
Ad 

Master of Science Thesis

Three-dimensional flow and load
characteristics of flexible revolving wings at

low Reynolds number

Remco van de Meerendonk

20th June, 2016





Three-dimensional flow and load
characteristics of flexible revolving wings at

low Reynolds number

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Remco van de Meerendonk

20th June, 2016

Faculty of Aerospace Engineering · Delft University of Technology



Delft University of Technology

Copyright c© Aerospace Engineering, Delft University of Technology
All rights reserved.



DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance the thesis entitled “Three-dimensional flow and
load characteristics of flexible revolving wings at low Reynolds number” by Remco
van de Meerendonk in fulfillment of the requirements for the degree of Master of Science.

Dated: 20th June, 2016

Supervisors:
Dr. ir. B.W. van Oudheusden

Dr. M. Percin

Dr. D. Ragni

Dr. ir. G.E. Elsinga





Preface

This M.Sc. thesis concludes the Aerodynamics and Wind Energy master program at Delft
University of Technology: faculty of Aerospace Engineering, and summarizes the research
work that has been done during the thesis project. During the thesis I have been able to follow
my interest for applied experimental aerodynamics and I would to thank my supervisors dr.
Mustafa Percin and dr. ir. Bas van Oudheusden for giving me this opportunity. I am grateful
for the excellent guidance throughout the project, all the discussions which have been very
motivating to me and for giving me the opportunity to present my work at the 18th Lisbon
Symposia.

I would like to thank my family for having supported me during my studies in Delft to
become an engineer. Also I would like to thank all my friends for making my time in Delft
very enjoyable. Thanks for all the great memories!

A subset of the results related to the investigation of the spatial-temporal evolution of the
flow field with the associated vortical structures and the temporal evolution of forces on a flat
rectangular revolving wing for the different degree of chordwise flexibility of this M.Sc. thesis
project have been presented at the 18th International Symposia on Applications of Laser and
Imaging Techniques to Fluid Mechanics van de Meerendonk et al. (2016).

Remco van de Meerendonk
Delft, The Netherlands
20th June, 2016

MSc. Thesis Remco van de Meerendonk



vi Preface

Remco van de Meerendonk M.Sc. Thesis



Abstract

This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-
ratio flat plate wings undergoing a revolving motion starting from rest. Three wings with
different degree of chordwise flexural stiffness (i.e., rigid, moderate flexibility and high flex-
ibility) have been tested in order to investigate the influence of wing flexibility. The wings
have an angle of attack of 45 deg in their undeformed condition. The measurements have been
performed in a water tank at a Reynolds number of 10,000 based on the chord length and
terminal velocity at the 75% span position, and a Rossby number of 1.93. The experimental
campaign consisted of phase-locked tomographic particle image velocimetry (PIV) measure-
ments complemented with simultaneous force measurements. The three-dimensional velocity
fields are captured in three measurement volumes positioned side-by-side along the span of
the wing for different phases of the revolving motion, generating a time-resolved volumetric
velocity field data set. Subsequently, the pressure field and the loads acting on the wing are
reconstructed from the velocity data.

The force measurements reveal that the lift generation of the rigid and moderately flexible
wings is comparable while it is slightly reduced for the highly flexible wing. The drag shows
a monotonic decrease with decreasing flexural stiffness. Consequently, the lift-to-drag ratio
is increased significantly with decreasing flexural stiffness and is found to correlate well with
the geometric angle of attack of the deformed wing. Additionally, it is shown that the rigid
wing with a geometric angle of attack identical to that of the deformed wing generated similar
lift and drag. This suggests that the geometric angle of attack at steady-state conditions is
dominant for the lift and drag generated by chordwise flexible wings.

The PIV measurements reveal a vortex system consisting of a leading edge vortex (LEV), a
trailing edge vortex (TEV), a tip vortex (TV) and a root vortex (RV) that forms at the onset of
the motion. For decreasing flexural stiffness, the coherency of this vortex system and spanwise
transport of vorticity in the LEV that is driven by a negative spanwise pressure gradient is
increased, which contributes to the stability and retention of the LEV. Furthermore, the TV
and LEV are confined to a smaller region within the flow field for increased wing flexibility. At
greater phases of the revolving motion, near midspan, the core of the LEV structure is lifted
off and expanded into a substantial bubble-like structure that extends towards the tip, which
is indicative of vortex breakdown. The onset of vortex breakdown correlates well with the
formation of a positive spanwise pressure gradient region near midspan at the leading edge on
the suction side of the wing. The vortex system structures encompass a low pressure region.
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viii Abstract

