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Abstract

Repository mining researchers have successfully applied machine learning in a variety of scenarios.
However, the use of deep learning in repository mining tasks is still in its infancy. In this thesis, we
describe the advantages and disadvantages of using deep learning in mining software repository re-
search and demonstrate these by doing two case studies on pull requests. In the first, we train neural
models to predict, on arrival, whether a pull request is going to be merged or not. In the second,
we train neural models to answer the question: given two pull requests, are these similar? We show
that using neural models, researchers are able to avoid feature engineering, because these models
can be trained on raw data. Furthermore, neural models have the potential to outperform traditional
supervised machine learning models, due to being able to learn relevant features by themselves. How-
ever, the power of neural models comes at a cost: optimizing the parameters of neural models and
explaining neural models is difficult and training them is costly. We, therefore, recommend researchers
to take into account well performing neural architectures in other domains, such as natural language
processing, before creating novel architectures. Furthermore, it is therefore important to include a less
costly baseline when using neural models in research, to show that the power and thereby the cost of
neural models is justified.
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1
Introduction

Traditionally, research on neural networks was confined by hardware limitations and the absence of
large labeled datasets. In the recent years, advances in hardware, mainly Graphics Processor Units
(GPUs), along with the availability of large labeled datasets such as ImageNet [1], have enabled re-
searchers to train neural networks at an unprecedented scale, mainly by stacking more learning layers
in sequence. Multiple variations of these so-called Deep Neural Networks (DNNs) [2] have been suc-
cessfully applied on high dimensional data ranging from images to music and, by uncovering latent
non-linear relationships, they have achieved record breaking performance in tasks such as image clas-
sification [3] and speech recognition [4]. All of these variations fall under the umbrella term deep
learning. Recently, deep learning is also being applied with increasing success in research fields such
as Natural Language Processing (NLP), special cases of which are also of interest to software engineer-
ing researchers [5, 6].

A particularly interesting feature of DNNs is that they can consume raw data (or data with minor
pre-processing), such as text, images or bit sequences and infer the discriminating characteristics
automatically, as part of their training step. In traditional supervised machine learning, the vast majority
of the researchers’ time and creative effort is spent on cleaning up the data and inventing or inferring
features that can be used to predict the outcome, a task refereed to as feature engineering. Given
enough diverse data, DNNs help researchers in uncovering interesting relationships in the data without
resorting to feature engineering; they may even help in uncovering relationships that humans may not
foresee.

Figure 1.11 shows a comic published by XKCD on the 24th of September 2014, which displays the
general consensus at that time: recognizing objects in images is an extremely difficult computer science
task. However, in May 2015 Google released the Google Photos2 service which uses deep learning to
solve this previously difficult task at scale. Nowadays even a television company is able to create an
image classifier with high accuracy with ease3. These examples show how the power of deep learning
is changing the world.

1.1. Motivation
The Mining Software Repositories (MSR) research field has as goal extracting valuable information
form the rich data that can be found in software repositories, for example GitHub4 and other relevant
datasources such as bugtrackers, documentation and mailing lists, but also fora discussing software
engineering such as Stack Overflow5. Using this information, researchers can empirically investigate
the software development process and thereby validate software development methodologies, discover
trends and develop tools that improve various facets of software development. The main goal of this
research field is to make software development easier and to improve the quality of developed software.

1https://xkcd.com/1425/
2https://photos.google.com/
3https://medium.com/@timanglade/ef03260747f3
4https://www.github.com/
5https://www.stackoverflow.com/
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2 1. Introduction

Figure 1.1: Comic published by XKCD on the 24th of September 2014

The datasources used in MSR research mostly consist of unstructured data, such as source code
and text. This data has to be processed before it can be analyzed. To be able to extract information
from this unstructured data, repository mining researchers have successfully applied machine learning
in a variety of scenarios. However, the use of DNNs in repository mining tasks is still in its infancy.

DNNs have shown promising results in other research fields. DNNs can be trained on raw data
instead of requiring researchers to come up with features. Not only does this save researchers from
lots of effort to find the right features. DNNs may discover features the researcher did not foresee or
features we as humans cannot describe or understand. This may result in models that significantly
outperform the current state of the art, as has been shown in the computer vision field in 2012 [3].
Not only can this result in better performing models, but the trained DNN can also serve as a measure
for the amount of relevant information a piece of data contains.

Additionally, DNNs can make applications possible that have not been possible before. A great
example of this is the ease and accuracy of which it is nowadays possible to recognize objects in im-
ages [7] and even generate new images based on a description [8]. A good example in repository
mining research is the paper by Allamanis et al. [9] where they use DNNs to summarize the func-
tionality of a method based on source code. Furthermore, DNNs open up the possibility for research
on unstructured artifacts, such as diagrams. In this thesis, we attempt to make repository mining
researchers aware of the promises and perils of using DNNs in repository mining research.

Due to a large part of the data relevant to repository mining researchers consisting of natural
language and Hidle et al. [10] showing that source code, like natural languages, is likely to be repetitive
and predictable, we take inspiration from the NLP research field for the neural models we use in this
thesis.

1.2. Research question & approach
Given the context described in section 1.1, this thesis serves to answer the research question:

RQ What are the benefits and perils of using deep learning in repository mining research?

We answer the research question stated above by performing two case studies on pull requests sub-
mitted on GitHub. The first study is a replication of the existing research by Gousios et al. [11] in which
the authors try to predict whether a pull request, on arrival, is going to be merged or not. In this
replication we show that our DNN is able to extract more information from raw data than the original
model using engineered features based on the same data. The second is a new research in which we
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use DNNs to automatically collect labeled training data and train DNNs to answer the question: given
two pull requests, are these similar or not. The two case studies serve as examples of how DNNs can
be incorporated into repository mining research.

1.3. Outline
This thesis consists of 7 chapters. We first describe the required background information and related
work in chapter 2. In chapter 3 we then compare deep learning with manual feature engineering
in solving the merge prediction task. Subsequently, in chapter 4 we use deep learning techniques
to create classifiers that are able to recognize whether two PRs are similar or not. In chapter 5 we
explain, based on our experiences during this thesis, some disadvantages one has to keep in mind
when considering the use of neural models. In chapter 6 we discuss future work and finally, in chapter
7 we finish this thesis with a conclusion.





2
Background and related work

In this section we explain the required background knowledge and describe the related work. We first
explain the concept of pull requests. Then we explain the deep learning technology we use in this
thesis and describe how deep learning is being used in NLP and the MSR research field.

2.1. Pull requests
Pull-based development is becoming increasingly popular as a distributed software paradigm. Especially
open-source projects are embracing it by migrating to (social) repository hosting services such as
GitHub and Bitbucket [12]. These services allow any user to fork a public repository, which creates
a new public repository owned by this user. The user can then modify the repository and submit the
changes to the original repository. This submission is called a pull-request (PR). Repository owners can
then either decide to accept the PR by merging it, discuss the PR by placing a comment or reject the
PR by closing it.

When submitting a PR on GitHub, in addition to the commits that contain the changes the PR is
making, users are asked to provide a title and optionally a description. Other users can discuss the PR
by leaving comments.

Gousios et al. [13] show that 53% of non-merged PRs are rejected for reasons related to the
distributed nature of pull-based development, such as not following the PR conventions of a project or
implementing a feature te project not (yet) needs. Only 13% of the PRs are not merged because of
technical reasons. Furthermore, they conclude that the merge or not merge decision is mainly affected
by whether the pull request modifies recently modified code.

Kalliamvakou et al. [14] mention that only a fraction of projects uses pull requests. Furthermore,
most pull requests appear as non-merged even if they are merged, since not all PRs are merged using
the GitHub interface. PRs that are not merged using the GitHub interface, are not recognized as merged
by GitHub. Therefore they recommend the use of a list of heuristics to check if a PR is merged or not.

van der Veen et al. [15] mention that repository owners have to invest lots of time to manage
open PRs and that GitHub is lacking tools to effectively prioritize them. They therefore use traditional
machine learning techniques to automatically prioritize PRs.

2.1.1. Anatomy of a pull request
When submitting a PR on GitHub users are asked to provide a title that describes the modification the
user is submitting in a few words. Optionally, a description can be added that describes the PR in
more detail. This description is written in Markdown and can thus contain simple markup and images.
Furthermore, it can contain references to issues and other PRs as shown in figure 2.1.

Every GitHub user is able to comment on a PR. This can for example be used to suggest improve-
ments, request more explanation or explain why a PR is not going to be merged. Like the description,
comments are written in Markdown. An example of a GitHub discussion is shown in figure 2.2.

The modifications of a PR can be submitted in one or multiple git commits. Based on these commits
a unified diff patch file1 is generated, which shows the changes the PR is making. An example of such
1https://git-scm.com/docs/diff-format

5
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6 2. Background and related work

Figure 2.1: Example of a submitted PR.

Figure 2.2: Example of a discussion about a PR that contains references to another PR.
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a diff file is shown in Listing 1.

diff --git a/keras/callbacks.py b/keras/callbacks.py
index 42f1573c83..d42ea589e7 100644
--- a/keras/callbacks.py
+++ b/keras/callbacks.py
@@ -399,7 +399,7 @@ def on_epoch_end(self, epoch, logs=None):

self.epochs_since_last_save = 0
filepath = self.filepath.format(epoch=epoch, **logs)
if self.save_best_only:

- current = logs.get(self.monitor)
+ current = logs.get(self.monitor)[-1]

if current is None:
warnings.warn('Can save best model only with %s available, '

'skipping.' % (self.monitor), RuntimeWarning)
@@ -488,7 +488,7 @@ def on_train_begin(self, logs=None):

self.best = np.Inf if self.monitor_op == np.less else -np.Inf

def on_epoch_end(self, epoch, logs=None):
- current = logs.get(self.monitor)
+ current = logs.get(self.monitor)[-1]

if current is None:
warnings.warn('Early stopping requires %s available!' %

(self.monitor), RuntimeWarning)
diff --git a/keras/utils/generic_utils.py b/keras/utils/generic_utils.py
index 76477d5ac3..5d224d7492 100644
--- a/keras/utils/generic_utils.py
+++ b/keras/utils/generic_utils.py
@@ -289,10 +289,16 @@ def update(self, current, values=None, force=False):

info += ' - %s:' % k
if isinstance(self.sum_values[k], list):

avg = self.sum_values[k][0] / max(1, self.sum_values[k][1])
- if abs(avg) > 1e-3:
- info += ' %.4f' % avg
+ if isinstance(avg, float):
+ if abs(avg) > 1e-3:
+ info += ' %.4f' % avg
+ else:
+ info += ' %.4e' % avg

else:
- info += ' %.4e' % avg
+ if abs(avg[-1]) > 1e-3:
+ info += ' %.4f' % avg[-1]
+ else:
+ info += ' %.4e' % avg[-1]

else:
info += ' %s' % self.sum_values[k]

Listing 1: Example of a diff file.

A diff file contains a segment for each file that is changed. This segment starts with information
about the file being changed, such as the original file name and, when a file is renamed, the new file
name.

Subsequently, the changes to the contents of the file are reported in the form of hunks, where
a hunk shows an area where the file is changed. A hunk starts with a hunk header, which contains
information about the location of the changes in the file. This header is indicated by a line that starts
with ”##”. After this hunk header, the changes are reported. A line that starts with a single ”-”
denotes a removed line, while a single ”+” denotes an added line. When a line is partially changed,
this is shown by the removal of the original line and addition of a new line including the change. The
neighboring lines of an added or removed line are shown to provide context. These lines do not start
with a symbol.

