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Abstract
Accurate and detailed land cover information is essential for effective biodiversity monitoring and con-
servation efforts. In the Caribbean Netherlands (consisting of Saba, St. Eustatius, and Bonaire), this
need is particularly pressing, as the islands face growing ecological pressures from climate change,
invasive species, and human activity. However, the islands’ limited financial resources, steep terrain,
and dense vegetation make systematic field surveys difficult, restricting the collection of consistent
and detailed information about land cover. Remote sensing offers a powerful alternative, but previ-
ous satellite-based efforts for Saba were limited by their spatial and radiometric resolution, as well as
the lack of vertical structural data, resulting in maps that lacked ecological specificity and taxonomic
resolution. In early 2024, high-resolution airborne Light Detection and Ranging (LiDAR) and passive
multispectral optical imagery were collected over the islands for the first time, providing a unique op-
portunity to assess their potential for land cover mapping. The objective of this study is therefore to
investigate the potential for mapping land cover of the Caribbean Netherlands using the recently ac-
quired airborne LiDAR and passive optical data. Specifically, this study investigates two main aspects,
focused on Saba: (1) the quality of the LiDAR-derived Digital Terrain Model (DTM) released with the
dataset, and (2) the combination of LiDAR structural parameters with optical remote sensing data for
land cover mapping.

To assess the quality of the LiDAR-derived DTM, a novel data-driven reliability algorithmwas developed.
This algorithm combines several properties of the LiDAR data indicative of DTM reliability into a single
pixel-based DTM reliability score RDTM , which indicates how trustworthy the DTM is. Applying this
method to Saba shows that 42% of the island has zero DTM reliability (no ground coverage at all), 9%
low reliability, 16% moderate reliability, and 33% high reliability. Comparison of these reliability classes
with vegetation indices confirmed that areas with dense vegetation tend to have lower DTM reliability.

In addition, several LiDAR-derived structural parameters were identified that describe both the topog-
raphy and vertical structure on the surface, such as vegetation. These parameters were combined
with products from passive multispectral optical satellite imagery to evaluate their potential for land
cover mapping in two case studies. The first case study examined how LiDAR structural information
can reveal variation within a single land cover class from a previous study, demonstrating that distinct
vegetation structures can be distinguished within what was previously mapped as uniform forest. The
second case study investigated whether structural parameters can explain the occurrence of the inva-
sive vine Coralita (Antigonon leptopus), showing that its topographic occurrence was consistent with
the literature.

The results demonstrate that the newly acquired airborne LiDAR dataset provides valuable structural
information for land cover mapping. However, challenges remain in areas with dense vegetation and
steep terrain, where limited ground penetration reduces DTM reliability. Furthermore, with the integra-
tion of field validation data (which was unavailable), the dataset’s full potential for land cover mapping
could be more fully realized.
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1
Introduction

1.1. Context and Motivation
The Caribbean Netherlands, consisting of Saba, St. Eustatius, and Bonaire (Figure 1.1), is highly vul-
nerable to the impacts of climate change. Recognized as Small Island States (SIDS) (United Nations
Conference on Environment and Development, 1992), these islands have relatively large coastal areas
and very small populations, which causes severe societal impacts from sea-level-rise, floods, heavy
rainfall, andmore frequent and severe tropical storms (A.O. Debrot, Henkens, and Verweij, 2018; KNMI,
2023). These climate-driven phenomena pose significant threats to the islands’ often unique and rich
biodiversity (Cherian, 2007). Indeed, most habitats and species in the Caribbean Netherlands are in a
critical state with a high likelihood of further decline because of climate change and invasive species
(A.O. Debrot, Henkens, and Verweij, 2018; KNMI, 2023). To combat these threats, adequate manage-
ment and sufficient monitoring are required.

This stands in contrast to the obligations of the Netherlands to the special municipalities of Bonaire,
Saba, and St. Eustatius (as of October 2010) for implementing, monitoring, and reporting of their eco-
logical states. Per ratification of the Convention on Biological Diversity (CBD), the Netherlands commits
to the CBD’s 3 main objectives: conserving biodiversity, the sustainable use of biodiversity, and fairly
sharing benefits from genetic resources (Convention on Biological Diversity, 2024). In response, the
Nature and Environment Policy Plan Caribbean Netherlands 2020-2030 (NEPP) (Ministry of Agriculture,
Nature and Food Quality, 2020) has been created to meet these obligations for a 10-year horizon. They
include strategies to combat the ecological threats and assess the effectiveness of policy measures
using a six-year nature report (A.O. Debrot, Henkens, and Verweij, 2018; A. Debrot et al., 2025).

Addressing these challenges requires a detailed and accurate understanding of the current land cover
across the Caribbean Netherlands. Such information is critical for developing evidence-based manage-
ment plans, implementing effective conservation strategies, and tracking ecological changes over time.
However, ground-based measurements to establish such land cover maps at the required temporal
frequency are complicated in the Caribbean Netherlands. Reasons for this are financial limitations, the
dense vegetation on the island complicating estimations, and the spatial heterogeneity of nature on the
island. Remote sensing techniques (including satellite and airborne observations) provide a means
to circumvent these challenges (Timmermans and Daniel Kissling, 2023). Specifically, they offer fre-
quent optical and radar observations with temporal resolutions ranging from days to weeks and spatial
resolutions spanning a few meters to several kilometers (Saritha et al., 2025), which are relevant for
monitoring ecological states.

1.1.1. Relevant Remote Sensing of Ecological states
Satellite data (from, for example, passive multispectral optical sensors) allowed land cover maps to
be made available, such as the most recent attempt by Smith et al., 2013 for Saba. However, in their
research, the developed landcover maps were limited in their ecological taxonomies. For example,
they could only classify the landcover in broad classes, such as broadleaved evergreen forest, which
covers mostly the entire island. Although their work provided a valuable first baseline, it is insufficient
for adequate monitoring of the ecological state of the various habitats, as well as mapping the threats

1



2 Chapter 1. Introduction

(such as alien invasive species) to those habitats. Moreover, given the 2 meter spatial resolution and
8 spectral bands of these observations, the data lacked the spatial and radiometric detail needed to
distinguish heterogeneous habitats or identify individual species. Additionally, the absence of vertical
structural information at the time, combined with the aforementioned limitations, reduced the ecological
specificity and taxonomic resolution of the resulting maps. To address these limitations, recent sensor
technologies have emerged that provide higher resolution and richer information. One of the most
important of these is LiDAR (Light Detection and Ranging), an active remote sensing technique that
emits laser pulses and measures the time it takes for the signal to return. This enables the creation
of detailed three-dimensional point clouds, from which structural information such as canopy height,
vegetation density, and ground elevation can be derived. Unlike passive optical sensors, LiDAR is not
limited to surface reflectance but provides vertical information about the landscape, making it especially
valuable for applications where vertical information plays an important role.

In the beginning of 2024, Airborne LiDAR and high-resolution Passive Multispectral Optical Remote
Sensing (ORS) data was acquired for the first time over the islands. This offers a high potential for
mapping and monitoring land cover of the Caribbean Netherlands, which will support long-term efforts
to mitigate biodiversity loss.

Figure 1.1: The Caribbean Netherlands. Source: Thayts, 2011

1.2. Objective
The objective of this study is to investigate the potential for mapping land cover of the Caribbean Nether-
lands using the recently acquired airborne LiDAR and passive optical data. The LiDAR data is provided
by the Actueel Hoogtebestand Nederland (AHN), and the passive optical imagery is provided by Beeld-
materiaal Nederland. In this context, “potential” refers to the extent to which these datasets can address
limitations identified in prior research. The first sub-question, therefore, requires the definition of the
user requirements: What land cover taxonomies are relevant for biodiversity monitoring on Saba? This
sub-question is answered in Section 2.5. The rest of the sub-questions are defined in Section 2.8.



2
Theoretical Background

In this chapter, the theoretical background is provided, including a description of the Geography and
Climate and Habitats of the study area Saba, as well as the Biodiversity Threats to this island. In Sec-
tion 2.4, advancing conservation biodiversity monitoring methods are discussed, and in Section 2.5, the
user requirements and land cover taxonomies are identified in order to monitor the island’s biodiversity.
In Section 2.6, the state of the art is presented, and in Section 2.7, the research gap is identified.

2.1. Geography and Climate

Figure 2.1: Saba. Source: Google
Earth, 2025.

Saba (Figure 2.1) is the smallest island of the Caribbean Netherlands,
covering about 13 km2. Located in the northeastern Caribbean, it
shares a lot of climatic and geographic similarities with St. Eustatius,
though different because of the dominating Mount Scenery (Volca-
noes in the Dutch Caribbean n.d.), an active but currently quiescent
stratovolcano that reaches an elevation of 870m above sea level. Like
many volcanic islands in the Caribbean, its peak is often capped by
clouds (Freitas et al., 2015), creating conditions for cloud and rain
forests near the summit. These high-altitude forests play an important
ecological role by capturing moisture, supplying freshwater to lower-
lying areas, reducing landslide risk, and limiting soil erosion (A.O. De-
brot, Henkens, and Verweij, 2018). Additionally, the presence of this
volcano, characterized by its conical shape and steep elevation gra-
dients, supports a wide variety of plant species through variations in
temperature, sunlight, precipitation, and wind exposure. As a result,
the island is highly heterogeneous in terms of vegetation.

The island is strongly influenced by persistent northeast trade winds, with a dominant eastern wind di-
rection (Table 2.1). Saba’s location within the Atlantic hurricane belt also exposes it to extreme weather

Table 2.1: Summary of meteorological data of Saba in 2024. The dry season ran from December 2023 to April 2024, and the
wet season from May to November 2024. Data are averages from hourly KNMI observations (Koninklijk Nederlands

Meteorologisch Instituut, n.d.).

Weather parameter (2024) Value
Mean wind direction 100.1◦ (E)
Mean temperature – dry season 26.7◦C
Mean temperature – wet season 29.1◦C
Mean humidity – dry season 73.2%
Mean humidity – wet season 74.6%
Mean precipitation – dry season 68.5 mm/month
Mean precipitation – wet season 110.8 mm/month

events. These events pose a risk to the island’s forest ecosystems through storm damage, landslides,

3



4 Chapter 2. Theoretical Background

and forest destruction.

2.2. Habitats
The weather conditions in Table 2.1 vary significantly with elevation, slope orientation, and exposure
to wind and cloud cover. Therefore, despite its small size, Saba is capable of supporting a large range
of biodiversity. A 2019 survey documented approximately 772 vascular plant species (Press, 2021), of
which a large number of endemic plant species (A. Debrot et al., 2025). The island also hosts diverse
(endemic) animal species (A.O. Debrot, Henkens, and Verweij, 2018). The plant and animal species are
divided among the following habitats identified on Saba: Elfin forest, Montane forest, dry tropical forests,
dry shrubland and grassland, caves, beaches, bare rocks, seagrass and seaweed beds, coral reefs,
and open ocean and deep sea (A. Debrot et al., 2025). Figure 2.2 shows the estimated distribution
of these habitats as published in the 2018 state of nature report (A.O. Debrot, Henkens, and Verweij,
2018).

Figure 2.2: Estimation of spatial distribution of terrestrial and marine habitats on Saba as published in the 2018 state of nature
report (A.O. Debrot, Henkens, and Verweij, 2018). The map is derived from Freitas et al., 2015 and Smith et al., 2013.

The main terrestrial habitats from high to low elevation are described below.
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Elfin Forest
The Elfin forest, also known as a cloud forest, is located at the peak of Mt. Scenery. It starts around
750m elevation extending to the top of the volcano, representing the smallest habitat of Saba’s forest
habitats. A representative view of this habitat is provided in Figure 2.3a. As mentioned earlier, the
peak of the volcano is almost constantly capped in clouds (Figure 2.3b), which condense on foliage and
branches, resulting in consistently high humidity levels. This persistent mist, combined with frequent
rainfall, creates a cool, humid, and shaded environment that supports a lush understory with dense
moss growth, abundant ferns and orchids, and a diverse community of epiphytes (plants growing on
other plants) clinging to trunks and branches (A.O. Debrot, Henkens, and Verweij, 2018), as illustrated
in Figure 2.3c. The dominant tree species that can be found in this habitat is the Lesser Antillean
endemic Freziera undulata.

(a) Saba’s Elfin forest. Source: Laughlin, 2009c (b) Cloud formation at the peak of Mt.
Scenery. Source: Gleason, 2011

(c) A branch in the Elfin forest heavily covered
in moss and epiphytes. Source: Laughlin,

2009b

Figure 2.3: Examples of Flora Found in Saba’s Elfin Forest.

This environment is unique compared to other Elfin forests in the Caribbean because this forest occurs
at a relatively low elevation. This allows the Freziera undulata to grow up to 15m, which is much taller
compared to other Caribbean islands, where it typically reaches only about 6m (A.O. Debrot, Henkens,
and Verweij, 2018). In 1998, however, Hurricane Georges struck the island, causing significant damage
to this habitat through canopy loss and a decrease in vegetation height. As a result, Freziera undulata
endured a temporary decline in their dominance (Freitas et al., 2015). In the years since, they reach
heights of around 9m (A. Debrot et al., 2025).

Beyond its structural uniqueness, this cloud forest acts as a major water catchment and is also critical
for biodiversity, as a lot of endemic plants can be found here, such as Begonia retusa andChromolaena
macrantha (Freitas et al., 2015), and it serves as nesting sites for seven restricted range bird species
(United Nations Environment Program, 2018).

Montane Forest
Montane forests, also known as rainforests, occupy the middle and upper slopes of Mt. Scenery. It is
characterized by high humidity, and can be found between 500 and 750 meters elevation (A. Debrot
et al., 2025; United Nations Environment Program, 2018). This habitat surrounds the volcano, exposed
to different wind conditions. For example, parts of the Montane forest that are sheltered from the wind
(on the west side) are the most developed, as the forest is taller and can grow quite complex layers
undisturbed by wind. Figure 2.4a shows the characteristic dense vegetation and lush understory of
this habitat. In contrast, on the eastern side of the Montane forest, which is more exposed to wind,
the vegetation is shorter and more compact (A. Debrot et al., 2025). Because the Montane forest
borders the Elfin forest at higher elevations and the dry tropical forest at lower elevations, it shares
many plant species and ecological traits with both. At higher elevations, for example, the Montane
forest is characterized by epiphytic flora, although much less than in the Elfin forest.

Combined with the large elevation gradient, the Montane forest is the most diverse in plant species
(United Nations Environment Program, 2018), and contains the tallest tree species on the island. Just
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like the Elfin forest, the ample precipitation in this habitat is sufficient to sustain an evergreen tropi-
cal rainforest, meaning that the plants keep their leaves throughout the year (A.O. Debrot, Henkens,
and Verweij, 2018). A typical tree species in the Montane forest is Prestoea acuminata var. mon-
tana (Figure 2.4b), while the endangered Nectandra krugii (Dutch Caribbean Species Register, 2018)
also occurs in this habitat. Species part of the genus philendron such as the Philendron giganteum Fig-
ure 2.4c are common in the understory and often grow over other plants as hemiepiphytes. Additionally,
several types of orchids, ferns and mosses thrive in this forest. The Montane forest also supports im-
portant fauna such as the endemic Anolis sabanus lizard and endangered Alsophis rufiventris racer
snake (United Nations Environment Program, 2018).

(a) Image from the Sandy Cruz trail that runs
through the Montane forest. Source:

world-wide-mike, 2021

(b) Prestoea acuminata var. montana (Dutch
Caribbean Species Register, n.d.[b]). Source:

Observation.org, 2015

(c) Philendron giganteum (Observation.org,
2025c). Source: Dutch Caribbean Species

Register, n.d.(a)

Figure 2.4: Examples of Flora Found in Saba’s Montane Forest.

Dry Tropical Forest
Dry tropical forests are found at elevations roughly between 200 and 500meters (A. Debrot et al., 2025).
Similar to the Montane forest, the distribution and types of plant species in this habitat are influenced
by environmental factors. This habitat consists of a mixture of evergreen and deciduous plant species.
Deciduous species shed their leaves during the dry season and naturally occur at lower, drier elevations
within the habitat. A view of this habitat at moderate elevation is shown in Figure 2.5a.

In areas where deciduous vegetation dominates, dense ground vegetation is present due to increased
light availability (A. Debrot et al., 2025). Extending from the border with the Montane forest, many plant
species found in this habitat also occur in the Montane forest, although their abundance is significantly
lower (Freitas et al., 2015). In this region, there is a mix of tall and low trees, with ferns and shrubs
in the understory. In the western part of this habitat, where slopes are gentle, the area is dominated
by the endangered deciduous tree species Swietenia mahagoni (Freitas et al., 2015), which can be
seen in Figure 2.5b. The northern region of this habitat is more exposed to wind, resulting in reduced
vegetation cover and lower species diversity. This area consists mostly of the dominant evergreen tree
species Coccoloba swartzii and Guettarda scabra, although some deciduous tree species can also
be found here. The largest expanse of this habitat stretches from the northeast to the southwest of
the island, an area that is most exposed to wind and includes degraded forest patches dominated by
grasses and shrubs. A typical deciduous tree species is the Bursera simaruba (Figure 2.5c) and the
endangered Guaiacum officinale. This habitat also plays an important role in the control of erosion at
lower elevations.
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(a) View of the dry tropical forest in the eastern
part of this habitat at moderate elevation.

Source: Paul Illsley, 2023

(b) Swietenia mahagoni. Source:
Observation.org, 2023a

(c) Bursera simaruba. Source: Observation.org,
2023b

Figure 2.5: Examples of Flora Found in Saba’s Dry Tropical Forest.

Dry Shrubland and Grassland
Dry shrubland and grassland are primarily located on the lowest slopes of Saba, stretching from the
northeast to the southwest and along the coastal areas. This habitat is dominated by open, low-lying
vegetation, as shown in Figure 2.6. The shrubs on the lower slopes are ecologically important, as they

Figure 2.6: Saba’s dry shrubland and grassland landscape. Source: Laughlin, 2009a

help stabilize the soil and reduce erosion (United Nations Environment Program, 2018). Besides having
naturally occurring vegetation (referred to as primary vegetation), the habitat also includes degraded
dry tropical forests, known as secondary vegetation. Primary vegetation is typically found on wind-
ward ridges, where shallow soils and strong winds limit tree growth. Under these conditions, species
richness is lower compared to the higher-elevation habitats (A. Debrot et al., 2025). Typical primary
vegetation species include the grass Aristida adscensionis (Figure 2.7a) and tree Eugenia axillaris (Fig-
ure 2.7b). Secondary vegetation often contains invasive species, such as Bothriochloa pertusa (Fig-
ure 2.7c) (United Nations Environment Program, 2018). In addition to grasses and shrubs, scattered
rocks and patches of moss are also common features of this habitat.
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(a) Aristida adscensionis, a grass species.
Source: Observation.org, 2024

(b) Eugenia axillaris, a tree species.
Source: iNaturalist, 2023b

(c) Bothriochloa pertusa, an invasive grass
species. Source: iNaturalist, 2023a

Figure 2.7: Examples of Flora Found in Saba’s Dry Shrubland and Grassland.

A more extensive overview of flora found in these habitats can be found in Appendix A.

2.3. Biodiversity Threats
The biodiversity of Saba, as well as that of the wider Caribbean Netherlands, faces serious pressure
(IPCC, 2019). Across Saba’s identified habitats, numerous small and fragmented ecosystems exist,
making them highly vulnerable to disturbances that can lead to habitat loss and the extinction of en-
demic plant and animal species. The three most significant threats to Saba’s biodiversity are climate
change (KNMI, 2023), roaming livestock (A. Debrot et al., 2025), and invasive species (Government of
the Netherlands, 2025). These threats are often interconnected and intensify each other.

2.3.1. Climate Change
In 2024, the island experienced its highest recorded year-average temperature of 29 °C (KNMI, 2025).
According to climate projections for the year 2050 (see Figure 2.8), even under the most optimistic
scenario, temperatures are expected to rise by an additional 0.8 °C, precipitation during the dry season
may decrease by 9.12mm, and sea levels are projected to rise by 13 to 32 cm (KNMI, 2023).

Figure 2.8: Projected changes in annual mean temperature and precipitation for St. Eustatius and Saba under two climate
scenarios (L-scenario: low emissions, H-scenario: high emissions). Shaded areas indicate the uncertainty ranges around the

scenario means. Source: KNMI, 2023.

Likewise, hurricanes and stormswill becomemore frequent and intense (KNMI, 2023). Rainfall patterns
are projected to shift toward prolonged dry periods, alternated by intense rainfall concentrated in shorter
periods of time. This intense rainfall can overwhelm the island’s capacity for water retention, leading
to surface runoff and increased soil erosion. In addition, rising temperatures increase evaporation
rates, which reduces soil moisture even in wetter habitats. Warmer conditions may also raise the
cloud base, decreasing the frequency of mist immersion and gradually drying out the forests. These
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climate change factors have an especially strong impact on the Elfin andMontane forests, which heavily
depend onmoist conditions. Without adequatemoisture, the Elfin forest risks extinction (A. Debrot et al.,
2025). The destructive potential of hurricanes on Saba has already been demonstrated. As previously
mentioned, Hurricane Georges in 1998 severely damaged the Elfin forest, altering its structure and
reducing species richness. Similar impacts have been observed in the Montane and dry tropical forests,
where hurricane winds create light gaps that favor the spread of invasive plant species. In the dry
grassland and shrubland, invasive grasses are typically the first species to re-establish themselves
after a hurricane has cleared an area (A. Debrot et al., 2025). If hurricanes and tropical storms continue
to intensify and occur more frequently as projected, these habitats may experience repeated damage
before they can fully recover, leading to changes in species composition, reduced biodiversity, and
diminished ecosystem services such as water catchment and soil stabilization.

Although SIDS like Saba contribute only a negligible share of global greenhouse gas emissions, they
are among the most exposed to the impacts of global climate change (IPCC, 2019). Beyond ecological
stress, climate change threatens infrastructure and economic instability. These effects can be wors-
ened by poor land management. Unlike the European Netherlands, which possesses greater adaptive
capacity due to its size and resources, Saba is far less prepared to withstand these pressures. There-
fore, the island’s most effective defenses against these threats are biodiversity conservation efforts and
sound island management plans, requiring the need of clear legal and policy frameworks.

2.3.2. Roaming Livestock
Roaming livestock has been a long-time problem on Saba. In recent decades, insufficient control has
allowed goats and other animals to enter the wild and reproduce freely. Goats pose the largest threat, as
they are highly adaptable and reproduce quickly. Additionally, chickens, cats, non-native iguanas, and
rats are also problematic. Goats threaten biodiversity by eating young seedlings and trees, preventing
natural forest regeneration (A. Debrot et al., 2025). Their trampling compacts the soil, accelerates
erosion, and leaves bare ground that becomes a breeding ground for invasive plant species to take
hold. Compounding the problem, goats often avoid eating invasive plants, thereby giving the invasive
plants a competitive advantage. Goats have been recorded at all elevations on the island, making
every habitat susceptible to their impacts, though the effects of overgrazing are most pronounced on
the lower slopes (A. Debrot et al., 2025). In these habitats, including the dry tropical forests and dry
grassland and shrubland, roaming livestock is the main driving factor of biodiversity loss. In the Elfin
and Montane forests, a significant decrease in understory species-richness has been observed since
1950, partly due to reduced light from canopy closure, but also as a result of sustained overgrazing.

To address the problem, Saba has implemented a livestock control project with measures such as
public awareness campaigns, placement of fences, and hunting programs targeting free-roaming goats
(Rijksdienst Caribisch Nederland, 2020). It is estimated that as a result of this campaign, approximately
90% of roaming livestock has been reduced since 2020 (Public Entity Saba, 2025). Simultaneously, a
reforestation project was also started, focusing on erosion-prone areas. However, the time between
reforestation and now is too short to see the impact of the removal of roaming livestock, as the replanted
trees are still at a size vulnerable to goats. Despite the initial success in removing a large part of
the roaming livestock, without consistent monitoring and action, goat populations can rebound quickly,
reversing progress.

2.3.3. Invasive Species
The introduction and spreading of (alien) invasive species is slowly becoming the biggest threat to the
functioning of Saba’s ecosystems and habitats (A. Debrot et al., 2025). Invasive species are species
non-native to the natural ecosystem and whose introduction (likely) causes economic or environmental
harm or harm to human health (Government of the Netherlands, 2025). In contrast to other exotic
species, these species have specific advantages over native plants and/or animals that enable them
to rapidly expand and destabilize the habitats, thereby becoming an ecological threat. In particular,
alien species may exhibit competitive traits that allow them to acquire nutrients or reproduce more
efficiently, or they may be opportunistic, exploiting ecosystem disturbances such as forest fires or other
environmental changes.
Once established, these species grow rapidly. At first, they may coexist with native vegetation without
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causing significant harm, but as their spread accelerates and becomes unmanageable, they invade
natural habitats and displace native plants, causing biodiversity loss. Once the biodiversity declines,
invasive species have more opportunities to expand, reinforcing a continuous feedback loop.

A 2012 study identified 41 exotic plant species on Saba that were in various stages of establishment,
of which 14 were already invasive (van der Burg et al., 2012). A more recent update (provided in
Appendix B) given by the Global Register of Introduced and Invasive Species (GRIIS), reports an in-
crease to 46 invasive plant species (Debrot et al., 2025). These species are particularly threatening to
the lower elevation areas where they can exploit disturbances caused by hurricanes (A. Debrot et al.,
2025). For example, the invasive grass species Bothriochloa pertusa (Figure 2.7c), commonly known
as ”hurricane grass”, tipped the ecosystem stability of some windward areas of the dry grassland and
shrublands by becoming the dominant species by outcompeting native species and altering the open
structure of the habitat (A. Debrot et al., 2025). Likewise, a naturalized plant species called Cryp-
tostegia madagascariensis is also becoming dominant in parts of the dry grassland and shrubland by
overgrowing native vegetation, contributing to one-third of the observed species loss (A. Debrot et al.,
2025). These invasions are not limited however to only the lower and drier zones of Saba. In the Elfin
and Montane forests, hurricanes and intense storms create canopy gaps that can be exploited by inva-
sive species. For example, after Hurricane Georges in 1998, the increased light penetration in the Elfin
forest facilitated the spread of Rubus rosifolius that now has a naturalized status (Dutch Caribbean
Species Register, n.d.[c]). Even though the wetter conditions of these habitats slow the spread of
invasive species, their expansion into these habitats is concerning because of the high proportion of
endemic species present.

Antigonon Leptopus, "Coralita"
Of all these alien invasive species, Bothriochloa pertusa and Antigonon leptopus have been identified
as the most problematic invasive species in Saba van der Burg et al., 2012. Not only is Antigonon
leptopus considered a threat on more Dutch Caribbean islands, as mentioned on the current research
andmonitoring list from the Dutch Caribbean Nature Alliance (DCNA) (Dutch Caribbean Nature Alliance
(DCNA), n.d.), it also has specific traits (such as being drought-resistant, allowing it to fully utilize the
climate change on the islands), that give it a higher priority than other alien invasive species.

Antigonon leptopus, or commonly called Coralita, is a climbing vine and can be seen in Figure 2.9.
This species was first introduced as an ornamental plant, but very quickly gained an invasive status.
By climbing, it smothers other plants (even trees) and creates different lighting conditions, thereby
outcompeting native vegetation (Figure 2.9a). Although climbing is Coralita’s main way of spreading, it
also spreads through its seeds and underground via its roots (Burke and DiTommaso, 2011).

(a) Coralita climbing and smothering vegetation. Source: Achsah Mitchell,
2023

(b) Coralita up close with its characteristic pink flowers.
Source: Observation.org, 2025a

Figure 2.9: Antigonon leptopus, ”Coralita”: An invasive species on Saba.

The preferred conditions of Coralita are a dry to moist lowland environment (< 600m), and it favors
limestone as soil, although it can grow on any soil as long as it is well drained (Ernst and Ketner, 2007).



2.4. Advancing Conservation Monitoring 11

Coralita occurs across a broad range of soil pH values, but field data from Saba suggest a preference
for moderately acidic soils, with the highest occurrence at a 5.0–5.5 pH, though the evidence remains
inconclusive due to the small sample size (Ernst and Ketner, 2007). Importantly, Coralita also tolerates
high pH soils, indicating that soil pH is not the sole driver of its distribution. Coralita is also drought-
tolerant and grows in full sun to partial shade, but prefers full sun exposure. Hurricanes are notable
events during and after which the plant rapidly spreads: during a storm, dispersal occurs through wind
and runoff, while disturbed open ground is created for the plant to establish. Rainfall also influences
its growth, as drought almost halts its expansion and flowering (but it can survive through defoliation),
while wet periods cause extreme growth (Ernst and Ketner, 2007). Coralita favors disturbed areas such
as roadsides, and abandoned land such as gardens or agricultural areas. From this established state,
Coralita originally spread further into natural vegetation. On St. Eustatius, abandoned agricultural
areas have been the main reason for rapid spread. On Saba, however, abandoned land is much less
present, which limits its spread (A. Debrot et al., 2025). Here, Coralita primarily invades roadsides,
areas disturbed by roaming livestock, erosion-affected sites (van der Burg et al., 2012).

When supported by vegetation or man-made structures, individual vines commonly extend 2.4 - 3m in
a single season and can achieve total lengths of 9 – 12m (Ernst and Ketner, 2007; Gardenia.net, n.d.).
Without support, Coralita spreads horizontally rather than climbing, and its vertical growth is minimal.
The plant also has leaves about 2.5 – 7.5 cm long ((Ernst and Ketner, 2007). Their underground stems,
known as tubers, can reach lengths of up to 2m (Ernst and Ketner, 2007). In heavily infested areas,
densities of up to 280 tubers per m2 have been recorded (A. Debrot et al., 2025), making removal
extremely difficult. Depending on the water availability, the plant either has a distinct or continuous
flowering period. The flowers are bright pink (occasionally white) and small, as seen in Figure 2.9b.
On Saba, it is more likely that there is a continuous flowering period, although dry periods do occur in
which fruiting is more prominent (Ernst and Ketner, 2007).

