IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

1143

Component-Specific Usability Testing

Willem-Paul Brinkman, Reinder Haakma, and Don G. Bouwhuis

Abstract—This paper presents the results of a meta-analysis
carried out on the results of six experiments to support the claim
that component-specific usability measures are on average statis-
tically more powerful than overall usability measures when com-
paring different versions of a part of a system. An increase in test
effectiveness implies the need for fewer participants in usabil-
ity tests that study different versions of a component. Three
component-specific measures are presented and analyzed: an
objective efficiency measure and two subjective measures, one
about the ease-of-use and the other about the users’ satisfaction.
Whereas the subjective measures are obtained with a question-
naire, the objective efficiency measure is based on the number of
user messages received by a component. Besides describing the
testing method, this paper also discusses the underlying principles
such as layered interaction and multiple negative-feedback loops.
The main contribution of the work described is the presentation
of component-based usability testing as an alternative for tradi-
tional holistic-oriented usability tests. The former is more aligned
with the component-based software engineering approach, helping
engineers to select the most usable versions of a component.

Index  Terms—Component-based software engineering
(CBSE), software testing, usability testing, user-centered design
methodology.

I. INTRODUCTION

SABILITY testing is an important instrument of the

usability engineers’ toolkit to analyze an application and
make suggestions for usability improvement. Traditional us-
ability tests are holistic in nature, regarding the application as a
single entity and producing results about the overall usability
such as the number of keystrokes made in a task, the time
to complete a task, or more subjective measures obtained via
a questionnaire. This holistic approach, however, is less ef-
fective when software engineers follow a Component-Based
Software Engineering (CBSE) approach. Instead of building
an application from scratch, this approach focuses on building
applications from off-the-shelf or self-made components (e.g.,
pop-up menu, radio buttons, or more complex components
such as a spell checker or an e-mail component). Rather than
speaking of a development project, Horowitz and Lambert [1]
speak therefore of an assembly project. They argue that, as
development time and effort is reduced, the focus of these

Manuscript received October 3, 2006; revised April 19, 2007 and
September 28, 2007. This paper was recommended by Associate Editor
B. Beeravalli.

W.-P. Brinkman is with Mediamatics Department, Delft University of Tech-
nology, 2628 CD Delft, The Netherlands, and also with Brunel University,
UBS8 3PH Uxbridge, U.K. (e-mail: w.p.brinkman @tudelft.nl).

R. Haakma is with the Media Interaction Department, Digital Lifestyle Tech-
nology Sector, Philips Research Laboratories Eindhoven, 5665 AA Eindhoven,
The Netherlands (e-mail: reinder.haakma@philips.com).

D. G. Bouwhuis is with the Department of Technology Management, Tech-
nische Universiteit Eindhoven, 5600 MB Eindhoven, The Netherlands (e-mail:
d.g.bouwhuis@tue.nl).

Digital Object Identifier 10.1109/TSMCA.2008.2001056

projects turn more toward other activities, such as selection
of the right component, integrating these components into a
system, and also carrying out value analysis which includes
human-factor issues. Subsequently, this puts usability testing
in a new light, where it can help engineers to develop usable
components for future use, select usable components from a
component library when developing a new application, or, as
part of an integration test, help in determining whether, for
example, the user interface provided by the various components
do not rely on conflicting mental models.

Focusing on the usability of a single component is not en-
tirely new. For example, one of the first usability-testing papers
at the first special interest group on computer-human interaction
(SIGCHI) conference [2] focused on specific components of the
Xerox’s 8010 Start Office workstation, such as text selection,
icon recognition and the selection of graphical objects. These
so-called unit tests, however, provide less valid results, as users
are asked to perform a very limited task that only requires in-
teraction with a particular component, e.g., selecting a sentence.
In this paper, we look therefore at another approach. Instead of
scaling down the user task, we examine a set of component-
specific measures that can be used while users interact with the
component in the context of a large everyday task, e.g., writing
a letter. The component-specific usability measures are part of
a testing method that can be used to compare the usability of
different versions of a component. Although solely looking at
the usability of the individual system parts might not provide
the entire usability picture of a system, it gives engineers at
least an additional view about the usability of the individual
system parts.

A. Motivation

As indicated by several surveys [3]-[5], most usability engi-
neers conduct usability evaluations such as usability tests and
regard them as an important method to evaluate an interac-
tive system. Despite this general acceptance as an evaluation
method, factors such as time and cost are often mentioned
[3], [5] as obstacles for adopting these methods in a project.
Field evaluations and usability tests in the laboratory might
be among the most labor intense of these evaluation methods,
particularly when including quantitative methods. Hypothesis
testing, a popular quantitative approach to test whether two
means, such as task completion time, are significantly different
from one another, can require a large number of participants.
Sample sizes such as 20 or 40 participants are not uncom-
mon. These numbers are needed to distinguish with confidence
a general trend from variation caused by individual differ-
ences. Access to a large group of participants can however be
time-consuming, expensive, or simply not possible. Therefore,
reducing this need would make any evaluation method more
appealing for usability engineers. A good example of this

1083-4427/$25.00 © 2008 IEEE

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



1144

is the popularity of heuristic-evaluation method [6]. Nielsen
and Molich [6] showed that only around five evaluators are
needed to find around two thirds of the usability problems
that would be found by a group of 30 evaluators, a reduc-
tion therefore of 83%. Similar asymptotic-reduction strategies
have been suggested for qualitative-oriented usability tests [7].
Quantitative-oriented usability tests, on the other hand, do not
aim at finding as many usability problems as possible. Instead,
they measure the usability and compare it with benchmark
values or values obtained from other systems. A strategy of
accepting to miss out on a small portion of a long list of
usability problems to reduce the sample size is therefore not
possible. An alternative however is to increase the strength of
the measures, allowing engineers to distinguish with confidence
a general trend with fewer participants. This motivated us to
study our claim that component-specific usability measures
are statistically more powerful than overall measures when
comparing different component versions [8], [9]. They reduce
the need for large participant groups in quantitative-oriented
usability tests, which makes these tests more practical and cost
effective.

B. Related Work

Usability is defined by the ISO standard 9241-11 as “the
extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use.” These ultimate
usability criteria, effectiveness, efficiency, and satisfaction,
are often translated in more practical or actual criteria [7],
such as system feedback, consistency, error prevention, per-
formance/efficiency, user like/dislike, and error recovery [10].
Several methods have been established to evaluate a system on
its usability, and they can be classified into empirical methods,
which include collecting user data, and analytical methods,
which do not include collecting user data. Various types of
analytical methods currently exist; for example, inspection
methods such as heuristic evaluation [6], systematic usability
evaluation (SUE) inspection [11], and cognitive walkthrough
[12] or simulation models such as goals, operators, methods,
and selection rules (GOMS) [13] or complexity measures [14].
To validate these methods, researchers often rely on results ob-
tained from empirical methods. In this context, usability testing
is often regarded as the golden standard [7]. Usability tests are
so attractive because of their face validity. To invite users to use
a system seems an obvious approach to get an insight into how
users use a system. A more extensive discussion about usability
testing can be found in [10].

Although recently proposed, component-based usability tests
can also be categorized according to two testing paradigms,
the Single-Version Testing Paradigm (SVTP) and the Multiple-
Versions Testing Paradigm (MVTP). In the first paradigm,
only one version of each component in a system is tested.
The focus is on identifying components in the system that
hamper the overall usability. SVTP therefore is suitable as part
of a software-integration test. In the other paradigm, MVTP,
multiple versions of only one component are compared while
the other components in the system remain the same. This time
the focus is on finding the version with the highest usability.
MVTP therefore is a paradigm for component development

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

and selection. Different component-based usability-testing
methods have been proposed for SVTP [15] and MVTP
[8]. Both methods use measures derived from recorded user
interaction and questionnaires. Whereas in MVTP the recorded
interaction data can directly be interpreted [8], in SVTP,
these data need to be preprocessed, taking into account the
compositional architecture of the system before comparisons
can be made between the components [15]. In this paper, we
will only focus on the method proposed for MVTP, as this can
be compared with traditional usability measures, something
that is currently not possible for SVTP.

Previous work that has looked at usability in the context of
CBSE shows that engineers will have to address a set of ad-
ditional issues when developing usable systems. For example,
Hertzum [16] warns that software reuse can cause a series of
problems such as a fragmented system image, task gaps, con-
ceptual mismatches, rekeying, scalability problems, and added
education and training. The problem of conceptual mismatches
has also been demonstrated in the laboratory [17]. Although
components might have been developed in isolation, users are
confronted with them simultaneously in a system. Therefore,
engineers should avoid selecting components with conflicting
user interaction protocols. Taylor et al. [18] recognized early
on the importance of interaction protocol and have worked
on developing a general protocol grammar that describes the
way in which possible communication errors are avoided or
corrected. Design guidelines to create usable components have
also been suggested. For example, Haakma [19] explains that
components should provide what he calls both expectation and
interpretation feedback to novice users so they can establish
appropriate expectations about their interaction, select success-
ful actions, and understand the system interpretation of their
actions.

