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Negative Domain Wall Resistance in Ferromagnets
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The electrical resistance of a diffusive ferromagnet with magnetic domain walls is studied
theoretically, taking into account the spatial dependence of the magnetization. The semiclassical domain
wall resistance is found to be either negative or positive depending on the difference between the spin-
dependent scattering lifetimes. The predictions can be tested experimentally by transport studies in
doped ferromagnets.
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A domain wall (DW) is the region between two
ferromagnetic domains in which the direction of th
magnetization rotates. A number of experiments ha
been conducted which show either anincrease [1–3] or
a decrease [4–8] of the resistance due to DWs compare
to the resistance of a single-domain ferromagnet. Th
experiments have been done on thin films, structured t
films, and membranes in the diffusive transport regim
where the electron mean free path is shorter than
typical system size.

In the diffusive limit, Cabrera and Falicov [9] cal
culated an increase of the resistance caused by th
backreflection of electrons by the domain wall. Th
reflection probability was found to be exponential
small in the ratio of the DW width to the Fermi wave
length. An increase of the semiclassical resistance ha
also been predicted by Tatara and Fukuyama [10]
linear response calculations assuming spin-independ
relaxation times. Levy and Zhang [11] obtained the D
resistance from a Boltzmann equation. They show
that spin-dependent relaxation times can enhance
positive DW resistance, depending on the ratio of rela
ation times of the majority and minority spin electron
Brataaset al. [12] calculated the domain wall resistanc
generalizing the approach of Tatara and Fukuya
to include spin-dependent lifetimes with qualitative
similar results to Levy and Zhang.

The only intrinsic mechanism which explains ade-
crease of the resistance has been proposed by Tatara
Fukuyama [10], viz., the destruction of electron weak l
calization by the dephasing, caused by the domain w
decreases the resistance. However, experimentally,
negative domain wall resistance persists up to relativ
high temperatures [5,6], where localization does not p
a role. Kentet al. [6] explain the negative DW resistanc
by an extrinsic effect: reduced surface scattering.

It is the purpose of this Letter to show that the sem
classical DW resistance of diffusive ferromagnets can
negative as well aspositive when the electronic structure
of the domain wall is taken into account semiclassical
The experimental results [1–8] may thus originate fro
the same intrinsic semiclassical effect.
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Let us first describe the elementary physics of electr
transport in a domain wall. The Drude resistivity of
single-domain ferromagnet reads, in the two-band Sto
model [13],

r �
m
e2

1
n1t1 1 n2t2

, (1)

wherem is the mass of the electron,e is the charge of
an electron,n1 �n2� is the density of spin-up (spin-down
electrons, andt1 �t2� is the scattering relaxation time fo
the spin-up (spin-down) electrons which at low tempe
tures depends on the (spin-dependent) impurity poten
and (spin-dependent) density of states. A redistribut
of the electrons between the spin-up and spin-down ba
(i.e., a change in magnetization) modifies the resistiv
whent1 fi t2. With n � n1 1 n2, n6 � n6

0 1 dn6,
anddn1 � 2dn2, the change in resistivity is found to b

dr � 2r2
0

e2

m
dn1�t1 2 t2� , (2)

wherer0 is the resistivity of a single-domain ferromagne
We see that a modified magnetization causes the resist
to either increase or decrease, depending on the relaxa
times. The relaxation times in a ferromagnet depend
the types of impurities that are present in the material [1
The sign and magnitude of the resistivity change are the
fore impurity specific. In the following we show that th
magnetization is modified in a domain wall and contribut
to the DW resistance on top of the DW scattering mec
nisms discussed in literature [9–12].