2.4. Advancing Conservation Monitoring
Given the above, frequent and accurate monitoring of Saba’s biodiversity is crucial for tracking the
effectiveness of conservation policies. On Saba, this is primarily accomplished through field surveys
(for example, in Stoffers, 1956) with the aid of expert knowledge, as well as the compilation of invento-
ries (for example, in Boeken, 2014; A.O. Debrot, Henkens, and Verweij, 2018). These methods have
several disadvantages. Firstly, data collection has often been project-based, resulting in irregular time
intervals between surveys, which is unfavorable for trend analysis. For example, the state of nature
reports state that they are not sure about the circumference of habitats because they are using out-
dated habitat maps, and they draw comparisons between a vegetation map from 1950 to now when
assessing trends in habitat distribution and area (A.O. Debrot, Henkens, and Verweij, 2018; A. Debrot
et al., 2025). This makes it challenging to monitor changes that occur on a much smaller timescale,
such as the spread of invasive species, which may persist at low densities for years before rapidly
expanding once conditions allow (Crooks, 2005). Additionally, field surveys are labor-intensive, in-
consistent across independent field surveys, and incomplete due to inaccessible areas, especially in
higher-elevation habitats.

More recently, remote sensing techniques have been integrated on islands to solve limitations of relying
solely on field surveys (Saritha et al., 2025). At the most basic level, satellite and aerial imagery can
supplement field data to produce repeatable land cover maps. Satellite data allows monitoring over
consistent and shorter time intervals, which is useful for detecting trends such as habitat circumference.
Aerial imagery provides higher spatial resolution data, allowing the creation of more detailed maps. An
example for Saba specifically, where aerial imagery serves as a basis for field sampling, is a research
by Freitas et al., 2015 where they combined aerial imagery with field surveys to produce an ecological
vegetation map. This research employs a method that combines remote sensing data and field data.
A 2020 study, which placed less emphasis on field data, utilized satellite imagery of Aruba, combined
with historical records and expert knowledge, to assess land cover changes from 1900 to 2020 and to
produce a 1m resolution land cover map for the year 2020 (Mucher et al., 2024). With these maps, they
found a reduction in certain natural habitats driven by urban expansion, as well as the appearance of
vegetation in previously bare areas, likely due to the removal of goats. To monitor fine-scale ecological
processes via remote sensing, drones equippedwithmultispectral imaging capabilities can be deployed.
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In St. Eustatius, for instance, such drones are being utilized to assess vegetation health and evaluate
the impact of fencing interventions designed to exclude goats from specific areas.

2.5. User Requirements and Land Cover Taxonomies
To effectively monitor biodiversity, there must be a clear alignment between the conservation priorities
defined by the NEPP and the data required to address them. As mentioned in Section 2.4, remote
sensing techniques could offer a powerful tool to support biodiversity monitoring on Saba. To make
this operational, the monitoring needs identified in the state of nature reports and by local organizations
such as DCNA (Dutch Caribbean Nature Alliance (DCNA), n.d.) must be translated into remote sensing
products. Therefore, user requirements and land cover taxonomies need to be defined to ensure that
the products meet conservation objectives.

2.5.1. User Requirements
The monitoring priorities for Saba are summarized as: understanding the changing distribution, size,
and condition of habitats and species (with a focus on endangered, key, and indicator species) as a
result of the biodiversity threats mentioned in Section 2.3, as well as monitoring the effectiveness of
mitigation efforts. The species consists of both flora and fauna, but the conditions of fauna depend di-
rectly on the conditions of flora. For example, as mentioned in Section 2.2, several bird species depend
on the existence of the Elfin forest, as they are restricted-range species. Because of this dependency,
remote sensing focused on flora can also serve as an indirect indicator of fauna health. Therefore, the
focus here is on using remote sensing techniques to monitor flora. To meet the monitoring needs, it is
essential to determine the spatial scale and frequency at which specific processes occur, allowing for
the selection of an appropriate remote sensing method.

Spatial Scale
A spatial scale is needed that can monitor at both the habitat level and the species level. The spatial
scale can be split into horizontal and vertical scales.

Horizontal Scale
The habitats on Saba range in size, with the smallest habitat being the Elfin forest (estimated 7.2 ha
by A. Debrot et al., 2025) and the largest habitat being the dry shrubland and grassland (estimated
470 ha by A. Debrot et al., 2025). At the very least, the horizontal resolution should be able to resolve
the smallest habitat. To monitor at the species level, a much finer horizontal scale is needed. The
largest species can be considered trees and shrubs, which can grow a few meters wide, while the
smallest species are considered to be vegetation in its early growing state, which can be about 5 -
10 cm at their beginning stage. Therefore, a horizontal spatial resolution of 10 cm or less is necessary
to accommodate all of the above.

Vertical Scale
Vertical information is important to include due to the steep and elevated nature of this island, making
several habitats and species strongly elevation-dependent. A vertical resolution of at least 100m is
needed to distinguish habitats in their elevation, but a much finer scale is required to distinguish vege-
tation patches and species. As the lowest vegetation types have an approximate height of about 0.1m
(Freitas et al., 2015), a vertical resolution of ≤ 0.1m is needed to also distinguish between vegetation
types.

Temporal Frequency
The frequency of acquisition must align with the processes being monitored. Long-term changes in
habitat distribution can be monitored on an annual basis. However, to see the effects of increasing dry
and more intense wet periods on vegetation health, more frequent acquisitions (i.e., biannually) are
needed. Other processes that benefit from at least biannual, but preferably more, acquisitions are the
monitoring of erosion, the spread of invasive species, or vegetation recovery after clearing roaming
livestock. However, the latter also requires a very high spatial resolution to be able to detect vegetation
in its early growing stages. At the species level, the monitoring frequency should align with the plant’s
life cycle and conservation status (IUCN, n.d.). Besides monitoring at consistent time intervals, event-
based monitoring is also necessary in the case of hurricane damage and is expected to be needed
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more frequently in the future, as the frequency and severity of hurricanes are expected to increase
(KNMI, 2023). After such an event, close monitoring is also needed to see if any invasive species
regenerate.

2.5.2. Land Cover Taxonomies for Saba
To translate the monitoring wishes and needs into measurable objects, land cover taxonomies are
needed. In this section, a 3-level hierarchical classification system is presented, where level 1 is the
broadest and level 3 is the most detailed, as shown in Table 2.2. Marine habitats and species are ex-
cluded from the scope of this study, which concentrates exclusively on terrestrial environments through
land-focused remote sensing techniques. For the sake of consistency, similar taxonomies are taken
as the most recent land cover classification study of Saba from Smith et al., 2013.

Table 2.2: Three-level hierarchical land cover taxonomy for Saba, linking broad land cover classes to habitats and species.
Restricted species are based on habitat-specific flora listed in Appendix A, while additional invasive species are listed in

Appendix B. IUCN-identified endangered species are indicated with (EN)

Level 1 Level 2 Level 3

Artificial surfaces

Man-made -

Invasive species
Antigonon leptopus
Bothriochloa pertusa
Other invasive species (Table B.1)

Rangeland Dry shrubland and grassland
Restricted shrubland species
Restricted grassland species
Restricted herb species

Forest land

Elfin forest Evergreen species restricted to the Elfin forest
Other species restricted to the Elfin forest

Montane forest

Evergreen species restricted to the Montane for-
est
(Semi) deciduous species restricted to the Mon-
tane forest
Other species restricted to the Montane forest
Nectandra krugii (EN)

Dry tropical forest

Evergreen species restricted to the dry tropical
forest
(Semi-)deciduous species restricted to the dry
tropical forest
Other species restricted to the dry tropical forest
Swietenia mahagoni (EN)
Guaiacum officinale (EN)

Barren land Rocks -
Beaches -

Level 1
At level 1, the taxonomy distinguishes among artificial surfaces, rangeland, forest land, and barren
land, as also defined by Smith et al., 2013. This level can be used to track forest degradation by
natural drivers, such as hurricanes, as well as the long-term influence of reforestation after the removal
of roaming livestock.

Level 2
The second level refines the broad categories into habitats identified in the state of nature reports
(A.O. Debrot, Henkens, and Verweij, 2018; A. Debrot et al., 2025) that require periodic reporting on the
conservation state of these habitats. The only class from level 1 that is not split further is rangeland,
as rangeland corresponds to dry shrubland and grassland. This level can be used to track the size,
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condition, and distribution of the habitats.

Level 3
The third level gives the taxonomy at the species level. As can be seen, the species are restricted to
their corresponding habitat in level 2. Since no official documentation of key and indicator plant species
could be found, the focus on restricted species is an attempt to identify key and indicator species for
each habitat; restricted and/or dominant species are likely to function as indicators of habitat condition
and, in some cases, as key species whose presence or absence reflects the integrity of the ecosystem.
For example, epiphytes are a good indicator for the health of the Elfin forest, as their presence and
abundance indicate that the humidity is high enough to sustain the species, while pioneer species can
be used as an indicator for barren land or degradation, since they are the first to appear in degraded
areas. The restricted species that are referred to in the land cover taxonomy table can be found in Ap-
pendix A. It is important to note that some of the information used to create Table A.1 originates from
Freitas et al., 2015, which relies on a 1999 survey that is now extremely outdated, although it remains
the most recent island-wide inventory. Therefore, the occurrence and abundance of species may have
changed since then. For the forest habitats, a distinction is made between evergreen and (semi) de-
ciduous species, so that when taken together across habitats, these correspond to the broader forest
classes used in the most recent classification system from Smith et al., 2013. For invasive species, the
taxonomy shows the most problematic species for Saba (Bothriochloa pertusa and Antigonon leptopus,
as mentioned in Subsection 2.3.3), while also including all other invasive plants listed in Appendix B.
The International Union for Conservation of Nature (IUCN) identified endangered species of Saba are
also included in the table, indicated with (EN). The man-made class does not require any more detail,
as for biodiversity monitoring, the distinction between natural and artificial objects is enough. Rocks
and beaches are also not split into further classes for the same reason.

Sub-Level: Remote Sensing Measurables
Each level includes a corresponding sub-level that translates categorical classes into measurable prod-
ucts derived from remote sensing data. The most commonly used techniques for biodiversity monitor-
ing include passive hyperspectral imaging, Synthetic Aperture Radar (SAR), and Light Detection and
Ranging (LiDAR) (Mulatu et al., 2017). Passive hyperspectral remote sensing enables the acquisition
of spectral signatures at the species level, facilitating the differentiation of species and the identification
of invasive species. It also provides biochemical indicators, such as chlorophyll content, and vegeta-
tion indices like the Normalized Difference Vegetation Index (NDVI), which are valuable for monitoring
vegetation health. LiDAR provides elevation data that can be used to assess vertical habitat structure
and species distribution. LiDAR can also capture the three-dimensional vegetation structure, making
the detection and monitoring of understory vegetation possible. SAR provides backscatter intensity,
which can be used to obtain surface characteristics such as surface roughness and soil moisture.

2.6. State of the Art
Remote sensing techniques are increasingly used in environmental monitoring, biodiversity assess-
ment, and land cover classification (Saritha et al., 2025). Passive multispectral optical remote sensing,
for example, is used in change detection to monitor agricultural development, natural habitat loss, and
urban expansion, both at global (as seen in Song et al., 2018) and national scales. The results are used
in support of climate change mitigation efforts. Spectral signatures derived from passive multispectral
data allow for the identification of land surface properties, where classification is possible at the species
level (Saritha et al., 2025), and habitat diversity and distribution can be assessed (Cavender-Bares et
al., 2022). LiDAR remote sensing is widely used in forestry studies by capturing vertical forest struc-
ture, which cannot be achieved with traditional optical methods. Beyond canopy height models (CHM),
LiDAR can derive forest variables such as biomass, Leaf Area Index (LAI), gap fraction, and structural
parameters (Wang et al., 2024), which are crucial for habitat and biodiversity studies (Fassnacht et al.,
2016a). At high point densities, individual trees can be segmented and classified, allowing for species-
level analyses (Van Ewijk et al., 2014; Marselis et al., 2018). In terrestrial applications, even individual
leaves can be resolved.

Despite the wide range of possibilities offered by remote sensing techniques, their application to Saba
has been limited. The most recent study in which Saba is classified using remote sensing data is
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from Smith et al., 2013. High-resolution satellite imagery from the WorldView-2 satellite, acquired in
December 2010 and February 2011, was used to identify and map both natural and artificial land cover
types. The data consists of a 0.5m resolution panchromatic image, and 8-band multispectral images
at 2m resolution. Using the land cover map together with species-specific habitat requirements and
niche-modeling techniques, they aimed to estimate the geographic distribution of key animal species
and their habitats across the island. They used supervised and unsupervised classification with a
hierarchical land cover typology, resulting in four levels, where level 1 is the least detailed, and level 4
is the most detailed. In Figure 2.10, the level 3 classification map can be seen.

Figure 2.10: Level 3 land cover map of Saba from Smith et al., 2013

While they successfully identified some land cover types with their algorithm, the overall results were
limited by the highly heterogeneous vegetation cover and the lack of ecological baseline knowledge.
The high degree of heterogeneity led to significant spectral overlap, complicating the differentiation be-
tween vegetation types and forest classes. In particular, invasive species could not be reliably classified
at the species level, as their spectral signatures were insufficient to separate them, and the resulting
maps conflicted with expert judgment. Moreover, invasive species occurring under the canopy could
not be detected, and cloud cover and shading from steep terrain further reduced classification accu-
racy. They suggested that the implementation of vertical information in the form of a high-resolution
Digital Terrain Model (DTM) could improve results, but such data were unavailable at the time. Niche
modeling was also not possible due to insufficient detail in the map and limited knowledge regarding
the habitat requirements of particular species. In response, a follow-up study produced a DTM using
stereo aerial imagery (Mücher et al., 2014). However, the resulting DTM had a resolution of only 5m,
a poor height accuracy of about 60 cm, particularly in densely vegetated areas, and a poor ecological
relevance as it used observations from 1991. The study concluded that LiDAR altimetry is the preferred
method for generating a DTM, due to its superior accuracy and enhanced vegetation penetration com-
pared to photogrammetry. Specifically, it recommends adopting an approach similar to that used in the
production of AHN in the European Netherlands. Since then, no further published studies have been
found on land cover classification for Saba.

2.7. Research Gap
The limitations outlined above indicate a clear research gap. Currently, there is no recent, island-wide
land cover map for Saba that meets the biodiversity monitoring and management needs described in
Section 2.5, nor are the necessary data products available to produce such amap. Existing topographic
information is outdated, as the only available DTM is derived from 1991 stereo aerial imagery with
limited accuracy under dense vegetation. Recent state of nature reports further emphasize that little is
known about the present (2024) extent and quality of habitats (A. Debrot et al., 2025), sincemapping still
relies on a combination of fieldwork-based vegetation surveys (Freitas et al., 2015) and older satellite
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classifications (Smith et al., 2013). As a result, the available maps lack both temporal relevance and
the spatial detail required for species-level monitoring.

A method that has not been explored yet is the use of airborne remote sensing, which offers higher
spatial resolution compared to satellites, while providing full-island coverage in a single campaign. One
major opportunity for Saba lies in the application of LiDAR data. To date, LiDAR remote sensing has not
been utilized on the island, despite the need for elevation models and structural information, as it has
never been acquired before. Similarly, multispectral aerial imagery is of great benefit as it can reach
the desired spatial resolution to distinguish individual plants. These datasets can provide structural and
spectral information at a spatial resolution much higher than what is currently available. Fortunately,
in early 2024, airborne LiDAR and optical aerial imagery were acquired over Saba for the first time.
This study investigates the potential of these recently acquired datasets to address the limitations of
satellite-based monitoring and provide the detail and quality needed for land cover mapping on Saba.

2.8. Research Questions
The main research question is defined as:

• What is the potential for mapping land cover of the Caribbean Netherlands using airborne LiDAR
and passive optical data?

The following sub-questions are identified to help answer the main research question:

1. What land cover taxonomies are relevant for biodiversity monitoring on Saba?
2. What are the properties of the AHN LiDAR dataset?
3. What is the quality of the AHN LiDAR-derived DTM?
4. What structural parameters can be derived from the AHN LiDAR data?
5. To what extent can the AHN LiDAR data be used to assess the land cover taxonomies?
6. What limitations remain, and how can they inform future research efforts?



3
Data Description

This chapter describes the principles of the remote sensing techniques used in this study, and provides
an overview of the data. LiDAR remote sensing is discussed in Section 3.1, while passive multispec-
tral optical remote sensing (ORS) is covered in Section 3.2. For further details on these techniques,
additional information is available in Appendix C. A total of 4 datasets are used in this study: an air-
borne LiDAR dataset (described in Subsection 3.1.2), an airborne passive multispectral ORS dataset
(described in Subsection 3.2.2), and two satellite passive multispectral ORS datasets (described in
Subsection 3.2.3 and Subsection 3.2.4).

The airborne LiDAR data is obtained from Actueel Hoogtebestand Nederland (AHN), while the airborne
passive multispectral ORS data is obtained from Beeldmateriaal Nederland. Both datasets are freely
accessible through the AHN dataroom and the Beeldmateriaal NL dataroom. The data acquisitions
took place at the end of 2023 and the beginning of 2024, marking the first time high-resolution aerial
imagery and airborne LiDAR data were collected for the Caribbean Netherlands. The initiative was
commissioned by theMinistry of the Interior and KingdomRelations (BZK) and was carried out on behalf
of the Samenwerkingsverband Beeldmateriaal Nederland. Het Waterschapshuis was responsible for
processing and checking the data. Additional information on the processing workflow and accuracy
assessment is available in Appendix D. All final products are provided in 1 km x 1 km tile format to
facilitate more efficient processing. These tiles are referenced in Saba’s local Coordinate Reference
System (CRS), with each tile name corresponding to the upper-left x and y coordinate. Further details
on Saba’s local CRS are provided in Appendix E. In Figure 3.2, the names of the tiles can be seen.
For example, the upper left tile has an x-coordinate of 2000m and a y-coordinate of 4000m in Saba’s
local CRS, therefore the name of the tile is 2000_4000.

The two additional passivemultispectral ORS datasets from satellite sources are obtained fromPleiades-
Neo and Sentinel-2. The Pleiades-Neo dataset is obtained from The Netherlands Space Office (NSO),
which provides free access to satellite data through their satellite data portal. The Sentinel-2 dataset is
obtained from the Copernicus Data Space Ecosystem, which also provides free access to Sentinel-2
data.

3.1. Light Detection and Ranging (LiDAR)
3.1.1. Principles of LiDAR Remote Sensing
LiDAR is an active remote sensing technique that measures the distance between a LiDAR instrument
and a target surface by emitting laser pulses and detecting their reflections. These pulses, consisting of
coherent light typically in the near-infrared wavelength range around 1064 nm (but 532 nm is typical for
bathymetric surveying) (Wang et al., 2024), are emitted toward the surface, and when they encounter
an object, part of the energy is reflected back to the instrument. By recording the time it takes for the
signal to return, called Time of Flight (TOF), the system can calculate the distance between the sensor
and the reflecting surface. By combining the TOF with the positioning and orientation of the platform on
which the sensor is mounted, the 3D coordinates (x, y, z) of the reflecting surface can be determined.
Besides geometry, LiDAR often records the intensity values of the returned signal, which represent the
strength of the backscattered signal and can help distinguish between surfaces of different reflectivity.
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There are two different ways a LiDAR system can record the backscattered signal: full-waveform LiDAR
and discrete-return LiDAR. In full waveform LiDAR, the complete energy profile of the returned pulse is
recorded as a continuous waveform. The waveform then shows the complete vertical structure of the
scanned surface. In contrast, discrete return LiDAR records only a few locations in the energy profile
by using detection thresholds, which significantly reduces the data volume compared to full-waveform
LiDAR. The number of discrete returns is limited by the instrument’s maximum discrete returns per
pulse. For example, if a LiDAR instrument has a maximum of three discrete returns, a single laser pulse
may first reflect off the top of a tree canopy (first return), then from branches or understory vegetation
(intermediate returns), and finally from the ground surface (last return); each of these reflections is
assigned a return number. In simpler cases, such as when the pulse encounters a flat surface like bare
ground, only a single return is recorded.

The spatial resolution is measured by point density D, which is the number of points per m2. The flight
parameters that contribute to the point density are the Pulse Repetition Frequency (PRF), number
of beams Nbeam, speed v, and swath width W of the platform, for which the latter is the horizontal
distance covered by the laser scanner determined by the platform’s altitude h and Field of View angle
FOV through:

W = 2h · tan(FOV/2) (3.1)
The area A covered in a certain time t can be defined as:

A = v ·W · t

And the point density D is then related to its flight parameters through (Vosselman and Maas, 2010):

D =
PRF · t ·Nbeam

A
=
PRF ·Nbeam

v ·W
=

PRF ·Nbeam

v · 2h · tan(FOV/2)
(3.2)

LIDAR Products
The primary output of a LiDAR survey is a point cloud, which contains the 3D coordinates of the reflected
points of the scanned surface. From these point clouds, several secondary products can be derived.
One of the most common applications of LiDAR is topographic mapping, where essential products
include DTMs and Digital Surface Models (DSMs). A DTM represents the bare Earth surface, excluding
vegetation and man-made structures, whereas a DSM consists of all features present on the surface.
Another widely used product is the CHM, which describes the height of vegetation measured from the
ground to the top of the canopy. A CHM is obtained by subtracting the DTM from the DSM. The different
models are illustrated in Figure 3.1.

Figure 3.1: Different LiDAR-derived elevation models. The DSM represents the surface elevation, including features such as
trees, while the DTM represents the bare ground elevation. The CHM is the resulting height of the vegetation, calculated by

subtracting the DTM from the DSM. Source: Jafarbiglu and Pourreza, 2022

Advantages and Limitations
A major advantage of LiDAR compared to other remote sensing techniques is its ability to rapidly ac-
quire direct three-dimensional information on surface objects. Because the light source is coherent
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and concentrated in a narrow beam with little divergence, LiDAR has a high detection sensitivity and
spatial resolution. Additionally, LiDAR is largely unaffected by electromagnetic interference, allowing
it to be used in a wide range of conditions. One limitation is its reduced performance under adverse
weather conditions, such as heavy rain or fog, which can significantly attenuate the signal. Another
challenge is its penetration through very dense vegetation. Although multiple returns through canopy
layers can be recorded, in extremely dense vegetation, the signal may attenuate before reaching the
ground, leading to gaps or errors in the DTM. Lastly, steep or rugged terrain can also pose difficulties,
as parts of the surface may fall outside the scanning geometry, leading to incomplete coverage. An-
other limitation is the lack of spectral detail. Conventional LiDAR primarily records the intensity of a
single laser wavelength, although some specialized systems can capture limited spectral information,
providing little information about surface reflectance properties. For this reason, LiDAR datasets are
often complemented with optical remote sensing in applications such as land cover classification.

3.1.2. AHN LiDAR Data over Saba
Acquisition Specifications
The airborne LiDAR data was acquired using a RIEGL VQ-1560 II dual channel waveform processing
laser scanning system (RIEGL Laser Measurement Systems GmbH, 2024). Both lasers have the
same wavelength in the NIR at 1064 nm (Mandlburger, 2025). The RIEGL VQ-1560 II operates as
a multi-return discrete waveform LiDAR system, providing up to 14 discrete returns per pulse. The two
scanners generate parallel scan lines, and since the channels are tilted 28° with respect to one another,
the scan lines overlap, creating a cross-fire pattern. More details on the scanner specifications can be
found in Subsection D.1.1, and a visualization of the scanning configuration can be seen in Figure D.1.

The LiDAR survey over Saba was conducted on 20 December 2023 using a King Air B200 aircraft
(PH-SLE) equipped with the RIEGL VQ-1560 II-S sensor. The flight lasted 45 minutes at an altitude
of ≈ 2 km, and ground speed of ≈ 67m/s. A full overview of the LiDAR acquisition parameters can
be seen in Table 3.1. The effective swath width was ≈ 938m, requiring seven parallel NW–SE flight

Table 3.1: Overview of the AHN LiDAR acquisition parameters for Saba on 20 December 2023 using the RIEGL VQ-1560 II-S
sensor mounted on an aircraft. It should be noted that the altitude, flight strip overlap, and PRF mentioned in the flight plan do

not correspond to those in the flight metadata; therefore, the flight parameters from the metadata are used.

Parameter Value
speed v 130 kts, 241km/h
altitude h 6562 ft, 2000m
PRF 700 kHz
Laser power 100%
FOV 55◦
Flight line overlap 55%
Number of flight lines 7 parallel + 1 cross-line

lines plus two cross-lines. Due to clouds, some lines were repeated, and line 102 was excluded. The
full flight report can be found in Subsection D.1.2. For georeferencing, a permanent Global Navigation
Satellite System (GNSS) base station (SABY) was utilized, supported by two height control fields and
two connection fields, all of which weremeasured usingGPS. The connection fields served as reference
areas for block adjustment, while the control fields were used to assess vertical accuracy independently.
A visualization of the flight lines and the locations of the connection and control fields can be found in
Figure D.2.

Data Products
Point Clouds
The dataset includes point clouds in .LAZ format, divided over 1 x 1 km tiles, as well as the original
flight strip point clouds. The attributes of the points are listed in Table 3.2.

Figure 3.2 shows the number of points present in each tile, and the classification that occurs in each
tile. The tile names are also indicated.

DTM and DSM
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Table 3.2: Attributes and descriptions of the AHN LiDAR point cloud data of Saba

Attribute Description
1 X, Y, Z 3D spatial coordinates of each point in Saba’s local CRS (Ap-

pendix E).
2 Intensity Strength of the returned laser pulse.
3 Return Number Specifies which reflection in a multi-return sequence the point rep-

resents.
4 Number of Returns Total number of returns detected for the pulse the point belongs

to.
5 Scanner Channel Identifies the scanner channel that emitted the laser pulse associ-

ated with the point. A value of “0” refers to the first scanner, while
“1” indicates the second.

6 Scan Direction Flag Direction in which the scanner mirror rotates. “1” indicates from
left to right in the flight direction, “0” from right to left.

7 Edge of Flight Line Indicates whether the point lies at the edge of a scan line, denoted
by “1”, else “0”.

8 Classification Coded value representing the type of surface defined by the AS-
PRS (The American Society for Photogrammetry & Remote Sens-
ing, 2019). 1: unclassified, 2: ground, 6: building, 9: water.

9 Scan Angle Angle between the laser beam and the nadir direction, where neg-
ative values indicate that they are on the left of the plane.

10 Point Source ID Identifier for the flight line that generated the point.
11 GPS Time Timestamp of when the pulse was emitted, in Adjusted Standard

GPS Time.

Figure 3.2: A per-tile overview of the number of points and classifications in the LiDAR point cloud data. Each tile contains its
tile name as published in the data, the number of points in that point cloud tile, and the classifications present in the tile. For

example, point cloud tile 4000_3000 contains a total of 42,163,513 points, and these points are classified as either 1
(unclassified) or 2 (ground).

Additionally, a rasterized 50 cm resolution and resampled 5m resolution DTM and DSM are included in
the dataset, in the same 1 x 1 km tile format. The DTM was generated by dividing the point cloud into
50 cm x 50 cm grid cells. For each cell, the unweighted average of the z-values of the ground-classified
points was calculated and assigned as the DTM elevation. The DTM was resampled to 5m resolution
by calculating the unweighted average of the DTM values within each 5m × 5m block, based on the
corresponding 50 cm grid cells. If more than 60% of the 50 cm cells within a 5m × 5m block (i.e., 60
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or more out of 100 cells) contained no data values due to the absence of ground-classified points, the
corresponding 5m grid cell was also assigned a no data value. This resampling rule was eventually
dropped because of the extensive data gaps in the 50 cm resolution DTM. The DSM was generated
using a similar approach, but then by taking the maximum z-value of all points in each cell. The 50 cm
and 5m resolution DTM can be seen in Figure 3.3 and Figure 3.4, where a self-written python script
was used to stitch together the tiles. On the x and y-axis, the coordinates of Saba’s local CRS are
shown in meters.

Figure 3.3: 50 cm resolution DTM as published, composed of
the individual 1x1km DTM tiles in the AHN LiDAR dataset.

Figure 3.4: 5m resolution DTM as published, composed of
the individual 1x1km DTM tiles in the AHN LiDAR dataset.

3.2. Passive Optical Remote Sensing
3.2.1. Principles of Optical Remote Sensing
Optical remote sensing (ORS) is a passive method that measures electromagnetic radiation reflected
or emitted by the Earth’s surface across discrete wavelength intervals, known as spectral bands. The
spectrum captured usually ranges from visible (about 400-700 nm) to NIR regions (700-2500 nm), which
lie in the optical range, hence the name. Typical bands are the red, green, and blue bands (RGB) from
the visible spectrum, and several bands in the NIR. This method relies on the fact that each object
on Earth interacts differently with electromagnetic radiation, depending on its physical and chemical
properties, resulting in a unique spectral signature. This is illustrated in Figure 3.5, where the absorption
coefficient for principal leaf constituents can be seen for the visible and NIR regions. For example, the
concentration of chlorophyll can be recognized by its absorption of red light (high absorption coefficient
around 600-700 nm in Figure 3.5), while it has a high reflectance in the NIR (zero absorption coefficient
in the NIR range) (Saritha et al., 2025). Considering that each species contains specific levels of these
vegetation functional traits, they exhibit a spectral footprint that can be utilized for land cover mapping.

