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Chapter 1

Introduction

1.1 Overview

There is an excessive demand for the production of cleaner fuels with
high energy efficiency [1, 2]. In the past decades, toxic components such
as sulfur and aromatics were present in fuels. Aromatics are added to the
fuels to increase their octane/cetance number [3, 4]. A high concentration
of aromatics increases CO emissions [5]. Currently, many countries have
limited the concentration of aromatics in gasoline, in particular for benzene.
In the EU, for automotive gasoline, the concentration of benzene cannot
exceed 1% in volume [5, 6]. Increasing the concentrations of branched
hydrocarbons can increases the octane number of a fuel without causing
any additional environmental concerns [7, 8]. However, the processes for
selective production and separation of branched isomers are very complex
and challenging [9]. The environmental regulations have forced refineries to
explore different ways of increasing the octane number of fuels, making the
industrial production of hydrocarbon isomers more important than ever [1,
2].

Zeolite-based catalysts and separation are crucial for selective produc-
tion and separation of branched hydrocarbons [10, 11]. Zeolites contain a
network of pores that only allows the adsorption of molecules with sizes
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comparable to or smaller than the pore dimensions [12]. The remarkable
stability and accessibility of their pores from the outside have made zeolites
valuable for many industrial applications [12, 13]. Separation processes
based on adsorption are becoming increasingly popular [14–16]. This is
mainly due to the recent sharp growth in the number of potential adsor-
bents [17]. To date, more than 200 zeolites are successfully synthesized,
while the number of theoretical zeolites is virtually unlimited [18]. The
capacity, selectivity and energy consumption during the desorption process
are crucial for designing an efficient adsorption-based separation process
[19]. Adsorption isotherms and breakthrough curves are used to assess the
capacity and selectivity of an adsorption-based separation process [20, 21].
The modelling of the transient adsorption process is one of the most effi-
cient ways to study the adsorption capacity and selectivity of an adsorption
based separation at different operating conditions. During the past decades,
several models with various simplifications have been proposed to repro-
duce and predict experimental breakthrough curves for different systems
[22–26]. Most of these studies are using experimental adsorption isotherms
as an input to predict breakthrough curves. However, the experimental
measurement of breakthrough curves is faster and requires less experiments
compared to experimental measurement of adsorption isotherms. There-
fore, it would be more beneficial to use these models to predict adsorption
isotherms from breakthrough curves.

Thermodynamic properties such as the heat of adsorption and the en-
tropy of adsorption are also very important for the characterizing the per-
formance of adsorption-based separation processes [19, 25, 27]. The heating
demand of the process is determined by the heat of adsorption [19, 25,
28]. At high loadings, the entropies of adsorption of different adsorbates
determine the selectivity of the adsorption process [29–31]. To improve
the capacity and cost efficiency of the separation process, most industrial
process take place at high loadings. Therefore, comprehensive knowledge
concerning the heat and entropy of adsorption at high loadings is of great
industrial importance [32]. It is very challenging to measure the entropy
and heat of adsorption of a gas mixture experimentally. Recent advance-
ments in computing power have made molecular simulation a powerful tool
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for computing heats and entropies of adsorption of hydrocarbons [12, 33–
37]. There are several methods to compute the heat of adsorption with
molecular simulations (e.g. energy differences in canonical ensemble and en-
ergy/particle fluctuations in grand-canonical ensemble [33]). However, most
of these methods are inefficient for computation of the heat and entropy of
adsorption at high loadings [38]. Therefore, new simulation techniques are
needed for this purpose.

Selective production of branched hydrocarbons by zeolite-based catalysts
is even more challenging compared to the adsorption-based separation of
hydrocarbons (see Fig. 1.1). This process involves several steps such as
adsorption, diffusion, and chemical conversion of hydrocarbons within the
pores of zeolites [11, 39, 40]. Structural details of the pores can lead
to enhanced or reduced adsorption, formation, and diffusion of certain
reactants or reaction products. These effects are known as shape selectivity
[12, 41]. There are basically three forms of shape selectivity [12]: (1)
reactant shape selectivity: adsorption and/or diffusion of (some of the)
reactant molecules to the reaction sites is inhibited by the confinement
created by the zeolite pores; (2) transition state shape selectivity: formation
of some products is hindered by the shape of the zeolites pores simply
because these molecules are too large to fit inside the pore structure; (3)
product shape selectivity: diffusion limitations prohibit desorption of some
product molecules that are too bulky to diffuse sufficiently fast along the
channels of the zeolite. Understanding this process requires information
on the adsorption and desorption of reactants/products, diffusion of these
molecules to and from active sites, and the chemical conversion on the active
site [41, 42]. Due to the industrial importance of this process, many studies
focused on hydroconversion of linear alkanes by zeolite catalysts. These
include investigating the influence of the zeolite crystal size and activity [9,
43, 44], comparison of performance of different zeolite catalysts [10, 11, 45,
46], and the development of kinetic models [40, 47, 48]. These studies have
been very useful to qualitatively explain the product distributions based
on differences in pore geometry [10, 45]. However, a quantitative approach
explicitly including all steps (e.g. adsorption, diffusion and reaction) is
missing. As most of the steps take place within the zeolite, it is very
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Figure 1.1: Schematic representation of the zeolite-based hydroconversion process. This
process involves adsorption and diffusion of the reactant molecules to the reaction site,
formation of the reaction products at the reactions site, and diffusion and desorption of the
reaction product molecules.This figure is created with the iRASPA software [51].

difficult to perform experiments that can provide detailed information at
the atomistic level [12, 41]. Molecular simulation can be used to provide
information on the adsorption, transport, and reaction of hydrocarbons at
the molecular scale [12, 33–37]. Therefore, a more quantitative treatment
can be obtained by integrating experimental observations, process modelling
and molecular simulations.

Monte Carlo (MC) simulations in open ensembles (such as grand-canonical,
Gibbs, and the reaction ensemble) can be used to study the adsorption and
reaction of hydrocarbons within the zeolites [12, 35, 36, 49]. However, sim-
ulations in open ensembles critically rely on a sufficient number of molecule
exchanges. Unfortunately, the acceptance probabilities for these exchanges
can be close to zero when molecules are large or when the system is at
high loading, making the simulations useless [38, 50]. As the industrial
hydroconversion of hydrocarbons takes place at high loading, new advanced
simulation techniques are need to study the adsorption and reaction of
hydrocarbons at the industrial conditions.

In this thesis, molecular simulation is used to calculate thermodynamic
properties of systems in the adsorbed phase. There are two different classes
of molecular simulations: simulations based on classical and quantum me-
chanics. Simulations based on quantum mechanics are very accurate but
they are extremely computer intensive for typical system sizes required for
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simulations of zeolite adsorption. In classical simulations, the explicit treat-
ment of the electronic structures are neglected, therefore, these simulations
are computationally fast and suitable for studying large systems. Monte
Carlo (MC) and Molecular Dynamics (MD) simulations are different cate-
gories of classical molecular simulations. In MD simulations, the average
properties of the system are computed by following the system in time and
averaging over time. In Monte Carlo simulations, properties are computed
as averages over different microstates. Moving from one microstate to an-
other is accepted or rejected according to an acceptance criteria. In this way,
the probability of visiting a mircostate is proportional to the Boltzmann
weights of that mircostate. MC simulations are widely used for studying
adsorption and phase equilibria [12, 35].

The goals of this thesis are: (1) to introduce methods and techniques
that can provide detailed information regarding relevant adsorption infor-
mation for the adsorption-based separation processes of hydrocarbons at
industrial conditions; (2) to integrate experimental observations, process
modelling and molecular simulations to improve our understanding of the
complex process of catalytic hydroconversion of hydrocarbons; (3) to in-
troduce advanced simulation techniques which are capable of providing
information on the adsorption and reaction of hydrocarbons at the molecu-
lar scale at the industrial conditions. In this thesis, a mathematical model
to reduce the number of adsorption experiments is introduced. A reliable
simulation technique to compute the heat of adsorption at any loading is
developed. Combining our experimental findings with insights obtained
from simulations at the molecular level, the crucial steps in zeolite shape
selectivity are identified. New advanced simulation techniques to study the
phase equilibria, adsorption, and reactions of dense systems (e.g. hydrocar-
bons inside zeolites at high loadings) are introduced. These methods can
be used to facilitate future simulation research on this topic.
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1.2 Outline

As shown in Fig. 1.2, zeolite-based separation process are the subject
of chapters 2 and 3 of this thesis. Adsorption isotherms and breakthrough
curves are essential in design of an efficient adsorption process. In chapter 2,
a method is introduced to obtain the complete pure component adsorption
isotherms for all the components in the system with limited a number of
breakthrough experiments. Obtaining an experimental adsorption isotherm
is, in general, more time consuming (and involves more experiments) com-
pared to obtaining a breakthrough curve for the same system. In this way,
one can reduce the number of adsorption experiments. In this chapter, a
mathematical model is used for estimating adsorption isotherms from break-
through curves. As a case study, the adsorption of a equimolar mixture
of CO2/CH4 in ITQ-29 is investigated. The effects of mass transfer and
gas phase dispersion on the shape of breakthrough curves are studied. The
Henry coefficients and the complete adsorption isotherm obtained from our
approach are in excellent agreement with those measured experimentally
from equilibrium adsorption experiments.
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Introduction
Introductione
(Chapter 1)

Heat and Entropy
of Adsorption
(Chapter 3)

Breakthrough Curves and
Adsorption Isotherms

(Chapter 2)

Product Shape Selectivity
in the Catalytic Hydro-
conversion of Heptane

(Chapter 4)

Catalytic Hydrocon-
version of Heptane
Using Large Pore
Zeolite Catalysts

(Chapter 5)

CFCMC in the
Gibbs Ensemble
(Chapter 6)

CFCMC in the Re-
action Ensemble
(Chapter 7)

Conclusions

Figure 1.2: Schematic representation of the structure of this thesis. Chapters on the adsorption-
based separation of hydrocarbons are show in green. Chapters about the zeolite-based
catalytic hydroconversion hydrocarbons are shown in white. Chapters on advanced simulation
techniques for molecular simulation of adsorption as reaction of hydrocarbons are shown in
red.
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The heat of adsorption determines the energy demand of an adsorption-
based separation process. The entropy of adsorption can be considered as
a driving force for these processes [52]. The heat and entropy of adsorption
are functions of loading [30]. In chapter 3, molecular simulation is used to
study the adsorption of different heptane isomers in MFI- and MEL-type
zeolites. The performance of current methods in molecular simulation for
computing the heat and entropy of adsorption as a function of loading
is examined. It is shown that at high loadings, all conventional methods
fail to compute the heat or entropy of adsorption of bulky molecules in
the zeolites studied in chapter 3. As an alternative, the so-called ”Energy
Slope” method is introduced, which outperforms the present techniques
at high loadings. In this method, the heat and entropy of adsorption are
estimated from the slope of the line fitted to the variation of the total
internal energy of the system as a function of loading. The Energy Slope
method is validated by comparing the heats of adsorption computed with
this method for a butane/isobutane mixture and the ones computed based
on the energy/particle fluctuations in the grand-canonical ensemble.

The zeolite-based catalytic hydroconversion of linear hydrocarbons into
branched ones is studied in chapters 4 and 5. In these chapters, an in-
tegration of molecular simulations, process modelling, and experimental
observations are used to quantitatively study the shape selective behaviour
of zeolites. In chapter 4, the influence of product shape selectivity on the
bifunctional conversion of n-C7 by zeolite catalysts is studied. Experiments
were performed with three different zeolite catalysts with different pore sizes
(MFI-type (pore size≈ 4.7 Å), MEL-type (pore size≈ 5.2 Å), and BEA-type
(pore size≈ 6 Å) zeolites ) [53]. For all three zeolites, heptane is isomerized
to monobranched isomers which are further isomerized into dibranched iso-
mers, and these dibranched molecules are converted into cracking products.
The production of dibranched isomers as a function of the crystal size of
the MFI-type zeolite is analyzed. It is observed that larger crystals pro-
duce more cracking products and less dibranched isomers. The adsorption
isotherms and free energy barriers for diffusion of dibranched isomers in
MFI-type, MEL-type, and BEA-type zeolites are computed using molec-
ular simulation. By combining experimental and simulation results, it is
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shown that although transition state shape selectivity fails to explain the
distribution of dibranched molecules, product shape selectivity explains the
experimental observations in this respect.

To identify important factors other than product shape selectivity that
affect the distribution of products, systems where product shape selectivity
is not expected are considered in chapter 5. In this chapter, the reaction net-
work for the catalytic hydroconversion of heptane is identified, by analysing
a series of precise experiments. A complete mechanistic model considering
all components and reactions is described. Since only large pore zeolites
are considered in this chapter, it is assumed that there are no diffusion lim-
itations and the gas phase and the adsorbed phase are in equilibrium. The
Gibbs free energies of reactions in the adsorbed phase are computed using
the Gibbs free energies of formation of reactants and reaction products in
the gas phase and the mixed Langmuir adsorption isotherms. A large set of
experimental data from three large pore catalysts (FAU-type, MRE-type,
and BEA-type zeolites) is used to estimate the rates of different reactions
by fitting the model outputs to the experimental results. By comparing the
product distributions and reaction rates estimated for these three catalysts,
it is shown that in the absence of product shape selectivity, the product
distribution obtained from different catalysts are very similar. However,
various catalysts show different activity levels.

In chapters 6 and 7, advanced simulation techniques are introduced
that can significantly improve the performance of molecular simulations
at high loadings. This is can facilitate simulation of the zeolite-based cat-
alytic hydroconversion of hydrocarbons at the molecular scale. In general,
the grand-canonical ensemble, the Gibbs Ensemble (GE), and the reaction
ensemble [38] can be used for studying this process. In chapter 6, the se-
rial Continuous Fractional Component Monte Carlo [54, 55] method in the
Gibbs Ensemble (serial GE/CFC) is presented. In chapter 7, serial Rx/CFC,
a new formulation of the Reaction Ensemble Monte Carlo (RxMC) tech-
nique combined with the Continuous Fractional Component Monte Carlo
method is introduced. In serial GE/CFC, only a single fractional molecule
per component is used (compared to the previous formulation by Maginn
and co-workers [55]). This has the following advantages: (1) the chemi-
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cal potentials of all components are obtained directly, without using test
particles; (2) independent biasing is applied to each simulation box. This
significantly enhances the acceptance probability of the molecule exchanges;
(3) the maximum changes of the scaling parameter of intermolecular inter-
actions can be chosen differently for each component and each simulation
box. Therefore, the maximum change in the scaling parameter can be
much larger in the gas phase compared to the liquid phase, leading to
more efficient molecule exchanges. The key feature of serial Rx/CFC is
that chemical reactions always involve fractional molecules and fractional
molecules of either reactants or products are present in the system. The
advantages of serial Rx/CFC compared to other approaches include: (1)
direct calculation of chemical potentials of all reactants and products; (2)
significant increase in the efficiency of the algorithm by independent biasing
for the fractional molecules of reactants and products; (3) reduction of the
number of fractional molecules.



Chapter 2

Breakthrough Curves and
Adsorption Isotherms

This chapter is based on the following paper: Poursaeidesfahani, A; Andres-
Garcia, E.; de Lange, M. F.; Torres-Knoop, A.; Rigutto, M.; Nair, N.;
Kapteijn, F.; Gascon, J.; Dubbeldam, D.; Vlugt, T. J. H.; Prediction of ad-
sorption isotherms from breakthrough curves, Microporous and Mesoporous
Materials, 2019, 277, 237-244.

2.1 Introduction

Separation processes based on adsorption are becoming increasingly
popular [14–16]. This is mainly due to the recent sharp growth in the
number of potential adsorbents [17]. Traditionally, the best adsorbent for a
process is selected by conducting several experiments [56, 57]. During the
last decades, several models with various simplifications have been proposed
to reproduce and predict the experimental breakthrough curves for different
systems [20–26]. Breakthrough curves estimated by many of these models
are in good agreement with the experimental breakthrough curves [25, 26,
58]. However, the application of an efficient model for simulating transient
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adsorption processes is not limited to the prediction of the breakthrough
curves.

In this chapter, we use a mathematical model for estimating the adsorp-
tion isotherms from breakthrough curves and investigating the effects of
mass transfer and gas phase dispersion on the shape of breakthrough curves.
Obtaining an experimental adsorption isotherm is, in general, more time
consuming (and involves more experiments) compared to obtaining a break-
through curve for the same system. Consequently, it would be beneficial if
one can obtain both the breakthrough curve and the adsorption isotherm
only by performing breakthrough experiments. The idea of predicting ad-
sorption isotherms from experimentally measured breakthrough curves has
attracted many researchers for decades [59–63]. One of the mostly used
approaches to determine adoption isotherms from the breakthrough curves
is based on the classical equilibrium theory [62, 63]. Many excellent papers
have been published on the application of this theory [64–67]. This theory
neglects all the kinetic effects and just considers convection and equilib-
rium distribution between the phases which is defined by thermodynamics.
The nice feature of this approach is that, by the exclusion of kinetics, the
dynamic measurements (breakthrough curves) and thermodynamic predic-
tions (adsorption isotherms) are directly related [68, 69]. This is also the
main limitation of the approach which prohibits its application for the cases
with significant kinetic effects causing band broadening. If the breakthrough
curves are significantly eroded due to kinetic effects it is difficult to calculate
the retention times and estimate the intermediate plateau concentrations.
Moreover, one needs to perform several experiments to obtain the entire
adsorption isotherm. In this chapter, an approach is introduced to obtain
the complete pure adsorption isotherms for all the components in the system
with limited number of breakthrough experiments. Together with IAST it
can be used to compute the equilibrium loading for each component in the
mixture at any composition and condition. We used our approach to obtain
adsorption isotherms from significantly eroded breakthrough curves when
equilibrium theory is not applicable.

This chapter is organized as follows. Experimental details are provided
in section 2.2 In section 2.3, the mathematical model used for modeling
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the transient adsorption process and its main assumptions are summarized.
Estimation of adsorption isotherms from experimentally measured break-
through curves is described as an optimization problem. In section 2.4,
the effects of mass transfer resistance and dispersion in the gas phase on
the shape of breakthrough curves are investigated. The Henry coefficients
obtained from our approach, using experimentally measured breakthrough
curves at pressure of 2 bar, are compared with the experimental values. The
same procedure is applied to predict the complete adsorption isotherm from
breakthrough curves at higher pressures. Our findings are summarized in
section 2.5.

2.2 Experiments

2.2.1 Adsorbents

Pure-silica (Al-free) ITQ-29 is a hydrophobic 8MR zeolite, able to sieve
small organic molecules with a high precision, even in the presence of water
[70]. The complete absence of acidity allows separations even in the presence
of olefins. This is not possible with Al-containing zeolites due to oligomer-
ization and pore blocking [71]. This pure-silica zeolite, analysed with SEM
(Scanning Electron Microscopy), presents a homogeneous distribution of
cubic particles of 2.00 µm (see Fig. 2.1).

2.2.2 Measurement of pure component adsorption isotherms

The adsorbent (ITQ-29 powder) is weighed and outgassed overnight
under vacuum condition at 473 K. Gas adsorption is performed by the
volumetric method, using a high-pressure gas adsorption system BELSORP-
HP (BEL Japan, INC). The adsorption isotherms for CO2 and CH4 are
obtained by an equilibration time of 1200 s between different pressure steps.
All experiments are performed at 298 K.
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(a) (b)

Figure 2.1: SEM images of ITQ-29 zeolite used in this study.

2.2.3 Breakthrough experiments

Breakthrough experiments are carried out to study the performance of a
packed bed of ITQ-29 pellets for separating CO2/CH4 mixtures. 220 mg of
ITQ-29 self-sustained pelletized (pellet density 1016 kg m−3, particles size
between 500 and 720 µm, pelletizing pressure 5 ton cm−2) are placed inside
the column. To control the composition of the gas mixture, separate flow
controllers are used to adjust the flow rate of different components upstream
of the mixing section. In this mixing section, CO2 and CH4 with equal flow
rates of 5 ml min−1 are mixed with hydrogen. Hydrogen, with the flow
rate of 1 ml min−1, is used as a non-adsorbing tracer. The total pressure
of the gas mixture is controlled at the outlet of the adsorption column.
The pressure of the system is maintained at 2 bar. At these conditions,
the pressure drop across the column is negligible. An adsorption column
with an inner diameter of 0.4 cm and a length of 7 cm is placed inside an
oven to ensure isothermal condition throughout the experiment. Before
starting the experiments the column is filled with He at the pressure of the
experiment and 298 K. The temperature of the column is kept at 298 K
throughout the experiments. A Quadrupole Mass Spectrometer (QMS200-
PRISMATM with GSD 300 O/T, using Electron Ionization) is used to
analyse the composition of the gas mixture breaking through the column.
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At the column exit a flow of 100 ml min−1 He is added to avoid gas stand
still in case of adsorption of both components, and to allow calculation of
component flow rates exiting the column based on MS analysis [57]. More
details regarding the experimental setup can be found elsewhere [57, 72].

2.3 Mathematical model

Our mathematical model is mainly formed by the transient material
balance of the fluid phase and the adsorbed phase and the momentum
balance (Ergun equation) [73], neglecting heat transfer effects [74] (see
Fig. 2.2). The material balance of the fluid phase includes the spatial
(axial) and temporal variations of concentrations of all components in the
fluid phase. The adsorbed phase material balance describes the variations
in the loading of each component along the column. The fluid and adsorbed
phase material balances are coupled by the mass transfer between the two
phases.

The migration of adsorbate molecules from the gas phase into the ad-
sorbent and vice versa are described by Linear Driving Force model (LDF-
model) [75–77]. Sircar and Hufton compared LDF-model with the more
rigorous Fickian diffusion [78]. These authors showed that all details regard-
ing the intra-pore diffusion are lost, when modeling breakthrough curves
using Fickian diffusion. Therefore, the LDF-model is a sufficient and efficient
approximation for computing breakthrough curves [78]. The LDF-model is
formulated as follows:

∂q̄i,ads
∂t

= kL,i (qi,eq − q̄i,ads) (2.1)

Here, q̄i,ads is the average loading in the adsorbent as a function of time,
kL,i is the effective mass transfer coefficient of component i (s−1), and qi,eq
is the equilibrium loading of component i for given gas phase conditions.
By definition, when the adsorbed phase is in equilibrium with the gas phase,
there is no net mass transfer between the phases. The equilibrium loadings
(qi,eq) for components present in the mixture are computed using the Ideal
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Figure 2.2: Schematic representation of mathematical model used to simulate breakthrough
experiments. In this model, the reactor is divided into number of slices. For each slice, the
material balance of the fluid phase and the adsorbed phase are solved using finite difference
method.

Adsorption Solution Theory (IAST) [79–81]. IAST makes use of pure
component isotherms to estimate the equilibrium loading of each component
in a mixture. To facilitate the application of IAST, based on the shape of
the experimentally measured pure component isotherms, a functional form
(e.g. Langmuir, Langmuir-Freundlich [56]) is fitted to each pure component
isotherm data. In this way, it is trivial to obtain an analytical expression
for the spreading pressure of each component. Spreading pressures are then
used to compute the equilibrium loading of each component in the gas
mixture. Note that IAST fails to provide accurate estimation of equilibrium
loadings when there is a strong segregation in the preferable adsorption
sites for different components [82, 83]. This is not the case for the system
under study. For more information about IAST, readers are referred to
the original publications [79–81, 84]. Assuming ideal gas behaviour for the
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gas phase, the material balance for each component in the gas phase is
described by [77, 85]

1

RT

∂pi
∂t

= − 1

RT

∂ (upi)

∂z
+

1

RT
Di

∂2pi
∂z2

−
(
1− ε

ε

)
ρPkL,i(qi,eq−q̄i,ads) (2.2)

where pi is the partial pressure of component i in the gas phase, u is the
interstitial velocity of the gas phase, Di is the axial dispersion coefficient
for component i, and ε is the void fraction of the column packing. The first
term on the right hand side of Eq. 2.2 accounts for the effect of convective
mass transport. The second term on the right shows the effect of axial
dispersion on the overall mass balance of the gas phase and the last term
takes in to account the influence of mass transfer between the adsorbed
phase and the gas phase. Radial gradients are assumed absent. Velocity
profiles in packed beds due to radial packing gradients can be neglected
for sufficiently small particles compared to the column diameter. One can
rewrite Eq. 2.2 using dimensionless parameters:
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(2.4)

Here, L is the length of the column, uin is the interstitial velocity at the
inlet of the column, and Pe is the Péclet number. In literature, the Péclet
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number is commonly used to refer to the dimensionless dispersion coefficient
[86]. It is important to note that the characteristic length of particle and
not the length of the column is sometimes used in the definition of the
Péclet number. The pressure drop along the fixed bed follows from the
momentum balance and can be estimated using the Ergun equation [73]. It
is assumed that the pressure gradient (if any) is constant and not affected
by the adsorption process. As a result, the pressure varies linearly along
the length of the column and remains constant with time. Therefore, the
overall mass balance equation can be summarized as:

∂pt
∂τ

= 0,
∂pt
∂ζ

= constant (2.5)

1
RT

(
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∂ζ + v ∂pt
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= −
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[(
1−ε
ε

)
ρPk

′
L(qi,eq − q̄i,ads)− 1

RTPe
∂2pi
∂ζ2

]
(2.6)

In this equation, pt is the total pressure of the gas phase and N is the
number of components in the gas phase. Eq. 2.6 can be rearranged to
obtain an expression for the term ∂v

∂z

∂v
∂ζ = 1

pt

[
−RT

(
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[(
1−ε
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)
ρPk

′
L(qi,eq − q̄i,ads)− 1

RTPe
∂2pi
∂ζ2

])
− v ∂pt

∂ζ

]
(2.7)

The mathematical model consists of a system of Partial Differential Equa-
tions subject to following boundary and initial conditions:

Initial conditions:

pi(0, ζ) = 0

pHe(0, ζ) = pt(0, ζ)

q̄i,ads(0, ζ) = 0

(2.8)



2.3 Mathematical model 19

Boundary conditions:

v(τ, 0) = 1

pi(τ, 0) = pi,in

pt(τ, ζ) = pt(0, ζ)

∂pi
∂ζ

(τ, 0) = 0

(2.9)

The system of equations is discretized in time and space using finite differ-
ence approximations and solved step wise in time. Spatial partial derivatives
are approximated by second order upwind method. In each time step, a
system of 2N×n equations is solved, where N is the number of components
and n is the number of grid points in the axial directions. The numerical
method of lines with the implicit trapezoidal rule is used to perform inte-
gration in time [87]. The values for partial pressures and loadings of each
component in the next time step are first approximated using the first order
forward approximation. These values are used in an iterative scheme using
the implicit trapezoidal rule. Our model is implemented in MATLAB and
has been validated by comparing the simulation results with other exist-
ing breakthrough models developed independently by other groups [52, 88].
The code can handle the adsorption of multi-component mixtures as well
as pure gases with various functional forms for the adsorption isotherm. In
summary, the following assumptions are made: (1) the gas phase behaves as
an ideal gas; (2) the system is isothermal (this assumption is valid when the
heat of adsorption is not too high. If required the none isothermal case can
be modelled by including an energy balance); (3) radial variations in con-
centration are negligible compared to axial variations in the bed; (4) mass
transfer between the gas phase and the adsorbed phase can be described by
the effective LDF-model; (5) the adsorbed phase is homogeneous; (6) IAST
is applicable.
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2.3.1 Estimation of adsorption properties

It is assumed that the adsorption isotherms for CO2 and CH4 in zeolite
ITQ-29 are unknown. Instead, the experimental breakthrough curves for
the equimolar mixture of CO2 and CH4 passing through a fixed bed of
zeolite ITQ-29, at total pressures of 2-16 bar and temperature of 298 K,
are available. The mathematical model is used to estimate the adsorption
isotherms by fitting the theoretical breakthrough curves to the experimental
ones. The Mean Sum of Squared of Residuals (MSSR) is the natural
objective function for this optimization problem. The residual at each data
point is defined as the difference between the experimental and theoretical
concentration of component i. The objective function is

MSSR =

n∑
j=0

(Ci,j,out,model − Ci,j,out,exp)
2

n− nP
(2.10)

where n is the number of data points available from the breakthrough
experiment, nP is the number of estimated parameters, and Ci,j,out,model is
the concentration of component i at the outlet of the column predicted by
model. Input parameters for the mathematical model include specifications
of the adsorption column (length and inner diameter), density and amount
of adsorbent placed inside the adsorption column, gas phase composition
and flow rate, pressures at the inlet and outlet of the adsorption column,
mass transfer coefficient, and the Péclet number. The main output of
the mathematical model are absolute adsorption isotherms for each of the
components up to the pressure of the experiment.

Breakthrough curves are generated by collecting the last points of the
instantaneous spatial concentration profiles in the gas phase throughout
the experiment (or calculation). As the adsorbing gases proceed through
the column, the partial pressures at different points of the column change
differently from zero to partial pressures at the inlet and even higher (for
the less adsorbing component when it is displaced by a more adsorbing
component). Therefore, during the breakthrough experiment each point of
the column experiences the whole pressure range of the adsorption isotherm
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from zero to the inlet partial pressure (or even higher). For the case of
mixture, the equilibrium loading of each component depends on the partial
pressures of all components. By fitting to the breakthrough curves and using
the adsorption isotherms as variables, information from the breakthrough
curves are extracted and used more efficiently and the adsorption isotherms
of all components can be estimated more accurately.

2.4 Results

2.4.1 Mass transfer coefficient and Péclet number

The estimation of the effective mass transfer coefficient and the Péclet
number requires detailed information regarding the properties of the system
and it is not always straightforward [89]. This information is not always
available and even if it is, experimental correlations and can only provide
an estimation of the effective mass transfer coefficient and the Péclet num-
ber. Therefore, it is advantageous to investigate the influence of these
parameters on the theoretical breakthrough curves and eventually the ad-
sorption isotherms fitted by the model. To investigate the effect of k′L and
Pe on the shape of the theoretical breakthrough curves, the theoretical
breakthrough curves corresponding to different mass transfer coefficients
and the Péclet numbers are compared in Fig. 2.3. In some studies, it is
assumed that the value of effective mass transfer coefficient is identical for
all components. This assumption does not necessarily hold for components
with very different sizes, specially when micropore diffusion is important.
Therefore, in this section, separate mass transfer coefficients but identical
Péclet numbers are considered for different components. In Fig. 2.3, t = 0 is
the breakthrough time of hydrogen (defined as the time at which hydrogen
partial pressure at the outlet of the column reaches 10% of its inlet partial
pressure). He content is excluded while calculating the mole fractions. In
both cases (Figs. 2.3a and 2.3b), increasing the mass transfer coefficient
results in steeper breakthrough curve, while delaying the breakthrough time.
Due to the increase in the mass transfer rate, larger mass transfer coeffi-
cients result in steeper concentration profile of the adsorbing gases along
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Figure 2.3: Theoretical breakthrough curves obtained for different sets of mass transfer
coefficient and Péclet number (a) Pe = ∞, k′

CO2 = 15 and k′
CH4 = 15 black, 7 red, 3 green

(b) Pe = ∞, k′
CH4 = 15 and k′

CO2 = 15 black, 7 red, 3 green (c) k′
CO2 = 15, k′

CH4 = 15
and Pe = 250 black, 500 red, ∞ green. An equimolar mixture of CO2 and CH4 is adsorbed
by ITQ-29 zeolite at 2 bar and 298 K. The experimentally measured Henry coefficients are
used in these breakthrough calculations (Kexp

H,CO2
= 1.2 [mol kg−1 bar−1], Kexp

H,CH4
= 0.3 [mol

kg−1 bar−1] ).
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the column. Therefore, the first traces of both gases are observed later for
cases where the mass transfer coefficient is higher, and the mole fractions
at the outlet of the column increase more rapidly compared to cases with a
lower mass transfer coefficient (see Fig. 2.3). Comparing Figs. 2.3a and 2.3b,
two important points are observed: (1) preferentially adsorbed component
has a more gradual (less steep) breakthrough curve even for the cases that
identical mass transfer coefficients are assumed for the two components; (2)
mass transfer coefficient of the component which is preferentially adsorbed
has a more pronounced influence on the shape of the breakthrough curves.
There are two parameters that can influence the steepness of breakthrough
curves: (1) the average velocity of the Mass Transfer Zone (MTZ) and (2)
the steepness of the concentration profile along the column. For the average
velocity of the Mass Transfer Zone VMTZ one can write

VMTZ ∝ Q̇i,in

a× qini,eq + b
(2.11)

where Q̇i,in is the volume flow rate of component i and qini,eq is the equilib-
rium loading of component i at the inlet conditions. a and b are constants
defined by the void fraction, density of the adsorbent and conditions of
the experiment. Higher values of VMTZ can be interpreted as shorter time
difference between the breakthrough time and the time that the concen-
tration at the outlet reaches its plateau. Therefore, higher values of VMTZ

leads to steeper breakthrough curve. For the limiting case when qini,eq = 0,
breakthrough curve will be the steepest. As the two components have iden-
tical flow rates and same inlet conditions (50-50 mixture), the component
with the higher value of qini,eq (higher Henry coefficient) is expected to have
the lower values of VMTZ and less steep breakthrough curve (Figs. 2.3a
and 2.3b). As qini,eq increases, the influence of the second parameter, the
steepness of the concentration profile, becomes more important. The steep-
ness of the concentration profile is reduced by decreasing the mass transfer
coefficient (Figs. 2.3a and 2.3b). It should be mentioned that unlike the
thermodynamic properties (e.g. adsorption isotherm) kinetic properties
(e.g. mass transfer coefficient) strongly depend on the crystal size and other
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physical properties of the adsorbent. Therefore, it is important to estimate
the kinetic parameters for each situation. Simulated breakthrough curves
for different values of Péclet number are shown in Fig. 2.3c. Increasing
the value of Péclet number (lowering the dispersion coefficient) shifts both
breakthrough curves to the left. That is mainly due to displacement of
t = 0 (the breakthrough time of hydrogen). Higher dispersion coefficient
makes the concentration profile less steep and more gradual. The concen-
tration gradient along the axis of the column is the driving force for the
axial dispersion. Consequently, axial dispersion smooths the breakthrough
curves and makes the changes in mole fraction (with respect to time and
space) more gradual. In general, a larger axial dispersion coefficient (lower
value for Pe) results in larger deviations from plug flow and more gradual
changes in concentrations. This can have a considerable effect on the break-
through time of none-adsorbing component. Therefore, for higher values
of dispersion coefficient, hydrogen reaches the outlet of the column faster
which shifts the t = 0 to the left and results in longer breakthrough times
for the adsorbing components. The analysis above is in agreement with
general theory on this topic [90–92]. Assuming that the film resistance and
macropore diffusion are the limiting steps for the mass transfer between the
two phases, the dimensionless effective mass transfer coefficient is roughly
estimated by (k′L ≈ [100 − 101]). Empirical correlations are used to esti-
mate the effective mass transfer coefficients (kL,i). It is assumed that the
molecular diffusivity (DM ) is of the order of magnitude 10−7 m2/s [93].

2.4.2 Estimation of Henry coefficients

Experiments are performed at total pressure of 2 bar. To compute the
theoretical breakthrough curves, the adsorption isotherms of pure compo-
nents are required only up to the pressure of 2 bar. At this pressure, the
loading is so low that it can be safely assumed that the enthalpy of ad-
sorption is independent of loading. In this region and for this system, the
loading is a linear function of external pressure and normally described by
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the Henry coefficient:

qi,eq = KH,ip (2.12)

where pi is the partial pressure of the component i and KH,i is the Henry
coefficient. The pure component adsorption isotherms are measured experi-
mentally and it has been confirmed that the loading is a linear function of
external pressure. It is important to note that experimental breakthrough
curves cannot provide any information regarding the pure components equi-
librium loadings at pressures larger than the pressure of the experiment.
By fitting the theoretical breakthrough curves to the experimental ones,
the adsorption isotherms can only be estimated up to the pressure of the
experiment. Since, in this region, the pure component equilibrium loadings
of both components (CO2 and CH4) are linear functions of pressure, the
Henry adsorption coefficients and mass transfer coefficients of the two com-
ponents are the parameters that are estimated by the model. To investigate
the importance of initial values, the optimization process is started with
several initial values for the dimensionless mass transfer coefficients of two
components within the range of (1-15) and Henry coefficients for CO2 in
range of (0.5-1.5 [mol kg−1 bar−1]) and for CH4 in range of (0.1-0.5 [mol
kg−1 bar−1]).

In total, 192 different optimization processes are performed. For each
optimization, the Henry coefficient and dimensionless mass transfer coeffi-
cient for both components (CH4 and CO2) are fitted to the experimental
breakthrough curves. In Fig. 2.4, the distribution of Henry coefficients
obtained for CO2 in different runs are shown. Different colors represent
different fixed values of Péclet number. As shown in Fig. 2.4, there is a clear
distinction between the results obtained for different fixed values of Péclet
number. For cases with the low Péclet number (high dispersion coefficient),
Henry coefficient of CO2 is underestimated. This under estimation reduces
by increasing the Péclet number. As discussed in the previous section, by
reducing the Péclet number the breakthrough time of hydrogen reduces
leading to the shift of breakthrough curves to the right. The objective
of the optimization algorithm is to minimize the deviation between the
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theoretical and experimentally measured breakthrough curves by varying
the values of mass transfer and Henry coefficients of the two components.
Therefore, in the optimization algorithm, the shift to the right due to the
under estimation of Péclet number is compensated by the underestimation
of the Henry coefficients which shifts the breakthrough curves to the left.
The highest value of Péclet number (no dispersion) leads to the most ac-
curate estimation of Henry coefficient of CO2. An other observation from
Fig. 2.4 is that for each Péclet number, as the value of objective function
reduces the estimated Henry coefficients are converging to a certain value.
One would expect the lowest absolute difference between the estimated
Henry coefficients and those measured experimentally to occur when the
global minimum is found. The data presented in Fig. 2.4 shows exactly
the expected shape. For the case with highest value of Péclet number, the
global minimum corresponds to the lowest absolute difference between the
estimated Henry coefficients and the experimental ones. Therefore, one can
conclude that Pe = ∞ is an appropriate value for the Péclet number of the
system under study. Independent of the value of the mass transfer coeffi-
cients, the Henry coefficients predicted by the model are close to the values
measured experimentally. This shows even without detailed information
regarding the characteristics of a system, one should be able to estimate
the Henry coefficients for all components with only rough estimations for
the mass transfer coefficients. However, the value of the objective function
(quality of the fit) is a function of the estimated mass transfer coefficient.
Therefore, better estimations of mass transfer coefficient will result in lower
values of objective function and as a consequence better agreement between
the theoretical and experimental breakthrough curves. The experimental
breakthrough curves and the fitted breakthrough curves for the lowest val-
ues of the objective functions are shown Fig. 2.5. The obtained Henry
coefficients are presented in Table 2.1.

