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Abstract

Individualizing mechanical ventilation treatment regimes remains a challenge in the intensive care unit (ICU).
Reinforcement Learning (RL) offers the potential to improve patient outcomes and reduce mortality risk, by

optimizing ventilation treatment regimes.
We focus on the Offline RL setting, using Offline Policy Evaluation (OPE), specifically importance sampling (IS),

to evaluate policies learned from observational data. Using a running example, we illustrate how a large
difference between the learned policy and actual clinical behavior (behavior policy) limits the reliability of

IS-based OPE. To assess this reliability, we use the Effective Sample Size (ESS) as a diagnostic.
To achieve reliable evaluation, we apply policy shaping, by incorporating a divergence constraint in the policy
learning objective, aiming to reduce the difference between the evaluation and behavior policy. We consider both

a Kullback-Leibler (KL) divergence constraint and introduce a new constraint, the ESS divergence. Since
effective OPE relies on an accurate estimate of the true behavior policy, we address how such an estimate is

acquired. Various classifiers for estimating the behavior policy are systematically evaluated, focusing on both
discrimination and calibration performance.

Empirical results show the difficulty of learning policies that outperform existing clinical practices and
generalize well to unseen patients. Although policy shaping improves the reliability of policy evaluations, no
policies that consistently outperform clinician practice were found. The KL divergence constraint generalized

better to unseen patients than the ESS divergence, which achieved large ESS without actually reducing the
difference between the evaluation and behavior policy.

We underscore the necessity of a cautious approach to applying RL in healthcare, and advocate that assessing
OPE reliability and behavior policy calibration becomes standard practice, to ensure that only effective and

reliable RL policies are considered for real-world clinical trials.

1 Introduction

Individualized mechanical ventilation for patients
in the intensive care unit (ICU) continues to be a
challenging task[1]. Mechanical ventilation assists
patients suffering from respiratory failure or pul-
monary impairment with breathing. It helps sta-
bilize patient conditions and lets other treatments
and medications facilitate patient recovery. Current
treatment regimes focus on setting the appropriate
ventilator settings. Clinical research has led to estab-
lished evidence-based ventilation strategies[2], where
maintaining certain settings below specific thresholds
is key. Notably, driving pressures (∆P) are found to
be associated with mortality[3]. However, optimal
ventilator settings are often unknown for a specific
individual, while suboptimal settings can lead to
ventilator-induced lung injury (VILI)[4].

Mechanical ventilation is a continuous decision-
making process, where patient state is frequently
re-evaluated and ventilator settings are adjusted ac-
cordingly. There is a potential for the application of
Artifical Intelligence in optimizing mechanical ven-
tilation settings and improve patient outcomes. A
particular area of Artificial Intelligence, called Rein-

forcement Learning (RL), aims to find optimal proce-
dures for sequential decision-making[5].

RL can be categorized in two main approaches: on-
line and offline[6]. Online RL is characterized as an
iterative process, where a self-learning agent learns
optimal decision-making strategies by actively inter-
acting with its environment. In high-risk environ-
ments, such as healthcare, where direct interaction
with the environment is unethical and unfeasible, the
use of Offline RL is required, which involves opti-
mizing a policy, or dynamic treatment regime, by
learning from an observational dataset. The perfor-
mance of a learned policy is then estimated through
offline policy evaluation (OPE). A separate test set
is held apart that is used to answer a counterfactual
query: "What would patient outcomes have been
if the proposed RL policy was applied?". Careful
evaluation is necessary to safeguard against learning
harmful policies[7].

A central challenge in OPE is the distributional
shift: while the RL policy is learned under one distri-
bution, it is evaluated on a different distribution[6].
We focus our attention primarily on importance sam-
pling (IS) evaluation methods, a weighting-based cat-
egory of OPE. Using a running example, we demon-
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strate that when the proposed RL and observed poli-
cies disagree too much, the resulting policy value
estimate depends on a limited number of patient tra-
jectories, which undermines the reliability1 of OPE.
We highlight the need for using a diagnostic that is
related to the variance of the estimated policy value,
serving as a tool to assess the reliability of OPE. Since
OPE relies on an estimate of the unknown true behav-
ior policy, we investigate how to accurately estimate
the behavior policy. Then, we explore how using
this estimated behavior policy to shape the policy
optimization process allows for policies that can be
evaluated more reliably. We test the effectiveness of
an existing policy constraint and introduce a new
policy constraint, both aimed at improving the relia-
bility of OPE. Finally, we discuss limitations of our
approach and make recommendations for applying
RL in heatlthcare.

2 Running Example: Predicting
Optimal Ventilator Settings

To illustrate challenges associated with OPE, we use
a running example based on the problem of finding
individualized mechanical ventilation regimes. The
goal is to find an optimal policy, the one with the
lowest estimated mortality risk, recommending ven-
tilator settings tailored to the individual state of a
patient. The scenario is similar to previous work by
Peine et al. [8], which based their approach on work
by Komorowski et al. [9]. The scenario was later ex-
tended to continuous state space by Kondrup et al.
[10].

We use a cohort of mechanically ventilated patients
from the MIMIC-IV database[11]. The MIMIC-IV
database contains 7,281 mechanically ventilated pa-
tients that met the inclusion criteria: age at least 18
upon admission, documented 90-day mortality, and
mechanically ventilated for at least 24 hours. We use
a collection of 33 features, including demographics,
vital signs and lab values, to represent the patient
state. For each ICU stay, we collect a week of data
starting from the point of intubation, aggregated
into 8-hour intervals. If less than a week of data is
available, then data is collected up until the point of
extubation.

Each patient stay i is modelled as a trajectory
(s0, a0, r0, s1, ..., sTi , aTi , rTi ): a historical sequence of
states s, actions a, and rewards r, with varying
episode length Ti. At every timestep t the patient is
in a particular state st, which describes all relevant

1 Reliability: how much an estimator can be trusted. We regard
an estimator that is based on a higher number of samples to be
more reliable. OPE that is based on only a few trajectories is
considered unreliable.

covariates of the patient. An action at is chosen by the
attending clinician, after which the patient transitions
to a new state st+1, 8 hours later. The entire obser-
vational dataset D consists of N such trajectories:
D = {(si

0, ai
0, ri

0, si
1, ..., si

Ti
, ai

Ti
, ri

Ti
)}N

i=1, N = 7, 281.
The state space S consists of all possible states a

patient can be in. A patient’s state can either be rep-
resented as a single discrete value[8], or as a vector of
feature values[10]. For discrete state representation,
a clustering algorithm is used to map similar states
to k discrete states.

In this work, we initially consider a discrete state
representation in Chapter 3 to illustrate an issue in
OPE. Then, in Chapter 4 onwards, we transition to
a continuous state representation. This allows us
to use more flexible RL algorithms, enabling us to
incorporate constraints during policy optimization.