As the low pressure region accompanying the LEV becomes smaller with increasing flexibility,
the total force acting on the wing is reduced, but it is also tilted more towards the lift direction
due to the wing deformation. As a consequence, the lift component remains relatively high,
also because the suction peak is located closer to the wing surface. Simultaneously, the drag
is significantly suppressed for increasing flexibility, which is also reflected in the smaller size of
the wake. While the sectional lift along the full span is comparable for the different wings, the
sectional drag is significantly reduced at the outboard wing locations for increasing flexibility.
The corresponding spanwise centroids of lift and drag are located at approximately 70% of
the span for all wings throughout the complete revolving motion.

This study improves the understanding of the effect of wing flexibility on the aerodynamic
performance of flapping-wing flight. The dominance of the geometric angle of attack on the
resultant lift and drag, and the constant spanwise centroid of the lift and drag for chordwise
flexible revolving wings may significantly simplify the modeling of flexible flapping-wing flight.
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Chapter 1

Introduction

Its easy to explain how a rocket works, but
explaining how a wing works takes a rocket scientist

Philippe Spalart

Increasing interest in micro air vehicles (MAVs) has stimulated the investigation of the aero-
dynamic phenomena that occur in small scale natural flyers. In this low Reynolds number
regime, the aerodynamic performance (stability, maneuverability, and efficiency) of existing
MAVs lacks that of such biological flyers (Pines & Bohorquez, 2006). Therefore, associ-
ated studies are often inspired by the study of natural flyers such as birds, bats and insects.
The maximum lift coefficient reported in literature for different experiments as a function of
Reynolds number is given in Figure 1.1.
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Figure 1.1: Maximum lift coefficient as a function of Reynolds number. Shaded data repre-
sents experiments in a steady flow and non-shaded data represents unsteady or three-dimensional
experiments. (Jones & Babinsky, 2010).

A steep decline in steady flow based airfoil performance is observed in the Reynolds number
range of 104 to 105, marking the boundary between steady and unsteady lift-generating
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2 Introduction

mechanisms. While flapping-wing flight benefits from unsteady aerodynamic effects which
enhance the aerodynamic performance, other means of force generation (i.e., fixed-wing and
rotary-wing mechanisms) suffer from deteriorated aerodynamic performance when operating
at low Reynolds numbers. Therefore, one of the fundamental challenges is to achieve a better
understanding of the aerodynamic phenomena associated with flapping-wing flight.

The unsteady mechanisms inherent for flapping-wing aerodynamics are: Wagner effect, clap
and fling effect, Kramer effect, added mass effect, wake capture effect, and a stable leading
edge vortex (LEV). The formation of a stable LEV is one of the most prominent mechanisms
responsible for the enhanced aerodynamic forces sustaining flapping flight (Sane, 2003). At
high angles of attack the flow separates at the leading edge and a LEV is formed which is
accompanied by a low pressure region at the suction side of the airfoil. The suction forces
that act normal to the wing surface are dominant for the net forces acting on the wing
(Usherwood & Ellington, 2002). While for translating wings under a high angle of attack
the flow separates and a well known von Kármán street is formed, a stable LEV is observed
for revolving wings (Sane, 2003; Lentink & Dickinson, 2009). The LEV phenomenon in
the context of flapping-wing aerodynamics has been subject to a number of studies in the
last three decades, particularly to achieve a better understanding of its formation and the
mechanisms responsible for its stability. It has been hypothesized that spanwise pressure
gradients and the associated vorticity transport (Ellington et al., 1996), and the apparent
rotational accelerations which are characterized by the Rossby number (Lentink & Dickinson,
2009; Jardin & David, 2014, 2015) play an important role in this respect. The sweeping
(translational) aspect of the full flapping-wing motion can be represented by a revolving wing
model, in which these rotational inertial mechanisms and spanwise gradients are also present.
This simplified arrangement is important because flapping wings start approximately from
rest at the beginning of each half-stroke of the full flapping motion. In nature not only
natural flyers benefit from the enhanced aerodynamic performance associated by a stable
LEV. For instance LEVs also elevate the lift of autorotating plant seeds such that the descent
is prolonged and the seeds can be dispersed over greater distances by the wind (Lentink et al.,
2009).