2.2. Deep learning
In supervised machine learning, instead of programming a computer manually, it is shown examples of
inputs and outputs using which it learns how to produce the outputs based on those inputs by creating
a statistical model. Traditionally, the process of training a machine learning model consists of a feature
engineering step. During this step, the researcher or engineer manually devises and extracts features
from the raw data that they think are predictive for the problem the machine learning model is planned
to solve. These features are then fed as input to the machine learning model, which learns to recognize
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patterns in these features. Feature engineering is considered difficult, time-consuming and requires
domain knowledge.

Deep learning takes a different approach: a neural network consisting of multiple layers is trained
on raw data. The first layer, given as input the raw data, learns to extract low-level features, such as
the edges in an image. The next layer combines these low level features forming higher-level features.
Eventually, this results in later layers recognizing high-level features such as objects in images. Instead
of relying on the domain knowledge of humans, deep learning models learn to recognize important fea-
tures themselves skipping the feature engineering step. Besides resulting in less manual work, these
models are capable of learning features that are superior to the features devised by humans result-
ing in better performing models compared to traditional machine learning models. The use of more
layers generally results in better performing models [7], hence the name deep learning. Compared to
traditional machine learning models, deep learning models have an enormous number of parameters.
Deep learning models, therefore, in general, need larger datasets to be trained successfully.

2.2.1. Feedforward neural network
A neural network consists of neurons organized in interconnected layers that form a graph. A neuron
receives one or multiple inputs and produces an output which is calculated using the following formula:

𝑦 = 𝑓(
፧

∑
።ኻ
𝑎። ⋅ 𝑥። + 𝑏) (2.1)

The neuron first calculates a weighted sum of the inputs using the weights 𝑎። for each input 𝑥።. Then it
adds a bias 𝑏 and applies an activation function 𝑓(𝑥). The weights 𝑎። and the bias 𝑏 are adjustable and
are learned by training the network. The activation function 𝑓(𝑥) is a non-linear differential function.
The non-linearity of the activation functions ensures that the neural network is able to approximate non-
linear functions. If 𝑓(𝑥) was linear, the neural network could only approximate linear functions. The
differential property of 𝑓(𝑥) is used during training of the neural network. Frequently used activation
functions are:

ReLU 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

tanh 𝑓(𝑥) = (𝑒፱ − 𝑒ዅ፱)/(𝑒፱ + 𝑒ዅ፱)

sigmoid 𝑓(𝑥) = 1/(1 + 𝑒ዅ፱)

ReLU is currently the recommended activation function [16], due to its computational efficiency and
the fact that it does not suffer from vanishing gradients.

In the most simple neural model, a feedforward neural network (FFNN), the neurons in layer 𝑛 are
connected to all neurons in layer 𝑛 + 1. Information flows from the first layer, receiving the input,
through all layers to the last layer that produces an output. Instead of calculating the output of each
neuron individually the output of layer 𝑛 in a feedforward neural network can be calculated using the
following formula:

𝑦፧ = 𝑓(𝑊፧ ⋅ 𝑦፧ዅኻ + 𝑏፧) (2.2)

Here 𝑦፧ ∈ ℝ፤ and 𝑦፧ዅኻ ∈ ℝ፣ are vectors representing the output of respectively layer 𝑛 and 𝑛 − 1
containing 𝑘 and 𝑗 neurons, 𝑊፧ ∈ ℝ፤×፣ is a matrix containing all weights of the neurons in layer 𝑛,
𝑏፧ ∈ ℝ፤ is a vector containing all biases of the neurons in layer 𝑛 and 𝑓(𝑥) is the activation function.
A feedforward neural network learns to approximate a function 𝑦 = 𝑓(𝑥) where 𝑥 and 𝑦 are fixed size
vectors. The tunable hyperparameters of this model are the number of layers, the number of neurons
for each layer and the activation function.

2.2.2. Recurrent neural network
Feedforward neural networks are only able to handle inputs of fixed size and produce outputs of fixed
size. Instead of accepting one input of fixed size, Recurrent neural networks (RNNs) step over a
sequence of inputs of fixed size and produce an output during each step, resulting in a sequence of
outputs. Each layer in an RNN cycles its output back into that same layer which uses it in the next
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Figure 2.3: Convolutional layer sliding over an image. Units of the same color have tied weights and units of different color
represent different filter maps.2

step. This acts as a memory of not only the previous step, but all steps before that. The output of a
layer in an RNN can thus be calculated using the following adaption of equation 2.1:

𝑦፭,፧ = 𝑓(𝑊፧ ⋅ 𝑦፭,፧ዅኻ + 𝑈፧ ⋅ 𝑦፭ዅኻ,፧ + 𝑏፧) (2.3)

Here 𝑦፭,፧ ∈ ℝ፤ is the output of layer 𝑛 during step 𝑡. 𝑈፧ ∈ ℝ፤×፤ contains the weights of the feedback
loop of layer 𝑛. RNNs can be used in multiple modes:

One to many By repeatedly feeding an RNN the same input and collecting each output.

Many to one By feeding an RNN a sequence of inputs and collecting only the last output.

Many to many By feeding an RNN a sequence of inputs and hcollecting each output.

Vanilla RNNs are not used in practice; the Long short-term memory (LSTM) and Gated Recurrent
Unit (GRU) [17], are improved implementations of an RNN using a slightly different architecture. Both
have been shown to perform comparable, but the GRU is slightly more efficient due to using fewer
calculations.

The tunable hyperparameters of the GRU and LSTM are the number of layers and the number
of neurons for each layer. The GRU and LSTM both have fixed activation functions as part of their
architecture.

2.2.3. Convolutional neural network
Convolutional Neural Networks [3, 18] (CNNs) have initially been developed as a more efficient way of
processing images compared to using regular feedforward neural networks, since these do not scale
well when used for image processing. A convolutional layer consists of multiple so-called filters that
process the pixels of an image by sliding over parts of it. For each part of the image, an output is
generated. These filters, sometimes also called feature maps, learn to recognize location invariant
features. By stacking multiple convolutional layers, models can be created that learn to recognize
high-level features in images [3, 7, 19]. Figure 2.3 illustrates a convolutional layer with as input an
image.

After the success in image processing, CNNs have been shown to be successful in multiple NLP
tasks [20, 21]. In the context of NLP, CNNs can be interpreted as learning to recognize the most
relevant n-grams in sequences in a more efficient manner than n-gram models do. Instead of sliding
over the pixels of an image, in NLP a filter slides over words or characters of a sentence. The output
of a convolutional layer can be calculated using the following equation:

𝑦፧ = 𝑓(𝑊፧ ⋅ 𝑦፧ዅኻ[𝑖 − 𝑓𝑙𝑒𝑛 ∶ 𝑖] + 𝑏፧) (2.4)

2http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
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Here 𝑦፧ is the output of layer 𝑛 and consists of a sequence of vectors. In the first layer, each vector
𝑣 ∈ ℝ፞፦ is a vector representation of a word or a character. 𝑊 is a tensor of rank-3𝑊 ∈ ℝ፟፧፮፦,፟፥፞፧,፞፦
which contains trainable weights, where 𝑓𝑛𝑢𝑚 and 𝑓𝑙𝑒𝑛 are the number of filters and the length of
these filters respectively. 𝑓 is a non-linear activation and 𝑏 ∈ ℝ፟፧፮፦ is a trainable bias. Kim [22]
proposes a simple general purpose CNN architecture that can be used for NLP tasks, which we use in
this thesis. An advantage of this model compared to an LSTM or GRU is that CNNs process a sequence
in parallel, whereas LSTMs and GRUs do this sequentially. Empirical research [23] has shown that
both have comparable performance: LSTMs and GRUs perform better when the whole sequence or
a long-range semantic dependency is important for making a prediction. On the other hand, CNNs
perform well on tasks that require identification of important key parts of a sequence. The tunable
hyperparameters of a convolutional layer in NLP are: the number of filters per layer and the length of
each filter. Multiple convolutional layers can be stacked on top of each other, but Kim only uses one
layer.

2.2.4. Siamese neural network
A siamese neural network [24] is a neural network that has two identical subnetworks which accept
distinct inputs and are joined later in the network. These subnetworks share the same architecture
and weights. Such an architecture can, for example, be used to compare two inputs. This architecture
has two favorable properties [25]:

• Two similar inputs are not mapped to completely different locations in vector space, since they
are processed by the same function.

• The network is symmetric, such that two inputs result in the same output independent of in which
order the inputs are presented.

2.2.5. Training neural networks
During training, a neural network is shown a training set containing inputs labeled with the output
the neural network should produce. The neural network takes each input and calculates an output by
feeding it through all layers. Then a loss function calculates the error between the output the neural
network should produce and actual output. For each weight and bias in the neural network, the partial
derivative is calculated with respect to the loss function. Using these partial derivatives, the biases
and weights are adjusted to minimize the loss function. This algorithm is called stochastic gradient
descent (SGD). However, calculating all these partial derivatives individually is inefficient. Therefore an
optimized implementation, called backpropagation [26], is used that uses the chain rule to propagate
the partial derivatives from the end of the neural network to the beginning. During training a neural
network is shown the training set multiple times. Such a training round is called an epoch.

Multiple improvements have been made based on the standard SGD, resulting in numerous co-
existing advanced optimizing algorithms. These improvements have shown to make neural networks
learn faster, reach better results and be more robust with respect to the choice of hyperparameters [27].
Which algorithm to choose depends on the dataset, the neural architecture and the task the neural
network has to solve. Therefore, most of the time this choice is based on experience and intuition,
as is the case with choosing many hyperparameters while training neural networks. In this work we
use the RMSprop [28] and Adam [29] algorithms based on many research papers that came before
us [30, 31].

Cross validation is a commonly used validation technique to assess the quality of a statistical model.
The main reason for using cross validation is to ensure that enough data is available to train and test the
model. Due to the large datasets on which neural networks are trained and the fact that neural networks
are very costly to train, cross validation is considered unnecessary. Instead, a training-validation-test
split is used. Hyperparameter optimization is done by training on the training set and assessing the
performance of the network on the validation set. After choosing the right hyperparameters, the
network is tested on the test set. Apart from choosing the hyperparameters, the validation set can
also be used to decide when to stop training, which is called early stopping. In that case, training is
stopped when performance has not improved, measured on the validation set, for 𝑋 epochs. In both
cases, the validation set is used to prevent using knowledge about the test set to optimize the network.

Due to the large number of trainable parameters, neural network sometimes memorize the data in
a training set instead of learning to generalize. This problem is called overfitting and can be caused
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by using too many neurons, using too many layers or having not enough training data. Dropout [32]
partially solves this problem by turning each neuron in a layer off with probability 𝑝 during training.
When a neuron is turned off it is temporarily removed from the network. This prevents neurons from co-
adapting, because neurons cannot rely on other neurons in the same layer being active; They therefore
learn more robust feature representations. Using a higher probability 𝑝 results in a longer training time
but can lead to better results. One therefore has to find a compromise between training time and
results. Furthermore, the capacity of a neural network is reduced by using dropout. The authors of
[32] advise setting the number of neurons in a layer to 𝑛/𝑝 where 𝑛 is the estimated optimal number
of neurons in that layer and to increase the learning rate of the optimizing algorithm by 10 to 100 times
compared to the optimal learning rate for a standard neural network. Typical values of 𝑝 range from
0.2 to 0.5.

