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Abstract

Type checkers are invaluable tools which help pro-
grammers write correct programs. Fast and effi-
cient type checkers are required to enable adoption
of such tools in practice.

This study aims to provide an explorative
overview of proposed efficiency improvements for
type checkers. This provides language imple-
menters insight in what approaches exist to increase
the performance of their type checker.

Efficiency improvements are divided into three
general approaches: incrementalization, paral-
lelization, and algorithmic improvements. For
each category, we discuss the implementation tech-
niques and performance for several proposed ap-
proaches.

This study finds that a wide variety of approaches
exist to increase the efficiency of type check-
ers. Based on reported benchmark results, incre-
mentalization and parallelization are promising ap-
proaches to writing fast type checkers.

1 Introduction
Type checkers are invaluable tools which can help program-
mers write correct programs [9]. Creating practical type
checkers is an essential step in getting the latest advance-
ments in type system theory into daily programming prac-
tice. If these type checkers are too slow or require exces-
sive computer resources, they will be adopted less by pro-
grammers. More specifically, if type checkers and new type
checking functionality are to be implemented in integrated
development environments (IDEs) to provide direct feedback
to programmers regarding type correctness, they have to be
fast enough to not hinder the programmer, even for large code
bases [1; 25]. Also, with the rapid adoption of Continuous In-
tegration (CI) tools, which may be used to automatically type
check any new commit submitted to a version control sys-
tem, efficient type checking is key to be able to host CI tools
with as low as possible environmental impact and high cost-
efficiency.

Despite the importance of having efficient implementations
of new typing features to improve practical adoption, type
system research is often mostly focused on theoretic prop-
erties of type systems and adding new features. Regard-
less of this common focus, there is still literature on im-
proving the practical efficiency of type checkers, and some
more theoretical research also generate efficiency improve-
ments as a side-effect of their main focus. For example,
multiple different approaches to parallelize type checking
have been proposed in literature [17; 1], and are used in
practice [11]. Besides parallelization, there is also research
on incrementalizing type checking [14; 25; 10; 3; 1; 4; 5;
26]. Incrementalization may improve type checker perfor-
mance significantly in specific contexts. One such context
is in IDEs, where a type checker has to iteratively analyse
source code to provide direct type-correctness feedback to

programmers. Incrementalization can also be useful for con-
tinuous integration (CI) pipelines, since in a CI the same code
is also type checked iteratively with often only small changes.
And with regards to sound gradual typing, there is a lively
academic debate on if there are actually effective enough
implementations to make gradual typing practical [22; 16;
15].

There is however no clear overview of approaches that can
be used to increase type checker performance. In order to
help implementers choose the the best methods to improve
the efficiency of their type checker, in this study we aim to
provide an overview of approaches to implement and create
efficient type checkers that have been proposed in literature
or are currently in practical use.

To provide this overview, the main question of this study is:
“What approaches exist in improving type checker efficiency,
without altering the surface language, and how do implemen-
tation of these approaches compare to each other?”.

To answer this question in a structured manner, it is further
divided into three subquestions:

1. What efficiency improvements of type checkers, that do
not alter the surface language, have been proposed in
literature?

2. What implementation techniques have been used or pro-
posed for these efficiency improvements?

3. How do these implementation techniques compare to
each other?

In the second section of this paper, we further discuss
the used methods in this research. Then, in the responsi-
ble research section we reflect on the application of research
integrity standards in this research. In Section 4, we dis-
cuss which efficiency improvements of type checkers have
been proposed in literature or have been adopted in practice,
and how these improvements can be implemented. In Sec-
tion 5, this paper discusses the reported performance of the
discussed efficiency improvements, and compare these with
each other. In Section 6, the results from the comparison are
discussed and concluded into an advice for language imple-
menters. Finally, Section 7 concludes this paper with future
work possibilities and conclusions.

2 Methodology
This study is meant as a first exploration in what efficiency
improvements for type checkers have been proposed in lit-
erature. Our focus is to present and discuss a representa-
tive overview of the current academic literature regarding this
topic, but not to be completely exhaustive.

Searching for relevant literature was done in two phases.
The first phase consisted of a search via general academic
search engines and relevant publishers to discover what cate-
gories of improvements are discussed and proposed. Then, in
the second phase, per category of improvements a more spe-
cific search was conducted to find papers that fit well in the
scope of this study.