One characteristic aspect of biological flapping-wing flight that is not commonly taken into
account in mechanical simulations is the influence of wing flexibility. The wing size is the
dominant factor in flexural stiffness scaling and the spanwise flexural stiffness is 1-2 orders of
magnitude higher than the chordwise flexural stiffness. Different studies have indicated the
possible benefits of flexibility on the aerodynamic performance (Shyy et al., 2010). However,
so far, the study of revolving flexible wings has been largely based on force measurement
and qualitative (dye) visualization. Further quantitative information regarding the flow field
development and its connection to the force generation will be instrumental in improving the
understanding of the effect of wing flexibility on the aerodynamic performance of revolving
wings.

In the field of fluid dynamics and engineering the pressure field is often of great interest. The
pressure gradient is a relevant physical quantity and is expressed as the force per unit volume.
By evaluating a time-resolved flow field, the instantaneous pressure field reconstruction can
be reconstructed under the assumption of incompressible flow, employing the Navier-Stokes
equations (van Oudheusden, 2013). Subsequently, the loads can be reconstructed by eval-
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uating the integral momentum balance obtained by integrating the Navier-Stokes equation
within a control volume (Anderson, 2011). Traditional instantaneous static pressure measure-
ments in the flow field typically rely on pressure probes, which is an intrusive measurement
technique and has a poor spatial resolution. Integral loads are traditionally obtained using
balance measurements. However, for low Reynolds numbers, the signal-to-noise ratio of the
measurements with this system decreases (Mohebbian & Rival, 2012). Also for applications
where the model instrumentation is problematic or impossible to set up such as for observing
freely flying birds, a balance system can often not be used. Particle image velocimetry (PIV)
is a non-intrusive measurement technique allowing to obtain time-resolved flow field velocity
data. Moreover, this technique is adaptable to moving objects and keeps its sensitivity for
low Reynolds numbers in comparison to traditional pressure measurement techniques.

Recent advancements in volumetric imaging capabilities, notably tomographic PIV (Elsinga
et al., 2006; Scarano, 2013) have motivated the current experimental investigation to further
investigate the effects of wing flexibility in the context of flapping-wing aerodynamics in more
detail. By incorporating the pressure field in the analyses, a complete description of the
incompressible flow field is given, and the link between the temporal evolution of the vortical
structures and the associated pressure forces can be obtained properly.

Experimental studies focusing on the volumetric measurements of flow fields around revolving
wings are scarce. Furthermore, the majority of the studies are limited to rigid wings and
often do not accompany analyses with reconstructed pressure fields and loads. The aim of
the current study is to investigate the spatial-temporal evolution of the flow field of revolving
low-aspect-ratio wings, and to connect the associated vortical structures and pressure fields to
the temporal evolution of the fluid-dynamic forces acting on the wing. Wings with different
degree of chordwise flexibility are considered, to study the influence of wing deformation on the
aerodynamics of the wings. For this purpose, phase-locked tomographic PIV measurements
were performed in three volumes along the wing span for different phases of the revolving
motion in order to obtain time-resolved three-dimensional three-component (3D3C) flow field
data sets around the wing. Simultaneous force measurements were carried out by means of a
six-component water submergible force sensor to obtain the temporal variation of the forces
during the revolving motion. Pressure fields are reconstructed from the PIV data, which
also enables the calculation of forces acting on the wing from the flow fields by use of a
control-volume approach.

This document is divided into 3 parts. In the first part, comprising chapter 2 and 3, an
overview of the literature and the research that has been carried out is given. Chapter 2
focuses on the flapping-wing aerodynamics, while chapter 3 is focused on the reconstruction
of pressure field data and loads from flow field data. In the second part, consisting of chapter 4
and 5, the methodology that is used in this study is given. Chapter 4 covers the experimental
methodology and chapter 5 explains the numerical and data processing methods. In the third
part, comprising chapter 6, 7 and 8, the results of this study are presented and discussed. In
chapter 6 details about the wing deformation are given and the force measurements results
are presented. In chapter 7 the flow field results are analyzed and in chapter 8 the pressure
and load reconstruction results are discussed. Finally in chapter 9 the main conclusions of
this thesis are given and recommendations for further studies are summarized.
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Chapter 2

Flapping-wing aerodynamics

In this chapter the aerodynamic phenomena that characterize flapping-wing aerodynamics are
summarized. Specifically the aerodynamic phenomena that occur during the sweeping/flap-
ping translation, which can be represented by a revolving-surging wing model, are addressed
in more detail. Finally more insights into flexible wings are given.