2.3. Deep learning in natural language processing
An immensely large amount of research has been done on using deep learning in natural language
processing (NLP). Neural models have been trained to solve problems such as sentiment analysis [33,
34], machine translation [35, 36] and question answering [37, 38]. Often, these models are general
purpose models that in essence accept as input a list of vectors and generate as output a decision, a
feature vector representation or another sequence of items. In this thesis we use two preprocessing
techniques, Word2Vec and Doc2Vec, that have been successfully used to solve NLP problems. In this
section we describe these techniques.

2.3.1. Word2Vec
Word2Vec [39] is a commonly used unsupervised pre-training method in NLP which maps words to
vectors, also called word embeddings. Each word is placed in the vector space such that words that
have the same or similar meaning are placed close together. The learned vectors have been shown to
capture semantical relationships, such as the following: 𝑉𝑒𝑐(”𝐾𝑖𝑛𝑔”)−𝑉𝑒𝑐(”𝑀𝑎𝑛”)+𝑉𝑒𝑐(”𝑊𝑜𝑚𝑎𝑛”) ≈
𝑉𝑒𝑐(”𝑄𝑢𝑒𝑒𝑛”).

Word2Vec consists of two models: Continous Bag Of Words (CBOW) and Skip-gram. CBOW trains a
shallow neural network to predict a word given the context of that word. Skip-gram does the opposite
and trains a shallow neural network to predict a context given a word. Mikolov et al [39] mention
that CBOW trains faster, but Skip-gram works better for small datasets and improves accuracy on
less frequent words. Both models build upon the distributional hypothesis, which states that words
appearing in similar contexts, tend to have similar meaning [40].

It has been shown that pre-training with Word2Vec improves performance on multiple NLP prob-
lems [22] compared to initializing the word to vector mapping randomly and modifying it during training.

Nguyen et al. [41, 42] demonstrate that Word2Vec can also be used for mapping API elements from
one programming language to another. Furthermore, Word2vec is even applicable in the context of
biological sequences [43]. These results show that Word2Vec has the potential to be useful in domains
other than NLP, such as code.

2.3.2. Doc2Vec
Paragraph vectors [44], better known as Doc2Vec, is an extension of Word2Vec which maps a whole
document to vector space instead of individual words. The method consists of two models: Distributed
Bag of Words (PV-DBOW) and Distributed Memory (PV-DM).

The PV-DBOW model trains a shallow neural network to predict randomly sampled words from a
document based on the vector representing that document. This is similar to the Skip-gram model of
Word2Vec. The PV-DM model is similar to the CBOW model of Word2Vec, but also uses a paragraph
token, which represents the rest of the paragraph, in addition to the context of a word to predict that
word. These contexts are randomly sampled from a fixed length sliding window over said paragraph.

The authors focus on modeling text in their work, but they expect Doc2Vec to be applicable to
sequential data in general. It is this generalizability that motivates our choice for using Doc2Vec in this
thesis.
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2.4. Deep learning in repository mining research
Although it is a relatively new concept, several studies have been using deep learning in repository min-
ing research. White et al. [45] make a case for deep learning in repository mining research by applying
deep learning to the code completion task and show that their approach, using RNNs, outperforms
traditional n-gram models.

White et al. [46] use a combination of RNNs and recursive neural networks to do clone detection
and show that the resulting model is able to detect clones that are undetected or suboptimally reported
by the tool Deckard.

Gu et al. [47] use an RNN Encoder-Decoder model, similar to those used in machine translation,
to transform a natural language query into a sequence of API calls that performs the requested task.
They train on a dataset that contains 7 million <API sequence, annotation> pairs collected from Java
projects by pairing each first line of a javadoc comment with the code in the corresponding method.

Wang et al. [48] employ a Deep Belief Network for the task of defect prediction. They report the
performance of their models on within-project defect prediction and cross-project defect prediction on
a already existing dataset. They show that their models improve on both compared to the state of the
art.

Gupta et al. [49] apply an RNN Encoder-Decoder model based on GRUs to fix common mistakes in
the C programs written by students. Their model is able to fix 27% of the programs completely and
19% of the programs partially.

Lam et al. [50] use DNNs in combination with an information retrieval technique called rVSM to
localize buggy files for bug reports. Huo et al. [51] accomplish better results on the same problem
by extracting features from bug reports and code using CNNs and fusing this information using a
feedforward neural layer.

Allamanis et al. [52] train neural models to suggest class, method and variable names. Similarly,
Allamanis et al. [9] use CNNs for summarizing source code snippets into short descriptive function
names. They use the name of a method as a summary for the code in that method.

Jiang et al. [53] train a RNN Encoder-Decoder model to generate a commit message based on a
diff. They find that their model tends to generate commit messages of either very high quality or very
low quality.
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Predicting pull request merge

decisions

To evaluate how the deep learning approach of avoiding the feature engineering step performs in a
typical software engineering task, we conduct a benchmark between a neural network and Random
Forest, a state-of-the-art non-deep baseline that offers high explainability. The task we choose is pull
request merge prediction: at the time of a pull request arrives to a project, can we predict whether it will
be merged? We choose this particular task as it has been explored several times in the past [11, 54, 55],
while a human-engineered dataset is readily available [56].

We explore two models, both using a LSTM architecture: Model 1 only receives the diff as input
(without any further processing), while Model 2 receives the diff, the title and the description of the
pull request.

For our baseline, we employ a subset of the features described by Gousios et al. in reference [11].
To make the comparison fair, we only employ all the features that can be generated from the data
that is also the input to our DNN. More elaborate features that take into account the developer’s track
record, the hotness of the project area that the PR is targeting or the state of the project’s code base
are removed, as they require data not available to the DNN.

3.1. Data
We use an updated version of the pull request dataset by Gousios and Zaidman [56] as a starting point
for our experiments. The dataset contains the data of 915,000 GitHub pull requests originating from
5,543 projects in 5 languages. The dataset was compiled in late 2015.

Since more than 85% of the pull requests are merged, the dataset is inherently unbalanced; in terms
of machine learning, this has the undesirable effect that most algorithms will optimize for learning the
majority case (i.e., merged). For this reason, we choose to balance the dataset using all cases of the
minority class and an equal number of randomly selected cases of the majority class.1

To train the models, we split the data 80%/20% into a training set and a test set. For our DNNs,
we split the training data once more into a training and validation set (10% of the training data) in
order to minimize overfitting.

For our baseline, we use the dataset as is (as it already contains features extracted from the
raw data); for our DNNs, we download the raw diffs from GitHub using the following URL https:
//www.github.com/{owner}/{repo}/pull/{id}.diff. The PR description texts and titles are
extracted from GHTorrent [57]. For our experiments, we use pull requests from two programming
languages: Java and Ruby — due to their differences in syntax and programming style.

1Gousios et al. also use dataset balancing in their experiments: https://github.com/gousiosg/pullreqs/blob/
master/R/class-mergedecision.R#L90
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Figure 3.1: Overview of pull requests per year in our data set.

3.1.1. Pre-processing
We tokenize the input using two different procedures. The description and title are tokenized using the
default Keras tokenizer2. The diffs are tokenized by first lowercasing and then grouping all consecutive
alphanumeric characters into tokens. Non alphanumeric characters are seen as one token. For example
the following:

int foo_bar1 = ”test”;

is tokenized as

int, foo, _, bar1, =, ”, test, ”, ;

We use this procedure, instead of a regular programming language parser, since a diff also contains
metadata which we incorporate in our research. Furthermore, a PR can contain other sorts of files,
such as documentation in the form of Markdown files.

We then generate a vocabulary of the most frequently occurring 𝑛 tokens exclusively based on pull
requests in the training and validation set. We choose 𝑛 = 50, 000 for the description and diffs as
well as 𝑛 = 10, 000 for titles. These values are chosen because increasing them does not yield better
results.

This finite set of vocabulary terms also means that we have to deal with out-of-vocabulary terms; we
simply remove those, both from the test and the training set. Due to the limited amount of processing
power, we only consider the first 150 tokens of the diff and pull request description and the first 20
tokens of the pull request titles respectively. For the case of Java, the average number of tokens is
5.99 (pull request titles), 33.03 (pull request descriptions) and 32,683.20 (diffs) respectively. 95% of
these diffs have a token count of 38,000 or less.

3.2. Models
As stated before, our two DNN models differ in their input: Model 1 receives only the raw diff, while
Model 2 receives the pull request title and description in addition the diff.

3.2.1. Model 1
Figure 3.2 shows the model’s topology. It consists of an embedding layer followed by an LSTM layer
and finally the output layer which is a simple feedforward layer with a single output neuron (using the
sigmoid activation function) that outputs the classification (merge/no-merge). We employ an LSTM
layer due to its success in natural language processing. LSTMs are well suited to deal with variable

2https://keras.io/preprocessing/text/#tokenizer

https://keras.io/preprocessing/text/#tokenizer
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length input as is the case here. They record an internal state and are thus able to learn long-term
dependencies.

The embedding layer converts the one-hot encoded vector input3, into a dense vector of fixed size.
This mapping is learned during training. One-hot encoding is the most typical way to represent a word
of a vocabulary. Each token of the input is one-hot encoded and presented to the model.

Figure 3.2: Topology of Model 1. Figure 3.3: Topology of Model 2.

3.2.2. Model 2
In addition to the diff, we now also consider the PR title and description, requiring a slight adjustment
of our model. We duplicated the topology of Model 1 three times (as shown in Figure 3.3), with each
input branch being either the diff, the PR title or the PR description. The final output vectors of each
LSTM layer are concatenated and then passed to the output layer.

Each of the LSTMs has an auxiliary output with the same loss function as the main output. These
loss functions are weighted less then the main output and are used to train these LSTMs individually.
This acts as regularization and results in slightly higher accuracy.

3.2.3. Random forest baseline
To train our baseline, we used features that correspond (and were extracted from) the same data that
we fed into the DNN models. Specifically, the model we use to train the Random Forest is the following
(in R notation):

merged ~
# Project language
lang +
# Diff-based features
files_added_open + files_deleted_open +
files_changed_open + src_files_open +
doc_files_open + other_files_open +
src_churn_open + test_churn_open +
new_entropy +
# Description based features
at_mentions_description +
description_length +

3For example, a word in a vocabulary of size 3 can be represented as [ኺ, ኺ, ኻ] using one-hot encoding.
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feature description
lang The programming language the project is mainly written in.
files_added_open Number of new files added in the PR.
files_deleted_open Number of deleted files in the PR.
files_changed_open Number of modified files in the PR.
src_files_open Number of source code files touched in the PR.
doc_files_open Number of documentation (markup) files touched.
other_files_open Number of non-source, non-documentation files touched.
new_entropy The amount of Shannon entropy the code introduces to the code base.
src_churn_open Number of lines changed (added + deleted).
test_churn_open Number of test lines changed.
at_mentions_description Number of mentions in the description.
description_length Length of the PR description.
title_length Length of the PR title.

Table 3.1: Features and their description we use for training the Random Forest baseline

# Title based features
title_length

We describe each feature we use to train the Random Forest baseline in table 3.1.

