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a b s t r a c t 

Inter-basin water transfers (IBWT) are implemented to re-allocate unevenly distributed water resources. However, 

many conflicting objectives associated with society, economy, and environment have made the water resources 

allocation problem in IBWT more complicated than ever before. Thus, there is a continuous need for in-depth re- 

search with the latest optimization techniques to secure many-objective allocation of water resources for IBWT. In 

addition, being troubled of easily falling into local minima and premature convergence in some multi-objective 

optimization algorithms, it is necessary to explore new alternatives to improve their search quality. Here we 

propose a many-objective optimization methodology for IBWT, which includes three modules: (1) formulating a 

many-objective optimization problem based on realistic controls; (2) developing a new multi-objective real-coded 

quantum inspired shuffled frog leaping algorithm (r-MQSFLA) to solve the optimization problem; (3) utilizing 

the Analytic Hierarchy Process (AHP)-Entropy method to filter the Pareto solutions. In r-MQSFLA, the real-coded 

quantum computer and the external archive with dynamic updating mechanism are applied to SFLA. The per- 

formance of r-MQSFLA is first compared to that of other multi-objective evolutionary algorithms (MOEAs) in 

solving mathematical benchmark problems. A case study of the Eastern Route of South-to-North Water Transfer 

Project in Jiangsu Province, China varying from a normal to an extremely dry year, demonstrates that r-MQSFLA 

displays approximate performance on some compared algorithms and is improved significantly than MOSFLA in 

terms of convergence, diversity and reasonable solutions. This study can update the understanding of quantum 

theory to MOEAs and will provide a reference for better water resources allocation in IBWT under uncertainty. 
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. Introduction 

Demand for water is relentlessly growing driven by industrial
rowth, irrigation, higher living standards and climate change. How-
ver, uneven distribution of water resources both in spatial and tempo-
al scales is common in many countries, and thus results in water pres-
ure and water shortage risks. The inter-basin water transfers (IBWT),
eferred to as the transfer of water from one geographically distinct river
asin to another, or from one river reach to another, has been an effec-
ive engineering countermeasure to mitigate unevenly distributed wa-
er resources and balance the inter-basin water resource development
 Akron et al., 2017 ; Zhou et al., 2017 ; Gallardo andAldridge, 2018 ).
here are many IBWT projects such as the California State Water Project
nd the Central Utah Project in United States ( Lopez, 2018 ), the Lesotho
ighlands Water Project in Lesotho and South Africa ( Matete and-
assan, 2006 ), the West to East Water Transfer Project in Pakistan
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 Jeuland et al., 2019 ), and the Quebec Water Transfer Project in Canada
 Lasserre, 2017 ). It is all known that China has planned and imple-
ented many IBWT projects, one of which is the South-to-North Wa-

er Transfer (SNWT) Project ( Yan andChen, 2013 ; Tang et al., 2014 ;
huang et al., 2019 ). After investing approximately $20 billion and re-
ettling more than 300,000 people (Ministry of Water Resources, 2002),
he SNWT project has become the largest and most expensive IBWT
egaproject in the world ( Pohlner, 2016 ). 

The water resources allocation problem related with supply-oriented
BTW is very complicated not only under the conditions of the chang-
ng water demands, but also the complex water diversion works, con-
truction of long tunnels, mass water pumping, sluice and reservoir op-
ration. Furthermore, many conflicting objectives have made the wa-
er resources allocation problem more complicated than ever before
 Vogel et al., 2015 ). For example, in some IBWTs conflict may arise
rom maximizing water supply reliability as opposed to minimizing the
 February 2020 
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se of water resources or hydraulic structures; on the other hand, mini-
izing costs rather than maximizing water demand may also be impor-

ant in other IBWTs. Undoubtedly, water resources allocation of IBWT
ould be operated from a regional scale concentrating in one objective
y a central planner to an inter-basin scale balancing social, economics,
nd environmental concerns by different stakeholders. Accordingly, op-
imizing water allocation schemes between the supplying basin and the
emanding basin is a crucial and challenging task. Multi-objective evo-
utionary algorithms (MOEAs) that using an iterative search process to
odify and evolve a population of candidate solutions ( Reed et al.,
013 ) can effectively solve complex system problems and thus can
e considered as a promising way to provide intelligent water alloca-
ion strategies. There have been many studies using the state-of-the-art
OEAs to investigate the applicability and effectiveness of water allo-

ation in an inter-basin scale ( Nouiri, 2014 ; Zeff et al., 2014 ; Yong et al.,
015 ; Zhou et al., 2015 ; Zhou et al., 2017 ; Fang et al., 2018a ). 

According to the selection mechanisms, the MOEAs can be divided
nto three categories, namely Pareto-based method, Decomposition-
ased method, and Indicator-based method ( Bai et al., 2019 ). The
areto-based MOEAs rely on the Pareto dominance to identify
igh-quality solutions. Representations of these dominance-based ap-
roaches include Non-dominated Sorting Genetic Algorithm II (NSGA-
I) ( Deb et al., 2002 ), Strength Pareto Evolutionary Algorithm 2 (SPEA2)
 Bleuler et al., 2001 ), and epsilon-MOEA ( 𝜀 -MOEA) ( Deb et al., 2005 ).
he decomposition-based MOEAs transfer a multi-objective problem

nto multiple single-objective subproblems, each of which is then solved
n a cooperative manner. MOEA/D ( Zhang et al., 2009 ) and reference
ector-guided EA (RVEA) ( Cheng et al., 2016 ) are typical examples of
his kind. The Indicator-based MOEAs exploit performance indicators to
uide the evolution process, such as representative approaches based on
he hypervolume indicator including Hypervolume Indicator-Based Evo-
utionary Algorithm (IBEA) ( Zitzler andKünzli, 2004 ) and metric selec-
ion EMOA (SMS-EMOA) ( Beume et al., 2007 ). However, some Pareto-
ased MOEAs perform invalidly when more objectives are involved; the
pproaches based on hypervolume prefer non-uniformly-distributed so-
utions on non-linear Pareto fronts, and the performance of MOEA/D is
ensitive to the pre-defined weight vectors when decomposing the ob-
ective space ( Yang et al., 2018 ). Overall, although some achievements
ave been obtained in the field of multi/many-objective optimization
ecently, MOEAs still have plenty of space to explore. 

Like the other MOEAs, the Pareto-based multi-objective shuffled
rog leaping algorithm (MOSFLA) has been widely applied to solve
ulti-objective optimization problems in many fields, such as reservoir
ood control ( Li et al., 2010 ), mobile robot path planning ( Hidalgo-
aniagua et al., 2015 ) and product transport ( Lamboia et al., 2016 ).
OSFLA was developed based on SFLA which is one of the population-

ased EAs inspired by natural memetics with only a couple of pa-
ameters, fast calculation speed and excellent global search capability
 Eusuff et al., 2006 ). However, SFLA can quickly fall into local minima
nd has slow convergence in the later stage of the evolution and poor
alculation accuracy ( Elbeltagi et al., 2007 ), and thus it is commonly
oupled with other advanced algorithms to find global optimal solutions
ffectively ( Orouji et al., 2013 ; Ahandani andAlavi-Rad, 2015 ). One of
he crucial topics concentrates on the quantum-inspired SFLA (QSFLA)
haracterized by certain principles of quantum mechanisms for a typi-
al computer, and QSFLA was successfully used for its fast convergence
 Gao andCao, 2012 ; Wang et al., 2019 ). Since there is rarely any pub-
ished work to deal with many-objective optimization problems using
SFLA based on the Pareto theory, we use a real-coded quantum com-
uter and an external archive with dynamic updating mechanism to save
nd update the non-dominated solutions in the multi-objective r-QSFLA
r-MQSFLA). These are considered to not only efficiently improve the
iversity and convergence of Pareto solutions for many-objective opti-
ization problems, but apply the quantum theory to MOEAs. 

In this study, we aim to optimize water allocation for IBWT by
eveloping a new multi-objective algorithm r-MQSFLA to generate a
umber of candidates (Pareto solutions), from which stakeholders can
hen choose a desirable policy using multiple criteria decision-making
MCDM) methods. The performance of r-MQSFLA is first benchmarked
n mathematical test problems by comparing its performance with that
f NSGA-II, SPEA2, IBEA, 𝜀 -MOEA, MOEA/D and MOSFLA. Then an in-
egrated methodology combining many-objective optimization model,
-MQSFLA, and MCDM to optimize water resources allocation for IBWT
s performed on a case study of the Eastern route of SNWT Project in
iangsu Province, China (JE-SNWT) under normal, dry, and extremely
ry scenarios. This integrated methodology with r-MQSFLA can provide
ptimal solutions with preferred weights for decision makers who have
iverse preferences with a number of high-order Pareto candidates. 