Another human-factor issue related to CBSE is mental load.
Again, studies in the laboratory [20] have shown that mental
demands made by one component could interfere how users
interact with other components. This suggests that engineers
should select components which combined mental demand
would not overstress the user’s mental capabilities. Usability-
supporting architectural patterns has also been proposed [21] to
avoid usability problems related to software modularization, for
example responding to a user’s cancellation command across a
series of components. Besides the usability problems associated
with CBSE, others [22] have also stressed the usability benefits
of this approach. They refer to the improvement of system
modifiability and maintainability, which increases the system’s
lifetime, and the ease of keeping it operational.

In this paper, we will only focus on component-based usabil-
ity testing within MVTP. Although other reports have focused
on SVTP [15], or on MVTP within the context of a single
experiment [8], or on specific limitations of component-based
usability testing [17], [20], here the focus will be on the overall
effectiveness of the testing method. By studying component-
specific usability measures and overall measures in a series
of experiments, we will examine their effectiveness and their
potential of reducing the number of participants in a usability
test. Before describing the testing method, the mathematical
principles behind it, and a meta-analysis, the following section
gives an overview of the general characteristics of interactive
architectures on which this testing method can be applied. The

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



BRINKMAN et al.: COMPONENT-SPECIFIC USABILITY TESTING

Player

_

tPrIaE::);( Xf et volume to y
% Play List Volume
& v
~— /
Speaker Display

Fig. 1. Part of the compositional structure of a CD player. The boxes represent
components and the arrows the flow of the messages exchanged between the
components.

I: NAGINE

2 INSTANT KARAA!

3: MOTHER (SINGLE EDITY
Y4: JEALOUS GUY

AUTHOR: JORN LENNON

TRACK 1. INAGINE

5 COLD TURKEY 8 B . B 3 .
> = Jre g gr-Jr+1

Fig. 2. Front of a CD player.

aim of this section is not to propose a new architecture or spec-
ification notation for developing usable components. Instead,
it only attempts to define a component that can be evaluated.
This paper concludes with a discussion on the limitations of
the testing method and a comparison with other usability-
evaluation methods and strategies.

II. BRIEF INTRODUCTION INTO
COMPONENT-BASED INTERACTION

Several architectures for interactive systems have been
proposed in the literature, such as model-view-controller
(MVC) model [23]; presentation, abstraction, control (PAC)
model [24]; and the Centro Nazionale Universitario di Calcolo
Elettronico (CNUCE) agent model [25]. These architectures all
have in common the idea of software components that interact
with each other by exchanging messages. These messages could
be implemented as function or method calls or assigning a
value to properties of other components. The message exchange
between the components and the user could be implemented as
flashing a light or clicking on a mouse button. Fig. 1 shows
how, for example, a part of a compact disc (CD) music player
(Fig. 2) could be assembled from a Player, a Play List, a
Volume, a Speaker, and a Display component. Whereas the
lower parts of Fig. 1 interact directly with users by exchanging
physical messages, such as pressing a button or presenting a
symbol on the display, the Player component also receives user
messages indirectly by mediation of other components, such

1145

as the (Play track x) and the (Set volume to y) messages. If
a component receives its users’ messages by mediation, this
component is defined as operating on a higher level layer than
the supporting components. In the case of Fig. 1, the Player
component would be operating on a higher level layer than the
Play List and the Volume component.

Within this compositional view, a system can be regarded
as a set of components, whereby the behavior of a component
such as the Play List component, can be defined as a finite-state
machine such that C'=(S, R,U,v,w), where S=/{‘image’,
‘instant karma!’, . .., ‘give peace a chance’} represents the set
of states of the Play List; R = {play, up, down} represents the
input alphabet of messages that can be received by this compo-
nent; U = {play track 1, play track 2, ..., play track 20} is the
output alphabet of messages that can be sent upwards by this
component; v : S x RY — S is the state-transition function
with elements such as ((‘image’, down play), ‘instant karma!’)
for the Play List; and w : S x R™ — U is the sent message
upward function with elements such as ((‘image’, down play),
play track 2). The concept of a component operating on high-
level layer than another component means that at least part of
the input alphabet are elements of the output alphabet of the
other component. In the case of the Play List, U is a subset of
R of the Player component.

The formal specification of a component is sufficient to
describe the relevant elements of the component’s behavior that
could be tested. However, similar to CNUCE agents [25], the
specification could be extended to include the output alphabet
of messages sent downwards and also the sent message down-
ward function. Furthermore, input alphabet could be split into
message received from lower and higher level components, or
even consider message exchange between components operat-
ing on the same layer.

Besides breaking up a system into layers, the users’ mental
processes are often also presented as operating in a hierarchy
of layers in which higher level process set goals, or reference
values, for lower level processes (e.g., see [26] and [27]).
Processes that operate on lower level layers are more physical
in nature, such as the coordination of movement of muscle
groups. Processes that operate on higher level layers are more
abstract, such as playing the appropriate background music at
a party. The layered-protocol theory (LPT) [28] brings these
compositional views of systems and mental processes together,
by suggesting that users interact with a system across several
layers by sending messages. In the lowest level layer, the
interaction between mental processes and software components
is physical, whereas the messages exchange on higher level
layers is regarded as virtual.

Whereas the layered-interaction model explains how the
interaction is established, control loops explain the purpose of
the interaction. LPT sees the purpose of the users’ behavior
as the users’ attempt to control their perception, in this case,
their perception of a system. The users interact with the system
because they perceive the system to be in a state other than
what they desire it to be in. The control loops are negative-
feedback loops as users send messages, and the system replies
with feedback messages, until the users receive feedback that
match their intended state, which is the reference value. Instead
of placing the entire system in a single control loop, LPT places
every component in a control loop of its own.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



1146

Making claims about the usability of a component, based on
the execution of a control loop, is only possible if the com-
ponent has a changeable state that users can perceive or infer.
Without feedback and a state, which users can change, there is
no control loop, and users’ behavior would be aimless. There-
fore, to distinguish between testable and nontestable compo-
nents, the term interaction component has been suggested [8] to
refer to components that have these properties. In the example
of the CD player, the Player, the Play List, and the Volume com-
ponent are interaction components; while the Speaker and the
Display component are not, as they only transform messages.
Their usability can only be understood as part of the control
loop in which they provide this transformation function, e.g.,
the control loop of the Player component. Although the defini-
tion of an interaction component is rather similar to other defin-
itions of a component such as interactors [25], it does not make
reference to the internal organization of the component. Still,
engineers might design a system based on another type of defi-
nition of what constitute a component, how they are linked, and
communicate with users. The definition provided only allows
engineers to recognize testable component but leave it opened
to how engineer slice up a system in a set of components.

III. TESTING METHOD

Having established the concepts of layered interaction to-
gether with control loops, it is now time to focus on the testing
method itself. The testing method can be applied on interaction
components that operate in system architectures that allow for
control loops such as MVC, PAC, and, particularly, the CNUCE
agent model. The testing method tests the relative usability
difference between two or more versions of a component,
while the remaining parts of the system stay the same and,
consequently, the type of messages sent to the component. In
the case of the CD player, this could mean testing different
versions of the Play List component in the same CD player. As
in ordinary usability tests, the core of the test consists of asking
users to accomplish a specific task with different versions of a
system. This task, however, should require users to interact with
the component that is being tested within the context of a work-
ing (prototype) application. Furthermore, users should also be
instructed to complete the task quickly but also successfully.
As a precaution against users ending up trying to solve a task
endlessly, a threshold time should be set after which the tester
would help them. The threshold time, for example, could be the
average task time, obtained in a pilot study, plus three times
the standard deviation. This threshold is often used in statistical
analyses to find outliers.

