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Abstract: Control systems are essential to support the use of building structures as short-term
thermal energy storage (TES). Due to modeling and forecast imperfections, the controller must
be able to deal with uncertainties. This paper proposes a robust model predictive controller
(MPC) with a new uncertainty set construction technique to regulate the heat supply in a
building envelope. We extend the Support Vector Clustering-based set construction technique
to estimate modeling and forecast uncertainty sets. Subsequently, we integrate the sets into
a Min-Max MPC framework to ensure robust feasibility by tightening the constraints. The
resulting controller successfully deals with modeling and forecast uncertainties. The quality of
the presented framework is compared with a nominal MPC and a robust MPC with different
uncertainty set estimates. On the basis of a numerical simulation, we demonstrate that the
proposed controller successfully maintains the room temperature within the comfort limits. The
result also shows that our MPC is less conservative than the controller designed using a box-
shaped non-falsified parametric uncertainty set.

Keywords: Support vector clustering, Set-membership estimation, Parametric uncertainty,
Robust model predictive control, Thermal energy storage, Building energy systems

1. INTRODUCTION

Buildings represent a potential source of thermal energy
flexibility in district heating systems (Verbeke and Aude-
naert, 2018). Due to their thermal inertia, they can be
used to store heat energy for a short time. This can be
done by providing an excessive amount of heat during
times of excessive availability and allowing the building
to release heat during the peak load or shortage period.
When this mechanism is carried out, it is necessary to
ensure the thermal comfort of the occupants. In order to
avoid violation of thermal comfort, a building model is
often required. Unfortunately, this model is not available
to energy suppliers who wish to exploit the thermal inertia
of a building. Therefore, in most cases, an approximate
model is used.

An approximate building model can be obtained using
a first-principles or a data-driven approach (Reynders
et al., 2014). Data-driven modeling techniques, such as
system identification, enable us to merge mathematical
models and historical datasets to derive a temperature
evolution model of a building. By using this approach, the
⋆ This work is supported by the WarmingUP project grant from the
Netherlands Enterprise Agency (RVO).

time-consuming measurement of numerous parameters of
building components can be avoided.

Despite its efficacy, the resulting model suffers from para-
metric uncertainties. Such errors often compromise the
performance of the controller. Extensive research has been
conducted to estimate parametric uncertainties. One of the
notable techniques is set-membership estimation (Milanese
and Vicino, 1991). By using this technique, a convex set
that contains the true uncertainty value is constructed
from historical data points. This method can be combined
with MPC to minimize the energy use of buildings while
ensuring the satisfaction of the operational constraints.
Although the resulting uncertainty set can contain the true
uncertainty value, the resulting uncertainty sets can be
overly conservative. Such a set may lead to higher energy
consumption to guarantee constraint satisfaction.

For additive uncertainty, Shang et al. (2017) developed an
uncertainty set estimation strategy. This strategy success-
fully creates a polyhedral set that encloses the historical
uncertainty data points with minimal volume. The uncer-
tainty set is developed using the support vector clustering
(SVC) method (Ben-Hur et al., 2001). The resulting set
has a minimum distance with respect to its support vec-
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naert, 2018). Due to their thermal inertia, they can be
used to store heat energy for a short time. This can be
done by providing an excessive amount of heat during
times of excessive availability and allowing the building
to release heat during the peak load or shortage period.
When this mechanism is carried out, it is necessary to
ensure the thermal comfort of the occupants. In order to
avoid violation of thermal comfort, a building model is
often required. Unfortunately, this model is not available
to energy suppliers who wish to exploit the thermal inertia
of a building. Therefore, in most cases, an approximate
model is used.

An approximate building model can be obtained using
a first-principles or a data-driven approach (Reynders
et al., 2014). Data-driven modeling techniques, such as
system identification, enable us to merge mathematical
models and historical datasets to derive a temperature
evolution model of a building. By using this approach, the
⋆ This work is supported by the WarmingUP project grant from the
Netherlands Enterprise Agency (RVO).

time-consuming measurement of numerous parameters of
building components can be avoided.