The first section describes some terms and definitions that are used throughout this document.

2.1 Terms and definitions

This section describes some terms and definitions that are used throughout this document and
are based on those frequently encountered in literature. The most common non-dimensional
numbers that are used in the context of flapping-wing aerodynamics are:

• Reynolds number (Re) Defined in terms of a reference velocity scale (Uref ) and a
reference length scale (Lref ),

Re =
ρUrefLref

µ
(2.1)

In the context of revolving wings Uref is usually defined as the velocity at the midspan,
75% span, wingtip or at the radius of gyration. Lref is usually defined as the chord
length. The Reynolds number characterizes the flow conditions over a body immersed in
fluid and states the relative importance of inertial/viscous forces. More precisely: ”The
Reynolds number determines how ‘fast’, relative to the flow velocity, momentum will be
diffused in the cross-stream direction by viscosity or turbulence and thus how thick the
boundary layer will grow relative to the dimensions of the body” (McLean, 2012).

MSc. Thesis Remco van de Meerendonk



6 Flapping-wing aerodynamics

• Aspect ratio (AR) Defined in terms of the span length (R) and the mean chord length
(c) for a single wing planform,

AR =
R

c
(2.2)

In the context of revolving flight the aspect ratio is defined based on the single wing
planform, excluding the length scale of the wing root to the revolving axis. The distance
from the root of the wing until the axis of revolving is taken into account in the definition
of the Rossby number.

• Rossby number (Ro) for revolving wings. Defined in terms of the radius of gyration
length scale (Rg) and a mean chord length scale (c),

Ro =
Rg
c

(2.3)

For revolving flight the apparent centrifugal and Coriolis accelerations are inversely
proportional to the Rossby number. Furthermore, for revolving flight, the LEV is
stabilized by the centrifugal and Coriolis apparent accelerations that are present at low
Rossby numbers (Lentink & Dickinson, 2009).

– Radius of gyration (Rg) For revolving flight the approximate radius of gyration
is defined in terms of the area moment of inertia (I) of the wing area about the
axis of forward motion, and the wing area (S),

Rg =

√
I

S
(2.4)

where the wing area is approximated by the span length and mean chord length
(S = R · c). For a uniform mass distribution the radius of gyration for a revolving
wing describes the radial distance from the revolving axis of forward motion at
which the mass of a body can be concentrated without altering the rotational
inertia of the wing about that axis.

• Reduced frequency (k) For hovering flight the reduced frequency, based on the
wingtip velocity, is expressed in terms of the stroke amplitude (φ0 [rad]) and the aspect
ratio (AR) as (Shyy et al., 2010),

k =
π

φ0AR
(2.5)

The reduced frequency expresses the unsteadiness of the flow associated with a flapping-
wing flight. The dimensionless stroke amplitude (A∗) is expressed as Lentink & Dick-
inson (2009),

A∗ = φ0AR = φ0R/c (2.6)

where the dimensionless stroke amplitude (A∗) expresses the amplitude as the number of
chord lengths traveled. For revolving flight the apparent Euler acceleration is inversely
proportional to the dimensionless stroke amplitude .
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2.2 Flapping wings: Important phenomena 7

• Effective stiffness (Π1) The effective stiffness for rectangular chordwise flexible wings
is approximated with a beam model instead of a plate model by neglecting the Poisson’s
ratio of the specific material (Kang et al., 2011). Defined in terms of Young’s modulus
(E), thickness ratio (h∗ = h/c), fluid density (ρf ) and a reference velocity (Uref ) as,

Π1 =
Eh∗

3

(12ρfU
2
ref )

(2.7)

For a revolving chordwise flexible wing the effective stiffness parameter expresses the
ratio of elastic bending forces over fluid dynamic forces. Note that for a plate model an
additional factor of (1− ν2) is present within the denominator, where ν is the Poisson’s
ratio. For most PET type materials ν is about 0.35 resulting in an additional factor of
about 0.9. To simplify the general comparison of the effective stiffness parameter Π1

between wings with slightly different materials, the beam model is used by neglecting
the Poisson’s ratio.

2.2 Flapping wings: Important phenomena

Natural flyers often encompass a flapping-wing motion to stay airborne. Flapping-wing aero-
dynamics is characterized by unsteady three-dimensional effects that occur at low Reynolds
numbers which are responsible for the enhanced aerodynamic forces sustaining flapping-flight.
The basic flapping-wing motion kinematics are given in Figure 2.1.