3.3. Training
In this section we describe how we train the models .

3.3.1. Model 1 & Model 2
We train both models with RMSprop [28] and use dropout [32] on the LSTM and embedding layers,
following good practices in deep learning [58].

Due to the large amount of training time required, we do not perform a grid search through all
possible hyperparameter settings, but settle on common ones: for Model 1 and Model 2 we use a
learning rate of 0.006, a batch size of 150, an embedding size of 500, an LSTM size of 300 and 20%
dropout. In addition, for Model 2 we set the description embedding size to 500 and the title embedding
size to 250; the extra loss functions of the diff LSTM, comment LSTM and title LSTM are weighted as
follows: 0.3, 0.1 and 0.1 respectively. After training he model on 90% of the training data, we employ
the remaining 10% for validation and performed early stopping: training concludes when the validation
loss does not improve for 5 epochs. Note, that (slight) changes in those hyperparameters do generally
not have an effect on the model’s test accuracy.

The training is performed on a workstation featuring 8 cores, 16GB of RAM and an NVIDIA TitanX
Pascal GPU with 12GB of RAM. Training Model 2 for 10 epochs takes approximately half an hour on this
hardware.

3.3.2. Random forest baseline
To train the Random Forest baseline, we use R’s randomForest package. We experiment with various
settings, specifically the number of trees and the number of features per split. We train our baseline
with increasing number of trees and features per split and stop training when the Out Of Box training
error stops improving. In both the Java and the Ruby case, this occurred at around 160 trees and 4
features per tree. We therefore use 200 trees and 4 features as the default configuration for all our
models. For comparison purposes, we also train a Random Forest (which we call RF-full) using the
full set of 40 features, including ones that stem from analyzing developer profiles and the project’s
source code (recall that these features are derived from data not available to our DNNs), available in
the Gousios and Zaidman dataset.

3.4. Experiments
In order to explore different prediction difficulty levels, we run three experiments using the following
split strategies:



3.5. Results 17

Model 1 Model 2 RF RF-full
Random split
Java (𝑛 = 37,944) 0.61 0.63 0.59 0.74
Ruby (𝑛 = 55,004) 0.60 0.62ዄ 0.60 0.72
Time-based split
Java (𝑛 = 34,767) 0.55 0.58ዄ 0.54 0.73
Ruby (𝑛 = 50,525) 0.61 0.63ዄ 0.60 0.75
Project-based split
Java (𝑛 = 37,944) 0.55 0.56 0.57 0.68
Ruby (𝑛 = 55,004) 0.55 0.57 0.58 0.70

Table 3.2: Test accuracy for the three splits of the data and our two DNN models as well as the Random Forest (RF) baseline.
RF-full is the Random Forest trained on the full feature set, instead of only those features derivable from the data the DNN has
access to. Model performances that are significantly better than the RF baseline are annotated with a ዄ

• Random: We randomly sample training and test cases from the dataset.

• Time-based: We order the PRs by submission timestamp, train on the earliest 80% and test on
the remaining 20%. As shown in Figure 3.1, 43% of all pull requests were made in 2015, with
less than half a percent made in 2010. Our training data stems thus from 2010 to the first half
of 2015, while our test data is made up of pull requests from the second half of 2015.

• Project-based: We sample 80% of the projects in the dataset for training and consider the
remaining projects for testing. This requires the learner to infer general patterns about the input
that can be generalized across projects.

3.5. Results
The results of our experiments for the three different splits of the data are shown in Table 3.2, where
we report the accuracy on the respective test set. Due to the balanced nature of the data, a random
baseline will achieve on average an accuracy of 0.5.

We find that all models outperform the random baseline. Model 1 is inferior to both Model 2 and
RF in all cases, which is expected as it is trained using less data than the other two models. Still, even
by discarding almost 95% of the diff data, it is able to perform better than the random baseline. The
comparison between Model 2 and RF is more interesting, where we see that DNNs outperfom RFs in
almost all cases and splits. To confirm that the differences are statistically significant, we perform a
McNemar 𝜒ኼ test between the contingency tables of Model 2 and RF; we find that all differences are
statistically significant at 𝑝 < 0.01, except in the case of the Java random split.

The project-based split creates an almost impossible classification task, given the wealth of literature
indicating that models in software engineering are not generally transferable among projects (see for
example [59]). Indicative is the fact that even the RF-full model performance drops for this task. The
performance of both Model 2 and RF is equally suffering.

3.6. Conclusion
In this case study we trained multiple models to predict whether a PR is going to be merged or not.
We trained a DNN receiving as input the diff of a PR, a DNN receiving as input the title, description
and diff of a PR and a Random Forest using manually engineered features as baseline. The models are
trained using three data split strategies: random, time-based an project-based. The DNNs, processing
only a small portion of the raw data, performed equally well or better than the Random Forest baseline
model in almost all cases. This shows that the raw data contains more information than the researcher
and the Random Forest model are able to capture using the engineered features. The performance of
the DNN improved when we gave it access to the title and description of a PR, which means that those
data sources contain useful information. In traditional machine learning it is possible to find out the
importance of a feature by removing it and retraining the model. The more important the feature, the
more the performance of the model then drops. Unfortunately, currently it is difficult [60], due to the
complexity of DNNs, to extract the features it learned to recognize. However, DNNs can be used to
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gain insight into which data source to investigate, as we have shown in this research by incorporating
diffs, titles and descriptions as data sources.



4
Finding similar pull requests

On GitHub, most PRs are eventually merged (84.73%). A PR can be closed for various reasons, e.g.:
the implementation is not good enough or the PR does not follow the projects conventions. Of all closed
PRs, 25% is not merged because another PR has implemented the same or a similar concept [13]. We
call those PRs similar. The GHTorrent [57] mirror of GitHub contains approximately 29 million PRs.
Based on the numbers above, almost 1.1 million pairs of those PRs should be similar.

One of the top challenges integrators of open source projects face, is prioritizing work, when fac-
ing multiple concurrent pull requests [61]. Automating the process of finding similar PRs could help
integrators prioritize PRs by reducing the noise of multiple PRs implementing the same concept. Ad-
ditionally, by linking similar PRs we can point contributors to relevant information, such as alternative
implementations and earlier discussions about the implemented concept.

We define the problem of finding similar PRs as a binary classification problem: given two PRs, are
these PRs similar or not? We consider this task interesting, because it requires domain knowledge of
the respective project to solve and we therefore consider it a hard task for humans and for computers.
Furthermore, to our knowledge, this is the first study that addresses this problem.

PRs can contain multiple types of files, such as source code and documentation. The source code
can be written in a multitude of programming languages. As mentioned in the introduction of this
thesis, Hidle et al. [10] show that source code, like natural languages, is likely to be repetitive and
predictable. Inspired by this work, we process the information in a PR, including source code, by
training models that have shown to perform well on NLP problems. Specifically, we use Word2Vec and
Doc2Vec as pretraining techniques and train a siamese convolutional neural network on top of the first
and a feedforward neural network and XGBoost on top of the latter. We train these models to predict
whether two PRs are similar based on the diffs, the titles and the descriptions of a pair of PRs.

4.1. Data
To be able to train machine learning models we need examples of similar PRs and non-similar PRs.
In this section we first explain which methodology we use for collecting similar and non-similar PRs.
Then we show how we manually evaluate the quality of the collected data and finally we describe an
analysis of the gathered data.

4.1.1. Construction
When a PR is closed the reason is often specified in the corresponding comments. If it is closed because
of the existence of a similar PR, this is specified with a reference to said PR. For example:

closing in favor of the duplicate #961
explains that this PR is closed because the PR with identifier 961 is a duplicate of this PR. This syntax
is also used for referring to issues instead of PRs, since GitHub models PRs and issues as the same
concept internally. We use the existence of these referencing comments to find pairs of similar PRs.

First, we download all comments containing a reference from the GHTorrent [57] database. These
comments are matched using the following regex: /.*#([0-9]+).*/. Subsequently, we remove the

19
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keyword count precision example
duplicate 4297 0.70 closing in favor of the duplicate #961
dupe 524 0.95 Closing - dupe of #10
dup 321 0.90 This is a dup of #1475
superset 135 0.75 Closing in favor of #1823, as it’s a superset

of this PR.
continuation 210 0.70 [..] Please see continuation PR #1022
subset 376 0.20 Closing in favor of #4213 (a safe subset of

GCAllocator).
duplicated 751 0.40 Closing this PR and submitted a new one:

#2777 This one duplicated a lot of content
[..]

resubmission 31 0.95 This is a resubmission of #264 to clean up
the commits.

replacement 590 0.60 ok, this is a better replacement for #324
consequence 123 0.00 -
follow-up 415 0.00 -
duplicates 482 0.60 Both this and #79 were closed as dupli-

cates of each other, but it seems that nei-
ther was merged.

rehash 11 0.18 Looks like #1208 is a rehash of this. [...]
duplication 434 0.20 :+1: but it seems to me a duplication to

#851.
combination 619 0.00 -
favor 18798 1.00 Closing in favor or #5565
part 9982 0.00 -
backport 1232 0.20 Could you review it, please? Thanks� It is

backport for #1321
followup 211 0.00 -
favour 4750 0.90 Closing in favour of #1314.

Table 4.1: Potential keywords for searching for similar PRs with for each keyword: the number of comments it occurred in, the
precision for retrieving similar PRs based on 20 samples each and an example that refers to a similar PR.

comments that correspond to an issue or refer to an issue instead of a PR, leaving us with PR comments
that are referring to other PRs.

Based on the example above, we choose duplicate as a potential keyword for finding comments
referring to similar PRs. We then use Word2vec to find words used in the same context as duplicate.
We first preprocess the comments by removing hyperlinks, URLs, directory paths, code, blockquotes
and package names, lowercase all comments and then train Word2vec on them for 5 epochs using the
Word2vec implementation of Gensim. [62] After training we use cosine similarity to select the 19 most
similar words to the word duplicate based on the word embeddings generated by Word2vec.

For each of the resulting keywords and the keyword duplicate we randomly sample 20 examples
and inspect if they refer to a similar PR. The results are shown in Table 4.1 including examples of
comments that refer to similar PRs . The keywords follow-up and followup do refer to other PRs,
however, these PRs add functionality on top of the current PR after it is merged. These are therefore
not considered similar. We select all comments containing keywords with an accuracy of over 70%,
which are: duplicate, dupe, dup, superset, continuation, resubmission, favor and favour.

Users refer to similar PRs in comments using the keywords: duplicate, dupe, dup, superset,
continuation, resubmission, favor and favour.

During the examination of the comments we note that most of the true positives are short com-
ments, while the false positives are relatively long comments. Therefore we exclude comments with
more than 4 newlines.
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% file extension
18 js
14 py
13 md
11 rb
11 json
9 php
7 yml
6 txt
5 html
5 java

Table 4.2: Top 10 most occuring file extensions with for each extension the percentage of the PRs it occurs in.

For each matched comment, we extract the PR identifier it is referring to and pair it with the
PR the comment corresponds with. We then download all diffs from the following URL https://
www.github.com/{owner}/{repo}/pull/{id}.diff. The titles and descriptions of the PRs
are extracted from GHTorrent.

We count the number of newlines in each diff (first quartile: 22, median: 94, third quartile: 345)
and remove all pairs containing at least one diff with more than 28567 lines, which corresponds to the
99th quantile. We also remove all pairs containing at least one diff that contain zero new line characters
or the GitHub error page, since those diffs failed to download.