To be in scope for this study, papers should not only
discuss their proposed efficiency improvements, but should
also describe actual implementations for these improvements.



Preferably, this also includes a thorough discussion of evalu-
ated performance of these improvements.

Comparing the different approaches to improving type
checker efficiency is not straightforward, because it is a rather
broad topic. This is further complicated by the fact that re-
ported performance results are hard to compare across papers,
and often benchmarks are not easily replicated. This study
therefore did not attempt to recommend a single path towards
implementing efficient type checkers.

Instead, it aims to provide a good overview of the discussed
methods and their reported performance results. For all ap-
proaches, we discuss the implementation techniques used and
the reported performance results. Specifically note is taken
if the benchmarks are done based on synthetic programs, or
real-world scenario’s.

3 Responsible Research
As an explorative literature survey, the most important as-
pects regarding responsible research in this study are the re-
producibility and the representativeness of the discussed lit-
erature.

With regards to reproducibility, it is for this literature sur-
vey important that findings are clearly cited, and it is obvi-
ous for the reader what efficiency-improvement is discussed
by which paper. To enable this, this study also notes page
numbers when a reference is used to point to a specific part
of a discussed source. Another problem regarding the repro-
ducibility is that the reported performance of papers could
not be verified by running these benchmarks again. This is
partly due to time constraints, but also because not all pa-
pers provide proper and clear artifacts to actually reproduce
benchmark results.

To make sure that the study actually covers a representa-
tive range of efficiency improvements, we discuss multiple
approaches for each category of improvements. Furthermore,
in searching for literature to discuss, effort was taken to be as
thorough as possible so that a representative set of approaches
could be selected from the findings. However, it is still possi-
ble that some biases were still present.

4 Efficiency improvements of type checkers
and their implementations

Several different approaches to improving the efficiency of
type checkers have been proposed in academic literature.
This study identifies three general categories of improve-
ments: incrementalization, parallelization, and algorithmic
improvements. In this section, we will discuss several ap-
proaches to each category of efficiency improvements, and
implementation techniques for these approaches.

4.1 Incrementalization
Since programming is an iterative process, the same source
code is often type checked multiple times after each other
with only small changes. An incremental type checker is a
type checker which may re-use the results from a previous
run, and can then infer what the result would be if a clean run
of the type checker would be done on the new version, based
on the results of the previous run and the altered source code

[1]. Ideally, this is then faster than running the type checker
on the whole program source.

Incrementalization can help specifically when a type
checker is integrated in an IDE, where the incremental type
checker runs transparently in the background to provide the
programmer with immediate feedback on the type correct-
ness of their program [3, p. 1]. Incrementalization can also
be useful in making CI’s more efficient, since these will often
have to type check big code-bases with only minor changes
since the previous run. Furthermore, incrementalization can
also be a step towards parallelization of a type checker, as is
discussed in Section 4.2.

General framework of incrementalizating a type checker
Multiple different approaches exist to creating an incremental
type checker. These different approaches generally consist of
two parts: a separation strategy and an incremental analysis
strategy.

The separation strategy is an essential preparation to the
actual incremental analysis. The separation strategy is how
the incrementalized type checker splits up the source code
into several chunks. This is required so the changed chunks
can be isolated from the unchanged part of the source code,
so that the type checker only has to analyze the chunks that
have been affected by the changes in the source code [1].

The granularity of these chunks is an important aspect to
how effective the incrementalization can be in increasing type
checker efficiency [1, p. 25]. High granularity can ensure that
the least amount of chunks will have to be re-analyzed, but
this comes at a greater cost in actually splitting up the source
code and isolating changes.

The incremental analysis strategy is how the isolated
chunks are actually evaluated. Parts of this analysis strategy
will be how the type checker determines if a chunk is affected
by a change, and how to type check the affected chunks while
re-using previous results for the unchanged chunks.

Approaches to incrementalization proposed in literature
As discussed, multiple different approaches exist to create a
type checker that can run in an incremental fashion. We will
discuss the approaches used by Wachsmuth et al. [25], Erd-
weg et al. [7], Bosma [3], Aerts [1], and Zwaan et al. [26].
These respective approaches will be described in light of the
general framework as given above, to make it explicit how
these approaches differ. These specific papers are chosen be-
cause they represent a broad variety of approaches to incre-
mentalization of type checkers, are recent, and all report per-
formance evaluations.