We approximate the domain wall by a local consta
rotation along thez direction [11]≠zf�z� � p�lw � a0,
wherelw is the length of the domain wall, as indicated
Fig. 1. This is allowed when the domain wall is muc
wider than the Fermi wavelength. The DW resistan
can in this limit be calculated by interpreting the DW a
a finite slice of a so-called spin-spiral ferromagnet. T
total resistance of a ferromagnet is determined by sim
adding the resistivities of the DWs and the domain
The relative change in resistance due to the dom
walls is �R 2 R0��R0 � �Lr0 1 lw�r0 1 dr� 2 �L 1

lw�r0����L 1 lw�r0� � lwdr���L 1 lw�r0�, whereL
is the length of the domain.
© 1999 The American Physical Society 4401
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FIG. 1. A schematic picture of the magnetization angle as
a function of position. The dashed line sketches a typical
magnetization and the solid line sketches the piecewise spin-
spiral approximation.

The magnetization is a result of the exchange interac-
tion. We follow the common procedure to express the
exchange energy by the continuum limit of the mean-field
Heisenberg model,

Eex �
Z

dr
Z

dr0 K�jr 2 r0j� �m�r0�� ? m�r� , (3)

where K�jr 2 r0j� is the exchange interaction between
electrons in a volume element r and r0, m�r� � mBs�r�
is the magnetization operator, and �m�r�� denotes the
thermal ensemble average of the magnetization. The
range lex of the exchange interaction is of the order of
the Fermi wavelength. In a DW, neighboring spins are
canted. Hence the exchange energy is reduced. Using
�m�r0�� ? m�r� � cos�p�z 2 z0��lw� �m�r�� ? m�r� and
taking into account that lw ¿ lex, the exchange energy
becomes Eex �

R
dr Hex�r� ? m�r�, where the exchange

field is

Hex�r� � K

∑
1 2

1
2

µ
plex

lw

∂2∏
�m�r�� , (4)

and K is the total exchange integral. The exchange
field, and therefore the splitting, decreases with decreasing
lw and increasing lex. The effect of the reduced magne-
tization on the resistivity seems small, since the domain
wall is much wider than the Fermi wavelength. However,
we will show that the effect of the reduced magnetiza-
tion on the DW resistance is of the same order as that
of other mechanisms studied previously [10–12]. Ex-
pressing the exchange splitting as 2D�r� � 2Js�r�, we
have J � mBK�1 2 �plex�lw�2�2� [the thermal average
spin-density is s�r� � j�s�r��j]. The relative change in
the effective coupling constant J due to the domain wall
can be written as dJ�J � 2k2Ew��e1

F 1 e
2
F �, where

Ew � h̄2a2
0��2m� is an energy parameter of the rotation

of the magnetization, and e
6
F � h̄2�k6

F �2��2m� is related
to the (spin-dependent) Fermi wave vectors. Using an es-
timate for lex � lF�2 � p�kF , we find k � p2�2. A
longer range of the exchange interaction (3) will have
even larger effects. Note that D decreases even faster
than dJ�J because, in the self-consistent mean-field ap-
proximation, jsj is also reduced in the DW, as will be
shown below. Other effects that may change the magne-
4402
tization and therefore also the resistivity are magnetostric-
tion and the internal dipolar magnetic field. The former
can change the exchange integral due to a change in lattice
constant, caused by the domain wall. The latter directly
affects the splitting. However, we expect these effects to
be smaller than those discussed here.

The electronic structure of a two-band ferromagnet with
noncollinear magnetization can be found from the Stoner
Hamiltonian,

H � 2
h̄2

2m
=2 1 mBHex�r� ? s , (5)

where the three components of s are the Pauli spin matri-
ces (sx , sy , and sz) and Hex�r� is the exchange field as
described above. We disregard the spin-orbit interaction
and the Lorentz force due to the internal magnetization,
because the DW magnetoresistance can experimentally be
separated from the anisotropic magnetoresistance (AMR)
and the ordinary magnetoresistance (OMR) [6].