UpstrokeUpstrUpUpUpppppUpUUpUp PronationSupination

Downstrokekwnstroowoo

Flapping translation/
Revolving wing

Figure 2.1: Basic flapping-wing motion. Modified from (Sane, 2003).

At the suspination and pronation the wing will rotate around a chordwise axis to change
its angle of attack. During the flapping-wing translation the wing sweeps and undergoes a
revolving wing motion around a central axis. The main unsteady mechanisms for flapping-
wing aerodynamics include (Sane, 2003; Lehmann, 2004):

• Wagner effect The Wagner effect introduces a delay in the build-up of circulation for
an impulsively inclined starting wing before reaching steady state values. This delay
may result of two phenomena: First, viscous latency results in a finite time before
the Kutta condition is established. Second, the starting vortex induces a velocity field
counteracting the growth of the circulation bound to the wing.

• Wing-wing interaction, the ‘clap and fling’ The clap and fling motion is a wing-
wing interference effect and is illustrated in Figure 2.2. During the clap phase low
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8 Flapping-wing aerodynamics

vorticity is shed. As a result the starting vortex is decreased in strength at the start of
the fling phase allowing a more rapid build-up of circulation. On top of that a jet of air
is given an extra push. During the fling phase a low pressure zone is created allowing a
rapid build-up of circulation and attached vorticity.

• Delayed stall and LEV At high angles of attack the flow separates at the leading
edge and a LEV is formed which is remarkably stable. For a flapping-wing a spanwise
flow gradient is present. As the flapping-wing translates, a spanwise velocity gradient
interacts with the LEV causing the spanwise flow to spiral towards the tip. One of the
hypothesis to explain LEV stability is that spanwise flow redirects momentum transfer
from the chordwise direction into the spanwise direction causing the LEV to remain
smaller. This spanwise advection of vorticity balances the production of vorticity at the
leading edge such that the LEV remains stable throughout the flight. This redirection
of momentum is illustrated in Figure 2.2. More details about the stability mechanisms
are given in subsection 2.3.1.

Aerdynamics of insect 
flight

Clap Fling

Figure 2.2: Left: Clap and Fling. Right: LEV for flapping-wing. (Sane, 2003).

At Reynolds number of O(104) or lower the LEV is a common flow phenomenon in
flapping-wing aerodynamics (Shyy et al., 2010).

• Kramer effect During stroke reversal the wing rapidly rotates around its spanwise
axis. During this rotation the flow is deviating from the Kutta condition and moving
away from the trailing edge (TE) causing a sharp velocity gradient leading to shear.
Fluid particles resist shear and additional circulation is built to reestablish the Kutta
condition. Summarized, the wing generates circulation to counteract the rotational
effects. Viscosity has a latency and the actual Kutta condition may be never seen, but
still this circulation will be built during the rotation and affects the net force generation.

• Added Mass ”Added mass” is also often called ”added mass inertia”, ”acceleration
reaction” or ”virtual mass” and is an unsteady effect. When an object is accelerating
in a fluid region it encounters a reaction force due to the accelerated fluid.

• Wing-wake interference, wake capture During stroke reversal the wing potentially
interacts with its shed vortices. These vortices induce a strong flow field. When the
wing reverses direction, it encounters the enhanced velocity and acceleration fields. This
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2.3 Revolving wings 9

allows the wing to extract energy from the shed wake which lead to higher forces as
illustrated in Figure 2.3.

D

B

E

C

F

A
U∞

U∞

Figure 2.3: Wake capture. A to F indicate the time sequence (Sane, 2003).

This wake capture phenomena can lead to enhanced lift production and increased flight
efficiency. By changing the stroke frequency and the stroke amplitude, the fluid speed
and accelerated mass can be adjusted influencing the kinetic energy available in the
momentum jet available in the wake.

2.3 Revolving wings

At high angles of attack the flow separates at the leading edge and a LEV is formed of which its
suction forces acting normal to the wing surface are dominant for the net forces acting on the
wing (Usherwood & Ellington, 2002). The stable LEV with its associated low pressure region
is one of the most prominent mechanisms responsible for the enhanced aerodynamic forces
sustaining flapping flight, and is driven by a revolving wing motion (Sane, 2003). The sweeping
(translational) aspect of the full flapping-wing motion can be represented by a revolving wing
model. This simplified arrangement approximates each half-stroke (upstroke, downstroke as
illustrated in Figure 2.1). A revolving-surging wing represents the revolving motion of a wing
at a constant angle of attack. While for translating wings under a high angle of attack the flow
separates and a well known von Kármán street is formed, for revolving wings a stable LEV
is observed (Sane, 2003; Lentink & Dickinson, 2009; Garmann et al., 2013). Usherwood &
Ellington (2002) studied revolving and translating hawkmonth wings at a Reynolds number of
8,000. While for an unsteady revolving wing motion the maximum lift coefficient is 1.75, the
lift coefficient was only 0.71 for the translating wing indicating the key role of the rotational
inertial mechanisms that are responsible for the enhanced aerodynamic force generation.