As users perform the task, user messages received directly
or indirectly by the component are recorded in a log file.
The recording stops once the users complete the task success-
fully, and afterward, the users fill out a questionnaire with
component-specific questions about the perceived ease-of-use
and the satisfaction of their interaction with the component. The
location in the source code for the instructions to record that a
message has been received by component depends on the pro-
gram’s architecture and the individual style of the programmer.
Potential locations are in the starting lines of a function, or just
before or after a function call to the component.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

A. Objective Component-Specific Measure

After the test, the log file can be studied, and the number of
messages the component had received from the user directly, or
indirectly via lower level components, can be counted. Previous
studies [8], [29] have shown that the component version that
received the fewest messages is the easiest to use, because users
had to go through the control-loop cycle less often. Therefore,
this cycle counter represents the amount of effort users have
to invest to get the component to do what they want it to
do. The measure only related to the efficiency dimension of
the ISO standard 9241-11 usability definition: “The resources
expended in relation to the accuracy and completeness with
which users achieve goals.” Since the participants are given the
same goal in a usability test, accuracy and completeness will
be the same, making resources expended the only variable to
measure. The messages recorded in the log file are the results of
an event-chain originated from physical user messages received
on the lowest level. Therefore, the effort measured only relates
to physical-interaction-event effort, which is only a small part
of the efficiency dimension; physical-interaction-event effort,
because the measure does not express mental effort, or events
that do not result in interaction with the system, for example,
moving a hand from a mouse to a keyboard. Finally, the
measure relates to discrete events, such as keystroke, and,
consequently, is a discrete variable and not a continuous vari-
able, such as time to completion of a task, or a physiological
measure as heart-rate variability. Although in the context of the
SVTP testing paradigm, the results of an empirical study [15]
has shown that the efficiency measure, combined with specific
weight factors, was able to provide a valid estimation of the
physical-interaction-event effort users made when interacting
with a specific part of a device.

The main advantage of this measure as compared to an over-
all measure, such as the number of keystrokes, is its statistical
power. In other words, far fewer users are needed when the data
are analyzed statistically. This would help engineers, as access
to a large number of test participants is not always possible, let
alone time to conduct such a large test.

The rational for the increased statistical power can be found
in mathematical principles underlying hypothesis testing on
samples. They show that, although using samples might be
more practical, it comes with a price, which is uncertainty;
uncertainty about how representative the central tendency mea-
sures, such as the median or the mean of a sample, are for the
whole population. Based on these measures, engineers often
draw conclusions, and to do this responsibly, they need to con-
sider the likelihood of drawing the wrong conclusion, such as
concluding that there is a difference when in fact there is no dif-
ference. Take for example the hypothetical case that engineers
want to know whether on average users can work more effi-
ciently with a new version of a Play List component (version A)
than with an existing version (B). They could measure the
number of keystrokes two user groups make when completing
a task with CD player A or with CD player B. The left plot
of Fig. 3 shows the hypothetical outcome. Examining the plot,
engineers have to decide whether the difference between the
group means is caused by the versions of the Play List or
possibly just by random variation, called sampling error. In the

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



BRINKMAN et al.: COMPONENT-SPECIFIC USABILITY TESTING

Keystrokes Messages
100 |- . 100 -
80 [ . . ) 80 [ L.
ol . . .. . - .
40 ° ) 40 . ° °
20 B ° ’ 20 N
0 L 0 L
Version A Version B Version A Version B
Fig. 3. (Left) Plots of the number of keystrokes made and (right) the number

of messages received by a component when users performed a task with two
versions of a component.

latter case, the engineers need to run another test with more
users because the data are inconclusive, or accept that there is
no obvious, i.e., practical useful, difference which would have
been detected in this test. The engineers, however, would be
in a much more favorable situation to make a decision when
the data points within the groups showed less variation and are
therefore closer to the group mean, such as in the right plot
of Fig. 3. Intuitively, it is clear that engineers would conclude
much earlier to have found a difference based on the right
plot as opposed to the left plot. The power of the statistical
test underlying the right plot is said to be larger than that of
the left plot. The data in the right plot give engineers more
certainty to claim that it is unlikely that, if the efficiency of two
Play List versions were the same, a sample would reveal such
a difference. Engineers would therefore reject the so-called
zero hypothesis (Hp) of equal means, in favor of accepting an
alternative hypothesis (H7) of unequal means.

The measure, presented in the right plot, is the number of
messages received by a component. It gets its power from the
reduced variation within the samples compared to the difference
between the groups. Textbook statistical analyses, such as the
analysis of variance (ANOVA) (e.g., see [30]), are based on the
same principle. For example, the F-ratio! used in an ANOVA
is defined as a ratio (1) of between—sample2 variation (M Sy)
divided by the within-sample variation (M S,,). A large F-ratio
therefore means a smaller chance (p-value) that, if Hy is true,
the samples would show this difference between the groups

F:MSb/MSw:<Ssb/dfb>/(ssw/dfw) (1

Examining how the F'-ratios are calculated for the num-
ber of keystrokes and number of messages in the example
gives a clear insight into what is causing this improvement
of statistical power. Table I shows the hypothetical number of
keystrokes the seven users in the first group made when using
version A (X;1) and similar for the second user group that used
version B (X;5). With these data points, the sum of squares
between groups (SSp) can be calculated (2), which is based

on the deviation between each group mean (X ;) and the grand

mean (X )

SSy=n) (X; -X.)% )

I'See Table IX in the Appendix for a glossary of symbols.

2Note that some textbooks refer to this as treatment effect instead of between-
group effect because it is the difference between the mean of the treatment and
the grand mean (2).

1147

TABLE 1
NUMBER OF KEYSTROKES MADE WITH VERSIONS A AND B

— —\2
i X Xy (X=X, (Xp-X))
1 20 80 900 100
2 60 50 100 400
3 30 100 400 900
4 50 60 0 100
5 80 90 900 400
6 40 40 100 900
7 70 70 400 0

Sum 350 490 2800 2800

Xf 50 70
TABLE 1I

NUMBER OF MESSAGES RECEIVED WITH VERSIONS A AND B

-\ —
i Xq Xo  (Xy-X,) (X;-X))
1 40 62 100 64
2 60 70 100 0
3 54 75 16 25
4 45 77 25 49
5 51 60 1 100
6 56 80 36 100
7 44 06 36 16
Sum 350 490 314 354
X 50 70

The group size (n) is seven, which makes that S'Sp is 7[(50 —
60)2 + (70 — 60)2] = 1400. Next is the calculation of the sum
of squares within groups (3), which is based on the deviation

of each score in a group from its group mean (X ;), or more
formally

SSw = (Xy—X,)". (3)

Therefore, SS,, is 2800 + 2800 = 5600. To calculate the
F-ratio, the degrees of freedom need to be determined. Because
this is a comparison between groups with different users, a so-
called between-subjects analysis, df, is equal to the number
of groups (k) minus one, and df,, is equal to total number
of users (/N) minus number of groups. The final F-ratio is
therefore [1400/(2 — 1)]/[5600/(14 — 2)] = 3. Based on the
F-ratio and the degrees of freedom, it is now possible to
calculate the p-value, which is the possibility that a difference
has happened by chance. Although the calculation of the actual
p-value is relatively complex, tables are available to look it up
(e.g., see [30]), or the value can be calculated with software ap-
plications such as Microsoft Excel (e.g., using the F' probability
distribution function, FDIST(F'-ratio, dfy, df.,)). In the case of
the keystrokes, the p-value is 0.10886.

The same procedure can be used to calculate the p-value
based on the hypothetical number of messages received by the
Play List component as presented in Table II. SS;, is the same
as before, i.e., 1400. However, S.S,, is smaller. It is 314 +
354 = 668. Consequently, the F-ratio is also larger, namely,
[1400/(2 — 1)]/[668/(14 — 2)] = 25.15. The associate p-value
for this ratio is 0.0003, giving the engineers more certainty to
reject Hy.

What becomes clear from this example is that reducing the
mean square within groups (M S,,) will improve the chance of

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



1148

0.8 :
0(‘
L 06 -
; -
3
o 04
——— messages
02
0 T T T T T T T
4 12 20 28 36 44 52 60

Sample size

Fig. 4. Likelihood of finding a significant difference between version A and
B on an alpha = 0.05 level as a function of the sample size for an analysis on
the messages data and on the keystrokes data as presented in Tables I and II.

detecting a difference between the groups. It is calculated by
dividing S'S,, by the sum of the degrees of freedom within the
groups (df,,). The number of degrees of freedom within each
group is a function of the number of samples (n). Therefore, the
classical and expensive way of improving the power of a test is
to increase the sample size in each group as it reduces M .S,
and, consequently, increases the F'-ratio. As Fig. 4 shows,
if there exists a difference, increasing the sample size will
increase the likelihood that it will be found (i.e., the statistical
power). Another approach, taken by the number-of-messages
measure, is to reduce S95,. This requires that the measure
is more robust against outside interfering factors besides the
effect established by the difference between the versions of a
component.

Whereas overall measures, by their very nature, are percep-
tive to all problems different users may or may not encounter
in a system, the number-of-messages measure is mainly per-
ceptive to the problems different users have with a specific
component. Or in other words, the variance in the component-
specific measure is less likely to increase if some users have a
problem with another part of the system. The reduction of S5,
can be apparent in the analysis of lower level as well as high-
level interaction. Take for example the Play List component.
Variation in the number of Volume “+” and “—” key presses
as some, but not all users, might have problems with setting
the volume would also cause variation in the overall number
of keystrokes. This however would not effect the component-
specific efficiency measure of the Play List component as it
ignore these volume events and only focuses on the play, up,
and down buttons events. Whereas for lower level components,
component-specific analysis means focusing on a selection of
the total lower level input; for high-level components, this
means focusing on the messages filtered through by the lower
level components. The filter process reduces the variance in the
number of high-level messages. Users’ problems with a lower
level component are likely to be confined to that component and
do not have to result in high-level messages. For example, some
users would need more up and down scrolling through the Play
List than others; however, pressing the play button would still
result in only a single high-level (play track x) message to the
Player component.