The action space A consists of a single ventilator
setting which is found to be associated with mortal-
ity: driving pressure (∆P). The driving pressure is
discretized into five discrete bins, such that a pol-
icy has five available actions at each decision point
throughout the episode. These action bins are de-
tailed in Appendix C.

A reward function R : S ×A 7→ R is chosen that
focuses on maximizing 90-day survival, in order to
optimize for the long-term mortality risk. At the end
of a patient trajectory, a positive reward (+100) is
given if the patient survived, and a negative reward
(-100) is given if the patient died. A discount factor γ
of 0.99 is chosen, such that early deaths are punished
nearly the same as late deaths.

The goal of RL is to find the best dy-
namic treatment regime; learn the optimal pol-
icy πe(a|s) : S ×A 7→ [0, 1], that maximizes the ex-
pected return Eπe [R]. The return of trajectory i is
the sum of cumulative discounted rewards Ri :=
∑Ti

t=0 γtri
t.

3 Offline Policy Evaluation

OPE involves comparing an evaluation policy (πe)
with a behavior policy (πb), representing the clini-
cian’s decision-making process that generated the
observational dataset. In our running example, the
evaluation policy, or AI policy, is learned through
Reinforcement Learning. OPE enables the estimation
of the performance of the evaluation policy without
the need to execute the policy in a real-life setting.

In general, the value of a policy is defined as its
expected return Eπe [R]. If we could execute the eval-
uation policy online, in either a simulated or real-life
setting, then we could estimate the policy value by
averaging over all rewards observed while executing
the policy. This is known as the Monte Carlo (MC)
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estimator for the policy value:

VMC :=
1
N

N

∑
i=1

Ri. (1)

In this work, we consider importance sampling
(IS) methods for OPE, a technique used to estimate
the expected value of a distribution based on sam-
ples from another[12]. The return of each trajectory
is weighted according to its importance sampling
ratio: the relative probability of occurrence under
the evaluation and behavior policy. The per-step
importance ratio ρ

(i)
t at time t and cumulative im-

portance ratio ρ
(i)
1:T of trajectory i are defined as:

ρ
(i)
t :=

πe(ai
t|si

t)

πb(ai
t|si

t)
, (2) ρ

(i)
1:T :=

T

∏
t=1

ρ
(i)
t . (3)

The IS estimator for the policy value is a weighted
average of the returns of all trajectories in the eval-
uation set, where the weight of a trajectory is its
cumulative importance ratio:

VIS :=
1
N

N

∑
i=1

ρ
(i)
1:T Ri. (4)

In the running example, we use the weighted im-
portance sampling (WIS) estimator, which has lower
variance than the IS estimator, at the expense of intro-
ducing bias. The normalized importance sampling
weights wi and the overall WIS estimator are defined
in Eq. (5) and (6).

wi :=
ρ
(i)
1:T

∑N
j=1 ρ

(j)
1:T

(5) VWIS :=
N

∑
i=1

wiRi (6)

Intuitively, importance sampling can be thought
of as creating a pseudo-population of trajectories,
wherein each trajectory is replicated by a number of
times according to its importance sampling weight.
These weights enable the construction of the unbi-
ased IS estimator for the expected policy value under
the evaluation policy, based on samples obtained
from the behavior policy.

The bias of the WIS estimator arises from the nor-
malization term in the denominator in Eq. (5). The
act of normalizing the weights changes the overall
expectation of the WIS estimator. In practice, how-
ever, the WIS estimator usually has lower variance
and is therefore preferred[12].

3.1 Unreliable policy evaluation

We showcase, using the running example, a scenario
in which the policy evaluation is dependent on only

a few trajectories, making it unreliable. We consider
the discrete state space setting, and randomly split
the dataset into two parts: 80% training data, and 20%
test data. For each random split, we build a model
by clustering data with k-means (k = 650), learn
an RL policy via Q-learning[13], derive a stochastic
evaluation policy with a softmax over estimated Q-
values, and use the WIS estimator for policy value
estimation on the train and test set. We repeat this
cycle 40 times to assess the variation across models.

Following Peine et al. [8] and Komorowski et al. [9],
we plot the evolution of the highest estimated policy
value (Figure 1) as more models are built, alongside
a boxplot of the estimated policy values on the test
set (Figure 2). While these Figures hint at potential
improvement over clinician practice, they give an
incomplete view of policy performance, since they
don’t address the uncertainty of policy evaluation
within a single model.

Figure 1: Policy evaluation across models. Evolution of the
highest estimated policy value on the train and test set versus the
behavior policy (clinician practice). For each model, an optimal
policy is learned through RL and then evaluated by the WIS
policy value estimator.

After building 20 models, it appears that we find
improvement over current clinician practice. We
might be inclined to choose the ’best’ policy (green
line, Figure 2), and conclude that we find improve-
ment over the behavior policy, as Peine et al. [8]
and Komorowski et al. [9] do. However, the large
variation in policy value estimate (σ = 53.1) is con-
cerning and requires investigation, as nearly half of
the models (47.5%) don’t show improvement over
the behavior policy (Figure 2). We advise against
relying solely on these two Figures, and recommend
exploring the cause of variation across models.
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Figure 2: Policy evaluation across models. Distribution
of the estimated policy value of the behavior policy, and the AI
policy on the test set. Estimated policy values for 40 models are
shown. Colored lines show two example policies.

To understand the variation across models, we ex-
amine the uncertainty of policy evaluation within
a single model. By applying bootstrapping[14] on
the test set, we gain insight into the variance of the
estimated policy value. For instance, consider a pol-
icy that showed no improvement over the behavior
policy (brown line, Figure 2). Bootstrapping in this
case shows a large variance in the estimated policy
value (Figure 3), indicating uncertainty in the policy
value estimate.

Figure 3: Histogram of estimated policy value on the test set
for 1000 bootstrap iterations. In each bootstrap iteration, a new
population of patient trajectories is sampled by bootstrapping
from the test set, and the WIS estimator is applied to compute
the estimated policy value. The dashed red line shows the 90%
lower bound (LB).

Bootstrapping, however, is not always sufficient.
Consider another policy, with a high estimated value
(Figure 4a). The distribution of policy value estimates
might look good, but the distribution of WIS weights
reveals that two trajectories, having WIS weight 0.46
and 0.25, generally account for 71% of the estimated
policy value. This indicates that the policy value
estimation mostly relies on these two trajectories.

To illustrate the impact of a few trajectories on the
estimated policy value, we remove the two influen-
tial trajectories (Figure 4b), and observe a shift in

the estimated performance of the evaluation policy.
This removal, introducing selection bias, causes an
increase in the variance and a decrease in the 90%
lower bound (LB) of the evaluation policy. Bootstrap-
ping in the test set without these trajectories would
have resulted in a much more pessimistic estimate
with a higher estimated variance. This scenario high-
lights that a policy value estimate based on only a
few influential trajectories cannot be considered reli-
able[15].