2.4.3 Estimation of Langmuir isotherms

In this section, the capability of the proposed method for predicting ad-
sorption isotherms beyond the Henry region is investigated. For this purpose
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Figure 2.4: Distribution of the values of MSSR as a function of obtained Henry coefficients
for CO2 for different fixed values of Péclet number Pe = ∞ (blue), Pe = 500 (green) and
Pe = 250 (red). Fitted Henry coefficients are obtained by fitting the theoretical breakthrough
curves to the experimental breakthrough curves. An equimolar mixture of CO2 and CH4 is
adsorbed by ITQ-29 zeolite at 2 bar and 298 K.

experimental breakthrough curves at 11 and 16 bar are used. Experimental
conditions, except the pressure of the column, are identical to those of the
breakthrough experiments at 2 bar. The experimental adsorption isotherms
for CO2 and CH4 in ITQ-29 at 298 K are described very well by Lang-
muir functional forms. To facilitate the use of IAST, Langmuir adsorption
isotherms are assumed for pure CO2 and CH4. It should be notes that any
other functional forms (e.g. Freundlich or Langmuir-Freundlich) can also
be used depending on the system under study. The procedure for predicting
the Langmuir adsorption isotherms is similar to the procedure used for pre-
dicting the Henry coefficients. Therefore, in this case, the Henry coefficient,
the saturation loading corresponding to the adsorption of CO2 and CH4 in
ITQ-29, dimensionless mass transfer coefficients of the two components and
Péclet number are the possible variables for the fitting process. Assuming no
dispersion for high pressure case reduces the number of fitting parameters to
6: Henry coefficients, saturation loadings and dimensionless mass transfer
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Table 2.1: Henry coefficients, mass transfer coefficients and saturation loadings estimated by
the mathematical model for low (2 [bar]) and high (11, 16 [bar]) pressure cases (Kexp

H,CO2
=

1.2 [mol kg−1 bar−1], Kexp
H,CH4

= 0.3 [mol kg−1 bar−1], These values are calculated from
independent equilibrium adsorption experiments. )

Component Pressure [bar] k′L KH [mol kg−1 bar−1] qsat [mol kg−1]

CO2 2 4.35 +/- 0.004 1.16 +/- 0.01 -
CH4 2 1.47 +/- 0.064 0.36 +/- 0.01 -
CO2 11,16 6.3 +/- 0.36 1.50 +/- 0.13 6.56 +/- 0.01
CH4 11,16 2.6 +/- 0.15 0.48 +/- 0.08 3.20 +/- 0.004

coefficients of the two components. The experimental breakthrough curves
and the fitted breakthrough curves for the lowest values of the objective
functions MSSR=0.0021 are shown Figs. 2.6a and 2.6b. In Fig. 2.7, the
predicted adsorption isotherms corresponding to the lowest value of the
objective function among all different simulations are compared with the
experimentally measured adsorption isotherms for the adsorption of CO2

and CH4 in ITQ-29 at 298 K. The method is well capable of predicting the
whole adsorption isotherm for both CO2 and CH4 (MSSRCO2=0.16 and
MSSRCH4=0.023). As discussed in previous sections, accurate estimation
of mass transfer coefficients is not always straightforward. Therefore, it
is important to examine the influence of the mass transfer coefficients on
the breakthrough curves and corresponding estimated adsorption isotherms.
For the case of estimation of Langmuir adsorption isotherms, although
mass transfer coefficients are distributed in a wide range, they do not have
a noticeable influence on the estimated adsorption isotherms and their agree-
ment with the experimental ones. Therefore, it can be concluded that for
the proposed approach a rough estimation of mass transfer coefficients is
sufficient. It is not always known whether the conditions of the experiment
are within the Henry region or beyond that. Therefore, it is important to
investigate the possibility to verify the adequacy of the function form used
for the fitting process. In the interest of assessing that, instead of Langmuir
adsorption isotherm Henry adsorption isotherm is assumed for the fitting
of the theoretical breakthrough curves to the experimental ones at pres-
sures of 11 and 16 bar. It is realized that in this case, the lowest values of
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Figure 2.5: Experimental breakthrough data (symbols) and theoretical breakthrough curves
(lines) obtained for the optimized estimated parameter, Pe = ∞. An equimolar mixture of
CO2 (red) and CH4 (green) is adsorbed by ITQ-29 zeolite at 2 bar and 298 K.
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Figure 2.6: Experimental breakthrough data (symbols) and theoretical breakthrough curves
(lines) obtained for the optimized estimated parameter, Pe = ∞. An equimolar mixture of
CO2 (red) and CH4 (green) is adsorbed by ITQ-29 zeolite (a) at 11 bar (b) at 16 bar and
298 K.



30 Breakthrough Curves and Adsorption Isotherms

 Pressure/[bar]
0 10 20 30 40 50

 L
oa

di
ng

/[
kg

 m
ol

-1
]

0

2

4

6

Figure 2.7: Isotherms based the parameter values estimated from the breakthrough fitting
(lines) and experimental data from independently measured isotherms (symbols) adsorption
isotherms obtained for the adsorption of pure CO2 (red) and CH4 (green) by ITQ-29 zeolite
at 298 K. MSSRCO2=0.16 and MSSRCH4=0.023.

the objective functions (MSSR=0.023) is an order of magnitude greater
than the lowest values of the objective functions (MSSR=0.0021) for the
case where appropriate functional forms were used for the two components.
There are also noticeable differences between the fitted and experimental
breakthrough curves. These could indicate that the functional form used
for the adsorption isotherms is not appropriate.

2.5 Conclusions

In this chapter, we applied a mathematical model describing transient
adsorption processes to investigate the effect of the mass transfer rate and
dispersion in the gas phase on the shape of breakthrough curves. Higher
mass transfer rate between the gas phase and adsorbed phase results in
steeper breakthrough curves and longer breakthrough times, while higher
dispersion in the gas phase has the opposite effect. The application of an ap-
propriate model is not limited only to prediction of the breakthrough curves.
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We estimated the Henry coefficients and complete Langmuir adsorption
isotherm by minimizing the deviation between the theoretical breakthrough
curves (computed by model) and those measured experimentally. The ad-
sorption isotherms obtained from our approach are in excellent agreement
with the experimental values. Using our approach, one is capable of estimat-
ing the adsorption isotherms even without detailed knowledge regarding the
mass transfer characteristics of the system. Rough estimations of the mass
transfer and dispersion coefficients are sufficient to reproduce the absolute
adsorption isotherm from the breakthrough curves. Our approach has the
following advantages over the conventional method of extracting adsorption
data from breakthrough experiments by equilibrium theory: (1) integration
is always accompanied by a level of uncertainty which can result in devi-
ations between the calculated amount of adsorption and real adsorption.
This is eliminated in our approach by the direct use of breakthrough curves;
(2) the number of experiments which are required to estimate the adsorption
isotherms are significantly reduced in our approach. (3) in contrast to the
conventional equilibrium theory, our method is suitable for the cases with
significantly eroded breakthrough curves (significant kinetic effects). (4)
Our approach is applicable for mixture of gases and one can obtain the
single component adsorption isotherms from experiments performed for a
mixture of gases. This is a very important advantage since one can compute
the mixture adsorption isotherms at any composition from pure component
adsorption isotherms using IAST. Although computational algorithms used
in this work are readily extendible to multicomponent mixtures, accurate
measurement of multicomponent breakthrough curves might be more com-
plicated. Therefore, future studies are needed to assess the accuracy of the
proposed method for multicomponent mixtures.





Chapter 3

Heat and Entropy of
Adsorption Near Saturation
Conditions

This chapter is based on the following paper: Poursaeidesfahani, A.; Torres-
Knoop, A.; Rigutto, M.; Nair, A.; Dubbeldam , D.; Vlugt, T. J. H.; Com-
putation of the heat and entropy of adsorption in proximity of inflection
points, Journal of Physical Chemistry C, 2016, 120, 1727-1738.

3.1 Introduction

In the previous chapter, the adsorption isotherms and the importance
of kinetic effects were discussed. In this chapter, the thermodynamic prop-
erties of adsorbate molecules and their dependency on the loading, as well
as simulation methods to calculate these properties are studied in detail.
Thermodynamic properties such as the heat of adsorption and the entropy
of adsorption are crucial for the characterization of the performance of
adsorption based separation processes [19, 25, 27]. These properties are
sometimes held responsible for the shape selective behaviour of zeolites.
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The heat of adsorption determines the thermal energy released during the
adsorption step (exothermic) and the heating demand through the desorp-
tion step (endothermic) [19, 25, 28]. It is well known that the entropic
differences can influence the selectivity of the adsorption process and can
be used as the driving force for the separation of similar molecules [29–31].
Consequently, comprehensive knowledge concerning the heat and entropy
of adsorption is of great industrial importance. Zeolite 5A is used for the
industrial separation of linear and branched alkanes [94] and several other
zeolites are suggested by the literature for this task [94–97]. Zeolites usu-
ally provide different adsorption sites. As branched hydrocarbons are more
bulky than their linear isomers they are preferentially located at very spe-
cific adsorption sites [7, 49, 98, 99]. As the loading increases, the molecules
are eventually forced to fill the less favourable adsorption sites as well. The
thermodynamic properties of adsorbate molecules can be highly influenced
by the topology of the adsorption site [12, 100]. The difference between
the topologies of the less favorable adsorption sites and the sites that were
initially preferred by the branched molecules can cause significant changes
in the adsorption properties of hydrocarbons [30, 101].

Although there are several methods to compute the heat of adsorption
with Monte Carlo simulations (e.g. energy difference in canonical ensem-
ble and energy/particle fluctuations in grand-canonical ensemble [33]), a
systematic comparison of the different methods is missing. For instance,
a technique that is suitable for computation of the heat of adsorption at
low loadings might not be efficient or applicable for calculating the same
property near the inflection point. The main focus of this chapter is on the
calculation of the heat and entropy of adsorption at various loadings and
investigation of the important aspects of each method. Although this chap-
ter is focused on the adsorption of hydrocarbons by zeolites, the proposed
methods are by no means restricted to this case and can be applied to other
porous materials such as Metal Organic Frameworks.

This chapter is organized as follows. In section 3.2, the heat and entropy
of adsorption are defined and the relevant thermodynamic correlations for
calculating these properties are derived. In section 3.3, various methods
used in molecular simulations to compute the heat and entropy of adsorp-
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(a) (b)

Figure 3.1: (a) 2× 2× 2 unit cells of MEL-type zeolite with adsorbed 2,4-dimethylpentane at
400K (b) the same number of 2,4-dimethylpentane molecules as in Figure 2 (a) at 400K with
a volume equal to 2 × 2 × 2× unit cells of MEL-type, in the absence of zeolite (Reference
State 2).

tion for pure components and mixtures are reviewed. The advantages and
disadvantages of each method are discussed. The energy slope method is
introduced which outperforms the other approaches in the computation of
the heat and entropy of adsorption of large molecules near the inflection
point. The results of different methods for the system described in sec-
tion 3.4 are compared in section 3.5. In section 3.6, values for the heat of
adsorption of butane/isobutane mixture computed using the energy slope
method are presented. These result are compared with the ones computed
by the method based on the energy/particle fluctuations for the adsorption
of equimolar gas mixture of butane and isobutane at different pressures.
The main findings are summarized in section 3.7.
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3.2 Enthalpy and entropy of adsorption

During an adsorption process, molecules are removed from the reference
state and transported into the zeolite. It is important to have a clear
definition of the reference state. In this paper, the gas phase in chemical
equilibrium with the adsorbed phase is used as the reference state for the
calculation of the enthalpy and entropy of adsorption [102]. Moreover, the
gas phase is assumed to be ideal, only to simplify the equations. Not using
this assumption results in small but trivial changes in upcoming equations.
The heat of adsorption of component i is defined as the change in the total
enthalpy of the system as a molecule of component i is removed from the
gas phase (which is in equilibrium with the zeolite) and transported into the
zeolite at constant temperature. Here, the system includes the gas phase,
zeolite and the guest molecules. Therefore,

∆Hi,ads =

(
∂H

∂Ni

)
T,Nj ̸=i,z

−
(
∂H

∂Ni

)
T,Nj ̸=i,g

(3.1)

where H is the total enthalpy of the system, Ni and ∆Hi,ads are the number
of guest molecules and the heat of adsorption of component i. The subscripts
”z” and ”g” refer to the zeolite and the gas phase, respectively. In Eq. 5.1,
the heat of adsorption is divided into two contributions: the changes in the
enthalpy of the zeolite with guest molecules caused by the addition of a
single molecule, and the change in the enthalpy of the gas phase when a
molecule is removed from it. The enthalpy of adsorption can be written as
the sum of the change in the internal energy and the change in product of
the pressure and the volume of the system.

∆Hi,ads = ∆Ui,ads +∆(PV )ads (3.2)

∆Ui,ads is the total internal energy change of the system, due to adsorp-
tion of an additional molecule of component i. The term ∆(PV )ads in
Eq. 3.2 requires a closer look. The conditions under which the removal of
a molecule from the ideal gas phase and its addition to the zeolite take
place should be specified. Generally, the volume and the temperature of
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the zeolite are assumed to be constant during this process. For the gas
phase, usually the pressure and the temperature are kept constant. Similar
to the heat of adsorption, the ∆(PV )ads in Eq. 3.2 is expanded into an ideal
gas phase contribution and an adsorbed phase contribution. The ideal gas
phase contribution is computed utilizing the ideal gas law. The zeolite is
acknowledged as a solid structure with microscopic openings where pres-
sure is not defined and the volume of adsorbate is zero [103]. With this
assumption, the contribution of the adsorbed phase to the ∆(PV )ads term
of Eq. 3.2 would vanish and the enthalpy of adsorption of component i can
be computed from

∆Hi,ads = ∆Ui,ads − kBT (3.3)

Here, kB is the Boltzmann factor. The entropy of adsorption is defined in
a similar way, starting from the Gibbs free energy. The Gibbs free energy
of adsorption of component i is the change in the total Gibbs free energy
of the adsorption system when an additional molecule of component i is
transferred from the ideal gas phase inside the zeolite,

∆Gi,ads =

(
∂G

∂Ni

)
T,V,Nj ̸=i,z

−
(

∂G

∂Ni

)
T,P,Nj ̸=i,g

(3.4)

where G is the total Gibbs free energy of the system. The first term on the
right hand side of Eq. 3.4 is, by definition, equal to the chemical potential
of component i in the adsorbed phase and the second one is the chemical
potential of component i in the ideal gas phase. Chemical equilibrium
implies that the chemical potential of component i in the adsorbed phase is
equal to the one in the gas phase. Consequently, at equilibrium, the Gibbs
free energy of the adsorption system remains unchanged. Then, the entropy
of adsorption of component i is given by

∆Gi,ads = ∆Hi,ads − T∆Si,ads = 0 (3.5)
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∆Si,ads =
∆Hi,ads

T
(3.6)

In Eq. 3.6, the gas phase in equilibrium with the adsorbed phase (denoted
by Reference State 1) is used as the reference state for the calculation of
the entropy of adsorption [102]. However, sometimes a different reference
state is used: the gas phase with the temperature and number density equal
to the adsorbed phase (denoted by Reference State 2) [46, 104, 105]. In
this approach, the entropy of the adsorbate molecules inside the zeolite is
compared to the entropy of the adsorbate molecules in the absence of the
zeolite (Figs. 3.1a and 3.1b). In this case, the Helmholtz free energy is the
natural starting point for the computation of the entropy of adsorption.
The change in the total Helmholtz free energy of the system is given by

∆Ai,ads = ∆Ui,ads − T∆Si,ads (3.7)

∆Ai,ads is the total change in the Helmholtz free energy of the system,
subjected to adsorption of an additional molecule of component i. The value
of ∆Ai,ads in Eq. 3.7 is given by the difference in the chemical potential of
component i in the adsorbed phase and in the gas phase. Due to the choice of
the reference state, the chemical potentials are not identical. The chemical
potential can be expressed as the sum of the ideal gas part and the excess
part. The ideal gas part is defined by the number density. Since the number
densities of the Reference State 2 and the adsorbed phase are equal, the ideal
gas parts cancel each other out. Assuming ideal gas behaviour at Reference
State 2, the excess chemical potential of component i in the Reference
State 2 would be zero. Therefore, the total changes in the Helmholtz free
energy of the system can be estimated by the excess chemical potential of
component i in the adsorbed phase. The Widom’s test particle method is
conventionally used to compute the excess chemical potential in molecular
simulations. For chain molecules, conformation of a test chain is normally
generated using the Rosenbluth algorithm [106]. Considering Widom’s test
particle method with Rosenbluth algorithm, the excess chemical potential
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of component i in the adsorbed phase and, therefore, the total change in
the Helmholtz free energy of the system is given by [38]

∆Ai,ads = µi,ex,z = −kBT ln
⟨Wi,z⟩
⟨Wi,id⟩

(3.8)

where ⟨Wi,z⟩ is the average Rosenbluth factor of a test chain of component
i in the adsorbed phase and ⟨Wi,id⟩ is the average Rosenbluth factor of
an isolated chain of component i. µex,z is the excess chemical potential of
component i in the adsorbed phase.

Using Eqs. 3.7 and 3.8, considering the fact that the chemical potential
of the Reference State 1 (not Reference State 2) and the chemical potential
of the adsorbed phase are equal, the entropy of adsorption for component
i, using Reference State 2, can be computed from Eq. 3.9.

∆Si,ads =
∆Ui,ads

T
− kB ln

ρi,ref.1
ρi,ref.2

(3.9)

where ρi,ref.1 and ρi,ref.2 are the number densities of component i in the
Reference State 1 and Reference State 2. As reflected in Eqs. 3.3, 3.6 and 3.9,
choosing different reference states can lead to different expressions for the
entropy of adsorption. However, the difference between these expressions
is only caused by the entropy difference between the reference states (last
term on the right hand side of Eq. 3.9 and a term kBT ). Therefore, the
values computed by the two approaches can be compared after including
the entropy difference between the reference states.

The computational steps needed to compute the entropy of adsorption
and the enthalpy of adsorption are identical. Therefore, in the remainder of
this paper, to compare various computational methods, only the enthalpy
of adsorption is considered explicitly.

3.3 Computational methods

The partial derivative of the total internal energy of an ideal gas phase
with respect to the number of molecules of component i is independent
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from the pressure. This value is equal to the average internal energy of a
single isolated molecule of component i at the corresponding temperature
and needs to be calculated only once. As a result, the heat of adsorption is
given by

∆Hi,ads =

(
∂U

∂Ni

)
T,V,Nj ̸=i,z

− ⟨Ug,i⟩ − kBT (3.10)

In which ⟨Ug,i⟩ is the average internal energy of a single isolated molecule
of component i in the gas phase. There are various methods for computing
the change in the total internal energy of the zeolite and adsorbates upon
the adsorption of an additional molecule (the partial derivative in Eq. 3.10)
in molecular simulations. In this section, the most commonly used methods
are reviewed and their advantages and disadvantages are discussed. The
”Energy Slope” method is also introduced as an improved method to com-
pute the partial derivative in Eq. 3.10. The subscript ”z” is skipped for the
partial derivatives and they all apply to the zeolite phase.

1. Energy/Particle fluctuations in the grand-canonical (µV T ) ensemble:

The partial derivatives with respect to chemical potential can be
expressed as a function of averages in the grand-canonical ensemble
[107–110]. Consequently, for a single-component system, the partial
derivative in Eq. 3.10 is computed from

(
∂U

∂N

)
T,V,z

=

(
∂U
∂µ

)
T,V,z(

∂N
∂µ

)
T,V,z

=
⟨UN⟩µ − ⟨U⟩µ⟨N⟩µ
⟨N2⟩µ − ⟨N⟩µ⟨N⟩µ

(3.11)

where ⟨. . . ⟩µ presents an average in grand-canonical ensemble. The
heat of adsorption of a single-component system is therefore expressed
as [33, 110, 111]

∆Hads =
⟨UN⟩µ − ⟨U⟩µ⟨N⟩µ
⟨N2⟩µ − ⟨N⟩µ⟨N⟩µ

− ⟨Ug⟩ − kBT (3.12)
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The energy/particle fluctuations in the grand-canonical ensemble can
also be used to compute the heat/entropy of adsorption of gas mix-
tures. In this case, the partial derivative in Eq. 3.10 is given by [111]

(
∂U

∂Ni

)
T,V,Nj ̸=i,z

=

NC∑
k=1

(
∂U

∂µk

)
T,V,µj ̸=k

(
∂µk

∂Ni

)
T,V,Nj ̸=i

(3.13)

where NC is the number of components in the gas mixture. As the
partial derivative in Eq. 3.10 indicate, the change in the total internal
energy of the adsorbed phase should be calculated. This value should
be computed while only the loading of component i is changed and the
loadings of all other components are unchanged. The change in the
chemical potential of component i results in changes in the chemical
potentials of all other components and therefore, their loadings. Con-
sequently, as shown in Eq. 3.13, the chemical potentials of all other
components should change in such a way that their loadings remain
constant. To find the correct values for the last term on the right
hand side of Eq. 3.13, a system of linear algebraic equations should
be solved. For the most simple case of a binary mixture, the system
of equations can be written as [111]

I =


(
∂N1
∂µ1

)
T,V,µ2

(
∂N2
∂µ1

)
T,V,µ2(

∂N1
∂µ2

)
T,V,µ1

(
∂N2
∂µ2

)
T,V,µ1


(

∂µ1

∂N1

)
T,V,N2

(
∂µ1

∂N2

)
T,V,N1(

∂µ2

∂N1

)
T,V,N2

(
∂µ2

∂N2

)
T,V,N1

 (3.14)

Here, I is the identity matrix. As mentioned before, the partial
derivatives with respect to the chemical potential can be written as a
function of averages in the grand-canonical ensemble:(

∂U

∂µk

)
T,V,µj ̸=k

= ⟨UNk⟩µ − ⟨U⟩µ⟨Nk⟩µ(
∂Ni

∂µk

)
T,V,µj ̸=k

= ⟨NiNk⟩µ − ⟨Ni⟩µ⟨Nk⟩µ
(3.15)
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The main disadvantage of this method is that calculating the en-
ergy/particle fluctuations is computationally very expensive, requiring
many successive particle insertion/removal. The acceptance rate for
the complete insertion of branched molecules can be quite low, even
when advanced sampling methods, such as the Configurational-Bias
Monte Carlo (CBMC), are used. Generally, the fraction of accepted
trial moves decreases as the loading increases and near the inflec-
tion point, where all the suitable adsorption sites are already filled.
Therefore, significantly long simulations are needed to obtain accurate
statistics.

2. Energy difference of two simulations in the canonical ensemble:

The partial derivative in Eq. 3.10 can be estimated by(
∂U
∂Ni

)
T,V,Nj ̸=i,z

= ⟨U⟩N1,N2,...,(Ni+1),...,NC
− ⟨U⟩N1,N2,...,(Ni),...,NC

(3.16)

NT =

NC∑
k=1

Nk (3.17)

where ⟨U⟩N1,N2,...,(Ni),...,NC
denotes the average total internal energy

of the zeolite plus NT adsorbate molecules at constant temperature,
volume, and loading of allNC components. the last term is the average
total internal energy when the loadings of all the components are the
same as the former case, except for the component i. As a result,
the total number of adsorbed molecules in this case is NT + 1. The
canonical ensemble is the natural choice for calculating these averages.
The heat of adsorption can be computed by substituting Eq. 3.16 in
Eq. 3.10.

This method is mostly used to estimate the heat of adsorption at
zero-loading. Usually, rigid zeolite structures are used in simulations,
[112] therefore, the average internal energy of zeolite without any
guest molecule is zero. At zero-loading, only one simulation in NVT
ensemble is needed to compute the partial derivative in Eq. 3.10 [95,
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113, 114]. This approach is rarely utilized for the calculation of the
heat of adsorption at higher loadings. The reason behind is that as
the loading increases, the values of the two average internal energies
in Eq. 3.16 increase. At higher loadings, these values can become
significantly larger than their difference. Therefore, even a small
relative error in the calculation of average internal energies can cause
a noticeable relative error in the energy difference and eventually in
the calculated value for the heat of adsorption.

3. Widom’s test particle in the canonical ensemble:

In principle, the two averages on the right hand side of Eq. 3.16 can
be computed in a single simulation in the canonical ensemble. Using
Widom’s test particle method with Rosenbluth algorithm,
⟨U⟩N1,N2,...,(Ni+1),...,NC

is computed in the NVT simulation with NT

adsorbate molecules:

⟨U⟩N1,N2,...,(Ni+1),...,NC
=

⟨(U + ui
+)Wi⟩N1,N2,...,(Ni),...,NC

⟨Wi⟩N1,N2,...,(Ni),...,NC

(3.18)

ui
+ and Wi are the internal energy and the Rosenbluth factor of a test

chain of component i in the adsorbed phase. Substituting Eq. 3.18
into Eq. 3.16 leads to the following expression for the partial derivative
in Eq. 3.10(

∂U

∂Ni

)
T,V,Nj ̸=i,z

=
⟨(U + ui

+)Wi⟩N1,N2,...,(Ni),...,NC

⟨Wi⟩N1,N2,...,(Ni),...,NC

− ⟨U⟩N1,N2,...,(Ni),...,NC

(3.19)

In Eq. 3.19, the adsorbed phase contribution to the variation of the
total internal energy of the adsorption system is computed in a sin-
gle simulation. The same parameter is computed with two different
simulations using the energy differences in NVT ensemble.



44 Heat and Entropy of Adsorption

4. Energy slope method:

It is shown in the next section that by increasing the number of ad-
sorbed hydrocarbon chains, the enthalpy of adsorption of C7 isomers
in MFI- and MEL-type zeolites remains roughly constant. The sizable
variations in the enthalpy of adsorption only occur when the more ener-
getically favorable adsorption sites are filled and additional molecules
are located in the less energetically favourable adsorption site. This
observation has been used to develop the energy slope method for
computing the heat and entropy of adsorption. For the adsorption
of C7 isomers in MFI- and MEL-type zeolites, it is assumed that the
enthalpy of adsorption is not a function of the loading as long as the
hydrocarbon chains are adsorbed in the particular adsorption sites.
By increasing the loading, as soon as the most favorable adsorption
site is completely filled and the next molecule is forced to sit within
the less favorable adsorption site, the heat/entropy of adsorption sud-
denly changes to a new value. Considering the partial derivative in
Eq. 3.10, this assumption suggests that while the molecules are filling
a particular adsorption site, the total internal energy of the zeolite
plus the guest molecules should be a linear function of the loading.
In the energy slope method, the partial derivative in Eq. 3.10 is es-
timated by the slope of the line describing the variation of the total
internal energy of the zeolite plus the guest molecules as a function of
the loading. When the most favorable adsorption site is completely
filled (molecules are forced to fill the second favorable adsorption site),
the slope of this line is expected to suddenly change to a new value.
This new value corresponds to the zeolite contribution to the enthalpy
of adsorption associated with the second adsorption site. The fact
that the enthalpy of adsorption of C7 isomers in MFI- and MEL-type
zeolites is a piecewise constant function of loading is the main reason
for using a straight line to describe the changes in the total internal
energy of the zeolite as a function of loading. However, in general, any
analytical function that nicely fits to the total internal energy of the
zeolite as a function of loading can be used in the energy slope method.
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In summary, to compute the heat and entropy of adsorption using the
energy slope method the total internal energy of zeolite and adsorbed
molecules should be calculated as a function of loading. This can be
easily obtained by simulations in canonical ensemble. An analytical
function which accurately describes the variations in the total inter-
nal energy of zeolite and adsorbed molecules as a function of loading
should be fitted to the data. The partial derivative in Eq. 3.10 as a
function of loading is obtained by computing the derivative of fitted
analytical function with respect to the number of adsorbed molecules.

3.4 Simulation details

The adsorption of linear (heptane), mono-branched (2-methylhexane),
geminal di-branched (2,2-dimethylpentane), and non-geminal di-branched
(2,4-dimethylpentane) C7 isomers in MFI- and MEL-type zeolites is studied.
The RASPA software is used for the simulations [115, 116]. A cutoff radius of
12 Åis applied and no tail corrections are used. The simulation box is made
by 2×2×2 rigid unit cells with periodic boundary conditions to ensure that
the distance of two periodic images is at least twice the cutoff radius. The
unit cell of MFI-type zeolite consists of four identical intersections connected
by zigzag and straight channels, while the unit cell of MEL-type zeolite is
formed by two large intersections and two small intersections and there
are only straight channels in between [53]. Simulations were performed
in the grand-canonical and canonical ensemble at 400K. At each Monte
Carlo step of grand-canonical simulations an attempt is made to either
displace, regrow, rotate, insert, or remove a randomly chosen hydrocarbon
chain. Hydrocarbon chains are inserted/regrown using the Configurational-
Bias Monte Carlo (CBMC) technique. For the simulations in the canonical
ensemble, the number of hydrocarbon chains is fixed and there is no insertion
or removal move. The number of Monte Carlo steps in a cycle is equal to
the total current number of adsorbates in the system with the minimum
of 20. Typical simulations are started with 0.2 to 0.5 million Monte Carlo
cycles to equilibrate the system, followed by 0.5 to 5 million production
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cycles. The total production run is divided into five blocks and the standard
deviation of the block averages is used for the calculation of the error in
computed properties. More details regarding the simulations can be found
elsewhere [49, 95].

3.5 Results and comparison of different methods

In Figs. 3.2a and 3.2b, the enthalpy of adsorption of 2,4-dimethylpentane
computed using the energy/particle fluctuations in the grand-canonical en-
semble is plotted as a function of loading. The method works quite accu-
rately at lower loadings, however, although all simulations have the same
number of cycles, errors increase as the loading is increased. The width of
the error bars expands significantly around the loading of four molecules per
unit cell. This is due to the fact that MC moves to place a bulky molecule
like 2,4-dimethylpentane inside the narrow channels of these structures are
accompanied by very unfavorable changes in the energy of the system and
are rarely accepted. Therefore, when all the available intersections (four
intersections per unit cell for both MFI-type and MEL-type zeolite) are
filled, the acceptance rate for the insertion/removal move drops significantly.
This results in poor statistics in the computation of fluctuations of Eq. 3.11
and eventually large error bars for the reported enthalpy of adsorptions.
For loadings higher than four molecules per unit cell, it is not even possible
to compute the fluctuations in some of the simulations even after 10 million
MC cycles. It is instructive to study in more details the variations in the
enthalpy of adsorption as a function of loading. It is shown in Fig. 3.2b
that when less than four hydrocarbon chains per unit cell are present inside
MFI-type zeolite, the enthalpy of adsorption of 2,4-dimethylpentane weakly
depends on loading. However, in Fig. 3.2a, there are two plateaus below
the loading of four molecules per unit cell. The first plateau lasts until
the loading of roughly two molecules per unit cell. Then, the enthalpy of
adsorption rises to the value of the second plateau and remains approx-
imately constant up to the loading of four molecules per unit cell. The
existence of only single type of intersections in MFI-type zeolite and two
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Figure 3.2: Enthalpy of adsorption of 2,4-dimethylpentane computed using energy/particle
fluctuations in grand-canonical ensemble at 400K. (a) MEL-type and (b) MFI-type zeolite.
The error bars indicate the 95% confidence interval.

different types of intersections in MEL-type zeolite is the source of different
behaviour. The large intersections of MEL-type zeolite are the most favor-
able adsorption site for the adsoption of 2,4-dimethylpentane. Therefore,
the 2,4-dimethylpentane molecules are preferentially located in these inter-
sections (Fig. 3.3a). As soon as all the large intersections are filled (loading
of two molecule per unit cell), additional molecules are forced to occupy
the energetically less favourable adsorption sites (small intersections). The
first plateau in Fig. 3.2a corresponds to the adsorption in the favorable
(large) intersections and the second one is associated with the adsorption in
less favorable (small) intersections. Accordingly, one can conclude that the
intersections are far enough from each other that when the molecules are
adsorbed only within them, the adsorbate-adsorbate interactions are negli-
gible compared to the host-adsorbate interactions. Therefore, the enthalpy
of adsorption weakly depends on loading. The enthalpy of adsorption is
mainly determined by the topology of the particular adsorption site and
the shape of adsorbate molecules. Consequently, the enthalpy of adsorp-
tion changes considerably only when the additional molecule is located in
a new adsorption site. This explains why the enthalpy of adsorption of
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(a) (b)

Figure 3.3: 3D histogram (density plot) of 2,4-dimethylpentane atomic positions at 400K and
10Pa in (a) MEL-type and (b) MFI-type zeolite.

2,4-methylpentane in MFI-type zeolite, with four identical intersections per
unit cell, remains almost constant below the loading of four molecules per
unit cell. It also explains why there are two plateaus below the loading of
four molecules per unit cell in the plot of the enthalpy of adsorption versus
loading of 2,4-methylpentane in MEL-type zeolite with two large and two
small intersections per unit cell. The effect of this key feature of MEL-type
zeolite can also be seen in the isotherm of 2,4-dimethylpentane (Fig. 3.4a).
There is a noticeable inflection in the 2,4-dimethylpentane isotherm, around
the loading of two molecules per unit cell (Fig. 3.4a). In Figs. 3.4a and 3.4b,
fugacity is converted to pressure using the Peng-Robinson equation of state.
In Figs. 3.5a and 3.5b, the enthalpy of adsorption for 2,4-dimethylpentane
computed from the energy difference of two simulations in the canonical
ensemble is plotted as a function of loading. It it shown that as the loading
is increased, errors associated with the enthalpy of adsorption, calculated
with this method, are sharply increased. As the loading rises, the difference
between the two average internal energies in Eq. 3.16 becomes substan-
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Figure 3.4: Adsorption isotherms of pure heptane (▽), 2-methylhexane (♢),2,2-
dimethylpentane (□) and 2,4-dimethylpentane (△) at 400K as computed with CBMC simu-
lations. (A) MEL-type and (B) MFI-type zeolite.

tially smaller than either of them and approaches the typical fluctuations
of the two averages. Hence, it is not surprising that the energy difference
method performs poorly at higher loadings. Just as the method based on
the energy/particle fluctuation, this method is not capable of providing an
accurate estimation of the enthalpy of adsorption , at loadings that due
to lack of more favourable adsorption sites, molecules are located in the
channels (the least favorable adsorption site). Due to the large error bars
associated with this method, it is hardly possible to notice the change in the
enthalpy of adsorption as the molecules start to fill a new adsorption site.
As a result, the different adsorption regions that can be seen in Figs. 3.2a
and 3.2b, cannot be distinguished easily when the energy difference is used
instead of the energy/particle fluctuations method. In Figs. 3.6a and 3.6b,
the values obtained for the enthalpy of adsorption of 2,4-dimethylpentane
at various loadings using the Widom’s test particle method are presented.
In the same way as the method based on the energy difference, the error
bars associated with the Widom’s test particle method are evidently larger
when the loading is higher. This difficulty arises from the fact that even
when the structure is empty, most of the randomly chosen positions for the
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Figure 3.5: Enthalpy of adsorption of 2,4-dimethylpentane computed using energy difference
between two simulations in canonical ensemble at 400K. (a) MEL-type and (b) MFI-type
zeolite. The error bars indicate the 95% confidence interval.

test hydrocarbon chain result in an overlap with the host atoms. These
positions have very low Rosenbluth weight and consequently very limited
contribution to the overall averages in Eq. 3.19. This problem becomes
more significant as the length of the chain increases and as the loading is
increased. At high loadings, most of the randomly selected positions for the
insertion of a molecule result in an overlap with the host atoms or adsorbate
molecules that are already present in the system. Therefore, it becomes
very difficult to find a cavity that a molecule can fit in. Simulations in
the open ensembles (grand-canonical, Gibbs, and reaction ensemble) suffer
from the same problem. New simulation techniques that does not rely on
the occurrence of spontaneous cavities for the insertion of a molecule are
introduced in Chapters 6 and 7. Various methods to compute the heat
of adsorption at nonzero-loadings have been investigated. Comparison be-
tween the results of different approaches coherently showed that the method
based on energy/particle fluctuations in the grand-canonical ensemble can
provide the best estimate for the heat and entropy of adsorption of C7

isomers. However, even this approach was not appropriate to compute
the aforementioned thermodynamic properties at loadings higher than four
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Figure 3.6: Enthalpy of adsorption of 2,4-dimethylpentane computed using the Widom test
particle method in canonical ensemble at 400K. (a) MEL-type and (b) MFI-type zeolite. The
error bars indicate the 95% confidence interval.

molecules per unit cell in MFI- and MEL-type zeolites. In this part, the
energy slope method is used to enhance our estimation of the heat and
entropy of adsorption after the inflection.

In Figs. 3.7a and 3.7b, the total internal energies of MFI- and MEL-
type zeolites systems as a function of the loading of 2,4-dimethylpentane
are plotted. The plot of the total internal energy of the structure and
the guest molecules as a function of the loading is divided into a number
of blocks (Figs. 3.7a and 3.7b). Since MEL-type zeolite consists of three
different adsorption sites, three blocks are considered in Fig. 3.7a. The
first block includes the total internal energy of MEL-type zeolite with 0-2
molecules per unit cell. The second block contains the data for loadings
between 2 to 4 molecules per unit cell and the last one presents the data
for the loadings higher that 4 molecules per unit cell. In the same way, two
blocks are considered in Fig. 3.7b. The first one considering the data for the
loadings below four molecules per unit cell and the second one including the
data for the loadings larger than four molecules per unit cell. As shown in
Figs. 3.7a and 3.7b, in each block, the total internal energy of the structures
and guest molecules varies approximately linearly with the loading. More
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Block 1 Block 3Block 2

(a)

Block 1 Block 2

(b)

Figure 3.7: The total internal energy of zeolite as a function of loading of 2,4-dimethylpentane
at 400K. Different symbols (and colors) correspond to adsorption in different adsorption sites
and the dashed lines are the line fitted to the data associated with each adsorption site. (a)
MEL-type and (b) MFI-type zeolite.

interestingly, there is a clear difference between the slope of the lines fitted
to the data in the different blocks.

All above can confirm the theory that the enthalpy of adsorption of
2,4-dimethylpentane is roughly constant at each block. As a result, notice-
able variations in the value of the enthalpy of adsorption occur only when
the more energetically favorable adsorption sites are filled and additional
molecules start to fill the less energetically favourable adsorption site. This
is along the same line with what was expected from the enthalpy of adsorp-
tion data computed from the energy/particle fluctuations. There, below
the loading of four molecules per unit cell, two plateaus for the enthalpy
of adsorption of 2,4-dimethylpentane in MEL-type zeolite and only one
for the enthalpy of adsorption of 2,4-dimethylpentane in MFI-type zeolite
have been perceived. In the energy slope method, the zeolite contribution
to the enthalpy of adsorption is computed from the slope of the best line
fitted to the series of data points describing the variation of total internal
energy of structure and guest molecules as a function of loading at each
block. In Figs. 3.8a and 3.8b, the results obtained from the energy slope
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Figure 3.8: Comparison between the enthalpy of adsorption of 2,4-dimethylpentane computed
from energy/particle fluctuations in grand-canonical ensemble (□) and using the energy slope
in canonical ensemble at 400K (△). (a) MEL-type and (b) MFI-type zeolite. The error bars
indicate the 95% confidence interval.

method are compared with the ones computed from the method based on
the energy/particle fluctuations. The values computed with the energy
slope method are in good agreement with the results obtained from the en-
ergy/particle fluctuations method. The main advantage of the energy slope
method over the energy/particle fluctuations method appear at loading near
and above the inflection point where the method based on energy/particle
fluctuations performs poorly. As discussed in previous sections, the per-
formance of energy/particle fluctuations method is directly related to the
acceptance rate of the insertion/removal move. Significantly low acceptance
rate of the insertion/removal move results in an inadequate performance of
energy/particle fluctuations method at loading near and above the inflec-
tion point. Using the energy slope method, all simulations are performed
in canonical ensemble where the number of adsorbate molecules is fixed (no
insertion/removal move). Moreover, in the energy slope method, the main
disadvantage of the energy difference method (which is the difference in
scales of the two averages in Eq. 3.16 and their difference) is eliminated. In
the energy slope method, instead of using the difference between the two
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average internal energies in Eq. 3.16 (which is highly vulnerable to even
limited errors in computation of the average internal energies), the slope of
the best fitted line to the set of data points corresponding to each block is
used to compute the partial derivative in Eq. 3.10 . The slope of this line is
much less affected by the computational error in calculation of any of the
average internal energies. Therefore, even at loading higher the inflection
point, where the computational error in the calculation of average energies
in the canonical ensemble is considerably high (Figs. 3.7a and 3.7b), the
energy slope method is still capable of providing an accurate estimation of
the enthalpy of adsorption.