. Methodology 

The proposed many-objective optimization methodology with r-
QSFLA is shown in Fig. 1 . In this methodology, the many-objective

ptimization model to water resources allocation for IBWT aims to
aximize the water resources benefits (e.g., social, economic and eco-

nvironment) as much as possible while satisfying all kinds of con-
traints. The model operates by determining an optimal release for each
eservoir/lake or pumpage for each pumping station over the whole op-
ration period. The objective function and associated constraints of the
ulti-objective optimization model for IBWT can be formulated as fol-

ows. 

𝑝𝑡 𝐹 ( 𝑥 ) = 

{
𝑓 1 ( 𝑥 ) , 𝑓 2 ( 𝑥 ) , … , 𝑓 𝑛 ( 𝑥 ) 

}
(1)

.𝑡 𝑥 ∈ 𝐺 ( 𝑥 ) (2)

here F ( x ) is objective function set; f n ( x ) is the objective function con-
idering maximum social, economic and eco-environmental benefits; n
s the number of the objective function; x is the decision variable; G ( x )
s the constraint sets. 

.1. MOSFLA 

Shuffled frog leaping algorithm (SFLA) is a meta-heuristic optimiza-
ion method inspired from the memetic evolution of a group of frogs co-
perating to look for food ( Liu et al., 2019 ). It consists of a set of frogs di-
ided into different groups referred to as memeplexes (sub-populations).
ithin each memeplex, the individual frog holds ideas that can be in-

uenced by the ideas of other frogs, and these ideas can evolve through
 process of memetic evolution. MOSFLA is a Pareto-based MOEA of the
riginal SFLA executing three stages ( Hidalgo-Paniagua et al., 2015 ).
he first stage is to initialize both the variables and the initial popula-
ion. The second stage consists of sorting the initial population according
o the individual fitness and crowding distance and then dividing it into
any sub-populations. In the last stage, the evolution of individuals is
ade per each sub-population. When all the iteration numbers in the

ub-populations have been reached, the whole population is mixed and
hen sorted again according to the Pareto front ranking and crowding
istance. In this way, a set of non-dominated frogs will be made through
he whole generation. 

.2. r-MQSFLA 

.2.1. r-QSFLA 

Quantum-inspired shuffled frog leaping algorithm (QSFLA) is based
n the concepts of qubits and superposition of states of quantum me-
hanics. The smallest unit of information stored in a two-state quantum
omputer is called a qubit. A qubit may be in the ‘1 ′ state (|1 ⟩), in the ‘0 ′
tate (|0 ⟩), or in any superposition of the two ( Kirar andAgrawal, 2019 ).
he state of a qubit can be represented by Eq. (3) . 

𝜓 ⟩ = 𝛼|0 ⟩ + 𝛽|1 ⟩ (3)
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Fig. 1. Many-objective optimization methodology for water resources allocation of IWBT. 

w  

s  

s  

s
 

h  

s  

e  

a  

o  

q  

d

𝑣

w  

t
 

t  

X  

f  

s  

q  

p  

c  

t  

a  

c
 

s  

p  

b

𝑣  

 

d  

g  

fi  

b  

u  

p[

w  

a
 

u

𝑣

H  

c  

t

 

 

 

 

 

 

 

 

 

 

 

 

here 𝛼 and 𝛽 are the probability amplitudes of the corresponding
tates, 𝛼2 gives the probability that the qubit will be found in the “0 ′ ’
tate and 𝛽2 gives the probability that the qubit will be found in the “1 ′ ’
tate, following constraint, | 𝛼| 2 + | 𝛽| 2 = 1. 

QSFLA is a multi-agent optimization system inspired by social be-
aviour metaphor of a quantum frog. Each agent, called a quantum frog,
huffles and leaps in a D -dimensional space according to the historical
xperiences of its own and its colleagues. There are h quantum frogs in
 quantum frog colony that is in a space of D dimensions. The position
f the quantum frog colony is V = ( v 1 , v 2 ,…, v h ). The i th quantum frog’s
uantum position is v i = ( v i 1 , v i 2 ,…, v iD ), and a quantum position can be
efined as a string of quantum bits. 

 𝑖𝑑 = 

[ 

𝛼𝑖𝑑, 1 
𝛽𝑖𝑑, 1 

|||||𝛼𝑖𝑑, 2 𝛽𝑖𝑑, 2 

|||||……
|||||𝛼𝑖𝑑,𝑚 𝛽𝑖𝑑,𝑚 

] 

(4) 

here | 𝛼id | 
2 + | 𝛽 id | 

2 = 1, d = 1, 2, …, D, i = 1, 2, …, h , and m is the
otal numbers of a qubit. 

After all the quantum frogs are encoded in qubits, the i th quan-
um frog’s quantum position is observed to generate the quantum frog
 i = ( x i 1 , x i 2 ,…, x iD ). However, it is computationally complex to trans-

orm the quantum position to the real quantum variable in QSFLA. Our
tudy attempts to apply the probabilistic representation of a real-coded
uantum computer to SFLA to improve its global search ability. A frog
opulation initialized by the quantum computer is implemented to over-
ome the shortcoming of the uneven distribution of the initial popula-
ion in SFLA, while an adaptive strategy for the change of the quantum
ngle is adopted to modify the quantum rotation gate, named as real-
oded quantum inspired shuffled frog leaping algorithm (r-QSFLA). 

A qubit can be represented here to replace v = [ 𝛼, 𝛽] T as v = [cos ( 𝜃),
in ( 𝜃)] T , where cos 2 𝜃 + sin 2 𝜃 = 1, 𝜃 ∈ [0, 2 𝜋). Then, the d th quantum
osition of the i th quantum frog would be defined as an m-qubit shown
elow. 

𝑖𝑑 = 

[ 

cos 
(
𝜃𝑖𝑑, 1 

)
sin 

(
𝜃𝑖𝑑, 1 

) ||||| cos 
(
𝜃𝑖𝑑, 2 

)
sin 

(
𝜃𝑖𝑑, 2 

) |||||……
||||| cos 

(
𝜃𝑖𝑑,𝑚 

)
sin 

(
𝜃𝑖𝑑,𝑚 

) ] (5)

Instead of evaluating the position as a binary code, a real two-
imensional variable value of the d th quantum frog representation is
enerated using Eq. (6) . The two-dimensional transfer function was
rstly implemented in Quantum Differential Evolution (QDE) algorithm
y Chen et al. (2013) . Its effectiveness was verified in QDE algorithm
sing the function extreme value and traveling salesman problems com-
ared with GA and PSO algorithm. 

 

𝑥 0 
𝑖𝑑 

𝑋 

1 
𝑖𝑑 

] 
= 

[ 

𝑏 𝑑 − 𝑎 𝑑 
2 
0 

0 
𝑏 𝑑 − 𝑎 𝑑 

2 

] [ 

cos 
(
𝜃𝑖𝑑, 1 

)
sin 

(
𝜃𝑖𝑑, 1 

) ||||| cos 
(
𝜃𝑖𝑑, 2 

)
sin 

(
𝜃𝑖𝑑, 2 

) |||||……
||||| cos 

(
𝜃𝑖𝑑,𝑚 

)
sin 

(
𝜃𝑖𝑑,𝑚 

) ] 

+ 

[ 

𝑏 𝑑 + 𝑎 𝑑 
2 

𝑏 𝑑 + 𝑎 𝑑 
2 

] 

(6) 

here X id ∈ [ a d ,b d ], a d is the lower bound of the d th dimensional vari-
ble and b d is the upper bound of the d th dimensional variable. 

The d th position of the local worst quantum frog vw is updated by
sing the rotation gate ( Arpaia et al., 2011 ), shown in Eq. (7) . 

 𝑤 = 

[ 
cos (Δ𝜃) − sin (Δ𝜃) 
sin (Δ𝜃) cos (Δ𝜃) 

] 
𝑣 𝑤 (7) 

ere, we apply two methods to modify the rotation gate, a self-adapting
hange strategy of the quantum angle Δ𝜃 and a self-correction of quan-
um position v . 

a. The small value of 𝜃 causes low diversity while the big one hin-
ders the algorithm convergence. To lessen this impact, we pro-
pose an adaptive strategy for the change of the quantum angle
Δ𝜃, as shown in Eq. (8) . 

