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Abstract

Recent years have seen a surge of interest
for dynamic testing techniques, one of
which is symbolic execution. It is the main
point of interest of this research paper, in
which we give an overview of a framework
for symbolically executing definitional in-
terpreters. We will also discuss techniques
that we made use of in developing the sym-
bolic execution framework. The context of
this project is the automated grading and
validation of student submissions, and the
results and performance of our approach
will also be reviewed and criticized.

1 Introduction

Most Computer Science courses rely on
practical assignments as a means of mak-
ing sure that students achieve the learn-
ing objectives of various courses. Accord-
ing to the U.S. Bureau of Labor Statistics,
the number of job openings in the field is
set to grow by 32% by 2029 [1]. This stat-
istic is also reflected in the growing number
of Computer Science study programs and
students who are enrolling in them world-
wide. Therefore, it can be inferred that the
manual checking of the aforementioned as-
signments is quickly becoming more and
more inefficient and error prone.

This paper addresses the concern of
automatic testing of student submissions.
In the present research we will discuss
how efficient symbolic execution is at find-
ing differences between definitional inter-
preters. These interpreters are similar to
what students would be writing in a course
about programming languages, and are
similar to what is discussed in the textbook
Programming Languages: Application and In-
terpretation [2]. To this end, we will:

• Define an intermediate representa-
tion (Section 2.4) for definitional in-
terpreters. This is a step that facil-
itates the other contribution outlined
in this list.

• Define a simple small-step transition
function (Section 2.5) that given such
an intermediate representation re-
turns the next possible step, which
enables us to explore the branches of
an intermediate representation, or IR,
recursively. This results in an ap-
proach that, as seen in Section 3, ef-
fectively distinguishes between inter-
preters.

The topic of dynamic test generation
has seen a marked increase in interest in re-
cent years as an effective technique for gen-
erating sound and complete test suites for
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gradually more complex software. Sym-
bolic execution in particular is a technique
that is widely employed in the industry
[3]–[5].

At a high level, the idea of symbolic ex-
ecution is that instead of a given program
being ran on concrete input (numeric val-
ues for example), the input variables are
allowed to be symbolic - in other words,
placeholders for their concrete counter-
parts.

2 Method

The idea of this paper is to explore a sim-
pler alternative to the approach to symbolic
execution detailed in Mensing et al’s work
[6] to serve as a basis for heuristic research.
Ideally, we would like to get to a point
where we can run two interpreters in paral-
lel and compare them as they run. We have
adopted the usage of the small step trans-
ition function as it was proposed by Mens-
ing et al. [6] to accomplish that, albeit sim-
plifying it, as will be detailed in a further
section. We conjecture that this is an im-
portant part of the symbolic executor that
we are deriving since it allows us to unfold
an expression once (as opposed to until ter-
mination of the program).

2.1 Intuition

The result that we would like to arrive at
is an execution tree, where all paths (and
the respective constraints that guard them)
that can be taken in the program are ex-
plored. Take for example a dummy pro-
gram in a C-like language, such as the one
in Listing 1.

Listing 1: A Simple Program.

void t e s t ( i n t x ){
i n t n = 0 ;
while ( n < x ){

n ++;
}

}

Intuitively, if we were to take pen to pa-
per and draw a tree of all the possible paths
one might take through this program, it
would look similar to what can be seen in
Figure 1.

Figure 1: Execution Tree for a Simple Pro-
gram.

A similar approach can also be taken
with testing a defitional interpreter such as
the one in Listing 2 ending up with a result
like the one in Figure 2.
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Listing 2: A Simple Definitional Interpreter.
data Expr = Num Int

| Add Expr Expr
eval : : Expr −> Int
eval (Num i ) = i
eval (Add e1 e2 ) =

eval e1 + eval e2

Figure 2: Execution Tree for a Simple Sym-
bolic Executor.

An intuitive way of defining the small
step transition function method that will be
used in this research paper is to picture a
finite state automaton. In a more general
sense, take the concept of a transition func-
tion: it takes as input one state, and returns
the logical continuation of this state as a
result of an action being taken as an out-
put. For example, in tic-tac-toe, the logical
continuation of a player making the move
Draw an X on the lower left corner of the board
is a new game state where there is an X on
said spot.