3.2 Policy mismatch

The limited number of influential trajectories is
caused by a large variance in the WIS weights. The
distribution of WIS weights (Figure 4a) is left-skewed:
only 24 out of 1457 trajectory weights surpass the
mean. This variance is explained by the mismatch
between the evaluation policy and behavior policy,
which agree on the best action for only 17% of the
states. This dissimilarity leads to an increase in the
variance in WIS weights, which grows exponentially
in the episode length - a problem known as the curse
of horizon[16]. The WIS estimator suffers from high
variance when the evaluation and behavior policy
differ significantly.

Remember that OPE tries to answer the question:
"What would patient outcomes have been if the pro-
posed RL policy would have been applied?". When
the evaluation policy frequently proposes actions that
differ from those taken by clinicians, then only a few
patients remain that were treated in accordance with
the proposed policy. Consequently, only those few
patients can be used to make an estimation of the
policy’s performance. In such cases, we cannot draw
reliable conclusions about the evaluation policy.

3.3 Effective Sample Size: a diagnostic

W can use a diagnostic known as the effective sample
size (ESS) to assess the reliability of the WIS estimator
[17, 18]. The ESS measures the relative efficiency
between IS estimator and the MC estimator for the
policy value:

ESS := N
varπe [VMC]

varπb [VIS]
. (7)

Intuitively, the ESS indicates how many samples
drawn from πe would provide the same information
as our N weighted samples from πb. Through several
assumptions and approximations[18], a practical ESS
approximation is proposed by Kong[17]:

ESS ≈ 1

∑N
i=1 w2

i
. (8)
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(a) Entire test set (b) Two most influential trajectories removed

Figure 4: Distribution of estimated policy values for a single model. The top figure shows a histogram of the estimated policy value on
the test set for 1000 bootstrap iterations. In every iteration, a new population of patient trajectories is sampled by bootstrapping from
the test set, and the WIS estimator is applied to compute the estimated policy value. The dashed red line shows the 90% lower bound
(LB). The bottom figure shows a boxplot of the associated WIS weights computed over the entire test set (n=1457)

Intuitively, an ESS value close to N means that all tra-
jectories are equally weighted to determine the policy
value, with individual weights uniformly distributed.
Conversely, an ESS close to 1 means a single trajec-
tory dominates the estimate, indicating high variance
in WIS weights. For illustrative examples of the ESS,
see Appendix A.

Figure 5: Effective sample size across models. Distribution
of the estimated effective sample size for the policy evaluation
of on the test set. This figure shows the estimated ESS for the
policy evaluation depicted in Figures 1 and 2, and serves as an
informative addition regarding the policy evaluation reliability.
The green line shows the ESS for the policy that yielded the
highest estimated value in Figure.2.

In our running example, the policy evaluation has a
small ESS (Figure 5), indicating that the estimation of
policy values relies on a handful of trajectories. The
variation across models can be attributed to multiple
factors, such as the random train/test split, conver-
gence to local optima, etc. However, we find it most
likely that the low ESS is the primary contributor to
this variation.

In this case, our OPE becomes unreliable. We can-
not draw meaningful conclusions about any of the
policies we learned. Selecting the ’best’ policy, the
green line in Figure 2, without accounting for evalua-
tion uncertainty, risks overestimating its performance.
Choosing this policy gives no guarantees regarding
prospective performance, and we must consider the

evaluation of the policy as unreliable instead.
To improve the reliability of the policy evaluation

of learned policies, a larger ESS is preferred. This
requires reducing the difference between the evalu-
ation and behavior policy. In Chapter 5, we explore
how policy shaping can be applied to explicitly steer
the learned policy towards closer alignment with the
behavior policy. However, both for the WIS estimator,
and to be able to stay close to the behavior policy,
we need to accurately estimate what the behavior
policy looks like. We will address the estimation of
the behavior policy first, before delving into policy
shaping.

4 Behavior Policy Estimation

For effective OPE it is crucial to have a good estimate
of the behavior policy[7, 19]. The WIS estimator re-
quires an estimate of the behavior policy πb(a|s): the
probability that a clinician selects a particular venti-
lator setting a when the patient is in a specific state s.
The true behavior policy is unknown, so it is required
to estimate the behavior policy using our dataset. The
behavior policy πb is estimated through supervised
learning. A classifier C : S 7→ A is trained to predict
what discrete action a is chosen based on the patient
state s. After fitting a classifier to the training data,
an estimate of the behavior probabilities πb(a|s) can
be obtained from the classifier.

In order to assess how ’good’ the estimate of a be-
havior policy is, two different properties of a classifier
are of interest: discrimination and calibration. Dis-
crimination refers to how well the classifier is able to
distinguish between different classes. A classifier that
has good discrimination will correctly assign higher
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probabilities to instances of the target class and lower
probabilities to instances of the other classes. Cali-
bration refers to how well the predicted probabilities
match the observed probabilities in the dataset.

4.1 Methods

We evaluate discrimination in terms of accuracy, and
evaluate calibration following the hierarchy as pro-
posed by Van Calster et al. [20, 21]: four increasingly
strict levels, referred to as mean, weak, moderate, and
strong calibration. Moderate calibration is the level
we are most interested in, as it ensures that probabil-
ities are well calibrated across the entire probability
range. We use calibration curves as a tool for assess-
ing moderate calibration, by comparing the calibra-
tion curve with the ideal calibration curve, which is
characterized by an exact correspondence between
the predicted probability of a class and the observed
proportion of the class. Additionally, we also use
other metrics such as proper scoring rules and the
calibration error[22] to quantitatively assess moder-
ate calibration, which are defined in Appendix B.

In this chapter, we transition to continuous state
representations to allow the classifiers to fully utilize
the data’s complexity. For the running example, we
evaluate the effectiveness of four increasingly flexible
classifiers as an estimator of the behavior policy: a
Logistic Regression (LR) model[23], XGBoost (XGB)
classifier[24], Random Forest (RF) classifier[25], and
a Multilayer Perceptron (MLP) classifier[26]. The
dataset is split into training, validation, and test set
20 times. Each classifier is trained on the training set,
while the validation set is used for hyperparameter
selection and early stopping.

The sequential nature of mechanical ventilation,
where decisions at time t depend on those at time
t − 1, is reflected in our dataset, where 53% of deci-
sion moments show no change in ventilator settings.
Recognizing this, we include the previous clinician
action as a feature, in contrast to the approaches of
Peine et al. [8] and Kondrup et al. [10]. We evaluate
the performance impact of including versus exclud-
ing the previous clinician action on the performance
of the behavior policy estimators, examining the ef-
fect of our decision to include this feature.