For ORS, the resolution consists of three components: the spatial, spectral, and radiometric resolution.
The spectral resolution describes the width of each spectral band that the sensor can distinguish. The
radiometric resolution defines its ability to differentiate slight differences in energy, expressed as the
number of bits used to encode the pixel value. Sensors can be grouped by their spectral coverage; for
example, multispectral sensors capture a few broad spectral bands, whereas hyperspectral sensors
measure many narrow, contiguous bands, offering much finer spectral resolution.

Optical Remote Sensing Products
The sensor of an ORS imaging system detects the incoming photons and translates their energy into
unitless Digital Numbers (DN). The raw image data, therefore, consists of pixels with DN, which are
sensor-specific. After calibration, the imagery is converted from raw DN to physically meaningful quan-
tities such as top-of-atmosphere radiance or reflectance and, after atmospheric correction, surface
reflectance. These calibrated data serve as the basis for deriving vegetation indices (e.g., NDVI) and
for producing higher-level products such as land-cover or vegetation maps.

Advantages and Limitations
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Figure 3.5: Absorption coefficients of leaf chlorophyll content [µg/cm2 ], carotenoid content [µg/cm2], anthocyanin content
[µg/cm2], leaf mass per area [g/cm2], water content [g/cm2]. For visualization purposes, all absorption coefficients were scaled

between 0-1. Source: Kattenborn, 2018.

ORS enables the derivation of vegetation indices and other biophysical parameters that are difficult
to obtain from ground measurements. As this is a passive remote sensing technique, it relies on ex-
ternal illumination, making it ineffective during nighttime or in low-light conditions, thereby limiting the
observation time window. Additionally, this method is limited by several weather conditions. Clouds
obscure the surface completely through absorption and scattering by cloud drops, especially in the
visible, infrared, and submillimeter regions (Elachi and Zyl, 2021). Even thin clouds can scatter and
absorb radiation. Other phenomena, such as fog, high humidity, and rain, similarly increase scattering
and absorption, while the latter can also temporarily alter surface reflectance. In addition to clouds,
shadows cast by terrain or clouds themselves pose a challenge, as they strongly reduce illumination
and lead to artificially low reflectance values that do not represent the actual surface conditions. Fi-
nally, spectral limitations arise from the broad bands of multispectral ORS sensors, where the spectral
resolution can be too coarse, resulting in different objects having similar reflectance characteristics
across the available bands (as seen in Smith et al., 2013). In that case, one might need to switch to
hyperspectral sensors, which can provide a higher spatial resolution (Saritha et al., 2025).

3.2.2. Beeldmateriaal NL Passive Multispectral ORS Data over Saba
Acquisition Specifications
The passive multispectral ORS imagery was obtained using the UltraCam Eagle 4.1 digital aerial map-
ping system (Imaging, 2022). This camera captures data in the red (580–690nm), green (490–580 nm),
blue (420–500 nm), and near-infrared (690–880nm) bands. Additional sensor specifications can be
found in Subsection D.2.1. It should be noted that at the time of this study, the NIR band data was
unavailable.

The imagery was collected over 3 days: 20 December 2023, 26 January 2024, and 28 January 2024
at 17:15-17.32, 14:38-15:50, and 15:47-16:14 local time, respectively. The lens of the camera has a
focal length of f = 120mm, which together with the average flight altitude of h ≈ 1586m results in a
5 cm spatial resolution. With the constrained altitude, overlap requirements and coverage goals, the
total number of planned images in the flight plan was 701.

Data Products
The final dataset includes 651 raw aerial images, aerotriangulated GeoTIFFs before orthorectification,
and fully orthorectified GeoTIFFs. The GeoTIFFs are provided in the in 1 km × 1 km tile format. Aero-
triangulation is the process of aligning overlapping the aerial images by determining their spatial ori-
entation and position, while orthorectification removes geometric distortions to produce georeferenced
images with consistent scale and true ground positioning. In these GeoTIFFs, each pixel contains a
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DN for the red, green, blue, and NIR channels. The imagery is stored as 8-bit unsigned integer values
(0–255 per band), meaning that each color channel is represented with 256 possible intensity levels.
Figure 3.6 shows the orthorectified RGB image of Saba when the tiles are loaded in QGIS.

Figure 3.6: Orthorectified RGB composite image of Saba from Beeldmateriaal NL. The individual 1 km x 1 km GeoTIFF tiles
are shown together, visualized in QGIS.

3.2.3. Pleiades-Neo Passive Multispectral ORS Data over Saba
As the NIR band was unavailable at the time of this study, NIR data from other sources are considered.
The most recent acquisition of Saba with the highest resolution that is freely accessible was made
by the Pleiades-Neo satellite. The instrument of Pleiades-Neo measures six spectral bands (Deep
Blue, Blue, Green, Red, Red Edge, and NIR) in 1.2m resolution and a panchromatic band in 30 cm
resolution (Netherlands Space Office, n.d.). Data is provided in multiple processing stages, and the
most processed data step is chosen (pansharpened RGBI imagery), which has undergone the same
processing steps as the AHN imagery. The most recent acquisition, and coincidentally, the most cloud
free, is 12-03-2024 14:50:20. Figure 3.7 shows the RGB composite image of this dataset. This dataset
has not been atmospherically corrected yet. Therefore, atmospheric correction was done, and the final
product contains the surface reflectance.

Figure 3.7: RGB composite of the Pleiades-Neo satellite acquisition of Saba on 12-03-2024 at 14:50:20, with a resolution of
30 cm.
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3.2.4. Sentinel-2 Passive Multispectral ORS Data over Saba
Since the Pleiades-Neo data is not entirely free of clouds and shadows, supplementary imagery with
additional spectral bands is used to aid in their identification. For this purpose, Sentinel-2 data is
considered. Fortunately, the only acquisition with the least amount of clouds is close to the Pleiades-
Neo data: 03-02-2024 at 14:57:31. To convert the DN of the optical bands into reflectance values, each
DN must be divided by 10,000 (Sentinel Hub, 2024). The RGB composite image of the Sentinel-2 data
can be seen in Figure 3.8. The process of cloud and shadow identification of the Pleiades-Neo data
using the Sentinel-2 data is provided in Appendix F.

Figure 3.8: RGB composite of the Sentinel-2 satellite acquisition of Saba on 03-02-2024 at 14:57:31, with a resolution of 10m.
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Methods

While airborne LiDAR acquisitions have been carried out for the mainland of the Netherlands, and
many analysis methods are available, the distinct differences in land cover between the Netherlands
and Saba give rise to the aforementioned research (sub-) questions. To address these, a research
methodology was created that spans three phases. First, an exploratory analysis of the LiDAR data is
done (Section 4.1). A small exploratory analysis of the passive multispectral ORS data is provided in
Appendix G. Next, the quality of the LiDAR-derived DTM by AHN is assessed by creating and applying
a DTM reliability algorithm (Section 4.2), as the DTM forms the basis for many other relevant studies on
Saba, and its quality determines its utility for these studies. Finally, the usability of the airborne LiDAR
data for land cover applications is considered by extracting structural information from the point cloud,
and applying it in two case studies where they are combined with products from passive multispectral
optical satellite imagery (Section 4.3). A schematic overview of the workflow and the resulting products
is presented in Figure 4.1 and explained in more detail in the following paragraphs.

Figure 4.1: Schematic overview of the workflow and results in this study to help answer the main research question. The
research sub-questions from Section 2.8 are also indicated in the corresponding box where the sub-question is addressed.

Sub-question 1 is discussed in Section 2.5 and sub-question 6 is addressed in chapter 6.

4.1. Qualitative AHN LiDAR Analysis
To provide an initial understanding of the acquired AHN LiDAR dataset and get an initial sense of its
strengths and weaknesses, a qualitative analysis is conducted. This serves two main purposes: (1) to
visually examine the properties of the point cloud data, and (2) to qualitatively assess the point density
and ground coverage.

First, to evaluate how the point cloud data captures Saba’s landscape and features, three representative
tiles are selected. For each tile, its point-cloud attributes (see Table 3.2) are analyzed to provide an initial

25



26 Chapter 4. Methods

exploratory overview of the dataset. Next, it is qualitatively explored how the executed flight acquisition
influenced the point density, which determined the spatial resolution of the dataset. The point density
gives a first indication of how effectively this landscape is sampled by LiDAR under the given acquisition
conditions. A point density map is generated at 1m resolution by dividing the point cloud into 1m × 1m
grids. Within each m2 grid, the number of last returns is counted to reflect the number of laser hits per
square meter. Water-classified points are excluded to focus solely on terrestrial surfaces. To assess the
impact of the flight geometry, the flight lines are included in the point density map to examine how the
flight configuration affected the point density. These flight lines are derived from the LiDAR coverage
polygons provided in the dataset, as exact flight path data is absent. Finally, the ground coverage of
the LiDAR data is investigated. Ground coverage is only briefly addressed in the LiDAR data quality
report (Het Waterschapshuis, 2024b), which notes that dense vegetation and steep terrain complicated
the DTM derivation. Therefore, an additional analysis is conducted by comparing the AHN acquisition
specifications for Saba with those of the European Netherlands, and by examining the published AHN
DTM products of Saba, as seen in Figure 3.3 and Figure 3.4.

4.2. DTM Reliability Assessment
To apply LiDAR data for land cover mapping, it is crucial to understand the quality of the different
datasets. For a DTM, this quality can be divided into two parts: accuracy and reliability. The accuracy
refers to how well the point cloud coordinates correspond to their real-world coordinates, and in the con-
text of a DTM, how well the ground point cloud coordinates correspond to their real-world coordinates.
The accuracy has already been assessed by Het Waterschapshuis, and meets the data requirements
(see Subsection D.1.4). However, the reliability of the DTM has not been assessed and therefore will
be performed in this study.

The reliability refers to how well the DTM reflects the true ground. To assess this DTM reliability, an
algorithm is created and applied to the LiDAR dataset. This algorithm is designed to separate areas
where the DTM can be trusted from areas with reduced or misleading representation of the true ground
surface. An understanding and quantification of this variability is necessary for studies that depend on
reliable ground representation, such as land cover mapping. A schematic overview of the workflow of
the DTM reliability algorithm is shown in Figure 4.2, and explained in the following sub-paragraphs.

Figure 4.2: A schematic overview of the steps in the DTM reliability algorithm. The steps correspond to the section names of
this method.

4.2.1. Identification of LiDAR Reliability Variables
In order to evaluate the DTM reliability, a set of LiDAR-derived variables is identified that are indicative
of the DTM reliability. A summary of the set can be seen in Table 4.1. In this table, a distinction is
made between variables that can be readily extracted from the LiDAR point cloud attributes (listed in
Table 3.2), and the variables that require further computations, using one or more attributes, to be
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generated (indicated as derived variables).

Table 4.1: LiDAR–derived variables used as indicators of DTM reliability. Unitless variables are indicated with ’-’. Point density
is normalized by pixel area (0.25 m² per 50 cm × 50 cm pixel).

LiDAR Point Cloud Attributes
Symbol Variable Unit Description
Iµ,all, Iσ,all Intensity – The mean µ and standard deviation σ of the

strength of the backscattered signal, (”inten-
sity”) of all LiDAR returns within a pixel (Wang
et al., 2024).

Iµ,ground, Iσ,ground Ground Intensity – The mean µ and standard deviation σ of inten-
sity of ground-classified LiDAR returns within
a pixel.

Derived Variables
Symbol Variable Unit Description
Dall Total Point Density points/m2 The number of LiDAR returns within a pixel,

normalized by pixel area (Vosselman and
Maas, 2010).

Dground Ground Point Density points/m2 The number of ground-classified LiDAR re-
turns within a pixel, normalized by pixel area.

Rfirst Ratio of First Returns Classified as Ground – Proportion of first returns in a pixel that are
classified as ground (Hu et al., 2018).

Rlast Ratio of Last Returns Classified as Ground – Proportion of last returns in a pixel that are
classified as ground (Hu et al., 2018).

Rground Ratio of Ground-Classified Points – Fraction of all returns in a pixel that are clas-
sified as ground (Wang et al., 2024).

Hµ, Hσ Height Above Local Minimum (HALM)∗ m The mean µ and standard deviation σ of the
vertical distance between ground-classified
points and the lowest point in a pixel.

lµ, lσ Path Length∗ m The mean µ and standard deviation σ of the
3D Euclidean distance between the first and
corresponding ground return within a pixel.

* Defined in this study (Section 4.2.1).

Because these LiDAR-derived variables are meant to relate to the DTM reliability, they must be ex-
pressed in the same spatial framework as the DTM itself, namely a 2D grid of 50 cm x 50 cm pixels.
Therefore, the information from the 3D point cloud must be converted into rasterized 2D LiDAR-derived
variables on the same grid. Since each point in the point cloud contains its real-world coordinate (at-
tribute 1 in Table 3.2), the pixel grid needs to be defined in real-world coordinates as well in order to
divide the points among the pixels. To define the pixel grids for a specific tile, the DTM from that tile was
used, and the transformation parameters were extracted from the tile (which contains the conversion
from pixel indices to real-world coordinates). Using these parameters, the top-left corner coordinates
of each pixel can be computed, allowing each pixel to be uniquely identified by a pixel ID based on
its row and column index. Each LiDAR point was then assigned to a pixel ID by computing its relative
offset to the origin in the X and Y directions, divided by the pixel resolution, and floored to obtain in-
teger row and column indices. These indices were then flattened into a 1D pixel ID array, making it
possible to calculate the pixel-based variables using NumPy’s np.bincount function. This function is a
very efficient way to do pixel-based computations on large datasets while avoiding overloading system
RAM, and significantly reducing computational time. For summative variables like total point density
Dall, the np.bincount function aggregates values for each pixel by summing all values (in this case
the count) that share the same pixel ID. For statistical variables, the mean µ and standard deviation σ
are calculated as:

µ =

∑N
i=1 xi
N

, (4.1)

σ2 =

∑N
i=1 x

2
i

N
− µ2, (4.2)

σ =
√
σ2. (4.3)

Here,
∑N

i=1 xi can be obtained by passing the values and their pixel ID to np.bincount, while
∑N

i=1 x
2
i
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can be obtained by passing the squared values and their pixel ID to np.bincount. N is obtained by
counting the number of values for each pixel ID.

Because the point clouds are provided in 1×1 km tiles, each tile is processed individually to further
manage memory usage. For each tile, the variables are calculated and saved to a .TIF file, preserving
the original spatial extent. Once all tiles are processed, each resulting .TIF file represents a complete
2Dmap of Saba with 50 cm x 50 cm pixels for the variables in Table 4.1, with pixel values corresponding
to that variable at each location.

Intensity Variables
The intensity (of returned light) represents the strength of the backscattered signal received by the
sensor (Wang et al., 2024). It is influenced by both the geometry and reflectivity of the surface, as
well as the amount of energy from the laser that reaches the surface. Highly reflective surfaces such
as roads and metals will typically yield a high return intensity, while surfaces like soil and vegetation
reflect less energy and thus yield a lower return intensity (Wang et al., 2024). In multi-return signals,
the first return will usually have the highest intensity as it originates from the first surface that the
signal encounters. Part of the signal is then either absorbed and/or scattered in other directions, which
reduces the energy of the signal in subsequent returns. This results in progressively weaker returns
for underlying surfaces such as understory vegetation. The sensor contains a detection threshold,
above which a reflected signal is recorded as a point. If the remaining energy is too weak to surpass
this threshold, no point is recorded, and the signal is considered dissipated. In the context of DTM
reliability, ground-classified points within a pixel that have consistently high intensities suggest a more
reliable DTM as they correspond to solid and unobstructed surfaces. In contrast, weak and variable
intensity ground returns may indicate partial reflections and signal attenuation, which leads to a lower
DTM reliability (Goepfert, Soergel, and Brzank, 2008). To capture the difference in how land cover
influences the backscattered signal, four intensity variables are derived on a per-pixel basis:

• Mean intensity of all points Iµ,all: Represents the mean intensity of all points within a pixel. A
higher mean indicates that the area generally reflects the laser signal well while a lower mean
may indicate the presence of dense vegetation or surfaces with low reflectances.

• Intensity standard deviation of all points Iσ,all: Represents the variability in intensity among
all points in a pixel.

• Mean intensity of ground-classified points Iµ,ground: Indicates the mean intensity of points
classified as ground in a pixel. A higher mean intensity suggests that the ground returns are
stronger andmore likely to represent solid and unobstructed (or easily penetrable) surfaces. A low
mean intensity indicates weaker returns that arise from (partially) obstructed or poorly reflective
ground surfaces.

• Intensity standard deviation of ground-classified points Iσ,ground: Indicates the variability in
intensity among ground-classified points in a pixel. A low standard deviation suggests consistent
intensities, while a higher standard deviation suggests mixed surface conditions.

Computation in Practice
The intensity can be directly calculated, as it is a point cloud attribute (attribute 2 in Table 3.2).

Point Density Variables
The point density is defined as the number of returns per unit area (Vosselman and Maas, 2010). It
reflects how densely the terrain is sampled, and is influenced by flight parameters (such as altitude,
scan angle, and overlap of flight lines) (RIEGL Laser Measurement Systems GmbH, 2024), as well
as surface properties like flatness or the presence of vegetation. For example, the point density will
increase in areas covered by multiple overlapping flight lines (which also increases the chance of true
ground sampling (Guo et al., 2010)) or where the surface structure generates multiple returns. Total
point density can be ambiguous: a vegetated patch may produce many returns from the canopy and
understory, resulting in a high total point density, but that does not necessarily translate into good ground
sampling. In contrast, a bare patch of ground might yield a similar total point density, but with all points
representing reliable terrain. Therefore, the ground point density is also considered. Ground point
density is a more direct indicator of how well the ground is sampled according to a ground classification
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algorithm used by AHN. If the ground point density is low for a pixel, this reduces the trustworthiness
of the DTM, while the confidence in the DTM is higher if a lot of points are classified as ground within
a pixel. To characterize the difference in how landcover influences the LiDAR observations, two point
density variables are derived on a per-pixel basis:

• Total point density Dall: Represents the total number of points within a pixel.
• Ground point density Dground: Represents the number of points classified as ground within a
pixel.

Computation in Practice
The total point density is calculated by counting the number of points that fall within a pixel. The ground
point density is derived in the same way, but then considering only points that are classified as ”2”
(attribute 8 in Table 3.2), which corresponds to the ground.

Ratio Variables
Ratios provide insight into the proportional relationship between two variables. As mentioned above
in the point density section, considering the combination of total point density and ground point den-
sity gives a more complete picture of how the signal interacts with the terrain and overlying features.
Therefore, the following three pixel-based ratios are derived:

• Ratio of first returns classified as ground out of all first returns in a pixel Rfirst: This ratio
reflects how many first returns in a pixel are classified as ground (Hu et al., 2018). In areas of
bare ground (or minimal vegetation), a large portion of the first returns will be from the ground,
resulting in a high ratio. In contrast, in densely vegetated areas, most first returns originate from
the canopy, leading to a lower ratio.

• Ratio of last returns classified as ground out of all last returns in a pixel Rlast: Similarly to
Rfirst, this ratio represents how many last returns in a pixel are classified as ground (Hu et al.,
2018). The interpretation of this ratio is ambiguous: for an area with penetrable vegetation, the
ratio will be higher, while an area with bare ground can yield the same value as in this case, the
first return is simultaneously the last.

• Ratio of ground-classified points out of all returns Rground: This ratio gives a general mea-
sure of howmany of the points in a pixel are classified as ground. In densely vegetated areas, this
ratio gives the probability that the signal penetrates the canopy to reach the ground (Wang et al.,
2024). In regions of bare ground, this ratio is expected to be (close to) 1, which increases the
DTM reliability. In regions of dense vegetation, a high ratio can indicate the presence of canopy
gaps, while a low ratio suggests poor ground visibility.

Computation in Practice
In the derivation of the ratios, several point cloud attributes are used. For the ratio of the first returns
classified as ground out of all first returns in a pixel Rfirst, the numerator is the number of points that
have a return number of 1 and a classification label of ”2”, while the denominator is the number of
points that have a return number of 1 (using attributes 3 and 8 in Table 3.2). For the ratio of last returns
classified as ground out of all last returns in a pixel Rlast, the numerator is the number of points that
have matching number of returns (how many returns there are in the laser pulse that generated the
point) and return number, and are classified as ground, while the denominator is the number of the
former (using attributes 3, 4, and 8 in Table 3.2). The ratio of ground-classified points out of all returns
Rground is the number of points that are classified as ground divided by the total number of points (using
attribute 8 in Table 3.2).

Height Above Local Minimum (HALM) Variables
The Height Above Local Minimum (HALM) is defined as the vertical (z) distance between a ground-
classified point and the lowest point in a pixel. This variable reflects the topographic variability and is
inspired by the coefficient of variation of elevation in Guo et al., 2010, which considers the normalized
variability in elevation of ground points. To characterize the topographic variability of the ground, two
statistical HALM variables are derived on a per-pixel basis:

• Mean HALM Hµ: Represents the mean vertical distance between ground-classified points and
the lowest point in a pixel, referred to as the local minimum. A low mean HALM suggests that
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ground points are close to the pixel’s local minimum, which can be expected in flat areas, while
high mean HALM values are ambiguous: it can indicate a mix of ground and misclassified veg-
etation points in densely vegetated areas, while well-sampled steep areas can yield the same
value.

• HALM standard deviation Hσ: Represents the variability in distance above the local minimum
of ground-classified points. A low standard deviation indicates consistent elevation, while a high
standard deviation, similar to the mean, can result frommisclassified vegetation points or complex
topography (Guo et al., 2010).

Computation in Practice
First, the number of ground points in a pixel is identified (using attribute 8 in Table 3.2). Then, the
lowest point in the pixel is identified, and the z value of the ground points is used (using attribute 1 in
Table 3.2) to calculate the distance from the ground point to the lowest point in the pixel. There exists
special cases for which Hµ and Hσ cannot be computed:

• Case 1: The pixel only contains one ground-classified point that is simultaneously the lowest
point. In this case, Hµ and Hσ cannot be computed as HALM is undefined.

• Case 2: The pixel contains one ground-classified point, and the lowest point is not a ground-
classified point. In this case, Hµ can be computed (but it will be based on a single value) while
Hσ cannot be computed.

• Case 3: The pixel contains two ground-classified points, and the lowest point is classified as
ground. In this case, Hµ can be computed (but it will again be based on a single value) while Hσ

cannot be computed.

For all three cases, a NaN value is assigned for the undetermined variables.

Path Length Variables
The path length is defined as the 3D Euclidean distance between the first return and the corresponding
ground return. If a ground-classified point is also the first return, its path length is zero. The path length
l is calculated as:

l =
√
(x1 − xg)2 + (y1 − yg)2 + (z1 − zg)2 (4.4)

Where (x1, y1, z1) are the coordinates of the first return, and (xg, yg, zg) the coordinates of the ground-
classified return. A large path length indicates that the signal traveled through tall vegetation or other
structures before reaching the ground, suggesting a potential uncertainty in ground point classification
(Goepfert, Soergel, and Brzank, 2008). Shorter path lengths, or a path length of 0, indicate regions with
no or low vegetation, making the DTM more reliable in these areas. To characterize how land cover
influences the distance of the traveled signal, two path length variables are derived on a per-pixel basis:

• Mean path length lµ: Represents the mean path length of the ground-classified points within a
pixel.

• Standard deviation of path length lσ: Gives the variability among the path lengths of ground-
classified points within a pixel.

Computation in Practice
To calculate the path length, the pulse ID of each point is needed. The pulse ID is the unique identifier
assigned to each emitted pulse, so that it can be reconstructed which points were generated by the
same pulse. However, the pulse ID is not a point cloud attribute for this dataset. To derive which
points belong to the same pulse, the LiDAR points are grouped based on their scanner channel, point
source ID, and GPS time (attributes 5, 10, and 11 in Table 3.2). These groups contain points that
were generated at the same time, from the same scanner, and from the same flight line, therefore they
originate from the same pulse. Grouping points is computationally heavy, and system Random Access
Memory (RAM) can reach a maximum easily in this way, as each tile consists of tens of millions of
points. Therefore, the following optimized workflow is applied to each tile to derive the path length:

1. If a tile consists of more than 20,000,000 points, the point cloud tile is split into chunks of 1,000,000
points.
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2. Each chunk is split further into two groups: a first group of ground-classified points and a second
group of points that are both first returns and come from a pulse for which the number of returns
is larger than 2.

3. From the first group, the points that are first returns are assigned a path length of 0.
4. From the remainder of the ground-classified group, their first return partner is searched in group

2 based on equivalent GPS time, scanner channel, and point source ID.
5. The 3D Euclidean distance is calculated between the first return and the ground point using Equa-

tion 4.2.1.

As the path length is calculated per tile, a problem occurs for points that have a pulse crossing the
border between two tiles. For example, the first return of a pulse lies in one tile, while the last return
of a pulse lies in the adjacent tile. The extent of this problem is also investigated and discussed in
Subsection 6.2.1.

4.2.2. A Priori Determined High DTM Reliability Group
A subgroup of pixels can be determined from the full dataset that is assumed to have the highest DTM
reliability: areas of bare ground where the surface is directly visible to the LiDAR sensor. In these areas,
the DTM quality depends primarily on the inherent accuracy of the LiDAR system, which has been
assessed by Het Waterschapshuis (see Subsection D.1.4). Since these areas are free of vegetation
and terrain complexity, the classification of ground returns is assumed to be representative of the true
ground. Because of the lack of validation data, this group serves as a reference for high-confidence
ground conditions that the algorithm should aim to recognize.

The pixel group is defined by constraining the following variables from Table 4.1:

• Rground = 1: All points in the pixel are classified as ground, indicating no canopy or obstruction.
• Rfirst = 1: All first returns in the pixel are classified as ground.
• lµ = 0 (and thus lσ = 0): All ground points are the first and only return in their pulse path,
suggesting direct interaction with the surface and no prior scattering.

The characteristics of this group are later used in the scoring function (Subsection 4.2.4) to recognize
similar conditions elsewhere in the dataset and score them accordingly.

4.2.3. Dimensionality Reduction
The interpretation of the individual variables listed in Table 4.1 is not only ambiguous, but it does not
provide a single reliability metric that is easy to use. For example, a short nonzero path length can result
from both favorable and unfavorable conditions: in densely vegetated areas, a short path length may
indicate strong signal attenuation, while in sparsely vegetated regions, it simply reflects low vegetation
cover. Therefore, combining the variables into a single DTM reliability score would solve the ambiguities
because each variable contributes complementary information.

However, combining all variables in Table 4.1 into one single reliability metric also causes additional
issues. For instance, two or more variables may carry redundant information. If this is the case, the
final DTM reliability metric will be biased towards one or more factors that influence the DTM reliabil-
ity. Therefore, it is important to address redundancy through dimensionality reduction by removing
redundant variables. It is proposed to do this using a method of evaluating pairwise associations be-
tween variables using correlation metrics. The correlation metric that best suits the data is Spearman’s
rank correlation coefficient ρs, which measures the monotonic relationship between two variables (Zar,
2005). It is rank-based, making it less sensitive to outliers, works for discrete data, and does not assume
a particular distribution or linearity. For two random variables x and y, Spearman’s ρs is calculated as:

ρs =
cov(Rx, Ry)

σRx
σRy

=

n∑
i=1

(
Rx,i −Rx

)(
Ry,i −Ry

)
√√√√ n∑

i=1

(
Rx,i −Rx

)2 √√√√ n∑
i=1

(
Ry,i −Ry

)2 (4.5)
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Here, Rx and Ry are the rank-transformed variables of x and y, Rx and Ry are their respective mean
ranks, cov denotes covariance, and σ the standard deviation. ρs varies between -1 and 1, with 0
implying no correlation, and -1 and 1 implying a perfect negative and positive monotonic relationship,
respectively. Since dimensionality reduction does not require the information of the direction of the
relationship (positive or negative), the squared Spearman correlation coefficient is used. This way,
0 ≤ ρ2s ≤ 1, which implies that ρ2s reflects the proportion of variability in one variable’s ranks that can
be explained by the ranks of another.

To identify and eliminate redundant variables, the ρ2s values of each possible pair of variables are com-
puted. The ρ2s values will then be ranked, and pairs with high and moderate correlation are flagged.
These pairs indicate that a large proportion of variability in one’s variable’s rank can be explained by the
other, thereby being redundant. The threshold of the high and moderate correlation groups depends
on the ρ2s values found in the dataset. Then, using the ρ2s matrix where the flagged pairs are indicated,
variables from each pair will be eliminated considering their interpretability and ρ2s correlation with other
variables. Given RAM limitations that render full-dataset dimensionality reduction impractical, a ran-
dom subsample of pixels from the dataset is extracted. The subsample size must be big enough so
that the original distributions are still represented, but small enough not to overload system RAM. To
accommodate for this, the subsample is drawn by selecting every nth pixel along the x and y direction,
where n is chosen accordingly.

4.2.4. Variable Scoring
To translate the remaining LiDAR-derived variables after dimensionality reduction into a single DTM
reliability score, it is necessary to normalize the individual variables first by bringing them to the same
scale [0, 1], so that each value of a variable is associated with a ”score” between 0 and 1. A score of
1 should correspond to conditions that are most indicative of high DTM reliability, and a score of 0 to
the least favorable conditions. For example, the point density may range from 0 to 25 points/m2, and
a high point density is associated with a high DTM reliability, therefore the values should be scaled
from 0 to 1. In contrast, the path length may range from 0 to 15m, and a low path length is associated
with a high DTM reliability, therefore, the values should be scaled the other way around from 1 to 0.
The proposed method for normalizing the variables involves applying a scoring function defined as
R(x), which averages two functions: the Empirical Distribution Function (ECDF) F (x), and the Logistic
Function S(x).