3.6 Energy Slope Method for mixtures

The adsorption of the equimolar mixture of butane and isobutane at
400K by MFI-type zeolite is considered to compare the different methods.
While using the energy slope method, it is necessary to consider the total
internal energy of the zeolite at series of points, where the loadings of
all of the components are constant except the one that its heat/entropy
of adsorption should be computed. Therefore, a two dimensional grid of
data points is required to compute the heat/entropy of adsorption of each
component in a binary mixture at different loadings. In the same way, if one
is interested in computing the heat/entropy of adsorption at various loading
of either of components in a binary mixture, using the method based on
the energy/particle fluctuation, a two dimensional grid including different
partial pressures of each component is needed. In contrast to the pure
heptane isomers, by increasing the pressure of the gas phase the variations
in the heat of adsorption of each component in the binary mixture of butane
and isobutane occur gradually. The reason is that these molecules are much
smaller than heptane isomers. Therefore, they are not as tightly fitted
within the different adsorption sites as the heptane isomers are. As a result,
the difference between the heats of adsorption corresponding to different
adsorption sites is less significant in this case. Moreover, in the case of the
binary mixture, at low loadings, there are enough adsorption sites for both
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Figure 3.9: The enthalpy of adsorption of butane (a) and isobutane (b) computed with the
energy slope method in the canonical ensemble at 400K in MFI-type zeolite.

components to site freely at their favorable adsorption sites. There is no
competition between the different molecules to occupy the adsorption site.
Consequently, their heats of adsorption in the mixture are almost equal
to their heats of adsorption in the case of pure gas. As the total loading
increases, molecules start to compete over the available adsorption sites.
The molecule that fits better within the zeolite and has the higher stacking
efficiency will occupy more adsorption sites. This component gradually
takes over the adsorption sites that were occupied by the other component
at lower loadings. This results in a gradual change in the heat of adsorption
of both components. Considering all above, to compute the enthalpy of
adsorption at each grid point with the energy slope method, the slope of
the best fitted straight line passing through the grid point in question and
its neighbours in the corresponding direction are used.

In Figs. 3.9a and 3.9b, the heat of adsorption of butane and isobutane at
various loadings of each component is presented. The enthalpy of adsorption
of butane is always lower (more negative) than isobutane, implying that
butane molecules fit better within the confinements provided by MFI-type
zeolite and that they have more favourable stacking efficiency. Consequently,
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it can be concluded that MFI-type zeolite prefers the adsorption of butane
over isobutane (Figs. 3.10a and 3.10b). There is an agreement between
the values for the heat of adsorption of both components computed with
the energy slope method and the ones calculated from the method based
on the energy/particle fluctuations (Figs. 3.10a and 3.10b). For each data
point, discrepancy between the values computed with two methods is less
than each of their uncertainties (not shown here). The data presented in
Figs. 3.10a and 3.10b shows that the applications of the energy slope method
are not limited to the adsorption of pure gases. This method can also be
used for the computation of the heat/entropy of mixtures. However, since
an N dimensional grid of data points is needed to compute the heat/entropy
of adsorption of all N components in a mixture, the computational effort as-
sociated with this method increases sharply with the number of components.
Therefore, it might not be the most computationally-efficient method while
the heat of adsorption of all the components in a multi-component mixture
with single set of partial pressures is of interest. In this case, if the accep-
tance rate for the insertion/removal move is high enough, the method based
on energy particle fluctuations would be more computationally-efficient.
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Figure 3.10: (a) Comparison between the enthalpy of adsorption of butane (△) and isobutane
(□) computed with energy/particle fluctuations in grand-canonical ensemble (open symbols)
and using the energy slope in canonical ensemble (closed symbols) at 400K in MFI-type zeolite.
Data points correspond to adsorption of equimolar gas mixture of butane and isobutane at
various pressures of the gas phase. The symbol (×) shows the loading of the components at
each point. (b) 2D representation of Fig. 3.10a.
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3.7 Conclusions

We systematically compared the effectiveness of various methods to com-
pute the heat and entropy of adsorption at different loadings. We showed
that at low loadings, the method based on the energy/particle fluctuation
in the grand-canonical ensemble is the most efficient method to compute
the equilibrium enthalpy of adsorption of relatively large molecules such
as C7 isomers. However, none of the conventional methods discussed in
the first part of this chapter exhibited a satisfactory performance around
the inflection point. We showed that the enthalpy of adsorption of C7 iso-
mers is a weak function of the loading and the value of the enthalpy of
the adsorption of C7 isomers is mainly determined by the host-adsorbate
interactions at the adsorption site which is being filled at the particular
loading. Therefore, large changes in the value of the enthalpy of adsorption
occurs only when a more favourable adsorption site is completely filled and
additional molecules are forced to fill the less favourable adsorption site.
Based on this observation, we introduced the ”Energy Slope” method to
compute the enthalpy of adsorption. In this method, the variations in the
total internal energy of zeolite with respect to the hydrocarbon loading
are divided into different blocks. Each of these blocks correspond to the
adsorption of hydrocarbon chains in a particular adsorption site. Then, at
each block the enthalpy of adsorption is computed using the slope of the
best fitted straight line describing the variations in the total internal energy
of zeolite as a function of the loading. Compared to commonly used energy
difference method, the energy slope method is far less sensitive to the com-
putational error in calculation of the average energies. We showed that this
method has the best performance amongst the currently available methods
for the computation of the enthalpy of adsorption near the inflection point.
We also investigated the application of the energy slope method for the
calculation of the enthalpy of mixtures. We showed that the use of either
the energy slope method or the method based on the energy/particle fluc-
tuations lead to identical results for the enthalpy of adsorption of a binary
mixture of butane and isobutane. From the computational point of view,
the energy/particle fluctuations method appears to be more efficient, when
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the acceptance rate for insertion/removal move is sufficiently high (loadings
lower that the inflection point). This is due to the fact that, using the
energy slope method, the number of simulations to compute the enthalpy
of adsorption of all components in a mixture increases significantly as the
number of mixture component increases.





Chapter 4

Product Shape Selectivity in
the Catalytic
Hydroconversion of Heptane

This chapter is based on the following paper: Poursaeidesfahani, A.; de
Lange. M. F.; Khodadadian, F.; Dubbeldam , D.; Rigutto, M.; Nair, A.;
Vlugt, T. J. H.; Product shape selectivity of MFI-type, MEL-type, and
BEA-type zeolites in the catalytic hydroconversion of heptane, Journal of
Catalysis, 2017, 353, 54-62.

4.1 Introduction

In the previous chapters, the kinetic and thermodynamic properties of
adsorption of hydrocarbons by zeolites and method to calculate these prop-
erties were discussed. This information can also be used to study various
forms of shape selectivity and assessing their influences on the distribution
of products in hydroconversion process. In this chapter, the zeolite based
catalytic hydroconversion of heptane and product shape selectivity in par-
ticular are considered. Zeolite based catalysts are crucial to the production
of fuels, lubricants and petrochemicals, in oil refining and, increasingly, in
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gas to liquids (GTL) technology [9, 43, 44, 117]. As a key example, a very
large and steadily increasing fraction of today’s clean transportation fuels
is produced through zeolite-catalyzed hydrocracking, with a global capacity
of over 500 million tons per annum. Due to the industrial importance of
this process, many studies focused on hydroconversion of linear alkanes by
zeolite catalysts. These include investigating the influence of zeolite crystal
size and activity [9, 43, 44], comparison of performance of different zeolite
catalysts [10, 11, 45, 46], and the development of kinetic models [40, 47,
48]. The hydroconversion process of linear hydrocarbons can be seen as
a chain of reactions [11, 39, 40, 44, 47, 118]. First, linear hydrocarbons
are adsorbed and subsequently dehydrogenation occurs at the metal sites
of the catalyst forming alkenes. These alkenes migrate to the acid sites
where alkylcarbenium ions are formed through protonation. The alkylcar-
benium ions can undergo isomerization and cracking. Finally, these ions
are transferred to metal sites where they are transformed into alkanes via
hydrogenation. Zeolite shape selectivity influences most of these steps and
results in vastly different product distributions when different catalysts are
used. There are basically three forms of shape selectivity [12, 41]: (1) Reac-
tant shape selectivity: Adsorption and/or diffusion of (some of the) reactant
molecules to the reaction sites is inhibited by the confinement created by
the zeolite pores; (2) Transition state shape selectivity: Formation of some
products is hindered by the shape of the zeolites pores simply because they
are too large to fit inside the pore structure; (3) Product shape selectivity:
Diffusion limitations prohibit desorption of some product molecules that
are too bulky to diffuse sufficiently fast along the channels of the zeolite. If
the reactants have limited mobility they will stay longer at the active sites
and the probability for the consecutive reactions to take place and convert
these molecules is increased [12, 41, 95, 119]. Due to the complexity of
the reaction mechanism, it is particularly difficult to study the influence
of different forms of shape selectivity on individual steps of the hydrocon-
version process. During the past decades, a significant number of studies
tried to improve the understanding of the shape selective behaviour of ze-
olite catalysts in bifunctional conversion of alkanes [10, 45, 104, 120–122].
Whereas concepts of shape selectivity in zeolite catalysis have been very
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useful in qualitatively explaining product distributions based on differences
in pore geometry [10, 45] and in assisting catalyst development in a qualita-
tive fashion, quantitative treatments of reaction kinetics in shape selective
reactions allowing unambiguous interpretation of shape selectivity in terms
of reactant selectivity, transition state, and product shape selectivity have
been scarce [104, 123].

In this chapter, a quantitative treatment of competitive adsorption and
diffusion of reactants and products is presented in a very relevant model re-
action: the hydroisomerization/hydrocracking of n-heptane by three zeolite
catalysts (BEA-type, MFI-type, and MEL-type zeolites). The results are
combined with experimental observations and used to explain trends in the
reaction kinetics, as a step towards a full quantitative treatment. In this
chapter and following chapter, to simplify the assessment of this complex
process it is assumed that alkanes and alkenes behave identically within
a zeolite. It should be mentioned that diffusion of alkenes between the
metal and acid sites might have an important effect on the shape selective
behaviour of a zeolite [124].

This chapter is organized as follows. In section 4.2, molecular simula-
tions methods and simulation details used to compute adsorption isotherms
and free energy landscapes of reactants and product molecules are described.
Experimental details are provided in section 4.3. The product distributions
obtained with different catalysts and crystal sizes (for MFI-type) are dis-
cussed in details in section 4.4. Our main findings are summarized in section
4.5.

4.2 Simulations

The adsorption isotherms and free energy profiles of different heptane
isomers are computed using force field based Monte Carlo Simulations. Ad-
sorption isotherms show the strength of adsorption of different components
and can be directly used to study transition state shape selectivity. Free
energy profile shows the relative free energy of a molecule as a function
of its location inside channels. The free energy landscape of reactant and
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product molecules within the pores of the zeolite show the mobility of these
molecules inside the zeolites can be used in more quantitative investigation
of product shape selectivity of zeolite catalysts. The RASPA software pack-
age is used for the simulations [115, 116]. Heptane isomers are modelled
using the TraPPE force field [125, 126]. A cutoff radius of 12 Å is applied
for for Lennard-Jones interactions and no tail corrections are used. The
simulation box consists of 2× 2× 1 rigid unit cells for BEA-type zeolite and
2×2×2 for MFI-type and MEL-type zeolites with periodic boundary condi-
tions. Zeolite structure were taken from the IZA database [53]. Adsorption
isotherms are obtained by performing simulations in the grand-canonical
ensemble at T = 227◦C and T = 303◦C . At each Monte Carlo step of
grand-canonical simulations an attempt is made to either displace, regrow,
rotate, insert, or remove a randomly chosen hydrocarbon chain. Hydro-
carbon chains are regrown/inserted using the Configurational-Bias Monte
Carlo (CBMC) technique [49, 127, 128]. The free energy profile of different
heptane isomers along the channels of these structures at zero loading are
computed from Monte Carlo simulations in the canonical ensemble. The
length of the channels are divided into 1000 slices and the probability of
being in each of these slices is calculated using only a single molecule. To
compute the free energy profiles along a channel, the possible positions for
the molecule are restricted to a single channel and trial moves attempting
to move the molecule outside the channel are automatically rejected. The
free energy of the molecule at each slice is given by:

Fi = −kBT ln pi (4.1)

where T is the temperature, kB is the Boltzmann factor, and Fi and pi are
the average free energy at slice i and the probability of molecule being in
slice i, respectively. The free energy profile can have very low local minima.
When the molecule reaches these local minima, the energy penalty for the
trial move that transfers the molecule out of local minima would be very
high. Therefore, these translational trial moves are rarely accepted. This
results in very poor sampling of the configurations in which the molecules
is not in local minima. To improve the sampling, a biasing factor (exp[wi])
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is added to statistical weight for each slice [129]. These biasing factors are
computed iteratively so that the observed probability for the molecule being
in any of the slices is the same. In this case, the free energy of the molecule
at each slice is given by:

Fi = −kBT (ln pi − wi) (4.2)

The RASPA software is used for simulations [115, 116]. More details regard-
ing the simulations techniques can be found in Chapter 3 and elsewhere [49,
95].

4.3 Experiments

Three samples of zeolite MFI-type were used with different crystal
sizes: (1) a large-crystal material (denoted by MFI-bulk) with composi-
tion Si/Al=20 and BET surface area 373 m2/g described by Zhu et al. [130]
; (2) CBV-8014G, a commercial MFI-type (denoted by MFI-reference)with
Si/Al= 40 and BET surface area of 425 m2/g consisting of aggregates of
40-150 nm primary crystals, obtained from Zeolyst International; (3) a
MFI-type nanosheet material (denoted by MFI nanosheet) with Si/Al=20
and approximately 20 nm long and 4 nm thick sheets, described by Zhu et
al. [130] (sample ZMS-5-F(3,20,423)). Samples of zeolite BEA-type with
Si/Al=50 BET and a surface area of 700 m2/g and a crystal size of approx-
imately 400 nm and of MEL-type with Si/Al=23 and BET surface area of
440 m2/g were also obtained from Zeolyst International. The crystal size
of the MFI-bulk is much larger than the MFI nanosheet and MFI-reference
and the crystal size of the MEL-type is sufficiently small and of the same
order as BEA-type and MFI-reference. All three structure are formed by
three-dimensional pore networks. The pore network of BEA-type zeolite
is formed by 12-membered-rings straight pores while the pore networks of
MFI-type and MEL-type zeolites contain 10-membered-rings.

Hydroconversion of heptane was carried out on Pd-loaded zeolites as
described previously [131]. The dried support was shaped in a sieve fraction
(177-420 µm) and loaded with 0.4 wt% Pd via incipient wetness impreg-
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nation with a solution of appropriate concentration of Pd(NH3)4(NO3)2.
The resulting materials were calcined at 300◦C. Prior to testing, the cata-
lysts were reduced at 320◦C at 30 bar in flowing hydrogen. Hydroconver-
sion of n-heptane was carried out at 30 bar using 300 mg of catalyst and
H2/hydrocarbon ratio of 24 mol/mol. Experiments are conducted in a flow
reactor and the flow rate of hydrogen is set to 25 ml min−1. To investigate
various conversion levels (5% - 95%), the reaction temperature was lowered
from 320◦C to 200◦C at a rate of 0.2 ◦C min−1, and products were analyzed
by online GC.

4.4 Results and discussion

4.4.1 Reaction scheme and production of dibranched iso-
mers

For all catalysts, normal C7 is transformed into monobranched isomers
(M), multibranched isomers (T), and cracking products (C). No secondary
cracking is observed in this temperature range (200-320◦C) and the only
observed cracking products are i-C4, n-C4, and C3. The monobranched
isomers manily consist of methylhexanes. The fraction of ethylpentane in
total monobranched isomers was lower than 5% for all catalysts and for all
conversion levels. No traces of trimethylbutane were detected for MFI-type
and MEL-type zeolites, and for BEA-type zeolite, less than 1% of heptane
is converted to trimethylbutane. In Fig. 4.1, the yields of monobranched
isomers (M) and multibranched isomers (T) and cracking products (C) are
shown as a function of the conversion of n-C7. It can clearly be seen that
the monobranched isomers are the primary reaction products and crack-
ing products and multibranched isomers are secondary reaction products.
Heptane isomers are consecutively cracked to either i-C4 +C3 or n-C4 +C3.
Cracking of monobranched isomers exclusively produces n-C4 + C3, while
cracking of most of the multibranched isomers (except 23-dimethylpentane)
results in production of i-C4 +C3. Therefore, the i-C4/n-C4 ratio indicates
whether monobranched or multibranched isomers are the main reactants
in the cracking reactions. The i-C4/n-C4 ratio is larger than 15 for all the
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Figure 4.1: The experimental yields of monobranched isomers (green □) and multibranched
isomers (blue ▽) and cracking products (red △) are plotted as a function of the conversion of
n-C7 for (a) BEA, (b) MFI, and (c) MEL. Different conversion levels are obtained by changing
the temperature of the reactor between 200◦C and 320◦C. Lines are a guide to the eye.
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Figure 4.2: The experimental yields of (a) methylhexane and (b) dimethylpentane are plotted
as a function of the conversion of n-C7 for BEA (blue ▽), MFI (red △), and MEL (green □).
Different conversion levels are obtained by changing the temperature of the reactor between
200◦C and 320◦C. Lines are a guide to the eye.

catalysts and for the entire conversion range. This shows that the main
reaction scheme for the hydroconversion of n-C7 on all three catalysts is:

n-C7 ⇌ M ⇌ D → i-C4 +C3

Methylhexanes and dimethylpentanes have by far the highest share in
the produced monobranched and multibranched isomers, respectively. In
Figs. 4.2a and 4.2b, the yields of methylhexanes and dimethylpentanes for
the three catalysts are compared for the entire range of n-C7 conversion, re-
spectively. The yield of methylhexanes for the three zeolites are almost the
same, regardless of the conversion level. BEA-type zeolite produces slightly
less methylhexanes compared to MFI-type and MEL-type zeolites in the
conversion range (60-80%). However, these catalysts behave very differently
while considering the production of dimethylpentanes (Fig. 4.2b). BEA-
type zeolite has by far the highest rate of production for dimethylpentanes.
The experimental data presented in Fig. 4.3 shows the ratio between the
yield of dimethylpentanes and i-C4. Considering the main reaction scheme
(Reaction.1), this ratio essentially mimics the ratio of dimethylpentanes
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Figure 4.3: The ratio between the yield of dimethylpentanes and i-C4 plotted as a function of
the conversion of n-C7 BEA (blue ▽), MFI (red △), and MEL (green □). Different conversion
levels are obtained by changing the temperature of the reactor between 200◦C and 320◦C.
Lines are a guide to the eye.

that transferred to the gas phase to dimethylpentanes which are cracked
to i-C4 + C3 and then transferred to the gas phase. It is clear that this
ratio is always larger than one for BEA-type zeolite and larger than 3 in the
conversion range (10-80%). This means that on average three out of four
dimethylpentane molecules that are formed in BEA-type zeolite are trans-
ferred into the gas phase, and only one is cracked. This shows that most of
the dimethylpentanes that are produced in BEA-type zeolite can leave the
structure before undergoing cracking into i-C4. However, the ratio between
the yield of dimethylpentanes and i-C4 is always lower than one (around 0.1
) for MFI-type and MEL-type zeolites. This means that on average nine out
of ten dimethylpentane molecules that are formed in MFI-type and MEL-
type zeolites are cracked and only one is transferred into the gas phase.
This suggests that diffusion rate for dimethylpentane molecules is much
higher in channels of BEA-type zeolite compared to that of MFI-type and
MEL-type zeolites. To validate this argument, one should have knowledge
on the diffusion of different heptane isomers within these three catalysts.
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This is achieved by computing the free energy profiles of different heptane
isomers along the channels of the three structures. MEL-type and BEA-
type zeolites have only single type of straight channels in two perpendicular
directions while MFI-type has two types of channels straight and zigzag in
two perpendicular directions. In Fig. 4.4, the free energy profiles of differ-
ent heptane isomers in the straight channels of MFI-type, MEL-type, and
BEA-type zeolites are shown. When considering diffusion, only the relative
free energies as a function of the position along the channels are important.
Therefore, the free energy profiles shown in Fig. 4.4 are shifted in such a
way that the minimum of free energy is always zero. The free energy barrier
for diffusion can be defined as the difference between the maximum and
minimum of the free energy profiles. These values are listed in Table 5.2.
It is clear that there is almost no free energy barrier for diffusion of all
heptane isomers in large pores of BEA-type zeolite (see Fig. 4.5). The free
energy barriers of different heptane isomers in MFI-type and MEL-type
zeolites are 2-methylhexane ≈ 3-methylhexane < 24-dimethylpentane < 23-
dimethylpentane ≪ 22-dimethylpentane ≈ 33-dimethylpentane. Therefore,
due to the absence of any considerable free energy barrier for diffusion of
dimethylpentane molecules in BEA-type zeolite, most of dimethylpentane
molecules can move to the gas phase before cracking. However, in MFI-type
and MEL-type zeolites, dimethylpentane molecules must overcome signifi-
cant free energy barriers before they can move to the gas phase. Therefore,
most of the dimethylpentane molecules that are produced in MFI-type and
MEL-type zeolites are trapped inside the zeolite and cannot diffuse to the
gas phase. Dimethylpentane molecules are more likely to undergo cracking
and form i-C4 + C3 which can diffuse out of the zeolite much faster than
dimethylpentane molecules. This also explains why BEA-type zeolite has
a higher production rate for dimethylpentanes. The difference between
BEA-type zeolite and the other two zeolites is that in BEA-type zeolite
dimethylpentanes can move to the gas phase. Moreover, the channels of
BEA-type zeolite are large enough so that dimethylpentane molecules can
be formed almost anywhere inside the structure. However, dimethylpentane
molecules can only fit within the intersections of MFI-type and MEL-type
zeolites [132] (see Fig. 4.5). As a result, in the case of BEA-type zeolite,
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more dimethylpentane molecules are produced and more methylhexanes
are consumed compared to the cases of MFI-type and MEL-type zeolites.
Therefore, as in the case in Fig. 4.2a, one would expect to have lower con-
centration of monobranched isomers when BEA-type zeolite is used as a
catalyst.

4.4.2 Distribution of dibranched isomers

Dimethylpentanes with geminal methyl groups (22,33-dimethylpentane)
have very high free energy barriers for diffusion in the channels of MFI-type
and MEL-type zeolites (see Table 5.2 and Fig. 4.4). This suggests that
dimethylpentanes with the geminal methyl groups can only fit within the
intersections of the two channels (where free energy is minimal). Hence, it is
almost impossible for these molecules to move to the gas phase. Therefore,
they are trapped inside the intersections until they are cracked. Among all
dimethylpentanes, 24-dimethylpentane has the lowest free energy barrier for
diffusion. The free energy barrier for the diffusion of 24-dimethylpentane
is closer to that of the methylhexanes than to the other dimethylpen-
tanes. Therefore, it is expected that the yield of dimethylpentanes ob-
tained from MFI-type and MEL-type zeolites predominantly consists of
24-dimethylpentane. The yields of different dimethylpentane isomers as a
function of the conversion of n-C7 for the three structures are shown in
Fig. 4.6.

It can be seen that 24-dimethylpentane is the most produced dimethylpen-
tane on MFI-type and MEL-type zeolites, followed by 23-dimethylpentane.
This is exactly what is expected from the analysis of the free energy profiles.
The fastest diffusing dimethylpentane (the one with the lowest free energy
barrier) has the largest share in the total production of dimethylpentanes.
As shown in Fig. 4.4 and Table 5.2, free energy barriers of all heptane iso-
mers are higher and the differences between them are more significant in the
straight pores of MEL-type compared to straight pores of MFI-type. This
can explain the higher yield of dimethylpentanes on MFI-type. For BEA-
type zeolite, 23-dimethylpentane has the highest yield among dimethylpen-
tanes for the entire conversion range of n-C7 (see Fig. 4.6). The yield of
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Figure 4.4: The free energy profiles of (a) 2-methylhexane, (b) 3-methylhexane, (c) 23-
dimethylpentane, (d) 24-dimethylpentane, (e) 22-dimethylpentane, (f) 33-dimethylpentane
at zero loading are plotted as a function of the position of the molecule in straight channels
of for BEA (Blue), MFI (Red), and MEL (Green) at T = 227◦C. The free energy profiles are
shifted in such a way that the minimum of free energy is always zero.
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(a)

(b)

(c)

Figure 4.5: Visualization of 22-dimethylpentane molecules within the pore structure of zeolite
(a) BEA, (b) MFI, and (c) MEL. 22-dimethylpentane molecules can be everywhere within the
pore structure of BEA. However, in pore structures of MFI and MEL, 22-dimethylpentane
molecules are mostly at the intersection and only very rarely at the middle of the channels.
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Table 4.1: Free energy barriers for diffusion of different heptane isomers in straight channels
of MFI, MEL, and BEA-type zeolites at zero loading and at 227◦C, as computed by CBMC
simulations.

Molecule
Free Energy Barrier/ [kBT ]
BEA MFI MEL

2-Methylhexane 0.68 10.2 14.9
3-Methylhexane 0.82 11.1 14.5
23-Dimethylpentane 1.17 18.0 21.1
24-Dimethylpentane 0.85 12.0 16.6
22-Dimethylpentane 1.06 25.6 38.6
33-Dimethylpentane 1.32 26.8 38.7

22-dimethylpentane and 24-dimethylpentane are almost the same for all
conversions and 33-dimethylpentane has always the lowest fraction among
dimethylpentanes. Interestingly, the fraction of different dimethylpentanes
in the total dimethylpentanes produced remains roughly constant and corre-
sponds to the equilibrium distribution of dimethylpentanes in the gas phase.
From the free energies of formation of different dimethylpentanes, one can
compute the equilibrium constants for the methyl-shift reactions in the gas
phase:

Keq = exp

[
−∆G◦

RT

]
(4.3)

where ∆G◦ is the Gibbs free energy of the reaction which is obtained by
subtracting the Gibbs free energy of formation of products from those of
reactants. The values for the Gibbs free energies of formation of heptane
isomers reported by D. W. Scott [133] are used to compute the equilibrium
constants for the methyl-shift reactions of dimethylpentanes in the gas
phase. The equilibrium distribution of dimethylpentanes in the gas phase
and the distribution of dimethylpentanes produced by BEA-type zeolite are
shown in Table 4.2. As BEA-type zeolite imposes no free energy barrier
for diffusion of any of the dimethylpentanes and the methyl-shift reaction
are very fast compare to isomerization reactions [11, 44], the distribution
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Table 4.2: Equilibrium distribution of dimethylpentanes in the gas phase and the distribution of
dimethylpentanes produced by BEA-type zeolite. The equilibrium distribution in the gas phase
is obtained from the free energies of formation of dimethylpentanes at the mean temperature
of the experiments (260◦C). The values for the Gibbs free energies of formation of heptane
isomers reported by D. W. Scott [133] are used to compute the equilibrium distribution of
dimethylpentanes in the gas phase. Numbers in brackets are uncertainties in the last digit,
i.e., 0.25 (2) means 0.25 ± 0.02.

Equilibrium (Gas phase) Produced by BEA

22-dimethylpentane 0.25(2) 0.26(1)
24-dimethylpentane 0.24(2) 0.25(1)
23-dimethylpentane 0.35(2) 0.32(1)
33-dimethylpentane 0.17(2) 0.16(2)

of dimethylpentanes by BEA-type zeolite is equilibrium limited.

To investigate the influence of transition state shape selectivity, the
adsorption isotherms of different dibranched isomers are studied. One
should be cautions using equilibrium adsorption isotherms to study the
transition-state shape selectivity. The main assumption here is that the
transition-state and product have almost the same shape, size and inter-
actions with the zeolite structure. For the isomerization reactions, this
assumption is not far from reality [12, 41]. Dibranched molecules that fit
better within the channels and intersections of a structure should have
a higher loading. Those isomers with a lower loading fit more difficult
inside the pore network of the zeolite and, according to transition state
shape selectivity, have lower probability of formation [12, 41]. In Fig. 4.7,
the adsorption isotherms of 23-dimethylpentane, 24-dimethylpentane, 22-
dimethylpentane, and 33-dimethylpentane at T = 227◦C and T = 303◦C
are shown for the three zeolite catalysts. For the entire pressure range,
24-dimethylpentane has the lowest loading in MFI-type (Fig. 4.7b), and
still 24-dimethylpentane is the dibranched molecule that is preferentially
produced. One can argue that a molecule which is weakly adsorbed by the
catalyst has higher mobility compared to strongly adsorbed molecules and
desorbs faster. As shown for MEL-type in Fig. 4.7c, 24-dimethylpentane
has the highest loading at the pressure range of the experiments. However,
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Figure 4.6: The experimental yields of dimethylpentanes are plotted as a function of the
conversion of n-C7 for (a) BEA, (b) MFI, and (c) MEL. 23-dimethylpentane (green □), 24-
dimethylpentane (blue ⃝), 22-dimethylpentane (red ▽), and 33-dimethylpentane (orange △).
Different conversion levels are obtained by changing the temperature of the reactor between
200◦C and 320◦C. Lines are a guide to the eye.
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Figure 4.7: The adsorption isotherms of 23-dimethylpentane (green □), 24-dimethylpentane
(blue ⃝), 22-dimethylpentane (red ▽), and 33-dimethylpentane (orange △) at T = 227◦C
(close symbols) and at T = 303◦C (open symbols) as computed with CBMC simulations. (a)
BEA, (b) MFI, and (c) MEL. Lines are a guide to the eye.
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this molecule is still produced with the highest concentration among all
dimethylpentanes by MEL-type. While following the above argument, one
would expect 24-dimethylpentane to have limited contribution in produc-
tion of dimethylpentanes by MEL-type, due to the preferential adsorption
of 24-dimethylpentane and consequently its lower tendency for desorption.
Moreover, 22-dimethylpentane which is adsorbed preferentially by MFI-
type and MEL-type zeolite has one of the lowest fractions in produced
dimethylpentanes by these structures. This clearly shows that although the
effect of adsorption strength can be interpreted in different ways, neither
of these interpretations can explain the distribution of dimethylpentanes
for these three catalysts. Therefore, transition state shape selectivity is not
the underlying reason for the sharp difference between the distributions of
dimethylpentanes in these three structures. The product shape selectivity
can explain the difference between the distributions of dimethylpentanes
very well. For MFI-type and MEL-type zeolites, the free energy barriers
that different dimethylpentanes molecules need to overcome to reach the
gas phase are significantly different. For these catalysts, the dibranched
molecule that has to overcome lower diffusion barrier is produced with a
higher yield. Channels of BEA-type zeolite are large enough that practically
do not impose any free energy barrier for diffusion of any of the dibranched
molecules. Therefore, in this case there is no product shape selectivity and
the distributions of dimethylpentanes molecules can reach the equilibrium
distribution in the gas phase.

4.4.3 MFI-type with different crystal sizes

The observations from the previous subsections suggest that product
shape selectivity is the dominant form of shape selectivity in distribution
of dimethylpentanes obtained from conversion of n-C7 by MFI-type. It
is shown that dimethylpentanes have a limited mobility inside the pore
network of MFI-type. Therefore, one would expect that by increasing the
crystal size dimethylpentane molecules are forced to stay longer inside the
structure and in proximity of active sites. This increases the probability
of consecutive cracking reactions to take place and convert these molecules
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Figure 4.8: The experimental yields of (a) dimethylpentane and (b) the ratio between the
yield of dimethylpentanes and i-C4 are plotted as a function of the conversion of n-C7 for MFI
nanosheet (blue ▽), MFI reference (red △), and MFI bulk (green □). Different conversion
levels are obtained by changing the temperature of the reactor between 200◦C and 320◦C.
Lines are a guide to the eye.

to cracking products which can diffuse faster through the pores of MFI-
type. Consequently, the yield of dimethylpentanes is expected to reduce
by increasing the crystal size of MFI-type. To support the claims and
arguments made in the previous sections, experiments have been conducted
on three samples of zeolite MFI-type with different crystal sizes: (1) a
large-crystal material (denoted by MFI-bulk) with composition Si/Al=20
and BET surface area 373 m2/g described by Zhu et al. [130]; (2) CBV-
8014G, a commercial MFI-type with Si/Al= 40 and BET surface area of
425 m2/g consisting of aggregates of 40-150 nm primary crystals, obtained
from Zeolyst International; (3) a MFI-type nanosheet material (denoted by
MFI nanosheet) with Si/Al=20 and approximately 20 nm long and 4 nm
thick sheets, described by Zhu et al. [130] (sample ZMS-5-F(3,20,423)). In
Fig. 4.8, it can be seen that by increasing the crystal size, the production
of dimethylpentanes and the ratio of produced dimethylpentanes to the
cracking products decrease. Similar observations have been reported by
other groups [134]. This shows that diffusion of dimethylpentanes (product
shape selectivity) has significant influence on the product distribution of
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n-C7 conversion, when MFI-type is used as catalyst.

4.5 Conclusions

For all catalysts investigated in this study, n-C7 is first converted into
monobranced isomers. Monobranched isomers are further isomerized to
dibranched isomers, and dibranched isomers are the main reactants for the
cracking reactions. The free energy barriers for diffusion of different heptane
isomers in MFI-type and MEL-type zeolites are orderd as 2-methylhexane
≈ 3-methylhexane < 24-dimethylpentane < 23-dimethylpentane ≪ 22-
dimethylpentane ≈ 33-dimethylpentane. Significant free energy barriers
for diffusion of dibranched isomers in MFI-type and MEL-type zeolites in-
hibit transfer of these molecules to the gas phase. Therefore, most of the
formed dibranched isomers remain inside the zeolite until they are cracked
and fast diffusing cracking products are transferred to the gas phase. For
MFI-type and MEL-type zeolites, the dibranched molecule that has to
overcome lower diffusion barrier is produced with a higher yield. Clearly
showing the importance of product shape selectivity for these catalysts, the
shares of different dimethylpentane molecules in the total production of di-
branched isomers are ordered as 24-dimethylpentane > 23-dimethylpentane
≫ 22-dimethylpentane ≈ 33-dimethylpentane. BEA-type zeolite catalyst
showed the highest selectivity towards production of dibranched isomers.
The free energy barriers computed for heptane isomers at zero loading show
that all heptane isomers can diffuse through the large pores of BEA-type
zeolite without encountering diffusion barriers. As BEA-type zeolite im-
poses no free energy barrier for diffusion of any of the dimethylpentanes, the
distribution of dimethylpentanes by BEA-type zeolite is equilibrium lim-
ited. It can be concluded that product shape selectivity is the main source
of sharp differences between the product distribution of BEA-type zeolite
compared to MFI-type and MEL-type zeolites. The influence of product
shape selectivity on distribution of dibranched products increases as the
pore size decreases from almost no effect for BEA-type zeolite (equilibrium
distribution) to completely dominant for MFI-type and MEL-type zeolites.
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It should be mentioned that in reality alkenes (an not alkanes) are involved
in the isomerization and cracking reactions catalyzed by zeolites. However,
to simplify the models we did not distinguish between alkenes corresponding
alkanes. However, the kinetics and thermodynamics of alkenes might also
be important for better understanding of the catalytic hydroconversion of
hydrocarbons.





Chapter 5

Catalytic Hydroconversion
of Heptane Using Large Pore
Zeolite Catalysts

This chapter is based on the following maniuscript: Poursaeidesfahani, A.;
Rigutto, M.; Nair, N.; Dubbeldam, D.; Vlugt, T. J. H.; Experimental and
Theoretical Study of Catalytic Hydroconversion of Heptane Using Large
Pore Zeolite Catalysts, in preparation.

5.1 Introduction

In the previous chapter, product shape selectivity was identified as the
most important form of shape selectivity for the studied systems (catalytic
hydrocinversion of heptane in MFI-, MEL-, and BEA-type zeolites). The
main aims of this chapter are to (1) investigate the shape selective behaviour
of zeolites in the absence of product shape selectivity; (2) introduce a model
that can simulate the catalytic hydroconversion of heptane by large pore ze-
olites. In the catalytic hydroconversion of hydrocarbons, zeolites are used as
bifunctional catalysts containing both Lewis metal sites and Brønsted acid
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sites [135]. In the past decades, many studies are focused on hydrconversion
processes [10, 45, 104, 120–122]. Studies strive for superior comprehension
of isomerized and cracked product distribution through modeling to achieve
desired product properties. Major types of reaction models are based on
Lumping and Mehchanistic approaches [135, 136]. Early studies of catalytic
hydrocracking of complex feedstock were mostly focused on development of
lumped kinetic models. In these models, feedstock is divided into pseudo-
components known as ’lumps’. These lumps are formed of components on
the basis of their boiling point range, degree of branching, carbon number,
and molecular weight [48, 137–139]. To increase the accuracy of models,
larger number of lumps were considered. The number of parameters to be
estimated increases as the number of lumps increases leading to greater
computational complexity [140]. Mechanistic models take into account the
chemistry of individual components and reactions in a network. Adsorption
data and identification of an appropriate reaction network are crucial inputs
for these models [141, 142].

In this chapter, the entire reaction network for the hydroconversion of
heptane is considered and all main alkanes are modelled explicitly. The
reaction network is identified by analysing series of precise experiments and
fundamental information regarding the adsorption and diffusion properties
of reactants and products are obtained from molecular simulation [12, 33–37,
95, 132]. This chapter is organized as follows. In section 5.1, the reaction
network and the key assumptions are explained. In section 5.2, details
regarding the molecular simulations to compute adsorption isotherms and
free energy barriers are explained. The equation used for the reaction rate
and the justification of that are explained. The mathematical model used
for modeling the hydroconversion process and its main assumptions are de-
scribed. The estimation of reaction rates by fitting the model output to the
experimental results is described as an optimization problem. Experimental
details are provided in section 5.3. In section 5.4, our modeling results
are compared with experimental observations. The product distributions
obtained for different catalysts are discussed. Our findings are summarized
in section 5.5.
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5.2 Experiments

A sample of zeolite BEA with Si/Al=50 BET and a surface area of
700 m2/g and a crystal size of approximately 400 nm and of zeolite Y
with Si/Al=23 and BET surface area of 440 m2/g were also obtained from
Zeolyst International. Hydroconversion of heptane was carried out on Pd-
loaded zeolites as described previously [131]. The dried support was shaped
in a sieve fraction (177-420 µm) and loaded with 0.4 wt% Pd via incipi-
ent wetness impregnation with a solution of appropriate concentration of
Pd(NH3)4(NO3)2. The resulting materials were calcined at 300◦C. Prior to
testing, the catalysts were reduced at 320◦C at 30 bar in flowing hydrogen.
The hydroconversion of n-heptane was carried out at 30 bar using 300 mg
of catalyst and a H2/hydrocarbon ratio of 24 mol/mol. Experiments are
conducted in a flow reactor, and the flow rate of hydrogen is set to 25 ml
min−1. To investigate various conversion levels (5% - 95%), the reaction
temperature was lowered from 320◦C to 200◦C at a rate of 0.2 ◦C min−1,
and reaction products were analyzed by online Gas Chromatography.

5.3 Simulations

5.3.1 Adsorption isotherms

The adsorption isotherms and free energy profiles of heptane isomers
are computed using force field based Monte Carlo Simulations in the grand-
canonical ensemble [12, 36, 37]. The RASPA software package is used for
the simulations [115, 116]. Heptane isomers are modeled using the TraPPE
force field which contains intramolecular and intermolecular Lennard-Jones
interactions, and intramolecular bond bending and torsion interactions [125,
126]. The TraPPE-zeo force field is used to model the interactions between
the hydrocarbons and zeolites [143]. A cutoff radius of 12 Å is applied for for
Lennard-Jones interactions and no tail corrections are used. The simulation
box consists of 2× 2× 1 rigid unit cells for BEA-type zeolite, 1× 1× 1 for
FAU-type zeolite and 3× 2× 2 MRE-type zeolite with periodic boundary
conditions. Zeolite structures were taken from the IZA database [53, 112].



86 Catalytic Hydroconversion of Heptane

Hydrocarbon chains are regrown/inserted using the Configurational-Bias
Monte Carlo (CBMC) technique [49, 127, 128, 144]. For more details, the
reader is referred to Refs. [49, 145, 146].

5.3.2 Reaction network

In previous studies, it has been shown that the lumped reaction scheme
for the catalytic hydroconversion of C7 is:

n-C7 ⇌ M ⇌ D → C (5.1)

where M, D and C are referring to monobranched isomers, dibranched
isomers and cracking products, respectively. To distinguish between dif-
ferent monobranched isomers, dibranched isomers, and cracking products,
this simple reaction scheme should be refined. To identify the appropriate
reaction network, the experimental product slate obtained for catalytic hy-
droconversion of heptane is studied. Considering Eq. 5.1, one can define
conversion of monobranched isomers as:

XmC6 =
1− [C7]− [mC6]

1− [C7]
(5.2)

In the compact notation used in this work, 2,3-dimethylpentane is denoted
by 2, 3− dmC5, where dmC5 indicates that the main branch is made of 5
carbon atoms with 2 additional methyl groups, and 2,3 show the positions of
methyl groups. One can identify the primary dibranched isomer by looking
at the distribution of the dibranched isomers as a function of conversion of
monobranched isomers. This is shown in Fig. 5.1.
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Figure 5.1: The experimental distribution of different dibranched isomers of heptane as a
function of the conversion of monobranched isomers by zeolite BEA (green triangles), zeolite Y
(Blue circles) and MRE-type zeolite (red squares): (a) 2,3-dmC5, (b) 2,4-dmC5, (3) 3,3-dmC5

and (d) 2,2-dmC5.