We then split the dataset in a training set (80%), validation set (10%) and test set (10%). In
practice, there will be 𝑛(̇𝑛 − 1)/2 pairs of PRs in a repository containing 𝑛 PRs. To emulate such a real
situation, for each similar pair in the datasets we select six random pairs of PRs from the same project
and add these as non-similar pairs to the same dataset. We make sure that one of the six non-similar
pairs contains PRs with at least one modified file in common. We believe that these examples are more
difficult to classify compared to randomly selected PR pairs. If none could be found, we select two
random PRs. The number of six non-similar pairs is chosen because of limited hardware resources.

The resulting dataset consists of 154153 pairs of PRs of which 22503 are similar and 131650 are
non-similar. These pairs consist of 258991 unique PRs from 9000 projects, which contain a multitude of
programming languages. We have counted for each file extension in how many PRs it occurs. Table 4.2
shows the top 10 most occurring file extensions. We note that the PRs do not only contain source code,
but also markdown, text, html and configuration files.

For each of the PRs we generate the following representations on which we train our models on:

diff The diff of a PR without the context of the modified lines.

diff+context The diff of a PR including the context of the modified lines.

description+title The concatenation of the title and the description of a PR.

4.1.2. Evaluation
We randomly sample 150 pairs of PRs from the training set, remove the labels and divide them in three.
Each set contains 25 similar and 25 non-similar pairs of PRs. The first dataset is manually labeled by
the author of this thesis, while the second dataset is split in five and labeled by five raters. The third
dataset is used to determine the inter-rater agreement and is labeled by both the first author and the
raters (in the same split fashion). A pair of PRs can be labeled as similar, non-similar or unknown.

The first author reports an accuracy of 98%, excluding 1 pair labeled unknown, on the first set,
while the group of raters reports an accuracy of 79%, excluding 3 pairs labeled unknowns, on the
second set. Combined, this results in an accuracy of 88%.

We calculate the inter-rater agreement by calculating Cohen’s kappa [63], which is defined as:

𝜅 = 1 − 1 − 𝑝፨1 − 𝑝፞
(4.1)

Here, 𝑝፨ is the relative observed agreement among raters and 𝑝፞ is the chance of agreement. In our
case 𝑝፨ = 0.83 and 𝑝፞ = 0.5, resulting in 𝜅 = 0.67, which is called substantial by Landis & Koch [64].

https://www.github.com/{owner}/{repo}/pull/{id}.diff
https://www.github.com/{owner}/{repo}/pull/{id}.diff
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author
similar non-similar

group of raters similar 17 1
non-similar 7 23

Table 4.3: Labels of the group of raters versus the labels of the first author on the third dataset excluding pairs labeled unknown.
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Figure 4.1: Histogram of the Jaccard Index of modified files of similar PR pairs.

Table 4.3 shows how the labels of author compare to the labels of the group of raters on the third
dataset. We exclude pairs of PRs that are labeled unknown.

4.1.3. Analysis
Because a pair of similar PRs implement similar functionality, we expect such a pair to have modified
files in common. To test this hypothesis, we calculate the Jaccard index [65] of the files modified in
the collected pairs of similar PRs. The Jaccard index is defined as:

𝐽(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| (4.2)

where A is the modified files in the first PR and B is the modified files in the second PR. The Jaccard
index describes to which extent the PRs overlap with respect to the files they modify.

Figure 4.1 shows a histogram of the Jaccard Index of modified files of similar PR pairs. The first
quartile, median and third quartile are respectively: 0.23, 0.5 and 1.0. 33% of the pairs have a Jaccard
index of 1, meaning that these PRs modify exactly the same files. 8% of the pairs does not contain
any overlapping modified files.

33% of similar pairs of PRs modify exactly the same files, on the other hand, 8% of the PR
pairs has no overlapping modified files.

It is only useful to submit a PR containing functionality that is not already merged into a project.
We therefore expect a PR to be submitted during a short timeframe after the other PR in a similar pair.
To investigate this hypothesis, we calculate for each of the collected similar PR pairs the time difference
between the submission dates.

Figure 4.2 shows an histogram of the days between submission of PRs in a similar pair. The results
confirm our hypothesis: in 50% of the cases the second PR is submitted within 6 days after the
submission of the first PR. 75% of the PR pairs are submitted within 36 days (approximately 5 weeks)
of each other.
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Figure 4.2: Days between submission of PRs in a similar pair.

The time between submission of two PRs in a similar pair is less than 6 days for 50% of the
similar pairs. For 75% of the PR pairs, this is less than 36 days (approximately 5 weeks).

4.2. Preprocessing
Neural networks operate on vectors and are thus not able to process source code or text directly. We
therefore first tokenize the diff, diff+context and description+title. We then use Doc2Vec and Word2Vec
to generate respectively a vector and a sequence of vectors for each of these inputs. Alternatively, we
also generate a bag-of-words representation which we use as a simple baseline. In this section we
explain each of these preprocessing steps. We us a slightly adapted version of the tokenizing process
explained in section 3.1.1

4.2.1. Tokenizing
We indicate an added or removed line with respectively a LINEADDED or LINEREMOVED token instead
of a + or - symbol, since these symbols appear frequently in code.

We replace the information about the modified file by a NEWFILE token, indicating the start of a
new file. We do this to prevent the models from making decisions based on the file names. This would
prevent a model from being applicable to a project it was not trained on.

Because our dataset contains a large range of different programming languages and even files
containing text, implementing a parser per file type would be tedious. Furthermore, this would be
slow considering the size of our dataset. We therefore use the same tokenization approach as used in
section 3.1.1 Additionally, we split camel cased tokens into multiple tokens.

This procedure produces tokens of reasonable quality without being specifically tailored to a single
programming language. It extracts language keywords such as int and if as a single token and splits
type and variable names which consist of multiple words into multiple tokens, identical to [52]. We
expect the latter to improve the accuracy of the classifier, since these subwords contain information
about the domain and meaning of the piece of code. Apart from source code, this procedure also
correctly tokenizes natural language as written in comments and text files. We completely ignore
indentation, however, since we remove all whitespace.

4.2.2. Doc2vec & Word2vec
In this case study we use Word2Vec and Doc2Vec instead of the one-hot encoding used in chapter 3.
Word2Vec and Doc2Vec can both be trained on unlabeled data. This means that, theoretically, we
could train Word2Vec and Doc2Vec on all 29 million PRs submitted on GitHub. By doing this, all tokens
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in these PRs (using Word2Vec) and the PRs themselves (using Doc2Vec) are placed in the same vector
space. When using one-hot encoding, tokens that did not appear in the labeled trainingset are not
taken into account by the neural model, because they do not exist in its vocabulary. Models trained
on top of Word2Vec and Doc2Vec representations do not have a vocabulary; they are trained on the
learned vector representations of tokens or PRs. They therefore have the potential to generalize to
data in the same vector space they are not trained on.

We train a Doc2Vec and Word2Vec model using the same procedure for each of the following input
representations: diff, diff+context and title+description. We create a vocabulary based on all tokens
that occur at least 5 times in the training and validation set. Based on the recommendations of Lau
and Baldwin [66], we train Doc2Vec and Word2Vec together using respectively the PV-DBOW and Skip-
gram mode using the Gensim [62] implementation of Word2Vec and Doc2Vec. We train for 10 epochs
using an embedding size of 300 and a window size of 5. We start with a learning rate of 0.025 and
reduce it 0.002 after every epoch. These parameter choices are based on suggestions by the author
of Gensim. 1

Then we generate a vector with dimension 300 for each input using the trained Doc2Vec model.
Furthermore we generate a vector with dimension 300 for each token in the input using the trained
Word2Vec model, resulting in a sequence of Word2Vec vectors.

We train the Doc2Vec and Word2Vec models on a workstation featuring a Intel(R) Xeon(R) CPU
E5-2643 v2 containing 12 CPUs and 128 GB RAM. Training the models on diffs takes approximately 6
hours, whereas training it on descriptions takes approximately half an hour.

4.2.3. Bag-of-words
Bag-of-words is used as a simple and fast baseline for Doc2Vec and Word2Vec, which are relatively
complex. We generate a vocabulary based on the training and validation set by selecting all tokens
that appear in at least 2 PRs and in less than half of all PRs. We remove all other tokens, because
we believe these would add little value, but do increase the training time needed. For each input we
then use the count of each token that occurs in the vocabulary as input feature. Note that using this
method, we throw away information about the order of the tokens. We expect that this method results
in less accuracy, compared to the input representations that take order into account.

4.3. Models
In this section we introduce the five models we use in our experiments. The first uses Doc2Vec to
generate vector representations of a pair of PRs. The second uses a siamese convolutional neural
network on top of two sequences of Word2Vec embedding to generate a vector representation of a
pair of diffs. On top of both representations we use a simple two layer feedforward neural network.
The third one is XGBoost on top of Doc2Vec. The fourth and the fifth are linear SVMs on top of bag of
words and the Jaccard index of modified files.

We train and test all models for each pair pr1, pr2 two times: one as (pr1, pr2) and (pr2, pr1) to
persuade the models to be symmetrically, that is: the models produce the same output independent of
the input order. This also applies to the siamese convolutional neural network; The subnetwork in this
network is shared and is thus automatically trained symmetrically. The layer on top of the subnetwork,
however, is not.

4.3.1. Feedforward neural network
The feedforward neural network we use in this work consists of two layers. The first layer has 2000
neurons and uses the ReLU activation function. We add dropout on top of this layer to reduce the
chance of overfitting. We use a dropout rate of 0.5. The second layer consists of one neuron and uses
sigmoid as activation function This neuron, due to the use of the sigmoid function, outputs a number
between 0 and 1, 0 meaning non-similar and 1 meaning similar. We use two layers instead of one since
it improved the performance of the network. Adding a third did not improve performance.

The network receives as input the concatenation of all Doc2Vec vectors representing a pair of PRs.
This can one or a combination of the PR representations described in section 4.1.1.

We train this model using the Adam optimizer with learning rate 0.00007. We keep training until
the loss of the model has not improved for 8 epochs and then select the model with the lowest loss on
1https://rare-technologies.com/doc2vec-tutorial/

https://rare-technologies.com/doc2vec-tutorial/
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Figure 4.3: Architecture of the convolutional subnetwork based on [22]. For clarity in this figure the word embedding have size
5 and the convolutional layer has filters of length 2 and 3, each containing 3 filters.

the validation set.

4.3.2. Siamese convolutional neural network
The second model we use is a siamese convolutional neural network that uses a CNN as proposed by
Kim [22] as subnetwork. We use this model, because it has performed well on various NLP tasks. We do
not use an LSTM, because LSTMs process sequences sequentially whereas CNN can process a sequence
in parallel and are therefore faster. Each subnetwork accepts as input a sequence of Word2Vec vectors
representing a PR. This can be a diff or a title+description. We thus use two identical subnetworks,
one for each PR.

The architecture of the subnetwork consists of multiple layers which are displayed in Figure 4.3.

1. Word Embeddings
The subnetwork takes as input a sequence of tokens in the form of Word2Vec embeddings. Tokens
that are not in the vocabulary are mapped to a vector containing zeroes.

2. Convolution layer
Subsequently, a convolutional layer applies multiple filters by sliding these over the input.

We use three convolutional layers with filter length 3, 4 and 5 as suggested by Kim [22] with 100
filters each. We use ReLU as activation function.

