptual design of nano-and microsatellites. In Small Satellites for Earth Observation: 7th Inter-
national Symposium of the International Academy of Astronautics (IAA), 4-8 May 2009, Berlin, Germany,
2009.

Christina LO Aas, Barry TC Zandbergen, Rob] Hamann, and Eberhard KA Gill. Development of a system
level tool for conceptual design of small satellites. In Proceedings of the 7th Annual Conference on Systems
Engineering Research: CSER 2009, 20-23 April 2009, Loughborough University, UK. Research School of
Systems Engineering, Loughborough University, 2009.

Logan D. R. Beal, Daniel C. Hill, R. Abraham Martin, and John D. Hedengren. Gekko optimization
suite. Processes, 6(8), 2018. ISSN 2227-9717. doi: 10.3390/pr6080106. URL http://www.mdpi.com/
2227-9717/6/8/106.

David A Bearden. Small-satellite costs. Crosslink, 2(1):32—44, 2001.

Régis Bertrand and Richard Epenoy. New smoothing techniques for solving bang-bang optimal control
problems—numerical results and statistical interpretation. Optimal Control Applications and Methods,
23(4):171-197, 2002.

John T Betts. Survey of numerical methods for trajectory optimization. Journal of guidance, control, and
dynamics, 21(2):193-207, 1998.

Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. Routledge, 2018.

Lorenzo Casalino. Approximate optimization of low-thrust transfers between low-eccentricity close or-
bits. Journal of Guidance, Control, and Dynamics, 37(3):1003-1008, 2014.

Lorenzo Casalino and Guido Colasurdo. Improved edelbaum’s approach to optimize low
earth/geostationary orbits low-thrust transfers. Journal of guidance, control, and dynamics, 30(5):1504—
1511, 2007.

Stefano Casini, Iosto Fodde, Steven Engelen, Bert Monna, Angelo Cervone, and Eberhard Gill. Towards
the use of commercial-off-the-shelf small-satellite components for deep-space cubesats: a feasibility
and performance analysis. 2020.

Andrea Cassioli, Dario Izzo, David Di Lorenzo, Marco Locatelli, and Fabio Schoen. Global optimization
approaches for optimal trajectory planning. In Modeling and optimization in space engineering, pages
111-140. Springer, 2012.

Pascal Chabert, J Arancibia Monreal, Jérome Bredin, Lara Popelier, and Ane Aanesland. Global model
of a gridded-ion thruster powered by a radiofrequency inductive coil. Physics of Plasmas, 19(7):073512,
2012.

Bernd Dachwald. Low-thrust trajectory optimization and interplanetary mission analysis using evolu-
tionary neurocontrol. Doctor Tesis-Universitét der Bundeswehr Miinchen Fakultdit fiir Luft-und Raum-
fahrttechnik Institut fiir Raumfahrttechnik, 2004.

Bernd Dachwald, Andreas Ohndorf, and Bong Wie. Solar sail trajectory optimization for the solar polar
imager (spi) mission. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, page 6177, 2006.

Laurence Charles Ward Dixon and MC Biggs. The advantages of adjoint-control transformations when
determining optimal trajectories by pontryagin’s maximum principle. The Aeronautical Journal, 76(735):
169-174, 1972.

59

http://www.mdpi.com/2227-9717/6/8/106
http://www.mdpi.com/2227-9717/6/8/106

60

Bibliography

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

[30]

(31]

(32]

[33]

(34]

(35]

[36]

Brian R Donius and Joshua L Rovey. Ionic liquid dual-mode spacecraft propulsion assessment. Journal
of Spacecraft and Rockets, 48(1):110-123, 2011.

Agencia Espacial Civil Ecuatoriana. Deployable solar array datasheet. Technical report, 2016.

Theodore N Edelbaum. Propulsion requirements for controllable satellites. Ars Journal, 31(8):1079-
1089, 1961.

Pascaline Grondein, Trevor Lafleur, Pascal Chabert, and Ane Aanesland. Global model of an iodine grid-
ded plasma thruster. Physics of Plasmas, 23(3):033514, 2016.