Despite its efficacy, the resulting model suffers from para-
metric uncertainties. Such errors often compromise the
performance of the controller. Extensive research has been
conducted to estimate parametric uncertainties. One of the
notable techniques is set-membership estimation (Milanese
and Vicino, 1991). By using this technique, a convex set
that contains the true uncertainty value is constructed
from historical data points. This method can be combined
with MPC to minimize the energy use of buildings while
ensuring the satisfaction of the operational constraints.
Although the resulting uncertainty set can contain the true
uncertainty value, the resulting uncertainty sets can be
overly conservative. Such a set may lead to higher energy
consumption to guarantee constraint satisfaction.

For additive uncertainty, Shang et al. (2017) developed an
uncertainty set estimation strategy. This strategy success-
fully creates a polyhedral set that encloses the historical
uncertainty data points with minimal volume. The uncer-
tainty set is developed using the support vector clustering
(SVC) method (Ben-Hur et al., 2001). The resulting set
has a minimum distance with respect to its support vec-
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tors. Unfortunately, the technique cannot be implemented
directly to construct a parametric uncertainty set because
the parametric uncertainty data is not directly available
to be used for the learning process.

In this work, we propose a new set-membership-based
robust model predictive control strategy. We extend the
kernel-learning-based set construction method proposed
by Shang et al. Our strategy addresses the limitation of
the existing approaches in constructing parametric uncer-
tainty set by reformulating a SVC set to be used as a
non-falsifying set. The non-falsified sets is used to refine
the parametric uncertainty set estimate. Subsequently, we
design an min-max MPC with the parametric uncertainty
set estimate. Using numerical simulations, we show that
the controller successfully schedules the heat supply to a
building while ensuring that the temperature trajectory
stays within the comfort bounds. The controller is also
less conservative compared to another robust MPC formu-
lation that uses a box uncertainty set as the non-falsifying
set for the parametric uncertainty set construction.

The remainder of this article is structured as follows.
In Section 2, we present the building model, the set
membership estimation process, and the formulation of
the optimal control problem. Section 3 details the setup
of the numerical simulation. In Section 4, we discuss the
simulation results. We conclude our work in Section 5.

2. METHODOLOGY

2.1 Building Model

In this work, we consider a residential building as an exam-
ple. The mathematical model of a building can be derived
using the building heat balance equation (Pothof et al.,
2023). In this study, we employed the gray-box modeling
technique. We modeled a building using the 2R2C model,
where the parameters of the state-space matrices are ob-
tained using system identification. This dynamical model
has two states, namely room temperature Tz and lumped
envelope temperature Te. The input of this system is the
heat energy Φh. In this system, the ambient temperature
Ta and the solar radiation Φs are treated as disturbances.

The continuous-time state-space equation that represents
the building is

ẋ(t) = Ac(wθ)x(t) +Bd,c(wθ)d(t) +Bu,c(wθ)u(t), (1a)

y(t) = Ccx(t). (1b)

The state-space matrices in (1) are given by:

Ac(wθ) =

[
−θ∗1 − wθ1 − θ∗2 − wθ2 θ∗2 + wθ2

θ∗3 + wθ3 −θ∗3 − wθ3

]
, (2a)

Bd,c(wθ) =

[
(θ∗1 + wθ1) (θ∗4 + wθ4)

0 0

]
, (2b)

Bu,c(wθ) =

[
θ∗4 + wθ4

0

]
, (2c)

Cc = [0 1] , (2d)

where x = [Tz, Te]
⊤ ∈ R2 is the state vector, u = Φh ∈ R

is the control input, and d = [Ta, Φs]
⊤ ∈ R2 is an uncer-

tain disturbance. In addition to the disturbance, the dy-
namical model also suffers from building modeling uncer-
tainty wθ = [wθ1 , wθ2 , wθ3 , wθ4 ]

⊤ ∈ R4 due to parameter

estimation process. The parametric uncertainty represents
a constant but unknown error in the model parameters.
Here, the parameter vector θ∗ = [θ∗1 , θ

∗
2 , θ

∗
3 , θ

∗
4 ]

⊤ ∈ R4 is
the true unknown value defined as follows:

θ1 =
1

RzCz
, θ2 =

1

ReCz
, θ3 =

1

ReCe
, θ4 =

1

Cz
.