The Empirical Distribution Function (ECDF) F (x)
Because of the lack of validation data, a data-driven and generalizable normalization method is pre-
ferred. This avoids relying on fixed assumptions or knowledge only accessible through validation data;
for example, manually defining thresholds for what counts as a ”favorable” value for a given variable.
The distributions of the variables are expected to differ from each other (as there are discrete variables,
bimodal variables, and probably skewed variables). To accommodate this, the ECDF is used for nor-
malizing the variables. The ECDF is a non-parametric estimate of the cumulative distribution function
of a variable, which describes how much of the data lies at or below each value of the variable by using
their ranks. It is calculated as:

F (x) =
1

n

n∑
i=1

1xi≤x (4.6)

Where n is the length of data, and 1xi≤x the indicator function where it is 1 if xi ≤ x and 0 otherwise.
For some variables, the ECDF needs to be inverted because lower values are associated with higher
reliability (path length for example), so the ECDF becomes:

F (x)inverted = 1− F (x) (4.7)

In the case of equal values, these get treated as tied ranks. For example, many points may have the
same point density, and in that case, their score must also be the same. All identical values are then
assigned the lowest possible rank among their group.

The Logistic Function S(x)
A problem arises from solely using the ECDF, as the ECDF only describes how a value ranks relative to
others in the dataset and provides no indication whether a value is inherently favorable or unfavorable
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for DTM reliability. In addition, the ECDF is sensitive to the overall spread of the data, as extreme
values can disproportionately stretch the lower tail of the distribution. As a result, the majority of values
become compressed into a narrow interval of the ECDF. This means that values which lie very close
together in the data can receive noticeably different scores, even though their underlying difference
may be negligible. To overcome this, and to incorporate information about which values should be
associated with high reliability, the ECDF is combined with the Logistic Function. The Logistic Function
is defined as:

S(x) =
L

1 + e−k(x−x0)
(4.8)

where x0 is the midpoint of the curve (at x = x0, S(x) = 0.5), k is the steepness parameter, and L the
maximum value. The Logistic Function has the shape of a normal ECDF (see Figure 4.3b), and larger
k makes the curve steeper so the transition from low to high S values is more rapid. L Is set to 1, so
that its maximum value is equal to that of the ECDF.

The parameters of the Logistic Function will be determined using the a priori determined high DTM
reliability group (defined in Subsection 4.2.2), for which a visualization can be seen in Figure 4.3. For
each variable remaining after dimensionality reduction, x0 is set to either the 5th or 95th percentile of
the distribution of the a priori high DTM reliability group for that variable. If low values of a variable
correspond to high DTM reliability, the 95th percentile x95 is chosen, and if high values of a variable
correspond to high DTM reliability, the 5th percentile x5 will be chosen. By setting these percentiles
as x0 it means that 95% of the a priori determined high DTM reliability group will get a score of 0.5 or
higher with the Logistic Function.
The steepness parameter k is chosen such that the Logistic Function rises from S = 0.5 to S = 0.95 over
a distance d between x5 and x95 of the distribution of the a priori high DTM reliability group. To clarify
this further, the case is considered where high values of a variable should correspond to a higher value
of the Logistic Function. In this case, x0 is set at the 5th percentile (the red dashed line in Figure 4.3).
k is subsequently chosen so that S(x) = 0.95 corresponds to the 95th percentile of the a priori high
DTM reliability group distribution (the green dashed line in Figure 4.3). This means that 90% of the a
priori high DTM reliability group has a value of S between 0.5 and 0.95 (the region between the red
and green dashed line in Figure 4.3, corresponding to d), the extremes are mapped between 0.95 and
1 (the region to the right of the green line), and the lower extremes get a value between 0 and 0.5
(the region to the left of the red line). Since the Logistic Function is symmetric, it extends below x0
to S = 0.05 over the same distance d, thereby avoiding a harsh down-weighting of values in the full
dataset that fall outside the a priori high DTM reliability group.

(a) A PDF of a random variable x with the 5th and 95th percentiles
indicated.

(b) The Logistic Function constructed using the percentiles from the
PDF. The midpoint S(x0) = 0.5 corresponds to the 5th percentile x5,
and the steepness parameter k is chosen so that S(x95) = 0.95 at
the 95th percentile x95 of the PDF. The equation for k can be found

in Equation 4.9.

Figure 4.3: Comparison of (a) the PDF of a random variable and (b) the Logistic Function constructed from it.

To find the value of k, the following calculation is done: the midpoint x0 is set at x5, and to ensure that
at the 95th percentile the output of the Logistic Function is 0.95, the following needs to hold:

S(x95) = 0.95 =
19

20
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Substituting this in Equation 4.8:

1

1 + e−k(x95−x0)
=

19

20
⇒ e−k(x95−x0) =

20

19
⇒ −k(x95 − x0) = ln

(
1

19

)
⇒ k =

ln(19)

x95 − x0

Since x0 = x5, the final expression becomes:

k =
ln(19)

x95 − x5
, x0 = x5 (4.9)

In the case that lower values of the random variable x should be associated with higher outcomes of
S(x), the midpoint should be set to x0 = x95 and the steepness parameter becomes:

k =
ln(19)

x5 − x95
, x0 = x95 (4.10)

The Scoring Function R(x) for each Variable
The ECDF and Logistic Function are then combined by taking their mean, so the scoring function R for
each variable x becomes R(x) = F (x)+S(x)

2 . By averaging these functions, the final score balances the
statistical description of the data with the assumption that the a priori determined high DTM reliability
group should show high reliability.

The DTM Reliability Score RDTM

After applying the scoring function R(x) to all remaining variables after dimensionality reduction, the
unweighted average of the individual scores is used to compute the final pixel-based DTM reliability
RDTM :

RDTM =
1

n

n∑
i=1

R(xi) (4.11)

Where n is the total number of variables left after dimensionality reduction. Based on the distribution
of the RDTM scores across the island, the pixels will be classified into reliability classes.

4.2.5. Vegetation Cover Influences on DTM Reliability
To assess how vegetation cover influences the DTM reliability algorithm proposed in Figure 4.2, the
DTM reliability results are compared with the NDVI, which is a widely used proxy for vegetation density
and health. The NDVI is calculated using the red and NIR bands as follows:

NDV I =
NIR−RED

NIR+RED
(4.12)

This index ranges from -1 to 1. Values below zero typically indicate water or other non-vegetated
surfaces, values near zero correspond to barren areas, low positive values suggest sparse vegetation,
and high positive values indicate dense, healthy vegetation. By comparing the NDVI values across
different DTM reliability classes, it can be assessed if the DTM reliability algorithm correctly identifies
regions of dense canopy and scores the DTM reliability accordingly. To generate an NDVI map of Saba,
data fromPleiades-Neo PassiveMultispectral ORSData over Sabawas used. Prior to NDVI calculation,
cloud and shadow pixels were removed from this dataset. The methodology for this removal process
is described in Appendix F.

4.3. Assessing the Usability of LiDAR-Derived Structural In-
formation for Land Cover Mapping

Land cover mapping is usually done with classification models that group areas of land into different
categories (for example, forest, grassland, or urban). These models rely on input features (measurable
parameters of the landscape such as vegetation height, canopy density, or reflectance values from
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satellite imagery) that help distinguish one land cover type from another. Broadly, classification can
be carried out through unsupervised or supervised methods. In unsupervised classification, the model
automatically groups areas that look similar in terms of their input features, without needing any prior
knowledge of what the groups represent. This does not require training data. In contrast, supervised
classification uses examples where the correct land cover type is already known (training data with
labels). The model learns from these examples and then predicts the land cover of new, unseen areas.
However, in this study, training data is not available. This means that a fully supervised classification
workflow cannot be carried out. Nonetheless, in order to assess the usability of structural information
in land cover classification, two small case studies are carried out across two levels of the land cover
taxonomy Table 2.2.

(a) For land cover mapping at ecological taxonomy level 2 (habitat level), the land cover classification
map from the 2013 Wageningen study (Smith et al., 2013) is used to assess structural variability
within a single class in a case study A.

(b) For land cover mapping at ecological taxonomy level 3 (species level), an AI classification model
on the platform ”Carto” is used to look at structural variability of the invasive species Antigonon
leptopus (Coralita) in a case study B.

For these case studies, structural parameters are identified from the LiDAR data that describe both the
topography (the shape of the terrain) and the vertical structure of whatever is present on the surface,
such as vegetation. Even though developing a classification model is outside the scope of this thesis,
these structural parameters can be used as input features in such a model.

4.3.1. Vertical Structure Extraction
Since land cover maps are commonly defined on a pixel basis, the LiDAR point cloud data needs
to be translated into vertical structure descriptions at the same pixel resolution. As explained, the
vertical structure of the land cover can be used as input features for land cover classification models.
The full vertical structure of a pixel consists of the distribution of z values of the points in that pixel,
normalized by subtracting the DTM. This normalized height distribution shows different layers of the
surface structure, such as the canopy, understory, and ground returns. However, storing and analyzing
the full normalized height distribution is computationally demanding. Therefore, the distribution can
be reduced to a set of parameters that contains the majority of the information about the shape of the
distribution. The pixel resolution is chosen as 5m x 5m. This provides a good resolution to investigate
the vertical structures within the classes defined by Wageningen, even though their classification map
has a resolution of 2m. At a 2m resolution, fluctuations in point density could result in undersampling of
the vertical structure. When the point density is too low, the presence or absence of a single return can
disproportionately affect the shape of the vertical profile, making it highly sensitive to random sampling
variation. Therefore, a resolution of 5m is chosen to ensure that the distribution reflects vegetation
structure.

Normalized height Distribution Derivation
Firstly, the point cloud is divided into 5m x 5m grids by assigning a unique pixel ID to the points, using
the same method described at the beginning of Subsection 4.2.1. Simultaneously, the DTM at 1m
resolution is used to normalize the points by subtracting the DTM value for a specific pixel from the
z-value of each point within that pixel. This DTM resolution is selected because coarser resolutions,
such as 5m, could lead to a substantial amount of negative normalized height values in steep terrain.
The 1m DTM is generated by resampling the 50 cm DTM, using the same methodology as AHN for
producing its 5m resolution DTM. The resampled 1m DTM contains gaps which were filled using the
Fill Nodata tool in QGIS with a standard search distance of 10 pixels. The tool uses inverse distance
weighting to estimate the missing values. After each point is normalized and assigned a pixel ID, a
per-pixel distribution of normalized heights (the vertical profile) is obtained.

Parameterization of Normalized Height Distribution
The goal of parameterization is to obtain a set of parameters that is not computationally too complex,
while still retaining sufficient information about the normalized height distributions. To parameterize this
distribution, a curve is fitted. The chosen curve-fitting method is the Gaussian Mixture Model (GMM),
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which represents the distribution as a weighted sum of n Gaussian distributions, called components.
Each component is defined by its mean (µGMM ), variance (σ2

GMM ), and weight (w), which together
describe the location, spread, and relative contribution of each mode. The weights sum up to 1, and
for n components, 3n− 1 independent parameters are required: n means and n variances, and n− 1
independent weights. For example, a bimodal distribution modeled with two components would require
five parameters to describe the distribution. The assumption for a GMM is that each component follows
aGaussian distribution. If some components of the distributions are skewed, this assumption is violated,
and alternative curve types may provide a better fit. However, the procedure for fitting the distribution
must be standardized in order to compare distributions across pixels. Allowing different distribution
shapes per pixel would result in parameter sets that are no longer directly comparable. Therefore, the
Gaussian assumption is a good starting point.

Selecting the Number of Components
First, a subset of representative pixels is selected using theWageningen classificationmap (Figure 2.10).
This subset includes five pixels from forest habitats (1 for forest deciduous seasonal, and 2 for forest
broadleaved evergreen and forest dry broadleaved evergreen, as they are more abundant), three from
the rangeland habitat (pastures, herbaceous rangeland, thorn scrub), and one pixel from the barren
land (bare rocks). This subset is a comprehensive representation of the varying normalized height dis-
tributions one might encounter. GMMs with varying numbers of components are then fitted to the nor-
malized height distributions, and the most suitable number of components is identified. Here, ”suitable”
means that the model should capture the main structure of the vertical profiles in the subset without
being too simple or too complex. Additionally, the components need to be ecologically interpretable,
for example, the first component corresponds to the ground, and the last component corresponds to
the canopy layer. If the model uses too few components (underfitting), important features of the vertical
structure may be missed, for example, the understory might be overlooked and merged into the canopy
or ground layer. On the other hand, if the model uses too many components (overfitting), it may start
describing small random fluctuations in the distribution that are not meaningful and have no ecological
interpretation.

The suitable number of components is assessed through visual inspection of the Probability Distribution
Function (PDF) and ECDFs. Since the curve of the GMM is fitted to the normalized height distribution,
evaluating the fit in PDF space provides a direct comparison between the observed distribution and
the GMM’s ability to represent it. In ECDF space, the quality of the fit can be assessed, specifically in
the tails of the normalized height distribution. In addition to visual inspection, the Bayesian Information
Criterion (BIC) is calculated for each fitted GMM. The BIC score is a likelihood-based model that can
be used in identifying which model (so the number of components) best explains the data while balanc-
ing model complexity and goodness of fit (GeeksforGeeks Contributors, 2025). The BIC is best suited
for large datasets and tends to favor simpler models (fewer components), since models with a larger
number of components are penalized. Usually, the model with the lowest BIC score is chosen as the
best fit; however, when a distribution contains numerous small fluctuations, it can be beneficial to add
more components to capture these, and the BIC score will be lower, potentially leading to overfitting.
To prevent overfitting, the BIC is used to identify the number of components for which additional com-
ponents provide only small improvements in model fit. Both the GMM fit and BIC score calculation are
performed using the GaussianMixture function from the Python package sklearn.mixture.

Topographic Parameters
In addition to the parameters from theGMM, the DTM, slope, and aspect angle are also included. These
topographic parameters give information about terrain characteristics, which are important drivers of
vegetation distribution.

4.3.2. Case Study Analysis
In order to investigate the potential of the vertical structure information on land cover mapping, two case
studies are performed focusing on a level-2 ecological taxonomymap and a level-3 ecological taxonomy
map. In both cases, LiDAR data are combined with products derived from passive multispectral ORS
imagery.
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Table 4.2: Overview of LiDAR–derived structural parameters. Vegetation parameters are obtained by fitting an n–component
Gaussian Mixture Model (GMM) to normalized height distributions. Unitless variables are indicated with ’-’.

LiDAR Vegetation Structure Parameters (from GMM)
Symbol Variable Unit Description
µ1, . . . , µn Component Means m Means of the ith GMM component (i =

1, . . . , n).
σ1, . . . , σn Component Standard Deviations m Standard deviations of the ith GMM compo-

nent.
w1, . . . , wn Component Weights – Weight of the ith GMM component, con-

strained by
∑n

i=1 wi = 1.
LiDAR Topographic Parameters

Symbol Variable Unit Description
DTM Digital Terrain Model m Average elevation of ground–classified points

within a pixel.
α Slope ◦ Local slope angle derived from the DTM.
β Aspect ◦ Slope orientation relative to North.

Case Study A: Level-2 Ecological Taxonomy
For the level-2 taxonomy investigation, the extent of structural heterogeneity within a single vegetation
class is investigated. A small subset of the study area is selected where the Wageningen land cover
map (Figure 2.10) indicates the exclusive presence of broadleaved evergreen forest. The region is
purposely chosen closer to the mountain peak where the Elfin and Montane forests are located, to
ensure these forests did not degrade over time, as the Wageningen data dates from 2010 and the
LiDAR data was collected at the end of 2023. For the selected region consisting of the broadleaved
evergreen forest pixels, the GMM is fitted on the normalized height distributions of the pixels. The
resulting parameters (from the LiDAR vegetation category in Table 4.2) are then compared across
pixels to assess whether variation exists within the parameters of the same Wageningen land cover
class. This analysis helps determine whether pixels belonging to the same land cover class exhibit
consistent structural properties or if variation exists that could indicate further subdivisions of classes
within the class.

Case Study B: Level-3 Ecological Taxonomy
For the level-3 taxonomy, the second case study investigates whether structural parameters can explain
the occurrence of an invasive species on Saba. Here, the Carto AI classification tool, developed by
Spheer AI (Spheer, 2025), is used to identify occurrences of Antigonon leptopus (Coralita), and is
evaluated against the structural parameters.

Carto is a web-based geospatial AI platform developed by Spheer AI B.V. for nature, agriculture, water,
and biodiversity monitoring (Spheer, 2025). On this platform, users can draw or import geospatial
observations of the indicator they want to monitor. A small AI model is then trained, which is built
on top of a foundation model. The foundation model is a geospatial AI model trained on Sentinel-2
satellite time series imagery using self-supervised learning. Once trained, Carto generates prediction
maps of the indicators across the desired area at 10m resolution. Carto serves both regression and
classification models, where regression models predict a per-pixel percentage (0% is no coverage,
100% means full coverage) for a given indicator, while classification models assign a discrete class to
each pixel.

The indicator chosen as a case study species is Antigonon leptopus (Coralita), which has been de-
scribed in the section on Invasive Species. Carto readily provides a few Coralita observations. After
the model is trained, it shows the predicted coverage for the years for which Sentinel-2 data is available,
which is from 2017 to 2024. The year 2024 is chosen, as this is closest to the LiDAR observations. The
goal of this case study is to investigate whether structural parameters can explain the occurrence of
Coralita on Saba, and to evaluate which land cover classes identified by Wageningen are most sus-
ceptible to Coralita invasion. From the predicted coverage map, pixels with a Coralita coverage of at
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least 50% are selected. This threshold is low enough to include more than just the pixels containing di-
rect observations, and high enough to represent areas with substantial Coralita dominance. To assess
which classes are most susceptible to Coralita, the spatial distribution of Coralita pixels is compared
to the Wageningen land cover classification map Figure 2.10). Since Carto provides a map with 10m
resolution, while the Wageningen classification map has a finer 2m resolution, the following method
is applied: for each 10-meter Coralita pixel, the proportion of its area occupied by each Wageningen
class is calculated, as there are 25 2m resolution pixels with a class in each Coralita pixel. Then, the
coverage of Coralita is proportionally distributed over the classes within the pixel. For example, if a
Coralita pixel has 60% coverage and consists of 10 herbaceous rangeland pixels and 15 thorn scrub
pixels, that means that the Coralita pixel contributes 10

25 ·60% = 24% coverage to herbaceous rangeland
and 15

25 ·60% = 36% coverage to thorn scrub. By summing these contributions across all pixels, the total
Coralita coverage per class can be quantified. In addition, the structural parameters DTM, slope, and
aspect from the LiDAR topography parameters in Table 4.2 are used to assess the structural conditions
of the Coralita pixels.



5
Results

This chapter provides the results from the methods described in chapter 4. Section 5.1 shows the
results from the qualitative AHN LiDAR analysis, Section 5.1 provides the results from theDTM reliability
assessment, with its primary result shown in Figure 5.7. Lastly, Section 5.3 shows how the LiDAR data
can be translated into structural information, which was then used in two case studies.

5.1. Qualitative AHN LiDAR Analysis
This section provides the results from the exploratory analysis (described in Section 4.1) of the dataset,
consisting of the point clouds and the DTMs.

First, three tiles were selected for the point cloud analysis (i.e., 6000_3000 containing the airport strip
and cliffs, 4000_2000 encompassing the peak of the volcano, and 3000_1000 containing a residential
area located on flat terrain surrounded by steeper vegetated terrain). Figure 3.2 can be used to see
where the tiles are located.

The tile containing the airport strip and cliffs illustrated by Figure 5.1 is located on the northeast coastline.
It contains approximately 3 million points, which is significantly less compared to the other two tiles
considered in this analysis. The lesser number of points is a result of the tile not being fully covered
in the LiDAR survey, as it consists mainly of water, but also because the land that is included in the
tile does not contain many features that would result in multi-returns. Figure 5.1 shows a somewhat

Figure 5.1: Point cloud view of the airport strip tile (6000_3000) colored by intensity (attribute 2 in Table 3.2). The point cloud
covers approximately 700m x 700m.

smaller part of the point cloud (700m x 700m) colored by intensity (attribute 2 in Table 3.2), where
yellow indicates a high intensity and dark blue a low intensity. The airport landing strip on the right
side of the point cloud is clearly visible, especially the white crosswalk markings, which are shown
in yellow in the figure. These stripes reflect the laser beam more effectively due to their white color,
resulting in higher intensity values. Adjacent to the landing strip is a field of solar panels, which shows
a lower intensity. This is expected, as solar panels are designed to absorb sunlight rather than reflect

39
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it, leading to weaker LiDAR returns. The ocean also shows low intensity, as water bodies strongly
absorb NIR wavelengths, which is the wavelength used in this survey. Sparse vegetation is visible in
a strip along the edge of the cliffside, characterized by low intensity due to its complex structure. The
cliffs themselves show noticeable gaps in the point cloud, highlighting one of the challenges of LiDAR,
where steep terrain is difficult for the laser beams to reach. In contrast, the bare, more horizontal rock
surfaces show higher intensity because they are flat and unobstructed, allowing for strong returns.

Themountain peak tile (4000_2000) is located at approximately the center of the island, where the forest
habitats are located. It contains one of the highest numbers of points in the dataset, with approximately
52 million points. This is primarily due to the dense vegetation surrounding the summit of Mt. Scenery,
which generates a high number of multi-returns. In Figure 5.2a, a point cloud covering a 100m × 100m
area of the peak is shown, colored by return number (attribute 3 in Table 3.2). The transmission tower
can also be seen in the point cloud and has a height of approximately 10m (Jacobs, 2024). Its open
structure, composed of numerous beams, promotes scattering and results in multi-return points. Low
vegetation surrounds the transmission tower, with some individual species sticking out. These are
most likely ferns, identified by their circular growth form. Points with a higher return number (mostly
yellow and green) can be seen beneath the canopy layer, indicating deeper laser penetration through
the vegetation. The highest recorded return number is 9, although this value occurs only once. Return
numbers 4 through 8 are negligible, each accounting for less than 1% of the total. The portion of
ground-classified corresponds to 4.9% of the number of last and only returns. This means that out
of all emitted laser beams over this area, only 4.9% managed to reach the ground (according to the
ground classification algorithm used to process the data).

(a) Point cloud view of a 100m x 100mm grid on top of mt. Scenery
colored by return number. In this area, 4.9% of emitted laser beams

over this area hit the ground.

(b) Point cloud side-view of a 55m x 55m grid containing dense
vegetation along the side of mt. Scenery colored by return number. In
this area, 3.3% of emitted laser beams over this area hit the ground.

Figure 5.2: Point cloud view of the areas on mt. Scenery (tile 4000_2000) showing the peak in (a) and a strip along the side of
the volcano in (b), colored by return number (attribute 3 in Table 3.2).

In Figure 5.2b, a side view of a point cloud strip along the slopes of Mt. Scenery is shown, where taller
vegetation should be present. Most noticeable is the high number of first returns at the canopy (54%
of all points, indicated in light blue), with the number of points significantly decreasing for increasing
return number. The canopy appears dense and continuous, making it difficult to distinguish individual
trees. Towards the bottom of the point cloud layer, the points are sparse and scattered. In this strip,
only 3.3% of the emitted laser pulses resulted in a ground-classified point, showing the challenge of
ground sampling in areas with dense vegetation such as these. This is further demonstrated by the lack
of a distinct ground layer in the lower part of the point cloud, where no clear line indicates successful
ground detection.

Figure 5.3 shows the point cloud of the tile (3000_1000) containing the village in the western part of
the island (the Bottom) that lies in a valley. The point cloud is colored by classification (attribute 8 in
Table 3.2): orange represents buildings, green represents the ground, and blue is unclassified, primarily
consisting of vegetation. The village is built on relatively flat terrain, where unobstructed ground is



5.1. Qualitative AHN LiDAR Analysis 41

easily identified by the dense concentration of green points, as these areas were readily accessible
to the laser. In contrast, the steep hillsides are dominated by blue points, with occasional patches of
green indicating less obstructed ground. This point cloud shows the clear separation of man-made
infrastructure from the natural, vegetated landscape.

Figure 5.3: Point cloud view of the residential area tile (3000_1000) colored by classification (attribute 8 in Table 3.2).
Buildings are colored orange, ground is colored green, and blue is unclassified.

Building on the initial understanding of the differences between the three representative tiles, the qual-
itative analysis focused on assessing point density, as illustrated in Figure 5.4. Point densities below
the required point density of 10 points/m2 are indicated in red. The figure also shows the estimated
flight lines. From the map, the impact of the number of flight lines on the point density is clearly visi-

Figure 5.4: Map of the point density from the LiDAR Survey. The point density is defined as the number of only and/or last
returns in a 1m x 1m pixel. Additionally, the flight lines are also shown to see the effect of flight overlap on point density.

ble, where higher point densities occur directly beneath the flight lines. Moreover, the most extreme
point densities indicated in blue, are mostly concentrated beneath the flight path of the cross line 101.
The mean point density is 26 points/m2, while the lowest point density is 1 points/m2, and the highest
point density is 228 points/m2. Notably, when looking up the location of the pixel with the highest point
density, it is located on a ridge, with coordinates [6838,1494]. Other ridges with extremely high point
densities can also be seen in the figure (for example, in the area around [2000, 7000]). Ridges often
exhibit higher point densities due to favorable terrain geometry, as they are highly visible to the sensor
due to their elevation and are unobstructed by vegetation or other objects. Another noteworthy point
density of 213 points/m2 belongs to pixel [3505, 907]. This pixel is located in the western village near a
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house and contains a transmission tower. Due to its narrow size, it falls within one pixel, and its height
caused many pulses to strike the tower. The lowest point density of 1 points/m2 is located at pixel
[4338,3538], which is along the northern coast. Moreover, a pattern is observed where most pixels
with a point density below 10 points/m2 are located along the coast. This is likely a result of excluding
water classified points from the point density calculation, therefore only the part covered by land con-
tributes to the point density. It can also be seen that pixels adjacent to ridges exhibit significantly lower
point densities (for example, the ridge at approximately [6550, 1500] which shows both red and blue
pixels), in some cases also falling below 10 points/m2. This is due to the steep terrain, which, under
unfavorable viewing geometries such as large scan angles, limits the sensor’s ability to capture data
beyond the ridge. As a result, the area behind the ridge becomes occluded and remains unsampled.

The final step in the qualitative analysis focused on the ground sampling criteria formulated in the AHN
specifications. Specifically, while for vegetated areas in the European Netherlands a criterion was spec-
ified that for AHN products, at least 25% of laser pulses must return ground hits, this particular criterion
was absent for Saba. While the document does not specify why this choice was made, from the anal-
ysis it can be observed that the requirement was likely not met. Specifically, from the aforementioned
results from the return number analysis of the vegetated mt. Scenery tile (Figure 5.2a), it was found
that for the two assessed point clouds located in forested areas (tile 4000_2000), only 4.9% and 3.3% of
emitted laser pulses over these areas hit the ground, which is far below the minimum standards for the
European Netherlands. This requirement helps ensure a complete DTM, and its absence from Saba’s
AHN specifications indicates either that the island’s challenging sampling conditions made the 25%
ground-return threshold unattainable or that, as a first acquisition, the constraints were intentionally
kept flexible. In either case, this omission raises concerns about ground classification accuracy and
the resulting DTM. To further visualize the implications of this requirement, Figure 5.5 shows a compar-
ison between the DTM of an area in the southeast of Limburg in the Netherlands (Figure 5.5a), known
to have forests (like the Vijlenerbos) and elevation differences, and the DTM of Saba (Figure 5.5b) at
a similar scale. For the European Netherlands, these areas of elevation differences and vegetation

(a) AHN DTM of southeast Limburg in the European
Netherlands.

(b) AHN DTM of Saba.

Figure 5.5: Comparison of the DTM of southeast of Limburg in the European Netherlands and Saba’s DTM at similar scale.
Both are derived with the same method and from the same data acquisitioner (AHN)

are going to be the most ”challenging” to survey. Even then, compared to Saba, only data gaps can
be seen in residential areas where buildings are masked out (i.e., in tile (310000_199000)). There are
some small gaps in the vegetated areas (along the southern border at higher elevations indicated in
yellow) but these are negligible, especially compared to the large data gap in the center of Saba’s DTM.

Another important difference between the AHN data products for the European Netherlands and Saba
lies in the generation of the 5m resolution DTM. In contrast to the European Netherlands, Saba’s 5m
DTM was generated without enforcing the original resampling rule that required at least 40% of the
underlying 50 cm cells to contain valid DTM values. The 5m DTM that was published in the dataset
(Figure 3.4), therefore, deviates from the original product specifications. To evaluate the impact of this
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decision, the 50 cm DTM was resampled to 5m resolution using the original 40% threshold. The result-
ing DTM (Figure 5.6) reveals extensive data gaps across the central part of the island, and additional
smaller gaps radiating outward. By dropping the resampling rule, AHN therefore effectively produced

Figure 5.6: 5m resolution resampled DTM using the resampling rule as originally intended in the specifications. This DTM was
not published.

a 5m resolution DTM that is more spatially complete, but at the cost of reduced adherence to quality
thresholds.

5.2. DTM Reliability Assessment
Following the DTM reliability algorithm (explained in Section 4.2), a DTM reliability map was created,
as shown in Figure 5.7. Of the island area, 42% falls within the no data category, while 9% is classified

Figure 5.7: Map of the 50 cm resolution DTM reliability of Saba by reliability class.

as having low reliability, 16% as moderate reliability, and 33% as highly reliable.
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5.2.1. Identification of LiDAR Reliability Variables
Figure 5.8, Figure 5.10, and Figure 5.12 show the spatial maps of three variables (Ground point density
Dground, mean ground intensity Iµ,ground, and mean path length lµ) out of the 13 variables listed in Ta-
ble 4.1 that were selected in the process of identifying variables that are indicative of the DTM reliability.
The ground point density map (Figure 5.8) shows how well the ground was sampled across Saba and

Figure 5.8: Spatial map of the Ground Point Density Dground

at 50 cm resolution. The map is clipped at the 99th percentile
(7 points/0.25m2).