B. Subjective Component-Specific Measures

The questionnaire at the end of a usability test provides
the data for the two subjective usability measures about the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

component-specific ease-of-use and satisfaction. Whereas over-
all questions allow users to express their feeling of progress
toward the overall task goal that is achieved with the entire
system, component-specific questions allow users to express
their feeling of progress toward the subgoal that is achieved
with a component. These component-specific measures are
expected to be statistically more powerful than overall usability
questions because they help the users to remember the control
experience with the particular interaction component [31]. So
far, however, attempts to show this empirically have only been
partly successful [8]. On the other hand, an examination of
several empirical studies concluded that the component-specific
ease-of-use measure can obtain an acceptable level of reliability
and validity, although not all cases, and continued to suggest
that, with component-specific measures, at least part of the
usability of a product can be studied on a detailed compositional
level [32].

Several questionnaires have been presented to determine the
overall usability of a system in the literature. The six ease-
of-use questions of the perceived usefulness and ease-of-use
questionnaire [33] have been shown to be a suitable small
set of questions [8]. They make no reference to the system’s
appearance and are able to capture well-formed beliefs after
only a brief initial exposure [34]. The set of questions consist
of statements such as “My interaction with [name] would
be clear and understandable” [33]. Where traditionally the
name of the system would replace the “[name]” section,
component-specific questions are created by replacing this
section with the component’s name. Besides the component’s
name, a description, a picture, or even a reference in the system
of the component can help to support the recollection of the
users when they complete the questionnaire.

The component-specific satisfaction questions are taken
from the poststudy system-usability questionnaire [35], one
about how pleasant a component was and one about how much
the user liked using the component. Both the ease-of-use and
satisfaction questions use a seven-point answer scale.

IV. EXAMINING THE EFFECTIVENESS

Previous reports [8], [9] have only studied the effectiveness
of component-specific measures in the context of a single
experiment. However, a single experiment rarely provides the
final answer on any empirical question. The approach therefore
taken in this paper is an empirical meta-analysis. This analy-
sis examines the effectiveness of component-specific versus
overall usability measures in 12-component tests that were
carried out as part of six usability experiments that looked
into the compositionality of usability [29]. Meta-analysis are
often conducted in disciplines such as psychology, and some
have also been carried out on software engineering data, for
example, Shaw [36] presented a meta-analysis of 25 studies on
group-support systems and, recently, Haque and Srinivasan [37]
applied a meta-analysis on 16 studies and successfully showed
the learning effect of virtual-reality surgical simulators. Meta-
analysis has also been conducted to study software-analysis
methods. Miller [38], for example, conducted a meta-analysis
on five experiments that studied code reading versus functional
software testing, whereas Hayes [39] conducted a meta-analysis
on five published studies of software engineering inspection

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



BRINKMAN et al.: COMPONENT-SPECIFIC USABILITY TESTING

methods. Attempts have also been made to conduct a meta-
analysis on the data of 18 usability-evaluation studies [7].
Meta-analyses provide a systematic approach to assess
a body of accumulating empirical results. However, as
Hartson et al. [7] experienced, it is not always possible to
conduct a meta-analysis, as published studies sometimes lack
to report the required elementary descriptive statistical data
such as the standard deviation, sample size, and the mean.
Fortunately, we had access to all of the data from the six
experiments and were therefore able to conduct an extensive
meta-analysis. Although the sample size of 12-component tests
might seem modest, the size of the effectiveness improvement
brought about by component-specific measures was so large
that it already stood out significantly in this relative small-
scale meta-analysis. Before presenting the results of this meta-
analysis, a brief overview is given of the six experiments.

A. Description of Experiments

1) Fictitious System: The first experiment in the list is an
explorative experiment [29]. It was a first attempt to record
the interaction on multiple layers and study the components-
specific efficiency measure. In this experiment, 80 university
students (54 male and 26 female) between the age of 17 and
27 years old (M = 21.74, SD = 2.30) operated a fictitious
user interface, which presented an abstraction of a mode-
selection dialogue that is essential in multilayered user inter-
faces. In a training session that preceded the task, the users
received one out of eight instruction sets, which were created by
providing or withholding information about three components
(selector, map, and rotator) of the system. The interface con-
sisted of six symbols, such as symbols of musical instruments,
type of fruit, and transportation devices. A combination of
clicking on the symbols of two transportation devices allowed
the participant to rotate the three symbols of the musical instru-
ments. A fourth fruit symbol indicated with musical instrument
was selected for rotation. In the experiment, participants were
asked to rotate a specific musical instrument. The experiment
showed that users’ knowledge about a component affected
the number of messages it received. Because of the abstract
nature of the user interface, users were not asked to rate the
perceived ease-of-use or their satisfaction when operating the
components.

2) Mobile Telephone: The second experiment [8] was con-
ducted to validate the component-specific measures by using
a personal computer (PC) emulator of mobile telephone. The
emulator allowed users to make a call, check their voice mail,
send and receive short text messages, and read and edit an
address list and a diary. Eight different versions of the mobile
telephone were constructed by manipulating three components
that were responsible for the way users could activate functions
in the telephone (Function Selector), input alphabetic characters
(Keypad), and send text messages (Send Text Message). One
version of these three components was always relatively easier
to use, while the other version was designed to be more difficult
to use. All usability variations addressed the complexity of
the dialogue structure of the components, which could be un-
derstood in terms of the cognitive-complexity theory [14]. All
80 participating users (53 males and 27 females) were univer-
sity students between the age of 18 and 28 years old (M =

1149

21.43, SD = 2.27), and they were randomly assigned to one of
the eight mobile-telephone emulators. In the experiment, par-
ticipants were asked to make a call, send a short text message,
and to add a person to the address list.

3) Room Thermostat: The third, fourth, and fifth experi-
ments [17] were part of a series of experiments to study the
effect inconsistency between components may have on the
usability of individual components. The results of these ex-
periments showed that overall usability of an entire interactive
system cannot always be predicted solely by looking at the indi-
vidual usability of its components. All three experiments were
conducted simultaneously. The 48 university students (32 males
and 16 females) that participated had an age between 18 and
27 years old (M = 21.69, SD = 2.03). They were asked to op-
erate a version of a room thermostat, a web-enabled television
(TV) set, and a microwave or a radio alarm clock.

The experiment with the room thermostat focused on the
effect inconsistency could have on components that operated
within the same interaction layer. Four PC emulators of a room
thermostat were constructed, which allowed users to set the
daytime and the nighttime temperatures. Manipulating the two
components responsible for setting these two temperatures
resulted in these four room-thermostat versions. In one version,
the control had a display with a moving pointer and a fixed
scale; in the other version, the display had a fixed pointer and a
moving scale. In the experiment, participants were asked to set
both the daytime and nighttime temperatures.

4) WebTV: The effect of inconsistency between components
operating on different layers was studied with four PC emula-
tors of a web-enabled TV set including a remote control. These
four emulators were constructed by manipulating the browser
and the layout of the web pages. One version of the browser
allowed both horizontal and vertical movement of the selection
cursor, while the other version only allowed horizontal move-
ment with the selection cursor jumping vertically only at the
edges of a page. In the experiment, the users were asked to
find the web page that gave the departure times of a specific
bus. The bus web site had two kinds of layout. One layout,
the matrix layout, placed the web links in a web page both
on the same line and one below the other. The other layout,
the list layout, placed all links one below the other. Besides the
browsing functionality, the TV set allowed users to switch the
TV on and off, select TV channels, and change the volume.