Several studies have investigated the fundamental flow phenomena associated with revolving
wings in more detail. Although natural flyers have flexible wings and several studies have
indicated the possible beneficial effects of flexibility on the aerodynamic performance (Shyy
et al., 2010), the majority of the studies have investigated rigid revolving wings. First, more
insights are given into rigid revolving wings, after which more details about flexible wings are
presented.
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10 Flapping-wing aerodynamics

2.3.1 Rigid revolving wings

LEV For a revolving wing, the LEV separates at the leading edge (LE) of which its suction
forces acting normal to the wing surface are dominant for the net forces acting on the wing.
As a result the net force vector for a rigid wing acts normal to the wing surface (Usherwood
& Ellington, 2002). Birch et al. (2004) experimentally studied a steady-revolving wing at a
Reynolds number of 120 and 1,400. It was shown that for both a Reynolds number of 120
and 1,400 the angle of the net force vector is normal to the wing at an angle of attack of 40
deg onwards indicating that the pressure forces are dominant for both low and high Reynolds
number as illustrated in Figure 2.4.

Garmann & Visbal (2014) numerically studied revolving rectangular wings at an angle of
attack of 60 deg and a Reynolds number of 1,000 for an aspect ratio of 1,2 and 4. For a
revolving wing the LEV is located close to the surface of the wing and provides a suction
force throughout the motion. Towards the tip the LEV lifts off as an arch-like structure and
reorients itself along the chord through its connection with the tip vortex (TV). Downstream
of the TE vorticity is shed and a trailing edge vortex (TEV) is formed. In Figure 2.4 the
vortex system structure for a rectangular revolving rigid wing is illustrated. It was shown
that the LEV grows along the span of the wing such that its chordwise extent eventually
became constrained by the TE with increasing aspect ratio, leading to a saturation of the
aerodynamic loads. As a result there is no advantage of increasing the aspect ratio once the
LEV occupies the entire chord of the wing, which happens around and aspect ratio of 2.
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Figure 2.4: Left: Net force angle as a function of angle of attack (Birch et al., 2004). Right:
Rectangular revolving rigid wing vortex system overview (Carr et al., 2015).

Stability mechanisms of LEV Different hypotheses have been proposed to explain the
stability of the LEV during revolving flight, such as the spanwise advection of vorticity (Elling-
ton et al., 1996), the downward induced flow from the tip, limiting the growth of the LEV
(Birch & Dickinson, 2001) or the apparent rotational (Coriolis and centrifugal) accelerations
that are characterized by a low Rossby number (Lentink & Dickinson, 2009). In this respect
(Jardin & David, 2014, 2015) showed that although LEV attachment can be obtained by the
spanwise advection of vorticity, the high aerodynamic performance is ensured by the apparent
Coriolis effect.
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2.3 Revolving wings 11

Birch & Dickinson (2001) experimentally studied a flapping wing at an angle of attack of 45
deg and a Reynolds number of 160. Fences at 40% and 60% span position were placed to study
the effect of spanwise flow on the stability of the LEV. For both with and without fences an
attached LEV was observed. Compared to higher Reynolds numbers the pressure gradient in
the vortex core might be too small to drive substantial axial flow. It was hypothesized that for
low Reynolds number flows the downward induced flow from the tip reduces the effective angle
of attack, limiting the growth of the LEV. In (Birch et al., 2004) flow visualization indicated
an intense narrow region of spanwise flow within the core of the LEV for a Reynolds number
of 1,400 that is in accordance with the hypothesis of spanwise advection of vorticity that
balances the production at the LE. However, this feature of intense spanwise flow is not
observed for a Reynolds number of 120. It was suggested that the transport of vorticity
from the LE to the wake, that permits prolonged vortex attachment, takes different forms at
different Reynolds numbers.