Figure 5.9: PDF of the Ground Point Density
Dground.

serves as the foundation for the 50 cm resolution DTM. There is a clear contrast between the center
of the island where mt. Scenery is located (showing a low ground point density), and the surrounding
area extending toward the island’s edges (showing higher point densities). The highest ground point
densities are found in the flattest and least obstructed regions, which are clearly identifiable as roads
(shown in yellow). The lowest point densities are found in the central part of the island, where the forest
habitats are located. A substantial area appears to have no ground sampling at all, with a ground point
density of 0 pts/0.25m2. This is further illustrated by the PDF in Figure 5.9, where the highest peak
occurs at a ground point density of 0 pts/0.25m2. A PDF shows how likely a certain value of a variable
is to occur. It shows how this likelihood is spread across all possible values, so the curve of the PDF
indicates which values occur more frequently and which ones are rarer. The ground point density PDF
is highly right-skewed, with a median of 1 point/0.25m2. Some areas with more intensive sampling
show extreme values with a maximum of 17 points/0.25m2.

Themean ground intensitymap (Figure 5.10) shows the average signal strength of the ground-classified
LiDAR returns, where higher intensities (indicated with yellow) correspond to stronger returns. Two dis-

Figure 5.10: Spatial map of the Mean Ground Intensity
Iµ,ground. The map is clipped between approximately the 5th
and 99th percentile. Pixels with no data are shown in gray.

Figure 5.11: PDF of the Mean Ground Intensity
Iµ,ground.

tinct groups are visible, one with high-intensity values and another with lower intensity values. The
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high-intensity areas are primarily located on the lower slopes, mostly where exposed rock surfaces
and residential areas with solid structures are present. In contrast, the center of the island shows
significantly lower intensity values, likely corresponding to the heavily vegetated and steep areas sur-
rounding mt. Scenery. The PDF of this variable (Figure 5.11) shows up as a binomial distribution,
confirming the existence of these two distinct groups.

The mean path length lµ gives structural information about the surface features within each pixel. In
Figure 5.12, a clear border is visible where the path length is zero or close to zero everywhere, cor-
responding to areas with few surface features, such as bare ground. Although areas with larger path

Figure 5.12: Spatial map of the Mean Path Length lµ. The map is clipped at the 95th percentile. Pixels with no data are shown
in gray.

lengths appear to correspond with regions of lower mean ground intensity in Figure 5.10, this variable
seems to show more variation in these regions, especially in the center of the island. The central region
shows moderately low path lengths, suggesting the presence of shorter vegetation or small patches of
bare ground, or that the LiDAR signal did not fully penetrate the vegetation before reaching the ground.
Surrounding this area is a ring with significantly higher mean path length, indicating the presence of
taller vegetation. Beyond this ring, a mix of high and low path lengths emerges, likely corresponding to
secondary rainforests, which are known to contain a mix of different tree heights with patches of bare
ground. Additionally, it is noticeable that the area above the northeast to southwest diagonal shows
more regions with a longer path length compared to the area below the diagonal. This pattern likely
reflects the influence of prevailing easterly trade winds, with the wind-exposed southern side limiting
vegetation height, while the more sheltered northern side allows for taller growth.

Appendix H includes the PDFs of all LiDAR derived variables listed in Table 4.1.

5.2.2. A Priori Determined High DTM Reliability Group
Figure 5.13 shows the location of the pixels that were identified as having the highest DTM reliability
out of the whole dataset (indicated in black) by constraining the ratio of ground-classified points out of
all returns in a pixel Rground, the ratio of first returns classified as ground out of all first returns in a pixel
Rfirst, and the mean path length lµ (as described in Subsection 4.2.2). The group consists of a total of
1,963,926 pixels. This corresponds to 3.7% of the island, and 6.5% of all pixels containing at least one
ground point. From Figure 5.13, it is clear that the high DTM reliability pixels are not evenly distributed
across the island, as they are mostly concentrated in the lower slopes of the island, in residential areas,
and coastal zones. The central part of the island shows very few high-reliability pixels, aligning with
the expectation that, because they are located within the forest habitats, these pixels are going to be
less reliable here.
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Figure 5.13: Overview of the a priori high DTM reliability group that are identified to have the highest DTM reliability, indicated
in black. These pixels are identified through constraining some of the LiDAR variables in Table 4.1.

5.2.3. Dimensionality Reduction
As explained in Subsection 4.2.3, a subsample of the dataset must be drawn to perform dimensionality
reduction. The best subsample size without overloading systemRAM contained approximately 140,000
pixels. The distributions of the variables of the subsample were compared to the distributions of the
total dataset shown in Figure H.1, and the original distributions are still broadly represented. Since
there are a total of N =13 variables (Table 4.1), there are N(1 − N)/2 = 78 possible pairs, and thus
78 squared Spearman’s rank correlation ρ2s values. The pairs were assessed from lowest to highest
correlation. From this order, a secluded group of high (ρ2s > 0.75) and a secluded group of moderate
(0.35 ≤ ρ2s ≤ 0.75) correlation pairs were identified. Figure 5.14 shows the Spearman’s ρ2s correlation
matrix, where these groups are indicated with red and orange, respectively. For better visualization,
the top half of the matrix is removed since it is symmetrical, and the diagonal is also removed because
the correlation of a variable with itself is 1. From the high correlation group, lσ, Iµ,all, Rfirst, Rlast,
and Rground were removed. From the moderate correlation group, Iσ,all and Hσ were removed. The
remaining variables are: the mean and std of the ground points Iµ,ground, Iσ,ground, the total and ground
point densityDall, Dground, the mean HALMHµ and the mean path length lµ. A full assessment of why
certain variables were kept or discarded can be found in Appendix M.

Figure 5.14: Spearman’s ρ2s correlation matrix of the LiDAR derived variables listed in Table 4.1 of the subsample data.



5.2. DTM Reliability Assessment 47

5.2.4. Variable Scoring
For the calculation of the ECDF and Logistic Function of the mean ground intensity, Iµ,ground, higher
values are assosiated with higher DTM reliability, so the ECDF and Logistic Function were calculated
using Equation 4.6 and Equation 4.8 with Equation 4.9. The functions, including the scoring function
R, can be seen in Figure 5.15. In contrast, the standard deviation of the ground intensity Iσ,ground and
the mean HALMHµ, lower values are associated with higher DTM reliability, so the ECDF and Logistic
Functions were determined using Equation 4.7 Equation 4.8, and Equation 4.10. ForHµ, the functions
can be seen in Figure 5.16.

Figure 5.15: The ECDF F , Logistic Function S, and scoring
function R for the mean ground intensity Iµ,ground.

Figure 5.16: The ECDF F , Logistic Function S, and scoring
function R for the mean HALM Hµ.

Additionally, high values of both total point density Dall, and ground point density Dground, should
correspond to higher DTM reliability. For these variables, the ECDF (Equation 4.6) is used directly,
but the Logistic Function is calculated slightly differently because these variables are discrete. It was
chosen to multiply the steepness parameter k by two so that it becomes steeper. The functions for the
ground point density Dground can be seen in Figure 5.17. Since the mean path length lµ is the only
variable that is also used as a constraint for the a priori high DTM reliability group (mean path length
lµ = 0), the group has no distribution and therefore also no percentiles to use as parameters for the
Logistic Function. Therefore, only the ECDF (Equation 4.6) of the full dataset is taken as the scoring
function R for the mean path length, which can be seen in Figure 5.18.

Figure 5.17: The ECDF F , Logistic Function S, and scoring
function R for the ground point density Dground.

Figure 5.18: The ECDF F for the mean path length lµ. The
ECDF is also used as the scoring function R, since the mean
path length was used as a constraint in the a priori high DTM
reliability group (Subsection 4.2.2), therefore this group only

has a single value for lµ.

An interesting effect of the Logistic Function can be seen in the mean ground intensity Iµ,ground. This
variable has a bimodal distribution (see Figure 5.11). One mode corresponds to lower intensity values,
which are likely pixels covered with vegetation or shadowed areas, and the other mode corresponds
to higher intensity values, which likely correspond to bare ground. The distribution of Iµ,ground within
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the a priori high DTM reliability group only shows the high intensity mode. Since this group was con-
strained to bare ground, it can indeed be inferred that the high-intensity mode corresponds to bare
areas. In Figure 5.15, it can be seen that the Logistic Function correctly assigns higher S scores to this
higher intensity range. The ability of the Logistic Function to correctly emphasize bare ground pixels
demonstrates that its use is a justified and effective design choice within the DTM reliability algorithm.

A total overview of all functions for each variable, including the remaining variables not shown here (the
std of the ground intensity Iσ,ground and total point density Dall), can be found in Appendix I.

After the scoring function R(x) (Equation 4.11) was applied to each variable, Equation 4.11 was used
to obtain the DTM reliability score for each pixel. Figure 5.19 shows the PDF of the DTM reliability
scores RDTM for all pixels that include at least one ground point. Logically, pixels containing no ground
points do not have a DTM and therefore receive a DTM reliability score of RDTM = 0. Following

Figure 5.19: PDF of the DTM reliability scores RDTM for all pixels containing at least one ground point.

the distribution, four classes were determined: (i) the group of pixels that have no ground points and
therefore RDTM = 0, (ii) low (0 < RDTM ≤ 0.25), (iii) moderate (0.25 < RDTM ≤ 0.5), and (iv) high
(0.5 ≤ RDTM ) reliability. A spatial map of these four classes can be seen in Figure 5.7.

5.2.5. Vegetation Cover Influences on DTM Reliability
Figure 5.20 shows the NDVI (Equation 4.12) ranges and occurrences (as a measure of vegetation
cover) for each DTM reliability class shown in Figure 5.7. The first histogram in the top-left panel shows
NDVI values for pixels that do not contain a ground point, and therefore have a DTM reliability of zero.
This histogram serves as a representation for NDVI values in areas where, due to LiDAR limitations,
ground sampling was not possible. A pronounced peak near an NDVI of 1 is visible, corresponding to
extremely dense vegetation. The presence and size of this peak align with the known limitation that
LiDAR signals cannot penetrate dense canopies, preventing ground detection. Aside from this peak,
most pixels fall within the higher NDVI range of 0.5 to 0.9, also indicative of (dense) vegetation, as
expected. However, low NDVI values near zero also occur, though less frequently. One might question
how it is possible that bare areas (corresponding to an NDVI near 0) resulted in no ground sampling,
and therefore a RDTM = 0. However, these are not simply bare areas, but rather areas with little to no
vegetation in steep or shadowed areas where ground sampling is hindered.
The histogram of the low DTM reliability class in the top-right panel predominantly shows high NDVI
values, with the largest pixel count near an NDVI of 1. This confirms that the DTM reliability algorithm
correctly identifies areas of very dense vegetation as having a low DTM reliability. In contrast, the
histogram of the moderate DTM reliability class in the bottom left panel displays a broad range of NDVI
values without a single dominant peak. This broad range of NDVI values suggests a mix of surface
conditions, including bare ground, sparse vegetation, and dense canopy. When looking at the spatial
distribution of this class (in Figure 5.7), it can be seen that areas of moderate DTM reliability is often
present in places where there is also a low DTM reliability. Here, NDVI values remain relatively high, but
themoderate score likely reflects partial ground visibility, which is common at forest edges or transitional
zones between the forest habitats and shrubland, and grassland. Notably, the wind-sheltered outer
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Figure 5.20: Histograms of the NDVI for each DTM reliability class in Figure 5.7. The upper left panel shows pixels that contain
no ground points, and therefore have a DTM reliability of 0. The y-axis shows the pixel count, and the x-axis the NDVI. High

NDVI values are associated with a dense canopy.

regions of the island (in the western part) show moderate DTM reliability as well, coinciding with more
complex vegetation structures. The moderate DTM reliability class also appears along the island’s cliff
edges. Here, the NDVI is near zero as there is little to no vegetation growing on the cliffs. In these areas,
the DTM reliability algorithm assigns a lower score because of the steep topography and unfavorable
acquisition conditions.
The histogram of the high DTM reliability class in the bottom right panel shows a dense peak for low
NDVI values, corresponding to areas of bare ground and sparse vegetation. These areas are easily
sampled by LiDAR, and are therefore correctly assigned a high DTM reliability. However, a few pixels
in this class still exhibit high NDVI values, corresponding to more densely vegetated areas. Future work
should investigate the spatial extent and characteristics of these outliers, as either the characteristics
of the vegetation allow adequate ground sampling despite having a high NDVI, or the DTM reliability
algorithm resulted in a false positive. Overall, the NDVI evaluation supports one of the underlying
assumptions of the DTM reliability: regions where the ground surface is obscured by dense canopy
yield less reliable DTM values.

5.3. Assessing the Usability of LiDAR-Derived Structural In-
formation for Land Cover Mapping

5.3.1. Vertical Structure Extraction
Normalized Height Distribution Derivation
After dividing the point cloud over the 5m x 5m resolution pixels, the distributions of elevations, or z
value, in each pixel were normalized by their corresponding 1m resolution DTM, as described in Sub-
section 4.3.1. As a result, it was found that many pixels still contained a significant amount of negative
normalized height values. This is odd because a smaller resolution DTMwas purposely chosen to avoid
this, as a coarser DTM results in more points being under the DTM in steep areas, leading to a negative
normalized height when the DTM is subtracted. To investigate the cause of the remaining amount of
negative normalized height values, it was considered whether slope effects or inaccuracies in the DTM
might be responsible. Pixels from three point cloud tiles (6000_4000, 5000_3000, and 4000_2000)
were analyzed at a coarser 10m, to provide a clearer picture of the issue. The point clouds of three
pixels from these three tiles can be seen in Figure 5.21. These tiles are representable for the whole
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island, as the first contains cliffs and flat land, the second forested areas, and the third residential areas.
The slope derived from the 10m DTM and the mean DTM reliability are also indicated.

(a) Pixel (6330,3070). This pixel contains 28.8% negative normalized
height values. The slope is 35.6◦ and the mean DTM reliability is

0.43.

(b) Pixel (4750,1130). This pixel contains 40.2% negative normalized
height values. The slope is 13.0◦ and the mean DTM reliability is

0.73.

(c) Pixel (5680,2640). This pixel contains 42.7% negative normalized
height values. The slope is 4.9◦ and the mean DTM reliability is 0.72.

Figure 5.21: Three point clouds in an area of 10m x 10m. The number of negative normalized height values after normalizing
with the 1m DTM are indicated, as well as the slope at 10m resolution and the mean DTM reliability. The point cloud is colored

by classification (attribute 8 in Table 3.2: blue is unclassified, green is ground, and orange is buildings.

Figure 5.21a shows a very large slope and a relatively low percentage of negative normalized height
values compared to the other two pixels. This suggests that the negative values originate from the
steep slope, where some points fall below the DTM. This is also reflected in themoderate DTM reliability
score.
The pixel in Figure 5.21b is located in an urbanized part of the tile, showing a high negative normalized
height percentage despite its high DTM reliability score. This pixel includes a sloped road adjacent to
flat vegetated terrain, which is the cause of the high percentage of negative normalized height values; if
the 1m DTM grid contains ground points from both the road and the adjacent flat ground, the vegetation
points may fall below the DTM, resulting in negative normalized heights. This issue is not due to poor
DTM reliability but rather the classification and elevation differences between road and vegetation.
The pixel in Figure 5.21c also contains a large percentage of negative normalized heights and a high
DTM reliability, while being almost flat. It can be seen that the pixel consists almost entirely out of
ground-classified points, and since the DTM represents the average z-value of these points, some will
inevitably fall below the surface, producing negative normalized heights.

Besides these special cases, it was found that pixels with a low DTM reliability did not exhibit a large
percentage of negative normalized heights. This is because pixels with a low DTM reliability often
contain dense vegetation, which sits well above the ground and typically does not result in negative
normalized heights when the DTM is subtracted. However, these pixels remain problematic, as it
cannot be confirmed whether their normalized heights accurately reflect true height above ground, only
the low DTM reliability offers an indication. Given all the above-mentioned observations, all negative
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normalized height values were clipped to zero.

Parameterization of Normalized Height Distribution
Table 5.1 shows the pixels that were selected to determine the number of components in the GMM.
Their Wageningen class code and accompanying color are also indicated.

Table 5.1: Pixel locations and their corresponding Wageningen land cover classes (Figure 2.10) with color indicators.

Pixel Coordinates Class Code Wageningen Class Name
(3595, 1718) 421 Forest deciduous seasonal
(3560, 1660) 461 Forest broadleaved evergreen
(3645, -260) 721 Bare rocks
(4685, 290) 323 Thorn scrub
(5385, 1680) 461 Forest broadleaved evergreen
(5905, 2745) 412 Forest dry broadleaved evergreen
(6295, 1175) 412 Forest dry broadleaved evergreen
(6435, 1135) 311 Herbaceous rangeland
(6625, 1750) 231 Pastures

The distributions of the normalized height values of the pixels can be seen in Figure 5.22. To pa-

Figure 5.22: Distributions of the normalized heights for the 9 selected pixels. The distributions are colored by their
Wageningen class (Figure 2.10)

rameterize these distributions, GMMs of 1 to 6 components were fitted to these distributions, and the
accompanying BIC score was calculated. An overview of the BIC scores for each pixel and model can
be found in Appendix J. From the BIC scores and visual inspection, a number of three components
was chosen to fit the vertical profile distributions. The fit in PDF and ECDF space can be seen in
Appendix K.

Figure 5.23 illustrates the parameterization of the normalized height distribution within a single 5,m ×
5,m pixel. The histogram shows the distribution of LiDAR returns after DTM normalization, i.e., the
vertical profile of the surface structure within this pixel. A GMM with three components was fitted to
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this distribution (red curve). Each component can be ecologically interpreted as a vertical layer of the
vegetation structure: Component 1 corresponds to ground and low vegetation returns, Component 2 to
the understory layer, and Component 3 to the canopy. The parameters of the second component are
highlighted in purple. The mean µ2 indicates the average height of returns in this layer (the mean height
of the understory). The standard deviation σ2 captures the vertical spread of these returns, reflecting
variability in the height of understory vegetation. The weight w2 represents the relative contribution of
this layer to the total distribution (the density of the understory, as it reflects the area under the curve).
Since each of the three components is described by a mean, a standard deviation, and a weight, the
vertical profile of this pixel can be fully summarized by 3×3 = 9 parameters (see LiDAR vertical structure
parameters for n = 3 in Table 4.2).

Figure 5.23: A 3-component GMM fitted on the normalized height distribution of a 5m resolution pixel. The PDF describes the
occurrences of the normalized z values of each LiDAR point that falls within the pixel. The red line indicates the GMM fit, and

the 3 parameters µ2, σ2, w2 for the second component are indicated.

5.3.2. Case Study Analysis
Case Study A: level-2 ecological taxonomy
For the level-2 ecological taxonomy case study, an area of 57,000 m2 dominated by the broadleaved
evergreen forest class from the Wageningen land cover map (Figure 2.10) was selected for analysis.
This region spans from 4140 to 4320m eastings and from 1430 to 111m northings, comprising a total
of 2,304 pixels at 5m resolution. Within this area, 63 pixels were classified as a land cover class other
than broadleaved evergreen forest. Therefore, the 5m resolution pixels that contained these classes
were excluded to ensure only broadleaved evergreen forest is assessed.

Since a GMM of three components was used to fit the normalized height distributions, each of the
2,241 broadleaved evergreen forest pixels have 9 parameters that describe their normalized height
distribution: the means (µ1, µ2, µ3), standard deviations (σ1, σ2, σ3) and weights (w1, w2, w3) of GMM
component 1, 2, and 3 respectively. Figure 5.24 shows the values of the parameters for each compo-
nent across all pixels. Each individual plot corresponds to one of the three GMM components with the
mean height µ of the component on the x-axis, the standard deviation σ of the component on the y-
axis, and the point color representing the weightw of the component. Figure 5.25 shows the normalized
height distribution of 12 randomly sampled pixels, and their fitted GMM.

Component 1: ground and low vegetation layer
The first component (left panel in Figure 5.24) represents the lowest layer in the normalized height
distribution of the pixels. Most of its mean height values are clustered between 0 and 5m, and there
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Figure 5.24: Scatter plots of the parameters from the 3-component GMM across 2,241 pixels belonging to the broadleaved
evergreen forest class from Wageningen. Each subplot shows the parameters for one component: mean height µ (x-axis),

standard deviation σ (y-axis), and weight w (color scale).

appears to be a linear relationship between mean height and standard deviation. This suggests that
ground sampling varies across pixels. At the beginning of this relationship, there is an almost vertical
line where the mean height remains low, but the standard deviation increases. These likely correspond
to pixels where the ground is sampled, but the presence of low vegetation causes the first component
to spread out. Moving up in the relationship, the higher the mean height, the larger the standard devi-
ation. In this case, the ground is less sampled, and the first component mainly describes the lowest
vegetation layer. This linear relationship can be seen in the top row of distributions, labeled pixel A, B,
and C, in Figure 5.25. Pixel A shows a peak in its histogram at zero, corresponding to the ground. It

Figure 5.25: Distributions of the normalized heights for 12 pixels randomly sampled from the area and their GMM fit.

shows little low vegetation (as the first large peak occurs at a normalized height of 6m). The mean of
the first component is therefore located close to zero, with a small standard deviation. Pixel B shows
a ground peak, but also contains larger peaks for low normalized height, therefore, this pixel contains
more lower vegetation than pixel A. Therefore, the first component has a larger mean height and stan-
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dard deviation because the first component captures the low vegetation between 0-3m. In comparison,
the histogram of pixel C also shows a peak at zero. However, the histogram is denser for larger normal-
ized heights (indicating that this pixel contains mostly points that are 4-8m above ground), therefore
two components are assigned to describe these layers. As a result, the first component is positioned
to describe a broader segment of the vegetation between 0 - 3m, leading to both a higher mean height
and a larger standard deviation for the first component.
The weights of the first component of all pixels are relatively low compared to the other components,
suggesting that the upper part of the normalized height distribution is more densely populated. This is
also evident from Figure 5.25, where the area under the curve of the first component is much smaller
compared to those of the second or third component. This means that most of the LiDAR points in a
pixel are from the canopy layer (which was also illustrated in Figure 5.2).

Component 2: mid-vegetation layer
The second component (middle panel in Figure 5.24) has mean height values mostly ranging between
5-10m, representing the mid-vegetation layer. Its weights are generally higher than those of the first
component, indicating greater density, while the lower standard deviation suggests that this layer is
more clearly defined. The large range of parameter values indicates that the second component varies
a lot from pixel to pixel. This variation can also be seen in Figure 5.25. For example, pixels D and
H have a very clearly defined second component with the highest weight compared to their first and
third components, while pixel K shows a lower weight for the second component, and is much less
pronounced than the first or third component. Interestingly, all three pixels display a third component
with a similar mean height, but its weight varies considerably. This suggests that these three pixels
have the same canopy layer height, but pixels D and H contain more understory vegetation (higher
weight for the first and second component), whereas pixel K is more dominated by taller vegetation
(highest weight for the third component).

Component 3: Canopy layer
The third component (right panel in Figure 5.24) consists of mean heights ranging from 5 to 15m,
indicating that the canopy layer varies a lot in height across the pixels. It also has the lowest overall
standard deviation (as also illustrated by the narrowness of the third component in pixels F and G in
Figure 5.25). The weights are also generally larger for the third component, as the canopy layer is the
most dense and received the most laser returns.

Overall, the scatter plots hint that there is structural heterogeneity within the class of this area, mostly in
the second and third component. This is also apparent from the differing normalized height distributions
of the 12 randomly drawn pixels (Figure 5.25) from the study area for this case study, although some
are similar in shape like pixels A and B, and pixels I and J. The implications are further discussed in
Subsection 6.1.2.

Case Study B: level-3 ecological taxonomy
The predicted coverage map of the invasive species Coralita generated in Carto can be seen in Fig-
ure 5.26. Coralita pixels with a coverage of ≥ 50% are indicated in red, which sum up to a total of 392
pixels, which translates into an area of 23,378 m2. The results from assessing which Wageningen land
cover classes are covered with pixels of at least 50% Coralita coverage, and to which extent, can be
seen in Table 5.2. Almost half of the Coralita-covered area coincides with pixels classified as ”nodata”,
which correspond to areas obscured by cloud cover in the original dataset. After this, pastures show
the highest Coralita coverage, which is also where it is known to spread most rapidly. A significant per-
centage of Coralita occurs in bare rock areas, which are often located within or adjacent to pastures.
A large fraction of Coralita is also found in broadleaved evergreen forest, and although it can be seen
from the Coralita coverage map (Figure 5.26) that it does not occur in the dense forest habitat at the
center of Saba around mt. Scenery, it is instead found in small patches where these trees grow, indi-
cating that Coralita also extends into natural habitats. Significant coverage of Coralita is also found in
informal housing and roads, which is where Coralita got its naturalized status. The other forest habitats
(forest dry broadleaved evergreen and forest deciduous seasonal) are also present, but in much lower
occurrence. These forest classes are less abundant overall, as seen in the Wageningen land cover
classification map (Figure 2.10). Overall, these results confirm that Coralita is strongly associated with
disturbed land cover classes linked to human activity, while its presence is lower in natural habitats.
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Figure 5.26: Predicted coverage of Coralita in 2024. Red pixels indicate a coverage of ≥ 50%.

Table 5.2: Distribution of Coralita (≥ 50% cover) across Wageningen land cover classes on Saba.

Class Code Wageningen Class Name Area [m2] Percentage of Area [%]
17 Nodata (clouds) 10,620.8 45.4
231 Pastures 3,441.6 14.7
721 Bare rocks 2,322.6 9.9
461 Forest broadleaved evergreen 2,145.3 9.2
113 Informal housing 1,261.2 5.4
122 Roads 1,210.3 5.2
412 Forest dry broadleaved evergreen 999.4 4.3
124 Airport 522.6 2.2
323 Thorn scrub 511.0 2.2
712 Rubble 232.4 1.0
311 Herbaceous rangeland 56.1 0.2
421 Forest deciduous seasonal 54.5 0.2

This pattern is consistent with previous studies, which report that Coralita spreads most effectively in
degraded areas, from which it can subsequently invade natural vegetation.

Figure 5.27 and Figure 5.28 show a scatter plot of the slope vs the DTM and the distribution of aspect
angles of the Coralita pixels. The scatter plot shows that most pixels are located below 250m elevation

Figure 5.27: Scatter plot of the slope and DTM of Coralita
pixels with ≥ 50% coverage.

Figure 5.28: Distribution of aspect angles of
Coralita pixels with ≥ 50% coverage.
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on slopes ranging from 10° to 40°. These findings align with the general habitat zonation of Saba
mentioned in the section Habitats: Coralita is largely absent from the high-elevation Elfin and Montane
forests near Mt. Scenery, and thriving in drier lowland habitats where urban areas are located. The
large range of slopes indicates that it has no strict preference for slope steepness, as Coralita occurs
on both relatively flat terrain, such as pastures and near houses and roads, and on steeper slopes
where vegetation and rocks are present. The aspect angle distribution shows a tendency for Coralita
to grow on slopes oriented from southwest to east. While this narrower aspect range could partly relate
to exposure conditions such as the (dominant eastern) wind direction or sun, likely many other factors
influence its spread. As mentioned in Subsection 2.3.3, Coralita can tolerate a wide range of soils,
and rapidly colonizes erosion-affected sites or areas disturbed by livestock and hurricanes. Its drought
tolerance and ability to exploit both natural supports (trees, shrubs) and man-made structures further
expand the range of suitable habitats. This means that the observed aspect preference is unlikely to
be driven by a single factor such as wind direction or sun exposure, but rather reflects a combination
of environmental conditions and disturbance regimes.



6
Discussion

In this chapter, it is discussed how LiDAR-derived information can support land cover mapping on Saba.
In Section 6.1, the potential of LiDAR data is assessed through both the reliability of the DTM and the
case studies that demonstrate its ecological applications. This is followed by Section 6.2, which reflects
on the methodological choices made in the workflow design and their implications for the robustness
of the results. Finally, in Section 6.3, the societal impacts of this study, as well as the data analyzed,
are discussed.

6.1. Potential of LiDAR information for Land Cover Mapping
6.1.1. The Reliability of the DTM
From the DTM reliability assessment of the AHN airborne LiDAR-derived DTM in Section 5.2, the
results showed that 33% of the 50 cm resolution DTM was classified as having a high reliability. The
areas of high DTM reliability are primarily concentrated in the lower-lying, outer parts of the island,
mainly encompassing the dry shrubland and grassland, as well as the barren land. Because the DTM
serves as the basis for many geospatial applications, it can now be used in studies that focus on the
areas where the DTM reliability is high. For example, areas with high DTM reliability are also the most
prone to erosion because they contain little to no vegetation. Studies on erosion risk can confidently
use the DTM, as slope and elevation data are inputs for such analysis (Jagodnik et al., 2019). Similarly,
hydrological modeling in the lower-lying areas of Saba can benefit from the reliable DTM, which is used
as a key input for simulating water movement (Vosselman andMaas, 2010). This is particularly relevant
for Saba, as it is expected that more intense rainfall events will occur under climate change scenarios
(KNMI, 2023). A reliable DTM makes it possible to identify flood-prone zones, predict runoff pathways,
and locate areas where water is likely to accumulate. In turn, this helps anticipate the secondary
impacts of flash floods, such as erosion and slope destabilization in downstream areas.