Δ𝜃 = 𝜃min + 𝑓 ( 𝜃max − 𝜃min ) 𝑟𝑎𝑛𝑑 exp 
( 

𝑁 gen 
𝑁 maxgen 

) 

(8)

𝑓 = 

1 
M 

𝑀 ∑
𝑚 =1 

|||||𝑓 𝑖 𝑡 best, 𝑚 − 𝑓 𝑖 𝑡 𝑖,𝑚 

𝑓𝑖 𝑡 best, 𝑚 

||||| (9) 

where 𝜃min is the lower bound of the quantum angle and 𝜃max is
the upper bound of the quantum angle, fit i,m 

is the fitness value
of the i th frog on objective m, fit best,m 

is the global best fitness
value for objective m, N gen is the present iteration times, M is
the number of objectives, and N maxgen is the times of maximum
iteration. 

b. Moreover, the quantum position easily approaching 0 or 1 in
the later stage of the algorithm leads to a local convergence.
To avoid this, v = [cos ( 𝜃) sin( 𝜃)] T reupdated by Eq. (10) has
been successfully used in quantum generic algorithm (QGA) 
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( Wang et al., 2016 ; Fang et al., 2018b ). We also adopt this ac-
tion here. 

𝑣 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[√
1 − 𝜛 

√
𝜛 

]𝑇 
𝑖𝑓 |cos ( 𝜃) |2 ≥ 1 − 𝜛 and |sin ( 𝜃) |2 ≤ 𝜛 [√

𝜛 

√
1 − 𝜛 

]𝑇 
𝑖𝑓 |cos ( 𝜃) |2 ≤ 𝜛 and |sin ( 𝜃) |2 ≥ 1 − 𝜛 

[ cos ( 𝜃) 𝑠𝑖𝑛 ( 𝜃) ] 𝑇 𝑖𝑓 |cos ( 𝜃) |2 ≥ 𝜛 and |sin ( 𝜃) |2 ≤ 1 − 𝜛 

(10)

here ϖ is a random variable ranging from 0 to 1. We assume ϖ= 0.01
n this study. 

.2.2. External archive with dynamic updating mechanism 

In this study, we use an external archive (ExA) with dynamic
pdating mechanism to save and update the non-dominated solu-
ions obtained from the multi-objective algorithm ( Modiri-Delshad an-
Rahim, 2016 ). The dynamic updating mechanism consists of two pri-
ary operations, namely the simulated binary crossover (SBX) method

nd the dynamic crowding distance calculation. 
The SBX is a real-coded crossover which is inspired by the single-

oint crossover used in binary-coded. In a SBX operator, two parent
ndividuals cross to generate new individuals, as shown in Eq. (11) . It
an be used to increase the number of individuals if there are not enough
ndividuals in ExA. 

 1 𝑘 = 

1 
2 

[(
1 − 𝛽𝑘 

)
𝑝 1 𝑘 + 

(
1 + 𝛽𝑘 

)
𝑝 2 𝑘 

]
 2 𝑘 = 

1 
2 

[(
1 + 𝛽𝑘 

)
𝑝 1 𝑘 + 

(
1 − 𝛽𝑘 

)
𝑝 2 𝑘 

] (11)

here x ik is the k th variable of the i th individual, p ik is the i th variable
f parent individuals, and 𝛽k is a random coefficient of the k th variable,
hown as follows. 

𝑘 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

( 2 𝑢 ) 
1 

1+ 𝜂𝑐 𝑢 ≤ 0 . 5 [
1 

2(1− 𝑢 ) 

] 1 
1+ 𝜂𝑐 𝑢 > 0 . 5 

(12)

here u is a random number, u ∈ (0, 1), and 𝜂c is the cross-distribution
ndex, 𝜂c ≥ 0. 

The crowding distance can measure the density around a solution in
he Pareto front distribution. A solution with a larger crowding distance
s located at a less crowded region, which will result in better diversity
n the population. Accordingly, solutions to its two neighbours with a
horter crowding distance will be removed when ExA overloads ( Xiang
nd Zhou, 2015 ). The crowding distance for the i th solution of the Pareto
ront can be calculated from Eq. (13) . 

 𝑖 = 

𝑀 ∑
𝑘 =1 

(||𝑓 𝑘,𝑖 +1 − 𝑓 𝑘,𝑖 − 1 ||) (13)

here D i is the crowding distance of the i th solution with its two clos-
st neighbours, f k,i + 1 and f k,i − 1 are the k th objective function of the
 i + 1)th and ( i − 1)th solution, respectively, and M is the number of
bjective functions, k = 1, 2, …, M . 

.2.3. r-MQSFLA 

We propose a multi-objective algorithm referred to as multi-
bjective real-coded quantum inspired shuffled frog leaping algorithm
r-MQSFLA) by combining the r-QSFLA and ExA with dynamic updating
echanism, which is shown in Fig. 2 . The main processes of r-MQSFLA

re as follows. 

Step 1 . Define objective function and specify parameters of the al-
gorithm. The parameters used in r-MQSFLA include size of
global population ( N pop ), number of local population ( N l ), size
of local population ( N lpop ), dimension of optimization prob-
lem ( 𝑁 dim ), maximum number of generation for global popu-
lation in each run ( N maxgen ), maximum number of generation
for local population in each run ( N lmaxgen ), maximum number
of model simulations ( N sim 

), and maximum number of the ex-
ternal archive ( N ). 
ExA 
Step 2 . Initialize the position of the quantum frog colony V , and from
V generate the real quantum frog colony X using the two-
dimensional transfer function described in Eq. (6) . Then mea-
sure every individual of the entire quantum frog colony X . 

Step 3 . Sort the population according to the Pareto front ranking
and the non-dominated solution set is placed at front, fol-
lowed by the dominated solution set. Divide it into many sub-
populations and then save the non-dominated solutions in a
temporary set ( ND) . 

Step 4 . Update the ExA based on dynamic updating mechanism. 
a. Mix up the non-dominated solutions in the ND with those

in the ExA. Sort the new solution sets according to the
Pareto front ranking and save the new non-dominated so-
lutions in the ExA. 

b. Check the numbers of the non-dominated sets, N nds, in
the ExA. If N nds > N ExA, perform step c; otherwise, in-
crease the number of individuals to meet the defined re-
quirements in ExA using the SBX method, and perform
Step 4. 

c. Compute the crowding distance of each solution for the
non-dominated sets, and remove solutions with the small-
est crowding distance. An infinite distance value is as-
signed to the boundary solution. 

Step 5 . Perform global exploration and local exploration by the r-
QSFLA and SBX operator. 
a. Randomly select a solution from ExA, and tag it as a good

solution X g . 
b. Divide the entire colony into many sub-populations by the

shuffled method based on Eq. (14) . 

𝑗 = mod 
(
𝑖, 𝑁 𝑙 

)
(14)

where the i th frog is selected into the j th sub-population. 
c. For each sub-population, tag the first solution as a good

solution Xb and the last solution as a bad solution Xw .
Thus, the quantum position of Xb is referred as one good
position Vb and the position of Xw is referred as one bad
position V w . 

d. Update V w based on the improved quantum gate G ( 𝜃) with
V b using Eq. (7) , and generate X w by a new position V w .
Compare the new solutions X w with X b , and define the
updated solutions ( X w ) using Eq. (15) . 

𝑋𝑤 = 

{ 

new 𝑋 𝑤 𝑖𝑓 new 𝑋 𝑤 dominates 𝑋 𝑤 

𝑋 𝑤 𝑖𝑓 new 𝑋 𝑤 does not dominate 𝑋 𝑤 

(15)

e. Save the new X w . Alternatively, repeat Steps d-e with X g ,
and save or generate a new X w . 

f. Perform SBX and then sort the sub-population according
to the Pareto front ranking. Repeat steps c-e until the pre-
defined maximum iteration N lmaxgen is reached. 

g Shuffle the sub-population to the new quantum frog
colony X after the local searches are accomplished in all
sub-populations. 

h Sort the newly formed frog colony according to the Pareto
front ranking and divide it into sub-populations again and
then save the non-dominated solutions in the ND . Repeat
Steps 3–5 until the predetermined condition is satisfied. 

Step 6 . Export the optimal Pareto solutions. 

.3. Pareto solutions filtered using AHP-Entropy method 

After Pareto solutions are obtained from the optimization, the stake-
olders of IBWT need to address the many-objectives that conflict with
ach other to determine preferred options. There are two widely meth-
ds for filtering Pareto solutions in water resources management, i.e.,
isual analytic approach ( Kollat et al., 2011 ; Kasprzyk et al., 2012 ;
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Fig. 2. Schematic diagram of the r- 

MQSFLA. 