5) Microwave and Radio Alarm Clock: The fifth experiment
looked at the effect of inconsistency between the application
domain and the implementation of a particular component.
The experiment tested a timer component in a microwave and
in a radio alarm clock. In the radio alarm clock, the timer
determined when the radio should be switched on, and in the
microwave, the timer determined when cooking should start.
Two versions of the timer were developed. The only difference
between the two versions was the symbol they used to indicate
that the timer was showing the time the timer would go off and
not the normal time. In one version, the symbol was a ringing
mechanical alarm clock; in the other version, the symbol was
a hot dish. Whereas the microwave allowed users to start or
stop the microwave and to set the clock, the cooking period, and
the power, the radio alarm clock allowed users to set the clock,
the radio channel, the volume, and switch the radio on or off.
Participants that were randomly assigned to use the microwave

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



1150 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008
TABLE III
RESULTS OF ANOVAS ON OBJECTIVE EFFICIENCY MEASURES
Application / Test Based on Component-Specific Measure Test Based on Overall Measure
Component dfy _ dfw __ SSh S F p. 5 SSp SSw F p. ny
Fictitious system
Selector 1 78 1872 15307 9.54 0.003  0.109 20034 299402 522 0.025 0.063
Map 1 78 4977 14560 26.66  <0.001 0.255 55862 263574 16.53  <0.001 0.175
Rotator 1 78 316 19221 1.28 0.261  0.016 15125 304311 3.88 0.053 0.047
Mobile Telephone
Function Selector 1 78 379226 392002 7546  <0.001  0.492 542851 2309387 18.34  <0.001 0.190
Keypad 1 78 25347 164567 12.01 0.001  0.133 259009 2593229 7.79 0.007 0.091
Send Text Message 1 78 9680 27221 2774  <0.001  0.262 26975 082252 2.14 0.147 0.027
Room thermostat
Daytime temperature 1 46 111 518 9.86 0.003  0.177 46 1523 1.39 0.245 0.029
Night time temperature 1 46 85 497 7.91 0.007  0.147 78 1496 2.38 0.130 0.049
WebTV
Browser 1 46 2837 11136 11.72 0.001 0203 3104 11264 12.68 0.001 0.216
Web Pages 1 46 234 1275 8.45 0.006  0.155 675 13693 2.27 0.139 0.047
Microwave & Radio
alarm clock
Timer? 1 46 83 3589 1.06 0309  0.023 1170 64639 0.83 0.366 0.018
Calculator
Processor X equation 1 23 0.288 0.972 6.81 0.016  0.228 0.015 1.005 0.34 0.567 0.014
difficulty®

aThe component-specific measure only counted the number of change-mode messages.? These results show the two-way interaction effect of the
Editor version and Equation difficulty. The component-specific measure was based on the log transformation of the number of store requests sent to the

processor.

were asked to set the timer, the cooking time, and the power.
Participants assigned to use the radio alarm clock were asked to
set the alarm time, the radio channel, and the volume.

6) Calculator: The last experiment [20] studied the effect
memory demand could have in linking the usability of two
individual components together. Again, this experiment showed
the problems in predicting the usability of the entire system
solely on the usability of the individual components. From
all experiments presented here, this is the only experiment
with a within-subjects design. The 24 university students
(16 males and 8 females), age between 19 and 25 years (M =
21.33, SD = 2.16), that participated had to solve equations,
with different degrees of complexity, with two calculators. The
calculators had two interaction components, the editor compo-
nent, responsible for establishing an equation, and the processor
component, responsible for processing the equations and, if
requested, storing the results in one of the six memory places.
Although both calculators had the same processor component,
they were implemented with different editor components. One
editor version had a small display, only capable of showing
a small part of an equation, while the other version was
equipped with a large display, allowing users to see the entire
equation.

B. Meta-Analysis

The first step of the meta-analysis was reanalyzing the data
from these studies. Sixty ANOVAs were conducted both on the
overall measures (keystrokes, overall ease-of-use, and overall
satisfaction) and component-specific measures (number of mes-
sages, component-specific ease-of-use, and component-specific
satisfaction) collected in the experiments. The ANOVAs gave
the probability that the difference between the versions of a
component had happened by chance. Table III shows the results
of 24 ANOVAs done on the number of messages (left side of

the table) and keystrokes (right side of the table) measures.
Table IV shows the results of the 18 ANOVAs done on the
component-specific ease-of-use measures and the overall ease-
of-use measures. Finally, Table V shows the results of the
18 ANOVAs done on the component-specific satisfaction and
overall satisfaction measures.

The next step was to study whether, on average, component-
specific measures are statistically more powerful than overall
measures when comparing component versions. Power in this
case is an expression of the likelihood of detecting a significant
difference, i.e., a p-value < 0.05, if there is one. A look at
the tables shows that, on average, the F'-ratios obtained for the
component-specific measures (16.80) is larger than the F'-ratios
based on overall measures, which is 10.65 (Table VI). As
aforementioned, the F'-ratio is also affected by the sample size.
A more pure measure and therefore used traditionally in meta-
analyses is the partial effect size (7712,). This measure relates
to the strength of the measurement and does not change if
the sample size is increased or decreased in a test. Partial 72
is the proportion of the total variation that is attributable to
the difference between the versions of a component and is
defined as

n2 = S85,/(SS, + SSu). 4)

For each of the 60 ANOVAs, Tables III-V also show
the partial 72. Overall component-specific measure seems
significantly more powerful than the overall measures. All the
partial 2 of the ANOVAs on the component-specific measures
were simultaneously larger than the partial 72 of the ANOVAs
on the overall measure for five of the nine components that were
measures with all three component-specific measures. The
probability that this would happened for a single component
by random chance is 1/8, i.e., (1/2)? assuming that, by random

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



BRINKMAN et al.: COMPONENT-SPECIFIC USABILITY TESTING

1151

TABLE 1V
RESULTS OF ANOVAS ON EASE-OF-USE QUESTIONS

Application /

Test Based on Component-Specific Measure

Test based on Overall Measure

Component dfy df SSh SSyw F . Ny SSp SSy F . ny
Mobile Telephone
Function Selector 1 78 244 80.9 2351 <0.001  0.232 11.3 76.6 11.45 0.001 0.128
Keypad 1 78 9.7 78.4 9.63 0.003  0.110 1.0 86.9 0.91 0.343 0.012
Send Text Message 1 78 0.5 110.2 0.34 0.564  0.004 1.1 86.8 0.98 0.326 0.012
Room thermostat
Daytime temperature 1 46 13.2 56.4 10.77 0.002  0.190 . 29.4 2.18 0.147 0.045
Night time temperature 1 46 18.3 49.4 17.08  <0.001  0.271 1.1 29.7 1.66 0.204 0.035
WebTV
Browser 1 46 4.8 403 5.47 0.024  0.106 8.2 434 8.69 0.005 0.159
Web Pages 1 46 29 329 4.084 0.049  0.082 2.8 48.8 2.597 0.114 0.053
Microwave & Radio
alarm clock
Timer 1 46 7.8 58.1 6.16 0.017 0.118 59 45.0 6.04 0.018 0.116
Calculator
Editor 1 22 56.2 17.3 71.51  <0.001  0.765 54.0 13.8 85.86  <0.001 0.796
TABLE V

RESULTS OF ANOVAS ON SATISFACTION QUESTIONS

Application / Test Based on Component-Specific Measure Test Based on Overall Measure
Component dfp dfw SSh SSyw r P- 77112 SSp SSw I P- 775
Mobile Telephone
Function Selector 1 78 24.2 119.9 15.75  <0.001 0.168 6.3 135.0 3.66 0.060  0.045
Keypad 1 78 14.9 149.9 7.74 0.007  0.090 2.6 138.7 1.48 0.228  0.019
Send Text Message 1 78 0.5 146.3 0.24 0.626  0.003 1.4 140.0 0.77 0384  0.010
Room thermostat
Daytime temperature 1 46 39.4 125.0 1450  <0.001  0.240 35 111.0 1.46 0.233  0.031
Night time temperature 1 46 36.8 102.9 1643  <0.001  0.263 3.0 111.5 1.238 0272  0.026
WebTV
Browser 1 46 20.0 85.5 10.78 0.002  0.190 15.76 79.7 9.09 0.004  0.165
Web Pages 1 46 9.2 73.8 5.73 0.021  0.111 44 91.1 221 0.144  0.046
Microwave & Radio
alarm clock
Timer 1 46 7.1 112.8 291 0.095  0.059 8.3 93.0 4.12 0.048  0.082
Calculator
Editor 1 22 103.5 27.8 82.05  <0.001  0.790 93.3 234 87.84  <0.001 0.800

chance alone, the partial 12 component-specific measure had
one in two chances of being larger than its overall counterpart.
A simple binomial test shows that the chance that at least five
out of nine of these cases happened by random chance alone is

EOQ Q) - o

which is well below the often-used 0.05 threshold value.
In addition, it is also possible to consider the size of the
improvement made by the three component-specific measures.
Table VI shows that the average partial n? for the component-
specific measures was 0.202 and 0.122 for the overall measures.
However, how representative is this observed difference or, in
other words, what is the likelihood that it was simply caused by
sampling error? To study this possibility, three ANOVAs were
conducted on the partial 72’s obtained in the 60 ANOVAs,
hence, the name meta-analysis. The first ANOVA compared
the partial 72’s from the keystrokes measures with the partial
n?’s from the messages measures (Table III). Because the data
are taken from the same statistical F'-test, only with different
measures, individual difference can be cancelled out by only

looking how the effect size of a test differs from its individual

mean (X; ) in each component test
X=X — X (6)

For example, the partial effect size of 0.109 for the F'-test on
the number of messages received by the Selector component
and the partial effect size of 0.063 for the F'-test on the
number of keystrokes (Table IV) would, for the meta-analysis,
be transformed to 0.109 — (0.109 + 0.063)/2 = 0.023 and
0.063 — (0.109 + 0.063)/2 = —0.023. In other words, the
meta-analysis was a within-subjects analysis or an ANOVA
with repeated measures. Note also that, for a within-subjects
analysis, df,, is defined as (n — 1)(k — 1), which means that
dfw is (12 — 1)(2 — 1) = 11. The first row of Table VII shows
the results of the ANOVA. As expected, the p-value, with a
value smaller than 0.05, indicates a significant difference. The
mean partial 2 for tests based on the number of messages
received was 0.183, whereas on the number of keystrokes
0.081. Although the absolute values are of less interest here,
the difference of 0.102 show the improvement the number
of messages measure can make. Putting this into perspective,

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



1152

Cohen [40] characterizes a small effect as 0.01, a medium
effect as 0.06, and a large effect as 0.14. Therefore, this
improvement suggests that a test based on an overall measure
with a medium effect size can be improved into a test with a
large effect size by using component-specific measures.