The importance of a high-resolution and reliable terrain model for Saba has been emphasized in earlier
land cover studies. In Smith et al., 2013, the available DTM contained too many artifacts to perform
topographic correction, which meant that shadowed areas in the imagery could not be corrected and
were therefore left unclassified. It was mentioned that a DTM with a spatial accuracy of approximately
1m would significantly improve the land cover classification through topographic correction of shad-
owed areas. With the DTM from the AHN airborne LiDAR data, this limitation can be solved in areas
where the DTM has been shown to be highly reliable.

Importantly, the AHN LiDAR-derived DTM also represents the most up-to-date terrain model of Saba
(2024), replacing the previous DTM generated from 1991 aerial imagery photogrammetry (Mücher et
al., 2014), which had never been validated and contained significant uncertainties. The LiDAR-derived
DTM therefore marks an improvement in terrain data quality for Saba, providing a much more reliable
foundation overall for future geospatial and ecological studies.

57
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6.1.2. Case Study A: Level-2 Ecological Taxonomy
Although the results from the first case study in Subsection 5.3.2 only give an initial indication of struc-
tural variation within a single class of the Wageningen land cover map, they suggest a noteworthy
implication: areas within the same land cover class of the Wageningen land cover map differ in their
vertical vegetation structure. Future work could look at whether subgroups with similar vertical struc-
tures exist within each Wageningen class. If these subgroups exist, this could enable the identification
of patches with comparable vegetation structure. In practical terms, this means two things: (i) that
the Wageningen land cover map can be more detailed by integrating the vertical structure parameters
examined in this study, and reveal how each class is structured; for instance, where the broadleaved
evergreen forest is dominated by tall, closed-canopy vegetation or lower and more patchy growth. (ii),
Areas dominated by species with similar canopy heights could be distinguished, for example, the dom-
inant tree Freziera undulata in the Elfin forest that has a known height of 9m.

A natural next step is to apply an unsupervised classification method to the nine parameters derived
from the GMM fits. The parameters are used as input features for the unsupervised classification
method, which will make groups of pixels that show similar vertical structure features. This could, for
example, separate denser patches of forest from more open understory-dominated areas within the
same Wageningen class. While this case study tested only a small area, the same approach could be
applied island-wide, enabling a spatially detailed map of structurally similar patches. Combined with
topographic parameters in Table 4.2, these patterns could provide new insights into how vegetation
structure is distributed across Saba’s complex landscape. A limitation arises from the fact that this
analysis relies on the Wageningen land cover classification map to select pixels of the same class,
which is likely to have changed over time, as this map is generated from 2010 data. Therefore, a
classification method can be applied solely to the LiDAR data.

Of course, unsupervised classification has its limitations, since the ecological meaning of the groups
with similar vertical structure features depends on the chosen algorithm and parameters. Therefore,
the importance of training data is highlighted. With the use of training data, the full set of parameters
identified in Table 4.2 can be used as input features in supervised classification, allowing structural
patterns to be directly linked to vegetation types that have been validated in situ. Although using
multispectral data on Saba alone limited the performance of classification in the Wageningen study,
the combination of both LiDAR and multispectral data on Saba has not been explored yet. In many
other studies, combining structural information from LiDAR with spectral information from multispectral
sensors has significantly improved classification accuracy (Fassnacht et al., 2016b).

6.1.3. Case Study B: Level-3 Ecological Taxonomy
The results from this level-3 ecological taxonomy case study show that the topographic parameters
extracted from the LiDAR data (Table 4.2) could be used to uncover the topographic conditions of the
invasive species Coralita, which were found to be consistent with literature. Several opportunities for
future work can be explored following this case study.

First, the coverage map is based on observations from 2017. As noted by the developers of Carto,
adding observations from multiple years improves prediction stability and helps capture growth pat-
terns. Since seasonal conditions and extreme events strongly influence Coralita’s growth patterns, its
growth pattern is not likely to be the same from year to year. Therefore, the training dataset should
ideally be supplied by more observations spread over multiple years. Future work could therefore incor-
porate more observations spread over multiple years. These observations can for example be taken
from biodiversity platforms such as Observation.org, where Coralita has been recorded in recent years
(Observation.org, 2025b). By including this type of data, prediction maps would not only show where
Coralita was present in 2017, but also where it is establishing and expanding today.

Second, the topographic parameters used in this case study (Table 4.2) are derived from a single LiDAR
dataset from 2024. This means that temporal variations in Coralita’s distribution cannot be captured.
For example, suppose removal or management efforts were carried out in certain areas in earlier years.
In that case, these areas may now appear as locations where Coralita is re-establishing, rather than as
long-standing infestations. In the future, repeated LiDAR acquisitions would enable temporal analysis,
which would be especially valuable for monitoring the dynamics of invasive species.
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Third, future work can also include the analysis of multiple coverage thresholds in the predicted Coralita
coverage map (Figure 5.26). In this case study, the threshold was chosen as 50% to ensure that
Coralita is dominant within the pixel. Assessing a lower threshold range, for example, up to 10%, could
provide early warning signals about areas of onset invasion where Coralita has just begun to establish,
for example after an extreme event such as a hurricane, after which Coralita re-establishes quickly.
The detection of areas with onset invasion enables removal efforts before the species has a chance to
spread extensively and harm native vegetation. Acting at this stage not only prevents further expansion
but also reduces the overall cost and effort required for removal efforts.

Finally, case studies like this are not limited to Coralita. Provided that species observations are avail-
able and its topographic preference is restricted to areas with a reliable DTM, the same workflow can
be applied to other ecologically important or invasive species; for example, the other problematic inva-
sive grass species Bothriochloa pertusa (Subsection 2.3.3), which is located in the dry shrubland and
grassland where DTM reliability is high.

6.2. Workflow Design Impacts
6.2.1. Reflection on the DTM Quality Assessment
Excluded LiDAR Reliability Variables
During the selection of variables that are indicative of the DTM reliability, several variables were con-
sidered but eventually excluded after evaluation and are therefore not presented in Table 4.1. These
variables include the mean of the local incidence angle θ0 and its standard deviation. The reasoning for
considering this variable was that near-nadir incidence angles should, in theory, maximize the probabil-
ity of recording a strong ground return, as the laser beam penetrates the canopy most directly when it
aligns with the surface normal. However, upon closer inspection, several limitations emerged regarding
these variables.

Firstly, the local incidence angle was derived from slope and aspect maps, which themselves were
calculated from the DTM of this data. Including this variable would therefore introduce a degree of
circular reasoning, as the DTM reliability score would then partly depend on the surface it is supposed
to evaluate. Secondly, the distributions of the mean and local incidence angle did not align with expec-
tations, as very few points had a local incidence angle close to zero, suggesting that the assumption
that a zero-degree local incidence angle is favorable for DTM reliability is too simplistic. Instead, the
distribution showed a large range of local incidence angles. The likely cause for this is that vegetation
characteristics such as leaf orientation strongly influence the angles under which optimal penetration of
the signal can occur, and therefore deviate from 0. Due to these underlying factors and the complexity
of the relationship, the local incidence angle was excluded from the selected set of variables. More
information about the definition of the local incidence angle and how it’s calculated in practice can be
found in Appendix L.

HALM Derivation Analysis
Following the special cases for which the HALM could not be calculated in a pixel (described in Sub-
section 4.2.1), case 2 (the pixel contains one ground-classified point and the lowest point is not a
ground-classified point) was further looked into. It was calculated for one tile (tile 3000_1000) how
often this case occurs, as this case is suspicious: if the lowest point in a pixel is not classified as
ground, it suggests that the ground classification algorithm has either missed the lowest ground return
or incorrectly labeled vegetation or other objects as non-ground, leading to a less reliable DTM. The
tile has 2,505,378 pixels with at least one ground point, and out of those, 9.8% show the considered
case (the lowest point in the pixel is not classified as ground). In figure Figure 6.1, these pixels are
indicated in red. It is noticeable that they seem to occur more frequently in vegetated areas, which
probably contain a large slope. In these areas, the lowest point likely corresponds to vegetation, while
the ground-classified point is located higher up the slope. The fact that this results in a higher HALM
and subsequently a lower DTM reliability score (as a larger HALM is associated with lower DTM relia-
bility) is justly, as in these cases the LiDAR-derived DTM would show a higher elevation than the actual
ground elevation (since the only ground-classified points are higher up the slope of the pixel, while the
accurate DTM represents the average of this slope).
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Figure 6.1: A visual overview of pixels for which the lowest elevation of the LiDAR point within that pixel is not classified as
ground (indicated in red), zoomed in on an area overlaying the RGB image.

Path Length Derivation Analysis
To address the issue in the derivation of the path length (discussed in Subsection 4.2.1), where the
path length could not be calculated because the first return of a pulse lies in one LiDAR tile while the
last return lies in an adjacent tile, the code to extract the pulse ID for each LiDAR point was run for
a single tile (tile 6000_2000). This problem affected only 0.006% of the ground points in that tile. To
check how splitting the tile into chunks affects this issue, as chunking was necessary to process tiles
with a significant number of points (>20,000,000), the code was rerun for the same tile, now including
chunking, and the number of ground points without a first return in the data chunk went from 0.006% to
0.01%. Still, this amount is negligible, considering the large amount of points in each tile, and the fact
that variables are calculated on a pixel basis, where the absence of one point can still result in a valid
pixel.

A Priori High DTM Reliability Group
From the a priori high DTM reliability map shown in Figure 5.13, it can be seen that the group of pixels
that are assumed to have the highest DTM reliability (indicated in black) is relatively small. The group
accounts for only 6.5% of all pixels containing at least one ground point. The small size of the group
is a result of the strict constraints imposed on this group to ensure that the group represents truly
unobstructed ground, for which the DTM quality solely relies on its LIDAR accuracy. Given the small
size of the group, one could consider relaxing some of these constraints to increase the group size
and thereby include more diverse terrain characteristics that could also possibly yield high reliability.
For example, the ratios could have been chosen to deviate slightly from 1, or one could permit minimal
path lengths, both corresponding to pixels that are nearly unobstructed. This way, pixels that are almost
unobstructed or have very little vegetation are also included in this group. This would have shaped the
Logistic Functions to also score pixels under these conditions slightly higher, as the parameters of
the Logistic Functions are based on the distribution of the a priori high DTM reliability group. However,
relaxing the constraints would mean deciding how much “imperfection” can still be allowed while calling
a pixel highly reliable. Right now, it’s straightforward: for example, if the path length is 0, the pixel is
completely unobstructed. If we also want to include pixels that are almost unobstructed (with a small
but nonzero path length), then a cutoff needs to be set. In other words, one has to decide: up to what
path length can a pixel still count as having a ”high DTM reliability”? This is not an easy threshold to
define. Importantly, since the final classification assigns pixels to low, moderate, or high DTM reliability,
relaxation of the constraints is unlikely to significantly affect the overall scoring outcome. Nevertheless,
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future work could investigate the constraints of the a priori high DTM reliability group and their influence
on the sensitivity of the final score.

To get an idea of how the variables listed in Table 4.1 capture different aspects of DTM reliability, the
Spearman’s squared rank correlation coefficient (Equation 4.5) was calculated for the a priori high DTM
reliability group. These include all variables listed in Table 4.1, except the ratio of first returns classified
as ground out of all first returns Rfirst, the ratio of the ground-classified points out of all returns Rground,
and themean path length lµ. As these variables were used in defining this group, they show no variance
since they all have the same value. Among the remaining variables, the correlation was extremely low
(ranging from 0.01 ≤ ρ2 ≤ 0.07). The low correlations within this group indicate that each variable adds
unique information about DTM reliability. As a result, the reliability algorithm can take into account
many different aspects of what makes an area highly reliable.

Dimensionality Reduction Method
A commonly used method in dimensionality reduction is Principal Component Analysis (PCA), where
a set of correlated variables is ordered according to how much variance they explain, where the first
”principal component” explains the most variance (Salem and Hussein, 2019). This method was con-
sidered in the dimensionality reduction step of the DTM reliability algorithm (Subsection 4.2.3), but
was rejected because the variables in Table 4.1 violate some assumptions of PCA. PCA assumes the
following: the variables are continuous and normally distributed, and the variables should all have a
linear relationship. PCA can still be performed if some variables lightly violate these assumptions, but
it introduces uncertainty in the principal components and requires careful interpretation. It is already
known that at least one of these assumptions is violated, as the ratio and point density variables in Ta-
ble 4.1 are discrete. Therefore, a method of evaluating pairwise associations between variables using
the squared Spearman’s rank correlation coefficient is preferred. Many statistical methods, including
Spearman’s rank correlation, assume that the data is independent and identically distributed for statis-
tical inference. Independent means that no data point influences the value of another data point, and
identically distributed means that each data point comes from the same underlying distribution. In spa-
tial data, such as the data used in this study, these assumptions are violated, as neighboring pixels are
spatially autocorrelated and different environments on the island follow distinct distributions. However,
the proposed method only uses Spearman’s correlation coefficient descHALriptively, therefore, the i.i.d.
assumption is not required.

The importance of the Logistic Function S(x)
As mentioned in Subsection 4.2.4, the Logistic Function S(x) plays an important role in the scoring
process of the DTM reliability by reducing undesired effects from the ECDF, where similar values can
vary greatly in score if they represent a dense part of the distribution. This is clearly visible in Figure 5.16.
Since the PDF of the mean HALM Hµ is highly skewed and narrow (Figure H.1j), the ECDF shows a
sharp decrease over the small region where most values are concentrated (between 0 and 0.2m).
Consequently, small differences in mean HALM Hµ result in large differences in ECDF scores, for
example, a mean HALM of 0.05m yields an ECDF score of approximately 0.7, while a mean HALM of
0.15m yields an ECDF score of about 0.4. In the tail region (Hµ > 0.6), only a few values are spread
out over a wide range of Hµ, resulting in an ECDF that changes much more slowly (for example, a
mean HALM of 0.4m yields approximately the same ECDF score as for a mean HALM of 0.6m). By
contrast, the Logistic Function S, smooths this undesired effect, because it decreases less abruptly.

A similar observation can be seen in the mean path length lµ (Figure 5.18). Here, the ECDF is used
directly as the scoring function, since no distribution of the a priori high DTM reliability group exists for
this variable, as it was used as a constraint. A large group of pixels has a mean path length of zero, and
by definition of the ECDF, these receive a score of 1. Because the group of zero path length is quite
large, the next smallest value is assigned a much lower score of ≈ 0.4, as can be seen in Figure 5.18.
The fact that pixels with lµ = 0 receive a variable score of R = 1 is not problematic in itself, as this
group is defined to have the highest reliability. The steep drop between lµ and the next smallest path
length is more concerning. However, pixels with path lengths close to zero are still likely to receive
high scores on the other variables. Furthermore, the mean path length contributes only 1/6 to the final
score RDTM , so the overall effect of only using the ECDF for the scoring of this variable is expected
to be small. For future work, it may be useful to test how sensitive the final score is to the choice of
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solely relying on the ECDF for the mean path length by using a weighted average in calculating RDTM

(Equation 4.11) instead of weighing all variables equally.

Another important role of the Logistic Function lies in the fact that the ECDF is bounded between
0 ≤ F (x) ≤ 1, whereas the Logistic Function ranges between 0 < S(x) < 1. Consider the ground point
density Dground as an example: according to the ECDF (see Figure 5.17, the pixel with the highest
ground point density (wich is 17 pts/0.25m2) will receive F (Dground) = 1, and the pixel with the lowest
nonzero ground pint density (which is 1 pts/0.25m2, since pixels with a ground point density of 0 are
excluded) will receive F (Dground) = 0. This is undesirable, as we do not want to classify a pixel as
100% unreliable in the absence of validation data. The Logistic Function S(x), however, increases the
score for a ground point density of 1, making its final variable score R(x) nonzero.

Discreteness of the Point DensitiesDall andDground and Their Influence on the
Steepness Parameter k
As mentioned in Subsection 4.2.4, the steepness parameter k used in the Logistic Function (Equa-
tion 4.8) is multiplied by 2 for the discrete cases of Dground and Dall. For example, the ground point
density of the whole dataset ranges from 1-17 points per pixel, and from 2-17 in the a priori high DTM
reliability sample. Because of this limited range and the discrete nature of the variable, applying the
default calibration for k (Equation 4.9) leads to a relatively flat curve of the Logistic Function, as the
increase from 0.5 at x10 to 0.95 at x90 is spread too gradually across the small set of values. As a result,
adjacent densities (for example, 2 vs. 3 points per pixel) are mapped to nearly identical scores, which
means that the high point densities in the upper tail region in the ECDF are weighted down, and lower
point densities are going to be weighted up by the Logistic Function quite a bit. To counter this effect,
k is multiplied by a factor of 2, making the Logistic Function steeper. This way, pixels with a point den-
sity of 1 get a nonzero R, and higher densities in the upper range are not significantly downweighted
compared to the ECDF.

Sensitivity of the Final Score RDTM

The sensitivity of the final DTM reliability score depends on the choices made during the scoring pro-
cess, especially in choosing the parameters for the Logistic Function. A deliberate choice was made
to set the midpoint x0 of the Logistic Function (see Equation 4.8) to the 5th or 95th percentile of the a
priori high DTM reliability group, and to set k such that S(x) increases from 0.5 to 0.95 over the distance
between the 95th and 5th percentiles (as described in Subsection 4.2.4). The rationale for using the 5th
and 95th percentiles, rather than a lower or higher percentile, was to mitigate the influence of extremes,
since many of the variable distributions are skewed. If the midpoint were, for example, set at the 1st or
99th percentile, you risk anchoring the midpoint in an extreme value. Take the mean ground intensity,
for example. In the current method, the 5th percentile of the a priori high-reliability group was taken as
the midpoint x0. If instead the first percentile were used, the midpoint corresponds to an extreme value
that can be unusually low. This would cause the Logistic Function to give higher scores to pixels with
very low intensity values, where high reliability may not be justified. The opposite may happen when
the midpoint x0 is set at a more central percentile of the a priori high DTM reliability group, say the
10th or the 90th. As a result, the Logistic Function shows its sharpest increase over a smaller range
(associated with higher reliability) of values from the a priori high DTM reliability group, which could
result in the unjustly down-weighting of values in the whole dataset.

The same trade-off applies to the choice of the steepness parameter k. With the chosen setup, the
majority of values in the high reliability distributions are spread between S = 0.5 and S = 0.95. If the
distance were extended, the curve of the Logistic Function would flatten. Because of the symmetry of
the Logistic Function, this would also flatten the lower half of the curve, spreading many pixels over the
range from S = 0.05 to S = 0.5. By contrast, shortening the distance steepens the curve, which could
overemphasize small differences in variable values, much like the ECDF, which is undesirable.

To test how sensitive the final classification of the DTM reliability is to these parameter choices, an
alternative setup was tested with x0 = x10 or x0 = x90 (depending on if higher or lower values for a
variable are associated with a higher DTM reliability) and k chosen such that S increases from 0.50 to
0.90 over the distance between the 10th and 90th percentiles of the a priori high DTM reliability group.
With these parameters, the resulting distribution of DTM reliability classes was 9% low reliability, 17%



6.2. Workflow Design Impacts 63

moderate reliability, and 32% high reliability. Compared to the original findings (see Section 5.2), it was
found that a total of 2% of the island changed in DTM reliability class compared to the original setup.
A change of 2% in classification is relatively small, especially given the complexity of the environment
and the multiple variables feeding into the reliability score RDTM . This change also gives a sense of
uncertainty of the DTM reliability score. It is apparent that pixels at the boundary of the DTM reliability
classification thresholds are the most sensitive to parameter choices; for example a pixel with RDTM =
0.54 is now classified as having a high DTM reliability, since the threshold for high reliablity is RDTM =
0.5, but due to classification uncertainty, it could instead belong to the moderate reliability class. These
cases should therefore be interpreted accordingly. Future work could quantify this uncertainty more
explicitly by testing a wider range of parameter configurations.

DTM Reliability Classification
The PDF of the DTM reliability scores RDTM (Figure 5.19) of the island shows three dominant peaks
and an additional smaller peak between the two right peaks, resulting in four distinguishable groups.
These groups can therefore be interpreted as relatively low to high reliability with respect to each other
by using thresholds. To define a threshold for the high reliability class, it can either include or exclude
the intermediate peak around RDTM ≈ 0.58. This intermediate peak likely corresponds to pixels that
have very favorable conditions for most variables that were used to create the DTM reliability score,
while one variable has less favorable conditions. The choice for including or excluding the intermediate
peak in the threshold for the high reliability class can be supported by assessing the RDTM distribution
of the a priori high DTM reliability group, which can be seen in Figure 6.2. Since this group was

Figure 6.2: PDF of the DTM reliability scores RDTM for the a priori high DTM reliability group.

defined to represent the most reliable conditions, their distribution of DTM reliability values provides
a benchmark for the high reliability class. At the first percentile of this distribution, RDTM ≈ 0.5. By
setting the high-DTM reliability threshold at RDTM = 0.5, 99% of the a priori high DTM reliability pixels
are included in the high-DTM reliability class. This ensures consistency with the definition of the a priori
high DTM reliability group. At this threshold, the intermediate peak in the distribution of the full dataset
falls mostly in the high reliability class. There is no equivalent benchmark for distinguishing between
low and moderate reliability. The threshold was therefore set at RDTM = 0.25, corresponding to the dip
between the first two peaks in the PDF. This introduces uncertainty in DTM reliability classification in the
region where there is overlap in the peaks. For example, a pixel with RDTM just below 0.25 might still
share similar characteristics with pixels just above the threshold. This reflects the probabilistic nature
of the scoring, asRDTM does not impose a strict categorical boundary but rather expresses the relative
strength of evidence for reliable ground representation.

6.2.2. Reflection on the Vertical Structure Extraction
Parameterization of Normalized Height Distribution
To parameterize the distribution of the normalized height per pixel (as described in Subsection 4.3.1,
two common approaches were considered: binning the normalized height distributions into fixed height
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intervals and using the percentage of points per bin as parameters, or fitting a curve to the distribution,
using the curve’s parameters to describe its shape. Binning has the advantage of being non-parametric,
therefore requiring no assumption about the normalized height distributions. However, a limitation is
that the choice of bin size is important, as the boundary between bins is not smooth, which can lead to
inconsistencies, especially in pixels where the DTM is less reliable. For example, if the DTM is reliable,
the densest part of a canopy of one tree species falls in the same bin for two pixels containing the
same species. However, if the DTM is less reliable for one pixel, the densest part of the canopy might
fall in an adjacent bin because the DTM under- or overestimates the ground elevation, which shifts the
normalized heights of the tree species upward or downward.
Another limitation of binning is that the number of bins needed depends on the height of the tallest
vegetation, which can eventually lead to a large number of parameters, as each parameter corresponds
to a height interval.

Considering the diverse mix of vegetation species on the island that all show distinct normalized height
distributions, and the smallest vertical resolution needed to differentiate vegetation types (mentioned
in the User Requirements), the binning method would likely result in a high number of parameters,
which defeats the purpose of reducing computational complexity. Therefore, curve-fitting as proposed
in Subsection 4.3.1 by using a GMM is the preferred approach.

Choice of Number of GMM Components
A GMM with three components was selected to fit the normalized height distributions discussed in Sub-
section 4.3.1. Although the BIC scores of the GMMs presented in Appendix J reach their lowest values
for models with 4, 5, or 6 components, these are likely overfitting the data. From an ecological perspec-
tive, the rangeland and bare rock distributions reveal one dominant component centered around 0 (as
seen in Table 5.1), corresponding to the ground, and a second, smaller component representing low
vegetation or rocks, indicating that these profiles can be modeled with two components. The fact that
the BIC scores indicate that more components are needed comes from fluctuations in the distribution
that can be modeled with additional components, but ecologically, these fluctuations come from the
same component. Overall, the BIC scores show their biggest drop between 1 and 3-4 components,
indicating that 3 or 4 components should be a good fit. To minimize model complexity, a GMM with 3
components was considered first. As shown in Figure K.2, the CDF of the 3-component GMM gener-
ally follows the empirical CDFs. However, in the forest distribution of pixel (5385,1680), the peak near
zero is not captured (see Figure K.1), as the first component is not centered around 0, unlike in the
other classes. This did not change when fitting a GMM with 4 components. Considering this, and the
fact that the rangeland and bare rocks distributions appear well-modeled with only two components,
a GMM with three components provides a balanced compromise between underfitting and overfitting
across the different land cover types, while being ecologically interpretable.

6.3. Societal Impacts of the Study
As discussed at the beginning of this study, progress in conservation and island management efforts
on the Caribbean Netherlands depends heavily on funding. Although Saba, St. Eustatius, and Bonaire
are among the most vulnerable to the impacts of global climate change, they are excluded from major
climate funding mechanisms. For example, under the Paris Agreement, the Netherlands has pledged
to support climate financing for developing countries. However, this commitment primarily applies to
its European territory. As a result, the Caribbean Netherlands cannot claim access to these climate
funding mechanisms, since they are not part of the European territory. More importantly, they are
not classified as developing countries, given their status as special municipalities of the Netherlands
and the fact that the European part of the Netherlands is a highly developed nation. To get funding,
the Netherlands should either directly provide the funding from its own national budget, or negotiate
the access of these islands to climate funding bodies (DCNA, 2024). This dependency is particularly
complicated given the large differences in climate, geography, and biodiversity between the European
Netherlands and the Caribbean Netherlands. As a result, the success of conservation efforts on Saba
and the other islands is directly tied to the political will and financial commitment of a government
operating in a completely different environmental context. This study shows how investing in modern
mapping technologies, such as airborne LiDAR and multispectral ORS, can pay off in ways that directly
benefit the islands and their communities.
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One of the clearest societal benefits arises from the newly developed LiDAR-derived 50 cm resolution
by AHN. This DTM is the most accurate and detailed terrain model available to date for Saba, replacing
an outdated and unvalidated photogrammetric product from 1991. Beyond its scientific relevance, such
a dataset provides a solid basis for practical applications in risk assessment. The DTM allows improved
modelling of slope, runoff, and flood accumulation, thereby helping authorities to identify flood-prone
or erosion-sensitive areas in advance.
This study also showed that the airborne LiDAR data likely has strong potential for improving existing
land cover maps of Saba like the Wageningen land cover map from Smith et al., 2013. While a full land
cover classification was not carried out here, the analysis revealed that LiDAR can capture differences
in vegetation structure within areas that were previously grouped into a single class in the existing land
cover map Figure 2.10. This means that LiDAR data could help create a more detailed land cover map
in the future. In addition, the topographic information from the LiDAR data can be linked to the habitat
preferences of certain important species that require monitoring (as seen in Table 2.2). This enables
the direct connection of land cover information to species conservation, guiding practical biodiversity
management on the islands.

Another impact following the island-wide airborne LiDAR acquisition is that its DTM can serve as a
reference dataset for validating global, satellite-derived DTMs. Missions such as Global Ecosystem
Dynamics Investigation (GEDI) (Earthdata, 2025) provide global coverage but at a much coarser res-
olution of about 25m and can therefore not capture small islands in enough detail. By comparing
these global DTM maps with the new airborne LiDAR-derived DTM, the Caribbean Netherlands can
contribute valuable validation data that improves these global products.

While this study focused on Saba, the same LiDAR and passive multispectral ORS campaign also
covered St. Eustatius and Bonaire, meaning the benefits extend across the Caribbean Netherlands
and help meet national environmental reporting obligations under the NEPP (Ministry of Agriculture,
Nature and Food Quality, 2020). Given the clear advantages, it would make sense for the Netherlands
to expand similar acquisition efforts to include Aruba, Curaçao, and Sint Maarten. Additionally, these
islands currently lack high-resolution multispectral data on freely accessible platforms such as the NSO,
unlike the Caribbean Netherlands. By making detailed LiDAR and multispectral data available across
the entire Dutch Caribbean, authorities, researchers, and local communities will gain the benefits of
high-resolution datasets, similar to those already available in the European Netherlands. With these
data, they would have far more tools at their disposal than relying solely on traditional field observa-
tions or outdated remote sensing data, which have previously proven insufficient for monitoring and
managing complex island environments.
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Conclusion and

Recommendations
This chapter addresses the main research question: What is the potential for mapping land cover of
the Caribbean Netherlands using airborne LiDAR and passive optical data? by providing a summa-
tive answer to the sub-questions presented in Section 2.8. Recommendations for future research are
provided in Section 7.2.

7.1. Conclusion
1. What land cover taxonomies are relevant for biodiversity monitoring on Saba?

The monitoring priorities for Saba focus on tracking how species (particularly endangered, key and oth-
erwise important species) and habitats are changing in their size, location, and overall condition. These
changes are largely driven by three main biodiversity threats: climate change, roaming livestock, and
invasive species. Monitoring is also needed to evaluate whether conservation measures, such as re-
forestation and livestock control, are having the intended effect. To ensure adequate monitoring on
Saba, a land cover taxonomy needs to be defined that aligns the monitoring priorities and the data
required to address them. The taxonomy system was designed by considering both the spatial scale
(from island-wide patterns to specific species) and the time scale (from long-term habitat changes to
rapid events such as hurricane damage) at which ecological processes occur. This led to a 3-level hier-
archical classification system, presented in Table 2.2. This taxonomy system only considers terrestrial
environments and focuses on flora, as the conditions of fauna depend directly on the conditions of flora.
The three levels in the taxonomy system describe the following:

• Level 1: This level distinguishes broad land cover types: artificial surfaces, rangeland, forest land,
and barren land. This enables the monitoring of trends such as deforestation, reforestation, or
land degradation.

• Level 2: This level splits level 1 into habitats identified in the state of nature reports (A.O. Debrot,
Henkens, and Verweij, 2018; A. Debrot et al., 2025) so that the size, condition, and distribution
of the habitats can be assessed. One of the habitats, for example, is the Elfin forest, for which its
presence is at risk of extinction under climate change projections.