Re and Rz denote the thermal resistance between the
building and outside air, and between the inside air and the
building envelope, respectively. Ce and Cz represent the
thermal capacity of the building envelope and the thermal
capacity of the air within the building, respectively.

The state-space equation is discretized with the sampling
period Ts. The discrete-time state-space model is given by

xk+1 = A(wθ)xk +Bu(wθ)uk +Bd(wθ)dk,

yk = Cxk,
(3)

where the relations between continuous-time and discrete-
time state-space matrices are as follows

A(wθ) = I2 +Ac(wθ)Ts, (4a)

Bd(wθ) = Bd,c(wθ)Ts, (4b)

Bu(wθ) = Bu,c(wθ)Ts, (4c)

C = Cc. (4d)

Here, I2 ∈ R2×2 denotes an identity matrix.

2.2 Parametric Uncertainty Estimation

The system matrices A, Bu, and Bd can be written as an
affine function of uncertainties as follows:

[A(wθ) Bu(wθ) Bd(wθ)] =
[
Ā B̄u B̄d

]

+
4∑

i=1

[Ai Bd,i Bu,i]wθi . (5)

Here, Ā = A(0), B̄u = Bu(0), and B̄u = Bu(0) are state-
space matrices with the unknown true parameter values,
whereas {Ai, Bd,i, Bu,i}4i=1 are known matrices, obtained,
for instance, from a gray-box system identification process.
The parametric uncertainty wθ is assumed to lie inside a
known, bounded, and convex set as follows

Wθ,0 = {wθ |Hwwθ ≤ hw}. (6)

A set estimation procedure is applied to refine the initial
uncertainty set so that at each time step, the parametric
uncertainty set is updated. The updated set satisfies

Wθ,k+1 ⊂ Wθ,k ∩∆k. (7)

In this paper, the Support Vector Clustering (SVC) tech-
nique (Shang et al., 2017) is used to determine the non-
falsified set ∆k. The non-falsified set ∆k is given by

∆k = {wθ : wk = xk+1 −A(wθ)xk −Bd(wθ)dk
−Bu(wθ)uk ∈ Ws} = {wθ : Hwwθ ≤ hw}. (8)

The additive uncertainty wk is assumed to be in an
unknown, convex, bounded polytope. The SVC technique
is applied to obtain a tight polytope. In this technique,

we use a data set D =
{
w(i), d(i), u(i)

}ND

i=0
consisting of

historical additive uncertainties, past disturbances, and
past control inputs, to construct a polytope that contains
the parametric uncertainty in the following form:
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0
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⊤ ∈ R2 is the state vector, u = Φh ∈ R

is the control input, and d = [Ta, Φs]
⊤ ∈ R2 is an uncer-

tain disturbance. In addition to the disturbance, the dy-
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⊤ ∈ R4 due to parameter
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Re and Rz denote the thermal resistance between the
building and outside air, and between the inside air and the
building envelope, respectively. Ce and Cz represent the
thermal capacity of the building envelope and the thermal
capacity of the air within the building, respectively.

The state-space equation is discretized with the sampling
period Ts. The discrete-time state-space model is given by

xk+1 = A(wθ)xk +Bu(wθ)uk +Bd(wθ)dk,
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(3)

where the relations between continuous-time and discrete-
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Here, I2 ∈ R2×2 denotes an identity matrix.
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The system matrices A, Bu, and Bd can be written as an
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[
Ā B̄u B̄d

]

+
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[Ai Bd,i Bu,i]wθi . (5)

Here, Ā = A(0), B̄u = Bu(0), and B̄u = Bu(0) are state-
space matrices with the unknown true parameter values,
whereas {Ai, Bd,i, Bu,i}4i=1 are known matrices, obtained,
for instance, from a gray-box system identification process.
The parametric uncertainty wθ is assumed to lie inside a
known, bounded, and convex set as follows

Wθ,0 = {wθ |Hwwθ ≤ hw}. (6)

