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0. Introduction

In this paper we present an example of a zero-dimensional F -space that is not strongly zero-dimensional. 
We recall that a space is zero-dimensional if it is a T1-space and its clopen subsets form a base for the 
topology. The fastest way to define a space to be strongly zero-dimensional is by demanding that its Čech-
Stone compactification is zero-dimensional.

The question whether zero-dimensionality implies strong zero-dimensionality has a long history, a sum-
mary of which can be found in [3, Section 6.2]. There are by now many examples of zero-dimensional spaces 
that are not strongly zero-dimensional, even metrizable ones, see [12], but the authors are not aware of an 
F -space of this nature.

The question whether there is a F -space example was making the rounds already in the 1980s but it 
seems to have been asked explicitly only a few years ago on MathOverFlow, see [11]. Recently Ali Reza 
Olfati raised the question with the first author in a different context.
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In section 1 we give proper definitions of the notions mentioned above and indicate why it may seem 
reasonable, but also illusory, to expect that zero-dimensional F -spaces are strongly zero-dimensional.

In section 2 we construct the example and in section 3 we discuss some variations; the example can have 
arbitrary large covering dimension and its Čech-Stone remainder can be an indecomposable continuum.

1. Preliminaries

In the introduction we defined zero-dimensional spaces as T1-spaces in which the clopen sets constitute 
a base for the open sets and strong zero-dimensionality by requiring that the Čech-Stone compactification 
is zero-dimensional.

The latter is a characterization of strong zero-dimensionality. The real definition is akin to the large 
inductive dimension: a Tychonoff space X is strongly zero-dimensional if any two completely separated sets 
are separated by a clopen set, that is, if A and B are such that there is a continuous function f : X → [−1, 1]
with f [A] = {−1} and f [B] = {1} then there is a clopen set C such that A ⊆ C and C ∩B = ∅. One could 
reformulate the latter conclusion as: there is a continuous function c : X → {−1, 1} such that c[A] = {−1}
and c[B] = {1}. It is not hard to show that this is equivalent to βX being zero-dimensional.

Furthermore, for normal spaces strong zero-dimensionality is characterized by the ‘normal’ sounding 
“disjoint closed sets are contained in complementary clopen sets”.

There are many characterizations of F -spaces, see [4, Theorem 14.25], each of which deserves to be taken 
as the definition but we take the one that at first glance seems quite close to strong zero-dimensionality; it 
is number (5) in the theorem referred to above. A Tychonoff space X is an F -space iff for every continuous 
function f : X → R there is another continuous function k : X → R with the property that f = k · |f |; so 
k is constant on the sets {x : f(x) > 0} and {x : f(x) < 0} with values 1 and −1 respectively. Although 
k does seem to act like the function c in our definition of strong zero-dimensionality, it does not.

In fact there are (compact) connected F -spaces, for example βR+ \ R+, where R+ = {x ∈ R : x � 0}, 
see [4, 14.27] or [5]. In such spaces the function k takes on all values in the interval [−1, 1] on the set {x :
f(x) = 0}, which apparently need not be as thin as we have come to expect from Calculus; in an F -space 
sets like {x : f(x) > 0} and {x : f(x) < 0} are actually very far apart.

Our notation is standard, see [3] and [4] for topological notions, and [9] for Set Theory.

2. A zero-dimensional F -space that is not strongly zero-dimensional

The construction in this section is inspired by an answer to a question on MathOverFlow, see [1], which 
in turn was inspired by Dowker’s example M in [2]. The latter is a subspace of ω1 × [0, 1]; the example on 
MathOverFlow is a quotient of ω1 ×A, where A is Alexandroff’s split interval.

We replace the ordinal space ω1 by the Gδ-modification of the ordinal space ω2, which we denote (ω2)δ; 
likewise (ω2 + 1)δ denotes the Gδ-modification of ω2 + 1. We replace A by the split interval over a suitable 
ordered continuum.

We shall use an ordered continuum K with a dense subset D that can be enumerated as 〈dα : α ∈ ω2〉 in 
such a way that every tail set Tα = {dβ : β � α} is dense in K.

Example 1. If CH fails then we can take K = [0, 1] and, like Dowker did, choose ℵ2 many distinct cosets 
of Q, say {Qα : α ∈ ω2}, and enumerate their union D as 〈dα : α ∈ ω2〉 in such a way that 〈dω·α+n : n ∈ ω〉
enumerates Qα ∩ (0, 1).