• Level 3: This level focuses on species-level indicators, including both invasive species (such as
Antigonon leptopus, or “Coralita”) and endangered species (such as Nectandra krugii). These
species provide early warning signals about habitat health.

2. What are the properties of the AHN LiDAR dataset?

A First qualitative analysis (presented in Section 5.1) of the AHN LiDAR data was carried out to get
an initial understanding of how well different land cover types on Saba are represented. To achieve
this, three representative LiDAR point cloud tiles were selected from the data that reflect the full range
of land cover conditions one might encounter. The tiles include the airport strip located on flat terrain,
the peak of mt. Scenery covered by dense vegetation, and a residential area (”the Bottom”). In each
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tile, their point cloud attributes were assessed. The point cloud attributes (presented in Table 3.2)
correspond to (.insert general definition of what point cloud attributes are..). The analysis showed that
man-made structures are very well captured in the data: buildings and roads reflect the laser strongly,
making them easy to recognize. Vegetated areas, however, were mostly represented by their canopy,
while the forest floor was underrepresented. In fact, in two of the densely vegetated plots in the LiDAR
point cloud that were assessed, only 4.9% and 3.3% of emitted LiDAR pulses over the plot reached the
ground, highlighting the difficulty of sampling under dense canopy.

The next part of the analysis looked at how the flight pattern of the aircraft the LiDAR system was
mounted on, and the island’s landcover affected howmuch detail the LiDAR systemwas able to capture.
This detail is measured through the point density (the number of LiDAR points collected per square
meter). Across the island, the average point density was 26 points/m², but values ranged widely from
1 to 228 points/m² depending on location. The value of adding a cross line to the 7 parallel flight lines
was evident: the point density under this line is overall higher. Higher densities were generally found on
exposed ridges, while low densities occurred along steep slopes and coastal areas where the terrain
blocked the sensor’s line of sight. This variation reflects the challenges of flying LiDAR surveys over
rugged volcanic terrain.

The acquisition challenges on Saba are also visible in the published DTM, which is derived from LiDAR
points that were classified as ground. The 50 cm resolution DTM (Figure 3.3) captures the ground well
in open areas, but contains gaps in its center where the forest habitats are located. This shows the
challenge of LiDAR in vegetated areas: when the vegetation is too dense, the signal dissipates before
it can reach the ground. In the European Netherlands, AHN specifications require a minimum percent-
age of ground returns in vegetated areas to ensure reliable DTMs. On Saba, no such requirement was
imposed, and the dataset falls short of this standard. As a result, while the LiDAR data provides ex-
cellent structural detail for open terrain and built-up areas, its representation of ground elevation under
dense forests is incomplete. This means that the dataset is highly useful for mapping surface features
and vegetation canopies, but caution is needed when relying on the terrain model in forested habitats.

3. What is the quality of the AHN LiDAR-derived DTM?

Following the qualitative analysis of the LiDAR data in sub-question 2, it was found that the DTM is of
uneven quality. To better understand and quantify how much of the AHN LiDAR-derived DTM can be
trusted, a DTM reliability algorithm was created (see Figure 4.2 for a schematic overview). Because
no field measurements are available to directly validate the DTM, this algorithm provides a practical
way to estimate reliability using the LiDAR data itself. The algorithm combines several LiDAR-derived
reliability variables (presented in Table 4.1 that can provide an indication of how well the ground was
captured in each 50 cm × 50 cm pixel of the DTM. Since not all variables are equally informative (as
some variables might describe the same phenomena), a dimensionality reduction step was used to
ensure the remaining variables provide unique information about the DTM reliability, after which the
remaining variables were combined into a single reliability score RDTM . The algorithm follows four
main steps:

1. Identification of LiDAR reliability variables: such as ground point density and traveled path
length of the LiDAR signal.

2. Define an a priori high DTM reliability group: in the absence of validation data, a group is
identified that should have the highest DTM reliability: bare, open ground.

3. Dimensionality reduction: LiDAR reliability variables that overlapped in information were filtered
out.

4. Reliability scoring: each pixel in the DTM was assigned a DTM reliability score based on how
its characteristics compared to other pixels, and how closely it matched the characteristics of the
priori high DTM reliablity group, resulting in a map of zero, low, moderate, and high reliability
zones.

Figure 5.7 shows the DTM reliability map, where four classes of DTM reliability are presented: zero,
low, moderate, and high DTM reliability. Of the island area, 42% has zero DTM reliability, while 9% is
classified as having low reliability, 16% as moderate reliability, and 33% as highly reliable. In practice,
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this means that high-reliability areas can be used directly and with confidence, moderate reliability pixels
should be used with caution, but can still provide accurate information about the DTM, low reliability
areas are less reliable and best left out of critical analyses, while zero reliability areas represent places
where the LiDAR data could not capture the ground at all. To give an indication of how vegetation
cover influences the DTM reliability algorithm, a proxy for vegetation health and density (the NDVI)
was derived from passive multispectral ORS from the Pleiades-Neo satellite. The NDVI was compared
across the different DTM reliability classes, and it was found that the DTM reliability algorithm correctly
identifies regions where the ground is covered by dense vegetation and yields less reliable DTM values.

It is important to note that this DTM reliability map does not provide an absolute truth, since no vali-
dation data was available, but rather a relative measure of confidence. Its main value lies in showing
where the DTM can be used with confidence and where it should be treated more carefully. This DTM
reliability map supports a more informed use of the dataset in studies where the DTM forms the basis,
such as soil erosion risk mapping, landslide detection, and hydrological studies. Encouragingly, about
half of the island’s DTM (49%) has moderate to high reliability, meaning there is a substantial portion
of Saba where the DTM provides dependable ground information.

4. What structural parameters can be derived from the AHN LiDAR data?

To make the LiDAR dataset useful for land cover mapping, the raw 3D point data first needs to be trans-
lated into structural parameters, which are measurable characteristics that describe both the vegetation
and the underlying terrain. These parameters (Table 4.2) serve as input features for classification mod-
els that generate land cover maps (like the one in Smith et al., 2013). Two main groups of structural
parameters were identified:

• Vertical structure parameters, which describe features on the terrain such as trees, shrubs, or
bare ground.

• Topographic parameters, which describe the shape of the landscape, including its elevation
(DTM), slope, and aspect.

The vertical structure parameters were derived by analyzing the vertical profile of the LiDAR data within
each pixel. This vertical profile shows how LiDAR points are distributed from the ground up through
the vegetation, after adjusting for the ground level provided by the DTM. Using a three-component
Gaussian Mixture Model, this profile was broken down into separate layers representing the canopy,
understory, and ground. In this way, the parameters capture whether these layers are present in a pixel,
and if so, how much they contribute to the overall structure.

By expressing the LiDAR information in terms of these structural parameters, the dataset provides a
standardized description of Saba’s land cover, making it suitable for ecological analysis and mapping.

5. To what extent can the AHN LiDAR data be used to assess the land cover taxonomies?

The AHN LiDAR dataset already contains pre-classified groups: ground, building, water, and unclas-
sified (Table 3.2). These groups align closely with the Level 1 land cover taxonomy, as buildings cor-
respond to artificial surfaces, ground to barren land, and unclassified to forest and rangeland. This
means that even in its published form, the dataset can be directly used to track large-scale landcover
changes (Level 1), for example if future LiDAR surveys are carried out and compared to this dataset.
To explore how the LiDAR data can be used in the assessment of the more detailed level-2 and level-3
land cover taxonomies, two small case studies were carried out.

In the case study for the level-2 taxonomy, the structural variability of areas classified as broadleaved
evergreen forest in the Wageningen land cover map (see Figure 2.10 for the map) was analyzed. This
was done by comparing the vertical structure parameters (see sub-question 4 above) for a subset of
pixels (5m x 5m) that were classified as ”broadleaved evergreen forest” in the Wageningen land cover
map. It was found that these parameters varied significantly from pixel to pixel, therefore indicating the
presence of structural variability within a single class. This implies that LiDAR data is able to provide
additional information to the Wageningen land cover map that could separate the classes further into
subclasses. Additionally, it might also be possible to distinguish areas within a single class with similar
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vertical structures, enabling the identification of for example dominant tree species with a specific known
height.

The case study for the level-3 taxonomy focused on the invasive vine Coralita (Antigonon leptopus),
which thrives in lower-lying areas of Saba where the DTM reliability is high. Using an AI classifica-
tion model on the Carto platform, a map was created showing Coralita coverage across the island.
The Saba’s susceptibility to Coralita was investigated using the Wageningen land cover map to see
in which classes Coralita dominates; the results confirmed that Coralita is most common in pastures,
bare rocks, and urban areas, in line with existing knowledge that it spreads in degraded or disturbed
areas. The LiDAR-derived topographic parameters (see sub-question 4 above) provided further in-
sights: Coralita was present on elevations between 0 and 250m, and on a large range of slopes (0◦
to 50◦). Interestingly, the aspect angle revealed that Coralita is predominantly found on slopes facing
between southwest and east, likely due to a combination of wind exposure (primarily from the east),
sun exposure, and soil type.

Overall, the results show that the AHN LiDAR dataset can be confidently used for Level 1 land cover
taxonomies across Saba, is useful for adding structural detail to Level 2 habitats, and, in areas where
the terrain model is reliable, can even provide species-level insights (Level 3). The potential of the
dataset goes beyond the case studies presented here. For example, the extent can be investigated
further by integrating LiDAR with other datasets, such as multispectral ORS data, where it would be
possible to build land cover classification models that likely give an evenmore detailed picture of Saba’s
landscapes.

6. What limitations remain, and how can they inform future research efforts?

Although the AHN LiDAR dataset represents a significant step forward for mapping and monitoring on
Saba, several limitations remain that shape how it can be applied. The most important is the uneven
reliability of the DTM: in densely vegetated and steep areas, the ground is insufficiently sampled, leav-
ing large gaps in the DTM. Another limitation is that the dataset captures only a single moment in time.
Without repeated acquisitions, it is not possible to monitor ecological change, such as the spread of
invasive species, recovery after storm events, or the effectiveness of management interventions. Look-
ing ahead, much greater value could be gained from carrying out regular LiDAR surveys similar to the
AHN program already established in the European Netherlands.

Another important limitation is the lack of validation data. Because no reference terrain model of the
“true” ground exists for Saba, the DTM reliability algorithm had to be built using only the LiDAR data itself.
This means that while the algorithm gives a strong indication of where the terrain model is trustworthy,
its accuracy could not yet be directly confirmed. Similarly, the absence of detailed field data on the
structure of certain habitats (see Table 2.2) meant that LiDAR information could not yet be fully used in
supervised classification methods. Instead, external sources such as the Wageningen land cover map
(Figure 2.10) and predicted Coralita coverage maps from Carto (Figure 5.26) were used to support
the analysis. The positive side of this limitation is that it highlights a clear way forward: the full extent
of the usability of the LiDAR data remains to be discovered with the future collection of independent
ground-truth or field validation data. Such data would not only strengthen confidence in the terrain
model but also allow LiDAR structural information to be directly linked to specific habitats and species.
Recommendations for these steps are provided in Section 7.2.

7.2. Recommendations
Even though some areas remain difficult to sample due to Saba’s topographic nature, some improve-
ments can be made in the LiDAR acquisition plan. This is especially true for the areas currently clas-
sified as having moderate DTM reliability, which make up about 16% of the island Figure 5.7. Here,
one improvement lies in the flight line design. The current survey was conducted with seven parallel
lines with 55% overlap, and only one cross-line. Adding more cross-lines, flown at different orienta-
tions, would allow steep slopes and dense vegetation to be scanned from multiple angles, increasing
the chance of capturing ground points. The benefits of such an approach can already be seen under
line 101, where the additional cross-line produced higher point densities. This is also reflected in the
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final DTM reliability score RDTM , where the lower right side of the island shows a higher DTM reliability
compared to the left. Although a second cross-line (line 102) was planned, it was not flown. Consid-
ering its importance, it is advised for future acquisitions to include line 102, as well as introduce more
lines with a different orientation. Adjustments to the sensor settings could also improve results. The
current survey operated at a PRF of 700 kHz (350 kHz for each beam), while the system can go up to
2MHz per beam. Using a higher PRF would increase the number of laser points collected, and even
without changing altitude, could roughly double the point density per square meter. Changes to altitude
or flight speed could also help, but they come with risks such as longer acquisition times and a greater
chance of cloud formation during acquisition.

For the low and zero reliability areas, particularly under dense forest canopies, better flight planning
alone is unlikely to solve the problem. The problem of the dense canopy remains, and because most
tree species are evergreen, the island is not going to have a leafless period where ground coverage
significanty improves (Vosselman and Maas, 2010). Instead, it would be valuable to install (permanent)
Ground Control Points (GPCs) beneath the canopy. These fixed reference markers would provide
accurate elevation benchmarks that can be used to correct and calibrate the DTM in places where
laser pulses cannot penetrate to the ground. While this would not improve every pixel in the dataset, it
would increase confidence in critical areas.

Finally, to confirm the accuracy of the introduced DTM reliability algorithm, it could be tested in the
European Netherlands, where highly accurate reference DTMs are available. Alternatively, new GPS
measurements collected on Saba, particularly in low and moderate-reliability areas, could serve as
ground-truth data. This would help verify that the algorithm correctly identifies areas with low to mod-
erate DTM reliability.
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A
Flora of Saba

Table A.1: Flora species of Saba by habitat and occurrence taken from A. Debrot et al., 2025; Freitas et al., 2015. These are species for which enough monitoring data and/or knowledge are
present.

Habitats Occurrence Species name Notes

Elfin forest

dominant and
restricted

Freziera undulata Evergreen tree
Charianthus purpureus Evergreen shrub

restricted

Epiphytes: Voyria aphylla,
Utricularia alpina, Notopleura
guadalupensis, Ornithidium
reflexum, Peperomia
hernandiifolia, Peperomia
emarginella,Werauhia
urbaniana

These plants grow on other plants. They require an
environment with high humidity and mist

Besleria lutea Evergreen shrub
Hymenophyllum hirtellum Evergreen fern
Pilea obtusata Evergreen herb

Elfin + Montane forest

Rubus rosifolius Evergreen fern, naturalized
Nephrolepis rivularis Evergreen fern
Cyatheaceae spp. Evergreen tree fern, characteristic of Elfin and

Montane forest, as it only grows in moist and misty
environments

Prestoea acuminata Evergreen palm tree
Cecropia peltata Evergreen trumpet tree, a pioneer species
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Habitats Occurrence Species name Notes
Begonia retusa Evergreen herb
Vriesea ringens Evergreen epiphyte

Montane forest restricted Nectandra krugii Evergreen tree, endangered

Montane + dry tropical
forest

Myrcia splendens Semi deciduous tree, high cover throughout the
whole dry tropical forest

Coccoloba diversifolia Evergreen tree
Cordia sulcata Tree, important in the northwestern lower slopes, a

pioneer species.
Clusia major Evergreen shrub/tree, among the highest cover

around the northwestern lower slopes, but also
occurs from the northeastern to southwestern lower
slopes, a pioneer species

Citharexylum spinosum Semi-deciduous tree, high abundance in Montane
forest

Miconia laevigata Evergreen shrub, important in northwestern lower
slopes

Dry tropical forest

dominant and
restricted

Pisonia subcordata Deciduous tree, occurs on the northern lower
slopes and dominates in parts from the
northeastern to southwestern lower slopes

Coccoloba uvifera Evergreen tree
Swietenia mahagoni Endangered deciduous tree, dominates in western

lower slopes
Guettarda scabra Evergreen tree, dominates in the northern lower

slopes and high cover in the mid section of the
western and southern slopes

Coccoloba swartzii Evergreen tree, dominates in northern lower slopes
and high cover from the northeastern to
southwestern lower slopes

restricted

Bursera simaruba Deciduous tree
Guaiacum officinale Evergreen tree, endangered
Casearia decandra Evergreen tree/shrub, common from northern to

southwestern lower slopes
Eugenia axillaris Evergreen tree, common and high cover in the

western lower slopes, and frequent in the northern
to southwestern lower slopes

Myrcianthes fragrans Evergreen tree/shrub
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Habitats Occurrence Species name Notes
Randia aculeata Deciduous tree, common in the northern lower

slopes and in the mid section from northeast to
southwestern slopes

Maytenus laevigata Evergreen tree, common in the northern lower
slopes and in parts ranging from northeast to
southwestern lower slopes

Guapira fragrans Evergreen tree/shrub
Inga laurina Evergreen tree, important in the northwestern lower

slopes, and high cover in southwestern lower
slopes

Byrsonima spicata Evergreen tree, important in northwestern lower
slopes, a pioneer species

Elfin forest + Montane
forest + dry tropical
forest

Philodendron giganteum Evergreen hemiepiphyte, dominant in Montane
shrub/herb layer and in the northwestern lower
slopes

Blechnum occidentale Evergreen fern
Heliconia bihai Evergreen shrub, most dominant in Montane forest

shrub/herb layer after philodendron giganteum
Piper dilatatum Evergreen shrub
Prestoea montana Evergreen palm tree, most prominent in Montane

forest and high presence in the northwestern lower
slopes

Dry tropical forest +
dry shrubland and
grassland

Lantana camara Evergreen shrub, frequent in the shrub layer of the
dry tropical forest and dominant in the shrubland

Croton astroites Evergreen shrub, frequent in the shrub layer of the
dry tropical forest and common in a small area on
the northern lowest slopes

Plumbago scandens Evergreen shrub, common throughout the
lower-elevation dry tropical forest and in the
shrubland

Coccoloba uvifera Evergreen shrub, found throughout both habitats
and on cliffs in coastal areas

Dry shrubland and
grassland

dominant + restricted

Mitracarpus polycladus Evergreen shrub, dominant from the northeastern
to southwestern lower slopes

Aristida adscensionis A grass, dominant in the grassland
Dactyloctenium aegyptium A grass, dominant in both shrubland and grassland,

and can also be found on cliffs
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Habitats Occurrence Species name Notes
Botriochloa pertusa An invasive grass, dominates the dry shrubland

and grassland

restricted Jatropha gossypiifolia Semi-deciduous shrub, found on the lowest slopes
and cliffs

Chloris barbata A grass, dominant in the grassland



B
Invasive Species on Saba

Table B.1: List of 46 invasive terrestrial plant species from the Global Register of Introduced and Invasive Species (GRIIS)
recorded in Saba according to Debrot et al., 2025. These species have been identified as having a negative impact on

biodiversity.

GRIIS Species ID Scientific Name GRIIS Species ID Scientific Name
12172 Albizia lebbeck 12219 Jasminum fluminense
12173 Aloe vera 12220 Kalanchoe daigremontiana
12176 Antigonon leptopus 12221 Kalanchoe pinnata
12179 Asystasia gangetica 12223 Lawsonia inermis
12180 Bambusa vulgaris 12225 Leucaena leucocephala
12182 Bothriochloa pertusa 12226 Mangifera indica
12183 Urochloa mutica 12229 Melinis repens
12184 Caesalpinia bonduc 12233 Moringa oleifera
12186 Calotropis procera 12236 Nephrolepis hirsutula
12190 Catharanthus roseus 12239 Oeceoclades maculata
12194 Cleome gynandra 12244 Megathyrsus maximus
12195 Clitoria ternatea 12245 Parthenium hysterophorus
12199 Cordia sebestena 12247 Philodendron giganteum
12200 Arivela viscosa 12251 Pteris tripartita
12202 Cryptostegia grandiflora 12252 Pteris vittata
12204 Dactyloctenium aegyptium 12258 Ricinus communis
12205 Delonix regia 12259 Sansevieria hyacinthoides
12208 Eleusine indica 12260 Sansevieria trifasciata
12210 Epipremnum aureum 12262 Senna bicapsularis
12212 Eragrostis ciliaris 12263 Senna italica
12214 Euphorbia tithymaloides 12271 Syngonium podophyllum
12217 Gossypium barbadense 12275 Tecoma stans
12218 Indigofera tinctoria 12280 Tithonia diversifolia
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C
Remote Sensing Techniques

This appendix provides a more in-depth overview of the remote sensing techniques relevant to this
study: LiDAR remote sensing (Section C.1), and passive multispectral remote sensing (Section C.2).
For each technique, the system components, additional principles, and factors influencing the data
quality are discussed.

C.1. LiDAR Remote Sensing
C.1.1. LiDAR System Components
A LiDAR system consists of a laser scanning system and a positioning and orientation system. The
laser scanning system carries out the actions of generating, directing, and receiving laser pulses. The
positioning and orientation system consists of a GNSS, which provides accurate positioning data of the
instrument during movement, and an Inertial Measurement Unit (IMU), which records orientation data
of the instrument, measured by roll (ϕ), pitch (θ), and yaw (κ).

C.1.2. LiDAR Resolution
As mentioned in Subsection 3.1.1, one of the advantages of LiDAR compared to other remote sensing
techniques is the high spatial resolution (measured in point density D) that can be obtained, particu-
larly with airborne and terrestrial platforms. Both inherent characteristics of the instrument and flight
parameters contribute to the point density. On the instrument side, the angular resolution and ranging
resolution contribute to the spatial resolution, which corresponds to the smallest distinguishable hor-
izontal distance, and the smallest distinguishable distance along the line of sight, respectively. The
angular resolution is influenced by the divergence angle of the beam (which is typically only a few mil-
liradians in LiDAR (Wang et al., 2024)), which focuses the energy into a small footprint on the surface.
This footprint can be very small for terrestrial and airborne LiDAR, and is larger for spaceborne LiDAR,
usually >10m (Wang et al., 2024). The ranging resolution is influenced by the pulse duration (the length
of time a pulse is emitted) and the precision of the TOF measurements.

C.1.3. LiDAR Data Quality
The quality of LiDAR measurements is determined by several factors. The geometric accuracy is deter-
mined by the TOF measurement precision, and the GNSS and IMU accuracy. Precision refers to the
variability of measurements under noise, while accuracy refers to how close the measurements are to
the true or reference value. The quality is also determined by the ranging precision, which is influenced
by the signal-to-noise ratio (SNR). The ranging precision is usually very high due to the coherent and
high-energy laser pulses (Wang et al., 2024). The reflectivity of the surface also influences the quality,
as highly reflective surfaces yield stronger returns and thus more reliable points, whereas dark or water-
covered surfaces often result in weak returns. In addition to surface properties, atmospheric conditions
are another important factor. Bad weather, such as heavy rain, attenuates the laser signal, thereby
reducing SNR and therefore ranging precision. Atmospheric turbulence can also distort the beam path,
introducing stochastic noise in the measurements.
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LiDAR quality is usually assessed in terms of absolute and relative accuracy, which can be separated
into planimetric and vertical components. Absolute accuracy describes the agreement of the LiDAR-
derived coordinates with their actual coordinates, usually determined through ground control points.
The relative accuracy refers to the internal consistency of the dataset. This is often determined by
comparing the point cloud coordinates of overlapping flight lines. For the vertical relative accuracy, this
is done by comparing elevation differences in overlapping areas, while planimetric relative accuracy
uses the alignment of features, for example, building edges, across strips. Both types of accuracy are
influenced by systematic errors, which are errors inherent to the system, such as IMU misalignment or
laser calibration errors, and stochastic errors, which are random errors such as noise in TOF measure-
ments. Systematic errors can often be corrected through calibration and adjustment against control
data, while stochastic errors define the inherent accuracy limits of the system.

C.1.4. Extended LiDAR Applications
A wide range of other LiDAR applications exists outside the field of this study. LiDAR is widely used
in urban environments for 3D building modeling, city planning, and infrastructure monitoring (Wang
et al., 2024). At smaller scales, terrestrial and mobile LiDAR enable 3D modeling and navigation,
which are important for robotics and autonomous driving. In the cultural domain, LiDAR has proven
valuable for archaeological discovery, where high-resolution elevation models can reveal buried or
hidden structures that are invisible in conventional imagery (Masini et al., 2018).

C.2. Passive Optical Remote Sensing
C.2.1. DN to Reflectance Conversion
To convert DN to radiance L [W∙sr−1∙m−2∙μm−1], or Top of Atmosphere (TOA) radiance for spaceborne
sensors, the sensor gain and bias are needed, which are sensor-specific calibration parameters. For
each band b and pixel p, the conversion is a linear function:

Lb(p) = GAIN(b) ·DNb(p) + BIAS(b) (C.1)

For spaceborne sensors, TOA radiance can be converted to TOA reflectance ρb, through removing
illumination geometry and Earth–Sun distance effects (Airbus Defence and Space, 2024):

ρb(p) =
π · d2 · Lb(p)

E0(b) · cos(θs)
(C.2)

Where d is the Earth–Sun distance in astronomical units (AU), E0(b) the solar spectral irradiance for the
band in W∙m−2∙μm−1, and θs the solar zenith angle. The TOA reflectance is then the ratio of reflected
light to the incident radiation (0≤ ρb ≤ 1). A value of 0 represents full absorption, and a value of 1 repre-
sents full reflection. For airborne systems, the sensor resides within the atmosphere, so the measured
radiance only includes the atmospheric path between the surface and the airborne platform. For many
applications, TOA reflectance is not sufficient, as the signal still contains atmospheric scattering and
absorption. Therefore, atmospheric corrections need to be applied to obtain the surface reflectance.
This way, the data can be used in time series analysis and across other sensors.

C.2.2. Passive ORS Sensor Components
A passive multispectral sensor consists of an optical system, a detector, and a scanning mechanism.
The optical system focuses the incoming radiation through filters or beam splitters onto the detector.
The most common detectors are Charge-Coupled Devices (CCD) and Complementary Metal-Oxide
Semiconductor (CMOS). CCD detectors record the incoming photons by accumulating charge in each
pixel, which is then read out and converted into a DN. CMOS detectors perform a similar conversion,
but each pixel has its own readout circuit, making the data acquisition more efficient, but the data quality
is lower as a result. For spaceborne sensors, two scanning mechanisms are often used: whiskbroom
scanning, where a mirror sweeps across-track, and pushbroom scanning, where a linear array of de-
tectors is used as the platform moves forward. In contrast, airborne systems can be simplified by using
frame-based cameras that capture images at once. Finally, as with LiDAR, multispectral sensors often
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include GNSS and IMU systems to record the position and orientation of the platform. This way, the
pixels can be georeferenced.

C.2.3. Passive ORS Resolution
Spaceborne platforms can reach spatial resolutions of 10m - 1 km while airborne platforms can reach
sub-meter to 5m resolutions (Saritha et al., 2025). The spatial resolution is defined by the Ground
Sampling Distance (GSD), which quantifies the physical size of the ground area captured by a single
pixel. GSD is a function of the sensor’s focal length f , the altitude of the platform h, and the pixel size
p of the detector:

GSD =
h · p
f

(C.3)

A longer focal length or smaller pixel size results in a finer GSD, assuming a constant altitude. A
high spectral resolution can be reached with more bands, but since fewer photons get collected, the
SNR is lower, which results in a lower spatial resolution. A higher radiometric resolution allows finer
distinctions between surface reflectances, but also increases data volume and can amplify noise if the
signal is weak.

C.2.4. Passive ORS Data Quality
Just like LiDAR, the geometric accuracy is influenced by the GNSS and IMU accuracy. In spaceborne
systems, geometric distortions may arise from orbital motion and Earth curvature, while airborne plat-
forms are more affected by turbulence and altitude fluctuations. To correct such distortions and to
ensure that each pixel corresponds to its true location on the ground, images are usually orthorectified
using a Digital Elevation Model (DEM) and precise sensor position and orientation data. This step is
necessary when the data is combined with other geospatial datasets or for performing quantitative anal-
ysis. The radiometric accuracy also influences the quality, which refers to how well the sensor captures
true reflectance values across bands. The radiometric accuracy is influenced by the calibration accu-
racy and precision of three calibration processes (Saritha et al., 2025): dark current, radiometric, and
spectral calibration. Dark current calibration is needed to filter out intrinsic noise in the imaging system
itself. This is defined as the BIAS in Equation C.1. Radiometric calibration establishes the relation-
ship (GAIN in Equation C.1) between the observed radiance measurements with the known radiance
values of reference targets. Finally, spectral calibration ensures that the sensor accurately measures
radiation across different spectral bands. Similar to LiDAR, the SNR also influences the quality. The
SNR is in turn influenced by sensor design (choice between CCD and CMOS, for example), exposure
time, and platform altitude. In addition, atmospheric and illumination conditions play an important role
in the quality. As the atmosphere contains a mixture of gases, aerosols, and water vapor, some wave-
lengths will be absorbed more than others. This effect is more apparent in spaceborne sensors than
in airborne sensors, as light has to travel a longer path. The quality therefore, depends on the atmo-
spheric corrections applied to correct for this effect. Optimal illumination conditions consist of a solar
angle that results in the shortest path length through the atmosphere and minimizes the appearance
of shadows, which typically occurs around local solar noon when the sun is at its highest point in the
sky. Spaceborne missions are typically designed to operate under consistent and optimal illumination
conditions (Mark R. Drinkwater, 2007), thereby ensuring radiometric consistency. In contrast, airborne
missions offer greater flexibility in acquisition timing and flight planning, but this often comes at the cost
of suboptimal illumination conditions.

C.2.5. Extended Passive ORS Applications
Beyond environmental monitoring, passive ORS is also important in other fields. In hydrology, indices
such as the Normalized Difference Water Index (NDWI) can be used to monitor water bodies in, for
example, flood assessment or river morphodynamics. Subsequently, other spectral signatures can
be used to assess, for example, water quality (Binding et al., 2012). In urban planning, multispectral
imagery supports the mapping of land use changes, green cover, and infrastructure in urban areas.
Conventionally, it can also be used for cadastral and land administration.