This is by no means an exhaustive discussion of approaches
to incrementalization of type checkers, as other approaches
have also been proposed in literature. Some other examples
of research regarding incrementalization of type checkers are
those by Meertens [14], Kuci et al. [10], Busi et al. [4; 5],
and Pacak et al. [18].

Wachsmuth et al. propose a general and language inde-
pendent approach towards creating incremental type check-
ers [25]. The approach is based on two phases: a collection
and evaluation phase [25, p. 2]. In the collection phase, name
binding information is gathered from the source code. During
this collection, deferred “analysis tasks” are created by the



type checker [25, p. 2]. Each task is essentially one instruc-
tion, such as a lookup or cast, with respect to a specific name
binding. Information about dependencies between tasks is
also collected during the collection phase [25, p. 11]. In the
evaluation phase, the deferred analysis tasks are executed to
actually get the typing information.

The two phases in the approach by Wachsmuth et al. are
not completely analogous to the two strategies as described in
the general framework. The phases both partially implement
the separation strategy. The collection phase is incremental
on the file level [25, p. 2], and thus splits up the source code
on the file level. The evaluation phase is incremental on the
task level [25, p. 2], so the separation is done here on the task
level. Both phases also partially implement the incremental
analysis strategy. In an incremental run, the collection phase
will only have to collect tasks and information from changed
files. The evaluation phase then only will have to evaluate
newly created tasks, and those tasks affected by the changes.

Erdweg et al. propose a structure for co-contextual type
systems, which are naturally suited to implement incremen-
tality [7]. Instead of starting at the root of the abstract syn-
tax tree (AST) and passing the context down the tree in a
top-down fashion, in co-contextual type checking this is re-
placed by bottom-up propagating of “context requirements”
[7, p. 880]. So where in a contextual type checker contexts
flow top-down and types flow bottom-up the AST, in a co-
contextual type checker both contexts and types flow bottom-
up the AST [7, p. 881]. Thanks to the bottom-up approach
of co-contextual type checking, no coordination of contexts
between sub-expressions is required, [7, p. 881] since con-
text constraints are solved once they flow up the AST. If they
cannot be solved, a type error is identified.

This structure makes incrementalization relatively straight-
forward. Instead of just running the co-contextual type
checker again on the whole AST, the incremental co-
contextual type checker re-checks only changed subexpres-
sions from the bottom-up. In this bottom-up approach, type
checking results are memoized to be used later up the flow of
the type checker. Higher in the AST, the type checker will
then use the memoized results regarding the changed subex-
pressions, but also the results regarding unchanged subex-
pressions from a previous run. This generates constraints in
an incremental fashion, which can then be solved. To solve
these constraints efficiently, Erdweg et al. propose to solve
intermediate constraints in order to keep the size of the fi-
nal constraint set manageable, and allows the type checker to
also re-use intermediate solutions of generated constraints [7,
p. 888].

In the approach of Erdweg et al., the two identified parts
of the general framework of incrementalization - a separa-
tion and an incremental analysis strategy - are closely inter-
twined. The separation essentially flows from the structure of
the type checker, which evaluates each subexpression from
the bottom-up. The actual (incremental) analysis is then the
way the type checker generates and solves the constraints.

Bosma uses the IncA domain specific language (DSL) to
create an incremental type checker for Rust [3]. IncA is a
domain specific language developed by Szabó et al. for “the
definition of efficient incremental program analyses” [21]. As

a separation strategy, IncA “represents computations as graph
patterns on top of the abstract syntax tree (AST)”, and incre-
mental analysis is then done through graph pattern matching
[21]. When the analysis is ran incrementally, this is commu-
nicated to the start of the graph and then propagated through-
out the graph. Only the nodes in the graph that depend on the
changed code will then be reanalyzed.

IncA is not specifically made for type checking, but Bosma
shows that it can be used to write incremental type checkers.
A benefit of using IncA for such incremental analysis, is that
the incrementality is provided by the language itself and thus
transparent for the developers of the type checker. However,
existing type checkers will generally not already have been
written in IncA, so that it does not seem to be a good gen-
eral strategy for adding incrementality, since it will probably
require a complete rewrite of the type checker.