2.2 Background into the Methodo-
logy Exhibited by Mensing et al.

The symbolic executor described by Mens-
ing et al. [6] provides an approach to sym-
bolic execution where each path is explored
in a breadth-first search manner. The two
main particularities of the methodology are
the small-step transition function and the

usage of free monads, which are a way of
encoding an execution state [7]. The gen-
eral idea is to use a family of free mon-
ads to encode a state in a symbolic execu-
tion of the program in question, and the au-
thors define a transition function that en-
codes a next step following from a given
free monad. In a way, this is analogous to
the transition function in finite state auto-
mata. In the paper, the authors also provide
a framework for generating test cases for
faulty definitional interpreters and gener-
ating terms that prove certain constraints
incorrect. These constrints are defined in
a way similar to what we will define later
in this paper.

2.3 Definition of the Language Un-
der Test

The language we will be running our sym-
bolic executor will be defined in Listing 3.
We opted for a lisp-like language that has
basic support for functions, with function
application, lambdas and identifiers. It also
features numbers and the possibility to add
them. A definitional interpreter for this
language might feature a top level pattern
match, and recursive calls for the evalu-
ation of nested expressions.

Listing 3: Structure of the programming
language to be used.

data Expr = Add Expr Expr
| Num Int
| Lam String Expr
| App Expr Expr
| Ident String

2.4 An Intermediate Representation
for Definitional Interpreters

It proves difficult to transform code dir-
ectly into execution trees. Having an uni-
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fied format to encode these interpreters
into would provide convenience and ex-
tensibility. Therefore, it is useful to define
an alternative representation for defini-
tional interpreters as defined in the text-
book Programming Languages: Application
and Interpretation [2]. This intermediate rep-
resentation, or IR as it will be called in the
implementation, has to prove amiable for
comparing and checking interpreters for
equivalence. It makes therefore sense to
think of interpreters in terms of choices,
guards and recursive calls. An element that
sets the current implementation apart from
the old one is the distinction between regu-
lar function calls and recursive calls in this
intermediate representation.

Therefore, as stated beforehand, the
three elements that will define the behavior
of a given interpreter are the following:

• Choice. We need the option to specify
different branches for, for example,
the top level pattern matches that oc-
cur in definitional interpreters. We
will represent them by means of the
+ symbol.

• Guards. Branches are most often
guarded by constraints, which for
the purposes of this paper will be
defined by means of equality or in-
equality between the input given to
the interpreter and a certain input
shape. We will represent them as
constraints written between square
brackets (for example, [e = Num(i)]).

• Recursive function calls.The interpreter
must be able to recursively call itself
so that it can evaluate nested expres-
sions. We will simply pass a list of
arguments and a string that denotes
the variable we will be using to refer
to the result of the recursive call in the
continuation. For example, recurse i
as i1. return +(i1, 3).

In Listing 4 the grammar of the interme-
diate representation language is defined.

In listing 5 an example of a simple in-
terpreter in the syntax defined above is laid
out.

Listing 5: Definitional Interpreter.
eval = ( [ e ≡ Num( i ) ] . re turn t )

+ ( [ e 6≡ Num( i ) ,
e ≡ Add( e1 , e2 ) ]

. recurse e1 as i 1

. recurse e2 as i 2 .
re turn +( i1 , i 2 ) )

2.5 Implementation of The Symbolic
Executor

In the following sub-sections we will dis-
cuss implementation details of the sym-
bolic executor that we have developed.

2.5.1 Definition of a Small-Step Trans-
ition Function

The small step transition function is the
metaphorical heart and soul of the sym-
bolic executor presented in this paper. It
takes as input an intermediate representa-
tion of a symbolic executor and returns an
array of intermediate representations sym-
bolizing the next possible steps that can be
taken by our definitional interpreter.

One of the trivial cases for the step
function is the choice case, which will by
definition simply return an array of all the
choices that can be made by the interpreter.
Two other trivial cases are Return, which
simply returns the variable in question,
and Raise, which simply returns an error.