4.2 Results

Through visual inspection of the calibration curves
for the first action, shown in Figure 6, we observe that
the RF classifier deviates from the ideal calibration
curve the most, clearly performing worst. The MLP,
XGB, and LR models show similar performance, but
the MLP classifier has a larger variation between the
randomsplits of the dataset. Although the LR and

XGB classifiers are both close to the ideal calibration
curve, their manner of miscalibration is different. The
LR models shows overestimation in the range [0, 0.4]
and underestimation in the range [0.4, 1]. For the
XGB model we see a different trend: it shows under-
estimation in the range [0.2, 0.7] and overestimation
in the range [0.7, 1].

Figure 6: Calibration curves of different classifiers for behavior
policy estimation. Shown curves are for the first action. Shaded
areas show the 0.05 and 0.95 quantiles, estimated by randomly
splitting the dataset 20 times.

Figure 7: Calibration curves of different classifiers for behavior
policy estimation, when not including previous clinician action
in the patient state. Shown curves are for the first action. Shaded
areas show the 0.05 and 0.95 quantiles, estimated by randomly
splitting the dataset 20 times.
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Table 1: Performance of different classifiers for behavior policy estimation. Results were measured on the test set under 20 random
splits of the dataset, and show 95% CI. ECE and MCE use 10 equal width bins. For their definitions, see Eq. (26) and Eq. (27) in
Appendix B.

at−1 as feature Classifier Accuracy Log Loss Brier Score ECE MCE

Yes LR 0.611 ± 0.002 1.070 ± 0.005 0.1131 ± 0.0003 0.039 ± 0.001 0.19 ± 0.06
MLP 0.605 ± 0.003 1.039 ± 0.005 0.1113 ± 0.0005 0.017 ± 0.002 0.26 ± 0.19
RF 0.592 ± 0.002 1.109 ± 0.003 0.1181 ± 0.0003 0.051 ± 0.001 0.26 ± 0.10
XGB 0.612 ± 0.002 1.033 ± 0.004 0.1103 ± 0.0004 0.011 ± 0.001 0.22 ± 0.05

No LR 0.303 ± 0.003 1.509 ± 0.003 0.1528 ± 0.0002 0.010 ± 0.001 0.31 ± 0.07
MLP 0.289 ± 0.004 1.605 ± 0.009 0.1586 ± 0.0006 0.058 ± 0.002 0.32 ± 0.13
RF 0.299 ± 0.002 1.512 ± 0.003 0.1531 ± 0.0002 0.013 ± 0.001 0.33 ± 0.11
XGB 0.302 ± 0.003 1.508 ± 0.002 0.1529 ± 0.0002 0.013 ± 0.001 0.36 ± 0.04

Table 1 shows a quantitative evaluation of discrimi-
nation and calibration, aggregated for all five classes.
For the discriminative measure, accuracy, the differ-
ence between the classifiers is small. The moderate
calibration metrics, the expected calibration error
(ECE) and maximum calibration error (MCE), de-
pendent on a predetermined number of bins, have
optimal values for different classifiers, respectively
the XGB and LR classifier.

Excluding the previous clinician action from the
patient state features results in a significant drop
in performance in terms of discrimination and
calibration. The calibration curves exhibit a larger
spread and deviate from the ideal calibration curve
(Figure 7). Furthermore, on all quantitative metrics,
except for the ECE, the classifiers score worse (Table
1). In contrast to previous work, we will therefore
always include the previous action in the state space.

Choosing the best behavior policy estimator is not
trivial. So far, we looked only at the calibration
curves of the first action. However, given that the
first action is selected in only 9% of the decision in-
stances, we need to visually assess the calibration
curves for the other actions as well, which we show
in Appendix E. As the degree, as well as the direction
of miscalibration (e.g. underestimation vs overesti-
mation) for each classifier varies over the different
actions, it is hard to judge which classifier yields the
best overall calibration.

Therefore, to select a classifier, we chose a calibra-
tion metric that aggregates over all actions. For a
particular action, the MCE focuses on the single bin
with the largest discrepancy between predicted prob-
abilities and observed proportions. The ECE averages
the errors across all bins, mitigating the impact of a
single bin. We aim for the lowest error for any single
bin, prioritizing the MCE. Based upon this criterion,
the LR model emerges as the best behavior policy
estimator. In the next chapter, we examine how this

estimated behavior policy can shape the policy opti-
mization process in RL, with as objective to obtain
policies that are evaluated more reliably.

5 Policy Shaping

To decrease the variance in policy evaluation, one
approach is to reduce the difference between the
evaluation and behavior policy, which has been ac-
tively explored in recent offline RL literature[27]. The
goal is to obtain policies that allow for more reliable
evaluation, ensuring that a greater proportion of the
trajectories in the evaluation set contribute meaning-
fully to the determination of the policy value. Ac-
tively shaping the policy in the policy optimization
phase of RL may result in policies that are easier to
evaluate.

Policy shaping can be implemented in multiple
ways. In this work, we consider the direct policy con-
straint approach[27]. We use the typical actor-critic
framework, in which the actor, responsible for action
selection, defines the evaluation policy and is parame-
terized by a neural network πθ . The critic, helping to
stabilize the actor’s reward signal, is parameterized
by a neural network Qψ (Figure 8). Optimization of
the critic involves minimizing Bellman errors, simi-
larly to the process of Q-learning. The policy learning
objective for the actor network is defined as:

max
πθ

E(st ,at ,rt ,st+1)∼D[Ea′∼πθ(·|st)[Qψ(st, a′)]]. (9)

The direct policy constraint approach aims to re-
duce the distance between the evaluation policy and
the behavior policy. This is accomplished by intro-
ducing a divergence penalty into the policy learning
objective. Let D̂ denote an estimate of the divergence
between πθ and πb, and α a hyperparameter that
represents the weight of the policy constraint. The
constrained policy learning objective[28] is defined

7
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Figure 8: The actor-critic framework for offline RL. The
critic uses observed rewards to provide value estimates for states.
The actor uses these estimates from the critic instead of the raw
reward signal to improve stabilization during learning.

as:

max
πθ

E(st ,at ,rt ,st+1)∼D[Ea′∼πθ(·|st)[Qψ(st, a′)]−

α · D̂(πb(·|st), πθ(·|st))]. (10)

This objective focuses on achieving high expected
return, while staying close the behavior policy. The
trade-off between exploitation (i.e. high expected re-
turn) and divergence (i.e. the distance to the behavior
policy) is influenced by setting the hyperparameter
α.

5.1 Methods

In this work, we consider a Kullback-Leibler (KL) di-
vergence constraint and introduce a new constraint,
directly linked to the ESS. The KL divergence con-
straint (Eq. (11)) has been found to be effective at
regularizing the evaluation policy[29], and is applied
across the entire action space. This constraint forces
the evaluation policy to be closer to the behavior
policy, even for actions not chosen by clinicians.