The overall measure in the case of the objective efficiency
measure was the number of keystrokes made. The reason for
taking this measure, as an overall objective efficiency measure
instead of, for example, task time, was that, in some cases,
differences existed between optimal task performances when
executing a task with different versions of a component. Both
the number of messages and keystrokes can easily be corrected
for this by subtracting the a priori differences, which is not di-
rectly possible for other objective measures. Still, the corrected
keystrokes measure seems an appropriate indicator of the power
of overall measures because of the reported high correlation
with other measure such as the time to complete a task [8].

Another ANOVA with repeated measures was conducted on
the partial 2 values of the tests that were based on the ease-of-
use measure (Table IV). Although the mean partial 7% value
of the component-specific measure (0.209) was larger than that
of overall measure (0.151), this difference was not significant
as Table VII shows. Finally, a similar ANOVA conducted on
the satisfaction measure (Table V) did again reveal a signifi-
cant difference. The mean partial 5 value of the component-
specific measure (0.213) was again larger than that of the
overall measure (0.136), showing an average improvement of
0.077. This estimation, however, could be too conservative
as a consequence of the experimental setup of all these ex-
periments where users received both component-specific and
overall questions at the same time. The recollection triggered
by the component-specific questions might have influenced the
users when answering the overall questions. However, when
using component-specific questions, this approach of including
overall questions in the questionnaire seems realistic, as testers
might have a tendency to ask rather too much than too little.

Although component-specific questions were taken from
standard questionnaires originally developed as overall mea-
sures, they seem also reliable measures for components-specific
measuring. For psychometric instruments, such as this ques-
tionnaire, Cronbach’s alpha (7) is a frequently used reliability
measure, which gives an indication whether a set of question-
naire items measures the same latent variable. For items with
equal variance, Cronbach’s alpha is defined as

o N X7 _ )
I+ (N-=-1)xT7)

whereby N is the number of questionnaire items, and 7 is the
average of all Pearson correlations between the questionnaire
items. Table VIII shows that both the ease-of-use and satis-
faction questions had an acceptable reliability of 0.7-0.8 or
more than this minimal level often recommended [41]. Note
that the data of the calculator experiment had to be restructured
for this analysis. As aforementioned, this experiment had a
within-subjects design. The data were therefore split into two
groups to create a between-subject design, and afterward, the
Cronbach’s alpha was calculated. The high Cronbach’s alpha
values indicate consistent results across the different questions.
Or in other words, the six ease-of-use questions and the two

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

satisfaction questions were measuring the same underlying
construct, i.e., the ease-of-use or satisfaction of a component
or system.

V. DISCUSSION

To summarize the findings of the meta-analysis, the
component-specific measures were, on average, statistically
more powerful than their overall counterparts when comparing
component versions. Detailed examination found that this was
the case for the component-specific efficiency measure and the
subjective-satisfaction measures. Although failing to reach a
significant level, the component-specific subjective easy-of-use
measure also points in the direction of improved statistical
power.

The analysis, like any, also has its limitations. For instance,
because of the relative newness of the testing method, we
could only base the meta-analysis on the results of our own
experiments and not yet of that of others. In addition, all
participants were university students. Generalizing these results
to other group of the general population should therefore be
done with caution. Future meta-analyses, therefore, will be
needed to see whether others can replicate these findings in
another context. This will also help to improve the estimation
of the effect component-specific testing has on the effect size.
Still, the presented effect sizes allow testers to plan their test
strategy. They can set the statistical power they want their
test to have, conduct a priori power analyses, calculate the
number of users needed, and compare this with the effort
involved of applying an overall or the component-based testing
method.

For example, consider an experiment in which testers would
want to examine the objective efficiency of two versions of a
component, and they would want a 60% chance of finding a
possible significant difference (p. < 0.05). Running a priori
power analysis with GPower® [42] based on the average partial
n? found in the first row in Table VI would indicate that at least
24 users would be needed when using the component-specific
measure and 58 users when using the overall measure. Now, it
is up to the testers to compare this 59% reduction in the number
of users with the possible extra effort involved in obtaining data
for the component-specific measure.

A. Limitations of the Testing Method

The power of component-specific measures is based on
the idea that usability problems are contained mainly to the
interaction of a single component. However, factors such as
inconsistency [17] or mental load [20] can make that usability
problem spread across the interaction with other components.
In these cases, overall measures might be more effective as
they are perceptive to all usability problems in the interaction.
This suggests, therefore, a test strategy of not only selecting
overall measure or only component-specific measures but a
strategy in which both types of measures are collected. With
this strategy, engineers benefit from the statistical power of
component-specific measures and are still able to cope with

3Note that GPower uses f instead of partial 2. However, f is defined as

f=/mp/(1=mn3).

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



BRINKMAN et al.: COMPONENT-SPECIFIC USABILITY TESTING

situations where usability problems go beyond a single compo-
nent. The extra effort of collecting the overall measures, such
as keystrokes or overall usability questions, might be small
once engineers have at least a prototype application in which
different versions of the component can be embedded. Besides
including recording instructions in the component, keystroke
data could be obtained by including recording instructions into
components operating on the lowest level layer or, alternatively,
by using an external software logging tools that is able to
record events sent to an application on an operation system
level.

The results of the objective component-specific efficiency
measure can only be understood in the context a specific
component. The assumption is that users spent a similar amount
of effort when sending a user message to the different versions
of a component, which might not be the case for messages sent
to other components. In other words, the difference in physical
event effort represented by a difference of ten messages re-
ceived between two versions of the Play List component might
not be the same as the effort represented by a difference of ten
messages received between two versions of the Player com-
ponent from CD-player example. The assumption of similar
amount of effort in creating message seems reasonable for high-
level components as they rely on the same lower level layer
to mediate the message exchange. However, for component
operating in the lowest level layer, a cycle of the control loop
can involve different amounts of effort. Take for example the
evaluation of the Sam text editor by Thomas [43]. He tried
to compare the relative command frequencies of the Sam text
editor to other systems reported in the literature. The Sam’s
logging system recorded low-level mouse actions, like mouse
clicks and positioning, whereas the Unix applications reported
in the literature recorded actions on a higher level of abstraction
(e.g., complete command lines). A possible way to solve the
problem of variation in the effort to create a message is the in-
troduction of weighting factors for the messages to represent the
differences in effort. This approach is also used in SVTP when,
instead of different versions of a single component, different
components in a system are compared with each other [15].

Except for self-made components or open-source develop-
ment, testers might not always have access to the messages ex-
change. Fortunately, some effort is being made to address this.
Software tools such as iGuess [44] are able to automatically
insert recording code into Java applications without any need
for access to the source code.

Another limitation of this paper is that it mainly looks at
the usability from a user’s perspective and mainly ignores the
developers’ perspective. To be usable, a component should also
be easy to reuse, e.g., easy maintainable and modifiable, and de-
velopers should understand easily how a component interfaces
with other components. Future research could consider possi-
ble empirical methods to evaluate these developers’ usability
aspects of a component. Combined with data from a user’s
perspective, this would establish a truly overall understanding
of the usability of a component.

B. Other Empirical Evaluation Methods

Unit testing allows testers to focus on a specific part of the
system while using overall measures. Although this approach

1153

can be used for lower level components, by asking users to
complete elementary tasks, applying unit testing to test higher
level components is less effective, as the task would also include
interaction with mediating lower level components and might
consequently increase S'S,.