Y. Guo, X. Tian and G. Fang et al. Advances in Water Resources 138 (2020) 103531 

R  

m  

C  

t  

w  

a  

o  

E  

w  

d  

s
 

n  

k  

o  

r  

w  

a  

t  

r  

f  

t  

o  

h  

m  

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w
∈

(  

 

3

3

 

r  

Y  

t  

t  

2  

f  

S  

E  

b  

P  

d  

i  

4  

t  

a  

i  

t  

R  

P  

c  

i

3

 

d  

b
1  

a
1  

p  

a  

t
 

o  

r  

e  

t  

m  

a  

a  

d  

n  

i  

s  

n  

t  

s  

o  

t  

o  

w  

1  

s  

m  

U  
eed andKollat, 2013 ) and multiple criteria decision-making (MCDM)
ethod ( Madani andLund, 2011 ; Yang et al., 2016 ; Tian et al., 2019 ).
ompared with the visual analytic approach, the MCDM method is less
ime-consuming in determining the preferred solution. In our case, we
ill implement the MCDM method to weight the objectives to seek oper-
ting options for IBWT. There are many evaluation methods in the field
f MCDM, e.g., Analytic Hierarchy Process (AHP) ( Chen et al., 2015 ),
ntropy ( Ridolfi et al., 2016 ), and TOPSIS ( Zahmatkesh et al., 2015 ),
hich can be classified into three categories according to the weighting
etermining ways: subjective method, objective method, and combined
ubjective and objective method. 

AHP is one of widely subjective analysis methods using a combi-
ation of qualitative and quantitative analysis, which is based on the
nowledge and experience of experts and the intentions and preferences
f decision-makers determining the index weight sorting. AHP has high
eliability, profound mathematical background and can be applied to
ater resources ( A ş chilean et al., 2017 ), agriculture ( Ren et al., 2019 )
nd renewable energy development ( Ghimire andKim, 2018 ), etc. En-
ropy is an objective weight method depending on the impact of the
elative change degree of the index on the system by calculating the in-
ormation entropy of index. The greater the relative change degree of
he index, the higher a weight it will be ( Al-Aomar, 2010 ). To avoid the
ne-sided decision, the AHP method and Entropy method are coupled
ere to seek a comprehensive solution and to satisfy different decision
akers. The evaluation step of the AHP-Entropy method ( Wang et al.,
017 ) is as follows. 

(1) Establish a hierarchical decision model. 
Assuming that the number of evaluation indicators is m (here
refers to objectives as indicators in MCDM) and Pareto solution
sets is n , the options corresponding to evaluation indicators con-
stitute the target decision matrix Z = ( z ij ) n × m 

. 
(2) Standardize data. 

A decision matrix can be obtained after standardization which
can be represented as Y = ( y ij ) n × m 

. 

a. The standardization of “positive” indicator (the bigger, the
better), 

𝑦 𝑖𝑗 = 

𝑧 𝑖𝑗 − min 𝑧 𝑖𝑗 
max 𝑧 𝑖𝑗 − min 𝑧 𝑖𝑗 

(16)

b. The standardization of “reverse” indicator (the smaller, the
better), 

𝑦 𝑖𝑗 = 

max 𝑧 𝑖𝑗 − 𝑧 𝑖𝑗 

max 𝑧 𝑖𝑗 − min 𝑧 𝑖𝑗 
(17)

(3) Apply the AHP method to derive subjective weights w ′ for quan-
titative criteria where the decision-makers can establish full pair-
wise preference. In AHP, by analyzing the relationship between
various factors in the system, the evaluation indictors will be
scored according to a nine-scoring system ( Hua andLing, 2010 )
and described in a judgment matrix. Then, the subjective weight
of each evaluation indictor can be attained by weight calcula-
tion and random consistency test based on the judgment matrix.
This research is based on a project launched by the Department
of Water Resources of Jiangsu Province. Therefore, we collected
the score for each performance indicator according to the advice
and guidance of government managers. 

(4) Apply the Entropy method to derive objective weights w ′′ of quan-
titative criteria where decision preferences cannot be established.

(5) Apply a combined AHP-Entropy module for assessing criteria
weights w of quantitative criteria where partial decision prefer-
ence can be established using Eq. (18) . 

𝑤 = 𝛼𝑤 ′ + ( 1 − 𝛼) 𝑤 ′′ (18)

here 𝛼 is a weight of the subjective results relative to the objective, 𝛼
(0, 1). 
6) Define the preferred solution from the Pareto solutions with the max-
imum value of f topval using Eq. (19) . 

𝑓 𝑡𝑜𝑝𝑣𝑎𝑙 = 𝑌 ×𝑤 (19)

. Case study: JE-SNWT project 

.1. Study area 

The SNWT aims to change the uneven spatial distribution of water
esources in China by bringing water from the Yangtze River to the Hai,
ellow (Huang) and Huai River basins in North China. The project has
hree routes, namely western, middle and eastern routes, among which
he middle and eastern ones have been in operation since 2014 and
013, respectively, while the western one is still in planning. This study
ocuses on the eastern route of SNWT Project in Jiangsu Province (JE-
NWT), which is located between 32°15 ′ -34°30 ′ N and 117°00 ′ -119°45 ′
, as presented in Fig. 3 . Water from the Yangtze River is pumped
y pumping stations and then flows along the Grand Canal in Jiangsu
rovince, through a tunnel under the Yellow River and down an aque-
uct to reservoirs in Shandong Province. The total area of the case study
s about 62,000 km 

2 , and the total length of the main canals is about
04 km. This project consists of two canals (West Canal and East Canal),
hree lakes (Hongze (HZ) Lake, Luoma (LM) Lake and Nansi (NS) Lake)
nd eighteen pumping stations (Baoying, Jiangdu, etc.). The West Canal
ncludes Bulao River, Xuhong River, and Jinbao Channel River, while
he East Canal consists of Hanzhuang River, Zhongyun River, and Liyun
iver. The features of the pumping stations and sluices in the JE-SNWT
roject are listed in Table 1 . The three lakes have a total water storage
apacity of about 45.3 × 10 8 m 

3 , whose storage characters are presented
n Table 2 . 

.2. Water demands 

According to the flow duration curve of the annual natural inflow
ata for 60 years, three hydrological years with an exceedance proba-
ility of 50%, 75% and 95% are selected to represent normal (1971.6–
972.5, annual mean inflow: 250.43 × 10 8 m 

3 ), dry (1958.6–1959.5,
nnual mean inflow: 134.72 × 10 8 m 

3 ), and extremely dry (1959.6–
960.5, annual mean inflow: 8.68 × 10 8 m 

3 ) scenarios, respectively. To
rovide the inputs associated with water demands for modelling water
llocation under the three scenarios, the JE-SNWT Project is schema-
ized and shown in Fig. 4 . 

In our case, water users can be categorized into 16 groups based
n their locations. The water demands of water-supplying basins are
elated mainly to domestic, agricultural, and industrial, shipping, and
cological sectors. According to Chinese Standard (GB/T 51051-2014),
he Water Quota Method is used to calculate the water demands for do-
estic, agriculture, and industrial sectors by integrating water quotas

nd activity levels with reuse rates and loss rates. The feasibility evalu-
tion report of E-SNWT Project offers the shipping and ecological water
emands. Year 2010 is selected as the base year for the designed sce-
arios in this study because no inter-basin water transfer project was
mplemented in this year, and scenarios are designed for 2030. Fig. 5
hows the annual water demands of each water user in 2030 under (a)
ormal, (b) dry, and (c) extremely dry scenario, respectively. The wa-
er demands of the domestic, and industrial, shipping, and ecological
ectors are the same under three scenarios, while the water demands
f the agriculture sector increase with the hydrological probability. A
otal water demands of 127.73, 143.02, and 179.90 × 10 8 m 

3 can be
bserved under normal, dry, and extremely dry scenarios, respectively,
here the water demands of the agricultural sector is 65.37, 80.66, and
17.54 × 10 8 m 

3 . It’s noticed that the water demands of the agriculture
ector is the largest in most water users. LYG User has the greatest de-
and for water, especially for the agricultural sector, followed by LM
ser and NS User. Regarding to the water demands for SD and AH user,
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Fig. 3. Location of the JE-SNWT Project. 

Table 1 

Features of the pumping stations and sluices in the JE-SNWT Project. 

Location Number Capacity (m 

3 /s) Location Number Capacity (m 

3 /s) 

Pumping station Baoying P1 100 Pumping station Liulaojian P10 230 

Jiangdu P2 400 Pizhou P11 100 

Jinhu P3 400 Zaohe P12 175 

Huaian P4 300 Taierzhuang P13 125 

Hongze P5 150 Liushan P14 125 

Huaiyin P6 300 Wannianzha P15 125 

Sihong P7 120 Xietai P16 125 

Siyang P8 230 Hanzhuang P17 125 

Suining P9 110 Linjiaba P18 75 

Sluice Huaiyin S1 500 Sluice Erhe S4 500 

Yanhe S2 500 Gaoliangjian S5 500 

Yangzhuang S3 500 Nanyunxi S6 400 

Table 2 

Features of the lakes in the JE-SNWT Project. 

Lake Dead water level (m) Normal water level (m) Regulation storage (10 8 m 

3 ) Monthly minimum lake level for water diversion (m) 

Flood season Non-flood season Flood season Non-flood season Apr. – Jun. Jul.– Aug. Sep. –Dec. Nov. – Mar. 