Aerts also employs a two phase strategy to incrementalize
type checking, in this case for Statix [1]. First, as a separation
strategy, Aerts defines a method to separate the source code
into a set of modules. What specifically a module is, depends
in the Statix type checker on what is treated as a module in
the language of the source code that is being type checked
[1, p. 25]. Since Statix uses a constraint-solver-based type
checking method, part of the separation strategy in Aerts in-
crementalization effort, is splitting up the single constraint
solver into multiple solvers that each, cooperatively, solve a
module [1, p. 31]. Coordination of the multiple solvers is
done by the “Solver Coordinator”, which “ensures that each
solver that is able to make progress, is allocated some time to
actually make that progress” [1, p. 31].

As the incremental analysis strategy, Aerts constructs a
model for incremental analysis that allows for different al-
gorithms to perform the incremental analysis [1, p. 45-46].
This model consists of four main features. The first feature
is that the model is aware of the modules created in the sep-
aration strategy. The second feature is that the model detects
dependencies between these modules. Furthermore, to detect
the impact of changes in a module, the model supports scope
graph comparisons. The last core feature is that the model al-
lows for different strategies (algorithms for incremental anal-
ysis) to manage the solving process [1, p. 62].

Zwaan et al. propose a general technique to incremental-
ize type checkers that are based on scope graphs, and im-
plement it for type-system specifications written in Statix
[26]. Zwaan et al. build their incrementality on previous
work by Van Antwerpen and Visser which add the hierarchi-
cal compilation unit model, in which the program is divided
in compilation units with each their own local scope graph,
and a technique to type check these units concurrently [24;
26]. In this approach for incrementalization, the hierarchical
compilation unit model can be seen as the separation strategy.
The model of hierarchical compilational units provides an ab-
straction for the concrete compilational structure of a specific
target language and allows for more generic approach to dis-
cussing, for example, type checking a program in some sepa-
rated chunks. The downside of this is however, that for each
target language an implementation of compilational units is
still required.

Zwaan et al. use this separation and parallelization to add



incrementality to the type checker, which “relies on the ob-
servation that a type checker result is determined completely
by the AST of the compilation unit, and the result of external
name lookups.” [26, p. 140:7]. This observation means that
if the AST and external name lookups of a compilation unit
stay the same, the type checking result for that compilation
unit can be re-used. Since, in this approach, name lookups
are modeled as queries in scope graphs [26, p. 140:2], these
queries can be used to resolve dependencies between compi-
lation units [26, p. 140:2]. Only if query results are not the
same, a unit has to be re-analyzed because the typing infor-
mation can be changed. Instead of re-computing all queries,
Zwaan et al. propose a technique of query confirmation which
verify if a query result is the same. This strategy is more effi-
cient than re-computing queries, since only incoming queries
of units that need to be re-analyzed have to be confirmed.
This query confirmation algorithm is the core of the incre-
mental analysis strategy of this approach to incrementaliza-
tion, since it resolves both dependencies and evaluates what
results can be re-used, and which units have to be re-analyzed.

4.2 Parallelization
With the widespread availability and adoption of multiproces-
sor computers, parallelization is an obvious way to increase
the speed of a program. It is however not always evident how
non-trivial programs, such as type checkers, can be adjusted
to use multiprocessor computers to their full advantage.

In literature and in practice, multiple different approaches
are used to parallelize existing type checkers. This study will
discuss the approach presented by Newton et al. which uses
LVars [17], and the approach based on incrementalization as
used by Aerts [1].

Parallelization using LVars
Newton et al. propose a method for parallelizing the Typed
Racket type checker using “Saturating LVars”. LVars are
monotonic data structures that allow for deterministic par-
allel programming in functional programs [17, p. 1]. With
LVars, multiple parallel threads can write to the same LVar,
while still getting determinstic results. This determinism is
guaranteed because the put operation used to write to these
LVars always commutes [17, p. 2]. Newton et al. show that
LVars can be used to parallelize type inference, by performing
unification of constraints concurrently [17, p. 4].

Saturating LVars are an addition to these LVars where er-
rors are “trapped” in a Saturated state in the LVar, so that
error handling can be avoided. This is important, because in
Haskell error handling must be done via the IO monad which
might introduce nondeterminism [17, p. 5]. Using Saturating
LVars, it is thus possible to simply return that type checking
failed instead of handling errors.