3. Global max-pooling
Next we apply global max-pooling which selects the maximum value for each filter. We use global max-
pooling, since Zhang & Wallace [67] have shown that it performs better than other forms of pooling in
the case of this architecture.

4. Concatenation
We concatenate the outputs of the subnetworks. On top of these concatenated vectors we run a feed-
forward neural network with the same architecture as described in section 4.3.3.

We train two variants of this model: The first variant is trained end-to-end, called CNN + Word2Vec.
We only train on diffs in the training set that contain less than 20k tokens because of memory con-
straints. This accounts for 93% percent of the total dataset. Due to the use of the global max-pooling
layer, the features the CNN learns to recognize are translation invariant. The trained network should
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therefore generalize to diffs with more than 20k tokens. We test the model on all diffs in the test set,
but cut them off at 20k tokens.

The training of the second variant, called CNN + Word2Vec + Euc, consists of two steps. We first
train the convolutional subnetwork without the feedforward neural network on top of it by minimiz-
ing/maximizing the euclidean distance between the output vectors of the two subnetworks. We use
contrastive loss as used by Hadsell, Chopra and LeCun [68]. We again only train on diffs in the training
set that contain less than 20k tokens

Subsequently we cut off all diffs at 20k tokens and feed them trough the convolutional network.
This results in a vector representation of each diff. We then train the feedforward neural network on
top of all pairs of diffs in the training set. Afterwards we concatenate both models and thus create an
end-to-end siamese convolutional network. We test the model on all diffs in the test set, but cut them
off at 20k tokens.

Both models are trained using the Adam optimizer with a learning rate of 0.0001. We keep training
until the loss of the model has not improved for 8 epochs and then select the model with the lowest
loss.

4.3.3. XGBoost
We use XGBoost [69] on top of the Doc2Vec representation. XGBoost is used since it is considered
a high performance traditional machine learning algorithm, as shown by multiple winning models in
Kaggle competitions [70].234 This model receives the same input as described in section

We train this model by adding new decision trees until the AUC has not improved on the validation
set for 100 added trees. We then test the model on the best performing model based on the AUC on
the validation set.

4.3.4. SVM
We use a linear SVM on top of the bag of words representation as a baseline for the more complex
Word2Vec and Doc2Vec representations. A linear SVM with bag of words is used because it is a simple
and standard baseline [67] for NLP problems. Since Word2Vec and Doc2Vec have already shown to
perform well for NLP problems, we only use this baseline on top of on diffs. Furthermore, we use a
linear SVM on top of the Jaccard index as another baseline, because we suspect that the overlap of
modified files is an important feature in detecting similar PRs.

4.4. Experiments
We conduct five experiments to investigate the performance of the five models in different settings. In
experiment 1,2 and 3 we only train on the diff representation on a balanced dataset to investigate the
performance of the on NLP inspired models on source code. In experiment 4 and 5 we also include the
diff+context and title+description representations and investigate the performance of these models on
an unbalanced dataset. This resembles a practical setting more closely. In this section we explain the
set up of each of the experiments.

4.4.1. Experiment 1
To get an idea of the performance of each of the models, we first train the models on a smaller,
balanced, dataset. This dataset only contains the similar pairs of PRs and the non-similar pairs of PRs
containing at least one overlapping modified file.

4.4.2. Experiment 2
With the second experiment we investigate the performance of they models on projects they are not
trained on. We do not include the SVM + BoW model because of the bad performance in the previous
experiment. We first select the twenty projects with the most pairs of PRs in our balanced dataset.
We exclude project pyupio/demo from this list, since the project barely has content and contains only
PRs submitted by a bot. This leaves us with the twenty projects shown in Table 4.4. We place the PRs

2http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
3http://blog.kaggle.com/2015/11/30/flavour-of-physics-technical-write-up-1st-place-go-polar-bears/
4http://blog.kaggle.com/2015/08/26/avito-winners-interview-1st-place-owen-zhang/

http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
http://blog.kaggle.com/2015/11/30/flavour-of-physics-technical-write-up-1st-place-go-polar-bears/
http://blog.kaggle.com/2015/08/26/avito-winners-interview-1st-place-owen-zhang/
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project count
symfony/symfony 630
Homebrew/homebrew 318
bitcoin/bitcoin 298
rails/rails 258
edx/edx-platform 254
avocado-framework/avocado 246
joomla/joomla-cms 226
docker/docker 220
angular/angular.js 214
KSP-CKAN/NetKAN 200
kubernetes/kubernetes 194
apache/spark 190
RIOT-OS/RIOT 174
TryGhost/Ghost 152
nodejs/node 144
rust-lang/rust 138
symfony/symfony-docs 138
ManageIQ/manageiq 134
puppetlabs/puppet 126
pydata/pandas 124

Table 4.4: Top 20 project with the most PR pairs in our dataset, excluding pyupio/demo.

corresponding to these projects, accounting for approximately 10% of the data, in the test set and split
the remaining PRs randomly between the validation set and training set, where the validation set and
training set contains respectively approximately 10% and 80% of the total dataset.

4.4.3. Experiment 3
In experiment 3 we investigate whether we can improve the results of experiment 2 by training
Word2Vec and Doc2Vec on arbitrary and unlabeled PRs from projects in the test set. The intuition
behind this is that by including these PRs during training, Word2Vec and Doc2Vec will place the tokens
specific to the domain of these projects in the same vector space as all tokens from the training- and
validation set. This approach is useful in practice, because there may not be enough labeled data avail-
able to train a model for a specific project, whereas most open source project contain an abundance
of arbitrary PRs to train on.

To test this hypothesis we download 200 random PRs from each project in the test set. We exclude
the PRs that are already in the test set. We then train Doc2Vec and Word2Vec on these PRs and the
existing training- and validation set. Finally, we retrain all models used in the previous experiment on
top of the new Word2Vec and Doc2Vec representations.

4.4.4. Experiment 4
In the fourth experiment we exclude the siamese CNN models based on the fact that these require an
order of magnitude more memory and training time compared to the Doc2Vec models. We train the
FFNN + Doc2Vec and XGBoost + Doc2Vec models on the full unbalanced dataset using the following
combinations of input representations:

• diff

• diff+context

• title+description

• diff & title+description

• diff+context & title+description
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model validation accuracy test accuracy
SVM + Jaccard Index 0.656 0.651
SVM + BoW 0.554 0.552
CNN + Word2Vec 0.693 0.698
CNN + Word2Vec + Euc 0.749 0.753
FFNN + Doc2Vec 0.782 0.765
XGBoost + Doc2Vec 0.783 0.771

Table 4.5: Accuracy of each of the models on the validation set and test set trained on diffs in experiment 1.

To prevent the models from learning the majority case (non-similar), we scale the loss for the similar
PR pairs by a factor 𝑛_𝑐𝑜𝑢𝑛𝑡/𝑝_𝑐𝑜𝑢𝑛𝑡 where 𝑛_𝑐𝑜𝑢𝑛𝑡 is the number of non-similar samples in the
training set and 𝑝_𝑐𝑜𝑢𝑛𝑡 is the number of similar samples in the training set.

4.4.5. Experiment 5
As described in section 4.1.3 75% of the PRs in a similar PR pairs is submitted within a timespan of
approximately 5 weeks. We can use this finding to reduce the search space for finding similar PRs.
Instead of checking all 𝑛 ⋅ (𝑛 − 1)/2 pairs in a project, we only have to compare pairs of PRs that have
been submitted with a timespan of 𝑥. Based on earlier research on GitHub [13, 71] we choose 𝑥 = 90
days (3 months) which includes approximately 85% of the similar PR pairs.

To test the classifiers on such a scenario, we collect a new dataset of non-similar PRs. For each
project in the training, validation and test set, we divide the PRs in windows of 90 days. We remove
windows containing less than 2 PRs. Then we count the number of similar PR pairs 𝑛 per project and
collect 6 ⋅ 𝑛 pairs of non-similar PRs from that project by first selecting a window randomly and then
selecting two PRs randomly from that window. Finally, we remove PR pairs that contain two identical
PR ids. This results in 115310 pairs of non-similar PRs, which is 16340 pairs less than the dataset used
in experiment 2. In the test set 83.8% of the pairs is non-similar, whereas in the previous dataset this
was 85.4%. We report the performance of our models in two settings: setting 1 in which we test the
models as done in the previous experiments and setting 2 in which we classify each pair of similar PRs
that has been submitted within a timespan of more than 90 days as non-similar, since in practice using
the described procedure we would not have been able to find these pairs.

4.5. Results
In this section we describe the results of the five experiments.

4.5.1. Experiment 1
The results of experiment 1 are shown in table 4.5. We report the accuracy on the validation and test
set. The SVM + BoW does only improve slightly over the random baseline (having an accuracy of 50%)
which signals that this model is not a good fit for this problem. All proposed models perform better
than both the SVM + BoW and SVM + Jaccard Index baselines. The siamese CNN pretrained model
(CNN + Word2Vec + Euc) performs better than the vanilla siamese CNN (CNN + Word2Vec), which
tells us that pretraining siamese CNNs is beneficial. However, it performs worse than the two Doc2Vec
models. The XGBoost model outperforms the FFNN model only slightly.

4.5.2. Experiment 2
The results of experiment 2 are shown in table 4.6. The test accuracy of all models does not de-
crease compared to experiment 1. We expect that the overlap in domain of projects between the
test- and trainingset explains why the accuracy does not decrease. For example: symfony/symfony
and rails/rails, both webframeworks, are in the testset, whereas cakephp/cakephp and laravel/laravel
are webframeworks in the trainingset. The higher test accuracy compared to the validation accuracy
of the SVM + Jaccard Index model and the higher accuracy compared to the results of the previous
experiment suggest that in this testset overlapping files and similarity are more correlated than in the
test set of the previous experiment. Thus we can interpret this test set as being slightly easier. This
could explain the increase of the test accuracy of all other models.
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model validation accuracy test accuracy
SVM + Jaccard Index 0.662 0.690
CNN + Word2Vec + Euc 0.719 0.743
FFNN + Doc2Vec 0.753 0.781
XGBoost + Doc2Vec 0.766 0.794

Table 4.6: Accuracy of each of the models on the validation set and test set trained on diffs in experiment 2.

model validation accuracy test accuracy
CNN + Word2Vec + Euc 0.725 0.741
FFNN + Doc2Vec 0.764 0.796
XGBoost + Doc2Vec 0.761 0.795

Table 4.7: Accuracy of each of the models trained in experiment 3 on the diffs on the validation- and test set.

4.5.3. Experiment 3
The results of experiment 3 are shown in Table 4.7. Compared to experiment 2, the accuracy of CNN +
Word2Vec + Euc on the test set decreases slightly while it increases on the validation set. The accuracy
of XGBoost + Doc2Vec on the test set increases while the accuracy on the validation set decreases. The
accuracy of FFNN + Doc2Vec increases for both the validation and test set. Based on these conflicting
results, we cannot conclude that adding extra unlabeled data is beneficial.