HZ 11.30 12.50 13.50 15.30 31.35 12.20 12.00 11.95 12.25 

LM 21.00 22.50 23.00 4.30 5.90 22.60 22.15 22.15 22.55 

NS 31.30 32.30 32.80 4.94 8.00 32.30 31.80 31.70 32.35 
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Fig. 4. Schematic diagram of the JE-SNWT Project. 
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Fig. 5. Annual water demands of each water user in 2030 under (a) normal, (b) dry, and (c) extremely dry scenario. 
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e assume a specific value of 14.62 × 10 8 m 

3 and 0, respectively, based
n the Planning Report of SNWT Project. 

.3. Many-objective optimization problem formulation for the JE-SNWT 

roject 

Herein, we formulate a five-objective optimization problem using a
onthly time step for the JE-SNWT Project with 24 decision variables

18 pumping stations and 6 sluices). The objective function and associ-
ted constraints can be formulated as follows. 

.3.1. Objectives 

(1) Minimizing the operating costs 

A decision maker would consider a different suite of costs depend-
ng on whether an existing system is being managed or a completely
ew system is being designed. As water transfers occur in an existing
ystem, costs considered in this study is the operating costs. The oper-
ting costs objective aims to minimize the costs for pumping stations
peration here. 

in 𝑓 ocost = 

𝑇 ∑
𝑡 =1 

𝐽 ∑
𝑗=1 

𝑝 𝑗 𝑞 
𝑝 

𝑗,𝑡 
Δ𝑡 (20) 

here p j (RMB/m 

3 ) is the operating cost of the j th pumping station, 𝑞 𝑝 
𝑗,𝑡 

m 

3 /s) is water pumped by the j th pumping station at time step t, j = 1,
, …, J, J is the total number of pumping stations, t = 1, 2, …, T, T is
he whole operating period, and Δt is the time step. 

(2) Maximizing the water supply reliability 

The water supply reliability metric is a measure of how well the
ater demand for users is met in a water transfer system. It gives the

xtent of water deficit and can be adopted as an indicator to reflect
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ater supply efficiency for water demand. 

ax 𝑓 wsrr = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 − 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑊 

𝑠 
𝑛,𝑡 

𝑇 ∑
𝑡 =1 

𝑁 ∑
𝑛 =1 

𝑊 

𝑑 
𝑛,𝑡 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
∗ 100% (21)

here 𝑊 

𝑠 
𝑛,𝑡 

( m 

3 ) is the water deficit of the n th user at time step t , 𝑊 

𝑑 
𝑛,𝑡

 m 

3 ) is the water demand of the n th user at time step t, n = 1, 2, …, N
nd N is the total numbers of the user, N = 16. 

(3) Minimizing the water surplus 

Minimizing the amount of spill water, which can increase the amount
f water to meet the water demand, is a widely used objective to eval-
ate water transfers systems operation performance. 

in 𝑓 wsv = 

𝑇 ∑
𝑡 =1 

𝑀 ∑
𝑚 =1 

𝑊 

𝑝 

𝑚,𝑡 
(22)

here 𝑊 

𝑝 

𝑚,𝑡 
( m 

3 ) is the water surplus of the m th lake at time step t, m = 1,
, …, M , and M is the total numbers of the lakes ( M = 3 in this case study).

(4) Minimizing the water withdrawn from the Yangtze River 

Reducing the water withdrawn from the river aims to decrease the
mount of water imported from the transfer system other than the inflow
f lakes and improve the regulation and storage capacity of lake. 

in 𝑓 wrv = 

𝑇 ∑
𝑡 =1 

𝑊 

𝑟 
𝑡 

(23)

here 𝑊 

𝑟 
𝑡 

( m 

3 ) is the amount of water withdrawn from the river at time
tep t . 

(5) Minimizing the lake storage deficit 

Eq. (24) describes the ratio of the lake storage deficit at the end of
 flood season. This objective seeks to maximize the lake storage at the
nd of a flood season, which potentially reduces the amount of water
ransferred in the non-flood season and weakens the environmental im-
acts on water source basin. 

in 𝑓 ladr = 1 − 

∑𝐿 

𝑙=1 𝑆 𝑙,𝑓 ∑𝐿 

𝑙=1 𝑆 𝑙, max 
∗ 100% (24)

here S t ,max ( m 

3 ) is the maximum storage of the l th lake at the end of
ood season, S l,f ( m 

3 ) is the ending storage of the l th lake at the end of
ood season. 

.3.2. Constraints 

There are five main constraints, including water balance constraint,
ake storage constraint, pumping station and sluice capacity, and mini-
um lake levels for water diversion. 

a. Water balance constraint 

The water balance constraint should be satisfied in the water transfer
rocess. 

 𝑡 +1 = 𝑆 𝑡 + ( 𝑞 𝑖 
𝑡 
+ 𝑞 

𝑝 

𝑗,𝑡 
− 𝑞 

𝑝 

𝑗+1 ,𝑡 − 𝑞 𝑠 
𝑡 
− 𝑞 𝑟 

𝑡 
) × Δ𝑡 (25)

here S t (m 

3 ) is the initial water storage at the beginning of period t,
 t + 1 (m 

3 ) is the ending water storage at the end of period t , 𝑞 𝑖 
𝑡 
, 𝑞 𝑠 

𝑡 
, 𝑞 𝑟

𝑡 

m 

3 /s) are the inflow, water supply and release at time step t , respec-
ively, 𝑞 𝑝 

𝑗,𝑡 
, 𝑞 𝑝 

𝑗 + 1 ,𝑡 (m 

3 /s) is the water pumped by the j th and ( j + 1)th
umping station at time step t , respectively. 

b. Lake storage constraint 

𝑆 𝑡, min < 𝑆 𝑡 < 𝑆 𝑡, max (26)

here S t ,min and S t ,max (m 

3 ) are the lower and upper storage boundary
t time step t , respectively. 
c. Pumping capacity constraint 

0 ≤ 𝑞 
𝑝 

𝑡 
≤ 𝑞 

𝑝 

𝑡, max (27)

here 𝑞 𝑝 
𝑡, max (m 

3 /s) is the maximum pumping capacity at time step t . 

d. Sluice capacity constraint 

0 ≤ 𝑞 𝑟 
𝑡 
≤ 𝑞 𝑟 

𝑡, max (28)

here 𝑞 𝑟 
𝑡, max (m 

3 /s) is the maximum sluice capacity at time step t . 

e. Minimum lake levels for water diversion 

Water diverted will be stopped if the lake level is lower than the
inimum level for water diversion. The monthly minimum lake level

or water diversion is shown in Table 2 . 

. Results 

.1. Mathematical benchmark test of r-MQSFLA 

We first applied r-MQSFLA and six widely used MOEAs, namely
SGA-II, SPEA-II, 𝜀 -MOEA, IBEA, MOEA/D and MOSFLA, to solve five
athematical benchmark problems, ZDT1, ZDT2, ZDT3, ZDT4, and
DT6 ( Perolat et al., 2015 ). Specifically, NSGA-II, SPEA2, 𝜀 -MOEA,
BEA, and MOEA/D were performed in a MATLAB platform for evo-
utionary multi-objective optimization, PlatEMO ( Tian et al., 2017b ),
nd MOSFLA and r-MQSFLA were performed in MATLAB 2018b. The
arameters for all MOEAs used in the benchmark problems are listed in
able 3 . 

In the benchmark problems, we used the indicators of generational
istance ( Reed et al., 2013 ), entropy for diversity ( Deb andJain, 2002 ),
ypervolume ( Deb et al., 2003 ), and epsilon ( Zitzler et al., 2003 ) to eval-
ate the performance of all algorithms. Note that a smaller generational
istance and epsilon, and a larger diversity and hypervolume indicate
 better performance. At the same time, we applied the Wilcoxon rank-
um test ( Perolat et al., 2015 ), which is a non-parametric test, to per-
orm comparisons for each benchmark problem between r-MQSFLA and
ther algorithms. It shows that MOSFLA performs the worst for the five
enchmark problems. We then mainly compared the r-MQSFLA with the
ther five algorithms (NSGA-II, SPEA2, IBEA, 𝜀 -MOEA, and MOEA/D).
he results are shown in Fig. 6 . In ZDT1, r-MQSFLA demonstrates good
ypervolume and epsilon measures. 𝜀 -MOEA performs the best in terms
f generational distance but is the worst in terms of diversity. It can be
een that the six algorithms have very good convergence to the Pareto
ptimal front on ZDT2. For diversity, SPEA2, r-MQSFLA, and 𝜀 -MOEA
re the best, followed by NSGA-II, MOEA/D, and IBEA. Except IBEA,
he other five algorithms all have better hypervolume and epsilon val-
es. r-MQSFLA has higher generational distance, and smaller diversity
nd epsilon measures than some algorithm on ZDT3, but has signifi-
ant improvements in diversity values. In ZDT4, 𝜀 -MOEA is the best in
erms of generational distance, but r-MQSFLA is better than the other
ve MOEAs in terms of diversity, hypervolume and epsilon among ob-
ained solutions. It is also evident that the performance measures of
-MQSFLA on ZDT6 are good, particularly in terms of diversity. Thus,
rom the two-objective problems studied above, we can conclude that
he r-MQSFLA produces good convergence and diversity. 