Newton et al. first describe their approach by implement-
ing their parallelization approach for simple Hindley-Milner
type inference, and then add it to the type checker for Typed
Racket. They use the Haskell “LVish” library as starting point
for implementing Saturated LVars [17, p. 1]. Their implemen-
tation support both and-parallelism and or-parallelism, which
can independently be enabled or disabled.

Parallelization through incrementalization
In his efforts to incrementalize type checking in Statix, Aerts,
as described above, also split up the constraint-solving in
Statix. Each module is solved by a separate solver, which
create a natural avenue for parallelization [1, p. 59]. It is then
only the Solver Coordinator, which oversees the solvers for
all separate modules, that has to be adjusted to allow for par-
allel execution. Caution has to be taken to ensure that the
parallel execution is safe, as with any parallel program. Aerts
solves this problem by leveraging existing features in Statix,
which allows constraints to be solved non-deterministically
[1, p. 61]. This makes it possible that when a solver queries
information from a different module, it will either receive a
complete answer, or waits for one.

Parallelization through incrementalization is also some-
times proposed as possible future work after incrementaliza-
tion efforts, such as by Erdweg et al. [7].

Other approaches to parallelization of type checkers
As discussed above, Zwaan et al. based their incremen-
talization on an addition to the use of scope graphs for
type checking proposed by Van Antwerpen and Visser [24;
26], which includes parallelization. The technique proposed
by Van Antwerpen and Visser leverage their hierarchical
compilation unit model to implement a parallel type checker.

The Flix programming language has a type checker that
is parallel with function-level granularity [11; 12]. Although
there is no thorough discussion of the parallelization of the
Flix type checker, the key to the implementation is that Flix
requires all functions to have type signatures. Since the type
checker verifies if the type of a function actually matches the
given type signature, the type checker can assume that the
type of all other functions is actually as defined in the type
signature [13]. With this assumption, all functions can be
type checked independently and in parallel.

The approach used in Flix is straightforward and simple,
but can not be leveraged in all programming languages with-
out altering the surface language, since type signatures of
functions are essential to this approach.

4.3 Algorithmic improvements
Where incrementalization and parallelization are in essence
running the same algorithms but in a more efficient way, the
last category is that of algorithmic improvements: using dif-
ferent and more efficient algorithms, or more efficient imple-
mentations of algorithms, but still get the same outcome.

This category of improvements is by far the most heteroge-
nous category, as they depend on what aspect of an exist-
ing type checker they improve. They can also be optimized
for a specific use-case, propose a completely new algorithm
to achieve the same result, or instead improve existing algo-
rithms. Furthermore, these improvements also depend on the
featureset that is to be implemented in the type checker.

Since this category of improvements is so diverse, we will
only discuss two examples of improvements that fit in this
category to illustrate the possibilities. We do not intend to
provide an exhaustive or even representative sample of pos-
sible algorithmic improvements, because that would be out
of scope for the more generalistic perspective of this study.



Also, because the discussed papers are more illustrative ex-
amples and will not be thoroughly compared due to the diver-
sity of improvements in this category, the discussion of each
example will be less thorough than the discussion of improve-
ments of the other categories.

These examples are chosen because they report benchmark
results, and represent two different approaches to algorithmic
improvements: creating a new algorithm optimized for a dif-
ferent use-case (Bellamy et al. [2]), and using a different but
existing algorithm (Rajendrakumar and Bieniusa [19]).

The first example of a more efficient algorithm designed
for a specific case is that proposed by Bellamy et al. [2],
which was specifically designed with type inference of local
variables in Java bytecode. Bellamy et al. propose a new
algorithm for this type of type inference, which was a result
of optimizing not for the worst-case, but for the general case.

In our second example, Rajendrakumar and Bieniusa
propose and implement a prototype for a bidirectional type
checker for Erlang [19], which they compare with the
Hindley-Milner-based Erlang Type Checker (ETC) by Val-
liappan and Hughes [23]. The bidirectional approach by Ra-
jendrakumar and Bieniusa has several improvements over the
ETC, such as better error locality [19, p. 55], and their pro-
totype already works on more benchmarks without having to
alter the target source code. Their type checker however does
require adding extra type specifications in some cases [19,
p. 62].

Many other algorithmic improvements exist. For example,
specifically within the field of gradual typing, approaches to
efficient gradual typing are discussed by Rastogi et al. [20],
Muehlboeck and Tate [16], Castagna et al. [6], and by Moy
et al. [15].