4.5.4. Experiment 4
We report the precision, recall, AUC and F1-score of each model on the test set in table 4.8. We note
that the SVM + Jaccard Index baseline only produces a decision instead of a probability. Therefore
the AUC of that model is relatively low compared to all other models. All models perform better than
the SVM + Jaccard Index baseline on all metrics. The models that use diff+context report a higher
recall, but lower precision, compared to using diff. Combining the title, description and diff results in a
better performing model than using these data sources individually. The FFNN models have a higher
precision, but lower recall, compared to the XGBoost models.

4.5.5. Experiment 5
Table 4.9 shows the precision, recall, AUC and F1-score of each model tested in setting 1. Compared
to experiment 4 the precision of the best models increases, which can be explained by the reduced
number of non-similar PR pairs vs similar PR pairs. The recall of all models, on the other hand, drops by
10 percent point. All performance metrics of the SVM + Jaccard Index baseline increase, probably due
to not explicitly selecting non-similar PRs with overlapping files. However, all models still perform better
on all metrics compared to this baseline, with two exceptions: the recall of FFNN + title+description
and the precision of XGBoost + title+description.

Table 4.10 shows the precision, recall, AUC and F1-score of each model tested in setting 2. Com-

model input precision recall AUC F1 score
FFNN + Doc2Vec diff 0.659 0.683 0.888 0.671

diff+context 0.610 0.722 0.898 0.661
title+description 0.577 0.809 0.926 0.674
diff & title+description 0.690 0.795 0.951 0.739
diff+context & title+description 0.657 0.823 0.951 0.731

XGBoost + Doc2Vec diff 0.569 0.743 0.891 0.645
diff+context 0.549 0.758 0.898 0.637
title+description 0.533 0.840 0.919 0.652
diff & title+description 0.629 0.846 0.953 0.722
diff+context & title+description 0.627 0.847 0.952 0.720

SVM Jaccard Index 0.451 0.609 0.741 0.519

Table 4.8: Precision, recall, AUC and F1 score of each input representation combination and trained model in experiment 2.
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model input precision recall AUC F1 score
FFNN + Doc2Vec diff 0.617 0.710 0.888 0.661

diff+context 0.643 0.702 0.902 0.671
title+description 0.546 0.616 0.850 0.579
diff & title+description 0.711 0.696 0.916 0.703
diff+context & title+description 0.717 0.698 0.922 0.707

XGBoost + Doc2Vec diff 0.611 0.751 0.898 0.674
diff+context 0.585 0.767 0.902 0.664
title+description 0.477 0.665 0.842 0.555
diff & title+description 0.663 0.769 0.923 0.712
diff+context & title+description 0.669 0.766 0.924 0.715

SVM Jaccard Index 0.514 0.686 0.780 0.588

Table 4.9: Precision, recall, AUC and F1 score of each input representation combination and trained model in experiment 3
setting 1.

model input precision recall AUC F1 score
FFNN + Doc2Vec diff 0.580 0.609 0.763 0.594

diff+context 0.609 0.607 0.777 0.608
title+description 0.511 0.536 0.733 0.523
diff & title+description 0.679 0.599 0.788 0.636
diff+context & title+description 0.687 0.605 0.795 0.643

XGBoost + Doc2Vec diff 0.574 0.645 0.772 0.607
diff+context 0.549 0.662 0.776 0.600
title+description 0.442 0.577 0.727 0.500
diff & title+description 0.629 0.663 0.795 0.646
diff+context & title+description 0.637 0.665 0.797 0.651

SVM Jaccard Index 0.481 0.600 0.737 0.533

Table 4.10: Precision, recall, AUC and F1 score of each input representation combination and trained model in experiment 3
setting 2.

pared to setting 1, the recall of each model drops by approximately 10 percent point, which is caused
by classifying 15% of the similar PR pairs as non-similar without showing these to the models, due to
containing PRs that have been submitted within a timespan of more than 90 days. The precision of
each model drops by 3-4 percent point which is caused by less similar pairs being classified as similar
and thus the relative number of correctly classified similar pairs vs incorrectly classified non-similar
pairs decreases.

4.6. What did the models learn
We attempt to explain the FFNN + Doc2Vec model trained on title+description in section 4.4.5 using
LIME [72], a tool that attempts to explain blackbox models by creating a linear model around a test
example. We use the model trained on title+description, since titles and descriptions are in general
shorter than diffs and therefore easier to visualize. We analyze each pair of PRs by keeping the input
from one of the PRs constant, while varying the input from the other PR. We do this twice to visualize
the importance of words in both PR descriptions. All examples have been taken from the test set,
which means that the model has not seen these examples before.

We show visualizations in figure 4.4 of two pairs of PRs that are not similar and which the model
classifies as non-similar with high confidence. It is interesting to note that the model is able to classify
the first pair of PRs 5 as non-similar, while both explain the addition of tests. It clearly identifies the
word test as important as shown by the orange highlight, but based on the words host and header
in the first PR and the words errors and logging in the other PR it decides these are not similar. The
visualization of the second pair of PRs 6 in figure 4.4 shows again that the model correctly differentiates
5https://github.com/FriendsOfSymfony/FOSHttpCache/pull/2, https://github.com/FriendsOfSymfony/
FOSHttpCache/pull/6
6https://github.com/thoughtbot/ember-cli-rails/pull/452, https://github.com/thoughtbot/

https://github.com/FriendsOfSymfony/FOSHttpCache/pull/2
https://github.com/FriendsOfSymfony/FOSHttpCache/pull/6
https://github.com/FriendsOfSymfony/FOSHttpCache/pull/6
https://github.com/thoughtbot/ember-cli-rails/pull/452
https://github.com/thoughtbot/ember-cli-rails/pull/459
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between two PRs based on words that describe the functionality being modified; render in the first PR
and deployments, directories and capistrano, which is a tool for deployment, in the second PR. What is
interesting is that the model highlights the number 451, which is a reference to an issue, as signaling
similarity. This could mean that the model pays attention to references to issues or that the model has
learned to recognize an irrelevant feature.

Figure 4.4: Visualization of the title+description of two pairs of PRs that the model correctly classifies as non-similar. Blue
highlighted words signal non-similarity, while orange highlighted words signal similarity. Less opaque means more importance.

In figure 4.5 we show an example 7 that the model mistakenly classifies as non-similar, but with low
confidence. While both descriptions are similar, they describe general git related functionality, which
the model clearly struggles with. It could be the case that these words are often used in PRs and are
therefore not very distinctive.

Figure 4.5: Visualization of the title+description of a pair of PRs that the model incorrectly classifies as non-similar with low
confidence. Blue highlighted words signal non-similarity, while orange highlighted words signal similarity. Less opaque means
more importance.

In figure 4.6 we show two examples that the model correctly classifies as similar with high confi-
dence. In the first example 8 the model not only highlights words that are similar to coordinates, such
as seconds, coordinates, angle, deg in both descriptions, but also words that are similar to errors such
as exceptions and warnings. It even takes into account the code included in this description.

In the second example 9 the model finds route,state,optional and parameters important in both
descriptions. It marks parsed as signaling non-similarity in the first PR, since the second PR does not
mention parsing.

Finally, we show in figure 4.7 a non-similar example 10 that the model incorrectly classifies as similar
with low confidence. Both PRs describe window and screen, which make them look similar. What is
interesting is that the model notes that the word animation in the second description signals non-
similarity, while it has a meaning similar to draw in the first description. It however does so with small
weight. In both descriptions it highlights irrelevant words as signaling non-similarity, such as names,
if, lack, often, any, in.

These examples are all selected based on explainability and are thus only anecdotal evidence.
These are by no means enough to fully explain or trust the model. However, based on this exploratory
research, we gain some insight in how the model operates. Furthermore, this tool could be used to
provide explainability to users of the model.

ember-cli-rails/pull/459
7https://github.com/fschulze/mr.developer/pull/169, https://github.com/fschulze/mr.developer/
pull/167
8https://github.com/astropy/astropy/pull/990, https://github.com/astropy/astropy/pull/947
9https://github.com/aspnet/Routing/pull/209, https://github.com/aspnet/Routing/pull/208
10https://github.com/Hammerspoon/hammerspoon/pull/300, https://github.com/Hammerspoon/
hammerspoon/pull/354
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https://github.com/thoughtbot/ember-cli-rails/pull/459
https://github.com/thoughtbot/ember-cli-rails/pull/459
https://github.com/thoughtbot/ember-cli-rails/pull/459
https://github.com/fschulze/mr.developer/pull/169
https://github.com/fschulze/mr.developer/pull/167
https://github.com/fschulze/mr.developer/pull/167
https://github.com/astropy/astropy/pull/990
https://github.com/astropy/astropy/pull/947
https://github.com/aspnet/Routing/pull/209
https://github.com/aspnet/Routing/pull/208
https://github.com/Hammerspoon/hammerspoon/pull/300
https://github.com/Hammerspoon/hammerspoon/pull/354
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Figure 4.6: Visualization of the title+description of two pairs of PRs that the model correctly classifies as similar with high
confidence. Blue highlighted words signal non-similarity, while orange highlighted words signal similarity. Less opaque means
more importance.

Figure 4.7: Visualization of the title+description of a pair of PRs that the model incorrectly classifies as similar with low confi-
dence. Blue highlighted words signal non-similarity, while orange highlighted words signal similarity. Less opaque means more
importance.

4.7. Threats to validity
Internal validity In this case study we used Doc2Vec to map documents to vectors. The document
to vector mapping of a trained Doc2Vec model is non deterministic and therefore outputs a slightly
different vector each time it is given the same input. Because of limited hardware resources, we
preprocessed all inputs by mapping them to vectors using a trained Doc2Vec model, before training
and testing all models on top of this data. The models therefore received the same Doc2Vec vectors
each time they were trained on a certain pair of PRs. The models trained on Doc2Vec vectors, as is,
could therefore be slightly unstable when used in practice. However, we believe that by training the
models on Doc2Vec vectors that are newly generated each epoch, the models will become more robust
to this. We believe that this noise could even act as regularization, similar to Dropout, and therefore
result in slightly better performing models.

External validity In this work we used a similar pair to non-similar pair ratio of approximately 1:5,
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again due to hardware limitations. Symfony11, a large project on GitHub, received 633 PRs between
11 Juli 2017 and 10 September 2017. The similar pair to non-similar pair ratio will therefore be lower
in practice. When a new PR is submitted and one wants to check whether a similar PR exists, it has to
be compared to, in this case, 633 other PRs. As a consequence, we expect the precision of the models
trained in this work to be lower in practice.

4.8. Conclusion
In this case study we used the unsupervised deep learning technique Word2Vec to collect a dataset
of similar PRs with high accuracy. The PRs in this dataset modify various file types among which
numerous programming languages. In the case of 85% of the similar PR pairs, the PRs are submitted
within a 90 days timespan. We randomly selected PR pairs that have been submitted within a 90 days
timespan from the projects in the collected dataset containing similar PRs and use these as non-similar
pairs. This resulted in a unbalanced dataset with a non-similar pair vs similar pair ratio of 5.17:1.
We trained multiple models on top of the Word2Vec representation of a diff and combinations of the
Doc2Vec representations of the diff, title and description of a PR to determine whether a pair of PRs is
similar or not. We show that these models perform better than the baselines, one using a bag-of-words
representation of diffs and one using the Jaccard Index of modified files in a pair of PRs as feature and
we show that the proposed models generalize to projects they are not trained on. The best performing
models are able to classify pairs of PRs as similar with a precision and recall of respectively 68.7%
and 60.5% and 63.7% and 66.5% in this dataset. These models are a feedforward neural network
and a XGBoost model on top of the Doc2Vec representations of the concatenation of the title and
description of a PR and the Doc2Vec representation of a diff including the lines describing the context
of the modified lines.