As the conversion of monobranched isomers approach zero, the contri-
bution of all dibranched isomers except 2,3-dmC5 approach zero, regardless
of the type of catalyst. Therefore, it can be concluded that for all catalysts
considered in this study, 2,3-dmC5 is the primary dibranched isomer formed
from isomerization of monobranched isomers. It is assumed that all other
dibranched isomers, namely 2,2-dmC5, 2,4-dmC5, 3,3-dmC5, are formed by
the methyl shift reactions from 2,3-dmC5. As all zeolite catalysts consid-
ered in this study contain structures with only large pores (dmin > 5.6 Å),
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C7(g) C7(s)

2-mC6(s)

3-mC6(s)

2,3-dmC5(s)

2,4-dmC5(s)

3,3-dmC5(s)

2-mC6(g)

3-mC6(g)

2,4-dmC5(g)
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mC3(s)+C3(s) mC3(g)+C3(g)

1

Figure 5.2: Reaction scheme for the catalytic hydroconversion of heptane by large pore zeolites.
Blue arrows indicate steps that are in equilibrium and red arrows are used to show reaction
that are not in equilibrium. Only the adsorption and desorption steps are assumed to be in
equilibrium. Components in the gas phase and adsorbed phase are indicated by subscripts ”g”
and ”s”, respectively.

no significant mass transfer limitation for the transformation of molecules
between the gas phase and the adsorbed phase is expected. Therefore,
it is assumed that the adsorbed phase and gas phase are in equilibrium.
The expanded reaction network for the catalytic hydroconversion of n-C7

is shown in Fig. 5.2. In this reaction network, the formation of heptane
isomers with more that two branches is neglected. This is supported by the
very limited concentration of these components in the experimental product
slate obtained for catalytic hydroconversion of heptane [147].

5.3.3 Rate equations

Three different categories are considered in the reaction network of this
work: (1) isomerization reactions with changes in the degree of branching;
(2) methyl-shift reactions; (3) cracking reactions. As discussed earlier, it is
assumed that the adsorbed phase and the gas phase are in equilibrium. The
concentrations of components in the adsorbed phase in equilibrium with



5.3 Simulations 89

the gas phase are computed using a mixed Langmuir adsorption isotherm,
and we have verified that for this system it yields identical results as Ideal
Adsorption Solution Theory (IAST). At low temperatures where the con-
version is low, zeolite catalysts are mainly loaded by the linear alkanes. As
the conversion increases, the loading decreases and the composition of the
adsorbed phase changes. Initially, branched alkanes and alkenes are formed.
At higher conversions, shorter chain alkanes and alkenes are produced. The
following rate equation is used to describe the individual isomerization and
cracking reactions shown in Fig. 5.2

kf = A exp

[
−Ea

RT

]
(5.3)

where R is the universal gas constant, T is the absolute temperature, A is
the frequency factor, kf and Ea are the rate constant and activation energy.
For reactions in each category, identical frequency factors A are used. The
rate constant of the reverse reactions are given by:

kb = A exp

[
−Ea +∆G◦

RT

]
(5.4)

where ∆G◦ is the Gibbs free energy of reaction.

5.3.4 Gibbs free energy of reaction

The Gibbs free energy of the reaction can be obtained by subtracting the
Gibbs free energy of formation of the reactants from those of the reaction
products. The values for the Gibbs free energies of formation of heptane
isomers as reported by D. W. Scott [133] are used to compute the Gibbs
free energies of reaction for isomerization and methyl-shift reactions in
the gas phase (see also section 4.4.2). These free energies are reported in
Table 5.1. In the reaction network considered in this study, isomerization
and methyl-shift reactions are taking place in the adsorbed phase and not
in the gas phase. Therefore, the Gibbs free energies of these reaction
in the adsorbed phase are of interest. To compute the the Gibbs free
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Table 5.1: Gibbs free energies of formation of different heptane isomers at different tempera-
tures as reported by D. W. Scott [133].

Molecule
Free Energy of formation/ [kJ mol-1]
400K 500K 600K 700K

2-Methylhexane 72.7 143.9 216.7 290.4
3-Methylhexane 73.2 143.5 215.9 288.7
2,3-Dimethylpentane 75.7 147.3 220.5 295.0
2,4-Dimethylpentane 74.9 148.1 222.6 298.3
2,2-Dimethylpentane 73.2 146.9 222.2 298.3
3,3-Dimethylpentane 76.6 149.8 224.7 300.4

energies of isomerization and methyl-shift reactions, first, the equilibrium
constants in the gas phase are calculated, see Eq. 4.3. Since the gas phase
and adsorbed phase are assumed to be in equilibrium, mixed Langmuir
adsorption isotherms are used to compute the equilibrium loading of all
heptane isomers using the equilibrium distribution of these components in
the gas phase. The temperature dependency is explicitly taken into account.
Using the equilibrium distribution in the adsorbed phase, the Gibbs free
energies of reaction in the adsorbed phase are calculated using Eq. 4.3.

5.3.5 Reactor model

Our reactor model is formed by the mas balance of the gas phase. Assum-
ing steady state conditions, the material balance includes the spatial (axial)
variations of concentrations of all components in the gas phase. Therefore,
the mass balance can be written as

U
dni,z

dz
= ri,z

ri,z =
1− ε

ε

Vreactor

n
ρPrads,i,z

(5.5)

where U is the average velocity of the gas phase, ni,z is the number of moles
of component i at the slice in a distance z from the inlet of the reactor, ri,z
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and rads,i,z are the total production rates of component i in units of mol
s−1 and mol kg−1 s−1, respectively. ε is the void fraction of the reactor,
U is the average velocity of the gas, Vreactor is the volume of the reactor,
n is number of grid points in the axial direction and ρP is the density of
the catalyst. The mathematical model consists of a system of Ordinary
Differential Equations (ODE) subject to following boundary conditions:

U(z) = Uin

pi(0) = pi,in
(5.6)

As in all this reactions, the number of moles of the reactant and and the
number of the moles the reaction products are the same, the total number
of moles remains unchanged. Therefore, it is assumed that the velocity
remains constant along the reactor. At each grid point, it is assumed
that the gas phase and the adsorbed phase are in equilibrium. Therefore,
using the partial pressures of components in the gas phase, the loading
of each component in the adsorbed phase follows from a mixed Langmuir
adsorption isotherm. There are 10 different components present in the
reactor, therefore, a system of 10 equations is solved to calculate the total
production rate of each component in the corresponding grid point. The
production rate is converted into units of mol s−1. Using a first order
upwind finite difference approximation, the gas phase composition in the
next grid point is calculated. In total, a system of N = 10 equations is
solved n = 1000 times, where N is the number of components and n is
the number of grid points in the axial direction. By fitting the theoretical
concentration of different product at different conditions to those obtained
experimentally, the activation energies and frequency factors for different
reactions are estimated. The Mean Sum of Squared of Residuals (MSSR) is
the natural objective function for this optimization problem. The residual
at each data point is defined as the difference between the experimental and
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theoretical concentration of component i. The objective function equals

MSSR =

N∑
i=0

n∑
j=0

(yi,j,out,model − yi,j,out,exp)
2

N × n− nP
(5.7)

where N is the number of components, n is the number of experiments, nP

is the number of estimated parameters, and yi,j,out,model and yi,j,out,model

are the mole fractions of component i at experimental conditions j at the
outlet of the reactor predicted by model and measured experimentally. The
input parameters for the mathematical model include specifications of the
reactor, the density and amount of catalyst placed inside the reactor, the
gas phase composition, flow rate, and pressure of the reactor. In total, 12
activation energies and 3 frequency factors are estimated.

5.4 Results and discussion

As shown in parity diagrams in Fig. 5.3, an excellent fit of the experi-
mental data is obtained for all components. Heptane, methylhexanes, and
cracking products are observed with high mole fractions. Therefore, even
small relative errors in estimation of mole fractions of these components
will significantly affect the objective function. Excellent fits are obtained
for these components. In our large pore structures, dimethylpentanes are
produced with mole fractions up to 0.1. This is considerably lower than the
mole fractions of methylhexanes. As a result, the fit for these components
is slightly less accurate than those of methylhexanes. The optimal values
of the fitting parameters are shown in Table 5.2. Clearly, the activation
energy depends on the type of zeolite structure, although the fitted values
are of similar magnitude. This is expected, because the structure influences
both the adsorption equilibrium and the energy of the transition state. The
frequency factors for the large-pore zeolite (FAU) are large for isomerization,
while for the small-pore zeolite (MRE) these are large for cracking reac-
tions. In BEA-type zeolite (intermediate pore size), the frequency factors
for isomerization and cracking are very similar.
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Figure 5.3: Parity plots experimental (vertical axis) and predicted (horizontal axis) mole
fractions of heptane (a), 2-mC6 (b), 3-mC6 (c), mC3 (d), C3 (e), C4 (f), 2,3-2mC5 (g),
2,4-2mC5 (h), 3,3-2mC5 (i), and 2,2-2mC5 (j) in the reactor outlet produced by zeolite BEA
(green triangles), zeolite Y (blue circles) and by MRE zeolite (red squares).
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Table 5.2: Optimal values for activation energies and frequency factors for different reactions
in FAU, BEA, and MRE-type zeolites.

BEA MRE FAU

Reaction E0
a/[kJ mol−1] A/[s−1] E0

a/[kJ mol−1] A/[s−1] E0
a/[kJ mol−1] A/[s−1]

C7(s) ⇌ 2-mC6(s) 175.5 7.58× 1011 149.0 1.35× 1012 154.7 1.78× 1013

C7(s) ⇌ 3-mC6(s) 145.3 7.58× 1011 150.6 1.35× 1012 176.9 1.78× 1013

2-mC6(s) ⇌ 2,3-2mC5(s) 134.6 7.58× 1011 158.5 1.35× 1012 150.3 1.78× 1013

3-mC6(s) ⇌ 2,3-2mC5(s) 132.2 7.58× 1011 179.1 1.35× 1012 141.3 1.78× 1013

2-mC6(s) ⇌ 3-mC6(s) 157.0 7.58× 1011 183.9 1.35× 1012 200.6 1.78× 1013

2,3-2mC5(s) ⇌ 2,2-2mC5(s) 158.4 3.71× 1012 138.5 3.63× 1013 169.5 7.25× 1012

2,3-2mC5(s) ⇌ 2,4-2mC5(s) 154.8 3.71× 1012 126.5 3.63× 1013 167.3 7.25× 1012

2,3-2mC5(s) ⇌ 3,3-2mC5(s) 135.4 3.71× 1012 111.1 3.63× 1013 140.9 7.25× 1012

2,2-2mC5(s) → mC3(s) +C3(s) 156.8 1.70× 1012 186.3 8.70× 1013 175.2 8.3× 1011

2,4-2mC5(s) → mC3(s) +C3(s) 158.5 1.70× 1012 190.0 8.70× 1013 159.5 8.3× 1011

3,3-2mC5(s) → mC3(s) +C3(s) 140.8 1.70× 1012 135.5 8.70× 1013 149.6 8.3× 1011

2,3-2mC5(s) → C3(s) +C3(s) 162.2 1.70× 1012 161.9 8.70× 1013 159.6 8.3× 1011

In Fig. 5.4, the conversion of methylhexanes as a function of the con-
version of heptane is shown. There is an excellent agreement between the
model and the experimental findings. BEA-type and FAU-type zeolites
are very similar in terms of conversion of methylhexanes. For MRE-type
zeolite, conversion of methylhexane stays low up to very high conversions
of heptane. To investigate the underlying reason for this difference one can
study the pore structure of these zeolites. The pores of BEA- and FAU-
type zeolites are large enough that none of the heptane isomers experience
any energy barrier for diffusion within the pore network of these structure
[147]. However, the pores of MRE-type zeolite are slightly narrower com-
pared to BEA-type zeolite. As a result, in the pores of MRE-type zeolite,
only the bulkiest isomers (dimethylpentanes with geminal methyl groups)
experience moderate energy barriers to reach the gas phase. These free
energy barriers are listed in Table 5.3. Free energy barriers for diffusion
of methylhexanes and dimethylpentanes with non-geminal methyl groups
are almost the same while the free energy barriers for dimethylpentanes
with geminal methyl groups are more than two times higher. Therefore, it
can be argued that at lower conversion of heptane (lower temperatures),
these components stay inside the channels of MRE-type zeolites. These
molecules can either crack and convert into fast diffusing cracking prod-
uct, or stay inside the zeolite structure. Since cracking does not start
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Figure 5.4: Caparison between the experimental (lines) and predicted conversion of methyl-
hexanes as a function of the conversion of heptane in the reactor outlet produced by zeolite
BEA (green triangles), zeolite Y (blue circles) and by MRE zeolite (red squares).

until high conversion of heptane (roughly 80%), up to this conversion level
dimethylpentanes with geminal methyl groups will stay inside the zeolite
structure. This will shift the methyl shift reactions and isomerization reac-
tions in favour of methylhexanes and dimethylpentanes with non-geminal
methyl groups. This results, in a lower conversion of methylhexanes and a
higher fraction of dimethylpentanes with non-geminal methyl groups. This
is supported by the experimental finding presented in Fig. 5.1. While for
FAU- and BEA-type zeolites, the distribution of dimethylpentanes reaches
the equilibrium level at very low conversion of methylhexane, for MRE-type
zeolite the equilibrium between the dimethylpentanes is only reached after
50% conversion of methylhexane. It can also clearly be seen that at low
conversions dimethylpentanes with geminal groups are not detected in the
gas phase. As conversion increases (higher temperatures), the contribution
of these component in the dimethylpentanes production increases. This
indicates that at low temperature dimethylpentanes with geminal methyl
groups, although produced, cannot overcome the free energy barrier for dif-
fusion and reach the gas phase. As temperature increases, these molecules
become more mobile and can reach the gas phase. It is shown in previous
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Table 5.3: Free energy (Helmholtz) barriers for diffusion of different heptane isomers in
straight channels of MFI, MEL, and MRE-type zeolites at zero loading and at 227◦C, as
computed by CBMC simulations. The length of the channels are divided into 1000 slices and
the probability of being in each of these slices is calculated using only a single molecule. The
molecule is restricted to a single channel and trial moves attempting to move the molecule
outside the channel are automatically rejected [147].

Molecule
Free Energy Barrier/ [kBT ]
MRE MFI MEL

2-Methylhexane 4.7 10.2 14.9
3-Methylhexane 3.9 11.1 14.5
2,3-Dimethylpentane 2.8 18.0 21.1
2,4-Dimethylpentane 3.8 12.0 16.6
2,2-Dimethylpentane 12.7 25.6 38.6
3,3-Dimethylpentane 9.1 26.8 38.7

chapter that for MFI and MEL-types of zeolites, due to diffusion limitations,
2,4-dimethylpentane is the main dibranched product for the catalytic hydro-
conversion of heptane. While for BEA-type zeolite, branched molecules are
distributed according to the equilibrium distribution. The presence of large
pores of BEA-type zeolite and, therefore, high mobility of all dibranched
isomers within the pore network of BEA-type zeolite was identified as the
underlying reason for the equilibrium distribution of dibranched isomers in
BEA-type zeolite. In addition to BEA-type zeolite, two other large pore
structures, one with larger pore size (FAU-type zeolite) and one with slightly
narrower pores (MRE-type zeolite), are studied in this work. For BEA- and
FAU-type zeolite, the distribution of dibranched is the same as what is
estimated from the equilibrium distribution in the gas phase except for very
low conversion levels where 2,3-dimethylpentane is produced preferentially.
However, for MRE-type zeolite equilibrium and for conversion levels below
50%, 2,3-dimethylpentane has the highest contribution in production of
dibranched isomers followed by 2,4-dimethylpentane. This behaviour can
also be explained by the product shape selectivity. In MRE-type zeolite,
2,3-dimethylpentane and 2,4-dimethylpentane have to overcome much lower
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free energy barriers compared to dimethylpentanes with geminal methyl
groups. Therefore, at low conversion levels (low temperatures), these com-
ponent can diffuse much faster within the pores of MRE-type zeolite and
desorb into the gas phase. The free energy barriers for dimethylpentanes
with geminal methyl groups are much higher than those of dimethylpentanes
with non-geminal methyl groups, however, these values are still significantly
lower than those experienced by the same molecules in MFI- and MEL-type
zeolites. Therefore, these molecules are significantly more mobile within
the pores of MRE-type zeolite compared to the pores of MFI- and MEL-
type zeolites. As temperature increase, the mobility of these molecules
improves and as a result contribution of dimethylpentanes with geminal
methyl groups in total production of dibranched molecules increase until it
reached the equilibrium around 50% conversion of methylhexanes. Consid-
ering the above discussion and data showed in Table 5.3, one can categorizes
the free energy barriers between 0 to 5 kBT as low between 5 to 15 kBT as
moderate, and above 15 kBT as high.

5.5 Conclusions

Three large pore catalyst are considered in this chapter. Dibranched
molecules produced from catalytic hydroconversion of heptane using BEA-
type zeolite are distributed according to the equilibrium distribution. Ex-
cept for BEA-type zeolite, we considered a catalyst with a larger pore size
(FAU-type zeolite) and a catalyst with a narrower pores (MRE-type zeolite).
We showed that as the pore size increases the equilibrium distribution of
dibranched molecules is reached at a lower conversion of heptane. For FAU-
type zeolite, the equilibrium distribution is almost immediately reached as
the first dibranched molecules are formed. For MRE-type zeolite, this is
only achieved after 50% conversion of methylhexanes. A complete reaction
network for the hydroconversion of heptane on large pore catalysts is iden-
tified. This is used as to simulate the catalytic hydroconversion of heptane
in a packed bed. The reaction rates for different reactions are estimated
by fitting the simulated results to an extended set of experimental data.
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The excellent agreement between the modeling results and experimental
data indicates that an appropriate reaction network and description of ki-
netics are used. It is important to note that the model presented here
is a simplification of the actual experiments. Using thermodynamic data
from the gas phase, and computed adsorption isotherms, we have separated
the effect of confinement on adsorption and reaction, and found reaction
rates that depend on the pore size. In smaller pores, cracking is favoured
while in large-pore zeolites, isomerization is more preferential. This can
be explained by size differences of the transition states. It appears that
confinement influences both adsorption behaviour and the reaction rates. It
is interesting to speculate whether or not this also implies a direct relation
between the adsorption isotherm and the reaction rate. This could imply
that adsorption and reaction may be lumped into a single (much simpler)
model, at the expense of a clear physical interpretation.



Chapter 6

Continuous Fractional
Component Monte Carlo in
the Gibbs Ensemble

This chapter is based on the following papers: (1) Poursaeidesfahani, A.;
Torres-Knoop, A.; Dubbeldam , D.; Vlugt, T. J. H., Direct free energy cal-
culation in the continuous fractional component Gibbs ensemble: Journal of
Chemical Theory and Computation, 2016, 12, 1481-1490; (2) Poursaeidesfa-
hani, A.; Rahbari, A.; Torres-Knoop, A.; Dubbeldam , D.; Vlugt, T. J. H.;
Computation of thermodynamic properties in the Continuous Fractional
Component Monte Carlo Gibbs ensemble: Molecular Simulation, 2016, 43,
189-195.

6.1 Introduction

In this part of this thesis, advanced simulation techniques are intro-
duced to simulate dense fluids at the molecular scale. This can be used for
simulating zeolite-based separation and catalytic production of branched hy-
drocarbons at industrial conditions. In general, the osmotic ensemble [148,
149], the grand-canonical ensemble [38, 150], Gibbs ensemble (GE) [151–



100 CFCMC in the Gibbs Ensemble

153], and the reaction ensemble [154–156] can be used for studying these
processes. The GE and grand-canonical ensemble are based on the same
concept (simulating chemical equilibrium by molecule exchanges between
the two phases). Both ensembles can be used for the adsorption of hydrocar-
bons inside zeolites. Simulations in these ensembles can provide information
regarding the adsorbed phase in equilibrium with a gas or liquid phase. In
the GE, a separate simulation box is used to simulated explicitly the gas or
liquid phase. In the grand-canonical ensemble, the gas phase is simulated im-
plicitly using an equation of state. The GE and grand-canonical ensembles
are designed to simulated an equilibrium between two phases. Therefore,
in these simulations, the conditions of phase equilibria should be satisfied.
On of these conditions is the equality of chemical potentials between the
two phases for all the species in the systems. In practice, this condition
is reached by sufficient number of molecule exchanges between the phases.
Unfortunately, the acceptance probabilities for the molecule exchanges can
be close to zero. This is typically the case when molecules are large or
when densities or loading are high [38]. As mentioned in the previous chap-
ters (sections 1.1 and 3.1), branched hydrocarbons are bulky and industrial
separation and production of these molecules takes place at high loadings.
Therefore, it is important to use advanced simulation that can increase the
acceptance probability of the molecular exchanges. There are two classes
of solutions to overcome the problem of low acceptance probabilities for
molecule exchanges: methods based on the insertion of molecules in a single
step such as Configurational-Bias Monte Carlo (CBMC) or related methods
[144–146, 157, 158], and methods inspired by expanded-ensembles [159–
161] such as the Continuous Fractional Component Monte Carlo (CFCMC)
method developed by Shi and Maginn [54, 55]. The advantage of the latter
approach is that molecules are not inserted in a single trial move such as
in CBMC, but in a gradual way. Therefore, the method does not depend
on the occurrence of spontaneous cavities in the system that have the same
size as the exchanged molecule. CFCMC is frequently used for computing
solubilities of various gases in Ionic Liquids [55, 162–168] and this method
is often significantly more efficient than CBMC, even for small molecules
such as CO2 and CH4 [169]. The CFCMC approach can also be combined
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with Reaction Ensemble Monte Carlo [116, 154, 170, 171] to simulate the
zeolite-based production of hydrocarbons at high loadings. In this chapter,
an advanced simulation method based on the CFCMC approach is intro-
duced to facilitate molecule exchanges in the GE. In the next chapter, a
similar method is discussed for the reaction ensemble.

6.2 The Gibbs Ensemble

Monte Carlo simulation in the Gibbs Ensemble (GE), introduced in
the 80s of the last century by Panagiotopoulos [151–153], is widely applied
for simulating phase coexistence of pure components and mixtures [172–
176]. Frenkel showed that the densities obtained for the two simulation
boxes in GE are corresponding to the densities of two phases at equilibrium
[38]. Smit and Frenkel also showed that it is possible to compute the
chemical potential of the system at equilibrium from simulations in GE
[177]. Equilibrium is achieved when the pressures and chemical potentials
are equal in both simulation boxes [38]. The GE provides a straightforward
route to determine accurate coexistence densities and critical parameters
using relatively small system sizes [176]. In the Gibbs Ensemble version of
CFCMC, the conventional GE is expanded with two fractional molecules per
component, one in each simulation box [54, 55]. Interactions of the fractional
molecule with the surrounding are scaled by a coupling parameter λ, such
that λ = 0 means no interactions with the surroundings (the fractional
molecule is an ideal gas molecule), and λ = 1 means full interactions
with the surroundings (the fractional molecule has the same interactions
as other molecules of the same component). The coupling parameters of
fractional molecules in two boxes are constrained by λbox 1 + λbox 2 = 1
[55]. In addition to conventional trial moves in the GE, attempts are made
to change the coupling parameters, using λn,box 1 = λo,box 1 + ∆λ. Here,
n and o denote the new and old configurations, respectively. Due to the
constraint λbox 1 + λbox 2 = 1, the coupling parameter of the fractional
molecule in the other simulation box also changes according to λn,box 2 =
λo,box 2 −∆λ. When λn,box 1 > 1 or λn,box 1 < 0, molecule transfer between
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the simulation boxes occurs. For more details, we refer the reader to the
original publication by Shi and Maginn [55]. Although the CFCMC GE
algorithm significantly facilitates the exchange of molecules between the
simulation boxes, one cannot directly obtain chemical potentials, and hence
no direct check for chemical equilibrium is possible. Moreover, due to the
constraint λbox 1 + λbox 2 = 1 the two fractional molecules have to adapt to
their surrounding molecules simultaneously. This may reduce the efficiency
of the method when the density of at least one of the phases is high.

In this chapter, an alternative formulation for CFCMC GE with only a
single fractional molecule per component is introduced. As a proof of princi-
ple, our method is tested and validated for LJ particles and the TIP3P-Ew
water model [178]. The reason to choose these simple systems is that con-
ventional GE yields accurate results for coexistence densities and chemical
potentials, so a detailed numerical comparison can be made. In the new
method, the chemical potential of each box is directly obtained without
using test particles and therefore chemical equilibrium between the two
phases can be checked directly. We show analytically that the chemical
potentials obtained are identical to those in the conventional GE, but no
test particles are required and hence the approach will be efficient for dense
fluids. Knowledge of the chemical potentials facilitates thermodynamic
modeling using the simulation results (e.g. fugacity coefficients and activ-
ity coefficient follow directly from the simulations). In addition, the issue
regarding how to compute average properties in the expanded ensemble is
studied. The relevant equations for computing the pressures in the conven-
tional GE, the CFCMC GE. [38], and the pressure corresponding to the
conventional GE calculated in CFCMC GE are derived, Also, guidelines for
computing averages corresponding to the conventional GE and computed
in the CFCMC GE are presented. The pressures and densities of the two
coexisting phases of LJ particles at various temperatures computed in the
conventional GE and the CFCMC GE are presented. Our formulation of
CFCMC GE is added to the RASPA software package [115, 116].
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6.3 Methodology

In our new formulation of the CFCMC GE method, we consider a single
component system consisting of NT whole molecules. These molecules are
indistinguishable and are referred to as whole molecules as they interact
via the full unscaled interaction potential. The total volume VT of the
simulation boxes is fixed while the boxes can exchange volume. Molecules
can be distributed between the two simulation boxes. In addition to the NT

whole molecules, there is a single fractional molecule present in the system
that is distinguishable from the whole molecules. This fractional molecule
can be located in either of the two simulation boxes (see Fig. 6.1). The
interactions of the fractional molecule with the whole molecules are scaled
with a coupling parameter λ ∈ [0, 1] (hence the name “fractional molecule”).
For the LJ potentials it is convenient to scale interactions as [55]:

uLJ(r) = λ4ε

 1[
1
2(1− λ)2 +

(
r
σ

)6]2 − 1[
1
2(1− λ)2 +

(
r
σ

)6]
 (6.1)

Electrostatic interactions are scaled according to [54, 55, 169]

uCoul(r) =

{
r > 2A λ5 1

4πε0

qiqj
r

r ≤ 2A λ5 1
4πε0

qiqj
r+A(1−λ)

(6.2)

where ε0 is the dielectric constant in vacuum, qi is the partial charge of
atom i, and A = 0.5Å. Note that other choices for scaling the interactions
of fractional molecule are also possible [179–182].



104 CFCMC in the Gibbs Ensemble

Box 1 Box 2

Figure 6.1: Schematic representation of serial GE/CFC for the combination of Gibbs ensemble
with CFCMC. In serial GE/CFC, there is a single fractional molecule present in the system
that is distinguishable from the whole molecules. This fractional molecule can be located in
either of the two simulation boxes.

Following the guidelines presented in the work of Frenkel and Smit [38,
177] and Shi and Maginn [54, 55], the partition function of such a system
is:

QCFCMC =
1

Λ3(NT+1) (NT )!

2∑
i=1

NT∑
N1=0

1∫
0

dλ

VT∫
0

dV1V1
N1+δi,1(VT − V1)

NT−N1+δi,2

(NT )!

(N1)! (NT −N1)!
×
∫

dsN1 exp[−βUint,1(s
N1)]∫

dsNT−N1 exp[−βUint,2(s
NT−N1)]× δi,1

∫
ds1frac exp[−βUfrac,1(s

1
frac, s

N1 , λ)]+

δi,2

∫
ds2frac exp[−βUfrac,2(s

2
frac, s

NT−N1 , λ)]



(6.3)

in which β = 1/(kBT ) and Λ is the thermal wavelength. The parameter i
indicates the box in which the fractional molecule is located. Uint,i indicates
the energy of the indistinguishable whole molecules in box i, and Ufrac,i

indicates the interaction energy of the fractional molecule in box i with
the indistinguishable (whole) molecules in box i. The scaled coordinates
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of molecules are indicated by the symbol s. The function δi,j equals 1
when i = j and zero otherwise. As the fractional molecule can be located
in either of the simulation boxes, we need to consider both possibilities in
Eq. 6.3. In principle, one could reformulate the partition function with more
than one fractional molecule per component. This increases the number of
combinations in the last term of Eq. 6.3 and therefore this is not considered
here.

In MC simulation in the GE ensemble, we have 3 different categories of
trial moves: displacement of a randomly selected molecule (including the
fractional molecule), volume changes (in such a way that the total volume
VT is conserved), and molecule exchanges between the simulation boxes.
It is trivial to show that the acceptance rule for molecule displacements
is the same as in the conventional GE [38, 183]. For volume changes, one
should take care that the fractional molecule is taken into account. From
Eq. 6.3, it immediately follows that the acceptance criterion for random
volume changes equals [38]

acc(o → n) = min

(
1,

(V n
1 )N1+δi,1 (VT−V n

1 )NT−N1+δi,2

(V o
1 )N1+δi,1 (VT−V o

1 )NT−N1+δi,2
exp [−β∆U ]

)
(6.4)

in which ∆U is the total energy change resulting from the trial move, and
the symbols n and o are used to denote the new and old configurations,
respectively. An extended derivation for the chemical potentials of different
components in a mixture is shown in Appendix 2. For ergodic sampling of
the ensemble of Eq. 6.3, three different types of trial moves are devised for
exchanging molecules (that are schematically illustrated in Figs. 6.2 to 6.4).
Changing the parameter λ by adding a uniformly distributed random value
from the interval [−∆λ,∆λ], while the fractional molecule stays in the
same simulation box at the same position (see Fig. 6.2). Assume here that
the fractional molecule is in box 1 (the resulting acceptance rule when the
fractional molecule is in the other box is similar). As the parameter λ is
constrained to the interval between 0 and 1, trial moves that take λ outside
this range are automatically rejected.
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The probabilities for the system to be in the old (o) and new (n) con-
figurations are respectively

po =
1

QCFCMC

1

Λ3(NT+1) (NT )!
V1

N1+1(VT − V1)
NT−N1

(NT )!

(N1)! (NT −N1)!
×

exp[−βUint,1(s
N1)] exp[−βUint,2(s

NT−N1)] exp[−βUfrac,1(sfrac, s
N1 , λo)]

pn =
1

QCFCMC

1

Λ3(NT+1) (NT )!
V1

N1+1(VT − V1)
NT−N1

(NT )!

(N1)! (NT −N1)!
×

exp[−βUint,1(s
N1)] exp[−βUint,2(s

NT−N1)] exp[−βUfrac,1(sfrac, s
N1 , λn)]

(6.5)

in which λn is the new value of the coupling parameter and λo is the old
one. From this it follows that the ratio of these probabilities equals

pn
po

= exp
[
−β
(
Ufrac,1(sfrac, s

N1 , λn)− Ufrac,1(sfrac, s
N1 , λo)

)]
(6.6)

and therefore the acceptance rule reduces to the conventional Metropolis
acceptance rule [38, 183]

acc(o → n) = min
(
1, exp

[
−β
(
Ufrac,1(sfrac, s

N1 , λn)− Ufrac,1(sfrac, s
N1 , λo)

)])
= min (1, exp [−β∆U ])

(6.7)

in which ∆U is the energy change resulting from the trial move. It is
important to note that the maximum change in λ (denoted by ∆λ) can be
chosen differently for each simulation box. The value of ∆λ can be much
larger in the gas phase than in the liquid phase.
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Box 1

Box 2

NewOld

Figure 6.2: Schematic representation of the trial move attempting to change the coupling
parameter λ while the fractional molecule stays in the same simulation box. The dashed
sphere represents fractional molecules. In this example, the interactions of the fractional
molecule in box 1 are increased. These trial moves are accepted or rejected according to
Eq. 6.7 (or Eq. 6.16 when a weight function is used).

Swapping the fractional molecule between the simulation boxes, while
keeping the value of λ fixed (see Fig. 6.3). Assume that the fractional
molecule is removed from its current position sfrac in box 1 and inserted at
a random position snfrac in box 2. The probabilities to be in the old and new
configuration are respectively:

po =
1

QCFCMC

1

Λ3(NT+1) (NT )!
V1

N1+1(VT − V1)
NT−N1

(NT )!

(N1)! (NT −N1)!
×

exp[−βUint,1(s
N1)] exp[−βUint,2(s

NT−N1)] exp[−βUfrac,1(sfrac, s
N1 , λ)]

pn =
1

QCFCMC

1

Λ3(NT+1) (NT )!
V1

N1(VT − V1)
NT−N1+1 (NT )!

(N1)! (NT −N1)!
×

exp[−βUint,1(s
N1)] exp[−βUint,2(s

NT−N1)] exp[−βUfrac,2(s
n
frac, s

NT−N1 , λ)]

(6.8)



108 CFCMC in the Gibbs Ensemble

Box 1

Box 2

NewOld

Figure 6.3: Schematic representation of the trial move attempting to swap the fractional
molecule between the simulation boxes. The dashed sphere represents fractional molecules.
In this example, the fractional molecule is moved from box 1 to a randomly selected position
in box 2, while keeping the value of λ fixed. These trial moves are accepted or rejected
according to Eq. 6.10 (or Eq. 6.17 when a weight function is used).

The ratio of these probabilities equals

pn
po

= VT−V1
V1

exp
[
−β
(
Ufrac,2(s

n
frac, s

NT−N1 , λ)− Ufrac,1(sfrac, s
N1 , λ)

)]
(6.9)

and therefore the acceptance probability equals

acc(o → n) = min

(
1,

VT − V1

V1
exp

[
−β

(
Ufrac,2(s

n
frac, s

NT−N1 , λ)

− Ufrac,1(sfrac, s
N1 , λ)

)])

= min

(
1,

VT − V1

V1
exp [−β∆U ]

) (6.10)

It is important to note that when λ is very small, this equation reduces to
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acc(o → n) =min

(
1,

VT − V1

V1

)
(6.11)

This result is expected, as the distribution of an ideal gas molecule over
two volumes equals the ratio of the two volumes. Changing the fractional
molecule into a whole molecule while keeping its position fixed, and, si-
multaneously, changing a (randomly selected) whole molecule in the other
simulation box into a fractional molecule while not changing the value of
λ (see Fig. 6.4). Consider here the situation that the fractional molecule
is initially located in box 1. This molecule is transformed into a whole
molecule and a randomly selected molecule in box 2 is transformed into a
fractional molecule. We can write for the probabilities for being in the old
and new configuration respectively

po =
1

QCFCMC

1

Λ3(NT+1) (NT )!
V1

N1+1(VT − V1)
NT−N1

× (NT )!

(N1)! (NT −N1)!
exp[−βUint,1(s

N1)]

exp[−βUint,2(s
NT−N1)] exp[−βUfrac,1(s

1
frac, s

N1 , λ)]

pn =
1

QCFCMC

1

Λ3(NT+1) (NT )!
V1

N1+1(VT − V1)
NT−N1

× (NT )!

(N1 + 1)! (NT −N1 − 1)!
exp[−βUint,1(s

N1+1)]×

exp[−βUint,2(s
NT−N1−1)] exp[−βUfrac,2(s

2
frac, s

NT−N1 , λ)]

(6.12)

The ratio of these probabilities equals

pn
po

=
NT −N1

N1 + 1
exp [−β∆U ] (6.13)

in which ∆U is the energy change of the two simulation boxes due to the
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Box 1

Box 2

NewOld

Figure 6.4: Schematic representation of the trial move attempting to change the fractional
molecule into a whole molecule while keeping its position fixed, and, simultaneously, changing
a (randomly selected) whole molecule in the other simulation box into a fractional molecule
while not changing the value of λ. In this example, the fractional molecule (dashed sphere)
in box 1 is exchanged with a whole molecule in box 2. These trial moves are accepted or
rejected according to Eq. 6.14 (or Eq. 6.18 when a weight function is used).

trial move. The acceptance probability then becomes

acc(o → n) =min

(
1,

NT −N1

N1 + 1
exp [−β∆U ]

)
(6.14)

For λ close to 1, the energy change ∆U is small and hence the acceptance
criterion reduces to

acc(o → n) =min

(
1,

NT −N1

N1 + 1

)
(6.15)
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It is convenient to bias the probability distribution of λ in such a way that
the sampled probability distributions pi(λ) are flat and that the fractional
molecule is equally likely to be in box 1 and box 2 (in principle by changing
the applied bias one could tune this ratio to any desired value). In practice,
this is realized by multiplying the statistical weight of each system state
by a factor exp[W (λ, i)] (i being the box in which the fractional molecule
is located). It is important to note that as the fractional molecule can
be located in two boxes, the weight function W (λ, i) is a two-dimensional
function that depends both on λ and the box the fractional molecule is
located in (i). The acceptance criterion for changing the parameter λ
(Fig. 6.2) then becomes

acc(o → n) = min (1, exp [−β∆U +W (λn, i)−W (λo, i)]) (6.16)

The acceptance criterion for swapping the fractional molecule (Fig. 6.3)
becomes

acc(o → n) =min

(
1,

VT − V1

V1
exp [−β∆U +W (λ, 2)−W (λ, 1)]

)
(6.17)

The acceptance criterion for the trial move of Fig. 6.4 changes to

acc(o → n) =min

(
1,

NT −N1

N1 + 1
exp [−β∆U +W (λ, 2)−W (λ, 1)]

)
(6.18)

To obtain the correct Boltzmann averages, the ensemble average of an
observable X should be computed using

⟨X⟩Boltzmann =
⟨X exp[−W (λ, i)]⟩modified

⟨exp[−W (λ, i)]⟩modified

(6.19)

The weight function W (λ, i) can be determined iteratively [38] or by the
Wang-Landau algorithm [184, 185]. The algorithm can be easily extended
to mixtures [186] and the NPT version of the Gibbs ensemble [153]. For
molecules with intramolecular degrees of freedom, the trial move of Fig. 6.3
can be performed by inserting the fractional molecule at a random position
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with a random orientation in the new simulation box, while keeping the
internal configuration of the molecule the same as in the old configuration.
For ergodic sampling, trial moves that attempt to change the internal
configuration of flexible molecules should be added to the MC scheme [38,
187, 188]. In Ref. [177], it is shown that the chemical potential of molecules
in box i of the conventional GE equals

µi =− kBT ln

〈
Vi/Λ

3

Ni + 1
exp[−β∆U+

i ]

〉
GE

(6.20)

in which ∆U+
i is the energy change when a molecule is inserted at a random

position in box i. In Eq. 6.20, the reference state chemical potential (µ0
i )

is disregarded for simplicity. µ0
i is identical for both phases. Therefore,

disregarding this value does not affect the condition of equality of chemical
potentials. How to compute µ0

i is discussed in the next chapter and Ap-

pendix. We will show that the term
〈
Vi/Λ

3

Ni+1 exp[−β∆U+
i ]
〉
GE

corresponding

to the conventional GE can be computed using simulation in the ensemble
of Eq. 6.3, but without using test particles. This can be done as follows
for box 1 (using the brackets ⟨· · · ⟩ to indicate averages in the ensemble of
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Eq. 6.3, and ⟨· · · ⟩GE to indicate averages in the conventional GE):

〈
δλ,0δi,1
V1/Λ3

〉
=

1

QCFCMC

1

Λ3(NT+1) (NT )!

NT∑
N1=0

VT∫
0

dV1V1
N1+1(VT − V1)

NT−N1

(NT )!