D̂KL(πb||πθ) = ∑
a∈A

πb(a|·)(log πb(a|·)− log πθ(·|a))

(11)
While a minimum KL divergence of 0 implies iden-

tical policies, resulting in an estimated ESS equal to
N, a lower KL divergence doesn’t guarantee a larger
ESS. This is because importance sampling weights
only consider actions chosen by clinicians. Lower KL
divergence may result from aligning the evaluation
and behavior policy for state-action pairs not present
in the dataset, which does not influence the estimated
ESS.

Therefore, we propose an alternative metric, the
’ESS divergence’, that is directly related to the ESS
defined in Eq. (8). This metric focuses on directly

minimizing the variance in WIS weights, by con-
straining the policy only on the actions chosen by
clinicians. We define the ESS divergence as:

D̂ESS = 1 − ESS
N

(12)

When DESS reaches its minimum value 0, the ESS
equals N, indicating an uniform distribution of WIS
weights. Conversely, a maximum DESS value of 1
means the ESS is equal to 0, implying a high variance
in the WIS weights.

To assess the effectiveness of the evaluation pol-
icy relative to the behavior policy, we introduce the
concept of ’advantage’ as the difference between the
policy value estimate of the policy and the behav-
ior policy. An advantage above zero indicates that
the evaluation policy reduces the estimated mortality
risk in comparison to the clinician’s current practice.
An advantage below zero means that the evaluation
policy underperforms relative to behavior policy.

The final policy is obtained through a two-phase
process: an initial ’warm-up’ phase with 10k steps of
imitation learning, followed by 500k-step RL using
the constrained policy objective defined in Eq. (10).
In the imitation learning phase, only the divergence
constraint is applied, such that the evaluation policy
initially is a copy of the behavior policy. We compare
the effect of imposing the constraints for varying
values of α with a baseline in which no constraint
is applied. For the KL divergence constraint, we
test α ∈ {0.2, 0.5, 1, 2, 4}, and for the ESS divergence
constraint, we test α ∈ {0.1, 0.2, 0.5, 1, 2}. Other hy-
perparameters such as learning rates and architecture
are defined in Appendix D.

Results are gathered for 5 folds of the dataset into
train, and test set. For each value of α, 3 runs with
random initialization are done. In total, we learn and
evaluate 15 policies for each value of α.

5.2 Results - KL Divergence

The effect of applying the KL divergence constraint
during policy optimization, using varying levels of
α, is illustrated for both the train (Figure 12a) and
test set (Figure 12a). We start by analysing the ef-
fect of the KL divergence constraint on the estimated
ESS and advantage as measured on the train set. In
the unconstrained case (α = 0), the estimated ESS
(µ = 10) is approximately the same as we saw in
Chapter 3, suggesting that only a handful of trajecto-
ries contribute meaningfully to the estimated policy
value. As α increases, and the policy regularization is
stronger, there’s a notable increase in ESS, alongside
a tightening of the confidence intervals around the
advantage. Applying the policy constraint reduces
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(a) KL divergence constraint, policy evaluation on the train set (b) KL divergence constraint, policy evaluation on the test set

(c) ESS divergence constraint, policy evaluation on the train set (d) ESS divergence constraint, policy evaluation on the test set

Figure 9: The effect of applying the direct policy divergence constraint. For each part, the upper figure shows a boxplot of the estimated
advantage for different values of α. The bottom figure shows the average ESS for different values of α, with on the right y-axis the ESS
relative to the size of the set that was used. Results are gathered for 5 folds of the dataset into train, and test set. For each value of α, 3
runs with random initialization are done. In total, each boxplot consists of 15 evaluations of a policy.

the policy search space, which explains why increas-
ing α leads to a decrease in average advantage. An
exception to this trend is a minimal KL divergence
constraint (α = 0.2), which maintains an ESS (µ = 12)
comparable to the unconstrained case, while achiev-
ing a high advantage with a tight confidence bound.

On the test set, higher α values also lead to a larger
ESS, tightening the confidence intervals for the esti-
mated advantage (Figure 12a). However, the mean
estimated advantage on the test set does not change
as the value of α increases, which centers around
zero, and means no significant improvement over
current clinician practice is found. The application
of the KL divergence constraint results in a larger
ESS, and hence an improved reliability of the policy
evaluation. With our reliable policy evaluation, we
find that the learned policies do not outperform the
clinician practice.

5.3 Results - ESS Divergence

Figure 12c and Figure 12d illustrate the effect of ap-
plying the ESS divergence constraint during policy
optimization, for different values of α, measured on
the train set and test set, respectively. On the train

set, the ESS divergence proves effective at achieving
a large ESS, even for small α values. The estimated
advantage on the train set is similar to what we ob-
served for the KL divergence constraint, showing a
decrease in estimated advantage, and less variation,
as α increases.

On the test set, a different effect of the ESS con-
straint is observed. The growth in estimated ESS
with increasing α values is much slower, compared
to the training set. For instance, at α = 2, the evalua-
tion policy and behavior policy are so similar on the
train set that nearly all of its trajectories contribute
equally to the policy value estimation. In contrast,
the reliability of the policy evaluation on the test set
is equivalent to having a random sample of trajecto-
ries from the evaluation policy with only 10% of the
size of the test set.

This discrepancy suggests that achieving a large
ESS for policy evaluation of the train set does not en-
sure an equivalently large ESS for policy evaluation
on the test set. With the KL divergence constraint at
(α = 2) the difference in relative ESS — 0.6 on the
training set versus 0.4 on the test set — was consider-
ably smaller. Because of this, the confidence bounds

9



Reliable OPE for Mechanical Ventilation

around the estimated advantage on the test set do not
tighten as quickly for the ESS divergence constraint
as they do under the KL divergence constraint when
α grows larger.

5.4 Limitations of the ESS divergence

We now explain the limited generalizability of the
ESS divergence constraint. The objective of policy
shaping was to improve the ESS, by reducing the dif-
ference between the evaluation and behavior policies.

Table 2: Example episode from the train set. πe is obtained
under application of the ESS divergence constraint.

t at πb(at|st) πe(at|st) ρ
(i)
t ρ

(i)
1:t

1 4 0.71 0.04 0.05 0.05
2 3 0.25 0.38 1.52 0.08
3 3 0.48 0.44 0.92 0.07
4 3 0.49 0.93 1.91 0.14
5 3 0.49 0.94 1.91 0.26
6 3 0.49 0.91 1.85 0.48
7 3 0.50 0.88 1.77 0.86
8 3 0.49 0.99 2.01 1.73
9 3 0.49 0.93 1.92 3.31

Table 2 shows an illustrative example from the train
set, where the evaluation policy is obtained through
application of the ESS divergence constraint (α = 2).
This episode receives a low cumulative importance
sampling weight ρ

(i)
1:T of 3.3, despite large differences

between πe and πb at individual timesteps. The
ESS divergence constraint, in this case, inadvertently
forces the policy to exploit importance sampling ratio
calculations to achieve a large ESS, rather than reduc-
ing the difference between the evaluation policy and
the behavior policy.