Darren L Hitt, Charles M Zakrzwski, and Michael A Thomas. Mems-based satellite micropropulsion via
catalyzed hydrogen peroxide decomposition. Smart Materials and Structures, 10(6):1163, 2001.

Dario Izzo, Will Binns, Alessio Mereta, Christopher Iliffe Sprague, dhennes, Bert Van den Abbeele, Chris
Andre, Krzysztof Nowak, Nat Guy, Alberto Isaac Barquin Murguia, Pablo, Frédéric Chapoton, Giaco-
moAcciarini, Moritz v. Looz, dietmarwo, Mike Heddes, Anatoli Babenia, Baptiste Fournier, Johannes
Simon, Jonathan Willitts, Mateusz Polnik, Sanjeev Narayanaswamy, and Jack Yarndley. esa/pykep:
Optimize. October 2020. doi: 10.5281/zenodo0.4091753. URL https://doi.org/10.5281/zenodo.
4091753.

Fanghua Jiang, Hexi Baoyin, and Junfeng Li. Practical techniques for low-thrust trajectory optimization
with homotopic approach. Journal of guidance, control, and dynamics, 35(1):245-258, 2012.

Jean Albert Kechichian. Reformulation of edelbaum’s low-thrust transfer problem using optimal control
theory. Journal of Guidance, Control, and Dynamics, 20(5):988-994, 1997.

Jean Albert Kechichian. Low-thrust eccentricity-constrained orbit raising. Journal of Spacecraft and
Rockets, 35(3):327-335, 1998.

Jean Albert Kéchichian. Applied Nonsingular Astrodynamics: Optimal Low-Thrust Orbit Transfer, vol-
ume 45. Cambridge University Press, 2018.

Mischa Kim. Continuous low-thrust trajectory optimization: techniques and applications. 2005.

Craig A Kluever. Optimal earth-moon trajectories using combined chemical-electric propulsion. Journal
of guidance, control, and dynamics, 20(2):253-258, 1997.

Craig A Kluever. Using edelbaum’s method to compute low-thrust transfers with earth-shadow eclipses.
Journal of Guidance, Control, and Dynamics, 34(1):300-303, 2011.

Craig A Kluever and Bion L Pierson. Optimal earth-moon trajectories using nuclear electric propulsion.
Journal of Guidance, Control, and Dynamics, 20(2):239-245, 1997.

David Krejci, Marco Gomez Jenkins, and Paulo Lozano. Staging of electric propulsion systems: Enabling
an interplanetary cubesat. Acta Astronautica, 160:175-182, 2019.

J Kriz. A uniform solution of the lambert problem. Celestial mechanics, 14(4):509-513, 1976.

S Lee, A Mehrparvar, D Pignatelli,] Carnahan, R Munakata, W Lan, A Toorian, and A Hutputanasin.
Cubesat design specification rev. 13. The CubeSat Program, Cal Poly SLO, 2014.

John Leonard. Systems engineering fundamentals. Technical report, Defence Systems Management,
COLL Fort Belvoir VA, 1999.

Paola Libraro. A globally nonsingular quaternion-based formulation for all-electric satellite trajectory
optimization. PhD thesis, Princeton University, 2016.

K Mani, Stefano Boccelli, F Topputo, A Cervone, et al. Electric propulsion characterization for a stand-
alone mars cubesat. pages 1-15, 2019.

Karthik V Mani, Angelo Cervone, and Francesco Topputo. Combined chemical-electric propulsion for a
stand-alone mars cubesat. Journal of Spacecraft and Rockets, pages 1-15, 2019.

https://doi.org/10.5281/zenodo.4091753
https://doi.org/10.5281/zenodo.4091753

Bibliography 61

[37]

[38]

[39]

[40]

(41]

(42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

Karthik Venkatesh Mani, Francesco Topputo, and Angelo Cervone. Dual chemical-electric propulsion
systems design for interplanetary cubesats. In Space Propulsion Conference 2018, pages 1-12, 2018.