Existing sequential data analysis (SDA) techniques [45] on
recorded keystrokes allow testers to overcome the unit-test
limitation of using elementary instead of normal every-day
tasks in a test. These SDA techniques often preprocess the input
data and filter out nonrelevant input. Again, these techniques
are effective for lower level but not for higher level components.
Instead of recording the higher level message exchange directly,
these techniques attempt to generate the higher level interaction
from the recorded lower level input, without taking into account
the component’s response and state when processing these
messages. An indirect way of solving this would be to record
the system state together with the user events and to envision
the response of the system (see the work of Lecerof and
Paterno [46] for an example).

Other usability-evaluation methods, besides event-based us-
ability testing, are often used to study applications, such as
thinking-aloud, cognitive walkthrough, and heuristic evalua-
tions. These methods may, in some cases, be quicker to come
up with results, still they suffer from a substantial evaluator
effect in that multiple evaluators or even test teams end up
with different conclusions when testing the same application
[47], [48]. Using theoretical concepts, such as control loops and
layered interaction, combined with a set of related measures
might reduce this evaluator effect.

C. Exploitation of the Testing Method

For user-centered design techniques to be effective, they
need to be aligned with the software-development life cy-
cle, and it has to be clear where and how they should be
used [49]. To answer the first part of this question, MVTP
component-based testing methods can be used in two concur-
rent processes, namely, the create and the deployment process
of the component-based engineering approach. The first process
is responsible for the design and creation of new software
components. Here, engineers could compare different versions
of a component and ship off the most usable version to a
component library. Testing in this process is an efficiency step,
because it would affect many applications at once; usability
problems related to the individual nature of the components
are already eliminated before components are deployed in
applications. Testing the components may, however, require
development of at least a potential prototype application, as
an actual application might not be available when developing a
generic component library. The type of components that can be
tested, range from very simple two-state interaction component,
such as a Sound On-Off indicator, to very complex interaction
components, such as a drawing component in a word processor
application. The important requirement however remains that
these components have a state that a user can perceive and
change.

In the deployment process, where components are used to
create a new application, the role of the testing method is to help
engineers to select the most usable component for their appli-
cation from a set of off-the-shelf components that provide the

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



1154

same functionality. This test helps testers to understand how a
component would function in the context of other components,
a specific task, and a specific user group, which were probably
unknown in the create process. In general, engineers can apply
component-based testing in an assembly project of any interac-
tive applications such as PC applications or consumer electron-
ics. Still, because the component-specific efficiency measure
assumes some tolerance for user deviation in the task executing,
systems such as password verification might be less suitable.

VI. CONCLUSION AND FINAL REMARKS

Component-specific measures were, on average, statistically
more powerful than the overall usability measures when it
came to comparing the usability of different versions of a
component in the 12-component tests that were examined
in the meta-analysis. Therefore, the testing method seems
promising as a method suitable for engineers that apply a
CBSE approach. However, the real benefit will only become
apparent when actual software engineers put it into practice
and the usability of the final product is also assessed [50]. It
will then become visible how much extra effort and money is
involved and how it fits in with normal engineering routines.
The development of a software tool that supports the testing
method might help here. The tool should be an integrated part
of the software engineers’ development environment in order
to make it more accessible and aligned with their work [49].

Another research direction is to adapt the testing method
to be used outside the laboratory. This would require
reexamination of the component-specific objective efficiency
measure, because now, the tester sets the users’ goal, which
would be inappropriate in normal field tests. In addition,
remote capturing of the message exchange would allow for
large-scale testing. Engineers could make different versions of
a new component online available, which users could download
in their application, such as different versions of a dictionary
for a word processor application. Once the users start using
the component, component-specific usability data could be
collected over the network. This would provide engineers
with data about the component use in the actual usage
context.

APPENDIX

TABLE VI
MEAN F RATIO AND PARTIAL ETA SQUARED OF THE 60 ANOVAS
ON COMPONENT-SPECIFIC AND OVERALL MEASURES

Component-specific Overall
— —2 — =2
Object. perform. 16.54 0.183 6.15 0.081
Ease-of-use 16.51 0.209 13.37 0.151
Satisfaction 17.35 0.213 12.43 0.136
Total 16.80 0.202 10.65 0.122
TABLE VII
RESULTS ANOVAS ON PARTIAL ETA SQUARED
dfy  dfw SSh SSw F p.
Object. perform. 1 11 0.0634 0.0600 11.64 0.006
Ease-of-use 1 8 0.0151 0.0358 3.39 0.103
Satisfaction 1 8 0.0266 0.0363 5.83 0.042

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

TABLE VIII
CRONBACH’S ALPHA DERIVED FROM RELIABILITY ANALYSES
Application / Component Ease of Use  Satisfaction
Mobile Telephone 0.85 0.90
Function Selector 0.87 0.75
Keypad 0.85 0.86
Send Text Message 0.89 0.81
Room thermostat 0.82 0.91
Daytime temperature 0.92 0.91
Night time temperature 0.92 0.94
WebTV 0.91 0.92
Browser 0.90 0.90
Web Pages 0.89 0.86
Microwave & Radio alarm clock 0.94 0.84
Timer 0.92 0.92
Calculator 0.96 0.94
Editor 0.97 0.96
TABLE IX
GLOSSARY OF SYMBOLS
Symbol Description Equation
dfp Degrees of freedom between groups
dfy Degrees of freedom within groups
SSh Sum of Squares between groups 2)
SSw Sum of Squares within groups 3)
F Ratio of between-sample and within-sample (€))
variation
p. Probability that, under the assumption of
equal group means, an observed difference
between group means occurred by random
chance alone.
m,z Partial effect size (4)

REFERENCES

[1] B. M. Horowitz and J. H. Lambert, “Assembling off-the-shelf compo-
nents: ‘Lean as you go’ system engineering,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 36, no. 2, pp. 286-297, Mar. 2006.

[2] W.Bewley, T. L. Roberts, D. Schroit, and W. L. Verplank, “Human factors
testing in the design of Xerox’s 8010 Start Office workstation,” in Proc.
CHI, 1983, pp. 72-77.

[3] S. Rosenbaum, J. A. Rohn, and J. Humburg, “A toolkit for strategic

usability: Results from workshops, panels, and surveys,” in Proc. CHI,

2000, pp. 337-344.

1. Bark, A. Fglstad, and J. Gulliksen, “Use and usefulness of HCI methods:

Results from an exploratory study among Nordic HCI practitioners,” in

Proc. HCI, 2005, pp. 201-217.

[5] Y. G. Ji and M. H. Yun, “Enhancing the minority discipline in the IT
industry: A survey of usability and user-centered design practice,” Int.
J. Hum.-Comput. Interact., vol. 20, no. 2, pp. 117-134, May 2006.

[6] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
Proc. CHI, 1990, pp. 249-256.

[7]1 H. R. Hartson, T. S. Andre, and R. C. Williges, “Criteria for evaluating
usability evaluation methods,” Int. J. Hum.-Comput. Interact., vol. 13,
no. 4, pp. 373-410, Dec. 2001.

[8] W.-P. Brinkman, R. Haakma, and D. G. Bouwhuis, “Empirical usability
testing in a component-based environment: Improving test efficiency with
component-specific usability measures,” in Proc. EHCI-DSVIS, 2005,
vol. 3425, pp. 20-37.

[9] W.-P. Brinkman, R. Haakma, and D. G. Bouwhuis, “Usability evaluation
of component-based user interfaces,” in Proc. IFIP INTERACT, 2001,
pp. 767-768.

[10] E.Chang and T. S. Dillon, “A usability-evaluation metric based on a soft-
computing approach,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 36, no. 2, pp. 356-372, Mar. 2006.

[11] M. Matera, M. F. Costabile, F. Garzotto, and P. Paolini, “SUE inspection:
An effective method for systematic usability evaluation of hypermedia,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 32, no. 1, pp. 93—
103, Jan. 2002.

[12] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton, “Cognitive walk-
throughs: A method for theory-based evaluation of user interfaces,” Int. J.
Man-Mach. Stud., vol. 36, no. 5, pp. 741-773, May 1992.

[13] S. K. Card, T. P. Moran, and A. Newell, The Psychology of
Human—Computer Interaction. London, U.K.: Lawrence Erlbaum,
1983.

[4

=

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



BRINKMAN et al.: COMPONENT-SPECIFIC USABILITY TESTING

[14] D. Kieras and P. G. Polson, “An approach to the formal analysis of
user complexity,” Int. J. Man-Mach. Stud., vol. 22, no. 2, pp. 365-394,
Aug. 1985.

[15] W.-P. Brinkman, R. Haakma, and D. G. Bouwhuis, “Towards an empirical
method of efficiency testing of system parts: A methodological study,”
Interact. Comput., vol. 19, no. 3, pp. 342-356, May 2007.

[16] M. Hertzum, “Component-based design may degrade system
usability: Consequences of software re-use,” in Proc. OZCHI, 2000,
pp. 88-94.

[17] W.-P. Brinkman, R. Haakma, and D. G. Bouwhuis, “Consistency: A factor
that links the usability of individual interaction components together,” in
Proc. ECCE-12, 2004, pp. 57-64.