D
AHN and Beeldmateriaal
Nederland Workflow and

Accuracy Assessment for Saba
This appendix provides a description of the workflow and accuracy assessment of the airborne LiDAR
(Section D.1) and passive multispectral ORS data (Section D.2) acquisition, which are part of the AHN
and Beeldmateriaal Nederland survey for Saba. Additional system specifications on the used sensors
can be found in Subsection D.1.1 and Subsection D.2.1 for the LiDAR and multispectral data, respec-
tively.

The LiDAR data collected during the flight campaign were processed in accordance with the require-
ments defined in the AHN specifications for the Caribbean Netherlands (Actueel Hoogtebestand Ned-
erland, 2023) while the delivered dataset and its quality were assessed in the quality report (Het Wa-
terschapshuis, 2024b). Subsection D.1.4 provides a summary of the LiDAR data quality assessment.
The passive multispectral ORS data collected during the flight campaign were processed in accordance
with the requirements defined in the specifications for the Caribbean Netherlands defined by (Beeld-
materiaal Nederland, 2023). Subsection D.2.3 provides a summary of the passive multispectral ORS
data quality assessment.

D.1. AHN LiDAR Data
D.1.1. RIEGL VQ-1560 II System Specifications
The maximum operational altitude depends on the chosen PRF and laser power settings. At its max-
imum PRF (4MHz), point density is maximized, but the maximum flight altitude is limited to approxi-
mately between 1700 and 2700m. At its lowest PRF (540 kHz), the altitude extends up to 3900m, but
the point density is minimized. According to the RIEGL VQ-1560 II datasheet, average point densities
can vary from 2 points/m² to 60 points/m² (RIEGL Laser Measurement Systems GmbH, 2024). In addi-
tion to discrete waveform LIDAR, the system is also capable of full waveform recording. Conventionally,
the system has an integrated IMU and GNSS unit. Additional optional components include an RGB
camera and even thermal and NIR cameras.
The scanning mechanism of the scanner is based on a rotating polygon mirror. The scan angle range
of each channel is 60°, which results in an effective FOV of 58°. The scanning configuration can be
seen in Figure D.1.

D.1.2. LiDAR Flight Execution
The exact acquisition time of the survey is not available from the data, though the total flight time was 45
minutes. The survey was required to be executed after storm season, as December marks the start of
the dry season, and there should be no flooding or wet surfaces from rainfall at the time of acquisition
(Actueel Hoogtebestand Nederland, 2023). The chosen flight strip overlap of 55% was sufficient to
enable prescribed control tasks to be carried out according to specifications. With a FOV of 55° and
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Figure D.1: The RIEGL VQ-1560 II scanning pattern. The two scanner channels are tilted 28° with respect to one another.
With the rotating scanning mechanism, the effective FOV is 58° (RIEGL Laser Measurement Systems GmbH, 2024).

altitude of h = 2000m, the swath width corresponds to W ≈ 2084m (Equation 3.1), and the effective
swath width is Weff = 938m. Considering the longest distance across the island is roughly 6 km, this
would require an up-rounded 6000 m/938 m ≈ 7 flight lines to cover the island. Therefore, a total of
seven parallel NW–SE oriented flight lines and two cross-lines (oriented N–S and S–N, called 101 and
102, respectively) were planned. Figure D.2 shows the orientation of the flight lines.

Figure D.2: Flight lines of the LiDAR acquisition estimated from the flight strips with the line ID and direction indicated. In
addition, the height control fields and connection fields are also indicated. The connection fields served as reference areas for

block adjustment, while the control fields were used to independently assess vertical accuracy.

As shown in the flight report in Table D.1, some flight lines were repeated due to cloud formation during
the survey. The report mentions no mist around the volcano peak and only very light turbulence. Flight
line 102 was flown only once, but a large cloud in the center of the line rendered the strip unusable.
The reason for not re-flying line 102 remains unclear. Consequently, flight line 101 was the only line
oriented perpendicular to the seven parallel flight lines.
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Table D.1: Flight report summary of the LiDAR acquisition for each line.

Flight Line ID Yaw κ Run 1 Run 2 Run 3 Run 4
101 (N–S) 205° clouds ok
1 (SE) 112° ok
2 (NW) 292° thin cloud ok
3 (SE) 112° cloud cloud ok
4 (NW) 292° cloud ok
5 (SE) 112° ok
6 (NW) 292° cloud cloud cloud cloud on south of line,

probably outside FOV
7 (SE) 112° small cloud

on south of
line, probably
outside FOV

102 (S–N) 25° clouds

D.1.3. LiDAR Data Processing and Product Generation
Firstly, each flight strip was processed using the IMU and GNSS data, thereby georeferencing the laser
returns. From here, the point clouds are generated where each return is assigned a spatial coordinate
(x, y, z) and the attributes in Table 3.2 except for attribute 8 (classification was done later). Because ev-
ery line is affected by small trajectory uncertainties, the strips were then brought into alignment through
a strip adjustment in TerraMatch. TerraMatch is a software package from Terrasolid, often used for
the processing of LiDAR data. Subsequently, a block adjustment was carried out using the connection
fields to correct for systematic vertical errors. These fields were measured with high-accuracy GPS and
serve as reference areas within the dataset. By comparing the LiDAR-derived elevations to the known
elevations in the connection fields, the point cloud can be adjusted to reduce systematic offsets and
improve internal consistency. In contrast, the height control fields are excluded from this adjustment
process and are used as independent validation sites later on to assess the absolute vertical accuracy.
Once the point cloud was geometrically corrected, classification routines were executed to classify the
points with a standard point class defined by the ASPRS (The American Society for Photogrammetry
& Remote Sensing, 2019). Classification was done in two phases, where first an automated classifica-
tion was done with Terrasolid, after which a manual classification followed. This manual classification
was needed in places of steep terrain, along the coastline, around buildings, and in dense vegetation.
The classified data was then used to generate raster products: a DTM and DSM, both at 50 cm, and
resampled 5m resolution.

D.1.4. LiDAR Data Quality
Absolute Accuracy
Absolute Vertical Accuracy
As mentioned previously, the connection fields were incorporated into the block adjustment process.
Despite this adjustment, the average vertical deviation between the connection field measured heights
and the LiDAR-derived heights was -11 cm. However, the stochastic errors remained low, suggesting
that the dataset was internally precise. When comparing the data against the height control fields, the
average deviation was consistently low (-0.005m and +0.031m), which is below the maximum allowed
systematic vertical error of 5 cm. The standard deviations were measured as 0.021m and 0.024m,
which meet the project’s stochastic accuracy requirements. The systematic error of -11 cm from the
connection fields was therefore not adjusted.

Absolute Planimetric Accuracy
The original planimetric accuracy assessment aimed to compare the horizontal positions of distinct
features in the LiDAR intensity imagery, using recognizable features in their counterparts in orthophotos.
However, due to insufficient signal contrast in the intensity data, reliable feature matching was not
possible, even when increasing the intensity contrast. As a result, direct measurement could not be
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performed. Instead, visual comparisons were conducted by overlaying the datasets and inspecting
for systematic horizontal misalignments. This was done on high-contrast linear features such as the
crosswalk at the airport strip. No consistent offsets were observed, indicating that the planimetric
accuracy is acceptable within the constraints of the available data, though not precisely quantifiable.
The maximum allowed systematic planimetric error is 8 cm, and the stochastic accuracy requirements
for the horizontal component follow the same thresholds as those defined for vertical accuracy.

Relative Accuracy
Relative Vertical Accuracy
The relative vertical accuracy was assessed by analyzing elevation differences in overlapping flight
strips. The project specifications required that 70% of the height differences between overlapping
strips must be less than 3.5 cm, 95% less than 7 cm, and 99.5% less than 10 cm. The data showed
that 95.35% of the height differences were within 3.5 cm, 98.89% within 7 cm, and 99.54% within 10 cm,
thereby meeting the requirements. This was also done in flat areas, as in sloped terrain, even a small
horizontal misalignment between strips can cause large vertical discrepancies. In those cases, the
accuracy improved, with 96.32% of the data within 3.5 cm and 99.78% within 10 cm.

Planimetric Relative Accuracy
The planimetric relative accuracy was evaluated using roof ridge linematching, again processed through
terramatch. This was evaluated for both the planimetric and vertical components. The vertical compo-
nent is also measured separately with an additional method, therefore there exist two relative accuracy
assessments for the vertical component. For vertical relative accuracy, individual height deviations
must adhere to a distribution in which 70% of the deviations are less than 3.5 cm, 95% are less than
7 cm, and 99.5% are less than 10 cm. Additionally, the standard deviation of height differences per strip
overlap must not exceed √2 σz = 7.1 cm. Similarly, the planimetric relative accuracy must follow a dis-
tribution where 70% of the deviations are less than 5 cm, 95% are less than 10 cm, and 99.5% are less
than 16 cm. The standard deviation criterion for planimetric differences across strip overlaps is defined
in the same way as for vertical accuracy. The maximum standard deviations are below the maximum
allowed standard deviation, although not clearly reported, but are apparent from the standard deviation
histograms. However, a distribution table of the individual deviations that confirms compliance with
the required thresholds is not provided. A referenced .txt file is said to contain the relative planimetric
accuracy report, but it was not available at the time of review.

Point Density
The specification for the point density required at least 10 points per square meter in 99% of 1m x
1m cells, where only the last and/or only returns are considered. The acquired point density met the
requirements: 0.01% of cells have a point density of D < 6 pts/m², 0.65% fell within 6 ≤ D ≤ 10
pts/m², and 99.34% of cells exceeded the threshold of 10 pts/m². According to the report, cloud cover
in the southern region during acquisition led to a slight reduction in point density. This confirms that
the clouds, initially believed to be outside the FOV as noted in Table D.1, were in fact within the FOV.
However, it remained within acceptable limits.

D.2. Beeldmateriaal Nederland Passive Multispectral ORS
D.2.1. UltraCam Eagle 4.1 Digital Aerial Mapping System Overview
The UltraCam Eagle 4.1 digital aerial mapping system integrates both a panchromatic sensor (420–
690nm) and a multispectral CMOS sensor. Both sensors have a pixel size of 3.76µm. The system
offers three lens options with focal lengths of 90, 120, and 150mm, allowing a consistent GSD of,
for example, 5 cm to be achieved at different flight altitudes: specifically 1205, 1596, 1995m for the re-
spective focal lengths (see Equation C.3). The system also contains an adaptive motion compensation,
which corrects for multi-directional (ϕ, θ, κ) motion blur caused by the aircraft movement. The flight plan
includes a forward overlap (along flight line) of 80% and a side overlap of 60% (between flight lines).
This overlap is necessary for aerotriangulation, a method to georeference the imagery based on shared
features and GPCs. A total of 10 Ground Control Points (GCPs) were selected for the campaign.
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D.2.2. Passive Multispectral ORS Data Processing and Product Gener-
ation

Prior to acquisition, the camera underwent full laboratory calibration in August 2023, encompassing
geometric, radiometric, shutter, sensor, and electronics calibration. Following the acquisition, the raw
imagery was processed in UltraMap, the processing software developed by the manufacturer of the
imaging system. Firstly, aerotriangulation was performed. Aerotriangulation makes use of shared
features known as tie points across overlapping photographs. The tie points are automatically detected
and matched between images that cover the same terrain from slightly different angles. The shift of
these features between images can subsequently be used to compute the 3D coordinates of the tie
points. Aerotriangulation was done in two stages: a free network adjustment and a block adjustment.
A total of 651 aerial images were used for this process. In the free network adjustment, the images
are geometrically linked solely through their tie points, resulting in an image block that is internally
consistent. Next, the internal consistency was validated, and a full block adjustment was carried out
using the GCPs. A total of 651 aerial images were used for aerotriangulation. After this, a radiometric
correction was applied to ensure uniform brightness across the dataset. From the original set, 554
imageswere selected that did not have redundant or excessive overlap for the orthorectification process.
This was done using the DTM derived from the LiDAR dataset. The locations of the image acquisitions
are shown in Figure D.3.

Figure D.3: Locations of the 554 image acquisitions used to produce the orthorectified images colored by acquisition date.

D.2.3. Passive Multispectral ORS Data Quality
According to Beeldmateriaal Nederland, 2023, a quality report on the aerotriangulation and the or-
thorectification should be provided with the data, but at the time of this study, only the quality report on
the aerotriangulation (Het Waterschapshuis, 2024a) was provided. The aerotriangulation adjustment
yielded root mean square (RMS) residuals on GCPs of 1.7 cm, 2.4 cm, and 5.4 cm in the x, y, and z
direction, respectively. Relative geometric consistency was evaluated through tie point residuals. No
systematic distortions were observed, and stereo coverage was sufficient across the island. The block
adjustment demonstrated uniform accuracy across all strips, including the reflown areas. The report
also includes a checklist for quality control tied to the aerial imagery, although only indicated with a
checkmark, so no additional information is provided. The delivered imagery met the following criteria:
sufficient sharpness, cloud-free and cloudshadow-free (≤2% allowable shadow cover, not exceeded),
no compression artifacts or sensor noise, natural color balance across RGB composites, sufficient
contrast in both bright and dark regions, and band registration.





E
Saba's Local Coordinate
Reference System (CRS)

All spatial data for this study are referenced in the local DPnet coordinate system of Saba, maintained by
the Netherlands Partnership Geodetic Infrastructure (NSGI) (Lesparre, Ligt, and Huisman, 2025). DP-
net Saba is a local map projection based on the International 1924 (Hayford) ellipsoid and implemented
with a Transverse Mercator projection. The coordinates are expressed as eastings (x) and northings
(y), measured in meters (m). In this projection, the x-coordinate (easting) increases eastward, and the
y-coordinate (northing) increases northward. For the vertical reference on Saba, no geoid model is
used. Instead, the ellipsoidal height in DPnet is taken directly as the physical height in the Saba height
system.

When the data were published, an official EPSG code was not yet available for DPnet in QGIS or
ArcGIS. An EPSG code is a unique ID used to identify a specific coordinate system, whichmakes it easy
for mapping software to recognize and apply the correct projection automatically. Without an EPSG
code, the user must define the system manually by entering the projection parameters (like projection
type, ellipsoid, and units). Although documentation is provided to manually add the EPSG code for
the Caribbean Netherlands to the projection database of QGIS (GeodetischeInfrastructuur, 2024), this
method was not applied in practice due to compatibility issues with QGIS on macOS. Specifically, the
utility crssync, which is required to link the projection database to QGIS, is not included in the macOS
version of the application. As a workaround, the updated projection database and its associated files
were directly transferred from a Windows machine to the MacBook, thereby bypassing the need for
crssync.
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F
Cloud and Shadow Identification

in the Pleiades-Neo Data
The Pleiades-Neo dataset (see Subsection 3.2.3) is used in this study to calculate the NDVI (Equa-
tion 4.12). However, NDVI values from areas covered by clouds or shadows are not reliable and
should be excluded. A common way to detect these cloud- or shadow-affected pixels is to compare the
reflectance values from the dataset of interest with those from another dataset that is free of clouds and
shadows (Tarrio et al., 2020). Under clear skies, both datasets should produce very similar reflectance
values for the same surface, leading to an almost linear relationship when plotted against one another.
Clouds and shadows break this relationship: clouds reflect strongly in almost all optical wavelengths,
while shadows reflect very little, especially in the infrared. These deviating values can then be detected
and removed by applying a threshold.

F.1. Calculation in Practice
The reference dataset used to compare the reflectance values of the Pleiades-Neo data to is from
Sentinel-2 data (described in Subsection 3.2.4). In the RGB image, Sentinel-2 shows no clouds in the
region where Pleiades-Neo does, making it suitable for comparison.

Before comparison, both datasets were projected into Saba’s local CRS (Appendix E). To ensure
consistency in spatial resolution, the Pleiades-Neo data were resampled from 10 to 20m using bilinear
interpolation, matching the resolution of the Sentinel-2 bands used. To obtain reflectance values, the
DN from the Pleiades-Neo data are divided by 250, as they are stored in 8-bit format, while Sentinel-2
values were scaled by dividing by 10,000 (Hub, 2025).

Cloud detection was carried out using the visible bands (blue, green, and red), while shadow detection
was based on the NIR band. For each band, Pleiades-Neo reflectance values were plotted against
Sentinel-2 reflectance values. Under clear-sky conditions, points align closely along a linear relation-
ship. In the case of the blue band (illustrated in Figure F.1), this appears as a dense diagonal cluster.
The scatter plot is colored by density, with yellow indicating regions where a lot of points are located.
A distinct branch with higher reflectance values for the Pleiades-Neo data is visible, corresponding to
the clouds. To isolate the cloud pixels, a regression line was fitted using RANSAC algorithm via the
RANSACRegressor function in python, which iteratively samples subsets of the data to estimate a line
supported by the majority of points. RANSAC was chosen because it identifies a line supported by
the majority of data points, which correspond to clear-sky conditions, while ignoring outliers caused by
clouds. The fitted line, indicated in red, can be seen in the right figure of Figure F.1. Residuals (the
distance of each point from the fitted line) were then calculated. For clear-sky pixels, these residuals
are generally small and distributed around zero. Cloud pixels, however, yield larger positive residuals.
Therefore, to separate clouds from clear-sky pixels, a percentile-based threshold was applied to the
residual distribution. The 90th percentile of the residual distribution was chosen for this, and pixels with
residuals above the 90th percentile were classified as cloud-contaminated, which can be seen in gray
in the right figure of Figure F.1. This process was repeated for the green and red bands, and cloud
pixels identified across all three bands were combined.
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Shadow detection followed the same approach but applied to the NIR band. Since shadows strongly
reduce reflectance in this wavelength, pixels with residuals below the 10th percentile were classified as
shadow-contaminated. Initial results showed that some cloud classified pixels corresponded to roads or

Figure F.1: Visualization of cloud detection in the blue band of the Pleiades-Neo data, using Sentinel-2 as the reference. The
dense linear cluster shows clear-sky pixels, with a regression line fitted using the RANSAC method. Points that deviate

strongly from this line form a separate branch, which corresponds to cloud-contaminated pixels.

urban surfaces. These false positives stem from differences in sun angle and sensor viewing geometry,
which can produce variations in observed surface reflectance. In particular, roads often reflect more
strongly in certain directions depending on the conditions at the time of image acquisition, which can
mimic the high reflectance signature of clouds. To address this, these pixels were removed from the
cloud mask.

A buffer of a commonly used distance of 200m (Baetens, Desjardins, and Hagolle, 2019) was applied
around the detected cloud pixels to ensure that cloud edges and adjacency effects of clouds in their
vicinity were accounted for. The final set of identified cloud and shadow pixels can be seen in Figure F.2.

Figure F.2: The final set of identified cloud and shadow pixels in the Neo-Pleiades data of Saba with acquisition date
12-03-2024.



G
Beeldmateriaal Nederland

Passive Multispectral ORS Data
Properties

In Subsection C.2.4, it was mentioned that optimal illumination conditions occur around local solar
noon. For the December observation date in the passive multispectral ORS data from Beeldmateriaal
Nederland (described in Subsection 3.2.2), solar noon occurred at approximately 12:10 local time, and
for the two January dates, around 12:25 (Time and Date AS, 2025). The acquisition times suggest
that the imagery has been captured under suboptimal illumination conditions. While the choice behind
the acquisition timing is not explicitly stated, optimal illumination was likely compromised in favor of
cloud-free coverage, as this was one of the acquisition requirements.

The most noticeable consequence is the presence of shaded areas in the dataset, particularly in the
northern part of the island, as well as near the cliffs and ridges. The quality report states that the overall
contrast between light and dark areas is sufficient for its intended use. Since the imagery was originally
collected for cadastral purposes, the requirements focus on urban details such as curbstones, street
drains, and building extensions, which must be clearly visible. For this type of application, the reported
contrast is acceptable. However, if the imagery is to be used for land cover classification across the
island, the shadows become problematic. In multispectral imagery, shadows canmask surface features
and alter the apparent color of different land cover types. This can lead to confusion between classes
and reduce the accuracy of classification results (Zhu et al., 2024). Additionally, visual inspection

Figure G.1: Thin clouds and haze in the RGB aerial imagery of the Beeldmateriaal Nederland passive multispectral ORS data.

reveals the presence of thin clouds and haze (Figure G.1). Although the requirements state that all
imagery should be free of clouds, this likely applies primarily to urban areas, given the cadastral focus.
Nonetheless, clouds are visible above the Elfin forest and along the lower northern slopes of the island
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as seen in Figure G.1. For land cover classification purposes, these clouds should be considered, as
they interfere with surface reflectance in much the same way as shadows.



H
Variable Distributions in the DTM

Reliability Assessment
This appendix provides the PDFs of the 13 LiDAR-derived reliability variables shown in Table 4.1 that
were used in the assessment of the DTM reliability.

(a) Mean Intensity Iµ,all (b) Intensity std Iσ,all (c) Mean Ground Intensity Iµ,ground

(d) Ground Intensity std Iσ,ground (e) Total Point Density Dall (f) Ground Point Density Dground

(g) First returns classified as ground/all first
returns Rfirst

(h) Last returns classified as ground/all last
returns Rlast

(i) Ground-classified points/all returns
Rground

(j) Mean Height Above Local Minimum Hµ (k) Height Above Local Minimum std Hσ (l) Mean Path Length lµ

(m) Path Length std lσ

Figure H.1: PDFs of the LiDAR-derived reliability variables listed in Table 4.1.
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I
Scoring Functions R(x)

This appendix provides the ECDF F (x) (Equation 4.6 or Equation 4.7), the Logistic Function S(x)
(Equation 4.8), and the unweighted average of the two: the scoring functionR(x) for the LiDAR-derived
reliability variables that remained after dimensionality reduction.

Figure I.1: The ECDF F , logistic function S, and scoring
function R for the mean ground intensity Iµ,ground.

Figure I.2: The ECDF F , logistic function S, and scoring
function R for the ground intensity std Iσ,ground.

Figure I.3: The ECDF F , logistic function S, and scoring
function R for the total point density Dall.

Figure I.4: The ECDF F , logistic function S, and scoring
function R for the ground point density Dground.

Figure I.5: The ECDF F , logistic function S, and scoring
function R for the mean HALM Hµ.

Figure I.6: The ECDF F for the mean path length ℓµ which
was also used as R.
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J
GMM BIC scores

Components (3095,1710) (3560,1660) (3645,-260) (4685,290) (5385,1680) (5905,2745) (6295,1175) (6435,1135) (6625,1750)
1 7794.55 8369.06 -997.06 -821.52 5524.69 38.33 265.27 -856.52 -702.92
2 7365.03 8339.69 -2887.09 -3127.07 4321.08 -445.57 -1212.57 -3313.19 -1913.61
3 6385.10 8247.42 -3084.56 -3171.44 4145.19 -1653.96 -1387.58 -3371.30 -1932.61
4 6335.75 8251.86 -3080.19 -3173.08 4152.45 -1687.64 -1400.66 -3358.83 -1921.21
5 6345.82 8272.45 -3106.20 -3162.38 4111.14 -1668.50 -1422.29 -3349.35 -1909.36
6 6356.00 8215.18 -3091.67 -3150.51 4130.53 -1659.70 -1418.84 -3336.54 -1932.61

Table J.1: BIC scores for GMMs with 1–6 components across the selected pixels. The lowest score per pixel is highlighted.
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K
GMM Fit of Normalized Height

Distributions

Figure K.1: GMM fit for 3 components shown on the normalized height distributions of 9 representable pixels of the island.

Figure K.2: GMM fit for 3 components shown on the ECDF of the normalized height distributions of 9 representable pixels of
the island.
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L
Local Incidence Angle

L.1. Definition
The local incidence angle is defined as the angle at which the laser pulse hits the surface relative to the
surface normal. For ground-classified points, this angle indicates how obliquely the laser pulse struck
the terrain surface, so if the incidence angle is 0◦, the laser pulse hit the ground perpendicularly. When
scanning vegetated areas at a larger angle, the signal has to travel a larger distance, increasing the
chance that the signal dissipates before reaching the ground.

The following pixel-based variables can be derived from the local incidence angle:

• Mean local incidence angle θ0,µ: Represents the average incidence angle at which ground
points in a pixel were observed.

• Standard deviation of local incidence angle θ0,σ: Measures the variability of incidence angles
across ground points within a pixel. A low standard deviation implies consistent observation
geometry, while a high standard deviation suggests mixed viewing angles.

The local incidence angle θ0 is calculated as:

cos(θ0) = cos(θ)cos(α)− sin(α)sin(θ)cos(γ − β) (L.1)

Where θ is the scan angle: the angle between the point and the nadir of the plane. α is the angle of
the slope, and β is the aspect angle: the direction of the slope relative to the north. γ is the viewing
angle relative to the north. The viewing angle is not given in the data, but can be calculated using the
yaw angle ψ relative to the north from the plane rotation angles:

γ =

{
ψ + 90◦ if θ > 0

ψ − 90◦ if θ < 0
(L.2)

L.2. Calculation in Practice
scan angle: the original data is in .laz format and when this is loaded in python it decompresses it
differently, therefore the scan angles need to be multiplied by 0.006 when reading the data using laspy
(The American Society for Photogrammetry & Remote Sensing, 2019) To be able to calculate the local
incidence angle (Equation L.1), the slope α and aspect β are needed. Slope and aspect maps are
typically derived from a DTM, but in this analysis, the reliability is being assessed of the very DTM
these maps would normally be derived from, which introduces a somewhat circular problem. Using
the 50 cm resolution DTM directly is not feasible anyway, as it contains substantial data gaps and, of
course, even in areas with ground returns, we are specifically questioning whether those points truly
represent the terrain surface or if they might result from misclassified vegetation or other artefacts. To
overcome this, slope and aspect maps are derived from coarser resolution versions of the DTM. A
coarser DTM will represent the broader structure of the terrain while smoothing out the local noise.
However, reducing the resolution too much risks oversmoothing important terrain features.
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To select the most appropriate resolution for the slope and aspect map, a comparative analysis was
carried out using DTMs resampled to 10, 15, and 20m. The slope and aspect maps can be found in
??. To choose between these three resolutions, profiles of the DTMs were compared against the 50cm
DTM (Figure L.1). It can be seen that in terms of slope, the 20m DTM indeed smooths out some terrain
features, for example, the ridge in the first profile and the peak and dip in the first 20m of the second
profile. The 15m DTM seems to over and underestimate the slope at times, for example, between
20-60m in the second profile. The 10m DTM seems to capture the general terrain structure of the
50 cm DTM the best.

Figure L.1: Profiles of the DTM at 0.5, 10, 15, and 20m resolution in the south of the island at three different areas: a ridge,
bare rock, and vegetation (top to bottom). The red line in the imagery on the left indicates where the profile was drawn.

To be able to calculate the local incidence angle at 50 cm resolution, the 10m resolution slope and
aspect maps need to be resampled to match this resolution. For this resampling, the nearest-neighbor
resampling method was used. This method assigns each (50 cm) pixel the value of the nearest coarser
resolution (10m) pixel, thereby preserving the original values without introducing interpolated ones.

Additionally, the yaw angle ψ is also not directly given in the flight report. The flight report does include
the flight strips, and from these the flight lines were estimated by eye (Figure D.2) and knowing the
flight direction from the flight report, the yaw angles could be estimated for each line ID. Since flight
lines 1-7 are parallel, there are only three different yaw angles. The derived yaw angles can be found
along the flight summary in Table D.1.



M
Dimensionality Reduction of the

LiDAR Reliability Variables
The final DTM reliability score is influenced by the choice of which variables are included and which are
excluded in the dimensionality reduction process described in Subsection 4.2.3, and will slightly differ
depending on these choices. As mentioned in Subsection 4.2.3, the variable pairs with the highest and
moderate correlation were assessed, and one from each pair was eliminated to ensure the remaining
variables are independent of each other and each shows a unique aspect of DTM reliability. For the
high correlation pairs (indicated in red in Figure 5.14), the following considerations were made:

• The highest correlation pair of ρ2s = 0.98 is the mean and std of the path length lµ and lσ. This
means that 98% of the variation in the rank order of one variable is explained by the other, which
is strongly redundant. Since their correlation with other variables do not differ much between
these variables, lµ is kept because the mean path length is easier to interpret, as a low mean
path length gives a higher chance of sampling the ground than a long mean path length.

• The second highly correlated pair is the mean intensity of all points Iµ,all and the mean intensity of
ground points Iµ,ground with ρ2s = 0.84. Firstly, Iµ,ground has a lower correlation with other variables
compared to Iµ,all, and secondly, Iµ,ground is a more direct measure of the actual terrain itself.
Therefore, Iµ,all is discarded.

• The ratios (Rfirst, Rlast, and Rground) also show a high correlation with each other. Additionally,
these ratios also show a moderate correlation with the ground point densityDground. Considering
the ratios are all calculated with a version of Dground (see calculation in practice for the ratios in
Subsection 4.2.1), high correlation was to be expected. Because Dground directly represents the
number of ground-classified points in a pixel, it is the most informative variable for assessing
how well the DTM at that pixel can be estimated (as the elevation of the ground-classified points
determine the value of the DTM). Therefore, all ratios were discarded.

From the moderate correlation group (indicated in orange in Figure 5.14), the standard deviation of
the intensity Iσ,all has a moderate correlation with two variables (standard deviation of the ground
intensity Iσ,ground, and themean path length lµ). Following the same reasoning as for the intensity mean
described above, Iσ,all is discarded. One pair of moderate correlation remains, the HALM variables
Hµ and Hσ. Following the same reasoning as for the path length mean and standard deviation, Hσ

is discarded. The remaining variables reflect three aspects of the data: the acquisition conditions
(Dall, lµ), ground representation (Iµ,ground, Iσ,ground, Dground), and surface structure (Hµ).
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