11https://github.com/symfony/symfony/

https://github.com/symfony/symfony/




5
Lessons learned

In this thesis we have shown that neural networks are powerful models that are able to learn from
raw data. Unfortunately, there is no such thing as a free lunch. In this section we explain some of the
disadvantages of neural models we discovered during this thesis and we think one has to keep in mind
when considering the use of neural models. We first explain that training neural models are costly.
Then we explain why optimizing neural models and explaining what a neural model learned is difficult.

5.1. The cost of training neural models
Neural models are powerful tools that are able to learn complex functions. Nonetheless, this power
comes at a cost: neural models have a huge number of parameters that have to be trained. Fur-
thermore, due to the large number of parameters, large datasets are needed to train these models
successfully without them overfitting. Training neural models thus requires lots of computation power;
it can take hours, days or even weeks. Using a GPU instead of a CPU can speed up training neu-
ral models massively, up to more than ten times faster, due to being able to perform many linear
algebra computations in parallel. However, even when using GPUs, training neural models is costly.
Jiang et al. [53], for example train their models for 38 hours using a Nvidia GeForce GTX 1070. Fu &
Menzies [73] show that using an SVM, they are able to achieve similar and sometimes better results
than a CNN on predicting whether two questions posted on Stack Overflow are semantically linkable.
Training the SVM takes 10 minutes, whereas training the CNN takes 14 hours. Fu & Menzies thus urge
researchers to be critical about the use of expensive models and to always include a simple, less costly,
baseline.

5.2. Optimizing neural models
Implementing a neural model can be done in a few lines of code using one of the available deep learning
libraries. Optimizing a neural model, on the other hand, is difficult due to the enormous amount of
hyperparameters one has to choose and the cost of training a neural model. It is therefore often called
a black art.

First one has to choose an architecture of which the most common are LSTMs, CNNs or regular
FFNNs. These architectures can even be combined to create more complex architectures, such as an
Encoder-Decoder LSTM, as used in machine translation, or a CNN+LSTM which is used in recognizing
objects in videos. Furthermore techniques such as attention [74] and skip connections [7] can be used.
Then one has to choose the number of layers, the activation function of each neuron, the number of
neurons in each layer and if and where to use Dropout. Subsequently, the optimizer, for example Adam
or RMSprop, has to be chosen which can have multiple tuneable parameters, among which the learning
rate. Finally one has to decide when to stop training the model, which can be done using early stopping
or by limiting the number of training epochs. This is only a small summary of all parameters that can
be tuned, which can potentially have an effect on each other.

Hyperparameter tuning is often done using a combination of experience and automatic optimization,
due to the lack of theory about how neural models are able to learn. A researcher once compared deep
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learning to ”building bridges without having knowledge about physics”1. A lot of current knowledge
and improvements are based on empirical research on small variations of best practices, instead of
understanding how and why certain best practices work. It is therefore important to keep up with the
current state of the art and best practices. Most high-level deep learning libraries implement some of
these best practices by default, such as the recommended initialization technique per architecture type.
Furthermore grid search should not be used for hyperparameter optimization. Random search [75] and
Bayesian optimization [76] produce models that are as good or better than models optimized using
grid search within a fraction of the computation time. Most neural models are general purpose models.
We, therefore, recommend repository mining researchers to first take into account state of the art
neural models in other domains, such as NLP, when selecting an architecture, before trying a novel
architecture.

5.3. Explaining neural models
In this thesis we have trained multiple neural models and have shown their performance, but we have
never explained what the models actually learned. This, however, is an important part of using machine
learning. There are three main reasons for the need to explain a model:

First, based on performance metrics alone, one can never be sure that the model has successfully
learned to do the task it was trained for. Yudkowsky [77] gives a good example of how a model can
fail to learn the right features, while performing very well on the test set: researchers trained a model
to recognize camouflaged tanks in a forest and based on the accuracy on the test set, the model was
working perfectly. However, when trying it out in practice, the researchers found out that the model
did not recognize tanks at all. It turned out that the pictures with tanks had been taken on cloudy days,
while the pictures without tanks had been taken on sunny days. The model thus learned to recognize
cloudy and sunny skies instead of tanks. This flaw could have been spotted if the researchers were
able to see what the model actually learned.

Secondly, the user should be able to trust the model. Imagine a model that is able to recognize a
disease with high accuracy, but only outputs whether the patient has that disease or not. Based on
this output alone, it is hard for the doctor and the patient to be able to trust the model. However, if
the model explains how it came to that decision, it can be verified by the doctor and this therefore
results in the doctor having more faith in the model. In the case of finding similar PRs, the model could
highlight the words in a PR description or the tokens in a diff that it finds important for its decision. In
the case of merge prediction, the model could explain to the submitter and the integrator why the PR
should not be merged. The integrator can then verify the correctness of this decision and the submitter
can resolve the issues with the PR.

Thirdly, it can be used to learn more about the data. In the case of merge prediction, it would
be interesting to learn what the model learned to recognize, so we can learn what the most common
reasons are for a PR to be refused. We can then use this information to educate GitHub users.

Neural models are extremely hard to explain due to their complexity. In computer vision, multiple
tools have been developed which are able to explain what a neural model learned. These range
from explaining a decision [72] to visualizing the features the model learned to recognize [78]. The
development of tools to explain models in NLP, however, is still emerging, but some techniques have
already been developed.

Arras et al. [79] and Winkler & Vogelsang [80] use a similar approach: they use what Arras et
al. call layer-wise relevance propagation (LRP) to identify which words are important for a certain
classification of a CNN.

Li et al.[81] take another approach: they use a back-propagation strategy to determine which words
have the most impact on the final result. Furthermore, they plot the activations of neurons to visualize
how they react to words.

Kádár et al. [82] use a simple method: they remove a word from the sentence and compare the
output of the model on the remaining words with the output of the model on the full sentence. The
greater the difference between those outputs, the more important the word is.

Riberio et al. [72] have developed the toolkit LIME, which is able to explain which words are im-
portant for the decisions of a model. They do this by varying the input to the model and then learning
a linear model around it.
1https://www.technologyreview.com/s/608911/is-ai-riding-a-one-trick-pony/

https://www.technologyreview.com/s/608911/is-ai-riding-a-one-trick-pony/
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All the described techniques have in common that they try to measure the effect of individual
words on the decision made by the model. In section 4.6 we have done an attempt to explain a neural
network using LIME. In this task, this technique delivered sensible results, but imagine a model that
predicts whether a PR should be merged or not and as part of that task has learned to recognize valid
and invalid lines of Java code. In such an example, not the individual tokens are important, but each
line as a whole. When perturbing a valid line of Java code, the line of code will become invalid and
therefore each token in the line will be important for the decision of the model. When for example a
semicolon is missing and therefore the line is invalid, none of the tokens in the line is important for
the decision of the model. Only the missing semicolon is. Based on the techniques described above,
which all investigate the effect of each token on the output of the model, one is not able to recognize
this complex feature the model learned to recognize. Recognizing complex features learned by neural
models is therefore still extremely difficult and requires lots of effort as shown by Karpathy et al. [60]
and Radford et al. [83] who analyzed the behavior of an LSTM by inspecting the activations of individual
neurons.





6
Future work

In this section we explain some of our ideas for future work. We first explain what improvements can
be made to the case studies in this work. Then, we describe two ideas for new research topic, based
on promising results from related work.

6.1. Predicting pull request merge decisions
In this work we have limited the number of tokens due to LSTMs being very computational intensive. In
the second case study, we have shown that CNNs, using Word2Vec, and other models, using Doc2Vec,
are able to process diffs more efficiently and produce sensible results. It would therefore be interesting
to investigate the performance of these models on the PR merge prediction task using full diffs, instead
of only the first 150 tokens.

We have investigated the trained model using three split strategies to get an idea about how well
the model generalizes. However, the model is still a black box in the sense that we do not know what
the model learned to recognize. Using a tool such as LIME, it is possible to investigate which parts of
a diff the model takes into account when making a prediction.

6.2. Finding similar pull requests
In the second case study, we have trained multiple models to detect similar PRs. We have trained these
models on PRs containing a range of different file types. To gain more insight in the power of these
models, it would be interesting to investigate whether these models are able are able to generalize to
file types or programming languages they were not trained on.

6.3. New research ideas
As described in chapter 2, Huo et al. [51] use CNNs to match bug reports with relevant files. GitHub
also support reporting issues, but these issues are not only used for bug reports. They are also used
for feature requests and even questions about the project. Most projects have a large amount of
concurrent open issues. For example, Symfony1 currently has 667 open issues, whereas Keras2 has
850 open issues. By automatically listing relevant files, these issues can be solved faster. In the case
of a bug report or a feature request, a user could instantly see which files should be modified to solve
that issue. In the case of a question, the user can be pointed out where to look for the answer.

In GitHub, commits can automatically close issues by using specific keywords3 and a reference to
the specific issue in the commit description, such as closes #123. It is possible to create a dataset of
<issue, files> pairs by pairing the files modified in a commit that closes an issue, to that issue.

Based on the work of Huo et al., we believe that it would be interesting to investigate whether a
tool can be developed that uses deep learning to match issues with files on GitHub. We think that such
a tool would be beneficial for a large number of projects.
1https://github.com/symfony/symfony/
2https://github.com/fchollet/keras
3https://help.github.com/articles/closing-issues-using-keywords/
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GitHub supports the concept of giving a PR or issue one or multiple labels. By default, GitHub
includes labels such as bug, enhancement, help wanted and wontfix, however, these labels can be
customized per project. Large projects often use these labels extensively; Moby4, for example uses
more than 40 labels to label issues and PRs. Currently, these labels have to been assigned manually
which requires a notable amount of work. We believe that it could be using deep learning, or machine
learning in general, it should be possible to automatically assign at least some of these labels.

4https://github.com/moby/moby

https://github.com/moby/moby


7
Conclusion

We conclude this thesis by answering the research question stated at the beginning of this thesis:

RQ What are the benefits and perils of using deep learning in repository mining research?

We answered this question by doing two case studies. In chapter 3 we trained models to solve the
merge prediction task and showed that DNNs trained on raw data can perform comparable or even
better than traditional machine learning models trained on features conceived by a researcher.

In chapter 4 we collected a dataset of similar PRs using the unsupervised deep learning technique
Word2Vec and trained models to find similar PRs using deep learning techniques. We showed that
these models are able to generalize to projects they are not trained on. These models, with a precision
and recall of respectively almost 70% and approximately 60%, all performed better than the non-neural
baselines.

In chapter 5 we explain that the power of neural models comes at a cost. Firstly, Optimizing neural
models is difficult because of the high number of hyperparameters and possible architectures. We
recommend repository mining researchers to take into account architectures that perform well in other
domains, such as NLP, before creating novel architectures. It is also recommended to use random
search or Bayesian optimization, instead of grid search when attempting to optimize the hyperparame-
ters. Secondly, Explaining which features a neural model learned to recognize is still extremely difficult,
despite techniques being developed. Finally, training neural models is costly, due to the complexity of
these models and the large datasets needed. It is therefore important to include a less costly baseline
when using neural models in research, to show that the power and thereby the cost of neural models
is justified.
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