Jardin & David (2014) numerically studied the influence of spanwise gradients to stabilize
the LEV on a rectangular revolving wing at an aspect ratio of 4 and an angle of attack of 45
deg at a Reynolds number of 500. In Figure 2.5 the spanwise vorticity and lift coefficient are
given for three test cases with different spanwise gradient profiles.

T. JARDIN AND L. DAVID PHYSICAL REVIEW E 90, 013011 (2014)

Figure 2 shows λ2-criterion isosurfaces produced under
the three different flow conditions at three distances of travel
at a Reynolds number Re = cṼ∞/ν = 500 (where ν is the
kinematic viscosity of the surrounding fluid). λ2 is the second
eigenvalue of the symmetrical part of the incompressible
Navier-Stokes equation gradient, neglecting unsteady and
viscous terms, and is used to identify vortex cores [14]. In all
cases, the flow is characterized by the development of a starting
vortex (SV), a tip vortex (TV), and a leading-edge vortex
(LEV). However, fundamental differences in the evolution of
these structures are observed between case A and cases B and
C. In case A, the LEV rapidly sheds into the wake, except in the
vicinity of the wing tip, where it experiences the influence of
the TV. Conversely, in cases B and C, the LEV remains attached

FIG. 2. Comparison of λ2 < 0 criterion isosurfaces obtained for
cases A (a), B (b), and C (c) at three distances of travel, δ = 0.8, 2.4,
and 4 for Re = 500.

013011-2

(a)
(b)

(c)

Figure 2.5: Spanwise vorticity (ωz) at a travel length of δ = 4 and lift coefficient (CL) for
different travel lengths. For case C, 1δ corresponds to a rotation angle of approximately 28.6 deg.
(Jardin & David, 2014).

Although the spanwise gradient in case B and C promote a stable LEV, the rotational effects
play a key role in the high lift generation for revolving wings. Jardin & David (2015) continued
this study and studied the influence of the centrifugal and Coriolis term. By neglecting
terms in the Navier-Stokes equations the effects on the flow structures and lift coefficients are
analyzed. In Figure 2.6 the flow structures and the lift coefficients are given for combinations
of including/excluding the apparent rotational effects. The Coriolis effect causes the LEV to
stay close to the wing surface, such that the low pressure region associated with the LEV is
located close to the wing surface resulting in high lift coefficients. Furthermore, the Coriolis
effects stabilize the rotational flow, limiting global burst and concentrate the burst near the
tip. It was concluded that the Coriolis effect is the main mechanism for the enhanced lift
generation for revolving wings.
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12 Flapping-wing aerodynamics

Case Centrifugal term Coriolis term

A No No
B Yes No
C No Yes
D Yes Yes

A (×), B (◦), C (+), D (�)

Figure 2.6: Effect of centrifugal and Coriolis term in Navier-Stokes equations on the flow struc-
tures for a travel length of δ = 4 and the lift coefficient as a function of δ (Jardin & David,
2015).

Lentink & Dickinson (2009) experimentally studied the dynamic scaling parameters of re-
volving wings that are responsible for the enhanced LEV. For hovering flight, expressed in
a rotating reference frame, the centrifugal and Coriolis apparent acceleration are inversely
proportional to the Rossby number Ro. The apparent angular acceleration (Euler effect) is
inversely proportional to A∗ = φ0R/c, where φ0 is the stroke amplitude. By varying Ro force
augmentation decreased with increasing Ro, which is consistent with the general prediction
that the LEV is stabilized at low Ro. In Figure 2.7 the basic flow visualizations are sum-
marized to indicate the basic flow structure for different values of A∗, Ro and Re, as well
as the Rossby numbers that are present in natural flyers. Although the Reynolds number
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Figure 2.7: Left: Cartoon of basic flow structures for different values of A∗, Ro and Re. Right:
Rossby number based on wing tip radius for natural flyers (Lentink & Dickinson, 2009)

varies significantly for different natural flyers, the Rossby number that is based on the wing
tip radius is confined in a small range around Rowing tip = 3.
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2.3 Revolving wings 13