5 Reported efficiency improvements and
comparison

In this section, we will discuss the reported performance im-
provements of the discussed approaches and then compare
these approaches.

5.1 Reported performance improvements
First, we discuss the reported performance improvements of
the approaches we discussed in Section 4. An overview of
these reported performance improvements is given in Table
1.

Incrementalization
For the type checker improvements that implement incremen-
talization, we define “clean analysis time” as the time it takes
to type check a target without the use of previous results, and
“incremental analysis time” as the type it takes to type check
a target with the use of previous results.

Wachsmuth et al. report a significant improvement in
analysis times when comparing incremental analysis times to
clean analyses. On average, the incremental analysis is about
10 times faster than clean analysis, with a worst case of about
2 times as fast than the clean analysis [25, p. 15-16]. Their
reported results are based on analyzing existing open source
WebDSL applications. For evaluating incremental analysis
time, they used the actual revisions of these applications.

Erdweg et al. evaluate the performance of their incre-
mentalized type checker using synthesized input programs
[7, p. 890]. They evaluate four different versions of their
incremental type checker, each with more optimizations.
These four versions are then compared to a standard non-
incremental, top-down and contextual constraint-based type
checker. In general, they report a significant decrease in in-
cremental analysis time in comparison with the standard type
checker, with a speed-up of up to 10 times when the incre-
mental changes are small. Overall performance measured in
nodes per millisecond evaluated saw an improvement of up to
24.56x [7, p. 891-892].

The reported non-incremental performance of the co-
contextual type checkers is only slightly worse than the com-
pared standard type checker. This is on average however, and
in some situations the co-contextual type checkers may per-
form better or worse than the standard type checker that they
are compared to [7, p. 890-891].

Bosma reports quite a bit slower clean analysis times than
the reference implementation of the Rust type checker, with
47.395 seconds for the incremental IncA-based type checker,
and 4.156 seconds for the reference type checker. The clean
analysis thus has a slowdown of 11.4 times. Incremental anal-
ysis times are however a great deal faster, with an average of
33.6 ms and a maximum of 434 ms [3, p. 54]. So the IncA-
based incremental implementation by Bosma is thus on av-
erage about 123 times faster, and in the worst case 9.5 times
faster than the reference Rust type checker, when running in-
crementally.

The incremental analysis times are however based on syn-
thetically generated changes in the code base, which may not
necessarily reflect real-world scenario’s. Bosma does not dis-
cuss any impact on storage or memory usage of the incremen-
tal type checker in comparison with the reference implemen-
tation.

Aerts performed benchmarks on a small and large software
project. The incremental analysis times reported by Aerts are
based on synthetically generated changes in the code base,
and not based on real-world change history [1, p. 78].

Incremental analysis times are consistently better than
clean analysis times for small changes, and not worse for big
changes [1, p. 81-83]. Clean analysis times where up to 10%
slower using the incremental solver than the original solver
[1, p. 76]. Aerts also reports an increase of 447% of the size
of the analysis results when comparing the incremental type
checker with the original one [1, p. 77]. This underlines that
incrementalization is a trade-off, which might or might not be
worthwile in every situation.

Zwaan et al. evaluated their incrementalization efforts
using both synthetic and real-world benchmarks, and using
Statix type-system declarations for two languages: Java and
WebDSL [26, p. 140:17].

In synthetic benchmarks, their implementation realized a
speedup of up to 147 times relative to non-incremental anal-
ysis. This speedup is biggest when a large portion of the syn-
thetic code-base can be re-used and the type checker runs
with only a single CPU core. With increased CPU cores
available to the type checker, the speedup relative to the
non-incremental type checker is decreased [26, p. 140:18-



19]. For example, the relative speedup in the large synthetic
benchmark is up to 147 times with only 1 CPU core, and
about 50 times with 16 CPU cores. Not unexpectedly, rela-
tive speedups are lower when the type checked code-base is
smaller relative to the size of the changes, since there is less
analysis that is re-used relative to the non-incremental type
checker.