Karthik Venkatesh Mani, Alvaro Sanz Casado, Vittorio Franzese, Angelo Cervone, and Francesco Top-
puto. Systems design of mario: Stand-alone 16u cubesat from earth to mars. In 70th International
Astronautical Congress (IAC 2019), pages 1-17, 2019.

Giovanni Mengali and Alessandro A Quarta. Trajectory design with hybrid low-thrust propulsion system.
Journal of Guidance, Control, and Dynamics, 30(2):419-426, 2007.

Todd Mosher. Spacecraft design using a genetic algorithm optimization approach. In 1998 IEEE
Aerospace Conference Proceedings (Cat. No. 98TH8339), volume 3, pages 123-134. IEEE, 1998.

Todd Mosher. Conceptual spacecraft design using a genetic algorithm trade selection process. Journal
of Aircraft, 36(1):200-208, 1999.

Todd Mosher, Mark Barrera, Dave Bearden, and Norman Lao. Integration of small satellite cost and
design models for improved conceptual design-to-cost. In 1998 IEEE Aerospace Conference Proceedings
(Cat. No. 98TH8339), volume 3, pages 97-103. IEEE, 1998.

Beny Neta and David Vallado. On satellite umbra/penumbra entry and exit positions. Technical report,
NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF MATHEMATICS, 1997.

Andreas Ohndorf. Multiphase low-thrust trajectory optimization using evolutionary neurocontrol. PhD
thesis, Technische Universitdt Delft, 2016.

Steven R Oleson, Roger M Myers, Craig A Kluever, John P Riehl, and Francis M Curran. Advanced propul-
sion for geostationary orbit insertion and north-south station keeping. Journal of Spacecraft and Rockets,
34(1):22-28, 1997.

Vidhya Pallichadath, S Radu, MAC Silva, DC Guerrieri, MS Uludag, D Maxence, B Zandbergen, and
A Cervone. Integration and miniaturization challenges in the design of micro-propulsion systems for
picosatellite platforms. In Sevilla, Spain. 3AE ESA and CNES, Space Propulsion Conference, 2018.

VG Petukhov, AV Ivanyukhin, and Woo Sang Wook. Joint optimization of control and main trajectory and
design parameters of an interplanetary spacecraft with an electric propulsion system. Cosmic Research,
57(3):188-203, 2019.

JOHN E PRUSSING. Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit. AIAA
Journal, 7(5):928-935, 1969.

Giuseppe D Racca. New challenges to trajectory design by the use of electric propulsion and other new
means of wandering in the solar system. Celestial Mechanics and Dynamical Astronomy, 85(1):1-24,
2003.

Joshua Rovey, Christopher T Lyne, Alex] Mundahl, Nicolas Rasmont, Matthew S Glascock, Mitchell J
Wainwright, and Steven P Berg. Review of chemical-electric multimode space propulsion. In AIAA
Propulsion and Energy 2019 Forum, page 4169, 2019.

Ya G Sapunkov and Yu N Chelnokov. Construction of optimum controls and trajectories of motion of the
center of masses of a spacecraft equipped with the solar sail and low-thrust engine, using quaternions
and kustaanheimo-stiefel variables. Cosmic Research, 52(6):450-460, 2014.

C Sauer. Optimization of multiple target electric propulsion trajectories. In 11th Aerospace Sciences
Meeting, page 205, 1973.

Marsil AC Silva, Dadui C Guerrieri, Angelo Cervone, and Eberhard Gill. A review of mems micropropul-
sion technologies for cubesats and pocketqubes. Acta Astronautica, 143:234-243, 2018.

J Sims and S Flanagan. Preliminary design of low-thrust interplanetary missions. 1999.

62

Bibliography

[55]

(56]

[57]

(58]

[59]

[60]

(61]
(62]
(63]
(64]
(65]
(66]

(67]

(68]

Jon Sims, Paul Finlayson, Edward Rinderle, Matthew Vavrina, and Theresa Kowalkowski. Implementa-
tion of a low-thrust trajectory optimization algorithm for preliminary design. In AIAA/AAS Astrodynamics
specialist conference and exhibit, page 6746, 2006.