.2. Many-objective optimization with r-MQSFLA for JE-SNWT Project 

We then applied NSGA-II, SPEA2, IBEA, 𝜀 -MOEA, MOEA/D, MOS-
LA and r-MQSFLA to solve the many-objective optimization problems
or the JE-SNWT Project under normal, dry and extremely dry cond-
ions. The parameters of maximum number of iterations for global pop-
lation, dimension of optimization problem, and number of the external
rchive used in the case study are 2000, 5, and 500, respectively. The
est of the parameters are the same as those used in the benchmark
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Table 3 

Parameter ranges/values for each MOEA used in the benchmark problems. 

No Parameters Range/value Algorithms 

1 Maximum number of model simulations 10 All Algorithms 

2 Size of global population 100 

3 Maximum number of iterations for global population 20000 

4 Dimension of optimization problem 2 

5 Number of the external archive 100 r-MQSFLA, NSGA-II, SPEA2, MOEA/D, 𝜀 -MOEA 

6 Maximum number of iterations for local population 10 r-MQSFLA, MOSFLA 

7 Number of local populations 10 r-MQSFLA, MOSFLA 

8 Number of qubits 1 r-MQSFLA 

9 𝜀 -dominance 0.001-0.0075 𝜀 -MOEA 

10 Simulated Binary Crossover (SBX) rate 0.5-1.0 r-MQSFLA, NSGA-II, SPEA2, IBEA, 𝜀 -MOEA 

11 Distribution index for crossover 10-100 r-MQSFLA, NSGA-II, SPEA2, IBEA, 𝜀 -MOEA 

12 Crossover probability 0.75-0.9 NSGA-II, SPEA2, MOEA/D 

13 Mutation probability 0.0-0.5 NSGA-II, SPEA2, IBEA, 𝜀 -MOEA, MOEA/D 

14 Distribution index for mutation 10-100 NSGA-II, SPEA2, IBEA, 𝜀 -MOEA, MOEA/D 

Fig. 6. Performance comparison of (a) generational distance, (b) diversity, (c) hypervolume, and (d) epsilon for the five mathematical benchmark problems using 

NSGA-II, SPEA-II, 𝜀 -MOEA, IBEA, MOEA/D and r-MQSFLA analyzed by the Wilcoxon rank-sum test. Three symbols of the Wilcoxon rank-sum test indicate the 

observation of the null hypothesis, with ‘ + ’ indicating that the null hypothesis is rejected and r-MQSFLA displays statistically superior performance at the 95% 

significance level ( 𝛼 = 0.05) on the compared algorithm; ‘ − ’ indicating that the null hypothesis is rejected and r- MQSFLA displays statistically inferior performance 

at the 95% significance level on the compared algorithm; ‘ = ’ indicating that the null hypothesis is accepted and r-MQSFLA display approximate performance at the 

95% significance level on the compared algorithm. 

p  

J  

u  

P  

t  

a  

t  

c  

a  

t  

Y  

t  

o  

m  

b  

d  

t  

l  

a  

m

R  

l  

c  

f  

i  

fl  

r  

t
t  

t  

o
 

w  

e  

t  

t  

s  

l  

I  

m  
roblems. Unlike ZDT, where the analytical Pareto front is known, the
E-SNWT problems varying from a normal to an extremely dry year has
nknown Pareto fronts. Fig. 7 provides visualizations of the reference
areto sets attained for these three problems across five runs of all of
he MOEAs tested (NSGA-II, SPEA2, IBEA, 𝜀 -MOEA, MOEA/D, MOSFLA
nd r-MQSFLA). The geometries of the tradeoffs vary significantly across
he applications, as would be expected given their different hydrologi-
al conditions. In each of the plots, the operating costs, water surplus,
nd water supply reliability are plotted on the x, y , and z axes, respec-
ively. The color of the markers indicates the water withdrawn from the
angtze River with color ranging from blue, representing low amount,
o red, representing high amount. The lake storage deficit at the end
f flood season is presented by the size of the makers, where the small
arker means low deficit and the large one means high deficit. The

lack arrows have been added to guide the reader in understanding the
irections of optimization. An ideal solution would be located at the bot-
om left corner (low operating costs, high water supply reliability, and
ow water surplus) of the plot and represented by a small (low lake stor-
ge deficit), dark blue (low water withdrawn from the Yangtze River)
arker. The operating costs under all scenarios range from 0.62 × 10 8 
MB to 6.91 × 10 8 RMB. The water supply reliability has a positive re-
ationship with natural inflow (positive relationship, i.e., the former in-
rease with the increase of the latter). In contrast, the water withdrawn
rom the Yangtze River has an inverse relationship (inverse relationship,
.e., the former decrease with the increase of the latter) with natural in-
ow. The volume of water surplus under normal scenario varies in the
ange of 85.37 × 10 8 m 

3 to 133.85 × 10 8 m 

3 , which is much higher
han that under extremely dry scenario with a value of 0.00 × 10 8 m 

3 

o 9.59 × 10 8 m 

3 . Extremely dry scenario generates the widest range of
he ratio of lake storage deficit at the end of the flood season while the
ther two scenarios have the similar smaller range. 

Fig. 8 (a), (c) and (e) provide the parallel reference Pareto sets
ith a total number of 1111, 1292, and 1263 solutions in the refer-

nce sets across the normal, dry, and extremely dry problems, respec-
ively. All algorithms are presented with different colors. In terms of
he percentage of the reference Pareto fronts captured by each MOEA,
hown in Fig. 8 (b), (d) and (f), r-MQSFLA (4.48%) and SPEA2 (3.79%)
argely contribute to the reference sets for the normal condition; NSGA-
I, SPEA2, 𝜀 -MOEA, and r-MQSFLA capture more compared with the re-
aining algorithms for both dry and extremely dry conditions. Although
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Fig. 7. Illustration of reference Pareto fronts attained across all runs of all algorithms for (a) normal, (b) dry, and (c) extremely dry scenario. The black arrow 

indicates the direction of optimization. 
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-MQSFLA does not always perform the best in capturing the highest
ercent of the reference sets, it consistently captures a certain large per-
entage across all of the problems. MOSFLA is the worst-performing al-
orithm in terms of capturing reference set for the three applications,
ollowing by MOEA/D and IBEA. The latter two fail to capture any ref-
rence set under normal and dry conditions. 

The black arrows in Fig. 8 indicate the directions of optimization.
n ideal solution would be a horizontal line intersecting the top of ev-
ry vertical axis. However, the solutions with the greast operating costs
ncur large amounts of water surplus and water withdrawn from the
angtze River while performing better in the water supply reliability
nd the lake storage deficit. For example, most solutions of r-MQSFLA
nd 𝜀 -MOEA overlap under normal and dry conditions and they prefer
 position near the top values than SPEA2. These results imply that r-
QSFLA and 𝜀 -MOEA will generate higher operating costs and higher
ater withdrawn from the Yangtze River, but higher water supply re-

iability and lower lake storage deficit than SPEA2. It is interesting to
ote that r-MQSFLA has two distinct regions as reference Pareto front
nder normal and dry conditions, one of which has the largest operat-
ng costs and will widen the range of the reference sets. In addition, the
eometries of the tradeoffs attained by r-MQSFLA, 𝜀 -MOEA, SPEA2 and
SGA-II vary significantly across the extremely condition. It is evident

hat r-MQSFLA captures the maximum operating costs (worst solutions)
nd maximum water supply reliability (best solutions). It is also worth
oting that although most of the MOEAs tested are able to find portions
f reference set under extremely condition, the problem is difficult with
espect to finding well converged, consistent, and diverse solution sets
y one MOEA. 