Example 2. For a ZFC example let M be the linearly ordered sum ω�
2 + {0} +ω2, where ω�

2 denotes ω2 with 
its order reversed. Following [7] we let L = M0(ω), that is, the set {x ∈ Mω : {m : xn 
= 0} is finite}, 
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ordered lexicographically. It is elementary to verify that the linear order is dense, in fact every interval has 
cardinality ℵ2, and has no smallest or largest element.

We let K be the Dedekind completion of L (see [8, Kap. IV, § 5]), that is, the set of initial segments that 
have no maximum (including ∅ and L as minimum and maximum respectively), ordered by inclusion. Then 
K is an ordered continuum and the set L itself serves as the desired dense set, under any enumeration.

We need the following Lemma, which is a variation of a result of Van Douwen, see [3, Problem 3.12.20.(c)].

Lemma 2.1. Let X be a compact Hausdorff space. The product (ω2)δ ×X is C-embedded in (ω2 + 1)δ ×X.

Proof. Let f : (ω2)δ ×X → R be continuous.
Take α ∈ ω2 of cofinality ℵ1. For every x ∈ X and n ∈ ω one can find β(x, n) < α and an open set U(x, n)

in X such that x ∈ U(x, n) and

f
[
(β(x, n), α] × U(x, n)

]
⊆

(
f(α, x) − 2−n, f(α, x) + 2−n

)

By compactness we can take a finite subcover {U(x, n) : x ∈ Fn} of the cover {U(x, n) : x ∈ X}. Let 
βn = max{β(x, n) : x ∈ Fn}, then for all x ∈ X and γ ∈ (βn, α] we have 

∣∣f(γ, x) − f(α, x)
∣∣ < 2−n+1.

Next let βα = sup{βn : n ∈ ω}, then βα < α and f is constant on each horizontal line (βα, α] × {x}.
The Pressing-Down Lemma now gives us a single β such that f is constant on (β, ω2) × {x} for all x. 

Those constant values give us our continuous extension of f to (ω2 + 1)δ ×X. �
The rest of the section is devoted to the construction of our F -space.

2.1. Split intervals

Using the continuum K and the dense set {dα : α ∈ ω2} we create a sequence 〈Kα : α � ω2〉 of ordered 
compacta, as follows:

Kα = {〈x, i〉 ∈ K × 2 : if x /∈ Tα then i = 0}

ordered lexicographically (reading from left to right). Thus Kα is a split interval over K, where all points dβ
with β � α are split in two; if α = ω2 then no points are split and Kω2 is just K itself.

There are obvious maps qα,β : Kα → Kβ when α < β, defined by

qα,β(x, i) = 〈x, 0〉 when x /∈ {dγ : γ � β}
qα,β(dγ , i) = 〈dγ , i〉 when γ � β.

We abbreviate the maps q0,α by qα.
If α < ω2 then Kα is zero-dimensional. Here is where we use that every tail set Tα is dense in K. This im-

plies that the family Bα of all clopen intervals of the form 
[
minK, 〈e, 0〉

]
, 
[
〈d, 1〉, 〈e, 0〉

]
, and 

[
〈d, 1〉, maxK

]
, 

where d, e ∈ Tα, is base for the topology of Kα. As Kα is compact it is strongly zero-dimensional as well.
For later use: the intervals in Bα belong to Bβ when β � α (when suitably interpreted) and if I ∈ Bα is 

such an interval then it satisfies I = q←β,α
[
qβ,α[I]

]
whenever β � α.

2.2. Using compactifications

To get to our F -space we take, for every α � ω2, the Čech-Stone compactification β(ω × Kα) of the 
product ω × Kα; we let Kα denote this compactification and Xα denotes the remainder (ω × Kα)∗. The 
maps qα,β induce maps from Kα to Kβ when α < β; we denote these by qα,β , and qα = q0,α of course.
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If α < ω2 then the product ω × Kα is strongly zero-dimensional because Kα is; this implies that Kα

and Xα are zero-dimensional and hence, by compactness, strongly zero-dimensional as well. Furthermore, 
by [4, 14.27], every Xα is an F -space, including for α = ω2.

We consider the product (ω2)δ ×K0 and the union

K =
⋃{

{α} ×Kα : α < ω2}

as well as (ω2 + 1)δ ×K0 and K+ = K ∪ ({ω2} ×Kω2).
Our example will be the union of the remainders:

X =
⋃{

{α} ×Xα : α < ω2}

and we also use X+ = X ∪ ({ω2} ×Xω2).