(N1)! (NT −N1)!

1

V1/Λ3

∫
dsN1 exp[−βUint,1(s

N1)]∫
dsNT−N1 exp[−βUint,2(s

NT−N1)]

=
1

QCFCMC

1

Λ3NT (NT )!

NT∑
N1=0

VT∫
0

dV1V1
N1(VT − V1)

NT−N1

(NT )!

(N1)! (NT −N1)!

∫
dsN1 exp[−βUint,1(s

N1)]∫
dsNT−N1 exp[−βUint,2(s

NT−N1)]

(6.21)
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〈
δλ,1δi,1
N1 + 1

〉
=

1

QCFCMC

1

Λ3(NT+1) (NT )!

NT∑
N1=0

VT∫
0

dV1V1
N1+1(VT − V1)

NT−N1

(NT )!

(N1)! (NT −N1)!

1

N1 + 1

∫
dsN1 exp[−βUint,1(s

N1)]∫
dsNT−N1 exp[−βUint,2(s

NT−N1)]∫
ds1frac exp[−βUfrac,1(s

1
frac, s

N1 , 1)]

=
1

QCFCMC

1

Λ3NT (NT )!

NT∑
N1=0

VT∫
0

dV1V1
N1(VT − V1)

NT−N1

(NT )!

(N1)! (NT −N1)!

∫
dsN1 exp[−βUint,1(s

N1)]∫
dsNT−N1 exp[−βUint,2(s

NT−N1)]

V1/Λ
3

N1 + 1

∫
ds1frac exp[−βUfrac,1(s

1
frac, s

N1 , 1)]

(6.22)

In these equations, the notations ⟨δλ,1⟩ and ⟨δλ,0⟩ are used for limλ↑1 p1(λ)
and limλ↓0 p1(λ), respectively. It is important to note that in the limit where
the value of λ approaches one, the fractional molecule is still distinguishable
from the whole molecules. As the partition function of the conventional GE
equals [177]

QGE =
1

Λ3NT (NT )!

NT∑
N1=0

VT∫
0

dV1V1
N1(VT − V1)

NT−N1
(NT )!

(N1)! (NT −N1)!
×

∫
dsN1 exp[−βUint,1(s

N1)]

∫
dsNT−N1 exp[−βUint,2(s

NT−N1)]

(6.23)
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we have〈
δλ,1δi,1
N1+1

〉
〈
δλ,0δi,1
V1/Λ3

〉 =

〈
V1/Λ

3

N1 + 1
exp[−β∆U+

i ]

〉
GE

(6.24)

and therefore

µCFCMC,1 =− kBT ln

〈
δλ,1δi,1
N1+1

〉
〈
δλ,0δi,1
V1/Λ3

〉 (6.25)

This means that the chemical potential in box 1 for CFCMC GE simulations
directly follows from the probabilities that λ approaches zero or one, and
that the obtained result is identical to that in the conventional GE. For
sufficiently large systems, the volume and number of whole molecules in
box 1 is uncorrelated to the value of λ and hence Eq. 6.25 reduces to

µCFCMC,1 ≈ −kBT ln

〈
δi,1

N1+1

〉
〈

δi,1
V1/Λ3

〉 − kBT ln

(
p1(λ ↑ 1)

p1(λ ↓ 0)

)
(6.26)

≈ −kBT ln

〈
V1/Λ

3

N1 + 1

〉
− kBT ln

(
p1(λ ↑ 1)

p1(λ ↓ 0)

)
(6.27)

Eq. 6.27 is identical to the chemical potential obtained by thermodynamic
integration in the canonical ensemble [171, 189, 190]. As pi(λ) can be steep
for the liquid phase in the region λ ≈ 1, extrapolation to λ → 1 may be
required. We found that in practice a linear extrapolation is sufficiently
accurate.

For computing ensemble average energies and densities of the simulation
boxes, it is not obvious how to deal with the fractional molecule. For
example, consider a system with N1 molecules and the fractional molecule
in box 1. One could define the instantaneous density as N1/V1, but also
as (N1 + λ)/V1 [54], or, in general as (N1 + f(λ))/V1 in which f(λ) is an
arbitrary function of λ. Similarly, for the average energy of the total system
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we can compute the ensemble average of the quantity [Uint + g(λ)] in which
g(λ) is a similar arbitrary function. At the first sight, logical choices may
be to set g(λ) = Ufrac or g(λ) = 0. In Refs. [32, 191], it is shown that it is
best no to count the fractional molecules, i.e. f(λ) = 0 and g(λ) = 0. This
will also be used in chapter 7.

6.3.1 Computation of the pressure

In molecular simulations, the thermodynamic pressure is usually com-
puted by averaging over the instantaneous microscopic pressures. In any
NVT ensemble, the general expression for the thermodynamic pressure P
is [183, 192, 193]

P = kBT

(
∂ lnQ

∂V

)
T

(6.28)

Considering the fact the Gibbs ensemble is a special case of the NVT
ensemble, Eq. 6.28 is applicable to the GE and CFCMC GE. The pressure
in the conventional GE is obtained by the conventional virial equation [38,
183]:

PGE,j = kBT

〈
Nj

Vj

〉
GE

+

〈∑
a<b

fj(rab,j)rab,j

3Vj

〉
GE

(6.29)

where rab,j and fj(rab,j) are the distance and the force acting between
particles ”a” and ”b” in box ”j”(assuming pair potentials). The first term
on the right hand side of Eq. 6.29 is the ideal gas contribution and the second
term is commonly known as the virial contribution [183]. The labeling of
the boxes is arbitrary, therefore, the same equation is obtained for the other
box. Since there is only one thermodynamic pressure for the system, the
pressures of the two boxes are on average equal.
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The thermodynamic pressure in the CFCMC GE is computed from [194]:

PCFCMC,j = kBT

(
∂ lnQCFCMC

∂VT

)
T

= kBT

〈
Nj + δi,j

Vj

〉
CFCMC

+

〈∑
a<b

fj(rab,j)rab,j

3Vj

〉
CFCMC

(6.30)

In this equation, the contribution of the fractional molecule is included in
the ideal gas part and in the virial part. The thermodynamic pressures in
the CFCMC GE (Eq. 6.30) and conventional GE (Eq. 6.29) are clearly not
identical. However, it is possible to compute the properties corresponding
to the conventional GE while performing simulations in the CFCMC GE.
One can write the following ensemble averages in CFCMC GE:

〈
δλ=0,i=1

1

V1

〉
CFCMC

=
1

QCFCMC

1

Λ3(NT+1) (NT )!

NT∑
N1=0

(
NT
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) VT∫
0

dV1V1
N1(VT − V1)

NT−N1

×
∫

dsN1 exp(−βUint,1(s
N1 , V1))

∫
dsNT−N1 exp(−βUint,2(s
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(6.31)
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(6.32)
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Dividing Eq. 6.31 by Eq. 6.32, the QCFCMC terms cancel, and we obtain〈
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(6.33)

This yields the average density in the Gibbs ensemble〈
δλ=0,i=1

N1

V1
2

〉
CFCMC〈

δλ=0,i=1
1
V1

〉
CFCMC

=

〈
N1

V1

〉
GE

(6.34)

In general, for any thermodynamic property Xj in box j, we can calculate
⟨X⟩GE from the CFCMCGE simulations. Repeating the same mathematical
steps for any thermodynamic property property X, yields:

⟨Xj⟩GE =

〈
δλ=0,i=j

X
Vj

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

(6.35)

The pressure of box j corresponding to the conventional GE but computed
in CFCMC GE becomes

P ∗
GE,j = kBT

〈
δλ=0,i=j

Nj

V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

+

〈
δλ=0,i=j

∑
a<b

fj(rab,j)rab,j

3V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

= PGE,j (6.36)

The difficulty associated with computing P ∗
GE,j using Eq. 6.36 is that only

the states in which the value of λ equals zero are contributing to the en-
semble average. Therefore, long simulations may be required to obtain
reliable pressures especially for the liquid phase. Assuming that there is no
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correlation between the volume and the number of whole molecules, and
also no correlation between the volume and the virial part of the pressure,
Eq. 6.36 reduces to

P ∗∗
GE,j = kBT

〈
Nj

Vj

〉
CFCMC

+

〈 ∑
a<b,a,¬frac

fj(rab,j)rab,j

3Vj

〉
CFCMC

(6.37)

where the notation “¬frac” indicates that contribution of fractional molecule
in virial part of the pressure should be disregarded. It is important to note
that P ∗∗

GE is an approximation for the pressure corresponding to the GE,
and unlike P ∗

GE, PGE, and PCFCMC, the quantity P ∗∗
GE may not be equal for

both simulation boxes. In the gas phase, particles are usually far enough
from each other that the contribution of the virial part in the total pressure
is limited and not correlated with the volume of the box. However, in the
liquid phase, stronger correlation between the contribution of the viral part
of the pressure and the volume of the box is expected. The validity of the
simplification of Eq. 6.37 is numerically investigated in section 6.5. One
can use the exact same approach to define different densities:

ρGE,j =

〈
Nj

Vj

〉
GE

(6.38)

ρCFCMC,j =

〈
Nj + δi,j

Vj

〉
CFCMC

(6.39)

ρ∗GE,j =

〈
δλ=0,i=j

Nj

V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

(6.40)

ρ∗∗GE,j =

〈
Nj

Vj

〉
CFCMC

(6.41)

where ρGE,j is the average density of box j computed in the conventional
GE, ρCFCMC,j is the average density of box j computed in the CFCMC GE
(including the fractional molecule), ρ∗GE,j is the average density of box j
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computed in the CFCMC GE only when the value of λ equals zero excluding
contribution of the fractional molecule, and ρ∗∗GE,j is the average density of
box j computed in the CFCMC GE excluding the fractional molecule and
averaged over all values of λ.

6.4 Simulation details

As a proof of principle, simulations are performed in the conventional
GE and the proposed CFCMC GE to study the vapor liquid equilibria of
Lennard-Jones particles. All properties are defined in reduced units (i.e.
the Lennard-Jones parameters σ and ϵ are set as units of length and energy,
respectively) and for convenience the thermal wavelength Λ is set to 1 [38].
The interactions are truncated and shifted at 2.5σ. Interactions of the
fractional molecule are scaled according to Eq. 6.1. Two system sizes (256
and 512 molecules) and four reduced temperatures (T = 0.7, 0.8, 0.9, and
0.95) are considered. The weight function is determined iteratively such that
the probability distributions pi(λ) in the proposed CFCMC GE ensemble are
flat and the fractional molecule is equally likely to be in the two simulation
boxes. Ensemble averages are computed using Eq. 6.19 and the fractional
molecule is not counted when computing average densities. Simulations
are started with 0.2 million Monte Carlo cycles to equilibrate the system,
followed by 2 million production cycles. To reduce the uncertainties in the
values computed for pressures (Eqs. 6.29, 6.30, 6.36 and 6.37), after 2 million
equilibration cycles, a long production (500 million cycles) run is carried
out. The number of Monte Carlo steps per cycle equals the total number
of molecules in the system, with a minimum of 20. In each Monte Carlo
step, a trial move is selected at random with the following probabilities: 1%
volume changes, 49,5% molecule displacements, 49,5% molecule exchanges.
In the conventional GE, there is only one type of trial move for molecule
exchange. In contrast, the proposed CFCMC GE requires three types of
trial moves for facilitating molecule transfers: 50% changes in the λ space
(Fig. 6.2), 25% swapping the fractional molecule to the other simulation box
(Fig. 6.3), and 25% changing the fractional molecule with a whole molecule
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in the other simulation box (Fig. 6.4). Maximum displacements in volume,
positions, and λ were set such that on average 50% of the trial moves are
accepted. 100 bins are used to store the probability distribution of λ. In
the CFCMC GE method, the chemical potentials of the two simulation
boxes are computed from Eq. 6.27. In the conventional GE, the chemical
potentials are computed from the average energy change using the particle
insertions (Eq. 6.20) [101].

To validate the proposed method for systems with partial charges, the
VLE of the TIP3P-Ew water model at three different temperatures (400K,
450K, and 473K) is investigated. The TIP3P-Ew is a rigid water model
with three point charges optimized for the Ewald summation [178]. A cutoff
radius of 13 Å is used for both Lennard-Jones and electrostatic interactions.
LJ interactions are truncated and smoothed and no tail corrections are
used. The Ewald summation with a relative precision of 10−6 is used for
the electrostatic interactions [195]. Typically, around 800 water molecules
are distributed over the two simulation boxes. Additional trial moves to
rotate water molecules are used. Simulations are started with 0.1 million
equilibration cycles followed by 2 million production cycles. 41 bins are used
to store the probability distributions of λ. Uncertainties reported for the
chemical potential of water include the uncertainties due to extrapolation
to λ → 1 as well. The value of the thermal wavelength Λ is set to 1 Å for
all temperatures.

6.5 Lennard-Jones particles

6.5.1 Densities and acceptance probabilities

In Table 6.1, the average densities and chemical potentials of the two
coexisting phases computed using the conventional GE and the proposed
CFCMC GE are compared. The values obtained from the two methods
are in excellent agreement. This comparison shows that the algorithm is
correctly implemented. The chemical potential computed from Eqs. 6.25
to 6.27 yield nearly identical values (not shown). We have confirmed nu-
merically that CFCMC GE simulation results do not depend on the weight
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Table 6.1: Coexistence densities and chemical potentials for Vapor-Liquid Equilibria of LJ
particles for different system sizes and reduced temperatures computed with the conventional
GE and the proposed CFCMC GE methods. Numbers in brackets are uncertainties in the
last digit, i.e., -3.52 (1) means -3.52 ± 0.01. A weight function was used in the CFCMC GE
simulations to flatten the probability distribution of the coupling parameter λ and to ensure
that the fractional molecule is equally likely to be in both simulation boxes. The total volume
VT equals 2 · 83 for NT = 256 and 2 · 103 for NT = 512.

NT=256

GE CFCMC GE

T ρl ρg µl µg ρl ρg µl µg

0.7 0.788 (2) 0.0074 (1) -3.52 (1) -3.51 (1) 0.786 (2) 0.0074 (2) -3.52 (2) -3.52 (2)
0.8 0.731 (1) 0.0198 (2) -3.34 (1) -3.34 (1) 0.729 (1) 0.0198 (3) -3.35 (1) -3.35 (1)
0.9 0.664 (1) 0.0450 (3) -3.20 (1) -3.20 (1) 0.662 (1) 0.0451 (5) -3.21 (1) -3.22 (1)
0.95 0.623 (1) 0.0659 (8) -3.14 (1) -3.14 (1) 0.621 (1) 0.0660 (8) -3.15 (1) -3.16 (1)

NT=512

GE CFCMC GE

T ρl ρg µl µg ρl ρg µl µg

0.7 0.788 (2) 0.0074 (1) -3.52 (1) -3.52 (1) 0.786 (1) 0.0075 (1) -3.52 (1) -3.52 (1)
0.8 0.731 (1) 0.0199 (1) -3.34 (1) -3.33 (1) 0.730 (1) 0.0199 (3) -3.34 (1) -3.34 (1)
0.9 0.664 (1) 0.0451 (2) -3.20 (1) -3.20 (1) 0.663 (1) 0.0449 (2) -3.21 (1) -3.21 (1)
0.95 0.624 (1) 0.0661 (6) -3.14 (1) -3.14 (1) 0.623 (1) 0.0665 (4) -3.14 (1) -3.15 (1)

function. The easiest way to compare the efficiency of the two approaches is
to compare the acceptance probabilities for exchanging molecules between
the two simulation boxes. In Table 6.2, the acceptance probability for the
exchange trial move in the conventional GE (moving one molecule from one
simulation box to the other) is compared to the probability of changing the
fractional molecule into a whole molecule while keeping its position fixed,
and, at the same time, changing a (randomly selected) whole molecule in
the other simulation box into a fractional molecule, while not changing
the value of λ (Fig. 6.4). These trial moves both result in the exchange
of whole molecules between the simulation boxes. The data presented in
Table 6.2 shows that the acceptance probability for exchanging molecules
between the two simulation boxes is considerably higher when the proposed
CFCMC GE is used (more than two orders of magnitude at T = 0.7).
In other words, molecule exchange between the two simulation boxes is
significantly facilitated in the proposed CFCMC GE approach. When in-
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Table 6.2: Acceptance probabilities for the molecule exchange trial moves in the conventional
GE and the CFCMC GE methods for different reduced temperatures and system sizes, for the
simulations reported in Table 6.1 (LJ particles). The acceptance probabilities of swap trial
moves in the conventional GE are compared to the acceptance probabilities of exchanging
the fractional molecule with a whole molecule in the other simulation box (Fig. 6.4), using
the proposed CFCMC GE method (Eq. 6.18). A weight function was used in the CFCMC GE
simulations to flatten the probability distribution of the coupling parameter λ and to ensure
that the fractional molecule is equally likely to be in both simulation boxes.

NT=256 NT=512

T Pacc(Swap)GE Pacc(Change)CFCMC GE Pacc(Swap)GE Pacc(Change)CFCMC GE

0.7 8.93 ×10−4 4.20 ×10−1 9.12 ×10−4 4.38 ×10−1

0.8 3.59 ×10−3 4.66 ×10−1 3.60 ×10−3 4.76 ×10−1

0.9 1.18 ×10−2 4.96 ×10−1 1.17 ×10−2 5.04 ×10−1

0.95 2.07 ×10−2 5.00 ×10−1 2.04 ×10−2 5.12 ×10−1

sertions/deletions are considered as the bottleneck of the simulations, using
CFCMC GE instead of conventional GE increases the efficiency of the simu-
lation significantly. The average acceptance probability for the change trial
moves in CFCMC GE (Fig. 6.4) is slightly reduced from ca. 0.4 to ca. 0.2
when W (λ, i) = 0, showing that an appropriate biasing improves the effi-
ciency of the method. In Fig. 6.5, the acceptance probabilities of swapping
the fractional molecule between the two simulation boxes (Fig. 6.3) and
exchanging the fractional with a randomly chosen whole molecule in the
other simulation box (Fig. 6.4), are plotted as a function of the coupling
parameter λ. No biasing was used in the simulation reported in Figs. 6.5a
and 6.5c. In comparison, the probability distribution of λ was flattened
by adding a weight function, see Figs. 6.5b and 6.5d. Without biasing
and λ being close to 0, almost 50% of the attempts to swap the fractional
molecule from the gas phase to the liquid phase are accepted. We verified
that this ratio is exactly equal to the ratio of the volumes of the two boxes,
see Eq. 6.11. By increasing the coupling parameter λ, interactions of the
fractional molecule with the surrounding molecules increase and therefore
this trial move becomes more similar to the swap trial move in conventional
GE. It is not surprising that the acceptance probability for swapping the
fractional molecule reduces when the value of the coupling parameter is in-
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creased. When no biasing is used and λ is close to 1, all attempts to change
the fractional molecule in the gas phase into a whole molecule and simul-
taneously changing a whole molecule in the liquid phase into a fractional
molecule are accepted. This is due to the fact that the energy change associ-
ated with this trial move is almost zero when λ is close to 1. Therefore, the
acceptance rule reduces to Eq. 6.15 and, since more molecules are present
in the liquid phase, this trial move is always accepted. When λ is close to
0, the energy change associated with this trial move is almost identical to
the energy change associated with a swap trial move in conventional GE.
Hence, such a trial move is rarely accepted at λ close to 0. In Fig. 6.5c, the
acceptance probabilities of the same trial moves are plotted as a function of
λ, in the case where the fractional molecule is initially located in the liquid
phase. The acceptance probability for the change trial move (Fig. 6.4) first
increases and subsequently decreases with increasing coupling parameter.
When λ is close to 0, surrounding molecules in the liquid phase are very
closely positioned to the fractional molecule. As a result, changing the frac-
tional molecule into a whole molecule leads to repulsive interactions between
the new whole molecule a surrounding molecules. As a consequence, this
trial move is rarely accepted for λ close to 0. By increasing λ, the effective
volume occupied by the fractional molecule increases, and changing it to
a whole molecule results in less repulsive and more attractive interactions.
For large values of λ, the energy change associated with this trial move is
limited and the prefactor in Eq. 6.14 becomes increasingly important. As a
result, for high values of λ, the acceptance probability of the change trial
move (with fractional molecule initially in the liquid phase) reduces. In
Fig. 6.6, the probability distributions of λ (pi(λ)) and the optimized weight
functions for the gas and the liquid phase are shown. The shape of pi(λ) is
similar to the original CFCMC GE formulation [55]. The weight function
for the gas phase is almost independent of the value of λ. This is due to
the fact that the average distance between molecules in the gas phase is
much larger than in the liquid phase. We verified that changing the total
volume VT in the simulations only results in a shift of the weight functions,
while their shape remains the same. From Fig. 6.6 it becomes clear that
maximum changes in λ can be much larger in the gas phase than in the
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Figure 6.5: Acceptance probabilities for swapping the fractional LJ molecule between the
two simulation boxes, while keeping λ constant (dashed line, Fig. 6.3), and changing the
fractional molecule with a randomly chosen whole molecule in the other simulation box (solid
line, Fig. 6.4) as a function of λ, for CFCMC GE at T = 0.8. (a) without weight function
(W (λ, i) = 0), fractional molecule in the gas phase (old configuration) (b) with weight
function such that the observed distribution of λ is flat, fractional molecule in the gas phase
(old configuration) (c) without weight function (W (λ, i) = 0), fractional molecule in the
liquid phase (old configuration) (d) with weight function such that the observed distribution
of λ is flat, fractional molecule in the liquid phase (old configuration).
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Figure 6.6: (a) Probability distribution of λ for the gas and the liquid phase as used in CFCMC
GE of LJ particles at T = 0.8; (b) Weight functions to flatten the corresponding probability
distributions of λ (as in (a)) and to ensure that the fractional molecule is equally likely to be
in both simulation boxes.

liquid phase, and this is an advantage compared to the original CFCMC
GE formulation with two fractional molecules. In the acceptance rule for
the changing and swapping the fractional molecule (Eqs. 6.17 and 6.18), the
term ”exp [W (λ, 2)−W (λ, 1)]” accounts for the biasing. Graphically, this
corresponds to the deference between the weight functions in Fig. 6.6b at a
constant value of λ. From Fig. 6.5, it is clear that this biasing significantly
enhances molecule transfers.

6.5.2 Properties corresponding to the conventional GE

To compute the pressures and densities, simulations are performed in
the conventional GE and the CFCMC GE. In Tables 6.3 and 6.4, the aver-
age pressures derived in Eqs. 6.29, 6.30, 6.36 and 6.37 and corresponding
densities for the gas and liquid phases are shown for three different reduced
temperatures (T =0.7, 0.8, 0.95) and for two system sizes (256 and 512
particles). An important point in Tables 6.3 and 6.4 is the fact that the
thermodynamic pressures of the two phases computed in the conventional
GE (PGE) are equal. The thermodynamic pressures of the two phases
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computed in CFCMC GE (PCFCMC) are also equal. However, the thermo-
dynamic pressures of the two ensembles, CFCMC GE and the conventional
GE (PCFCMC, and PGE) are clearly not equal. As discussed in the previous
section, the presence of the fractional molecule in the CFCMC GE sim-
ulations results in an increase in the thermodynamic pressure. However,
the computed values for P ∗

GE and PGE are nearly identical. In the same
way, densities computed in CFCMC GE including the fractional molecule
(ρCFCMC) are not equal to those computed in the conventional GE (ρGE).
However, densities corresponding to the conventional GE but computed in
CFCMC GE (ρ∗GE) are equal to densities computed in the conventional GE
(ρGE). This numerically confirms the validity of the derivations provided for
computing properties corresponding to the conventional GE in the CFCMC
GE. Only the states in which the value of λ is zero are contributing to the
P ∗
GE. As a result, the uncertainties associated with P ∗

GE values are much
larger than the other ensemble averages. The values of P ∗∗

GE computed for
the gas phase are very close to the values computed for PGE and P ∗

GE (devi-
ation less than 0.2%). This is not the case for P ∗∗

GE computed for the liquid
phase (deviation up to 4%). The gas phase density of the conventional GE
can be accurately estimated using ρ∗∗GE (see Tables 6.3 and 6.4). Since the
contribution of the virial part in the pressure of the gas phase is negligible
and the ideal gas part is defined by the density, P ∗∗

GE for the gas phase can
be used as an estimate of P ∗

GE and PGE.
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Table 6.3: Computed pressures and densities in the conventional GE and the CFCMC GE at
different reduced temperatures for 256 LJ particles. PGE (Eq. 6.29) and PCFCMC (Eq. 6.30)
are the pressures in the conventional GE and the CFCMC GE, respectively. P ∗

GE (Eq. 6.36)
indicates the pressure corresponding to that in the conventional GE and computed in the
CFCMC GE. P ∗∗

GE (Eq. 6.37) is the computed pressure in the CFCMC GE, not counting the
contributions of the fractional molecule. The exact same definitions apply to the computed
densities (Eqs. 6.38 to 6.41). Statistical uncertainties in the last digit are shown in brackets,
i.e, 14.21(1) means 14.21 ± 0.01. The weight function in the CFCMC GE is calculated
iteratively so that the probability distribution p(λ, j) is uniform. The total volume for T = 0.8
and T = 0.95 is VT = 2× 83 and for T = 0.7 is VT = 2× 12.53.

[Average Pressure]/10−3 [Average Density]/10−3

T = 0.7 Gas Liquid Gas Liquid
PCFCMC 4.89(1) 4.90(10) ρCFCMC 7.42(1) 786.44(9)
PGE 4.78(1) 4.75(5) ρGE 7.25(1) 786.50(0)
P ∗
GE 4.78(1) 4.70(60) ρ∗GE 7.26(1) 786.50(0)

P ∗∗
GE 4.77(1) 5.10(50) ρ∗∗GE 7.26(1) 785.00(0)

T = 0.8 Gas Liquid Gas Liquid
PCFCMC 14.21(1) 14.20(10) ρCFCMC 20.31(2) 731.00(0)
PGE 13.86(0) 13.87(6) ρGE 19.84(0) 731.16(9)
P ∗
GE 13.87(1) 13.80(50) ρ∗GE 19.83(3) 731.16(9)

P ∗∗
GE 13.87(1) 14.20(10) ρ∗∗GE 19.84(2) 729.00(0)

T = 0.95 Gas Liquid Gas Liquid
PCFCMC 45.02(3) 45.02(4) ρCFCMC 66.80(10) 623.02(8)
PGE 44.44(3) 44.42(6) ρGE 66.02(7) 623.30(10)
P ∗
GE 44.42(6) 44.40(50) ρ∗GE 65.90(20) 623.30(0)

P ∗∗
GE 44.50(7) 44.81(3) ρ∗∗GE 66.10(10) 621.52(8)
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Table 6.4: Computed pressures and densities in the conventional GE and the CFCMC GE at
different reduced temperatures for 512 LJ particles. PGE (Eq. 6.29) and PCFCMC (Eq. 6.30)
are the pressures in the conventional GE and the CFCMC GE, respectively. P ∗

GE (Eq. 6.36)
indicates the pressure corresponding to that in the conventional GE and computed in the
CFCMC GE. P ∗∗

GE (Eq. 6.37) is the computed pressure in the CFCMC GE, not counting the
contributions of the fractional molecule. The exact same definitions apply to the computed
densities (Eqs. 6.38 to 6.41). Statistical uncertainties in the last digit are shown in brackets,
i.e, 14.10(1) means 14.10 ± 0.01. The weight function in the CFCMC GE is calculated
iteratively so that the probability distribution p(λ, j) is uniform. The total volume for T = 0.7
is VT = 2 × 14.53 and for T = 0.8, VT = 2 × 103 and for T = 0.95, the total volume is
VT = 2× 8.653.

[Average Pressure]/10−3 [Average Density]/10−3

T = 0.7 Gas Liquid Gas Liquid
PCFCMC 4.95(1) 4.95(6) ρCFCMC 7.53(2) 787.0(0)
PGE 4.89(0) 4.89(4) ρGE 7.44(1) 787.09(1)
P ∗
GE 4.89(1) 4.80(50) ρ∗GE 7.44(2) 787.02(4)

P ∗∗
GE 4.88(1) 5.01(3) ρ∗∗GE 7.44(2) 786.20(0)

T = 0.8 Gas Liquid Gas Liquid
PCFCMC 14.10(1) 14.14(3) ρCFCMC 20.17(2) 730.84(7)
PGE 13.92(1) 13.91(2) ρGE 19.92(1) 730.95(4)
P ∗
GE 13.93(1) 13.90(20) ρ∗GE 19.92(1) 730.93(4)

P ∗∗
GE 13.92(1) 14.10(10) ρ∗∗GE 19.92(2) 729.83(4)

T = 0.95 Gas Liquid Gas Liquid
PCFCMC 44.88(3) 44.86(5) ρCFCMC 66.67(7) 623.39(4)
PGE 44.51(2) 44.51(2) ρGE 65.00(90) 623.60(10)
P ∗
GE 44.50(1) 44.60(10) ρ∗GE 66.10(10) 623.60(10)

P ∗∗
GE 44.53(2) 44.76(8) ρ∗∗GE 66.20(7) 622.30(10)

6.6 Water

In Table 6.5, the average densities and chemical potentials computed
using the conventional GE and the proposed CFCMC GE method for the
two coexisting phases of TIP3P-Ew water at different temperatures are
compared. Values obtained with the two approaches are in excellent agree-
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Table 6.5: Coexistence densities and chemical potentials for Vapor-Liquid Equilibria of TIP3P-
Ew water for different temperatures, computed with the conventional GE and the proposed
CFCMC GE method. The acceptance probabilities of swap trial moves in the conventional
GE are compared to the acceptance probabilities of exchanging the fractional molecule with a
whole molecule in the other simulation box (Fig. 6.4). Numbers in brackets are uncertainties
in the last digit, i.e., 882 (2) means 882 ± 2. A weight function was used in the CFCMC
GE simulations to flatten the probability distribution of the coupling parameter λ and to
ensure that the fractional molecule is equally likely to be in both simulation boxes. The
total number of water molecules in the simulations is typically around 800. The value of the
thermal wavelength Λ is set to 1 Å for all temperatures.

GE

T /[K] ρl /[kg m−3] ρg /[kg m−3] µl /[kJ mol−1] µg /[kJ mol−1] Pacc(Swap)GE

400 882 (2) 1.7 (1) -32 (2) -33.1 (1) 2.86 ×10−3

450 798 (2) 6.8 (1) -32.2 (8) -32.9 (2) 6.83 ×10−3

473 754 (5) 12.2 (5) -32.4 (7) -33.0 (3) 9.52 ×10−3

CFCMC GE

T /[K] ρl /[kg m−3] ρg /[kg m−3] µl /[kJ mol−1] µg /[kJ mol−1] Pacc(Change)CFCMC GE

400 882 (2) 1.7 (1) -33.2 (6) -33.0 (1) 7.75 ×10−2

450 798 (2) 6.7 (1) -33.3 (5) -32.8 (1) 8.71 ×10−2

473 753 (2) 12.2 (2) -33.4 (5) -32.9 (1) 1.01 ×10−1

ment, showing the applicability of the proposed method for systems with
partial charges. For liquid water, the computed excess chemical potential at
400K equals 21.5 kJ mol−1, which agrees very well with the value of 21.8 kJ
mol−1 reported in Ref. [196]. In Table 6.5, the acceptance probabilities for
the swap move in the conventional GE are compared with the acceptance
probabilities of the change move (Fig. 6.4) in the proposed CFCMC GE.
It is clear that the particle exchange between the two simulation boxes is
significantly improved by using the proposed CFCMC GE instead of the
conventional GE.

6.7 Conclusions

We introduced an alternative formulation for the Gibbs Ensemble (GE)
combined with the Continuous Fractional Component Monte Carlo (CFCMC)
method. The main advantages of this method over the original formulation
of CFCMC GE by Shi and Maginn [55] are: (1) the direct calculation of
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chemical potentials in both simulation boxes, without the use of test parti-
cles; (2) the biasing is applied to each simulation box independently; (3) the
maximum change of the λ parameter (∆λ) can be different for each simula-
tion box. We verified our method for a system of LJ particles and molecules
with partial charges (water using the TIP3P-Ew force field). Densities and
chemical potentials obtained with the proposed method are in excellent
agreement with those computed in the conventional GE. We showed that
the CFCMC GE significantly increases the acceptance probability for ex-
changing molecules between the two simulation boxes, and that the use of
appropriate weight functions can facilitate molecule exchanges further. We
showed that there are differences between the averages computed in the
CFCMC GE and those computed in the conventional GE. Although these
differences may be limited for many properties, it is important to know that
they exist. We also introduced guidelines for computing ensemble averages
corresponding to the conventional GE and computed in the CFCMC GE.
We showed analytically and numerically that one can compute ensemble
averages that are identical to values computed in the conventional GE. As
an example, we computed the pressure and density in the conventional GE
and CFCMC GE. The pressure and densities corresponding to the conven-
tional GE and computed in the CFCMC GE are equal to the pressure and
densities computed in the conventional GE. However, due to the limited
sampling (only when λ = 0) of these averages in CFCMC GE, long simula-
tions are required to obtain accurate results. It was shown that it is best
not to count the fractional molecule while computing averages such as the
average energy per molecule and the density. Similar conclusions were made
in our more recent work for computing the enthalpy of adsorption using
CFCMC in the grand-canonical ensemble [32]. Our approach can easily be
extended to mixtures and molecules with intramolecular interactions. For
the latter systems, one could consider using Molecular Dynamics to sample
the degrees of freedom of each simulation box, while using the three pro-
posed trial moves for molecule transfers. The simulation method is added
to the RASPA software package [115, 116].





Chapter 7

Continuous Fractional
Component Monte Carlo in
the Reaction Ensemble

This chapter is based on the following paper: Poursaeidesfahani, A.; Hens,
R.; Rahbari, A,; Ramdin, M.; Dubbeldam, D.; Vlugt, T. J. H.; Efficient
Application of Continuous Fractional Component Monte Carlo in the Re-
action Ensemble, Journal of Chemical Theory and Computation, 2017, 13,
4452-4466.

7.1 Introduction

In the previous chapter, serial GE/CFC was introduced to simulate the
adsorption and phase equilibria. This can be used to efficiently simulate
adsorption of mixture of hydrocarbons at high loadings. In this chapter,
serial Rx/CFC is introduced as an efficient method to study the reaction
equilibria at high density and loading. This can be used to investigate the
reaction equilibrium for the zeolite-based production of branched hydro-
carbons at high loadings. Substantial efforts have been made by scientists
and engineers to study chemical reactions in non-ideal environments [154–
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156]. An optimal design and operation of many chemical processes relies
on accurate information regarding reaction equilibria [197, 198].

It is not always possible to measure reaction equilibria experimentally.
The main reasons for this are: (1) extreme conditions may not be accessible
experimentally; (2) kinetic limitation may prohibit reaching chemical equi-
librium on accessible timescales; (3) large-scale experimental screening of
solvents for chemical reactions may not be feasible. Therefore, there is a de-
mand for theoretical methods that can accurately predict reaction equilibria.
Molecular simulation is a natural tool for this as interactions between atoms
and molecules are explicitly taken into account. One can perform Molec-
ular Dynamics (MD) with a forcefield that can handle chemical reactions,
e.g. DFT-based [199], Car-Parrinello [200, 201], or ReaxFF based MD [202,
203]. The main disadvantage of these approaches is that reactions may not
occur within the limited timescale of MD simulations. Therefore, advanced
simulation techniques such as metadynamics [204–206] or transition path
sampling [207–214] may be required. These types of simulation techniques
are not considered further in this chapter. One of the most commonly used
approaches in molecular simulation is to simulate the reaction equilibria
in the Reaction Ensemble (RxMC) [154, 197, 215–221]. In this approach,
the chemical reaction is carried out by a Monte Carlo (MC) trial move.
Beside thermalization (translation, rotation, etc), trial moves are carried
out in which reactants are removed and reaction products are inserted in the
system, in such a way that an equilibrium distribution of reactants and re-
action products is obtained. The mechanism and the transition state of the
reaction are not considered as this approach is purely thermodynamic and
reaction kinetics are not considered. As a result, the efficiency of this simu-
lation technique is not affected by the height of the activation energy barrier
of the reaction as reaction kinetics are not considered. For a detailed review
of RxMC techniques, the reader is referred to Ref. [197]. RxMC struggles
when insertions/removals of molecules are difficult e.g. at high loadings
and high densities. During the past few years, significant progress has been
made in Monte Carlo techniques for the insertion and deletion of molecules
[132, 144, 157, 161, 222]. The combination of CFCMC in RxMC was first
proposed by Rosch and Maginn [170] (from now on referred to as ”parallel
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Rx/CFC”). Balaji et al. used parallel Rx/CFC to compute the equilibrium
concentrations of the different species in CO2/monoethanolamine solutions
for different CO2 loadings [154]. In this method, fractional molecules of reac-
tion products are gradually changed into whole reaction product molecules,
while the fractional molecules of reactants are gradually removed, and vice
versa. This algorithm is shown schematically in Fig. 7.1a. A key ingredient
of parallel Rx/CFC is that the fractional molecules of both all reactants and
reaction products are always present in the system. This CFCMC version of
RxMC improves the acceptance probability of molecule insertions/removals
significantly compared to the conventional RxMC algorithm [170]. It does
not allow direct calculation of chemical potentials and it is not possible
to directly check if the reaction is at equilibrium. Additional free energy
calcuations are needed to compute the chemical potentials of reactant and
reaction product molecules. The fractional molecules of reactants and re-
action products have to adapt to their surroundings simultaneously, which
reduces the efficiency of the algorithm. Recently, Maginn and co-workers
studied the isomerization of xylene isomers in different confinements and
showed that insertion of product molecules aligned to the location and
orientation of the deleted reactant molecule increases the acceptance prob-
ability of the reaction trial move [223]. Maginn and co-workers used this
semi-grand reaction move to study the adsorption of CO2 in the reactive
ionic liquid Triethyl(octyl)phosphonium 2-Cyanopyrrolide [221].

Inspired by the algorithm introduced in the previous chapter, a new for-
mulation for RxMC combined with CFCMC is introduced (serial Rx/CFC).
The crucial difference with the parallel Rx/CFC is that either fractional
molecules of reactants or reaction products are present in the system. The
chemical potentials of reactants/reaction products are directly obtained
without using Widom’s test particle insertion (or related) method [224].
Therefore, one can directly check for the condition of chemical equilibrium.

This chapter is organized as follows. In section 2, the conventional
RxMC ensemble and its combination with CFCMC are reviewed. Our for-
mulation of RxMC with CFCMC (denoted by serial Rx/CFC) is introduced
in section 3. The partition function, types of trial moves, and the compu-
tation of chemical potentials are also discussed in this section. Simulation
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(a) (b)

Figure 7.1: (a) Schematic representation of parallel Rx/CFC for the combination of RxMC
with CFCMC (denoted by parallel Rx/CFC) [170]. The conventional RxMC is expanded
with fractional molecules of each component participating in the reaction. The number of
fractional molecules of each component is equal to its stoichiometric coefficient νi. The
coupling parameters for intermolecular interactions of fractional molecules of reactants and
reaction products are constrained by λR + λP = 1. (b) Schematic representation of serial
Rx/CFC for the combination of RxMC with CFCMC (the method described in this chapter).
In serial Rx/CFC, either fractional molecules of reactants or fractional molecules of reaction
products are present in the system. In both figures, we consider the reaction A ⇌ B in which
A=green and B=black. The dashed spheres represent fractional molecules.

details and systems are described in section 4. In section 5, the performance
of serial Rx/CFC is compared to conventional RxMC and parallel Rx/CFC
for Lennard-Jones (LJ) molecules. We considered various model reactions
and pressures for which ideal gas free energy changes are specified in ad-
vance. Our approach is also tested for the reaction of ammonia synthesis at
various temperatures and pressures. Compared to parallel Rx/CFC, serial
Rx/CFC is more efficient, faster and allows for the computation of chemi-
cal potentials of all components without any additional computation. Our
findings are summarized in section 6. Additional details on the simulation
technique are provided in the Appendix.
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7.2 Conventional RxMC and parallel Rx/CFC

In RxMC simulations, the number of atoms is conserved and not the
number of molecules of individual species [197]. Usually, the temperature is
constant and either pressure or volume is imposed. The constant pressure
version is more interesting for practical applications. In appendix, first the
partition function and acceptance rules are derived for the constant vol-
ume case and extended to the constant pressure version by adding a term
exp[−βPV ] to the partition function [38]. In this section, the partition
function and acceptance rules are discussed in detail for the constant pres-
sure version. In addition to Monte Carlo trial moves for thermalization and
volume changes, attempts are made to remove reactants and insert reaction
product molecules and vice versa. These are the so-called reaction trial
moves. Here, for simplicity, we only consider systems with a single reaction
as extension to systems with multiple reactions is straightforward [38, 154].
The partition function for the constant pressure version of conventional
RxMC equals [197, 216]

QConv,P =βP
∞∑

N1=0

...
∞∑

NS=0

∫
dV exp[−βPV ]

exp

[
S∑

i=1

(
βµiNi +Ni ln

V qi

Λi
3 − lnNi!