Examination of all per-step importance sampling
ratios ρ

(i)
t on the train set reveals that for a policy

obtained under the KL divergence constraint (α = 4,
ESS = 3187) the ratios appear normally distributed
around 1.2 (Figure 10a), indicating that the behavior
policy and evaluation policy are similar. However,
the evaluation policy obtained under application of
the ESS divergence constraint (α = 2, ESS = 5520)
shows a distribution with a mode at 1.4, and a no-
ticeable left tail (Figure 10b). The left tail suggests
that the large ESS here is not a result from similar
evaluation and behavior policies.

While similar evaluation and behavior policies
guarantee a larger ESS, the opposite is not necessar-
ily true. The ESS divergence constraint meets our
objective of achieving a larger ESS on the train set.
However, it does not do so through the anticipated
means of aligning the evaluation policy more closely

with the behavior policy, and consequently this
constraint fails on the test set. This distinction
underscores a critical insight into the constraint’s
effectiveness and limited applicability in policy
shaping.

To conclude, we enhanced the reliability of OPE
through policy shaping, by applying a direct policy
constraint, focused on reducing the difference be-
tween the evaluation policy and behavior policy. As
the ESS increased, the variation in policy value esti-
mates decreased, boosting our confidence in the pol-
icy evaluation. The KL divergence constraint proved
more effective for achieving OPE reliability than the
ESS divergence. However, a distinction emerged be-
tween the train and test data. While the constraints
led to high advantage and improved ESS on the train
data, no policies were learned that consistently out-
performed the behavior policy on the test data.

6 Discussion

6.1 Principal Findings

A central challenge in OPE is the distributional shift.
For IS-based evaluation methods, we observe that
when the evaluation policy and behavior policy dif-
fer too much, a few patient trajectories dominate the
policy value estimation, undermining the reliability
of the policy value estimate. We use the ESS as a
diagnostic to assess this reliability. Applying (un-
constrained) tabular Q-learning, similar to Peine et
al., did not yield policies which could reliably be
evaluated.

Policy shaping, through the introduction of a di-
vergence constraint in the policy learning objective,
successfully increases the ESS. This mitigates the
problem of a few trajectories dominating the pol-
icy value estimation. However, with reliable policy
evaluation, we found no policies that consistently
outperformed clinician practice. The KL divergence
constraint generalized better to unseen patients than
the ESS divergence, which achieved large ESS in the
train set without actually reducing the difference
between the evaluation and behavior policy.

Accurately estimating the true behavior policy is
key to effective OPE. We selected the optimal esti-
mator for the behavior policy by comparing discrim-
ination and calibration performance. We chose the
MCE[22] as the decisive metric to compare the close
calibration performance, as it captures moderate cali-
bration performance in a single score. Including the
previous clinician action as a feature was significantly
beneficial for performance.
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(a) KL divergence constraint (α = 4, ESS=3187) (b) ESS divergence constraint (α = 2, ESS=5520)

Figure 10: Histogram of all individual importance sampling ratios ρ for an evaluation policy learned under a specific divergence
constraint. For every (st, at) pair in the train set, the ratio ρ = πe(a|s)/πb(a|s) is computed. These ratios are clipped at a maximum
value of 4, and then binned into 100 equal-width bins.

6.2 Connections to Related Work

Our findings challenge the conclusion of Peine et
al. [8] and Komorowski et al. [9], who advocate for
prospective clinical trials of the proposed RL poli-
cies. The lack of reported ESS in their work raises
concerns about the reliability of their policy evalua-
tions. As demonstrated by Gottesman et al. [7] and
reinforced by our work, the lack of uncertainty report-
ing can lead to overestimating policy performance.
Evaluating these policies in real-world clinical trials
potentially results in harmful clinical decisions.

To our knowledge, there exists no standardisation
for reporting uncertainty in OPE within healthcare,
and this needs to be addressed. For this purpose,
we propose examining WIS weights and using the
ESS as a reliability diagnostic. The ESS is a prac-
tical diagnostic due to its simple computation and
intuitive interpretation. In our running example, we
observed a correlation between larger ESS values and
reduced uncertainty in policy evaluation. Integrating
a standard practice for reporting OPE uncertainty
into the review process will help ensure the safety
and trustworthiness of new applications of RL in
healthcare.

We also build upon previous work emphasizing
the importance of a well-calibrated estimated behav-
ior policy for effective OPE[19]. Our study provides
a practical example of behavior policy assessment,
and its associated challenges. Any IS-based method
requires an estimate of the behavior policy, yet evalu-
ating the calibration of this estimate is not common
practice. We advocate to make it standard practice
in the field to evaluate the calibration in the moder-
ate sense, e.g. by visual inspection of the calibration
curve or by computing the ECE and MCE. As we
found it difficult to choose the best metric of moder-
ate calibration for multiple actions, further research

may be necessary to establish best practices for eval-
uating multiclass moderate calibration.

6.3 Limitations

Choices in data extraction and preprocessing (inclu-
sion criteria, sampling window, feature selection)
impact the observational dataset and consequently
affect the results. Changing the sampling frequency
or maximum episode length influences the severity of
the curse of horizon and observed variance in the WIS
weights. Additionally, data quality (noise, missing-
ness) was a limitation for some features. Our choice
to aggregate data into 8-hour windows reduces in-
formation density, and certain features (lab values)
accessible retrospectively might not be available in
a prospective evaluation setting. Discretization of
actions remove information about their ordinality,
which could be leveraged by policies based on con-
tinuous actions. However, this would require major
architectural changes. Despite these limitations, we
believe our findings on the limited reliablity of WIS
evaluation still hold when the behavior policy and
evaluation policy differ too much.

We did not individually tune hyperparameters for
each divergence constraint and α value separately.
Instead, we used a single hyperparameter set for all
experiments. More extensive hyperparameter tuning
could have led to finding better policies. For each α
value, we chose to do 5 runs with 3 random initiliza-
tions. After 15 runs, a visual inspection of the results
(Appendix F) suggested we had sufficient data to
observe trends. Additional runs with random initial-
ization could further validate the observed patterns
and increase confidence in our conclusions.

Our current RL problem formulation highlights
the difficulty of learning policies that both generalize
effectively to unseen patients and reliably outperform
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current clinician practice. Whether the task of find-
ing individualized mechanical ventilation regimes is
feasible with the current setup and dataset remains
an open question.