2.3. A quotient map and the topology

We define q : (ω2 + 1)δ ×K0 → K+ by combining the maps qα:

q(α, x) =
〈
α, qα(x)

〉

We give K+ the quotient topology determined by q and the product topology on (ω2 + 1)δ ×K0. We show 
that q is a perfect map. The fibres of q are clearly compact so we must show that q is closed.

To begin note that for each α the set {α} × Kα is closed and the map qα : K0 → Kα is a closed map, 
so that the quotient topology on {α} ×Kα is its normal topology. Also, if α has countable cofinality then 
{α} ×K0 is clopen in the product, hence so is {α} ×Kα in K+.

Next let α be of uncountable cofinality, take x ∈ Kα and an open set O in (ω2 + 1)δ × K0 such that 
q←(α, x) = {α} × q←

α (x) ⊆ O. By compactness there are an open set V in K0 and β < α such that

{α} × q←
α (x) ⊆ (β, α] × V ⊆ O

Because qα : K0 → Kα is closed there is an open set U in Kα such that q←
α [U ] ⊆ V . Then (β, α] × q←

α [U ]
is an open subset of (ω2 + 1)δ ×K0. For γ ∈ (β, α) we have qα = qγ,α ◦ qγ , hence q←

α [U ] = q←
γ

[
q←
γ,α[U ]

]
.

It follows that q←[W ] = (β, α] × q←
α [U ], where

W =
⋃{

{γ} × q←
γ,α[U ] : β < γ � α

}

The set W is therefore open and q←[W ] ⊆ O.
This argument also shows that K is zero-dimensional because if α < ω2 the set U can be taken to be a 

clopen set and the resulting set W is clopen as well.
Thus far we have topologized K+ and hence X+ and we have shown that X is zero-dimensional. We now 

turn to showing that X+ is an F -space and that X is C-embedded in X+. This will show that βX = βX+, 
hence X is an F -space as well (by [4, 14.25]) but not strongly zero-dimensional because the one-dimensional 
space Xω2 is a subspace of βX; we establish the one-dimensionality of Xω2 in the next section.

2.4. C-embedding

To show that X is C-embedded in X+ we let f : X → R be continuous and apply the proof of Lemma 2.1
to f ◦q : (ω2)δ ×X0 → R to find an α < ω2 such that f ◦q is constant on (α, ω2) ×{x} for all x ∈ X, which 
then determines the (unique) extension g : (ω2 + 1)δ ×X0 → R of f ◦ q.
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We show that g(ω2, x) = g(ω2, y) whenever qω2(x) = qω2(y); for then g determines a continuous extension 
of f to X+. We assume x 
= y of course and take disjoint neighbourhoods U and V of x and y in K0.

Using the compactness of K0 we find two sequences 〈In : n ∈ ω〉 and 〈Jn : n ∈ ω〉 of finite subfamilies 
of B0 such that the clopen sets I =

⋃{
{n} ×

⋃
In : n ∈ ω

}
and J =

⋃{
{n} ×

⋃
Jn : n ∈ ω

}
satisfy

• I ∈ x and J ∈ y (x and y are ultrafilters of closed sets), and
• I ⊆ U and J ⊆ V .

For each n let En be the set of points in K that occur as first coordinates of endpoints of one of the intervals 
in In and Jn. The union, E, of these sets is countable. Therefore there is a β � α such that E ∩ Tβ = ∅. 
This means that for γ � β the restriction qγ,ω2 � E is injective.

Because qω2(x) = qω2(y) the intersection of qω2 [I] and qω2 [J ] is not compact. For every n and intervals 
A ∈ In and B ∈ Jn the intersection of q[A] and q[B] is contained in En. Therefore q[I] ∩ q[J ] is contained 
in F =

⋃{
{n} × En : n ∈ ω

}
and hence the common value of q(x) and q(y) belongs to clF . As the maps 

qγ,ω2 are injective on E for γ � β, so are the maps qγ,ω2 on Xγ ∩ clF whenever γ � β.
It follows that for all γ � β we have qγ(x) = qγ(y) and therefore

g(γ, x) = f(γ, qγ(x)) = f(γ, qγ(y)) = g(γ, y)

and this implies g(ω2, x) = g(ω2, y), as desired.