)]∫
dsNtotal exp[−βU(sNtotal)]

(7.1)

where S is the number of components, β = 1/(kBT ), kB is the Boltzmann
constant, s are reduced coordinates, V is the volume of the simulation box,
P is the pressure, Ntotal is the total number of molecules in the simula-
tion box, and U is the total potential energy. qi, µi, Ni, and Λi are the
ideal gas partition function excluding the translational part, the chemical
potential, the number of molecules, and the thermal wavelength of compo-
nent (molecule type) i, respectively. qi is related to the molar Gibbs free
energy of formation by g0i = −RT ln

(
qi/βP

0Λ3
i

)
, where P 0 is the standard

reference pressure. Details about methods used for the calculation of qi
are provided in appendix A.5. The ensemble of Eq. 7.1 is subject to the
constraints that the total number of atoms of each type is constant and
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that chemical reactions converting reactants into reaction products are in
equilibrium. This sets limits on the values of µi. Sampling of configurations
in this ensemble requires: (1) sampling of the degrees of freedom of the
interacting molecules (e.g. translation, rotation (for chain molecules), and
sampling the internal configuration of molecules); (2) sampling the volume
fluctuations; (3) sampling of chemical reactions subject to the constraint
that the total number of atoms of each component is constant, as well
as that the reaction is at chemical equilibrium. The latter is obtained by
performing reaction trial moves. The reaction trial move is attempted to
remove randomly selected reactants and insert reaction product molecules,
simultaneously. According to the partition function of conventional RxMC
(Eq. 7.1), the probabilities of being in the old and new configurations for
the reaction trial move in the forward direction are

po =
βP

QConv
exp[−βPV ] exp

[
S∑

i=1

(
βµiNi +Ni ln

V qi

Λi
3 − lnNi!

)]
exp[−βUo]

pn =
βP

QConv
exp[−βPV ] exp

[
R∑
i=1

(
βµi (Ni − νi) + (Ni − νi) ln

V qi

Λi
3 − ln(Ni − νi)!

)]

exp

 S∑
j=R+1

(
βµj (Nj + νj) + (Nj + νj) ln

V qj

Λj
3 − ln(Nj + νj)!

) exp[−βUn]

(7.2)

where νi is the stoichiometric coefficient of component i in the reaction.
Here, n and o denote the new and old configurations, respectively. We
choose the convention that νi is positive if component i participates in the
reaction and νi is zero otherwise. R is the number of reactant components,
and P is the number of reaction product components. As only systems
with a single reaction where all components are either reactants or reaction
products are considered here, one can write R + P = S. Therefore, the
reaction product components are ranging from R+1 to S with S being the

total number of components. The summation
R∑
i=1

is a sum over all reactant

types and
S∑

j=R+1

is the sum over all reaction product types. Therefore, the
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ratio of the probabilities of being in the new and old configurations equals

pn
po

=exp

[
−β

R∑
i=1

µiνi −
R∑
i=1

νi ln
V qi

Λi
3 +

R∑
i=1

ln
Ni!

(Ni − νi)!

]
×

exp

β S∑
j=R+1

µjνj +
S∑

j=R+1

νj ln
V qj

Λj
3 +

S∑
j=R+1

ln
Nj !

(Nj + νi)!

× exp [−β∆U ]

(7.3)

here ∆U = Un − Uo is the total change in the potential energy of the

system. Reaction equilibrium implies
R∑
i=1

µiνi =
S∑

j=R+1

µjνj . Consequently,

the acceptance rule for the reaction trial move is [38, 197]

acc(o → n) = min

1,


[
R∏
i=1

(
V qi

Λi
3

)−νi
]
×

 S∏
j=R+1

(
V qj

Λj
3

)νj

×

R∏
i=1

Ni!

(Ni − νi)!
×

S∏
j=R+1

Nj !

(Nj + νj)!
× exp [−β∆U ]



 (7.4)

Due to simultaneous insertion of the molecules in a single step, the efficiency
of this algorithm can be very low at high densities. This is also the case when
Configurational-bias Monte Carlo is used for inserting/deleting molecules
[219].

In parallel Rx/CFC [170], the conventional RxMC is expanded with
fractional molecules of each component participating in the reaction (see
Fig. 7.1a). The number of fractional molecules of each component is equal
to its stoichiometric coefficient. Interactions of the fractional molecules are
scaled with a coupling parameter λj . The value λj = 0 corresponds to no
interactions with the surrounding molecules (the fractional molecule acts
as an ideal gas molecule), and λj = 1 corresponds to full interactions with
the surrounding molecules (the fractional molecule has the same interac-
tions as whole molecules of the same component). There are two coupling
parameters per reaction, one for all reactants (λR) and one for all reaction
products (λP). The coupling parameters for the fractional molecules of
reactants and reaction products are constrained by λR + λP = 1. Attempts
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are made to change the coupling parameters by λn,R = λo,R + ∆λ with
∆λ ∈ [−∆λmax,+∆λmax]. Due to the constraint λR + λP = 1, the coupling
parameter of the fractional molecules of reaction products changes accord-
ing to λn,P = λo,P−∆λ. When λn,R > 1 or λn,R < 0, an attempt is made to
perform a chemical reaction. The acceptance rule for performing a chemical
reaction in this ensemble is the same as Eq. 7.4. For more details, we refer
the reader to the original publication by Maginn and co-worker [170].

7.3 Serial Rx/CFC

7.3.1 Partition function

In serial Rx/CFC, either fractional molecules of the reactants or reaction
products are present in the system, in sharp contrast to parallel Rx/CFC
where fractional molecules of both reactants and reaction products are al-
ways present (see Fig. 7.1b). Besides trial moves for thermalization and
volume changes, there are three additional trial moves to facilitate the sam-
pling of chemical reactions subject to the constraint that the total number
of atoms of each component is constant, as well as chemical equilibrium. As
derived in appendix A.1, the partition function for constant pressure of this
ensemble equals (not yet taking into account the conservation of atoms)

QCFC,P = βP
∞∑

N1=0

...
∞∑

NS=0

1∑
δ=0

∫
dV exp[−βPV ]×

exp
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β
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R∑
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(Ni + νiδ) ln
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3 −

R∑
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lnNi!

]
×

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

×

1∫
0

dλ

∫
dsNint exp[−βUint(s

Nint)]

(
R∏
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∫
dsνifrac exp[−βδUfrac,i(s
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Nint , λ)]

)
×

 S∏
j=R+1

∫
ds

νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ)]



(7.5)
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Nint is the total number of whole molecules (regardless the component
type) and Ni is the number of whole molecules of component i. When
δ = 1, fractional molecules of reactants are present in the simulation box (νi
fractional molecule for component i), and when δ = 0, fractional molecules
of reaction products are present. Here, a system with a single reaction is
considered. Uint is the total internal energy of whole molecules and Ufrac,i

is the interaction energy of fractional molecules of component i with the
other molecules, including other fractional molecules. The interactions of
the fractional molecules with the surroundings are such that λ = 0 means
no interactions and λ = 1 means full interactions, and the value of λ is
restricted to λ ∈ [0, 1].

Since fractional molecules are always distinguishable from whole molecules,
the term Ni! only counts for whole indistinguishable molecules. The main
difference between Eq. A13 and Eq. 7.1 is the integration over λ in Eq. A13.
This is an immediate consequence of expanding the conventional RxMC
with fractional molecules. In Appendix A.1, we show that for systems with-
out intermolecular interactions (ideal gas phase), the partition functions of
Eq. A13 and Eq. 7.1 are proportional. Therefore, these ensembles result in
identical average numbers of molecules for each component, provided that
fractional molecules are not counted when computing ensemble averages.
The fact that one should not count fractional molecules when computing
the average number of molecules is in line with earlier studies in the Gibbs
ensemble and in the grand-canonical ensemble [32, 191].

7.3.2 Trial moves

In addition to Monte Carlo trial moves for thermalization and volume
changes, there are three trial moves in this ensemble to mimic the chemical
reaction. A detailed description of these trial moves and the derivation of
the acceptance rules is provided in Appendix A.1.
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Figure 7.2: Schematic representation of the trial move attempting to change the coupling
parameter λ for serial Rx/CFC. In this trial move, δ and the positions of all molecules remain
the same. We consider the reaction A ⇌ B in which A=green and B=black. The dashed
spheres represent fractional molecules.

Changing the value of λ

This trial move is used to change the value of λ either for reactants or
reaction products, depending on the value of δ (see Fig. 7.2). The value of λ
is changed according to λn = λo+∆λ in which ∆λ is a uniformly distributed
random number between −∆λmax and +∆λmax. Note that ∆λmax can be
different for reactants and reaction products. When the new value of λ is
not in the range λ ∈ [0, 1], this trial move is automatically rejected. In this
trial move, the value of δ, all positions of molecules, and the number of
whole molecules and fractional molecules remain the same. By changing the
value of λ, only the interactions between the fractional molecules and other
molecules are changed. In Appendix A.1, it is shown that the acceptance
rule for this trial move is

acc(o → n) = min [1, exp [−β∆U ]] (7.6)

in which ∆U = Un − Uo is the change in the total internal energy of the
system.
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Figure 7.3: Schematic representation of the trial move attempting to perform the reaction for
fractional molecules for serial Rx/CFC. In this trial move, the number of the whole molecules
and also the value of λ are constant. We consider the reaction A ⇌ B in which A=green and
B=black. The dashed spheres represent fractional molecules. The fractional molecule of A is
removed and a fractional molecule of B is inserted at a randomly selected position.

Reaction for fractional molecules

In this trial move, fractional molecules of reactants/reaction products
are removed and fractional molecules of reaction products/reactants are
inserted at random positions (see Fig. 7.3). In this trial move, essentially
the value of δ is changed, so if δo = 1 then δn = 0 and vice versa. The
number of whole molecules and also the value of λ are constant. This
trial move basically mimics a chemical reaction for the fractional molecules.
Here, the acceptance rule for the forward reaction (reactants → reaction
products) is shown. The direction of the chemical reaction is defined by
the value of δ for the old configuration (if we have the fractional molecules
of reactants or reaction products). In Appendix A.1, it is derived that the
acceptance rule for converting the reactants into reaction products equals

acc(o → n) = min

1, R∏
i=1

(
V qi

Λi
3

)−νi S∏
j=R+1

(
V qj

Λj
3

)νj

exp [−β∆U ]

 (7.7)
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Figure 7.4: Schematic representation of the trial move attempting to perform the reaction
for whole molecules for serial Rx/CFC. In this trial move, the value of λ and all positions
of all molecules remain the same. We consider the reaction A ⇌ B in which A=green and
B=black. The dashed spheres represent fractional molecules. The fractional molecule of A is
transformed into a whole molecule of A while at the same time, a randomly selected whole
molecule of B is transformed into a fractional molecule of B.

Since the number of whole molecules remains constant during this move,

the terms
R∏
i=1

Ni!
(Ni−νi)!

and
S∏

j=R+1

Nj !
(Nj+νj)!

are not present in Eq. 7.7. The

acceptance rule for the reverse reaction (reaction products → reactants)
simply follows by swapping the labels of the reactants and reaction products.
The acceptance probability for this trial move is large when λ is small. The
reason for this is that fractional molecules have very limited interactions
with the surrounding molecules and therefore, the term ∆U is nearly zero.
For the limiting case of λ ↓ 0, the acceptance rule reduces to

acc(o → n) = min

1, R∏
i=1

(
V qi

Λi
3

)−νi S∏
j=R+1

(
V qj

Λj
3

)νj

 (7.8)
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Reaction for whole molecules

In this trial move, fractional molecules of reactants/reaction products are
transformed into whole molecules of reactants/reaction products, while si-
multaneously, randomly selected whole molecules of reaction products/reactants
are transformed into fractional molecules of reaction products/reactants. In
this trial move, all molecule positions and the value of λ stay the same.
The value of δ is changed as follows: if δo = 1 then δn = 0 and vice versa.
This trial move is illustrated in Fig. 7.4 and can be seen as a reaction for
whole molecules. In the forward reaction, whole molecules of reactants are
transformed into fractional molecules, and fractional molecules of reaction
products are turned into whole molecules. Essentially, the number of whole
molecules of reactants is reduced and the number of whole molecules of
reaction products is increased, according to their stoichiometric coefficients.
Trial moves are automatically rejected when there are not enough whole
molecules to turn into fractional molecules. Here, the acceptance rule for the
forward reaction (reactants → reaction products) is shown. The direction of
the reaction eventually depends on the value of δ for the old configuration (if
we have fractional molecules of reactants or reaction products). As derived
in Appendix A.1, the acceptance rule for this trial move is

acc(o → n) = min

1, R∏
i=1

Ni!

(Ni − νi)!

S∏
j=R+1

Nj !

(Nj + νj)!
exp [−β∆U ]

 (7.9)

in which ∆U = Un − Uo is the change in the total internal energy of the
system including the interaction of fractional molecules as result of the trial
move. The acceptance rule for the reverse reaction (reaction products →
reactants) simply follows by swapping the labels. Since the total number of
whole and fractional molecules for each component remains constant, ideal
gas partition functions are not present in Eq. 7.9. This trial move has a very
high acceptance probability when the value of λ is close to 1. The reason
for this is that fractional molecules have almost the same interactions as
whole molecules and therefore, the term ∆U is nearly zero. For the limiting
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Figure 7.5: Acceptance probabilities for trial moves attempting to perform reactions for
fractional molecules (dashed line, see Fig. 7.3), and for trial moves attempting to perform
reactions for whole molecules (solid line, see Fig. 7.4), for serial Rx/CFC. Simulation conditions
are: reduced temperature T = 2, and constant reduced pressure P = 3.0, for the reaction A
⇌ B. Similar results are obtained for the other reactions and at other conditions.

case of λ ↑ 1, the acceptance rule reduces to

acc(o → n) = min

1, R∏
i=1

Ni!

(Ni − νi)!

S∏
j=R+1

Nj !

(Nj + νj)!

 (7.10)

Volume changes

This trial move is only used for the case where the temperature and
external pressure are imposed. In this trial move, the volume of the simula-
tion box is changed while the number and relative coordinates of the whole
molecules and fractional molecules stay the same. Here, the random walk is
performed in V and not ln(V ) [38]. The acceptance rule for this trial move
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is [38]

acc(o → n) = min

 1,

(
Vn

Vo

) R∑
i=1

(Ni+νiδ)+
S∑

j=R+1
(Nj+νj(1−δ))

×

exp [−β (∆U + P (Vn − Vo))]

 (7.11)

Efficient selection of trial moves

As discussed in the previous section, the reaction trial move for fractional
molecules has a very high acceptance probability at low values of λ, and
the reaction trial move for the whole molecules has a very high acceptance
probability at high values of λ. In Fig. 7.5, typical acceptance probabilities
of these trial moves as a function of λ are shown. Therefore, one may
attempt reaction trial moves for fractional molecules only at values of λ
close to 0, and reaction trial moves for the whole molecules only at values of
λ close to 1. In this way, each trial move is used where it is efficient and the
overall efficiency of the algorithm is improved. This is done as follows: one
can define a switching point for the value of λ (λsec). The probabilities of
selecting a trial move: thermalization, volume change, or changing the value
of λ are always constant. For selection of the remaining trial moves one
has a choice: selecting these with fixed probability, or always selecting the
reaction trial move for fractional molecules (section 3.2.2) when λ < λsec,
and always selecting the reaction trial move for whole molecules (section
3.2.3) when λ > λsec. In the latter approach, the reaction trial moves are
selected when they have a higher acceptance probability. Since the value of
λ remains constant during either of these trial moves, the probabilities for
selecting the trial moves also remain constant. Therefore, the condition of
detailed balance is not violated.

7.3.3 Biasing the probability distribution p(λ, δ)

It is important to bias the probability distribution of p(λ, δ) (δ indicates
whether fractional molecules of reactants or reaction products are in the
simulation box) in such a way that the sampled probability distributions



148 CFCMC in the Reaction Ensemble

p(λ, δ) is flat and that it is equally likely to have the fractional molecules of
reactants (δ = 1) or reaction products (δ = 0). By using an adequate bias-
ing function, one can overcome the problem of being ”stuck” in free energy
minima and can easily diffuse through the λ space. This is obtained by mul-
tiplying the statistical weight of each system state by a factor exp[W (λ, δ)].
For parallel Rx/CFC [170], since fractional molecules of both reactants and
reaction products are always present in the system, one would only need a
one-dimensional weight function to obtain flat probability distribution of
p(λ). It is important to note that in serial Rx/CFC the weight function
W (λ, δ) is a two-dimensional function that depends both on λ and the
identity of the fractional molecules (δ). By using this biased sampling, addi-
tional terms exp [W (λn, δn)−W (λo, δo)] will be present in the acceptance
rules of Eqs. 7.6, 7.7 and 7.9. For example, the acceptance rule for the trial
move attempting to mimic a reaction for the fractional molecules (Eq. 7.7)
will become

acc(o → n) = min

 1,

R∏
i=1

(
V qi

Λi
3

)−νi S∏
j=R+1

(
V qj

Λj
3

)νj

×

exp [−β∆U +W (λ, δn)−W (λ, δo)]

 (7.12)

To remove this bias, the Boltzmann averages of any observable X should
be computed using

⟨X⟩Boltzmann =
⟨X exp[−W (λ, δ)]⟩biased
⟨exp[−W (λ, δ)]⟩biased

(7.13)

The weight function W (λ, δ) can be obtained using the Wang-Landau algo-
rithm [184, 185] or iteratively [170]. To compute ensemble averages corre-
sponding to the conventional RxMC while performing simulation with serial
Rx/CFC, one should exclude the contribution of fractional molecules. By
doing this, one can analytically show that for an ideal gas case the ensemble
averages computed using the serial Rx/CFC and the conventional RxMC
are identical, see Appendix A.1. Including the contribution of the fractional
molecules in the ensemble averages leads to small differences between the
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ensemble averages compute in the serial Rx/CFC and those computed in
the conventional RxMC [191].

7.3.4 Free energy calculations

In serial Rx/CFC, chemical potentials can be computed without any
additional computational efforts. As shown in the appendix A.3, one can
show that

R∑
i=1

νiµi = − 1

β
ln

〈
R∏
i=1

(
qi

Λi
3ρi

)νi
〉

− 1

β
ln

(
p(λ ↑ 1, δ = 1)

p(λ ↓ 0, δ = 1)

)
(7.14)

where qi is the ideal gas partition function of component i excluding the
translational part. One can obtain the sum of the chemical potentials of
reaction products in a similar way. Eq. A58 allows for an independent
check of reaction equilibria without any additional calculations (e.g. test
molecules). The chemical potential of component i for a non-ideal gas equals
[197, 198]

µi =
1

β
ln

βP0Λ
3
i

qi
+

1

β
ln

yiPφi

P0
(7.15)

in which φi and yi are the fugacity coefficient and mole fraction of component
i, respectively. P0 is the reference pressure (1 bar) and P is the pressure of
the mixture. For an ideal gas mixture we have phii = 1. The first term on
the right hand side of Eq. 7.15 is the standard reference chemical potential
(µ0

i (T )) Therefore, we have

R∑
i=1

νiµi =
1

β
ln

(
R∏
i=1

[
βΛi

3yiPφi

qi

]νi)
(7.16)

Combining this with Eq. A58 immediately leads to

R∏
i=1

φi
−νi =

p(λR ↑ 1)

p(λR ↓ 0)
×

R∏
i=1

(
βyiP

ρi

)νi

(7.17)
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where λR = λ when we have the fractional molecules of reactants (δ = 1).
In this equation, p(λR ↑ 1) is the probability that λR approaches 1, and
p(λR ↓ 0) is the probability that λR approaches 0. To compute the chemical
potential of individual components, one should couple the interactions of
different components in a smart way. The two limiting cases are well
defined: at λ = 0, fractional molecules of reactants (or reaction products)
do not interact, and at λ = 1, fractional molecules of reactants have full
interactions with the surrounding molecules. However, for intermediate
values of λ one has a choice. One can choose different paths to scale the
interactions of fractional molecules from no interactions to full interactions.
The interactions can be scaled atom by atom, or molecule by molecule, or
in any other way. By scaling the interactions of the fractional molecules of
only one of the components from no interactions to full interactions when
the value of λ is changed from 0 to A (see Figs. A1 and 7.6), one can write

νiµi = − 1

β
ln

(
qi

Λi
3ρi

)νi

− 1

β
ln

(
p(λR ↑ A)

p(λR ↓ 0)

)
(7.18)

The first term on the right hand side accounts for the ideal gas part. The
second term on the right hand side accounts for the excess part of the
chemical potential (due to interactions with surrounding molecules). Similar
to Eq. 7.17, one can write for φi

φi
−νi =

p(λR ↑ A)

p(λR ↓ 0)
×
(
βyiP

ρi

)νi

(7.19)

When νi > 1 and interactions of fractional molecules are scaled sequentially
(one by one), fractional molecules that have interactions with surrounding
molecules later (at higher values of λ) experience the effect of the fractional
molecules which were inserted earlier (at lower values of λ). For sufficiently
large system sizes, this will not affect the calculated chemical potentials.
However, for small system sizes there may be minor differences between
the chemical potential of molecules that are inserted at lower values of λ
and those inserted at at higher values of λ. Although these differences are
expected to be small, one should be aware of them.
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Figure 7.6: Schematic representation of the scaling of interactions for multiple fractional
molecules. The interactions of molecule i are scaled such that λi = 0 when λ = ai and
λi = 1 when λ = bi.

If the interactions are scaled molecule by molecule when λ is changed
from 0 to 1, each fractional molecule i will have its own scaling parameter λi.
The value of λi will be zero when λ = ai and it will be 1 when λ = bi this
is shown schematically in Fig. 7.6. When two fractional molecules interact,
the interactions are scaled according to minimum value of λi of the two
molecules. Details on the scaled interactions are provided in Appendix A.6.

7.4 Simulation details

As a proof of principle, simulations are performed for different systems
of LJ molecules. The ammonia synthesis reaction at various pressures (100-
1000 bar) and temperatures (575-873K) is also considered as a practically
important application. For different systems of LJ molecules, simulations
are performed at constant pressure and temperature using conventional
RxMC, parallel Rx/CFC [170], and serial Rx/CFC. Various model reactions
of LJ molecules are studied. For these simulations, all properties are defined
in reduced units. LJ interactions are truncated and shifted at 2.5σ. The
reduced temperature is set to T = 2.0, and simulations are always started
with 400 molecules of component A. For simulations of LJ molecules using
parallel Rx/CFC and serial Rx/CFC, the maximum molecule displacements,
maximum volume change, and maximum change in the value of λ are set to
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achieve 50% acceptance for these trial moves. For simulations using serial
Rx/CFC, the switching point for the value of λ is set to λsec = 0.3 (see
section 3.2.4). In each Monte Carlo step, a trial move is selected at random
with the following probabilities: 49.5% molecule displacements, 1% volume
changes, and 49.5% reaction trial moves.

For the ammonia synthesis reaction, simulations are performed at con-
stant pressure and temperature using serial Rx/CFC. All simulations start
with a random configuration of 120 N2, 360 H2 molecules, and no ammo-
nia molecules. Fractional molecules are added to this configuration. All
molecules are rigid and interact only by LJ and electrostatic interactions.
Force field parameters for N2, H2, and NH3 are taken from the literature
[225–228]. The Wolf method is used to compute electrostatic interactions
[229]. Details regarding the force field parameters, scaling of the electro-
static interactions, and the Wolf method are provided in Appendix A.6.
The ideal gas partition functions for this system are listed in Appendix A.5.
In Table A3, a detailed comparison is made between ideal gas partition
functions from experiments and QM computations using Gaussian09 [230].
In each Monte Carlo step, a trial move is selected at random with the follow-
ing probabilities: 33% molecule displacements, 33% molecule rotation, 1%
volume changes, and 33% reaction trial moves. For the ammonia synthesis
reaction, LJ interactions are switched on for λ ∈ [0, 0.9] and electrostatic
interactions are switched on for λ ∈ [0.9, 1].

For all simulations using parallel Rx/CFC and serial Rx/CFC, the weight
function is determined using the Wang-Landau algorithm [184]. In serial
Rx/CFC, the weight function W (λ, δ) is determined such that the observed
two-dimensional probability distribution p(λ, δ) in the proposed ensemble is
flat. 200 bins are used to store the probability distribution of λ for reactants
or reaction products. All simulations are started with 0.2 million Monte
Carlo cycles to equilibrate the system, followed by 1 million production trial
moves. The number of Monte Carlo steps per cycle equals the total number
of molecules initially in the system, with a minimum of 20.

LJ interactions of fractional molecules are scaled according to Eq. 6.1
[163]. In the conventional method and parallel Rx/CFC, there is only one
type of reaction trial move. In this move reactants/reaction products are
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remove and reaction productions/reactants are inserted. In contrast, serial
Rx/CFC requires three types of trial moves for facilitating molecule trans-
fers: 50% changes in the λ space (Fig. 7.2), 50% reaction for the fractional
molecules (Fig. 7.3) when λ < λsec, or 50% reaction for the whole molecules
(Fig. 7.4) when λ > λsec. In serial Rx/CFC, the chemical potentials are com-
puted from Eq. A58. The contribution of fractional molecules are excluded
while computing ensemble averages [191]. To compare the efficiencies of
the three methods, a fair way to define the efficiency of each method is
required. In this work, the efficiency for all three methods is defined as the
number of accepted trial moves (either forward or backward) resulting in
a change in the number of whole molecules due to the reaction, divided by
the total number of reaction trial moves. For parallel Rx/CFC, this means:
the number of accepted λ trial moves that resulted in λn > 1 or λn < 0,
divided by the total number of λ trial moves. For serial Rx/CFC, this
means: the number of accepted reaction trial moves for whole molecules
(Fig. 7.4) divided by the total number of all reaction trial moves, including
changing the value of λ, reaction for fractional molecules, and reaction for
whole molecules. Reaction trial moves in serial Rx/CFC are computation-
ally cheaper compared to parallel Rx/CFC. This is due to the reduction in
the number of fractional molecules and therefore the number of interacting
molecule pairs is reduced. Simulations performed using serial Rx/CFC re-
quire less CPU time compared to similar simulations when parallel Rx/CFC
is used. The CPU time depends on the programming of the algorithms,
the compiler, and CPUs used to perform the calculations. In this paper,
different approaches are only compared in terms of efficiency and not the
CPU time. This can be considered as the worst-case scenario for serial
Rx/CFC.

7.5 Results

To insure that serial Rx/CFC is implemented correctly, the equilibrium
composition for different reactions of LJ molecules are computed and com-
pared for the three methods. The LJ parameters and partition function for
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Table 7.1: Interaction parameters (Lennard-Jones) and partition functions (q/Λ3) for different
molecule types. Note that there are several molecule types with exactly the same interaction
parameters. This was performed to show the effect of (in)distinguishability of the molecules
in the reactions.

Molecule type σ ϵ q/Λ3

A 1.0 1.0 0.002
B 1.0 1.0 0.002
C 1.1 0.9 0.002
D 1.0 1.0 0.02
E 1.1 0.9 0.02
F 1.0 1.0 0.02

LJ molecules used in this study are listed in Table 7.1. The equilibrium
composition obtained with different methods at reduced pressures P = 0.3,
P = 1.0, P = 3.0 and, P = 5.0 are shown in Tables 7.2 to 7.5, respectively.
Equilibrium compositions obtained for the three methods are the same for
all reactions and conditions (see Tables 7.2 to 7.5). This confirms the valid-
ity of the expressions used for the partition function and acceptance rules
of serial Rx/CFC, and indicates that this method is implemented correctly.

The efficiencies of the three methods for different reactions are also
shown in Tables 7.2 to 7.5. The conventional method has a very high
efficiency for all reactions at the lowest pressure (P = 0.3). Since in this
case the density of the system is very low and therefore interactions between
the molecules are limited, there is almost no energy penalty for the reaction
trial moves and most of the attempts to perform reaction trial moves for
whole molecules are accepted. Therefore, the method which attempts to
directly replace the reactants with reaction products and vice versa has
a high efficiency. For the conventional method, reaction trial moves for
the whole molecules is the only reaction trial move and this trial move is
accepted with a high probability for the low pressure case. As a result, this
method has high efficiencies for this case. In parallel Rx/CFC [170], many
trial moves are spent diffusing through the entire λ-space and less attempts
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Table 7.2: Average number of molecules and density at equilibrium for different reactions
for different methods. The efficiency is defined in Section 7.4. The reduced pressure and
temperature are set to P = 0.3 and T = 2.0, respectively. Simulations are started with 400
molecules of type A. The interaction parameters of different molecules are listed in Table 7.1.
The numbers between brackets denote the uncertainty in the last digit.

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

200.00(3) 200.00(3) 0.162(0) 0.40 Conventional
A ⇌ B 199.99(7) 200.01(7) 0.161(0) 0.11 Parallel Rx/CFC

199.98(6) 200.02(6) 0.161(0) 0.30 Serial Rx/CFC

206.62(2) 193.38(2) 0.155(0) 0.37 Conventional
A ⇌ C 206.63(3) 193.37(2) 0.154(0) 0.098 Parallel Rx/CFC

206.62(5) 193.38(5) 0.155(0) 0.30 Serial Rx/CFC

192.59(6) 414.8(2) 0.162(0) 0.26 Conventional
A ⇌ 2D 192.27(6) 415.5(2) 0.161(0) 0.097 Parallel Rx/CFC

192.36(4) 415.27(8) 0.161(0) 0.25 Serial Rx/CFC

202.75(5) 394.5(1) 0.153(0) 0.21 Conventional
A ⇌ 2E 202.35(6) 395.3(2) 0.152(0) 0.086 Parallel Rx/CFC

202.47(4) 395.06(8) 0.152(0) 0.25 Serial Rx/CFC

91.52(3) 308.48(3) 308.48(3) 0.162(0) 0.26 Conventional
A ⇌ D + F 91.22(9) 308.78(9) 308.78(9) 0.161(0) 0.097 Parallel Rx/CFC

91.33(3) 308.67(3) 308.67(3) 0.161(0) 0.25 Serial Rx/CFC

95.57(3) 304.43(3) 304.43(3) 0.156(0) 0.23 Conventional
A ⇌ D + E 95.28(4) 304.72(4) 304.72(4) 0.155(0) 0.094 Parallel Rx/CFC

95.39(2) 304.61(2) 304.61(2) 0.155(0) 0.25 Serial Rx/CFC

are made to perform a reaction. Therefore, this method has the lowest
efficiency for the low pressure case. Already at P = 1.0, the efficiency of the
conventional method is much lower than its efficiency at P = 0.3. At higher
pressures (P = 3.0, P = 5.0), the efficiency of the conventional method
drops below 0.01 even for the simplest reaction (A ⇌ B). When the density
is high, most of the reaction trial moves in the conventional method result
in an overlap between the newly inserted molecules and molecules that
are already in the system. Therefore, this move has very low acceptance
probability. In this case, the efficiency of parallel Rx/CFC varies between
0.06 to 0.1 while the efficiency of serial Rx/CFC varies between 0.1 to 0.2
depending on the reaction. Due to the efficient use of the three trial moves
in serial Rx/CFC, this method has a better performance compared to the
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Table 7.3: Average number of molecules and density at equilibrium for different reactions
for different methods. The efficiency is defined in Section 7.4. The reduced pressure and
temperature are set to P = 1.0 and T = 2.0. Simulations are started with 400 molecules
of type A. The interaction parameters of different molecules are listed in Table 7.1. The
numbers between brackets denote the uncertainty in the last digit.

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

200.00(4) 200.00(4) 0.433(0) 0.077 Conventional
A ⇌ B 200.0(2) 200.0(2) 0.431(0) 0.095 Parallel Rx/CFC

200.01(8) 199.99(8) 0.432(0) 0.26 Serial Rx/CFC

226.48(4) 173.52(4) 0.392(0) 0.068 Conventional
A ⇌ C 226.4(2) 173.6(2) 0.390(0) 0.079 Parallel Rx/CFC

226.45(9) 173.55(9) 0.391(0) 0.26 Serial Rx/CFC

273.05(5) 253.89(9) 0.433(0) 0.017 Conventional
A ⇌ 2D 272.8(2) 254.5(4) 0.430(0) 0.074 Parallel Rx/CFC

272.8(2) 254.3(3) 0.431(0) 0.17 Serial Rx/CFC

300.57(6) 198.9(2) 0.395(0) 0.011 Conventional
A ⇌ 2E 300.3(1) 199.4(2) 0.393(0) 0.059 Parallel Rx/CFC

300.4(2) 199.3(3) 0.394(0) 0.17 Serial Rx/CFC

177.73(5) 222.27(5) 222.27(5) 0.433(0) 0.017 Conventional
A ⇌ D + F 177.4(3) 222.6(3) 222.6(3) 0.431(0) 0.075 Parallel Rx/CFC

177.5(2) 222.5(2) 222.5(2) 0.431(0) 0.17 Serial Rx/CFC

197.92(7) 202.08(7) 202.08(7) 0.401(0) 0.014 Conventional
A ⇌ D + E 197.6(3) 202.4(3) 202.4(3) 0.399(0) 0.070 Parallel Rx/CFC

197.6(2) 202.4(2) 202.4(2) 0.399(0) 0.17 Serial Rx/CFC

conventional method and parallel Rx/CFC.

In Fig. 7.7, the (unbiased) probability distributions p(λ, δ) for two dif-
ferent reactions (A ⇌ B, and A ⇌ D + E), and the weight functions to
make p(λ, δ) flat are shown. For the reaction A ⇌ B, the probability dis-
tributions and the weight functions for the reactants and reaction products
are identical, as A and B have a similar interaction with the surrounding
molecules. For the reaction A ⇌ D + E, one reactant molecule is replaced
with two product molecules. For this reaction, the interactions of the first
product molecule are scaled from no interactions (ideal gas molecule) to
full interactions (whole molecule) when the value of λ is changed from 0
to 1

2 . For the second molecule, the interactions are scaled from no inter-
actions (ideal gas molecule) to full interactions (whole molecule) when the
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Table 7.4: Average number of molecules and density at equilibrium for different reactions
for different methods. The efficiency is defined in Section 7.4. The reduced pressure and
temperature are set to P = 3.0 and T = 2.0, respectively. Simulations are started with 400
molecules of type A. The interaction parameters of different molecules are listed in Table 7.1.
The numbers between brackets denote the uncertainty in the last digit.

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

200.1(2) 199.9(2) 0.667(0) 7 · 10−3 Conventional
A ⇌ B 199.9(4) 200.1(4) 0.665(0) 0.096 Parallel Rx/CFC

199.9(2) 200.1(2) 0.667(0) 0.20 Serial Rx/CFC

268.7(2) 131.3(2) 0.614(0) 5 · 10−3 Conventional
A ⇌ C 268.8(2) 131.2(2) 0.612(0) 0.076 Parallel Rx/CFC

268.7(2) 131.3(2) 0.614(0) 0.20 Serial Rx/CFC

345.2(2) 109.5(4) 0.667(0) 3 · 10−4 Conventional
A ⇌ 2D 345.0(3) 110.0(5) 0.665(0) 0.066 Parallel Rx/CFC

344.8(4) 110.5(8) 0.666(0) 0.11 Serial Rx/CFC

373.0(2) 54.0(3) 0.646(0) 1 · 10−4 Conventional
A ⇌ 2E 372.9(2) 54.1(3) 0.643(0) 0.051 Parallel Rx/CFC

372.9(2) 54.3(4) 0.645(0) 0.11 Serial Rx/CFC

293.5(3) 106.5(3) 106.5(3) 0.667(0) 3 · 10−4 Conventional
A ⇌ D + F 293.1(6) 106.9(6) 106.9(6) 0.665(0) 0.068 Parallel Rx/CFC

293.3(5) 106.7(5) 106.7(5) 0.666(0) 0.11 Serial Rx/CFC

324.2(2) 75.8(2) 75.8(2) 0.641(0) 2 · 10−4 Conventional
A ⇌ D + E 324.2(5) 75.8(5) 75.8(5) 0.638(0) 0.064 Parallel Rx/CFC

324.1(4) 75.9(1) 75.9(1) 0.639(0) 0.11 Serial Rx/CFC

value of λ is changed from 1
2 to 1. This can also be clearly seen in the

shape of the probability distribution of λ and the weight function of the
reactant molecules. In this way, according to Eq. 7.18, one can obtain the
excess chemical potential of the first reactant molecule using p(λR ↓ 0) and
p(λR ↑ 1

2) and the excess chemical potential of the second reactant molecule
using p(λR ↓ 1

2) and p(λR ↑ 1). The values obtained for the excess chemical
potential of the first and second reactant molecules were very close to each
other. In Table 7.6, the sum of the total and excess chemical potentials
times the stoichiometric coefficients are shown for the reactants and reac-
tion products for different pressures and reactions. These values can only
be directly computed in serial Rx/CFC according to Eq. A58. The data
provided in Table 7.6 shows that for the reaction A ⇌ B where the reactant
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Table 7.5: Average number of molecules and density at equilibrium for different reactions
for different methods. The efficiency is defined in Section 7.4. The reduced pressure and
temperature are set to P = 5.0 and T = 2.0, respectively. Simulations are started with 400
molecules of type A. The interaction parameters of different molecules are listed in Table 7.1.
The numbers between brackets denote the uncertainty in the last digit.

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

199.8(3) 200.2(3) 0.766(0) 1 · 10−3 Conventional
A ⇌ B 199(1) 201(1) 0.764(0) 0.096 Parallel Rx/CFC

200.1(4) 199.9(4) 0.766(0) 0.20 Serial Rx/CFC

298.5(5) 101.5(5) 0.718(0) 9 · 10−4 Conventional
A ⇌ C 298.5(8) 101.5(8) 0.716(0) 0.079 Parallel Rx/CFC

298.6(4) 101.4(4) 0.718(0) 0.20 Serial Rx/CFC

372.5(3) 54.9(6) 0.766(0) 3 · 10−5 Conventional
A ⇌ 2D 372.1(4) 55.8(7) 0.764(0) 0.063 Parallel Rx/CFC

372.4(2) 55.2(4) 0.765(0) 0.11 Serial Rx/CFC

390.6(3) 18.8(5) 0.757(1) 6 · 10−6 Conventional
A ⇌ 2E 390.6(2) 18.9(3) 0.755(0) 0.048 Parallel Rx/CFC

390.5(2) 19.0(4) 0.756(0) 0.11 Serial Rx/CFC

345.2(5) 54.8(5) 54.8(2) 0.766(0) 3 · 10−5 Conventional
A ⇌ D + F 345.4(6) 54.6(6) 54.6(6) 0.764(0) 0.067 Parallel Rx/CFC

345.3(6) 54.7(6) 54.7(6) 0.765(0) 0.12 Serial Rx/CFC

368.1(6) 31.9(6) 31.9(6) 0.752(0) 1 · 10−5 Conventional
A ⇌ D + E 368.2(4) 31.8(4) 31.8(4) 0.749(1) 0.063 Parallel Rx/CFC

368.1(5) 31.9(5) 31.9(5) 0.751(0) 0.11 Serial Rx/CFC

and reaction products have identical LJ interactions, the values obtained
for the chemical potentials of the reactants and reaction products are equal.
Since molecules of A and B are identical (see Table 7.1), this is exactly
what is expected. This case is included because it is trivial and can serve
as an additional check on the implementation and on convergence of the
simulation.
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Figure 7.7: (a) and (c): Probability distributions p(λ, δ) for reactants (δ = 1) and reactions
products (δ = 0) for reaction (a) A ⇌ B, (c) A ⇌ D + E at a reduced temperature T = 2,
and constant reduced pressure P = 3.0. (b) and (d): Weight functions (in units of kBT ) to
flatten the corresponding probability distributions of λ and to ensure that it is equally likely
to have fractional molecules of reactants and reaction products for reactions (b) A ⇌ B (d)
A ⇌ D + E.