A set estimation procedure is applied to refine the initial
uncertainty set so that at each time step, the parametric
uncertainty set is updated. The updated set satisfies

Wθ,k+1 ⊂ Wθ,k ∩∆k. (7)

In this paper, the Support Vector Clustering (SVC) tech-
nique (Shang et al., 2017) is used to determine the non-
falsified set ∆k. The non-falsified set ∆k is given by

∆k = {wθ : wk = xk+1 −A(wθ)xk −Bd(wθ)dk
−Bu(wθ)uk ∈ Ws} = {wθ : Hwwθ ≤ hw}. (8)

The additive uncertainty wk is assumed to be in an
unknown, convex, bounded polytope. The SVC technique
is applied to obtain a tight polytope. In this technique,
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consisting of

historical additive uncertainties, past disturbances, and
past control inputs, to construct a polytope that contains
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Ws =



w



∃pi, i, j ∈ NND
1 s.t.


i∈SV

αi1
T
nx
pi ≤ θ,

−pi ≤ Q

w(i) − w(j)


≤ pi



,

(9)

where

θ =

i∈Is

αi

Q

w(s) − w(i)


1
, s ∈ Ib. (10)

Here, Q denotes a whitening matrix (Kessy et al., 2018).
This matrix is applied to eliminate the cross-correlation
such that the dimension of the transformed data similarly
affects the kernel expression (Shang et al., 2017). pi is
an auxillary parameter that is used to reformulate the
original form of the uncertainty set into a polytope (Shang
et al., 2017). 1n denotes 1-vector of size n. The set Is
and Ib contain the indices of the data points that act
as support vectors (SV) and boundary support vectors
(BSV), respectively. αi denotes the Lagrange multipliers
for each of the data points. αi, Is, and Ib can be obtained
by applying the SVC algorithm to the data set D. In
order to obtain a set in the form of (9), we employ the
weighted generalized intersection kernel (WGIK) (Shang
et al., 2017). Due to the polytopic structure of Ws, it is
convenient to formulate a tractable robust optimization
problem using an SVC-based uncertainty set.

To construct a non-falsified parameter set based on SVC,
we need to determine the relation between Hw, hw, and
wk. For the sake of brevity, the additive uncertainty is
expressed as follows:

xk+1 = Āxk + B̄uuk + B̄ddk + ϕ(xk, dk, uk)wθ, (11)

where

ϕk = ϕ(xk, dk, uk) = [A1xk +Bu,1uk · · · A4xk +Bu,4uk].
(12)

In the subsequent parts of this paper, we refer to ϕkwθ as
parametric uncertainty-induced additive uncertainty. As a
first step in formulating the non-falsified parameter set,
we substitute the additive uncertainty wk into (9). The
inequalities are divided into two parts as follows:

Qek −Qϕkwθ −Qw(i) ≤ pi, ∀i ∈ ND, (13a)

−Qek +Qϕkwθ +Qw(i) ≤ pi, ∀i ∈ ND. (13b)

where

ek = xk+1 − (Āxk + B̄ddk + B̄uuk). (14)

By rearranging the inequalities (13) and multiplying them
by 1⊤nx

, we obtain the following expression:

−1⊤
nx
Qϕkwθ ≤ 1⊤

nx


pi +Qw(i) −Qek


, ∀i ∈ ND, (15a)

1⊤
nx
Qϕkwθ ≤ 1⊤

nx


pi −Qw(i) +Qek


, ∀i ∈ ND. (15b)

By stacking all inequalities, (15) can be reformulated as
follows:

− 1Nd
⊗ (1⊤

nx
Qϕk)wθ ≤
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nx
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...

1⊤
nx
pND
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Qw(1)

...
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nx
Qw(ND)




− 1ND
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�
1⊤
nx
Qek


(16a)

1Nd
⊗ (1⊤

nx
Qϕk)wθ ≤
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p1
...

1⊤
nx
pND


−




1⊤
nx
Qw(1)

...