We solve the eigenvalue problem for the Hamilton-
ian equation (5) by a local gauge transformation, assum-
ing translational symmetry in the x and y directions
and introducing the Fourier transform of the gradient
of the magnetization direction ≠zf�z� �

P
q exp�iqz�aq

[10,12], where f�z� is the angle of magnetization in
the rotation plane. After the gauge transformation, the
Hamiltonian (5) becomes eH � H0 1 V , where H0 �P

ks�eks 2 m�cy
kscks �eks � h̄2k2�2m 2 sD� and the

interaction V with the DW is specified in Refs. [10,12].
We proceed by calculating dr, the difference in resis-

tivity of the spin spiral compared to the single-domain
state. In the spin spiral, ≠zf is constant everywhere.
The Hamiltonian (5) is diagonalized in spin space by
u6 � N6�1, i�1 7

p
1 1 a2 ��a�T , where N6 is a nor-

malization constant, a � kza0�p2, and p2 � 2mD�h̄2

[12]. The eigenvalues are

E6
k �

h̄2

2m
�k2 1 a2

0 7
p

k2
z a2

0 1 p4 � . (6)

Because of the rotation of the direction of the spin-
quantization axis,

u
y
6szu6 � 6

1
p

1 1 a2
, (7)

the spin density in the direction of the local magnetization
becomes

s6 � 6
1
V

X
k

1
p

1 1 a2
f�E6

k 2 m� , (8)

whereas the electron densities of the spin-up and spin-
down eigenstates remain as n6 � �1�V �

P
k f�E6

k 2 m�.
The total spin density is s � s1 1 s2.

At T � 0 K we find

n6 �
1

6p2 �k6
1 �3

µ
1 6

Ew

4D

∂
(9)
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and

s6 � 6

µ
n6 2

1
30p2 �k6

1 �5 h̄2Ew

D24m

∂
, (10)

where k6
1 � �2m�h̄2�1�2�m 6 D 2

1
4Ew�1�2. Without

spin rotation �a0 ! 0�, n and s reduce to the familiar
form n6

0 � 6s6
0 � �1�6p2� �2m�h̄2�3�2�e6

F �3�2, where
e

6
F � m 6 D.
The numbers of spin-up and spin-down electrons have

to be calculated self-consistently, since the effective
spin splitting depends on the spin densities. A wide
domain wall only weakly modifies the electronic structure.
Therefore the reduced magnetization can be calculated
by perturbation theory. Charge neutrality is taken into
account as in Ref. [12] by introducing a shift in the
chemical potential m � m0 1 dm. The spin densities
are denoted as s6 � 6n6

0 1 ds6, and the splitting of
the bands becomes D � D0 1 dD, where m0 is the
single-domain chemical potential, dm is the change in
the chemical potential caused by the DW, ds1 �ds2�
is the change in spin density in the spin-up (spin-down)
band, and D0 � �n1

0 2 n2
0 �J0. The exchange splitting is

modified as

dD � �jds1j 2 jds2j�J0 1 �n1
0 2 n2

0 �dJ , (11)

where the first term is due to the reduced spin density in
the spin spiral, and the second term reflects the reduced
exchange interaction. We obtain

dn6 � N6

µ
dm 6 dD 2

1
4

Ew 6
Ew

6D
e6

F

∂
(12)

and

ds6 � 6

µ
dn6 2

Ew

15D2 N6�e6
F �2

∂
, (13)

where N1 �N2� is the density of states of the spin-
up (spin-down) band at the Fermi energy. With
n6 � 2N6e