There are two notable cases for the
small-step transition function which will be
detailed in the following sections. The first
problem that arises in the development of
this function is that of making a recursive
call to the interpreter through the transition
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Listing 4: Grammar of the IR.
t ∈ Term : : = f ( t ) | i | x ( terms )
T ∈ Tree : : = T + T | [ ( t = t ) ] . T | recurse t as x .

| return t ( t r e e s )
f ∈ TermCon = {Num/1 , Add/2 , . . . } ( term c o n s t r u c t o r )
x , y , z ∈ Var = {x , y , z , . . . } ( v a r i a b l e s )
i ∈ Integer = {0 , −1 , 1 , . . . } ( i n t e g e r s )

function. This proves difficult since the lat-
ter is ignorant of what the top-level inter-
preter looks like (it only knows what the
current step it is performing looks like).

The second notable case that we will
discuss is that of performing a next step on
a guarded branch. To this end, we would
like to know whether there exist variable
assignments that can satisfy the guards of
the branch.

2.5.2 Constraint Resolution and Unifica-
tion

For the purposes of our symbolic executor,
we often work with branches that are
guarded by constraints [8]. Consider, for
example, a constraint such as the one in
Listing 6.

Listing 6: Constraint.
[ e0 = Num( i ) ]

which tells us that variable e can match
the pattern Num(i). Therefore, for the sake
of consistency we would like to be able to
treat the symbolic variable e0 as a Num(i)
from now on.

In computer science, unification is the
process of solving equations between sym-
bolic variables. Usually, the solution to an
unification problem is a set of substitutions
that we can make to make the two sides
of the equation equal. In this case for ex-
ample we would like to substitute e with a

Num(i), so our unifier would be represen-
ted by the array [(e, Num(i))]. An empty
unifier ([]) means that the unification prob-
lem has no solutions (so that no suitable
substitution has been found).

The unification algorithm we will use
is based on the one from Mensing et al.,
which in turn is based on the one by Mar-
telli and Montanari [9].

We implemented several auxillary
functions to implement the unification al-
gorithm, the most important of which are
the occurs checker and the function that
performs the substitution after successfully
obtaining an unifier by means of the unify
function. The unify function performs a
fold over Con variables and simply checks
for occurrence in the case of 2 regular sym-
bolic variables.

2.5.3 Recursive Calls

The main problem of the recursive step is
that infinite loops must be avoided. Ad-
ditionally, we also would like to be aware
of the result that has been returned by the
recursive call in the continuation IR. To this
end, we have defined a notion of sequen-
cing which takes two IR arguments (the IR
to be evaluated into a value, and the ex-
pression that we would like to substitute
this value into).

The step function for recurse generates
a list of sequential statements. For the pur-
poses of this paper, which is supposed to
act like a proof-of-concept, is limited to
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recurring on symbolic variables, although
this can be expanded on in future work.
Following this, the variable resulting from
each of the first steps is substituted in its
respective continuation.

2.5.4 Driver Loop

The driver loop which can be seen in List-
ing 7 is relatively simple. It takes a set of in-
termediate representations of definitional
interpreters, and returns the ”next step” us-
ing the transition function for each of them
in a round-robin fashion. This solution to
run multiple interpreters at the same time,
albeit simple, fulfils its intended purpose.

Listing 7: Driver function.
dr iver : : [ IR ] −> [ IR ]
dr iver [ ] = [ ]
dr iver ( x : xs ) = ( s tep x )

++ ( dr iver xs )

2.5.5 Case study: Step by Step Symbolic
Execution of An Example

In this section we will detail how an in-
terpreter is explored by our symbolic ex-
ecution engine. Take, as an example, the
interpreter in Listing 5. Performing one
step will yield an array which contains the
branches where the Num and Add pattern
matches are performed, as can be seen in
Listing 8.

Listing 8: Stepped Once.

[
[ [ Symbolic [ ] ”a”

matches Num] ]
re turn Symbolic [ ] ”a ” ,

[ [ Symbolic [ ] ”a”
matches Add ” i 1 ” ” i 2 ” ] ]
recurse ” i 1 ” as ” c ” .
recurse ” i 2 ” as ”d ” .
re turn applying

”+” to ” c ” and ”d”
]

If we keep stepping each of the respect-
ive guarded statements, we will eventually
get to the full execution tree of the sample
definitional interpreter, which is shown in
Listing 9.

3 Experimental Setup and
Results

The code described in this paper was de-
veloped and ran on a machine running
Windows 10, in the Haskell programming
language using Stack 2.7.