Innovative Solutions In Space. ieps datasheet. Technical report, 2019.

Sara Spangelo and Benjamin Longmier. Optimization of cubesat system-level design and propulsion
systems for earth-escape missions. Journal of Spacecraft and Rockets, 52(4):1009-1020, 2015.

Sara Spangelo, Derek Dalle, and Benjamin Longmier. Integrated vehicle and trajectory design of small
spacecraft with electric propulsion for earth and interplanetary missions. 29th Annual AIAA/USU Con-
ference on Small Satellites, 2015.

SRE-PA. Margin philosophy for science assessment studies. Technical report, European Space Research
and Technology Centre, 2012.

Robert L Staehle, Brian Anderson, Bruce Betts, Diana Blaney, Channing Chow, Louis Friedman, Hamid
Hemmati, Dayton Jones, Andrew Klesh, Paulett Liewer, et al. Interplanetary cubesats: opening the solar
system to a broad community at lower cost. 2012.

D Syaifoel. Coupled optimization of systems design and trajectory for dual propulsion spacecraft. 2020.
Hyperion Technologies. iadcs400 datasheet. Technical report, 2015.

Hyperion Technologies. Cubecat datasheet. Technical report, 2019.

Hyperion Technologies. Pm200 datasheet. Technical report, 2019.

Hyperion Technologies. Cp400.85 datasheet. Technical report, 2019.

Enpulsion Spacecraft Technology. Imf nano datasheet. Technical report, 2018.

Gregory] Whiffen and Jon A Sims. Application of a novel optimal control algorithm to low-thrust trajec-
tory optimization. AAS 01-209, 2001.

CH Yam, DD Lorenzo, and D Izzo. Low-thrust trajectory design as a constrained global optimization
problem. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineer-
ing, 225(11):1243-1251, 2011.

	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Literature Study
	Motivation
	Systems Design
	Trajectory Design
	Edelbaum's Approximation
	Direct Method
	Indirect Method
	Evolutionary Neurocontrol

	Dual Propulsion Systems
	Numerical Aspects
	Verification & Validation
	Conclusion

	Design Problem
	Intended Achievement
	Design Objectives
	Design Requirements
	Derived Requirements
	Scope
	Design Process Overview
	Using a BVP or OCP Solver
	Using a Trajectory Optimizer
	Conclusions

	Theoretical Approach
	State
	Accelerations
	State Changes
	Static Control
	Hamiltonian
	Optimal Dynamic Control
	Costates
	Derivation for Earth Orbits
	Derivation for Interplanetary Trajectories

	Other Costates
	Conclusions

	Implementation
	Implementation using a BVP Solver
	Automation of Derivations
	Cost Function
	Differential Equation Function
	Boundary Condition Function
	Elimination of Variables
	Initial Guess and Coordinate Systems
	Initial Guess for Costate Values
	Further Issues
	Conclusion

	Implementation using an OCP Solver
	System Definition
	Issues

	Implementation using a Trajectory Optimizer
	Custom Problem Object
	Manual Iteration

	Conclusion of Implementation Attempts

	Resultant Design
	Overview
	Initial Guess
	High Thrust
	Low Thrust
	Launch Orbit
	Momentum Dumping
	Solar Array Configuration
	Initial Budget

	Initial Feasible Trajectory
	Initial Feasible Combined Design
	Initial Feasible COTS Design
	Current Design
	On Board Computer
	Electric Power System
	Communication
	Attitude Determination and Control
	Solar Array
	Electric Thruster
	Chemical Thruster
	Radiation
	Interface Layout
	Spacecraft Modes
	Alternatives

	Design Recommendations
	Verification and Validation
	Requirement Validation
	System Verification
	System Validation
	Conclusions

	Conclusion and Recommendations
	Bibliography