We use Kong’s ESS approximation (Eq. (8)) be-
cause of its simplicity and direct connection to the
variance of the WIS weights. A key feature is that
it depends only on the weights, and not on the re-
ward function, while the theoretical definition does.
Although a practical advantage, this makes the ap-
proximation not always accurate[18], such as in cases
where the variance in the observed rewards is very
small. In these cases, an ESS approximation that
incorporates the reward function is more suitable.
Nonetheless, given its nature as a diagnostic, it is still
useful to provide an estimate of the reliability of the
policy value estimates.

The direct policy constraint approach might limit
generalization through overly constraining the pol-
icy based on the behavior policy estimated on the
train set. Alternative approaches are worth exploring,
such as implicit policy constraints or value regular-
ization[22]. However, these methods do not explicitly
reduce the difference between the evaluation and the
behavior policy, and may fail to improve the ESS.

6.4 Future Directions

Optimizing directly for the ESS through the ’ESS
divergence’ does not give the desired result, as it
does not lead to closer alignment of the evaluation
and behavior policy. Perhaps the ESS is not the di-
agnostic for reliability we should consider, and we
should explore alternative metrics for OPE reliability.
While intuitive interpretation is challenging, the KL
divergence between evaluation and behavior policies
could be considered, as it directly quantifies the dif-
ference between the evaluation and behavior policy.
Additionally, alternative divergence metrics, focused
on reducing the difference in policies and the vari-
ance in weights simultaneously, are interesting to
explore.

Testing the direct policy constraint in a simulated
environment could validate whether policy evalua-
tions deemed reliable truly lead to policies that con-
sistently perform well in online evaluations. Such an
environment would also enable assessing whether
the direct policy constraint contributes to overfitting
on training data and poor generalizability.

Further investigation into the influence of behav-
ior policy miscalibration on the reliability of OPE is
needed. Additionally, further research could exam-
ine the effect of behavior policy miscalibration on
the effectiveness of direct policy constraints. This re-
search could further motivate the critical assessment
of behavior policy calibration as a standard practice

in OPE.
In this work, we only considered IS-based meth-

ods, and excluded model-based evaluation methods.
While bootstrapping can still be applied to model-
based evaluation methods[30], the ESS diagnostic is
specific to IS. Extending our work to other OPE meth-
ods would require reliability metrics for model-based
evaluation. However, intuitive explanations for such
metrics with model-based methods likely present a
challenge.

6.5 Conclusion

We highlight the importance of a careful approach
towards the application of RL in ICU settings, advo-
cating for a critical assessment of the reliability of
performed OPE. Future studies should be mindful to
incorporate diagnostic tools for uncertainty, such as
the ESS. They should refrain from drawing conclu-
sion based on policies with small ESS, and instead
consider the policy evaluation unreliable. Adopting
such measures can enhance confidence, ensuring that
only effective and reliable RL policies are considered
for real-world clinical trials, thereby minimizing the
risk of introducing ineffective or potentially harmful
interventions into clinical practice.

6.6 Data & Code Availability

All experiments are done using the MIMIC-IV
database[11], and the code used is openly available
at github.com/BasVolkers/MechanicalVentilationRL.
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Reliable OPE for Mechanical Ventilation

A Effective Sample Size

The effective sample size is a measure of relative efficiency between a Monte carlo estimator for the policy
value and an Importance sampling estimator for the policy value. We want to estimate the policy value for a
policy πe, while having only trajectories generated by a different policy πb.
Let h(xi) be a function that measures the return of a trajectory xi: h(xi) = ∑Ti

t=0 γtri
t. If we had trajectories

generated by the evaluation policy, as we do in the online RL setting, then we could compute the policy value
using a Monte Carlo (MC) estimate Î:

Î =
1
N

N

∑
i=1

h(xi) where xi ∼ πe (13)

Since we don’t have trajectories generated by πe, but instead have trajectories generated by πb, we have to use
an importance sampling (IS) estimate. Let wi be the normalized importance sampling weight of trajectory i as
defined in equation 5. The (W)IS estimate Ī for the policy value is then given by:

Ī =
N

∑
i=1

wih(xi) where xi ∼ πb (14)

The effective sample size is then defined as the ratio of the variances of the estimators[31]:

ESS = N
varπe [ Î]
varπb [ Ī]

(15)

Informally, the ESS represents the number of samples from πe required to obtain a Monte Carlo estimator Î
with the same efficiency as the IS estimator Ī. It measures how many samples drawn from πe are equivalent to
the N weighted samples drawn from πb.

With several assumptions and approximations, a pratical ESS approximation can be found (see also equation
8): ‘ESS =

1

∑N
i=1 w2

i
(16)

A derivation of this approximation and a list of all assumptions can be found in the work by Elvira et al.[18],
and the original introduction to the ESS in the work by Kong et al.[17].

A.1 Illustrative examples

Consider three cases that illustrate the estimator: a uniform distribution over all weights, a single weight
dominating all other weights, and a uniform distribution over a select number over weights.
When wi =

1
N for 1 ≤ i ≤ N, i.e. all weights are uniformly distributed, then the ESS is computed as:

ESS =
1

∑N
i=1 w2

i
=

1

∑N
i=1(

1
N )2

=
1

N 1
N2

=
1
1
N

= N (17)

When w1 = 1 and wi = 0 for 2 ≤ i ≤ N, i.e. a single weight dominates all other weights, then the ESS is
computed as:

ESS =
1

∑N
i=1 w2

i
=

1

∑1
i=1 12 + ∑N

i=2 02
=

1
1
= 1 (18)

When wi =
1

10 for 1 ≤ i ≤ 10 and wi = 0 for 11 ≤ i ≤ N, i.e. a uniform distribution over a select number over
weights, then the ESS is computed as:

ESS =
1

∑N
i=1 w2

i
=

1

∑10
i=1(

1
10 )

2 + ∑N
i=11 02

=
1

10 1
102 + 0

=
1
1

10
= 10 (19)

Note that the ESS does not depend on N. Having a dataset of N = 10 trajectories, all having weight wi = 0.1
results in the same ESS as having a dataset with N = 100 trajectories, of which 10 trajectories have weight
wi = 0.1 (1 ≤ i ≤ 10).
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A.2 Effective Sample Size as a Divergence Metric

The ESS divergence is defined as:

D̂ESS = 1 − ESS
N

(20)

If πb(a|s) = πe(|s) for (s, a) ∼ D, i.e. the behavior policy and evaluation policy are equal on the state action
pairs in the dataset, then all importance sampling weights are uniformly distributed, having weight wi =

1
N .

The ESS is then at its maximum value N (Eq. 17), and the ESS divergence at its minimum value D̂ESS = 0.
Conversely, if the behavior policy and evaluation policy are different and consequently a single importance

sampling weight dominates all other weights, then the ESS is at its minimum value of 1 (Eq. 18). The ESS
divergence is then at its maximum value D̂ESS = 1.
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B Behavior policy evaluation metrics

In this work we evaluate an estimated behavior policy on discrimination and calibration. For discrimination
we only evaluate the logloss. For calibration we evaluate the brier score, estimated calibration error (ECE), and
maximum calibration error (MCE).