[18] M. M. Taylor, P. S. E. Farrell, and J. G. Hollands, “Perceptual con-
trol and layered protocols in interface design: II. The general protocol
grammar,” Int. J. Hum.-Comput. Stud., vol. 50, no. 6, pp. 521-555,
Jun. 1999.

[19] R. Haakma, “Towards explaining the behaviour of novice users,” Int. J.
Hum.-Comput. Stud., vol. 50, no. 6, pp. 557-570, Jun. 1999.

[20] W.-P. Brinkman, R. Haakma, and D. G. Bouwhuis, “Memory load: A fac-
tor that links the usability of individual interaction components together,”
in Proc. HCI, 2004, vol. 2, pp. 165-168.

[21] B. E. John, L. Bass, M.-I. Sanchez-Sequra, and R. J. Adams, “Bringing
usability concerns to design of software architecture,” in Proc. EHCI-
DSVIS, 2005, vol. 3425, pp. 1-19.

[22] C. Gram and G. Cockton, Design Principles for Interactive Software.
London, U.K.: Chapman & Hall, 1996.

[23] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80,” J. Objected-Oriented
Program., vol. 1, no. 3, pp. 27-49, Aug./Sep. 1988.

[24] J. Coutaz, “PAC, an object oriented model for dialog design,” in Proc.
IFIP INTERACT, 1987, pp. 431-436.

[25] F. Paternd, Model-Based Design and Evaluation of Interactive Applica-
tions. London, U.K.: Springer-Verlag, 2000.

[26] C.S. Carver and M. F. Scheier, On the Self-Regulation of Behavior.
York: Cambridge Univ. Press, 1998.

[27] W.T. Powers, Behavior: The Control of Perception.
1973.

[28] P. S. E. Farrell, J. G. Hollands, M. M. Taylor, and H. D. Gamble, “Per-
ceptual control and layered protocols in interface design: I. Fundamen-
tal concepts,” Int. J. Hum.-Comput. Stud., vol. 50, no. 6, pp. 489-520,
Jun. 1999.

[29] W.-P. Brinkman, “Is usability compositional?” Ph.D. dissertation, Tech-
nische Univ. Eindhoven, Eindhoven, The Netherlands, 2003.

[30] D.C.Howell, Statistical Methods for Psychology, Sthed. London, U.K.:
Duxbury, 2001.

[31] W. D. Coleman, R. C. Williges, and D. R. Wixon, “Collecting detailed
user evaluations of software interfaces,” in Proc. 29th Annu. Meeting
Hum. Factors Soc., 1985, pp. 240-244.

[32] W.-P. Brinkman, R. Haakma, and D. G. Bouwhuis, “The theoretical
foundation and validity of a component-based usability questionnaire,”
in Behav. Inf. Technol. to be published.

[33] F. D. Davis, “Perceived usefulness, perceived ease of use, and user accep-
tance of information technology,” MIS Q., vol. 13, no. 3, pp. 319-340,
Sep. 1989.

[34] W.J. Doll, A. Hendrickson, and X. Deng, “Using Davis’s perceived use-
fulness and ease-of-use instruments for decision making: A confirmatory
and multigroup invariance analysis,” Decis. Sci., vol. 29, no. 4, pp. 839—
869, Sep. 1998.

[35] J. R. Lewis, “IBM computer usability satisfaction questionnaires: Psycho-
metric evaluation and instructions for use,” Int. J. Hum.-Comput. Interact.,
vol. 7, no. 1, pp. 57-78, Jan.—Mar. 1995.

[36] G.J. Shaw, “User satisfaction in group support systems research: A meta-
analysis of experimental results,” in Proc. 31st Syst. Sci., 1998, vol. 1,
pp. 369-369.

[37] S. Hanque and S. Srinivasan, “A meta-analysis of the training effective-
ness of virtual reality surgical simulators,” IEEE Trans. Inf. Technol.
Biomed., vol. 10, no. 1, pp. 51-58, Jan. 2006.

[38] J. Miller, “Can results from software engineering experiments be safely
combined?” in Proc. Softw. Metrics Symp., 1999, pp. 143-151.

[39] W. Hayes, “Research synthesis in software engineering: A case for meta-
analysis,” in Proc. Softw. Metrics Symp., 1999, pp. 143-151.

[40] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed.
New York: Academic, 1988.

[41] T. K. Landauer, “Behavioral research methods in human—computer inter-
action,” in Handbook of Human—Computer Interaction, M. G. Helander,
T. K. Landauer, and P. V. Prabhu, Eds. Amsterdam, The Netherlands:
Elsevier, 1997, pp. 203-227.

New

Chicago, IL: Aldine,

1155

[42] E. Erdfelder, F. Faul, and A. Buchner, “GPOWER: A general
power analysis program,” Behav. Res. Methods Instrum. Comput., vol. 28,
pp. 1-11, 1996.

[43] R. C. Thomas, Long Term Human—Computer Interaction: An Exploratory
Perspective. London, U.K.: Springer-Verlag, 1998.

[44] 1. McLeod, H. Evans, P. Gray, and R. Mancy, “Instrumenting bytecode for
the production of usage data,” in Proc. CADUI, 2005, pp. 185-196.

[45] P. M. Sanderson and C. Fisher, “Exploratory sequential data analysis:
Qualitative and quantitative handling of continuous observational
data,” in Handbook of Human Factors and Ergonomics, 2nd ed.,
G. Salvendy and E. Chichester, Eds. New York: Wiley-Interscience,
1997, pp. 1471-1513.

[46] A. Lecerof and F. Paterno, “Automatic support for usability evaluation,”
IEEE Trans. Softw. Eng., vol. 24, no. 10, pp. 863-888, Oct. 1998.

[47] M. Hertzum and N. E. Jacobsen, “The evaluator effect: A chilling fact
about usability evaluation methods,” Int. J. Hum.-Comput. Interact.,
vol. 13, no. 4, pp. 421-443, Dec. 2001.

[48] R. Molich, M. R. Ede, K. Kaasgaard, and B. Baryukin, “Comparative
usability evaluation,” Behav. Inf. Technol., vol. 23, no. 1, pp. 65-74,
Jan./Feb. 2004.

[49] A. Seffah and E. Metzker, “The obstacles and myths of usability and
software engineering,” Commun. ACM, vol. 47, no. 12, pp. 71-76,
Dec. 2004.

[50] N. A. Stanton and M. S. Young, “What price ergonomics?” Nature,
vol. 399, no. 6733, pp. 197-198, May 20, 1999.

Willem-Paul Brinkman received the B.Sc. degree
in information technology from the Hogeschool
Eindhoven, Eindhoven, The Netherlands, in 1995
and the M.Sc. degree in technology and society
and the Ph.D. degree from the Technische Uni-
versiteit Eindhoven, Eindhoven, in 1998 and 2003,
respectively.

Since 2007, he has been an Assistant Professor
with the Mediamatics Department, Delft University
of Technology, Delft, The Netherlands. He is cur-
rently also an Associate Researcher with Brunel
University, Uxbridge, U.K. His research interests are in the area of the human—
computer interaction and e-learning.

Dr. Brinkman is currently a board member of the European Association of
Cognitive Ergonomics and a member of the program committee of British Com-
puter Society Human Computer Interaction (BCS HCI) conference 2005-2008.

Reinder Haakma received the M.Sc. degree in elec-
trical engineering from the University of Twente,
Enschede, The Netherlands, in 1985 and the Ph.D.
degree from the Technische Universiteit Eindhoven,
Eindhoven, The Netherlands, in 1998.

He is currently the Department Head with the
Media Interaction Department, Digital Lifestyle
Technology Sector, Philips Research Laboratories
Eindhoven, Eindhoven, where he has been since
1986. From 1990 to 1995, he was a Scientist with
the Center for Research on User-System Interaction
(IPO), Eindhoven. Between 1995 and 1997, he was a Visiting Scientist at
Philips Research, Briarcliff Manor, NY. His research interests include usable
and dependable systems.

Don G. Bouwhuis received the degree in psychology
from the University of Nijmegen, Nijmegen, The
Netherlands, in 1968.
In 1968, he was with the Institute for Percep-
i tion Research (IPO), Eindhoven, The Netherlands,
‘ where he was involved in product ergonomics
and in product preference scaling models. Since
1988, he has been a Full Professor of technical
psychonomics with the Department of Technology
Management, Technische Universiteit Eindhoven,
Eindhoven. Since 2001, he has been the Scientific
Director for user—system interaction research at the J. F. Schouten School,
Eindhoven. He is currently the Editor of the journal Gerontology and is a mem-
ber of the editorial board of the journal Universal Access in the Information
Society.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:26:27 UTC from IEEE Xplore. Restrictions apply.