1T
nx
Qw(ND)




+ 1ND
⊗
�
1⊤
nx
Qek


(16b)

Note that the first inequality in (9) can be vectorized as
follows:

aP ≤ θ. (17)

Here, a is given by:

[a]i =


αi, i ∈ SV

0, i /∈ SV
(18)

whereas P =

1⊤
nx
p1 · · · 1⊤

nx
pND

⊤
. By multiplying each

inequality in equation (16) with a, the inequalities can be
rewritten as follows:
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�
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Qek


(19a)
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�
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�
1ND
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nx
Qek


(19b)

Here, IND
∈ RND×ND and w = [w1 · · · wND

]
T
stand for

an identity matrix and a vector of historical additive un-
certainty data, respectively. Accordingly, the non-falsified
parameter set can be defined as follows:

∆k = {wθ | Hw,kwθ ≤ hw,k} ,

Hw,k =


−1
1


a
�
1ND

⊗ (1⊤
nx
Qϕk)
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θ + a

�
IND

⊗ (1⊤
nx
Q)w


− a

�
1ND

⊗
�
1⊤
nx
Qek


θ − a

�
IND

⊗ (1⊤
nx
Q)w
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.

(20)

In order to calculate ek as defined in (14), the estimate
of (Ā, B̄d, B̄u) is required. We denote these matrices as

(Â, B̂d, B̂u). These matrices can be calculated as follows


Â B̂d B̂u


= [A Bd Bu]−

4
i=1

[Ai Bd,i Bu,i] ŵθi . (21)

The parametric uncertainty estimate is updated according
to the following rule (Lorenzen et al., 2019):

w̃θ,k+1 = ŵθ,k + γϕ⊤
k (xk+1 − Âxk − B̂ddk − B̂uuk),

ŵθ,k+1 = ΠWθ,k
(w̃θ,k+1) .

(22)

where ΠWθ,k
is a projection operator which is defined as

ŵθ,k+1 = argminwθ∈Wθ,k
∥wθ − ŵθ,k∥1 (23)

and γ denotes the update step size.

The proposed procedure is summarized in Algorithm 1.

2.3 Uncertain Disturbance Estimation

In addition to parametric uncertainty, an uncertain distur-
bance is also considered. We assume that the disturbance
is unknown but lies in a bounded and convex polytope.
Using historical disturbance data d(i) in the data set D,
we also apply SVC to estimate the uncertainty set Wd.

2.4 Optimal Control Problem

We implement a robust MPC to regulate the heat supply
process to the building. The objective of this controller is
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Algorithm 1 SVC-based set membership estimation

Given: Historical data set D =
{
w(i), d(i), u(i)

}ND

i=0
Offline:

1: Choose ŵθ,0 and γ
2: Compute Q
3: Find α, Is, and Ib by solving SVC optimization

problem (Shang et al., 2017, Section 2.2)

Online: At each time step k ≥ 0:

1: Compute ŵθ using (22)

2: Compute (Â, B̂) using (21)
3: Compute ek as defined in (14)
4: Compute the non-falsified parameter set as defined in

(20)
5: Update parametric uncertainty set estimate using (7)

to minimize the cumulative cost of heating the space over
a certain period of time. At the same time, the controller
must satisfy the lower and upper temperature limits. The
robust optimization problem can be formulated as

min
u

max
ω∈Ωk

H−1∑
l=0

Cl|kul|k (24a)

s.t. xl+1|k = Âxl|k + B̂uul|k + ωl|k, (24b)

xl|k ∈ Xl|k, ∀ω ∈ Ωk, (24c)

ul|k ∈ U . (24d)

Here, ω denotes the total uncertainty that consists of
the disturbances and the parametric uncertainty induced
additive uncertainty. C and H represent the heating cost
and the prediction horizon, respectively. (24c) denotes
the state constraint that forces the room temperature to
remain within the upper and lower limits. This constraint
is given by

Xk = {Fxk ≤ fk} . (25)

(24c) may vary throughout the simulation as the comfort
temperature bounds change over different time steps.
(24d) ensures that the heat energy input remains within
the maximum and minimum values. The input constraint
is given by

U = {Guk ≤ g} . (26)