2.5. F -space

To see that X+ is an F -space let f : X+ → R be continuous. We seek a continuous function k : X+ → R

such that f = k · |f |.
As in the proof above we take α < ω2 such that f ◦ q is constant on all horizontal lines (α, ω2] × {x}.
Since Xω2 is an F -space we get a continuous function g : Xω2 → R such that f(ω2, x) = g(x) ·

∣∣f(ω2, x)
∣∣.

For all β > α we define kω2 on {β} ×Xβ by kω2(γ, x) = g(qγ,ω2(x)), and k+ on {γ} ×X0 by k+(γ, x) =
g(qω2(x)). Then k+ is continuous and k+ = kω2 ◦ q on (α, ω2] × X0, so that kω2 is continuous as well. 
Rename α as βω2 .

Now repeat this argument for every α of cofinality ℵ1. First find βα < α, as in the proof of Lemma 2.1, 
such that f ◦q is constant on (βα, α] ×{x} for all x, find a g on Xα and define kα on {γ} ×Xγ , for γ ∈ (βα, α]
as above by kα(γ, x) = g(qγ,α(x)).

Finally, for every α of countable cofinality take kα : {α} ×Xα → R such that f(α, x) = kα(α, x) ·
∣∣f(α, x)

∣∣
for all x.

Since (ω2 + 1)δ is Lindelöf there is a countable subset C of ω2 consisting of ordinals of cofinality ℵ1 such 
that the interval (βω2 , ω2] together with 

{
(βα, α] : α ∈ C

}
covers all but countably many points of ω2 + 1. 

From this it is easy to construct a pairwise disjoint clopen cover of (ω2 + 1)δ and combine the various kα
into one continuous function.

3. Some variations and questions

The construction of our main example admits various variations.

3.1. Arbitrarily large covering dimension

To get a zero-dimensional F -space of a prescribed covering dimension n everywhere in the main construc-
tion replace Kα by Kn

α . Then Kω2 = β(ω×Kn). By the main result of [10] we have dimKn = n. The proof 
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of this establishes that the pairs of opposite faces of this ‘n-cube’ form an essential family. To elaborate: 
write minK = 0 and maxK = 1 and for i ∈ n put Ai = {x ∈ Kn : xi = 0} and Bi = {x ∈ Kn : xi = 1}. 
Then for every sequence 〈Li : i ∈ n〉 of partitions of Kn, with Li between Ai and Bi, the intersection

⋂
i∈n Li

is nonempty. By the Theorem on Partitions, [3, Theorem 7.2.15], this establishes dimKn � n. In addition 
[10] establishes the inequality IndKn � n. We conclude that dimKn = indKn = IndKn = n.

To see that dimXω2 = n as well, we consider the projection map π : ω ×Kn → ω and its extension βπ. 
In [5, Section 2] it is shown that the components of Kω2 are exactly the fibres βπ←(u) for u ∈ βN.

Next we let Ai = cl(ω × Ai) and Bi = cl(ω × Bi) for i ∈ n. An elementary topological argument will 
show that for every u ∈ N∗ the intersections of the Ai and Bi with βπ←(u) form an essential family. This, 
together with the equality dimβZ = dimZ ([3, Theorem 7.1.17]), shows that every component of Xω2 has 
covering dimension n.

To see that in this case also dimX = n we first observe that dimX = dim βX � dimXω2 = n. To get 
the opposite inequality we let U be a finite open cover of X+. Its restriction to Xω2 has a finite closed 
refinement of order n +1, which can be expanded to a finite family V of open sets that also has order n +1, 
covers Xω2 , and refines U . The argument given below that βX \ Xω2 is zero-dimensional produces an α

such that 
⋃

β>α{β} ×Xβ ⊆
⋃

V. The rest of the space, 
⋃

β�α{β} ×Xβ , is strongly zero-dimension so the 
restriction of U to this clopen set has a disjoint open refinement.