B.1 Proper scoring rules

Both Brier score and logloss are proper scoring rules[22], meaning that optimal values are obtained when the
classifier predicts the true probabilities of class occurrence. We start by defining the logloss for the binary case.
For the binary case it is defined at the negative log-likelihood of a logistic model. For N data points with true
label yi ∈ {0, 1} and probability estimate pi = P(yi = 1), the log loss is:

Log Loss = − 1
N

N

∑
i=1

(yi log(pi) + (1 − yi) log(1 − pi)) (21)

It can be extended to the multiclass case with K classes by considering the true label yij = 1 if data i has class
j, and a probability estimate for class j: pij= P(yi = j). The log loss (or cross entropy loss) is then defined as:

Log Loss = − 1
N

N

∑
i=1

K

∑
j=1

yij log pij (22)

Using the same notation, we can easily define the brier score:

Brier score = − 1
N

N

∑
i=1

K

∑
j=1

(pij − yij)
2 (23)

B.2 Calibration error

The calibration error measures the discrepancy between binned predicted probabilities and true observed
proportions. We again start by defining the calibration error for the binary case, and then extend
it to the multiclass. The predicted probabilities are binned into m bins: Bm. For each bin we can
compute the average predicted probability s(Bm) = 1

|Bm | ∑i∈Bm pi and proportion of observed positives

y(Bm) = 1
|Bm | ∑i∈Bm yi. A perfectly calibrated classifier would have that for every bin, the average pre-

dicted probability and proportion of observed positives is equal. The calibration error is expressed in
terms of the gap between these. The binary estimated calibration error is computed as the average gap
across all bins, and the binary maximum calibration error is computed as the maximum gap across all bins:

ECEbinary =
M

∑
m=1

|Bm|
N

|y(Bm)− s(Bm)| (24) MCEbinary = max
m

|y(Bm)− s(Bm)| (25)

In the multiclass case, we take class j as the positive class and all other classes as the negative class. With
Bm,j as the m-th bin of class j we again compute the average predicted probability s(Bm,j) =

1
|Bm,j | ∑i∈Bm,j

pij

and proportion of observed positives y(Bm,j) =
1

|Bm,j | ∑i∈Bm,j
1[yi = j]. The classwise estimated calibration

error is defined as the mean of all class-j estimated calibration errors:

ECEclasswise =
1
K

K

∑
j=1

M

∑
m=1

|Bm,j|
N

|y(Bm,j)− s(Bm,j)| (26)

The classwise maximum calibration error can be defined in multiple ways. In this work we use the mean of
the class-j maximum calibration errors:

MCEclasswise =
1
K

K

∑
j=1

max
m

|y(Bm,j)− s(Bm,j)| (27)

The ECE and MCE represent the calibration error differently. For a particular class, the MCE focuses on the
single bin with the largest discrepancy between predicted probabilities and observed proportions. An outlier
in one bin can drastically influence the MCE value. The ECE averages the errors across all bins, mitigating the
impact of a single outlier bin.
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C Data Extraction & Preprocessing

The MIMIC-IV database contains a total of 61,532 ICU admissions, of which 7,281 met the inclusion criteria. A
’mechanical ventilation event’ is defined by the following criteria: the first presence of a set tidal volume starts
the event, and the event is continued until the ventilator is switched to a mode that is not of interest. Modes of
interest include all modes where a tidal volume has to be set and thus a driving pressure is available. If the
mode is switched back to a mode of interest within a timeframe of 2 hours, the mechanical ventilation event is
considered to continue.

The inclusion criteria were: patient age at least 18, documented 90-day mortality, documented vital signs,
documented driving pressure, and mechanical event of at least 24 hours. From each ICU stay, the first
mechanical ventilation event is selected. A week of data starting from the point of intubation is collected, and
sampled in 8-hour timesteps.

Data was extracted using Google Bigquery. A collection of 34 features, including demographics, vital signs,
lab values, and fluid balance, was selected, based on clinical relevance. If multiple values were present in the
8-hour time window, a time-weighted average was computed. Outliers were removed by considering clinically
impossible values.

Category Features
Demographics Age, gender, height, weight, bmi
Vital signs Heart rate, SpO2, temperature, diastolic blood pressure, systolic blood pres-

sure, mean arterial pressure, shock index, respiratory rate
Lab values PaO2, PaCO2, PF ratio, pH, base excess, lactace, carbon dioxide, SO2, glucose,

creatine, bilirubin, hemoglobin, hematocrit
Scores Charslon comorbidity index, GCS, SOFA, SIRS
Other First ICU stay, respiratory rate set on ventilator, cumulative fluid balance

since admission
Outcome 90-day mortality

Table 3: Patient features

To address problems with missing data, a mixed method of imputation was used. First, a (time-limited)
sample-and-hold / last-value-carried forward approach was used to impute the majority of missing values.
Then, a k-nearest-neighbours (KNN)[32] imputation method was used to interpolate for the remaining missing
data. Before applying KNN imputation, normally distributed data was standardized, log-normal data was
log-transformed before standardizing, and binary data was centred around zero. The distribution of each
feature was assessed visually with frequency histograms. KNN imputation was applied in blocks of 10,000
rows of patient data.

Bin 0 1 2 3 4
Driving Pressure ≤ 7.5 ≤ 10 ≤ 12.5 ≤ 15 > 15
Count 7070 18142 21145 17508 14529

Table 4: Distribution of the chosen action by clinicians. Total amount of decision time instances: 78394
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D Deep Reinforcement Learning Hyperparameters

actor learning rate 1e-4
critic learning rate 1e-4

batch size 32
number of critics 4

hidden layers [256, 256]
activation ReLU
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E Classifier calibration performance

(a) Action 2 (b) Action 3

(c) Action 4 (d) Action 5

Figure 11: Calibration curves of different classifiers for behavior policy estimation. Shown curves are for the actions not shown in the
main text. Shaded areas show the 0.05 and 0.95 quantiles, estimated by randomly splitting the dataset 20 times.
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F Policy shaping results

(a) KL divergence constraint, policy evaluation on the train set (b) KL divergence constraint, policy evaluation on the test set

(c) ESS divergence constraint, policy evaluation on the train set (d) ESS divergence constraint, policy evaluation on the test set

Figure 12: The effect of applying the direct policy divergence constraint. For each part, the upper figure shows the estimated advantage
for different values of α, and the five folds of the dataset. The bottom figure shows the average ESS each value of α and fold of the
dataset, with on the right y-axis the ESS relative to the size of the set that was used. For each value of α and fold, 3 runs with random
initialization are done.
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