It is verified that the computed excess chemical potentials are identi-
cal to those obtained from Widom’s test particle insertion method in the
conventional NPT ensemble at the same conditions (data not shown) [38].
For the reaction A ⇌ D + F, reaction products D and F have identical LJ
interactions. Identical excess chemical potentials where obtained for D and
F, while a fractional molecule of D was always inserted prior to an insertion
of a fractional molecule of F.
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Table 7.6: Chemical potentials of reactants and reaction products for different reactions of
the Lennard-Jones system at different pressures obtained with serial Rx/CFC. The reduced
temperature is set to T = 2.0. The interaction parameters of different molecules are listed in
Table 7.1. The numbers between brackets denote the uncertainty in the last digit.

Reaction P
∑

reactants
νiµ

excess
i

∑
reactants

νiµ
tot
i

∑
products

νiµ
excess
i

∑
products

νiµ
tot
i

0.3 -0.344(9) 7.036(9) -0.344(6) 7.036(6)
A ⇌ B 1.0 0.07(1) 9.42(1) 0.066(6) 9.421(6)

3.0 2.73(1) 12.95(1) 2.727(6) 12.953(6)
5.0 5.23(1) 15.74(1) 5.23(2) 15.73(1)

0.3 -0.265(8) 7.101(8) -0.133(6) 7.101(6)
A ⇌ C 1.0 0.25(1) 9.66(1) 0.79(1) 9.67(1)

3.0 2.887(6) 13.541(6) 4.32(1) 13.53(1)
5.0 5.35(2) 16.53(2) 7.51(2) 16.52(2)

0.3 -0.34(1) 6.13(1) -0.68(1) 6.12(1)
A ⇌ 2D 1.0 0.07(1) 9.49(1) 0.13(1) 9.48(1)

3.0 2.73(1) 13.79(1) 5.43(4) 13.74(2)
5.0 5.23(2) 16.84(2) 10.45(3) 16.74(2)

0.3 -0.240(9) 6.253(8) -0.205(9) 6.245(9)
A ⇌ 2E 1.0 0.247(8) 9.791(7) 1.553(9) 9.772(9)

3.0 2.81(1) 14.08(1) 8.45(3) 13.98(1)
5.0 5.25(3) 17.02(3) 14.78(8) 16.67(6)

0.3 -0.340(8) 4.319(8) -0.68(1) 4.32(1)
A ⇌ D + F 1.0 0.07(1) 8.30(2) 0.13(1) 8.29(1)

3.0 2.724(9) 13.246(6) 5.44(2) 13.213(8)
5.0 5.23(1) 16.57(1) 10.45(4) 16.52(2)

0.3 -0.270(7) 4.418(7) -0.41(1) 4.43(1)
A ⇌ D + E 1.0 0.220(9) 8.578(9) 0.96(1) 8.57(1)

3.0 2.809(9) 13.573(9) 7.04(2) 13.528(6)
5.0 5.27(2) 16.80(2) 12.69(6) 16.69(3)

It is instructive to repeat this test case for systems with a full LJ
potential. The use of tail correction is dictated by legacy use of some force
field like TraPPE, as these were developed using Monte Carlo methodology.
It tries to approximate the “full” Lennard-Jones parameters using a finite
(small) cutoff to keep computations tractable. However, for many other
system, especially for use in MD, the discontinuity such a cutoff would
create in the forces is problematic. In Appendix A.3, it is also shown that
for the case of LJ molecules (truncated interactions and using analytic tail
correction) identical values for the excess chemical potentials are obtained
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Figure 7.8: Mole fractions of ammonia at equilibrium obtained from serial Rx/CFC simulations
(symbols), experiments (solid lines) [232] and, equation of state modeling using the Peng-
Robinson equation of state (dashed lines) at 573K (blue), 673K (green), 773K (purple) and,
873K (red) as a function of pressure. All simulations start with a random configuration of
120 N2, 360 H2 molecules, and no ammonium molecules.

from the serial RX/CFC, Widom’s test particle insertion method in the
conventional NPT , and EOS modeling using a full LJ potential [231].
Reaction equilibrium implies

R∑
i=1

µiνi =
S∑

j=R+1

µjνj (7.20)

It can be clearly seen that this condition is satisfied for all reactions at all
pressures within the error bars. This indicates that simulations have reached
the condition of chemical equilibrium, and one can trust the results obtained
from the simulations. Moreover, one can directly compute the excess chem-
ical potential of individual components according to Eq. 7.18. To test the
suitability of serial Rx/CFC simulations for practical systems and molecules
with partial charges, the ammonia synthesis reaction (N2 + 3H2 ⇌ 2NH3)
is considered. Equilibrium compositions obtained from serial Rx/CFC are
validated with the RASPA software [115, 116]. In Fig. 7.8, the mole frac-
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Figure 7.9: Fugacity coefficients of ammonia at equilibrium obtained from serial Rx/CFC
simulations (symbols) and equation of state modeling using the Peng-Robinson equation
of state (dashed lines) at 573K (blue), 673K (green), 773K (purple) and, 873K (red) as a
function of pressure. All simulations start with a random configuration of 120 N2, 360 H2

molecules, and no ammonium molecules.

tions of ammonia at equilibrium obtained form serial Rx/CFC simulations
at different temperatures and pressures are compared with experimental
results [232] and results using equation of state modeling (Peng-Robinson
(PR) equation of state [233]). Excellent agreement is observed between
the equilibrium mixture compositions obtained using the three different
approaches. This validates the applicability of serial Rx/CFC for systems
including molecules with electrostatic interactions. In Fig. 7.9, fugacity coef-
ficients of ammonia at chemical equilibrium computed using serial Rx/CFC
simulations are compared with the results of thermodynamic modeling (us-
ing the PR equation of state) at different temperatures and pressures. It is
well-known that cubic equations of state fail to provide accurate estimates
for the fugacity coefficient at very high pressures [234]. For pressures below
600 bar, fugacity coefficients computed using serial Rx/CFC simulations
are in very good agreement with those calculated from equation of state
modeling. No experimental data was found to compare with the values
obtained for fugacity coefficients.
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Figure 7.10: Computed reaction enthalpy of the Haber-Bosch process per mole of N2 at 573 K
and pressure range of P = 10 MPa to P = 80 MPa. The arrow on the left indicates the value
of the reaction enthalpy at standard reference pressure (Pref = 1 bar). The compositions of
the mixtures are obtained from equilibrium simulations of the Haber-Bosch reaction using
serial Rx/CFC [147]. Different methods used to compute enthalpy of reaction: PR-EoS (solid
line), PC-SAFT (dashed line), ND method (squares), CFCNPT ensemble (triangles). Raw
data are listed in Table S12 of the Supporting Information.

Rahbari, Poursaeidesfahani, Vlugt, and co-workers have shown that
by combining CFCMC and the original idea of Frenkel, Ciccotti, and co-
workers [235, 236], one can compute partial molar excess enthalpies and
partial molar volumes [237]. The contribution of the partial molar enthalpies
to the reaction enthalpy of the Haber-Bosch process is significant at high
pressures (up to 64% at a pressure of 80 MPa, relative to the reaction
enthalpy at a pressure of 1 bar). This is shown in Fig. 7.10. At high
pressures, the contribution of the partial molar excess enthalpies is not
negligible for this reaction [237].

7.6 Conclusions

An improved formulation of the Reaction Ensemble combined with Con-
tinuous Fractional Component Monte Carlo is presented (serial Rx/CFC).
The main difference between serial Rx/CFC and parallel Rx/CFC [170] is
that in serial Rx/CFC, either the fractional molecules of the reactants or
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the fractional molecules of the reaction products are present in the system.
In serial Rx/CFC, there are three trial moves to facilitate a chemical re-
action: (1) changing the value of λ; (2) reaction for fractional molecules;
(3) reaction for whole molecules. As a proof of principle, serial Rx/CFC is
compared to the conventional formulation of RxMC and parallel Rx/CFC
for systems of LJ molecules at different reduced pressures. Moreover, equi-
librium mixture compositions obtained for the ammonia synthesis reaction
using serial Rx/CFC are compared with experimental results and mixture
compositions computed using equation of state modeling. The equilibrium
compositions obtained with serial Rx/CFC are in excellent agreement with
those obtained from the conventional RxMC and parallel Rx/CFC. For
the ammonia synthesis reaction, excellent agreement between the results of
serial Rx/CFC and experimental measured mixture compositions [232] was
found as well. For systems at high pressures, the acceptance probability
of the reaction trial move is improved by factor 2 to 3 (depending on the
system under study) compared to parallel Rx/CFC. Serial Rx/CFC has
the following advantages: (1) one directly obtains chemical potentials of
all reactants and reaction products. These chemical potentials can directly
be used as an independent check to ensure that chemical equilibrium is
achieved; (2) independent biasing is applied to the fractional molecules of
reactants and reaction products, therefore, the efficiency of the algorithm is
increased; (3) changes in the maximum scaling parameter of intermolecular
interactions can be chosen differently for reactants and reaction products.
Serial Rx/CFC can be easily extended to molecules with intramolecular de-
grees of freedom. The trial moves of Fig. 7.3 can be performed by inserting
fractional molecules at random positions with random orientations. The
internal configuration of the molecule can be generated randomly or using
the Rosenbluth scheme [38]. The trial moves of Fig. 7.4 can be performed
by keeping the internal configuration of the molecule the same as in the old
configuration. For ergodic sampling, trial moves that attempt to change
the internal configuration of flexible molecules should be added to the MC
method [38]. The serial Rx/CFC method could also be used for reactions
involving ions. One can calculate the potential energy of periodic system
with a net charge by placing a dummy charge at the center of charges. Al-
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though it is difficult to interpret computed partial molar properties of ions
(such as the chemical potential or the partial molar volume) [238], by using
serial Rx/CFC one can still benefit from other advantages of the method
such as efficient reaction trial moves.
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In this Appendix, derivations of the expressions of the partition function
and acceptance rules for the trial moves of the new formulation of the
Reaction Ensemble Monte Carlo technique (RxMC) combined with the
Continuous Fractional Component Monte Carlo technique (serial Rx/CFC)
are presented. An expression for computing the chemical potential in the
Gibbs ensemble for multicomponent mixtures is derived. This derivation is
extended to arrive at an expression for chemical potentials in serial Rx/CFC.
Details regarding the calculation of equilibrium mixture compositions by
thermodynamic modelling using the Peng-Robinson equation of state are
provided.

A.1 Details on serial Rx/CFC

A.1.1 Partition function of Serial Rx/CFC

In this section, we derive the partition function and acceptance rules for
the constant volume version of serial Rx/CFC. In chapter 7 and appendix
A.4, this is extended to the constant pressure version [38]. We start with
the partition function of the Gibbs ensemble for a pure component with a
single fractional molecule [132]:

QCFCMC =

1

Λ3(NT+1)NT !

2∑
i=1

NT∑
N1=0

1∫
0

dλ

VT∫
0

dV1V1
N1+δi,1(VT − V1)

NT−N1+δi,2

∫
dsN1 exp[−βUint,1(s

N1 , V1)]

∫
dsNT−N1 exp[−βUint,2(s

NT−N1 , V1)]

NT !

N1! (NT −N1)!

 δi,1

∫
ds1frac exp[−βUfrac,1(s

1
frac, s

N1 , λ, V1)]

+ δi,2

∫
ds2frac exp[−βUfrac,2(s

2
frac, s

NT−N1 , λ, V1)]


(A1)

where λ is the scaling parameter with λ ∈ [0, 1], VT is the total volume of
the two boxes, V1 is the volume of box 1, NT is the total number of whole
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molecules in the two boxes, N1 is the number of whole molecules in box 1,
Uint,i is the total potential energy of whole molecules in box i, and Ufrac,i

is the potential energy of the fractional molecule in box i. The fractional
molecule can be either in box 1 (i = 1, δi,1 = 1, δi,2 = 0) or in box 2 (i = 2,
δi,1 = 0, δi,2 = 1). When λ = 0, the fractional molecule has no interactions
with surrounding molecules and when λ = 1, the fractional molecule has full
interactions with surrounding molecules. To derive an expression for the
partition function of the reaction ensemble, we consider the case where the
volumes of the boxes are fixed and molecules in box 2 do not interact with
each other (box 2 is an ideal gas). Later, we will take the limit that box 2
is infinitely large. In this case, the partition function QCFCMC becomes

QCFCMC =
1

Λ3(NT+1)

1∑
δ=0

NT∑
N1=0

V1
N1+δ(VT − V1)

NT−N1+1−δ

N1! (NT −N1)!

1∫
0

dλ

∫
dsN1 exp[−βUint,1(s

N1)]

(∫
ds1frac exp[−βδUfrac,1(s

1
frac, s

N1 , λ)]

)
(A2)

where δ = 1 when the fractional molecule is in box 1 and otherwise δ = 0.
Next, we consider a system with multiple components. Each component has
νi fractional molecules (νi > 0). The fractional molecules of component i
are either all in box 1 or in box 2. The interaction energy between fractional
molecules themselves is included in the term Ufrac,i. Fractional molecules of
type i are distinguishable from the whole molecules in box 1. Since there
are no interactions between molecules in the ideal gas reservoir (box 2),
fractional molecules are indistinguishable from whole molecules of the same
component type in box 2.
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In this case, we can write

QCFCMC =

NT,1∑
N1=0

1∑
δ1=0

NT,2∑
N2=0

1∑
δ2=0

...

NT,S∑
NS=0

1∑
δS=0

S∏
i=1

V1
Ni+νiδi(VT − V1)

NT,i+(1−δi)νi−Ni

Λi
3(NT,i+νi)Ni! (NT,i + (1− δi)νi −Ni)!

1∫
0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]

(
S∏

i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, . . . , λS)]

)
(A3)

where S is the number of components, NT,i is the total number of whole
molecules of component i (in box 1 and box 2), Nint is the total number of
whole molecules in box 1, Ni is the total number of whole molecules of type
i in box 1. δi = 1 when the νi fractional molecules of type i are in box 1,
and δi is zero otherwise. We assume that box 2 is very large and we want
to express the term

(VT − V1)
NT,i+(1−δi)νi−Ni

(NT,i + (1− δi)νi −Ni)!

as a function of the chemical potential of component i in the reservoir. As
VT is much larger than V1 and NT is much larger than N1, we can write

(VT − V1)
NT,i+(1−δi)νi−Ni ≈ (VT )

NT,i+(1−δi)νi−Ni

= (VT )
NT,i(VT )

(1−δi)νi−Ni
(A4)

(NT,i + (1− δi)νi −Ni)! ≈ (NT,i)
NT,i+(1−δi)νi−Ni

= (NT,i)
NT,i(NT,i)

(1−δi)νi−Ni
(A5)
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Therefore, we can write

(VT − V1)
NT,i+(1−δi)νi−Ni

(NT,i + (1− δi)νi −Ni)!
=

(VT )
NT,i+νi(VT )

−δiνi−Ni

(NT,i)
NT,i+νi(NT,i)

−δiνi−Ni

= (constant)× ρi
Ni+δiνi

(A6)

where ρi = NT,i/VT is the number density of component i in box 2 (the
ideal gas reservoir). When NT,i → ∞, VT → ∞, and ρi is a finite number,
we can replace the term

(VT − V1)
NT,i+(1−δi)νi−Ni

(NT,i + (1− δi)νi −Ni)!

with ρi
Ni+νiδi and we can rewrite the corresponding partition function as

QCFCMC,GC =

∞∑
N1=0

1∑
δ1=0

∞∑
N2=0

1∑
δ2=0

...

∞∑
NS=0

1∑
δS=0

S∏
i=1

V1
Ni+νiδiρi

Ni+νiδiΛi
3(Ni+νiδi)

Λi
3(Ni+νiδi)Ni!

1∫
0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]

(
S∏

i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, ..., λS)]

)
(A7)

Essentially, we have moved to the grand-canonical (GC) ensemble and the
sums over the number of molecules run from 0 to ∞. Here, the subscript
GC refers to grand-canonical and this is used to emphasise that the reac-
tion ensemble is essentially a grand-canonical ensemble where the chemical
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potentials of components are constant. For an ideal gas we have [197]

µi = µ◦
i +

1

β
ln

ρi
βP ◦

µ◦
i = − 1

β
ln

(
qi

βP ◦Λi
3

) (A8)

where µ◦
i is the reference chemical potential, P ◦ is the standard reference

pressure (105 Pa), Λi is thermal wavelength of component i. qi is the ideal
gas phase partition function of an isolated molecule of type i excluding the
translational part [197]. See also Eq. 7.15. Therefore, we can write

µi = − 1

β
ln

(
qi

βP ◦Λi
3

)
+

1

β
ln

ρi
βP ◦

exp [βµi (Ni + νiδi)] = ρi
Ni+νiδi

(
Λi

3

qi

)Ni+νiδi
(A9)

and arrive at

ρi
Ni+νiδiΛi

3(Ni+νiδi) = exp [βµi (Ni + νiδi) + (Ni + νiδi) ln qi] (A10)

Substituting Eq. A10 into Eq. A7 yields

QCFCMC,GC =

∞∑
N1=0

1∑
δ1=0

∞∑
N2=0

1∑
δ2=0

...
∞∑

NS=0

1∑
δS=0

S∏
i=1

V1
Ni+νiδi exp [βµi (Ni + νiδi) + (Ni + νiδi) ln qi]

Λi
3(Ni+νiδi)Ni!

1∫
0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]

(
S∏

i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, ..., λS)]

)
(A11)
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We can rearrange the partition function as follows:

QCFCMC,GC =

∞∑
N1=0

1∑
δ1=0

∞∑
N2=0

1∑
δ2=0

...
∞∑

NS=0

1∑
δS=0

exp

[
β

S∑
i=1

µi (Ni + νiδi) +
S∑

i=1

(Ni + νiδi) ln
V qi

Λi
3 −

S∑
i=1

lnNi!

]
1∫

0

dλ1

1∫
0

dλ2...

1∫
0

dλS

∫
dsNint exp[−βUint(s

Nint)]

(
S∏

i=1

∫
dsνifrac exp[−βδiUfrac,i(s

νi
frac, s

Nint , λ1, ..., λS)]

)
(A12)

Next, we move to the reaction ensemble and divide the components into
reactants (R) and reaction products (P ). For simplicity, we only consider
systems with a single reaction as extension to systems with multiple reac-
tions is trivial. We consider the case that we either have fractional molecules
of reactants (δ = 1) or fractional molecules of reaction products (δ = 0).
The number of fractional molecules of component i equals the stoichiometric
coefficient of component i (νi >0) in the reaction or equals zero when a
component does not participate in the reaction. For convenience, we defined
the stoichiometric coefficient as non-negative numbers. This means that we
have to specify whether a component type is a reactant, reaction product,
or inert species. Instead of λi for each component, we have an overall λ for
the system which translates to λ of individual fractional molecules. Eq. A12
then reduces to

QCFCMC,GC =

∞∑
N1=0

...
∞∑

NS=0

1∑
δ=0

exp

[
β

R∑
i=1

µi (Ni + νiδ) +
R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +
S∑

j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


1∫

0

dλ

∫
dsNint exp[−βUint(s

Nint)]

(
R∏
i=1

∫
dsνifrac exp[−βδUfrac,i(s

νi
frac, s

Nint , λ)]

)
 S∏

j=R+1

∫
ds

νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ)]



(A13)



A.1 Details on serial Rx/CFC 175

where R is the number of reactant components, and P is the number of
reaction product components so R + P = S. Therefore, the number of
reaction product components is ranging from R+ 1 to S with S being the
total number of components.

A.1.2 Partition function of the reaction ensemble with CFCMC
for the ideal gas case

In the ideal gas case, molecules do not interact. Therefore, the energy
terms in the partition functions of the conventional reaction ensemble and
the reaction ensemble with CFCMC can be disregarded. The partition
functions of the conventional reaction ensemble and the reaction ensemble
with CFCMC for the ideal gas case are

QIG
Conv =

∞∑
N1=0

...
∞∑

NS=0

exp

[
β

S∑
i=1

µiNi +
S∑

i=1
Ni ln

V qi
Λi

3 −
S∑

i=1
lnNi!

]
(A14)

QIG
CFCMC,GC =

∞∑
N1=0

...

∞∑
NS=0

1∑
δ=0

exp

[
β

R∑
i=1

µi (Ni + νiδ) +

R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +
S∑

j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


(A15)



176

One can separate the two cases δ = 0 and δ = 1, and rewrite Eq. A15
as

QIG
CFCMC,GC =

∞∑
N1=0

...

∞∑
NS=0

exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µj (Nj + νj) +
S∑

j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

+

exp

[
β

R∑
i=1

µi (Ni + νi) +
R∑
i=1

(Ni + νi) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µjNj +
S∑

j=R+1

Nj ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


=

∞∑
N1=0

...
∞∑

NS=0

exp

[
β

R∑
i=1

µiNi +
R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]
×

exp

β S∑
j=R+1

µjNj +

S∑
j=R+1

Nj ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

×

exp[β R∑
i=1

µiνi +
R∑
i=1

νi ln
V qi

Λi
3

]
+ exp

β S∑
j=R+1

µjνj +
S∑

j=R+1

νj ln
V qj

Λj
3



(A16)

The last term is simply a constant for given values of µi, Λi, and qi for all
component. Therefore, we have

QIG
CFCMC,GC =

∞∑
N1=0

...
∞∑

NS=0

exp

[
β

S∑
i=1

µiNi +
S∑

i=1

Ni ln
V qi

Λi
3 −

S∑
i=1

lnNi!

]
× Constant

=QIG
Conv × Constant

(A17)

Therefore, ensemble averages computed in the ensemble of Eq. A15 are
identical to those computed in the ensemble of Eq. A14, provided that the
quantity of which the ensemble average is computed does not depend on
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λ or δ. By not counting fractional molecules when computing ensemble
averages of the number of molecules of a component, one is guaranteed that
the ensembles of Eqs. A14 and A15 yield the same results. It is therefore a
natural choice not to count fractional molecules when computing ensemble
averages for systems with intermolecular interactions.

A.1.3 Trial moves and acceptance rules

Starting from the partition function of Eq. A13, we derive the accep-
tance rules for the trial moves of serial Rx/CFC. These trial move are also
illustrated in Figs. 7.2 to 7.4.

A.1.4 Changing the value of λ

This trial move is used to change the value of λ (see Fig. 7.2) while
keeping δ and all molecules positions constant. When the new λ is outside
the interval [0,1], this trial move is automatically rejected. In this trial
move, the number of whole molecules and fractional molecules remains the
same. By changing the value of λ, only the strength of interactions between
the fractional molecules and the whole molecules are changed. Therefore,
the probabilities of being in the old (o) and new (n) configurations are

po =
exp[−βUo]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδ) +
R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +
S∑

j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


pn =

exp[−βUn]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδ) +
R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +
S∑

j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !



(A18)

where Uo and Un are the total potential energies in the old and new config-
urations, respectively. Therefore the acceptance rule for this trial move is
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acc(o → n) = min [1, exp [−β∆U ]] (A19)

in which ∆U = Un − Uo.

A.1.5 Reaction for fractional molecules

In this trial move, the fractional molecules of reactants/reaction products
are removed and fractional molecules of reaction/reactants are inserted at
random positions (see Fig. 7.3). The number of whole molecules and also the
value of λ are constant but the value of δ changes. This trial move basically
mimics the reaction for fractional molecules and is very efficient at low values
of λ. Here, we derive the acceptance rule for the forward reaction (reactants
→ reaction products). The acceptance rule for the reverse reaction (reaction
products → reactants) simply follows by swapping the labels. The direction
of the reaction eventually depends on the value of δ for the old configuration
(if we have the fractional molecules of reactants or reaction products). The
probabilities of being in the old (o) and new (n) configurations are

po =
exp[−βUo]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδo) +

R∑
i=1

(Ni + νiδo) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δo)) +

S∑
j=R+1

(Nj + νj(1− δo)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (A20)

pn =
exp[−βUn]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδn) +
R∑
i=1

(Ni + νiδn) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δn)) +
S∑

j=R+1

(Nj + νj(1− δn)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (A21)

where we have used the notation δn, δo for the value of δ in the new and
old configurations, respectively. If δo = 1 then δn = 0 (and vice versa). For
the forward reaction (reactants → reaction products), we have δo = 1 and
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δn = 0. Therefore, we can rewrite Eqs. A20 and A21 as

po =
exp[−βUo]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νi) +

R∑
i=1

(Ni + νi) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µjNj +

S∑
j=R+1

Nj ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (A22)

pn =
exp[−βUn]

QCFCMC,GC
exp

[
β

R∑
i=1

µiNi +

R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj) +

S∑
j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (A23)

It is important to note that the number of whole molecules of each compo-
nent does not change in this trial move. Therefore, we have

pn
po

=exp

−β
R∑
i=1

µiνi −
R∑
i=1

νi ln
V qi

Λi
3 + β

S∑
j=R+1

µjνj +
S∑

j=R+1

νj ln
V qj

Λj
3


× exp [−β∆U ]

(A24)

Reaction equilibrium implies
R∑
i=1

µiνi =
S∑

j=R+1

µjνj . Consequently, Eq. A24

reduces to

pn
po

= exp

− R∑
i=1

νi ln
V qi

Λi
3 +

S∑
j=R+1

νj ln
V qj

Λj
3

× exp [−β∆U ] (A25)

Therefore the acceptance rule for this trial move is

acc(o → n) = min

[
1,

[
R∏
i=1

(
V qi
Λi

3

)−νi
]
×

[
S∏

j=R+1

(
V qj
Λj

3

)νj]
× exp [−β∆U ]

]
(A26)
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For the limiting case of λ → 0, this acceptance rule reduces to

acc(o → n) = min

1,[ R∏
i=1

(
V qi

Λi
3

)−νi
]
×

 S∏
j=R+1

(
V qj

Λj
3

)νj

 (A27)

A.1.6 Reaction for whole molecules

In this trial move, the fractional molecules of reactants/reaction prod-
ucts are transformed into whole molecules of reactants/reaction products
while at the same time, randomly selected whole molecules of reaction
products/reactants are transformed into the fractional molecules of reac-
tion products/reactants. All molecule positions stay the same. This trial
move is illustrated in Fig. 7.4. The value of λ remains constant during this
trial move and the value of δ changes. This trial move can be seen as a
reaction for whole molecules. In the forward reaction, whole molecule of
reactants are transformed into fractional molecules and, at the same time,
fractional molecules of reaction products are turned into whole molecules.
Essentially, the number of whole molecules of reactants is reduced and the
number of whole molecules of reaction products is increased, according to
their stoichiometric coefficients. This trial move is very efficient when the
value of λ is close to 1. Trial moves are automatically rejected when there
are not enough whole molecules to turn into fractional molecules. Here, we
derive the acceptance rule for the forward reaction (reactants → reaction
products), so the fractional molecules of the reaction products are converted
into whole molecules, and νi whole molecules of reactants are converted into
fractional molecules. The acceptance rule for the reverse reaction (reaction
products → reactants) simply follows by swapping the labels. The direction
of the reaction eventually depends on the value of δ for the old configuration
(if we have the fractional molecules of reactants or reaction products).
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The probabilities of being in the old (o) and new (n) configurations are

po =
exp[−βUo]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni + νiδo) +
R∑
i=1

(Ni + νiδo) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δo)) +
S∑

j=R+1

(Nj + νj(1− δo)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (A28)

pn =
exp[−βUn]

QCFCMC,GC
exp

[
β

R∑
i=1

µi (Ni − νi + νiδn) +
R∑
i=1

(Ni − νi + νiδn) ln
V qi

Λi
3 −

R∑
i=1

ln (Ni − νi)!

]

exp

β S∑
j=R+1

µj (Nj + νj + νj(1− δn)) +
S∑

j=R+1

(Nj + νj + νj(1− δn)) ln
V qj

Λj
3 −

S∑
j=R+1

ln (Nj + νj)!

 (A29)

For the forward reaction (reactants → reaction products) we have δo = 0
and δn = 1. Therefore, we can write

po =
exp[−βUo]

QCFCMC
exp

[
β

R∑
i=1

µiNi +
R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj) +
S∑

j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !

 (A30)

pn =
exp[−βUn]

QCFCMC
exp

[
β

R∑
i=1

µiNi +
R∑
i=1

Ni ln
V qi

Λi
3 −

R∑
i=1

ln (Ni − νi)!

]

exp

β S∑
j=R+1

µj (Nj + νj) +
S∑

j=R+1

(Nj + νj) ln
V qj

Λj
3 −

S∑
j=R+1

ln (Nj + νj)!

 (A31)

Since the total number of whole plus fractional molecules of each component
remains constant in this trial move, the terms related to the chemical
potential and ideal gas partition function are the same for the old and new
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configurations. Therefore, we have

pn
po

= exp

 R∑
i=1

ln
Ni!

(Ni − νi)!
+

S∑
j=R+1

ln
Nj !

(Nj + νj)!

×exp [−β∆U ] (A32)

in which ∆U = Un − Uo. Therefore, the acceptance rule is

acc(o → n) = min

[
1,

R∏
i=1

Ni!
(Ni−νi)!

×
S∏

j=R+1

Nj !
(Nj+νj)!

× exp [−β∆U ]

]
(A33)

For the limiting case of λ → 1, the acceptance rule reduces to

acc(o → n) = min

1, R∏
i=1

Ni!

(Ni − νi)!
×

S∏
j=R+1

Nj !

(Nj + νj)!

 (A34)

A.2 Chemical potentials of mixtures in the con-
ventional Gibbs ensemble

To assess the condition of chemical equilibria in the Rx/CFC ensemble,
we should calculate the chemical potentials of all reactants and products.
Here, we derive an expression for the calculation of chemical potentials of
different components for a multicomponent mixtures in the NVT version
of the conventional Gibbs ensemble. For the NPT version of the Gibbs
ensemble, the derivation is similar and one can easily show that it leads
to the same result. In the next section, the result of this derivation is
used to derive an expression for each component in the Rx/CFC ensemble.
We will follow the original derivation of Frenkel and Smit for the single-
component Gibbs ensemble [177]. We start with the partition function of
the conventional Gibbs ensemble of a mixture of S components [38]

Qnormal,GE =

NT,1∑
N1=0

NT,2∑
N2=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)∫
dsNtotal exp[−βU(sNtotal , V1)]

(A35)
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The chemical potential of a component equals the partial derivative of the
free energy with respect to the number of molecules of that component [38].

µi =
(

∂F
∂Ni

)
V,T,Nj ̸=i

≈
FNNtotal

+1−FNNtotal
1 ≈ FNtotal+νi

−FNtotal
νi

(A36)

Therefore, when adding νi molecules, we have

νiµi = FNtotal+νi − FNtotal
=

−1

β
ln

(
QNtotal+νi

QNtotal

)
(A37)

We can extend this to mixtures and write

R∑
i=1

νiµi =
−1

β
ln


Q

Ntotal+
R∑

i=1
νi

QNtotal

 (A38)

In this case, we have

Q
Ntotal+

R∑
i=1

νi

=

NT,1+ν1∑
N1=0

...

NT,R+νR∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
(

R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
∫

ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑

i=1
νi
, V1)]

(A39)
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where Q
Ntotal+

R∑
i=1

νi

is the partition function of Gibbs ensemble when for

each reactant i, νi molecules of type i are added to the system. Therefore,

Q
Ntotal+

R∑
i=1

νi

QNtotal

=
1

QNtotal

×

NT,1+ν1∑
N1=0

...

NT,R+νR∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
(

R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
∫

ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑

i=1
νi
, V1)]
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Separating the terms Ni = 0 to Ni = νi − 1 for reactants leads to [177]

Q
Ntotal+

R∑
i=1

νi

QNtotal

=

NT,1+ν1∑
N1=ν1

NT,R+νR∑
NR=νR

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
(

R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
∫

ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑

i=1
νi
, V1)]


QNtotal

+

ν1−1∑
N1=0

ν2−1∑
N2=0

...

νR−1∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
(

R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
∫

ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑

i=1
νi
, V1)]


QNtotal

(A41)
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By re-indexing the sums, we obtain

Q
Ntotal+

R∑
i=1

νi

QNtotal

=

NT,1∑
N1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
R∏
i=1


(

V1

Λi
3

)νi
(Ni+νi)!

Ni!

exp[−β

νi∑
j=1

∆Ui,j
+]


∫

dsNtotal exp[−βU(sNtotal , V1)]


QNtotal

+

ν1−1∑
N1=0

ν2−1∑
N2=0

...

νR−1∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
(

R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
∫

ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑

i=1
νi
, V1)]


QNtotal

(A42)

where
νi∑
j=1

∆Ui,j
+ is the total change in the potential energy of the system

due to the addition of νi molecules of component i. Here, the interaction
with additional molecules that are already in the system are also included in
νi∑
j=1

∆Ui,j
+ (see Fig. A1). As the first term on the right hand side of Eq. A42

corresponds to an ensemble average in the conventional Gibbs ensemble, we
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1    2    3          j

1

2

3

i

Figure A1: Schematic representation of the addition of reactant molecules. Here, we have
ν1 = 2 and ν2 = 3. The order of insertion of a molecule X is X11 → X12 → X21 → X22 → X23.
When a molecule Xij is added, interactions with all whole molecules (also fractional molecules
that were already added) are included in the term ∆Ui,j

+. The corresponding changes in λ
are shown in Fig. 7.6.

can write

Q
Ntotal+

R∑
i=1

νi

QNtotal

=

〈
R∏
i=1

(
V1

Λi
3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

+



ν1−1∑
N1=0

ν2−1∑
N2=0

...

νR−1∑
NR=0

...

NT,R+1∑
NR+1=0

...

NT,S∑
Ns=0

VT∫
0

dV1

(
S∏

i=R+1

V1
Ni(VT − V1)

NT,i−Ni

Λ3NT,iNi! (NT,i −Ni)!

)
(

R∏
i=1

V1
Ni(VT − V1)

NT,i+νi−Ni

Λ3(NT,i+νi)Ni! (NT,i + νi −Ni)!

)
∫

ds
Ntotal+

R∑
i=1

νi
exp[−βU(s

Ntotal+
R∑

i=1
νi
, V1)]


QNtotal

(A43)
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where the last term corresponds to configurations where the numbers of
molecules of reactants in box 1 are less than their stoichiometric coefficient.
These configurations have very limited contribution to the statistical weight
[38, 177] and therefore we can neglect this term. Therefore, we have

Q
Ntotal+

R∑
i=1

νi

QNtotal

=

〈
R∏
i=1

(
V1

Λi
3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

(A44)

so that

R∑
i=1

νiµi =

〈
R∏
i=1

(
V1

Λi
3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

(A45)

For R = 1 and νi = 1, we recover the original expression by Frenkel and
Smit (see Eq. 6.20).



188

A.3 Chemical potentials in serial Rx/CFCMC

Consider the reaction:

ν1r1 + ν2r2 + ...+ νRrR ⇌ νR+1p1 + νR+2p2 + ...+ νSpP

We start the derivation by not yet considering the contribution of internal
degrees of freedom to the chemical potential of each component i (see
Eq. 7.15), as we add these effects at the very end. We start again from the
Gibbs ensemble where molecules only interact in box 1, and box 2 is an
ideal gas reservoir (see section A.1).

QCFCMC =

NT,1∑
N1=0

...

NT,S∑
NS=0

1∑
δ=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni+νiδ(VT − V1)

NT,i+(1−δ)νi−Ni

Λi
3(NT,i+νi)Ni! (NT,i + (1− δ)νi −Ni)!

)
 S∏

j=R+1

V1
Nj+νj(1−δ)(VT − V1)

NT,j+δνj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + δνj −Nj)!


1∫

0

dλ

∫
dsNint exp[−βUint(s

Nint , V1)]

(
R∏
i=1

∫
dsνifrac exp[−βδUfrac,i(s

νi
frac, s

Nint , λ, V1)]

)
 s∏

j=R+1

∫
ds

νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ, V1)]



(A46)
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We can write〈
δ′λ=0,δ=1

1
R∏
i=1

(
V1

Λi
3

)νi
〉

=

1

QCFCMC



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni+νi(VT − V1)

NT,i−Ni

Λi
3(NT,i+νi)Ni! (NT,j −Ni)!

)

×

 S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


1

R∏
i=1

(
V1

Λi
3

)νi ∫ dsNint exp[−βUint(s
Nint , V1)]



(A47)

δ′λ=0,δ=1 equals one when λ = 0 and δ = 1 and otherwise this term equals
zero. When δ = 1, all reactants have fractional molecules in box 1. There-
fore,〈

δ′λ=0,δ=1

1
R∏
i=1

(
V1

Λi
3

)νi
〉

=

1

QCFCMC



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,i −Ni)!

)
 S∏

j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


∫

dsNint exp[−βUint(s
Nint , V1)]



(A48)



190

We can also write〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!
Ni!

〉
=

1

QCFCMC



NT,1∑
N1=0

...

NT,S∑
NS=0

1
R∏
i=1

(Ni+νi)!
Ni!

VT∫
0

dV1

(
R∏
i=1

V1
Ni+νi(VT − V1)

NT,i−Ni

Λi
3(NT,i+νi)Ni! (NT,j −Ni)!

)

S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

∫
dsNint exp[−βUint(s

Nint , V1)]

R∏
i=1

∫
dsνifrac exp[−βUfrac,i(s

νi
frac, s

Nint , λ = 1, V1)]
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〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!
Ni!

〉
=

1

QCFCMC



NT,1∑
N1=0

...

NT,S∑
NS=0

R∏
i=1

(
V1

Λi
3

)νi
R∏
i=1

(Ni+νi)!
Ni!

VT∫
0

dV1

R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,j −Ni)!

 S∏
j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

∫ dsNint exp[−βUint(s
Nint , V1)]

(
R∏
i=1

∫
dsνifrac exp[−βUfrac,i(s

νi
frac, s

Nint , λ = 1, V1)]

)



(A50)



A.3 Chemical potentials in serial Rx/CFCMC 191

Here, fractional molecules is just like whole molecules and we can write〈
δ′λ=1,δ=1

1
R∏
i=1

(Ni+νi)!
Ni!

〉
=

1

QCFCMC



NT,1∑
N1=0

...

NT,S∑
NS=0

R∏
i=1

(
V1

Λi
3

)νi
R∏
i=1

(Ni+νi)!
Ni!

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,j −Ni)!

)
 S∏

j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

 R∏
i=1

exp[−β

νi∑
j=1

∆Ui,j
+]


∫

dsNint exp[−βUint(s
Nint , V1)]
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By combining Eqs. A48 and A51, we can write:〈
δ′λ=1,δ=1

1
R∏

i=1

(Ni+νi)!
Ni!

〉
〈
δ′λ=0,δ=1

1
R∏

i=1

(
V1
Λi

3

)νi

〉 =



NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,j −Ni)!

)
 S∏

j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!


R∏
i=1

(
V1

Λi
3

)νi
R∏
i=1

(Ni+νi)!
Ni!

R∏
i=1

exp[−β

νi∑
j

∆Ui,j
+]

∫
dsNint exp[−βUint(s

Nint , V1)]




NT,1∑
N1=0

...

NT,S∑
NS=0

VT∫
0

dV1

(
R∏
i=1

V1
Ni(VT − V1)

NT,i−Ni

Λi
3NT,iNi! (NT,i −Ni)!

)
 S∏

j=R+1

V1
Nj (VT − V1)

NT,j+νj−Nj

Λj
3(NT,j+νj)Nj ! (NT,j + νj −Nj)!

∫ dsNint exp[−βUint(s
Nint , V1)]
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This leads to〈
δ′λ=1,δ=1

1
R∏

i=1

(Ni+νi)!
Ni!