This proof will also work if one takes Kω
α everywhere, in which case every component of Xω2 will be 

infinite-dimensional.
Most of the other arguments in Section 2 do not rely on the particular structure of the Kα, except the 

proof of C-embedding.
One still obtains finite sets Em of points in K that occur as end points of intervals used to create clopen 

sets in {m} ×Kn
0 and hence in ω ×Kn

0 . One also still obtains a β � α with E ∩ Tβ = ∅.
The set F is replaced by 

⋃{
{m} × Gm : m ∈ ω

}
, where Gm is the grid on Kn defined by {x : (∃i ∈

n)(xi ∈ Em)}. Then qγ,ω2 is injective on {γ} × clF for all γ � β.
In case n = ω there is for every m a natural number km such that the supports of the clopen rectangles 

used in {m} ×Kω
0 are contained in km. In that case one takes Gm = {x : (∃i ∈ km)(xi ∈ Em)}.

3.2. Indecomposability

It is possible to make Xω2 an indecomposable continuum.
To this end we take a preliminary quotient of every ω×Kα by identifying 〈n, 1〉 and 〈n + 1, 0〉 for every n

(we still use 0 = minK and 1 = maxK). The result is an infinite string of copies of Kα and in case α = ω2
the result is a connected ordered space L, with a minimum, but no maximum. From a distance it looks like 
the half line H = [0, ∞) in R, with every interval [n, n + 1] replaced by K.

The proof that H∗ is an indecomposable continuum, see [5, Section 4], goes through without any changes 
to show that Xω2 = L∗ is indecomposable as well.

The proofs that X is zero-dimensional and C-embedded in the F -space X+ are not affected by these 
identifications.

We note that if we assume ¬CH and use K = [0, 1] then Xω2 is actually equal to the remainder H∗ of 
the half line.

3.3. Local compactness

In all variations the space Xω2 is the sole cause of the failure of strong zero-dimensionality.
To see this note first that the sets Fα =

⋃
β>α{β} × Xβ form a neighbourhood base at {ω2} × Xω2 . 

Indeed if f : X+ → R is continuous and equal to zero on {ω2} ×Xω2 then there is an α < ω2 such that f is 
constant and equal to zero on Fα and the latter is a clopen subset of X+.
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Furthermore the complement of such a set, Iα =
⋃

β�α{β} × Xβ , is strongly zero-dimensional. The 
fastest way to see this is to note that the product (α + 1)δ × K0 is Lindelöf as a product of a compact 
and a Lindelöf space. Therefore Iα is Lindelöf as well. By [3, Theorem 6.2.7] the zero-dimensional Lindelöf 
space Iα is strongly zero-dimensional.

Therefore the union Z =
⋃

α∈ω2
cl Iα is an open cover of βX \Xω2 by compact zero-dimensional sets and 

hence zero-dimensional.
It follows that Z is a locally compact zero-dimensional F -space that is not strongly zero-dimensional.

3.4. Questions

Our examples have weight ℵℵ0
2 , so under CH the ZFC example cannot be embedded into N∗. We do not 

know whether it can be embedded if CH fails. In fact we do not know the answer to the following question, 
which has been asked before but bears repeating often.

Question 1. Is there a subspace of N∗ that is not strongly zero-dimensional?

Weight ℵ1
It is well-known, and easy to see, that every space of cardinality less than c is strongly zero-dimensional.
A similar phenomenon can be observed among F -spaces.
If X is an F -space and f : X → R is continuous then for every r ∈ R the closures of {x : f(x) < r}

and {x : f(x) > r} are disjoint and the complement of the union of these closures is an open set, Or say. It 
follows that if the cellularity of X is less than c then there will be many r such that Or = ∅. For such r the 
closures of {x : f(x) < r} and {x : f(x) > r} would be complementary clopen sets. We find that F -spaces 
of cellularity less than c are automatically strongly zero-dimensional. In case its cellularity is countable an 
F -space is even extremally disconnected, which means that disjoint open sets have disjoint closures.

What our space leaves unanswered is what happens for F -spaces of weight ℵ1. Of course if ℵ1 < c then the 
comments above show that there is nothing more to investigate. Therefore we should assume the Continuum 
Hypothesis in order to obtain non-trivial questions and results.

It has been a rule-of-thumb under the assumption of CH that F -spaces of weight ℵ1 show many parallels 
with separable metrizable spaces. In [6] one finds versions for compact F -spaces of weight ℵ1 of some 
well-known theorems for compact metrizable spaces. In particular that the three main dimension functions 
coincide on this class.

We ask whether this holds without the compactness condition, assuming CH of course.

Question 2. Is every zero-dimensional F -space of weight ℵ1 strongly zero-dimensional?

And more generally.

Question 3. Does the equality dimX = indX = IndX hold for every F -space of weight ℵ1?
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