For real-world benchmarks, Zwaan et al. ran their incre-
mental type checker on 3 commits each from five open source
software projects, three in Java and 2 in WebDSL. Just as in
the synthetic benchmarks, for large projects incrementaliza-
tion can provide substantial performance increase, although
the speedups are not as high as in the synthetic benchmarks.
For one of bigger the Java projects, Commons-Lang, an av-
erage relative speedup of 18 times is reported for single-core
benchmarks. As in the synthetic benchmarks, reported rela-
tive speedups with a higher number of CPU cores allocated,
are lower. The same is the case for the real-world bench-
marks in small projects, such as Commons-CSV, which only
realized an average 1.5x speedup in single-core benchmarks,
and even lower when more CPU cores were available.

Parallelization
Newton et al. evaluate their parallelization of the Typed
Racket type checker using two synthetic benchmark cases,
which should represent the most important obstacles in the
performance of Typed Racket [17, p. 9]. The first case,
dubbed “Bigcall” by the authors, concerns a combination of
polymorphism and overloading. The second case, named
“Treecall”, concerns very large constant data.

With regards to the Bigcall case, Newton et al. report a rel-
ative speedup of up to 80 times. This speedup also manages to
scale well with increased number of available threads, at least
as far as tested by Newton et al. In the Treecall case, they re-
port relative speedups of up to 7.68 times with 8 threads and
up to 3.17 times with 4 threads.

Aerts reports an increase the clean analysis time using
the incrementalized type checker in a non-concurrent fash-
ion. However, once any concurrency is introduced, even clean
analysis times are more than 10% lower than the initial type
checker when using two threads, and up to 45% faster when
using 8 threads [1, p. 76]. Since these benchmarks were done
on a computer with only 4 physical CPU cores, but due to
multithreading technology has 8 logical threads available, it
is very well possible that the concurrency speedup is even
higher for 8 threads on computers with 8 actual physical CPU
cores.

Algorithmic improvements
The algorithm proposed by Bellamy et al. realizes signifi-
cant speedups across all benchmarks in their benchmark suite,
with relative speedups of between 4.01 times and 428.17
times, and 24.72 times on average [2, p. 483]. The speedups
are relative to the previous best solution to their specific prob-
lem, by Gagnon et al. [8]. The benchmarks were done on
real-world Java codebases.

Rajendrakumar and Bieniusa evaluate their prototype by
running it on three modules from the Erlang standard library
[19, p. 62]. In one case, their prototype is 6% faster than the
Hindley-Milner-based Erlang Type Checker (ETC). In one

other case their prototype is about 3,3% slower. In the third
and last case, no speed comparison can be made, since that
module could not be type checked by ETC.

Paper Type of improve-
ment

Reported speedup

Wachsmuth et
al. [25]

Incrementalization Relative speedup of
up to 10x in real-
world benchmarks in
incremental runs

Erdweg et al.
[7]

Incrementalization Relative speedup of
up to 10x in synthetic
benchmarks in incre-
mental runs

Bosma [3] Incrementalization Average relative
speedup of 123x,
with worst case of
9.5x in synthetic
benchmarks in
incremental runs

Aerts [1] Incrementalization
and paralleliza-
tion

Relative speedup of
up to 45% in real-
world benchmarks in
parallel clean runs,
up to 6x in incremen-
tal runs

Zwaan et al.
[26]

Incrementalization Relative speedup of
up to 147x in syn-
thetic benchmarks
and up to 18x in real-
world benchmarks
for incremental runs

Newton et al.
[17]

Parallelization Relative speedup of
up to 80x in synthetic
benchmark

Bellamy et al.
[2]

Algorithmic im-
provement

Relative speedup of
24.72x on average,
up to 428.17x in real-
world benchmarks

Rajendrakumar
and Bieniusa
[19]

Algorithmic im-
provement

Between 3,3%
slower and 6%
faster in real-world
benchmarks

Table 1: Overview of reported efficiency improvements

5.2 Comparison
Before starting the comparison, it is important to note that
these reported results cannot easily be compared, since they
all used different benchmarks and environments for their
benchmarks. These results will therefore only be used as
rough indication of the potential of the proposed improve-
ment.

Based on the previous discussion of the implementa-
tion techniques and reported performance of the several ap-
proaches, it is clear that there is no silver bullet for making
a type checker faster. Incrementalization and parallelization
are clearly very promising as general techniques, but there are



still many very different approaches to implement them. For
example, the approaches to incrementalization by Erdweg et
al. [7], Bosma [3], and Zwaan [26] all depend on some exist-
ing structure of the type checker. If these approaches are to
be implemented in type checkers that do not have that exist-
ing structure, this would probably require a complete rewrite
of the type checker. The approach by Aerts [1] is an insight-
ful view on how to add incrementalization and parallelization
to an existing type checker. It shows that it often requires an
approach specific to the existing structure of the type checker.