Parametric uncertainty and disturbance sets are used for
several purposes. First, the parametric uncertainty set is
used to estimate the value of the parametric uncertainty
ŵθ. The parametric uncertainty estimate is also used to
estimate the true dynamic matrices (Ā, B̄). Another role of
parametric uncertainty and disturbance sets is to construct
the total uncertainty set that is defined as

Ωk = Wk ⊕ B̂dWd,k. (27)

Wk is an additive uncertainty set induced by parametric
uncertainty. This set is defined as

Wk =
{
w : w = ϕ(x, u) (wθ − ŵθ,k) , ∀x ∈ X ,

∀u ∈ U , ∀wθ ∈ Wθ,k

}
. (28)

The robust MPC algorithm using an SVC-based uncer-
tainty set is described in Algorithm 2.

3. NUMERICAL SIMULATION

In this section, we evaluate the performance of the SVC-
based parametric uncertainty set estimation technique and

Algorithm 2 RMPC using SVC-based uncertainty set

Offline:

1: Choose H

Online: At each time step k ≥ 0:

1: Obtain state xk

2: Compute ∆k and Wθ,k using Algorithm 1
3: Compute Wk and Ωk using (28) and (27)
4: Solve (24)
5: Apply uk = uk|k

RMPC for building thermal control. We compared the
SVC-based set estimation technique constructed with a
box-shaped set-based non-falsified set. In the subsequent
parts of this work, the SVC-based set estimation approach
will be denoted as SVC, whereas the box-based approach
will be denoted as box. For the RMPC evaluation, we
compared an RMPC that uses the SVC-based parametric
uncertainty set with another RMPC that uses the box-
based parametric uncertainty set. We denote the controller
with the SVC-based parametric uncertainty set as RMPC-
SVC, whereas the other one is called RMPC-box.

3.1 Simulation Settings

In this simulation, we consider a simple house with
building parameters taken from (Kim et al., 2016). Am-
bient temperature and solar radiation data are per-
turbed by Gaussian random noise N (0, 0.5) to emu-
late forecast uncertainty. The average ambient temper-
ature over the simulation period is 13.65 oC. The dy-
namical system is discretized with a sampling period
Ts = 15min. The true lumped parameters are set
to θ∗ := [0.12 h−1, 1.77 h−1, 0.52 h−1, 0.85 oC/kWh]⊤.
These parameters suffer from constant parametric un-
certainty wθ := [0.02, 0.22, −0.09, 0.14]⊤. The ini-
tial estimate of the parametric uncertainty is wθ,0 :=
[0.90, 0.90, 0.90, 0.90]⊤. The prediction horizon of both
types of MPC are H = 8 time steps, i.e., 2 h.

Optimization problems for SVC and RMPC were formu-
lated using Matlab® with YALMIP (Löfberg, 2012) and
MPT (Herceg et al., 2013). Using YALMIP, we derived
robust counterparts of the Min-Max optimization problem.
The detailed derivation process follows the mechanism
explained in Section 5 of (Löfberg, 2012).Optimization
problems are solved using Gurobi®. Set manipulation is
done using MPT.

4. RESULTS AND DISCUSSIONS

4.1 Parametric Uncertainty Set

As the parametric uncertainty wθ lies in a 4-dimensional
space, we cannot plot the whole uncertainty set in a
single plot. Hence, we projected the uncertainty set into
3 different pairs of dimensions to compare their area.
Fig. 1 shows that, using the SVC method, our estimation
technique produced a set with a smaller area than the box
method.

4.2 Hourly Heat Supply

Fig. 2 shows that all MPCs scheduled a lot of heat supply
from the heat source (heating network or space heating
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1: Choose ŵθ,0 and γ
2: Compute Q
3: Find α, Is, and Ib by solving SVC optimization

problem (Shang et al., 2017, Section 2.2)

Online: At each time step k ≥ 0:

1: Compute ŵθ using (22)

2: Compute (Â, B̂) using (21)
3: Compute ek as defined in (14)
4: Compute the non-falsified parameter set as defined in

(20)
5: Update parametric uncertainty set estimate using (7)

to minimize the cumulative cost of heating the space over
a certain period of time. At the same time, the controller
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Here, ω denotes the total uncertainty that consists of
the disturbances and the parametric uncertainty induced
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and the prediction horizon, respectively. (24c) denotes
the state constraint that forces the room temperature to
remain within the upper and lower limits. This constraint
is given by