6
F �3, which holds for parabolic bands, and

Eqs. (11)–(13), we can find the electron densities, which
substituted into Eq. (2) yield

dr �
e2r

2
0

m
Ew

J0DD0
�t1 2 t2�

3

µ
kD

2
0

e
1
F 1 e

2
F

2
e

1
F 1 e

2
F

24

1
J0

D0

N1�e1
F �2 2 N2�e2

F �2

30

∂
, (14)

which is our main result. The first term is directly due
to the reduced exchange interaction, the second term
reflects the change in dispersion of the spin-up and spin-
down bands [last term in Eq. (6)], and the third term
is due to the reduced spin density [Eq. (7)]. The first
term is almost always bigger than the other two terms.
Equation (14) shows that the change in resistivity due
to the reduced magnetization is of the same order as
the effect of the spin-flip scattering [12], both scaling
linearly with Ew . The dimensionless denominator D �
�N1 1 N2���4N1N2J0� 2 1 appears as a result of the
self-consistency and is always positive (see below). D
vanishes when the spontaneous magnetization disappears
with decreasing J0. In that case, the nondegenerate
perturbation is not valid anymore, because dr ! `.
When t1 , t2, the DW resistance is negative.

In order to estimate the importance of the effect,
we introduce dimensionless variables: g 	 k1�k2 is the
ratio of the Fermi wave vectors and b 	 t1�t2 is the
ratio of relaxation times. The dimensionless denominator
then becomes D � �g 1 g21 2 2��3 . 0. Microscopic
theory [12] reveals that additional spin-flip terms, which
always increase the resistance, have to be added to the
result derived here [15]. Figure 2 shows dr�r0, as
calculated from Eq. (14) (fine dashed line), due to the
spin-flip scattering (taken from Ref. [12]) (coarse dashed
line) and the sum of both effects (solid line) as a function
of the ratio of relaxation times b, for two different
ratios of the Fermi wavelengths g. Ew�eF � 4.3 3 1024

for Co has been estimated from lw � 15 nm and kF �
1 Å21. The exchange length is equal to lex � 2.8 Å.
In Fig. 2 we can see that the DW resistivity is between
25% and 10% for the parameters chosen, i.e., depending
on the value of the exchange integral, the impurities, and
the band structure of the material. Smaller spin splittings
and larger asymmetries in the relaxation times increase
the domain wall resistance.

Our results agree with the experimental finding that
the DW resistance can be negative [4–8]. We have
shown that the sign of the DW resistance depends on
the difference of scattering relaxation times, which can
be positive or negative. This difference is to a large
extent determined by the kind of impurities present in
the sample, e.g., theoretical calculations for Cr impurities

FIG. 2. The relative change in resistivity due to the reduced
magnetization calculated here, the DW spin-flip scattering [12],
and the sum of both effects [15] as a function of the ratio of
relaxation times. (a) The ratio of Fermi wave vectors g � 1.1
and (b) g � 2.
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in Fe give b � 0.11, i.e., t1 2 t2 , 0 whereas for
Cu impurities b � 3.68, i.e., t1 2 t2 . 0 [16]. Also,
for Ni, the DW resistance can have both signs, since
0.2 , b , 30 [16]. Experimentally the parameter b

is not available, but the ratio of the resistivities has
been determined [14], yielding for Co 0.1 , r1�r2 ,

5, Ni 0.05 , r1�r2 , 8, and Fe 0.1 , r1�r2 , 10,
where r1�r2 � t2n2m1��n1t1m2�. (Only t1 and
t2 depend on the type of impurities [17].) Therefore,
a reasonable agreement exists between experimental and
theoretical values of the scattering relaxation times. This
means that our predictions for the DW resistance can
be experimentally tested by intentionally doping samples
with different impurities and measuring the DW resistance
as a function of type and concentration.

For realistic band structures the ballistic contribution
to the domain wall resistivity from the spin-flip terms
[10–12] is enhanced due to the near degeneracy of the
different bands at the Fermi energy [18]. Similarly, we
expect an enhancement of the present effect, because the
exchange splitting is more sensitive to the gradient of the
magnetization when the bands are nearly degenerate.

In conclusion, we have shown that a negative as well
as a positive domain wall resistance is possible in the
semiclassical regime, due to spin-dependent relaxation
times and the spatial dependence of the magnetization.