The test setup consists of multiple func-
tions which simply call the driver loop on
several interpreters that have been tran-
scribed into the intermediate representa-
tion defined in Section 2.4, which an inter-
ested reader should be able to run. Our
symbolic executor will therefore generate
an execution tree for each of these inter-
preters (as well as possibly synthesizing
terms that would exercise certain paths in
the program ).

In this section, we will detail how ef-
fective the program is at finding bugs in
interpreters by transcribing the interpreters
from the Mensing paper, for example, run-
ning them two at a time and comparing the
outputs against each other. This is, to some
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Listing 9: Stepped Multiple Times.
[

( re turn
Symbolic [ Symbolic [ ] ”a” matches Num] ”a ” ) ,
( seq [ [ Symbolic [ ] ”a” matches Num] ]

re turn
Symbolic [ ] ”a” as ” c ”

then
recurse ” i 2 ” as ”d ” .
re turn applying

”+” to ” c ” and ”d ” ) ,
( seq [ [ Symbolic [ ] ”a” matches Add ” i 1 ” ” i 2 ” ] ]

recurse ” i 1 ” as ” c ” .
recurse ” i 2 ” as ”d ” .
re turn applying ”+” to ” c ” and ”d”

as ” c ”
then recurse ” i 2 ” as ”d ” .

re turn applying ”+” to ” c ” and ”d”)
]

Listing 10: Compare Function and Higher Level Driver Loop.
runTimes : : Int −> Term −> [ IR ] −> [ IR ]
runTimes 1 e eval = dr iver e eval eval
runTimes n e eval = dr iver e eval ( runTimes ( n − 1) e eval )

compareInterp : : Int −> Term −> [ IR ] −> [ IR ] −> Bool
compareInterp n e a b = ( runTimes n e a == runTimes n e b )

extent, an exercise in imagination in which
one of them is the template solution, the one
which defines the expected behavior, and
the other is a potentially faulty student sub-
mission.

This has been achieved by means of a
driver loop that compares the two inter-
preters that run against each other, namely
that which can be seen in Listing 10.

Comparing the approach detailed in
this paper to the Mensing approach quali-
titavely is difficult, but our approach has
the advantage of being able to be ran in
a step-by-step manner (i.e.: for a specific

amount of steps, up to a certain depth in
the tree). The kinds of bugs we are aim-
ing to find are interpreters with buggy vari-
able orders, for example. We have opted
for a simple binary equivalence system: de-
ciding whether interpreters are or not equi-
valent. We have tested this approach with
8 interpreters out of which there are three
equivalence classes. The results of the tests
that have been ran against the interpret-
ers are reported in the following confusion
matrix in Figure 3. For the results below,
we have decided to use the compareInterp
function and unfold each interpreter three
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times. The Predicted label is indicative of
whether any two given interpreters are or
not equivalent, and the Actual label indic-
ates whether the symbolic executor classi-
fies them as equal or not.

Figure 3: Confusion Matrix of Results.

Predicted

True False

A
ct

ua
l True 4 0

False 10 20

The table makes it clear that while there
are no false positives, a number of in-
terpreters are classified as non-equivalent
even though they are. We conjecture that
this effect happens because the symbolic
executor is agnostic of branch order, and
does not recognize interpreters that should
be equivalent but have a different branch
order (for example, Choice [a, b] and Choice
[b, a]). We think this is a relevant point to
be added in future work.

4 Responsible Research

4.1 Reproducibility of Results

The code of the symbolic executor will be
made available online on Github under the
CC-BY 4.0 license, as well as the test suite
used for evaluation, so that interested read-
ers can reproduce the results stated in this
paper.

4.2 Threats to Validity

Since this research project was developed
over the course of 10 weeks, it is not out of
the question that there will be bugs or other
issues in the code. What is more, the test
data is likely incomplete and not large, and
the project would likely benefit from addi-
tions to the test dataset and more thorough
testing before being deployed into practice.

Another threat to the external validity
of the research in question is how well the
approach in question generalizes [10]. We
have tested it on a simple language with
a relatively straight forward grammar, but
we do not know how well it will work for
more complex languages.

4.3 Ethical Considerations of the Re-
search

Given the fact that the software in ques-
tion can be used for assistance in grad-
ing student submissions in university level
courses, some ethical considerations arise.
This piece of software should not be used
without the supervision of a responsible
teacher.