〉
〈

δ′λ=0,δ=1
1

R∏
i=1

(
V1
Λi

3

)νi

〉 =

〈
R∏
i=1

(
V1
Λi

3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

(A53)

Note that the right hand side of Eq. A53 is directly related to the chemical
potential (see Eq. A45). If we assume that number of whole molecules and
volume of the box are independent of the value of λ, we can write〈

δ′λ=1,δ=1
1

R∏
i=1

(Ni+νi)!
Ni!

〉
〈
δ′λ=0,δ=1

1
R∏

i=1

(
V1
Λi

3

)νi

〉 ≈

〈
R∏
i=1

(
V1

Λi
3

)νi
R∏
i=1

(Ni+νi)!
Ni!

〉
⟨δ′λ=1,δ1=1⟩
⟨δ′λ=0,δ1=1⟩

≈

〈
R∏
i=1

(
V1

Λi
3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

=
R∑
i=1

νiµi

(A54)

which leads to〈
R∏
i=1

(
V1

Λi
3

)νi
R∏
i=1

(Ni+νi)!
Ni!

〉
p(λR ↑ 1)

p(λR ↓ 0)

≈

〈
R∏
i=1

(
V1

Λi
3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

=

R∑
i=1

νiµi

(A55)

where λR = λ when we have the fractional molecules of reactants (δ = 1).
In this equation, p(λR ↑ 1) is the probability that λR approaches 1, and
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p(λR ↓ 0) is the probability that λR approaches 0.〈
R∏
i=1

(
V1

Λi
3

)νi
R∏
i=1

(Ni+νi)!
Ni!

〉
≈

〈(
V1

Λi
3

)νi
R∏
i=1

Ni
νi

〉
=

〈
R∏
i=1

(
1

Λi
3ρi

)νi
〉

(A56)

where ρi is the number density of component i. The sum of chemical
potentials of all reactants times their stoichiometric coefficients equals

〈
R∏
i=1

(
1

Λi
3ρi

)νi〉 p(λR↑1)
p(λR↓0) ≈

〈
R∏
i=1

(
V1
Λi

3

)νi
exp[−β

νi∑
j=1

∆Ui,j
+]

(Ni+νi)!
Ni!

〉
normal,GE

(A57)

At this point, it is important to note that so far we did not consider the
internal contribution of the partition function of component i. The corrected
expression including the correct reference state for the chemical potential
of component i equals

R∑
i=1

νiµi = − 1

β
ln

〈
R∏
i=1

(
qi

Λi
3ρi

)νi
〉

− 1

β
ln

(
p(λR ↑ 1)

p(λR ↓ 0)

)
(A58)

where qi is the ideal gas partition function of component i, excluding the
translational part [197]. Eq. A58 allows for an independent check of reaction
equilibria without any additional calculations (e.g. Widom’s test particle
insertion method) [38]. By coupling the interactions of different components
in smart way to the order parameter λR, we are able to compute the chemical
potentials of all components participating in the reaction. If we only scale
the interactions of the fractional molecule of one of the reactant components
(for instance component i) from no interactions to full interactions when
λ ∈ ⟨0, A⟩, we can write

νiµi = − 1

β
ln

(
qi

Λi
3ρi

)νi

− 1

β
ln

(
p(λR ↑ A)

p(λR ↓ 0)

)
(A59)
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Table A1: Computed excess chemical potentials of Lennard-Jones particles (with analytic tail
corrections [38, 183]) at different pressures obtained from serial RX/CFC and Widom’s test
particle insertion method [224] in the NPT ensemble are compared with values computed
from the Equation Of State (EOS) from Kolafa and Nezbeda [231]. In the second column, the
values obtained with the serial Rx/CFC method for the reaction A ⇌ B are shown. In the third
column, values obtained from NPT simulations (400 particles) with Widom’s test particle
insertion method are shown [224]. The numbers between brackets denote the uncertainty in
the last digit. All values are reported in dimensionless units. The cutoff radius was set to 2.5
in dimensionless units. T=2 in reduced units.

P Serial RX/CFC Widom EOS

1.0 -0.646(9) -0.645(8) -0.646
3.0 1.91(2) 1.91(3) 1.910
5.0 4.34(2) 4.37(4) 4.342

The first term on the right hand side accounts for the ideal gas part of
the chemical potential including the internal degrees of freedom, and the
second term account for the excess part of the chemical potential (due to the
interactions of molecules with the surrounding). To validate Eq. A59, excess
chemical potentials obtained from serial Rx/CFC for the reaction A ⇌ B,
where A and B have identical interaction potentials, are compared with the
values obtained from Widom’s test particle insertion method [38, 183, 224]
in the NPT ensemble and values computed from from the equation of state
of the Lennard-Jones interaction potential [231]. As shown in Table A1,
values obtained from the three methods are in excellent agreement. The
chemical potential of component i for a non-ideal gas equals [198] (see also
Eq. 7.15)

µi =
1

β
ln

βP0Λ
3
i

qi
+

1

β
ln

yiPφi

P0
(A60)

in which φi and yi are the fugacity coefficient and mole fraction of component
i. P0 is the reference pressure (1 bar) and P is the pressure of the mixture.
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Therefore, we have

R∑
i=1

νiµi =
1

β
ln

(
R∏
i=1

[
βΛi

3yiPφi

qi

]νi)
(A61)

Combining this with Eq. A58 immediately leads to

R∏
i=1

φi
−νi =

(
βyiP

ρi

)νi p(λR ↑ 1)

p(λR ↓ 0)
(A62)

We define the term zi by

zi =
βyiP

ρi
(A63)

Therefore, we can write for φi

φi
−νi =

p(λR ↑ A)

p(λR ↓ 0)
zi

νi (A64)
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A.4 Extension to constant pressure

In this section, we extend the expressions derived for the partition func-
tion and acceptance rules for the constant volume version of serial Rx/CFC
to the constant pressure version by multiplying the partition function by
a term exp[−βPV ] [38]. The partition function for the constant pressure
version of serial Rx/CFC is therefore given by

QCFC,P =

βP
∞∑

N1=0

...
∞∑

NS=0

1∑
δ=0

∫
dV exp[−βPV ] exp

[
β

R∑
i=1

µi (Ni + νiδ) +
R∑
i=1

(Ni + νiδ) ln
V qi

Λi
3 −

R∑
i=1

lnNi!

]

exp

β S∑
j=R+1

µj (Nj + νj(1− δ)) +

S∑
j=R+1

(Nj + νj(1− δ)) ln
V qj

Λj
3 −

S∑
j=R+1

lnNj !


1∫

0

dλ

∫
dsNint exp[−βUint(s

Nint)]

(
R∏
i=1

∫
dsνifrac exp[−βδUfrac,i(s

νi
frac, s

Nint , λ)]

)
 S∏

j=R+1

∫
ds

νj
frac exp[−β(1− δ)Ufrac,j(s

νj
frac, s

Nint , λ)]
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where P is the pressure of the system. The term βP is used to make
the partition function dimensionless [38]. In the constant pressure version
of the serial Rx/CFC method, the volume of the simulation box remains
unchanged in all reaction trial moves. Therefore, the acceptance rules for
these trial moves in the constant volume and constant pressure versions of
serial Rx/CFC (Eqs. A19, A26 and A33) are identical. The only additional
trial move in the constant pressure versions of serial Rx/CFC is the trial
move to change the volume of the simulation box. In this trial move, the
volume of the simulation box is changed while the number and relative
coordinates of the whole molecules and fractional molecules stay the same.
Here, the random walk is performed in V and not in ln(V ) [38]. The
acceptance rule for this trial move is [38]

acc(o → n) = min

1,(Vn
Vo

) R∑
i=1

(Ni+νiδ)+
S∑

j=R+1
(Nj+νj(1−δ))

exp [−β (∆U + P (Vn − Vo))]

 (A66)
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As we assume that the probability distribution of λ does not depend on
volume, the expression derived for the chemical potential for the constant
volume version of serial Rx/CFC can also be used for the constant pressure
version of the serial Rx/CFC method, as is the same for the conventional
NV T and NPT Gibbs ensembles [38].

A.5 Thermodynamic modeling of the ammonia
synthesis reaction

The ammonia synthesis reaction is modelled using the Peng-Robinson
Equation of State (PR-EoS) [233] and the mixture compositions at equilib-
rium are obtained for different temperatures and pressures. These results
are compared to those obtained from serial Rx/CFC simulations. The equi-
librium constant is only a function of temperature and here defined by [198]

K =

S∏
j=R+1

(
qj/Λ

3
j

)vj
R∏
i=1

(
qi/Λ3

i

)vi (A67)

where Λi is the de Broglie thermal wavelength of component i, and qi is the
ideal gas partition function excluding the translational part. qi is related
to the Gibbs free energy of formation by g0i = −RT ln

(
qi/βP

0Λ3
i

)
. g0i

can be found in JANAF thermochemical tables [239]. At equilibrium, the
equilibrium constant is also provided by [198]

K =

S∏
j=R+1

(
yjPφj

kBT

)vj
R∏
i=1

(
yiPφi

kBT

)vi (A68)
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where P is the total pressure, and yi and φi are the mole fraction and the
fugacity coefficient of component i, respectively. For a non-linear polyatomic
molecule, the ideal gas partition function excluding the translational part
is [198]

qi (T )

Λi
3 =

(
2πMikBT

h2

)3/2π1/2

σ

(
T 3

Θrot,A,iΘrot,B,iΘrot,C,i

)
3n−6∏
j=1

1

1− exp (−Θvib,j,i/T )
ge1,iexp[D0/kBT ]

(A69)

where Θrot,A,i, Θrot,B,i, and Θrot,C,i are the characteristic rotational tem-
peratures in terms of three principal moments of inertial [198]. Mi is the
molecular mass of component i, Θvib,j is the characteristic vibrational tem-
perature corresponding to normal mode j. D0 is the atomization energy
at 0K. σ is the symmetry number of molecules of component i. h is the
Planck constant. ge1,i is the degeneracy of the electronic ground state, and
kB is the Boltzmann constant. As the atomization energies D0 appear in
the exponential, small differences in D0 may lead to large differences in
the computed partition functions. Deviations are observed between the
experimental atomization energies and those obtained from the Gaussian09.
These values are reported in Table A2. Table A3 summarizes the computed
partition functions both based on experimental data from literature [198,
239] and quantum computations using Gaussian09 [230]. It is important
to note that for the latter, the atomization energies from McQuarrie [198]
were used, and not the ones computed from Gaussian09. Using the atom-
ization energies computed from Gaussian09 results in equilibrium constants
that are 5 times larger than experimentally measured equilibrium constants.
In all QM computations, the optimized molecular structures for nitrogen,
hydrogen and ammonia were obtained at the B3LYP level of theory with a
6-31G** basis set. A frequency analysis was carried out on the optimized
geometries to compute the partition functions.
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Table A2: Experimental atomization energies [198] and atomization energies computed for
nitrogen, hydrogen, ammonia using Gaussian09 using the B3LYP level of theory with a 6-31G**
basis set [230]

.

Component D0 / [kJ/mol]
McQuarrie Gaussian

N2 941.6 917.6
H2 432.1 432.1
NH3 1158 1149.8

Table A3: Computed ideal gas partition functions of nitrogen, hydrogen, ammonia obtained
as defined in appendix A.5. The reported values are based on experimental data [198, 239]
and quantum computations using Gaussian09 (using B3LYP level of theory with a 6-31G**
basis set) [230]. It is important to note that for the values obtained from Gaussian09, the
experimental atomization energies provided by McQuarrie [198] are used (see Table A2) and
NOT the ones obtained from Gaussian09. One can easily see that using the atomization
energies from Gaussian09 (as listed in Table A2) results in large deviations. For serial Rx/CFC
simulations values reported in the first column (McQuarrie) are used.

q/Λ3 [N2]/[Å
−3] q/Λ3 [H2]/[Å

−3] q/Λ3 [NH3]/[Å
−3]

T/K McQuarrie JANAF Gaussian McQuarrie JANAF Gaussian McQuarrie JANAF Gaussian
573 2.60 · 1090 2.63 · 1090 2.65 · 1090 6.46 · 1040 6.46 · 1040 5.95 · 1040 1.50 · 10110 1.44 · 10110 1.50 · 10110
673 6.89 · 1077 6.99 · 1077 6.99 · 1077 1.28 · 1035 1.35 · 1035 1.25 · 1035 5.42 · 1094 5.22 · 1094 5.42 · 1094
773 3.44 · 1068 3.50 · 1068 3.49 · 1068 8.28 · 1030 8.75 · 1030 8.09 · 1030 2.12 · 1083 2.05 · 1083 2.12 · 1083
873 2.42 · 1061 2.47 · 1061 2.77 · 1061 5.08 · 1027 5.36 · 1027 4.96 · 1027 3.65 · 1074 3.56 · 1074 3.65 · 1074

For the ammonia synthesis reaction N2 + 3H2 ⇌ 2NH3, the equilibrium
constant of Eq. A68 becomes

K =
(yNH3PφNH3)

2

(yN2PφN2) (yH2PφH2)
3 (kBT )

2 (A70)

The fugacity coefficients of ammonia, nitrogen and hydrogen can be obtained
from the Peng-Robinson Equation of State [240]:

P =
RT

V − b
− a

V (V + b) + b(V − b)
(A71)
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lnφi =
bi
bm

(Zm − 1)− ln (Zm −Bm)

− Am

2
√
2Bm


2

S∑
k=1

ykaik

am
− bi

b

 ln

(
Zm + 2.414Bm

Zm − 0.414Bm

) (A72)

S is the number of components, Zm is the compressibility factor and Am

and Bm are defined as [240, 241]

Am = am (T )P/R2T 2 , Bm = bmP/RT , Zm = PV /RT (A73)

am and bm are constants taking into account the molecular interactions in
the mixture and co-volume, respectively. For mixtures, a and b in Eq. A71
are replaced by am and bm, respectively. The van der Waals mixing rules
are used to compute these values [240, 241]:

am =
S∑

i=1

S∑
j=i

xixjaij

bm =
S∑

i−1

S∑
j=i

xixjbij

(A74)

where xi is the mole fraction of component i. In the above equation, aii
and bii correspond to pure component i and are defined as [240, 241]

aii (T ) = 0.4572
R2T 2

c

Pc

[
1 +

(
0.3746 + 1.5423ω − 0.2699ω2

) (
1− T 1/2

r

)]2
bii =

0.078RTc

Pc

(A75)

ω is the acentric factor of the component which can be found in litera-
ture [242]. Tc and Pc are the critical temperature and critical pressure of
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Table A4: Critical temperatures (Tc), pressures (Pc) and acentric factors (ω) of the compo-
nents used in the PR-EoS modeling [242].

Component Tc /[K] Pc /[Pa] ω

N2 126.19 3395800 0.0372
H2 33.14 1296400 -0.219
NH3 405.4 11333000 0.25601

the component, respectively. Critical points and acentric factors for nitro-
gen, hydrogen and ammonia are taken from the REFPROP database [243]
and are listed in Table A4. aij and bij corresponds to unlike-interaction
parameters and defined as

aij = (aiiajj)
1/2 (1− kij)

bij =
(bii + bjj)

2

(A76)

kij is the coupling interaction parameter. For a given temperature and
pressure, the right hand side of Eq. A70 is defined by mixture compositions
at equilibrium. To obtain the mixture compositions at equilibrium using
the PR-EoS, the reaction is started with 3 moles of H2 and 1 mole of N2 and
no ammonia. The reaction coordinate ε ∈ [0, 1] is defined as a measure of
the extent of the reaction. The value 0 meaning the reaction has not taken
place and the value 1 meaning all reactants are converted into reaction
products. Knowing the initial composition, the mixture composition at
equilibrium is defined by the value of ε, when equilibrium is reached. Using
Eq. A70 and the Peng-Robinson equation of state, the value of ε can be
found iteratively and this directly leads to the composition of the mixture
at chemical equilibrium.
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A.6 Molecular interactions for modelling the am-
monia synthesis reaction

For the Lennard-Jones interactions, the cutoff radius is set to 12.0 Å.
The Lorentz-Berthelot mixing rules and analytical tail corrections are used
[183]. For fractional molecules, Lennard-Jones interactions are scaled as:

u(r, λi) = λi4ϵ

 1[
1
2 (1− λi)

2 +
(
r
σ

)6]2 − 1[
1
2 (1− λi)

2 +
(
r
σ

)6]
 (A77)

where λi is the scaling parameter fractional molecule i. The value of λi will
be zero when λ = ai and it will be 1 when λ = bi this is shown schematically
in FIGURE X. when two fractional molecules interact, the interactions are
scaled according to minimum of λi of the two molecules. The tail corrections
energy for two atom types i and j equals [38]:

uijtail =
16πNiNjϵij

V

(
σ12
ij

9r9cut
−

σ6
ij

3r3cut

)
(A78)

where Ni and Nj are the total number of atoms of type i and j in the
simulation box, V is the volume of the simulation box and rcut the cutoff
radius. An atom of a fractional molecule is counted as λ. The total tail
correction energy of the system is then:

Utail,total =
1

2

M∑
i=1

M∑
j=1

uijtail

where M is the number of different atom types and the factor 1
2 corrects

for counting contributions double. Coulombic interactions are calculated
with the Wolf method [229]. Here, also a cutoff radius of 12.0 Å is used

and the damping parameter was set to α = 0.10 Å
−1

. In the Wolf method,
Coulombic interactions are calculated in two parts.
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The first part is a damped pairwise potential:

u(r) =
qiqj
4πϵ0

(
erfc (αr)

r
− erfc (αrcut)

rcut

)
(A79)

where α is a damping parameter, rcut the cutoff radius, and erfc(x) is the
complementary error function. These interactions should be calculated for
all interacting atom pairs, both intermolecular and intramolecular. For
fractional molecules, we use a slightly different form:

u(r, λi) =
λiqiqj
4πϵ0

(
erfc (αr)

r +A (1− λi)
2 − erfc (αrcut)

rcut +A (1− λi)
2

)
(A80)

where A=1/2 Å. This ensures that for λ = 1 we have the original interaction
potential and for λ = 0 interactions are switched off, and no singularities
are present when λ → 0. The second term is a correction term called the
self term [229]:

uself = − 1

4πϵ0

(
erfc (αrcut)

2rcut
+

α√
π

) N∑
i=1

q2i (A81)

where the sum is over all atomic charges so that N is the total number of
atoms in the system. Fractional molecules are included by substituting N
by N + Nfrac (Nfrac is the total number of atoms of fractional molecules).
For fractional molecules, the term q2i is replaced by λiq

2
i . Here we are con-

sidering only rigid molecules, therefore, we do not have any intramolecular
Coulombic interactions. As the pairwise potential of Eq. A79 is also applied
to intramolecular charge pairs, we should add an exclusion term similar to
the Ewald summation [33, 244, 245]. The exclusion term is:

uexcl = − λiqiqj
4πϵ0(r +A(1− λi))

(A82)

and it should be added for all intramolecular charge pairs.
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By comparing the total electrostatic energy of several configurations
using the Wolf method and the Ewald summation [38, 195], we verified
that the electrostatic energies computed using the Wolf method are nearly
identical and these two methods yield the same Vapour-Liquid Equilibria
for different molecules [245].

Force field parameters used for ammonia, nitrogen and, hydrogen are
listed in Table A5 [225–228]. Hydrogen is modeled by a single chargeless
Lennard-Jones interaction site. For nitrogen, bond lengths and angles are:

• d(NN2 ,MN2) = 0.55Å

• d(NN2 ,NN2) = 1.10Å

• θ(NN2 ,MN2 ,NN2) = 180 deg

MN2 is a dummy site which only carries a partial charge and is located in
between the two N atoms (see also Table A5). For ammonia, bond lengths
and angles are:

• d(NNH3 ,HNH3) = 1.012Å

• d(NNH3 ,MNH3) = 0.080Å

• θ(HNH3 ,NNH3 ,HNH3) = 106.7 deg

• θ(HNH3 ,NNH3 ,MNH3) = 67.9 deg

MNH3 is a dummy site which only carries a partial charge and is located in
outside the three H atoms (see also Table A5).
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Table A5: Force field parameters (Lennard-Jones parameters, and partial charges of interaction
sites) used for ammonia, nitrogen and, hydrogen [225–228]. The different interaction sites
are defined in appendix A.6. Lennard-Jones interactions between unlike atoms are calculated
using the Lorentz-Berthelot mixing rules [183].

Site σ /[Å] ϵ/kB /[K] q /[e]

NN2 3.32 36.4 -0.40505
MN2 0.0 0.0 0.8101
H2 2.915 38.0 0.0

NNH3 3.420 185.0 0.0
HNH3 0.0 0.0 0.410
MNH3 0.0 0.0 -1.230
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Summary

Separation and selective production of branched paraffins are among the
most important and still challenging processes in the oil and gas industry.
Addition of branched hydrocarbons can increase the octane number of a
fuel without causing additional environmental concerns. Conversion of
linear hydrocarbons into branched ones also improves the performance of
lubricants at low temperatures. Zeolites are commonly used for separation
of branched hydrocarbons and selective conversion of linear long chain
hydrocarbons into shorter branched ones.

In the first part of this thesis, we considered adsorption-based separation
process using zeolites. An efficient separation process should have a high
capacity and selectivity and low energy consumption. Experimentally mea-
sured adsorption isotherms and breakthrough curves are used to assess the
capacity and selectivity of adsorption-based separation processes. Adsorp-
tion isotherms are the outcome of static adsorption experiments, where the
adsorbate and adsorbent are kept in contact for a long time until equilibrium
is reached. The equilibrium loadings measured at constant temperature and
various pressures are used to construct adsorption isotherms. In dynamic
adsorption experiments, a fluid phase containing the adsorbate flows over
a fixed bed of adsorbent. Breakthrough curves show the concentration of
an adsorbate in the fluid phase at the outlet of the adsorption column as a
function of time. The experimental procedure, from preparing a sample to
analysing the results, can be very time consuming and expensive. Hence, it
is not feasible to experimentally screen a large number of potential zeolites
for a separation process. One of the most efficient ways to select an appro-
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priate adsorbent and find the optimal operating conditions for an adsorption
based separation is the modelling of the transient adsorption process. In
chapter 2, we introduced a mathematical model to estimate the adsorp-
tion isotherms from the breakthrough curves. In general, breakthrough
experiments are faster than equilibrium adsorption experiments. Using our
approach, the number of required experiments is reduced significantly. We
used Ideal Adsorption Solution Theory (IAST) which allows for obtaining
single component adsorption isotherms from the breakthrough experiments
performed for a gas mixture. This is a very important advantage since one
can compute and predict mixture adsorption isotherms at any composition
from pure component adsorption isotherms using IAST.

In addition to the capacity and selectivity, the energy consumption is also
a very important parameter in design of a separation process. The energy
consumption of a separation process is determined by the heats of adsorption
of components present in the system. To improve the cost efficiency and
separation capacity of a column, most of the industrial adsorption processes
take place at high loading. As the heat of adsorption is a function of
loading and composition of the adsorbed phase, reliable techniques are
required which are capable of computing this thermodynamic property at
high loadings. In chapter 3, we systematically investigated the effectiveness
of the available methods for computing the heat and entropy of adsorption
of hydrocarbons at high loadings. We showed that none of the conventional
methods is appropriate for accurate computation of heat of adsorption near
the saturation loading. We introduced the ”Energy Slope” method for
computing the heat of adsorption at high loading. In this method, the heat
of adsorption is computed using the slope of the fitted curve describing the
variations of the total internal energy of zeolite as a function of the loading.
We showed that this method is capable of computing the heat of adsorption
for pure components and different components in a mixture at all loadings.

In chapters 4 and 5, we considered the zeolite-based production of
branched hydrocarbons. In this process, catalytic activity, selectivity, and
product quality all critically depend on the pore topology of the zeolites. Ze-
olite shape selectivity can influence the adsorption, formation, and diffusion
of certain reactants/products. This can result in vastly different product
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distributions when different catalysts are used. In chapters 4, we combined
our experimental observations and results obtained from molecular simu-
lations to study the shape selective behaviour of zeolites. We considered
the zeolite-based hydroconversion of heptane using three different zeolite
catalysts with different pore sizes MFI-type (pore size≈ 4.7 Å), MEL-type
(pore size≈ 5.2 Å), and BEA-type (pore size≈ 6 Å) zeolites. For all three
catalysts, n-C7 is isomerized to monobranched isomers which are further
isomerized into dibranched isomers, and these dibranched molecules are
converted into cracking products. More dibranched isomers and less crack-
ing products are produced by BEA-type zeolite compared to MFI-type and
MEL-type zeolites. Clear differences are observed in the distribution of
dibranched isomers produced by different zeolites. We showed that prod-
uct shape selectivity can explain the distribution of dibranched molecules
while transition state shape selectivity fails to do so. For MFI-type and
MEL-type zeolites, the dibranched molecule that has to overcome the low-
est diffusion barrier is produced with a higher yield and the distribution
of dimethylpentane molecules is determined by their diffusion rate. As
BEA-type zeolite imposes no free energy barrier for diffusion of any of the
dibranched isomers, the distribution of dibranched isomers is very close to
the equilibrium distribution in the gas phase. In chapter 5, we identified
the appropriate reaction network for the hydroconversion of heptane by
large pore bifunctional zeolite catalysts. This is realized by analysing the
product slates form the extensive set of experiments at various conditions
and using different large pore zeolites. We showed that as the pore size
increases, the equilibrium distribution of dibranched molecules is reached at
a lower conversion of heptane. We introduced a reactor model to simulate
a hydrocracker and estimated the rates of different reactions by minimizing
the differences between the experimental and theoretical yields (obtained
from the model) for different components. The excellent agreement between
the modeling results and experimental data indicates that an appropriate
reaction network and description of kinetics are used.

As mentioned above, industrial separation and selective production of
branched hydrocarbons takes place at high loadings. However, most of the
available molecular simulation technique are not capable of computing ther-
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modynamic properties accurately at high loadings. This is mainly due to
the low acceptance probability for the molecular exchanges. In general, the
grand-canonical ensemble, Gibbs ensemble (GE), and reaction ensemble can
be used for studying these processes. These simulations critically rely on a
sufficient number of molecule exchanges to satisfy the conditions of chemical
equilibria. In chapters 6 and 7, we introduced advanced simulation tech-
niques with high acceptance probability for the molecule exchanges even for
large molecules in dense systems. These algorithms can be used to explicitly
simulate reactions for complex mixtures of hydrocarbons in the liquid phase
or inside zeolites. We introduced serial GE/CFC and serial Rx/CFC to
simulate phase equilibria and reaction equilibria, respectively. Although
these ensembles are expanded with fractional molecules, we showed that
properties identical to those in conventional ensembles can be computed in
these ensembles. Compared to earlier CFCMC methods in the literature,
the number of fractional molecules is reduced and the computational cost is
significantly reduced. These techniques allow for direct calculation of chem-
ical potential of all components without the use of Widom’s test particles.
This can be used to verify the conditions of chemical equilibria without any
additional computation.



Samenvatting

De scheiding en selectieve productie van vertakte alkanen is één van
de belangrijkste en uitdagendste processen in de olie- en gasindustrie. Het
toevoegen van vertakte koolwaterstoffen aan brandstoffen kan het octaan-
getal verhogen zonder bij te dragen aan nadelige effecten op de omgeving.
Ook zorgt de omzetting van lineaire naar vertakte koolwaterstoffen voor een
betere werking van smeermiddelen bij lage temperaturen. Zeolieten worden
vaak gebruikt voor de scheiding van lineaire en vertakte koolwaterstoffen
en de selectieve omzetting van lange lineaire koolwaterstoffen in kortere.

In het eerste deel van dit proefschrift kijken we naar scheidingspro-
cessen gebaseerd op adsorptie in zeolieten. Een efficiënt scheidingsproces
heeft een hoge capaciteit en laag energieverbruik. Experimentele adsorptie
isothermen en breakthrough curves worden gebruikt om de capaciteit en
selectiviteit van scheidingsprocessen te beoordelen. adsorptie isothermen
zijn het resultaat van statische experimenten waar het adsorptiemiddel en
adsorbaat met elkaar in contact worden gehouden tot een evenwicht be-
reikt wordt. De adsorptie bij verschillende drukken wordt gebruikt om
de adsorptie isotherm te bepalen. In dynamische experimenten stroomt
een vloeistof of gas met het adsorbaat over het adsorptiemiddel. Break-
through curves beschrijven de concentratie van het adsorbaat aan het eind
van de adsorptiekolom als een functie van de tijd. Dit experimentele proces,
van het prepareren van de samples tot het analyseren van de resultaten,
kan veel tijd kosten en duur zijn. Daarom is het niet mogelijk om expe-
rimenteel een groot aantal zeolieten te screenen op hun toepasbaarheid in
scheidingsprocessen. Een van de meest efficiënte methoden om een geschikt



238 Samenvatting

adsorptiemiddel en optimale werkcondities te vinden voor een op adsorptie
gebaseerd scheidingsproces is het modelleren van het transiënte adsorption
process. In hoofdstuk 2 introduceren we een wiskundig model voor het voor-
spellen van de adsorptie isothermen uit de breakthrough curves. Over het
algemeen zijn breakthrough experimenten sneller dan experimenten die zich
richten op adsorptie evenwichten. Met onze aanpak is het aantal benodigde
experimenten voor voorspelling van adsorptie isothermen een stuk lager.
We gebruiken Ideal Adsorption Solution Theory (IAST), die het mogelijk
maakt om te adsorptie isothermen van pure componenten te bepalen in
breakthrough experimenten met gasmengsels. Dit is een groot voordeel
omdat men met IAST en de adsorptie isothermen van pure componenten
de adsorptie isothermen van mengsels kan berekenen en voorspellen.

Naast de capaciteit en selectiviteit is ook het energieverbruik een be-
langrijk aspect om rekening mee te houden in een scheidingsproces. Dit
energieverbruik wordt mede bepaald door de adsorptiewarmte van de ver-
schillende componenten. Om het energieverbruik laag en de capaciteit hoog
te houden werken veel industriele adsorptieprocessen bij hoge belading. De
adsorptiewarmte is afhankelijk van belading en samenstelling van het ad-
sorbaat en dus zijn goede technieken en methoden nodig die deze grootheid
kunnen berekenen. In hoofdstuk 3 hebben we systematisch de effectiviteit
van verschillende methoden voor het bepalen van de adsorptie-entropie en
adsorptiewarmte van koolwaterstoffen bij hoge belading bestudeerd. We
laten zien dat nabij verzadiging geen van de conventionele methoden goed in
staat zijn om de adsorptiewarmte nauwkeurig te berekenen. We hebben de
zogenaamde “Energy Slope” methode om de adsorptiewarmte te berekenen
bij hoge belading gëıntroduceerd. In deze methode is de warmteabsorp-
tie berekend door gebruik te maken van de helling van een gefitte functie
die de totale interne energie van het zeoliet als functie van de belading
beschrijft. We laten zien dat we met deze methode de adsorptiewarmte
kunnen berekenen van pure componenten en mengsels bij elke belading.

In hoofdstukken 4 en 5 bekijken we de productie van vertakte koolwater-
stoffen met het gebruik van zeolieten. De katalytische activiteit, selectiviteit
en productkwaliteit van dit proces hangen sterk af van de grootte en vorm
van de poriën van het gebruikte zeoliet. De zogenaamde shape selectivity
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van het zeoliet kan van invloed zijn op de adsorptie, vorming en diffusie
van bepaalde reactanten en reactie producten. Dit kan resulteren in grote
verschillen in de opbrengst van gevormde producten bij het gebruik van
verschillende katalysatoren. In hoofdstuk 4 combineren we experimentele
bevindingen en resultaten uit simulaties om de shape selectivity van ver-
schillende zeolieten te bestuderen. We beschouwen de hydroconversie van
heptaan door het gebruik van drie verschillende zeolieten met verschillende
poriegroottes: MFI-type (poriegrootte ≈ 4.7 Å), MEL-type (poriegrootte
≈ 5.2 Å), en BEA-type (poriegrootte ≈ 6 Å). In deze drie katalysatoren
wordt n-C7 omgezet in enkelvoudig vertakte isomeren die op hun beurt
omgezet worden in dubbelvertakte isomeren en tenslotte in kraakproduc-
ten. In BEA-type zeolieten worden meer dubbelvertakte isomeren gevormd
en minder kraakproducten in vergelijking met de MFI-type en MEL-type
zeolieten. De opbrengst van de geproduceerde dubbelvertakte isomeren is
duidelijk anders voor verschillende zeolieten. We laten zien dat dit verschil
kan worden verklaard door shape selectivity, maar niet door transition state
shape selectivity. In MFI-type en MEL-type zeolieten wordt het dubbelver-
takte molecuul dat de laagste energiebarrière voor diffusie heeft het meest
gevormd en wordt de opbrengst van dimethylpentaan moleculen bepaald
door diffusiesnelheid van dimethylpentaan moleculen. Omdat BEA-type
zeolieten geen energiebarrière heeft voor de diffusie van dubbelvertakte iso-
meren is de opbrengst van deze isomeren vrijwel identiek aan de opbrengst
voor een (hypothetische) reactie in de gasfase. Door het analyseren van een
groot aantal experimenten met verschillende zeolieten bij verschillende con-
dities hebben we het reactienetwerk voor de hydroconversie van heptaan in
large pore bifunctional-zeolieten gevonden. Dit wordt beschreven in hoofd-
stuk 5. We laten zien dat voor grotere poriën de evenwichtsverdeling van
de dubbelvertakte moleculen wordt bereikt bij een lagere omzettingsgraad
van heptaan. We introduceren een model dat de hydrocracker simuleert.
In dit model worden de verschillen in opbrengst tussen experimenten en
theorie voor verschillende componenten geminimaliseerd. Hierdoor kunnen
de verschillende reactiesnelheden geschat worden. Vergelijkbare resultaten
van simulaties en experimenten laten zien dat het gebruikte reactienetwerk
en de beschrijving van de kinetiek correct zijn.
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Zoals eerder beschreven vinden industriële scheidingsprocessen en se-
lectieve productie plaats bij hoge belading. Echter, de meeste moleculaire
simulatie methoden zijn niet geschikt voor het nauwkeurig berekenen van
thermodynamische eigenschappen bij een hoge belading. Dit komt vooral
door lage acceptatie kans van molecuuluitwisselingen. Over het algemeen
worden het grootkanoniek ensemble, Gibbs ensemble (GE) en het reactie
ensemble (Rx) gebruikt om dit soort processen te bestuderen. Bij deze simu-
latietechnieken is het belangrijk dat er veel moleculen worden uitgewisseld
om tot een evenwicht te komen. In hoofdstukken 6 en 7 introduceren we
geavanceerde simulatiemethoden om de efficiëntie van deze molecuuluitwis-
selingen te verhogen, zelfs voor grote moleculen bij hoge dichtheden. Deze
algoritmen kunnen worden gebruikt om complexe mengsels van koolwater-
stoffen te simuleren in de vloeibare fase of in zeolieten. Voor het simuleren
van respectievelijk fase-evenwichten en reactie-evenwichten introduceren we
de simulatietechnieken serial GE/CFC en serial Rx/CFC. Deze ensembles
zijn uitgebreid door toevoeging van fractional moleculen en we laten zien dat
eigenschappen van de conventionele ensembles ook in de nieuwe ensembles
berekend kunnen worden. In vergelijking met eerdere CFCMC methoden
is het aantal fractional moleculen minder en de computational cost een
stuk lager. Met deze nieuwe technieken kan ook de chemische potentiaal
van alle componenten direct worden berekend zonder gebruik te maken van
zogenaamde testdeeltjes. Dit kan dan gebruikt worden om te bepalen of er
een chemisch evenwicht bereikt is zonder dat verdere berekeningen nodig
zijn.



Conclusions

To reduce the harmful impacts of consumption of fossil fuels on the envi-
ronment, there is need for cleaner fuels with high energy efficiency . Current
fuels contain a considerable amount of toxic components such as sulfur and
aromatics. Increasing the concentration of branched hydrocarbons with
certain chain lengths can improve the efficiency and performance of the fuel
without adding any toxic component. However, separation and selective pro-
duction of branched hydrocarbons are still challenging processes in the oil
and gas industries. Zeolites have favourable properties for adsorption-based
separation and catalytic production of branched hydrocarbons. In the first
part of this thesis, we focused on the adsorption-based separation processes
using zeolites. Capacity, selectivity, and energy consumption during the
desorption process are crucial for designing an efficient adsorption-based
separation process. Adsorption isotherms and breakthrough curves are used
to assess the capacity and selectivity of a separation process. Heats of ad-
sorption determine the energy consumption of a process. We introduced an
approach to estimate adsorption isotherms from breakthrough curves even
without detailed knowledge regarding the mass transfer characteristics of
the system. In this way, one only needs to measure breakthrough curves
experimentally (which requires lower number of experiments compared to
experimental measurements of adsorption isotherms) and obtain adsorption
isotherms from our mathematical approach. This is applicable for mixture
of gases and one can obtain the single component adsorption isotherms from
breakthrough experiments performed for a mixture of gases. In contrast
to the conventional equilibrium theory, our method is suitable for cases
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with significantly eroded breakthrough curves. This is typically the case
when their diffusion is slow (e.g. adsorption of branched hydrocarbons by
zeolites). We also systematically compared the effectiveness of various sim-
ulation methods to compute the heat and entropy of adsorption at different
loadings. To improve the cost efficiency of the process and separation ca-
pacity of the column, during the adsorption process, the adsorbent is filled
up to high loadings. Therefore, heats of adsorption of all components are
needed at high loadings. We showed that none of the conventional simula-
tion methods discussed in chapter 3 exhibited a satisfactory performance
at high loadings. We introduced the ”Energy Slope” method which out-
performs the other approaches in the computation of the heat and entropy
of adsorption at high loadings. In this method, the heat and entropy of
adsorption are estimated from the slope of the line fitted to the variation
of the total internal energy of the system as a function of loading.

In chapters 4 and 5 of this thesis, we focused on the selective production
of branched hydrocarbons from hydroconversion of longer chain hydrocar-
bons. Zeolite-based catalytic hydroconversion is the most effective technique
for this process. In this process, structural details of the pores of the zeolite
can lead to enhanced or reduced adsorption, formation, and diffusion of
certain reactants or products. These effects are known as shape selectiv-
ity. Understanding the shape selective behaviour of zeolites is crucial for
improving the design of current processes and choosing the best zeolite for
a certain application. As this process takes place inside zeolites, it is very
difficult to perform experiments that can provide molecular information
about the shape selectivity of a zeolite. We combined molecular simulation
and experiments to obtain information on the adsorption, transport, and
reaction of hydrocarbons at the molecular scale. We computed the adsorp-
tion isotherms and free energy profiles of different heptane isomers within
the pores of BEA-type, MFI-type, and MEL-type zeolites. We showed that
product shape selectivity (diffusion of branched hydrocarbons) is the main
source of sharp differences between the product distribution of these zeolites.
We also showed that dibranched molecules produced from catalytic hydro-
conversion of heptane using BEA-type zeolite are distributed according to
the equilibrium distribution. To investigate the importance of other types
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of shape selectivity, we considered three large pore zeolites where product
shape selectivity is less expected. We showed that as the pore size increases
the equilibrium distribution of dibranched molecules is reached at a lower
conversion of heptane. It should be mentioned that in reality alkenes (an not
alkanes) are involved in the isomerization and cracking reactions catalyzed
by zeolites. However, to simplify the models we did not distinguish between
alkenes corresponding alkanes. However, the kinetics and thermodynamics
of alkenes might also be important for better understanding of the catalytic
hydroconversion of hydrocarbons.

In the last part of this thesis, we presented advanced simulation tech-
niques that can be used to simulate zeolite-based separations and catalytic
hydroconversion of hydrocarbons at high loadings. The main difficulty of
current simulation methods is the low acceptance probability of the molecule
exchanges. Therefore, long simulations are required and it is not easy to
confirm weather simulations have reached equilibrium or not. Our tech-
niques have higher acceptance probabilities for molecule exchanges, and
chemical potentials of all components are directly computed without any
additional computations. This can be used to verify the conditions of
chemical equilibrium.
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