Xk = {Fxk ≤ fk} . (25)

(24c) may vary throughout the simulation as the comfort
temperature bounds change over different time steps.
(24d) ensures that the heat energy input remains within
the maximum and minimum values. The input constraint
is given by

U = {Guk ≤ g} . (26)

Parametric uncertainty and disturbance sets are used for
several purposes. First, the parametric uncertainty set is
used to estimate the value of the parametric uncertainty
ŵθ. The parametric uncertainty estimate is also used to
estimate the true dynamic matrices (Ā, B̄). Another role of
parametric uncertainty and disturbance sets is to construct
the total uncertainty set that is defined as

Ωk = Wk ⊕ B̂dWd,k. (27)

Wk is an additive uncertainty set induced by parametric
uncertainty. This set is defined as

Wk =
{
w : w = ϕ(x, u) (wθ − ŵθ,k) , ∀x ∈ X ,

∀u ∈ U , ∀wθ ∈ Wθ,k

}
. (28)

The robust MPC algorithm using an SVC-based uncer-
tainty set is described in Algorithm 2.

3. NUMERICAL SIMULATION

In this section, we evaluate the performance of the SVC-
based parametric uncertainty set estimation technique and

Algorithm 2 RMPC using SVC-based uncertainty set

Offline:

1: Choose H

Online: At each time step k ≥ 0:

1: Obtain state xk

2: Compute ∆k and Wθ,k using Algorithm 1
3: Compute Wk and Ωk using (28) and (27)
4: Solve (24)
5: Apply uk = uk|k

RMPC for building thermal control. We compared the
SVC-based set estimation technique constructed with a
box-shaped set-based non-falsified set. In the subsequent
parts of this work, the SVC-based set estimation approach
will be denoted as SVC, whereas the box-based approach
will be denoted as box. For the RMPC evaluation, we
compared an RMPC that uses the SVC-based parametric
uncertainty set with another RMPC that uses the box-
based parametric uncertainty set. We denote the controller
with the SVC-based parametric uncertainty set as RMPC-
SVC, whereas the other one is called RMPC-box.

3.1 Simulation Settings

In this simulation, we consider a simple house with
building parameters taken from (Kim et al., 2016). Am-
bient temperature and solar radiation data are per-
turbed by Gaussian random noise N (0, 0.5) to emu-
late forecast uncertainty. The average ambient temper-
ature over the simulation period is 13.65 oC. The dy-
namical system is discretized with a sampling period
Ts = 15min. The true lumped parameters are set
to θ∗ := [0.12 h−1, 1.77 h−1, 0.52 h−1, 0.85 oC/kWh]⊤.
These parameters suffer from constant parametric un-
certainty wθ := [0.02, 0.22, −0.09, 0.14]⊤. The ini-
tial estimate of the parametric uncertainty is wθ,0 :=
[0.90, 0.90, 0.90, 0.90]⊤. The prediction horizon of both
types of MPC are H = 8 time steps, i.e., 2 h.

Optimization problems for SVC and RMPC were formu-
lated using Matlab® with YALMIP (Löfberg, 2012) and
MPT (Herceg et al., 2013). Using YALMIP, we derived
robust counterparts of the Min-Max optimization problem.
The detailed derivation process follows the mechanism
explained in Section 5 of (Löfberg, 2012).Optimization
problems are solved using Gurobi®. Set manipulation is
done using MPT.

4. RESULTS AND DISCUSSIONS

4.1 Parametric Uncertainty Set

As the parametric uncertainty wθ lies in a 4-dimensional
space, we cannot plot the whole uncertainty set in a
single plot. Hence, we projected the uncertainty set into
3 different pairs of dimensions to compare their area.
Fig. 1 shows that, using the SVC method, our estimation
technique produced a set with a smaller area than the box
method.

4.2 Hourly Heat Supply

Fig. 2 shows that all MPCs scheduled a lot of heat supply
from the heat source (heating network or space heating

(a) Projection of parametric uncertainty set
into the wθ1 − wθ2 -plane.