Kramer et al. consider in their work the
relation between false positives and false
negatives in scientific research [11]. They
conjecture that false positives (in our case,
declaring two interpreters equivalent when
they are not) are good for the individual,
while false negatives (in our case, declaring
two interpreters not equivalent when they
are) bring benefits in the long run by en-
couraging scientific advancements. In our
case, the balance between false positives
and false negatives is important as well, be-
cause it concerns the choice between hav-
ing students receive higher grades, or hav-
ing to check more solutions manually.

5 Discussion and Future De-
velopments

In this paper we discussed a simplified
framework for symbolic execution. In the
light of the features discussed above, we
believe that the ideas that we exhibited in
this paper can be used in future develop-
ment.

First of all, the usage of an intermediate
representation facilitates the development

8

https://github.com/laura-pircalaboiu/SymEx


Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

of the small-step transition function. This
is currently being used to evaluate pro-
grams in a round-robin fashion as seen in
the driver loop, which brings the advant-
age of being able to run and compare mul-
tiple programs at the same time. This naive
driver loop can be further optimized and
improved.

Extending the group of languages for
which this approach works, while not
trivial, is made easier by transcribing cur-
rent interpreters into the IR encoding. This
is a development that can be looked into in
future work.

The framework in question could bene-
fit from an alternative way of searching or
pruning next states in future developments
of this work. Further reducing the number
of false negatives would also be ideal.

6 Related Work

In this section, an overview of existing tools
and techniques concerning symbolic exe-
cution will be provided. It is useful to
remark that the contributions outlined in
this paper are based on the symbolic ex-
ecutor outlined in the paper by Mensing et
al. [6], more specifically the online Haskell
version of the aforementioned paper. The
authors of this paper employ free monads
and a small-step execution strategy to eval-
uate and compare definitional interpreters,
similar to the ones a student could write in
an university course on programming lan-
guages (such as the ones in the textbook
Programming Languages: Application and
Interpretation [2]).

The previous lines of work exhibited
by the MiniKanren family of relational pro-
gramming languages follow a similar vein
as the symbolic executor developed by
Mensing et al [12]. MiniKanren makes no
distinction between input and output vari-
ables and performs a “backwards search”

with the purpose of finding an input that
produces a given output, provided a piece
of software. It does so by exhaustively
searching the execution tree of said pro-
gram, even though that might imply it run-
ning infinitely.

Another interesting work for the pur-
poses of the project being discussed in this
paper is the research of Cadar and Sen
on the KLEE framework and testing of
COREUTILS in Unix systems [13]. In it,
several ways of improving a naive sym-
bolic executor such as the one described
in this paper. This might prove interest-
ing for future research, as it does delve
deeper into heuristic research. These heur-
istics focus primarily on achieving high
statement and branch coverage, but they
could also be employed to optimize other
desired criteria. Some ideas explored in
the paper which we might want to employ
in the future are, for example, path prun-
ing, which takes place when a symbolic ex-
ecutor reaches a path that it is equivalent
to one it has explored before (same con-
straints on the same symbolic variables).
Other techniques based, for example, on
random exploration and mutation testing
combined with symbolic execution are also
used, although these might be less interest-
ing for the scope of this paper.

In conclusion, the symbolic executor
described in this paper builds on the
foundations established by Mensing et al.,
adopting the concept of the small-step
transition function and losing some in-
formation related to the current execution
state by not making use of monads. Our
approach is easily extensible to be able to
evaluate other similar languages as well,
due to its simpler notion of state. Addi-
tionally, because of this and the flexibility
of the driver functions, the authors reckon
that the symbolic executor is open to the
addition and study of heuristics.
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7 Conclusion

In conclusion, our paper proposes a simple
framework for evaluating definitional in-
terpreters in university courses. Our work
builds upon the solid foundations of Mens-
ing et al. We make use of a small-step
transition function and a simple constraint
resolution language to build a symbolic
executor that evaluates all possible paths
through a definitional interpreter.

All things considered, we believe that
the framework can and should be further
expanded and explored before any kind
of didactic use. In future work, heurist-
ics to improve the efficiency of our sym-
bolic executor and refine our approach to
running multiple definitional interpreters
at the same time can also be explored.
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