While capturing the reference set is important, it is necessary to
valuate each MOEA using the performance indicators. In the JE-SNWT
roblems, we also used the indicators of generational distance, diversity,
ypervolume, and epsilon. The results are shown in Fig. 9 . This table
hows that there is no top performing algorithm in terms of the four in-
ictors. For example, for normal condition, r-MQSFLA has the best gen-
ration distance measures across all MOEAs, but performs worse than
SGA-II in diversity; for dry condition, r-MQSFLA obtains the worse hy-
ervolume and epsilon distance than 𝜀 -MOEA, but shows better results
n diversity; for extremely condition, r-MQSFLA achieves approximate
alues in epsilon distance and better values in diversity with 𝜀 -MOEA,
ut fails to obtain ideal results in generational distance. Over all, MOS-
LA, IBEA, and MOEA/D are the weakest algorithms for all these three
roblems with larger generational distance and epsilon, lower diversity
nd hypervolume. The remaining algorithms have fairly consistent bet-
er run results, in particular while comparing r-MQSFLA with MOSFLA,
hich can satisfy one of our purposes, that is, improving MOSFLA in

erms of convergence and diversity. 
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Fig. 8. Illustration of parallel reference Pareto sets attained across all runs of all algorithms for (a) normal, (c) dry, and (e) extremely dry scenario and percent 

contributions (%) across all runs of all algorithms for (b) normal, (d) dry, and (f) extremely dry scenario. f 1 represents operating costs (10 8 RMB), f 2 represents water 

supply reliability (%), f 3 represents water surplus (10 8 m 

3 ), f 4 represents water withdrawn from the Yangtze River (10 8 m 

3 ), and f 5 represents lake storage deficit 

(10 8 m 

3 ). The black arrow indicates the direction of optimization. 
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.3. Pareto solutions filtered using AHP-Entropy method for JE-SNWT 

roject 

The Pareto solutions are evaluated based on social, economic and
co-environment benefits. In our case, social benefits criteria include the
erformance metric of water supply reliability, economic benefits crite-
ia include the performance metric of operating cost, the water with-
rawn from the Yangtze River and water surplus, and eco-environment
enefits criteria include the performance metric of lake storage deficit
t the end of flood season. The water supply reliability is the “positive”
valuation indicator, while other performance metrics are the “reverse”
valuation indicators. 

This study first applied the AHP method to calculate the subjective
eights and then used the Pareto solutions to determine the objective
eights based on the Entropy method. According to the government
anagers, the operating costs and water supply reliability are the two
ost striking metrics. Given that people prefer to make decisions based

n losses rather than gains, the operating costs makes the top indictor
nder normal scenario, while water supply reliability has the largest
ontribution under the dry and extremely dry conditions. This could
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Fig. 9. Performance comparison of (a) generational distance, (b) diversity, (c) hypervolume, and (d) epsilon for the three JE-SNWT problems using NSGA-II, SPEA-II, 

𝜀 -MOEA, IBEA, MOEA/D, MOSFLA and r-MQSFLA analyzed by the Wilcoxon rank-sum test. S1-3 represents the scenario of normal, dry, and extremely dry. Three 

symbols of the Wilcoxon rank-sum test indicate the observation of the null hypothesis, with ‘ + ’ indicating that the null hypothesis is rejected and r-MQSFLA displays 

statistically superior performance at the 95% significance level ( 𝛼 = 0.05) on the compared algorithm; ‘ − ’ indicating that the null hypothesis is rejected and r- 

MQSFLA displays statistically inferior performance at the 95% significance level on the compared algorithm; ‘ = ’ indicating that the null hypothesis is accepted and 

r-MQSFLA display approximate performance at the 95% significance level on the compared algorithm. 

Table 4 

Criteria weights derived by the AHP-Entropy method for the JE-SNWT Project using NSGA-II, SPEA-II, 𝜀 -MOEA, IBEA, MOEA/D, MOSFLA and 

r-MQSFLA. 

MOEA Weight Normal Dry Extremely dry 

f 1 f 2 f 3 f 4 f 5 f 1 f 2 f 3 f 4 f 5 f 1 f 2 f 3 f 4 f 5 

w ’ 0.37 0.26 0.14 0.12 0.11 0.22 0.31 0.19 0.12 0.16 0.23 0.50 0.11 0.09 0.08 

r-MQSFLA w ” 0.29 0.24 0.18 0.23 0.06 0.26 0.19 0.18 0.23 0.14 0.24 0.21 0.06 0.29 0.19 

w 0.33 0.25 0.16 0.17 0.08 0.24 0.25 0.18 0.17 0.15 0.24 0.36 0.08 0.19 0.13 

MOSFLA w ” 0.27 0.17 0.26 0.29 0.01 0.27 0.27 0.20 0.24 0.02 0.24 0.22 0.16 0.25 0.14 

w 0.32 0.22 0.20 0.20 0.06 0.24 0.29 0.19 0.18 0.09 0.23 0.36 0.13 0.17 0.11 

NSGA-II w ” 0.09 0.17 0.26 0.18 0.30 0.06 0.27 0.17 0.14 0.35 0.18 0.25 0.14 0.19 0.24 

w 0.23 0.22 0.20 0.15 0.20 0.14 0.29 0.18 0.13 0.25 0.21 0.37 0.12 0.14 0.16 

SPEA2 w ” 0.03 0.31 0.26 0.05 0.35 0.12 0.27 0.16 0.18 0.27 0.13 0.18 0.12 0.18 0.39 

w 0.20 0.29 0.20 0.08 0.23 0.17 0.29 0.17 0.15 0.21 0.18 0.34 0.11 0.13 0.23 

IBEA w ” 0.29 0.28 0.17 0.26 0.00 0.22 0.36 0.22 0.19 0.00 0.13 0.20 0.07 0.21 0.39 

w 0.33 0.27 0.16 0.19 0.05 0.22 0.34 0.21 0.16 0.08 0.18 0.35 0.09 0.15 0.23 

𝜀 -MOEA w ” 0.24 0.26 0.21 0.09 0.21 0.18 0.25 0.08 0.22 0.27 0.16 0.23 0.03 0.20 0.39 

w 0.31 0.26 0.18 0.10 0.16 0.20 0.28 0.13 0.17 0.21 0.19 0.36 0.07 0.14 0.23 

MOEA/D w ” 0.26 0.16 0.24 0.28 0.06 0.24 0.27 0.13 0.31 0.05 0.12 0.25 0.11 0.20 0.32 

w 0.32 0.21 0.19 0.20 0.08 0.23 0.29 0.16 0.22 0.10 0.17 0.37 0.11 0.15 0.20 

Note: f 1 represents operating costs (10 8 RMB), f 2 represents water supply reliability (%), f 3 represents water surplus (10 8 m 

3 ), f 4 represents 

water withdrawn from the Yangtze River (10 8 m 

3 ), and f 5 represents lake storage deficit (10 8 m 

3 ). w ’ represents the subjective weights, w ”

represents the objective weights, and w represents the combined weights. 
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e reasonable assuming that the government aims for a sustainability-
riented policy, which may not be fully based on economic revenue, par-
icularly in terms of severe conditions. An example is given with 𝛼 = 0.5
cross all algorithms for the JE-SNWT Project under three scenarios,
hich is shown in Table 4 . The water surplus has a minimal influence

or all algorithms under extremely dry condition. This is because there
s low inflow and not enough water to have a surplus. 
Fig. 10 shows the variation of the six MOEAs relative to r-MQSFLA
n the five metrics. For the metrics of water surplus and lake storage
eficit, we only presented the absolute results of those more than zero
btained by some MOEAs. For example, SPEA2 can generate extra lake
eficit with a value of 0.13 × 10 8 m 

3 . Make the five metrics all be
igger the better, and consequently a good MOEA prefers a negative
ariation of the five metrics relative to other MOEAs. In this case, all
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Fig. 10. Variation of the six MOEAs relative to r-MQSFLA on the five metrics for (a) normal, (b) dry, and (c) extremely dry scenario. 
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etrics characterized by r-MQSFLA perform better than those charac-
erized by SPEA2, MOEA/D, and MOSFLA for normal condition, and
BEA and MOSFLA for dry condition, demonstrating that r-MQSLA is
ble to reduce the operating costs while enhancing water supply reliabil-
ty. In terms of extremely dry condition, r-MQSFLA chooses to sacrifice
conomic cost in exchange for water supply reliability, resulting in the
ncrease in water withdrawn from the Yangtze River and lake storage
eficit. However, as we mentioned that people prefer to make decisions
ased on losses rather than gains, this result obtained by r-MQSFLA may
ccord with the aspirations of both government and general public and
s more reasonable. MOSFLA will generate water surplus even under
remendous drought condition. The result of that water surplus is zero,
ndicating that our proposed many-objective optimization methodology
ith r-MQSFLA can fulfill the water resource utilization to secure water

upply. 
We further presented the comparison between annual water sup-

ly and water demands characterized by the preferred solutions with
-MQSFLA under three scenarios, as shown in Fig. 11 . According to the
uiding policy of Water Resources Department of Jiangsu Province, wa-
er supply through the JE-SNWT project is planned to satisfy water de-
ands for domestic sector firstly, followed by industrial, shipping and

cological sectors, and the last one is agricultural sector. Thus, the wa-
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Fig. 11. Comparison between annual water supply and water demands under (a) normal, (b) dry, and (c) extremely dry scenario. 
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er demands for domestic sector are fully met under three scenarios,
hile that for industrial sector cannot be satisfied in case of extremely
ry condition with a lack of 5.58 × 10 8 m 

3 . We find that water supply
or shipping and ecological sectors can almost meet requirements under
ll hydrological conditions. However, the shortage of water supply for
gricultural sector ranging from 4.45 × 10 8 m 

3 to 60.51 × 10 8 m 

3 is en-
arged with the decreased natural inflow. This insufficiency is not caused
y our many-objective optimization methodology with r-MQSFLA, but
esulted from the limitation of the capacity of pumping stations, sluices,
nd reservoirs in JE-SNWT Project. 