(b) Projection of the parametric uncertainty
set into the wθ2 − wθ3 -plane.

(c) Projection of the parametric uncertainty
set into the wθ3 − wθ4 -plane.

Fig. 1. Comparison of the parametric uncertainty set estimated by using box and SVC method. wθn axis corresponds
to the n-th element of parametric uncertainty vector wθ.

Fig. 2. Comparison of buildings’ heat consumption with 3 different MPCs, namely Standard MPC, RMPC-box, and
RMPC-SVC. The light blue regions indicate the time periods when the cost of heat generation was low due to the
low heat demand. The high heat supply in the morning reflected periods when cost was low, but increases were
anticipated due to the increase of the lower limit of room temperature.

.

Fig. 3. Comparison of the buildings’ temperature evolution trajectory. Each building is controlled by different MPC,
namely Standard MPC, RMPC-box, and RMPC-SVC. The gray region indicates the period when the minimum
temperature constraints are violated by the standard MPC approach.
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Fig. 4. Comparison of the cumulative energy spending over
7 days under the use of 3 different MPCs, namely
Standard MPC, RMPC-box, and RMPC-SVC.

device) when the heat generation cost was low, while
avoiding placing orders in other periods. As shown in Fig.
2, the generation cost is low between 06:00 and 09:00, as
well as between 18:00 and 21:00. A significant amount of
heat was ordered between 06:00 and 09:00 to maintain
room temperature above the lower limit between 10:00
and 18:00. Although the generation cost is also cheap
between 18:00 and 21:00, not much heat is required, as
the minimum temperature in the subsequent periods is
considerably low. Therefore, the remaining heat energy in
the air and building structure was considered sufficient
to maintain room temperature. The controllers’ ability to
schedule the heat supply under the cost fluctuation by
considering the amount of heat available in the air and
building structure implies that all MPCs have successfully
exploited the thermal inertia of the building.

However, Fig. 2 also shows that between 09:00 and 18:00,
the standard MPC and RMPCs work differently. During
this period, the standard MPC did not order heat energy.
On the other hand, both the RMPC-box and the RMPC-
SVC still ordered a small amount of heat. This additional
heat supply is used to hedge against undersupply due to
building modeling and forecasting errors. The amount of
extra heat ordered by the RMPC depends on the size of the
estimated uncertainty set. A bigger set leads to higher heat
consumption. Accordingly, our RMPC-SVC outperforms
the RMPC-box by ordering less additional heat while
keeping the room temperature within the comfort bounds.

4.3 Temperature Evolution of the Controlled Building

Fig. 3 shows that a standard MPC failed to satisfy the
minimum temperature constraints in numerous time steps
without any uncertainty handling measure. Over 668 time
steps, the standard MPC violates the lower thermal com-
fort bound in 134 time steps. However, both RMPCs
successfully maintained the controlled building tempera-
ture within the thermal comfort bound throughout the
simulation.

Even though both RMPCs successfully keep the temper-
ature within the specified bounds, the RMPC-box uses a
larger parametric uncertainty set estimate. Since the esti-
mated set is larger, the controller operated conservatively.
This means that the controller will steer the temperature
farther away from the boundary values than the RMPC-
SVC. Although a conservative control policy incurs a lower

risk of constraint violation, it severely increases energy
bills. Fig. 4 shows that a controlled building with an
RMPC box costs approximately AC173 after 7 days. This
is AC52 more expensive than a building managed by a
standard MPC. In contrast, RMPC-SVC only increases
the bill by €29. Therefore, our new controller can reduce
the additional expenditure for uncertainty handling by
44%.

5. CONCLUSION

In this paper, we proposed a parametric uncertainty set
construction method based on the SVC set. The result-
ing set is tighter than typical parametric uncertain sets
constructed by a box unfalsified set. Using this tighter
uncertainty set, we designed a less conservative robust
MPC. A less conservative robust MPC will reduce the
cumulative heat cost. Although we apply this robust con-
trol strategy for a system whose model is derived using
a system identification approach, this framework can also
be integrated with other parametric models obtained from
different data-driven approaches.
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