This work is part of the research program for the
“Stichting voor Fundamenteel Onderzoek der Materie”
(FOM), which is financially supported by the “Neder-
landse Organisatie voor Wetenschappelijk Onderzoek”
(NWO). This study was supported by the NEDO joint
research program (NTDP-98). We acknowledge ben-
efits from the TMR Research Network on “Interface
Magnetism” under Contract No. FMRX-CT96-0089
(DG12-MIHT). We also acknowledge stimulating dis-
cussions with J. Caro, P. J. Kelly, A. D. Kent, G. Tatara,
S. J. C. H. Theeuwen, and K. P. Wellock.

*Electronic address: gorkom@dimes.tudelft.nl
†Also at Philips Research Laboratories, Prof. Holstlaan 4,
5656 AA Eindhoven, The Netherlands.

[1] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn,
S. M. Thompson, and J. M. D. Coey, Phys. Rev. Lett. 77,
1580 (1996).
4404
[2] M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen,
D. S. Daniel, and J. F. Gregg, Phys. Rev. B 53, 8464
(1996).

[3] U. Rudiger, J. Yu, L. Thomas, S. S. P. Parkin, and A. D.
Kent, Phys. Rev. B 59, 11 914 (1999).

[4] K. M. Hong and N. Giordano, J. Phys. Condens. Matter
10, L401 (1998).

[5] Y. Otani, S. G. Kim, K. Fukamichi, O. Kitakami,
and Y. Shimada, IEEE Trans. Magn. 34, 1096
(1998).

[6] A. D. Kent, U. Ruediger, J. Yu, S. Zhang, P. M. Levy,
Y. Zhong, and S. S. P. Parkin, IEEE Trans. Magn. 34, 900
(1998); U. Ruediger, J. Yu, S. Zhang, A. D. Kent, and
S. S. P. Parkin, Phys. Rev. Lett. 80, 5639 (1998); A. D.
Kent, U. Ruediger, J. Yu, L. Thomas, and S. S. P. Parkin,
J. Appl. Phys. 85, 5243 (1999).

[7] S. J. C. H. Theeuwen et al. (unpublished); R. P.
van Gorkom, J. Caro, S. J. C. H. Theeuwen, K. P.
Wellock, N. N. Gribov, and S. Radelaar, Appl. Phys. Lett.
74, 422 (1999).

[8] T. Taniyama, I. Nakatani, T. Namikawa, and
Y. Yamazaki, Phys. Rev. Lett. 82, 2780 (1999).

[9] G. G. Cabrera and L. M. Falicov, Phys. Status Solidi B 62,
217 (1974); 61, 539 (1974).

[10] G. Tatara and H. Fukuyama, Phys. Rev. Lett. 78, 3773
(1997); G. Tatara, cond-mat/9903416.

[11] P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110
(1997).

[12] A. Brataas, G. Tatara, and G. E. W. Bauer, Phys. Rev. B
60, 3406 (1999).

[13] See, e.g., S. V. Vonovskii, Magnetism (Wiley, New York,
Toronto, 1974).

[14] I. A. Campbell and A. Fert, in Ferromagnetic Materials,
edited by E. P. Wohlfarth (North-Holland, Amsterdam,
1982).

[15] The calculated resistivity already includes for dr in
Ref. [12] some of the screening effects considered
here and cannot be simply added to the present result.
This is corrected by adding r

2
0e2�t1 2 t2� �e1

F 1

e
2
F �Ew�N1N2����N1 1 N2�6mD0� to the sum of the two

results.
[16] I. Mertig, R. Zeller, and P. H. Dederichs, Phys.

Rev. B 49, 11 767 (1994); P. Zahn, I. Mertig, M.
Richter, and H. Eschrig, Phys. Rev. Lett. 75, 2996
(1995).

[17] J. M. B. Stearns, J. Appl. Phys. 49(3), 2165 (1978).
[18] A. Brataas, G. Tatara, and G. E. W. Bauer, Philos. Mag. B

78, 545 (1998).