Algorithmic improvements are nearly by definition depen-
dent on the existing type checker. The discussed approaches
can however serve as inspiration and examples. For example,
it might be useful to think about for which cases an algorithm
has to be optimized to be useful in the real-world.

6 Discussion
As can be seen in the overview in Table 1, the discussed effi-
ciency improvements can yield significant performance gains,
both in synthetic and real-world benchmarks. Specifically in-
crementalization and parallelization are generic approaches
which can realize significant speed improvements. These per-
formance improvements do come with trade-offs however.

First of all, these performance improvements are not al-
ways straightforward to implement, and certainly not in ex-
isting type checkers. Some approaches to a specific effi-
ciency improvement might be fundamentally incompatible
with the structure of an existing type checker, or not com-
patible with other requirements for a type checker. For ex-
ample, the approach by Bosma requires the use of a spe-
cific incrementalization-focused language for writing the type
checker [3].

Another trade-off is that improvements in run-time might
require the use of more other resources, such as storage space.
For example, Aerts reports a 447% increase in the size of the
analysis results [1, p. 77].

For incrementalization specifically, the clean analysis time
is nearly always worse than in a non-incremental type
checker. Although this is in general a small price to pay for
the incremental performance improvements, this is probably
not always the best performing strategy.

6.1 Advice for language implementers
Based on the discussed implementation techniques in Section
4 and the reported performance discussed in Section 5, this
study has the following advice for language implementers:

• Incrementalization is quickly becoming a must have in
order to incorporate a type checker in IDE’s and CI’s.
If it is still possible, try to incorporate it at a fundamen-
tal level in your type checker, since adding it later will
probably be a lot of work.

• Approaches exist to implement parallelization based on
the incrementalization of a type checker, and vice versa.
Implementing either of these thus often allows for easier
implementation of the other, potentially realizing signif-
icant overall performance improvements.

• A lot of different approaches exist to implement in-
crementalization and parallelization in a type checker.
Research these approaches carefully and see which fits
your use case best.

With regards to algorithmic improvements of type check-
ers, it is hard to give general advice, since this depends a lot
on what kind of language has to be type checked and the ex-
isting structure of the type checker.

7 Conclusions and Future Work
We have identified three general categories of efficiency im-
provements of type checkers which do not require altering the
surface language: incrementalization, parallelization and al-
gorithmic improvements. A type checker is incremental when
it can re-use previous results, so that unchanged code does
not need to be type checked again. Incrementalization can
in some cases be a step towards making a type checker run
efficiently in parallel, but other approaches to parallelization
exist as well. The last category, algorithmic improvements,
are those improvements where more efficient algorithms or
more efficient implementations for algorithms are used in a
type checker.

For each category of improvements, several different ap-
proaches and corresponding implementation techniques have
been proposed in literature. We have discussed an explorative
sample of these approaches. Based on this sample, specifi-
cally incrementalization and parallelization are promising ap-
proaches to speeding up a type checker. Incrementalization is
useful in IDE’s, where it enables real-time feedback on the
type correctness of a program.

7.1 Future work

Several possibilities for future work exist. First of all, most
papers that propose incrementalization as a means for im-
proving type checker efficiency only mention IDE-integration
as an important practical motive for adding incrementaliza-
tion to a type checker. However, there are other circum-
stances where incremental type checkers can provide a prac-
tical speedup. One of these is when type checkers are used
in Continuous Integration (CI) pipelines. Here, just as in
IDE’s, programs are often iteratively type checked with small
changes. Existing incrementalization approaches focused for
IDE’s may be able to be leveraged for CI’s as well. CI-
specific optimizations might also exist, such as caching and
sharing type checker among different branches in the version
control system of the same project.

Moreover, further research can be done into the interaction
between parallelization and incrementalization. Paralleliza-
tion through incrementalization is implemented by Aerts [1],
and recognized as a possibility by Erdweg et al. [7, p. 893].
Incrementalization through parallelization is implemented by
Zwaan et al. [26]. Since these are both highly promising im-
provements and clearly have overlap in their implementation
techniques, it would be interesting to create a general frame-
work to implement both incrementalization and paralleliza-
tion in a type checker.
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