. Discussion 

.1. Improving algorithm efficiency for many-objective optimization 

roblems 

Tools such as MOEAs are suitable to solve many-objective optimiza-
ion problems in real-word which exhibit nonlinear, convex or non-
onvex, and with discontinuous or non-uniform distribution of the tar-
et space through the high-dimensional Pareto solutions ( Kollat an-
Reed, 2007 ). In addition, a branch of study on quantum-inspired EAs,
or instance, QGA, quantum-inspired immune clonal particle swarm op-
imization algorithm, and quantum-inspired immune clonal algorithm,
ave demonstrated the feasibility and efficiency of the novel EAs based
n the concept and principles of quantum computing ( Jiao et al., 2008 ;
lachogiannis andLee, 2008 ). This study proposed a new MOEA named
s r-MQSFLA to generate a diverse set of non-dominated solutions for
any-objective optimization problem. 

The Multi-objective optimization algorithm aims to achieve two ob-
ectives: one is that the obtained non-dominated solution set should ap-
roach the real non-dominated solution set as quickly as possible, and
he other one is that the solutions should be distributed as evenly as pos-
ible ( Fonseca et al., 2003 ). The performance of r-MQSFLA was tested
ith that of other MOEAs in solving five benchmark problems (ZDT1,
DT2, ZDT3, ZDT4, and ZDT6). The indicator measures of convergence
nd diversity for the five benchmark problems indicate that r-MQSFLA
nspired from a real-coded quantum computer can strength the search
bility of SFLA, while the ExA with dynamic updating mechanism can
mprove the diversity of Pareto solutions. 

In the case study, r-MQSFLA, SPEA2, 𝜀 -MOEA, and NSGA-II outper-
orm the remaining algorithms in capturing the reference sets for all
hree problems. In particular, there are no Pareto solutions captured by
he traditional MOSFLA. This result implies that the Pareto solutions
f r-MQSFLA mostly dominating those of MOSFLA can facilitate higher
ater supply reliability with the same operating costs, which is critical

o the decision makers in IBWT. The indicator measures of convergence
nd diversity argue that there is no top performing algorithm, but r-
QSFLA is improved significantly than MOSFLA. This further demon-
trates that solutions updated by a rotation gate using an adaptive strat-
gy of the quantum angle and a self-correction of quantum position in
ur study can successfully solve the local convergence of SFLA. In addi-
ion, from the comparison between the preferred solutions of r-MQSFLA
nd other MOEAs selected using AHP-Entropy, r-MQSFLA chooses to
acrifice economic cost in exchange for water supply reliability to get out
f a tremendous drought condition. This result obtained by r-MQSFLA
ay accord with the aspirations of both government and general pub-

ic and is more reasonable as people prefer to make decisions based
n losses rather than gains. However, r-MQSFLA improves accuracy in
olving complex many-objective optimization problems while sacrific-
ng computational speed. r-MQSFLA is one time slower than MOSFLA
or one simulation to perform one test problem. 

.2. Use of proposed approach for IBWT 

Current optimization modelling of water transfer is operated
ased on economic measures and water demand. For example,
ain et al. (2005) analysed and designed a large IBWT system according
o the water availability and demand in India. Sadegh et al. (2010) man-
ged the inter-basin water resources based on the least-cost objective.
urthermore, Zhang et al. (2017) determined the amount of water trans-
erred to maximize the water supply reliability involving the minimum
ater spillage. In addition to the least-cost and reliability objectives,

here is still a need to add more pragmatic objectives in the water
ransfers process. Herein, we considered economic, social and environ-
ental performance metrics together to move beyond the general cost-

eliability analysis by using volumetric metrics to measure the efficiency
f water transfer, the utilization of natural inflow, and the influence on
nvironment. 

This study dealing with a five-objective optimization problem simul-
aneously solves 31 sub-problem (5 four-objective problems, 10 three-
bjective problems, 10 two-objective problems, and 5 single-objective
roblems). Many-objective visual analytics allows decision-makers to
eek a compromise solution according to the trade-offs between objec-
ives. However, it takes several steps starting from a two-dimensional
o a three-dimensional trade-off to figure out the optimal solution. The
HP-Entropy method implemented in this study uses the quantitative
bjective metrics to directly explore the high-order Pareto sets. To avoid
he subjective judge of the value of Pareto solutions, the subjective
nd objective weights are both considered to seek more comprehensive
perating options for the water transfer managers. The AHP-Entropy
ethod is able to provide optimal solution with preferred weights for
ecision makers who has diverse preferences. For instance, government
orkers could be more interested in how water supply meets for water
sers, water companies prefer least-cost solutions, while environmental
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rotection agencies would like to minimize the influence on the envi-
onment. The comparison between r-MQSFLA and MOSFLA on the five-
erformance metrics argues that the approach can offer better solutions
or IBWT. 

The three scenarios used in this study provide a useful guide for fu-
ure IBWT under uncertainty. When considering multiple scenarios, we
hould not expect to find a universal solution that is optimal under all
cenarios, especially when there are conflicting objectives ( Tian et al.,
017a ). This study shows variations in system performance when expe-
iencing different natural inflow and water demands in a water trans-
er system, through different pathways of pumping stations, sluices and
akes. In addition, an IBWT project across regional, and local bound
ight be operated when a basin suffers drought or water shortage. This

tudy performs well in fulfilling natural water resources utilization on a
onthly time step for different hydrological (normal, dry, and extremely
ry) years, which offers a baseline for a potential water transfer. Espe-
ially for the extremely dry scenario, it shows how the water transfer
roject helps to secure water supply with a low inflow and high demand.

. Conclusions 

IBWT are effective engineering countermeasures that can be taken
o improve the inter-basin water resource sustainable development and
alance the uneven distribution of water resources. This study proposed
n integrated many-objective optimization approach involving many-
bjective optimization model, MOEAs, and MCDM to water resources al-
ocation for IBWT under various scenarios. The approach included three
arts: (1) formulating a many-objective optimization problem (2) em-
loying the r-MQSFLA to solve the optimization problem; (3) utilizing
he AHP-Entropy method to filter the Pareto solutions derived by the
-MQSFLA. Here, the AHP-Entropy method applied to select the pre-
erred solution from Pareto sets could combine subjective and objective
nalysis for stakeholders who have diverse preferences. 

In r-MQSFLA, the real-coded quantum computer and ExA with dy-
amic updating mechanism were applied to SFLA aiming to improve
he diversity and convergence of Pareto solutions. The performance of
-MQSFLA was tested with that of NSGA-II, SPEA-II, 𝜀 -MOEA, IBEA,
OEA/D, and MOSFLA in solving five benchmark problems (ZDT1,

DT2, ZDT3, ZDT4, and ZDT6). The indictors of convergence and di-
ersity for the five benchmark problems indicated that r-MQSFLA in-
pired from a real-coded quantum computer could strength the search
bility of SFLA, while the ExA with dynamic updating mechanism could
mprove the diversity of Pareto solutions. 

The many-objective approach was then applied to optimize water
ransfers of JE-SNWT Project under normal, dry, and extremely dry sce-
arios. The performance of r-MQSFLA was also tested with that of the
ix algorithms in solving three JE-SNWT problems. r-MQSFLA displayed
pproximate performance with SPEA2, 𝜀 -MOEA, and NSGA-II and its
erformance was improved significantly than MOSFLA in terms of con-
ergence and diversity. Overall, the preferred solutions selected by the
HP-Entropy method with r-MQSFLA performed well in fulfilling nat-
ral water resources utilization on a monthly time step to get out of a
remendous drought condition through sacrificing economic cost. 

This study has proved the efficiency and usefulness of the pro-
osed many-objective optimization methodology for obtaining water
llocation guidelines to policymakers for IBWT under different scenar-
os. However, the formulation and scenarios used here can not com-
letely represent the real-word problems. The further study will ex-
lore more realistic decisions with unknown inflows under uncertainty
 Giuliani et al., 2016 ; Quinn et al., 2017 ). 
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