Volumetric imaging capabilities Experimental studies focusing on the volumetric mea-
surements of flow fields around flapping wings are scarce. Percin & van Oudheusden (2015b)
acquired 3D3C flow fields around revolving-surging and revolving-pitching rigid flat-plate
wings for an angle of attack of 45 deg and a Reynolds number of 10,000 by means of to-
mographic PIV. It was shown that the revolving-pitching wing produces much higher aero-
dynamic forces compared to the revolving-surging case and affects the force histories until
approximately 6 chord lengths. Carr et al. (2013) studied a rigid rectangular revolving flat-
plate wing for an angle of attack of 45 deg and a Reynolds number of 5,000 using phase-locked
and phase-averaged stereoscopic PIV for different chord planes to reconstruct phase-averaged
spanwise 2D3C velocity data sets. Detailed analyses were made for wings of aspect ratio 2
and 4. For an aspect ratio of 2 the overall LEV- TV structure remains more coherent and
is located closer to the wing surface. The vortical structure breaks down at a higher travel
distance compared to the wing with an aspect ratio of 4. Carr et al. (2015) continued the
study about the effect of aspect ratio on rotating wings from (Carr et al., 2013) in more
detail. Additionally it was shown that the aft tilt of the LEV is larger for an aspect ratio of 4
compared to 2. The aft LEV tilt reduces the spanwise LEV circulation due to the conversion
of spanwise vorticity to chordwise vorticity. Wolfinger & Rockwell (2014) studied a rigid
rectangular revolving flat-plate wing at an angle of attack of 45 deg and a Reynolds number
of 1,400 for different Rossby numbers using a similar experimental setup. An increased co-
herency of the vortex system was observed for lower Rossby numbers and it was suggested
that the stability or retention of the LEV is coupled with the interior structure of the tip and
root vortices.

Effect of Reynolds number In (Lentink & Dickinson, 2009) it was shown that the
mechanisms responsible for LEV stability are insensitive for a Reynolds number range of
100 < Re < 14, 000. Jones & Babinsky (2011) experimentally studied a rectangular revolving
flat-plate wing with an aspect ratio of 4 across a range of Reynolds numbers from 10,000
to 60,000. The force levels and flow structures were not observed to change significantly
over the range of Reynolds numbers. Garmann et al. (2013) numerically studied a revolving
rectangular wing at an angle of attack of 60 deg with an aspect ratio of one and a Rossby
number of 1.02. The overall vortex structure was mostly insensitive for a Reynolds number
range of 200 to 60,000. For a Reynolds number higher than 2,000 the feeding sheets of the
vortex system became susceptible to instabilities and formed shear layer substructures. Sub-
sequently, the formation of these substructures agree well with the breakdown of the LEV.
Increasing Reynolds number was observed to slightly augment the average lift and drag co-
efficients. Percin & van Oudheusden (2015a) experimentally studied a rectangular flat-plate
wing with an aspect ratio of 2 and a Rossby number of Rg/c = 1.8 undergoing a revolving
acceleration from rest until a predefined terminal velocity. For an angle of attack of 45 deg
and a Reynolds number range of 5,000 to 25,000 the force and vorticity generation increase
slightly with Reynolds number. The general behavior of the flow structures were not greatly
influenced by the Reynolds number.

Effect of angle of attack Ozen & Rockwell (2012) experimentally studied a rectangular
revolving flat-plate wing with an aspect ratio of 1 and a Rossby number of Rg/c = 1.02 for
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14 Flapping-wing aerodynamics

a range of Reynolds numbers from 3,600 to 14,500. A stable LEV was observed for angles of
attack between 30 deg and 75 deg. In (Percin & van Oudheusden, 2015a) it was shown that
for a range of angles of attack from 15 deg to 75 deg the behavior of the vortical structures
was found to be similar, however their morphology is altered by the promoted separation at
higher angles of attack. For an angle of attack of 45 deg the lift coefficient reaches a maximum
(Usherwood & Ellington, 2002; Garmann et al., 2013; Percin & van Oudheusden, 2015a).

LEV breakdown Although LEV breakdown may not significantly affect the force gener-
ation, it often does mark the end of the ability to characterize and model it (Jones et al.,
2016; Lentink & Dickinson, 2009; Percin & van Oudheusden, 2015b; Garmann et al., 2013).
In Garmann & Visbal (2014) it was shown that vortex breakdown occurs around midspan
for each aspect ratio and showed a strong dependence on the spanwise pressure gradient es-
tablished between the root and the tip. Between the midspan and the wing tip a substantial
bubble-like structure is formed. The LEV bubble-like structure grows with span until about
75% of the span at which the LEV is lifted-off the surface (Carr et al., 2013; Garmann &
Visbal, 2014). Jones et al. (2016) experimentally studied a rectangular revolving wing with
a Reynolds number of 2,500 and an aspect ratio of two at an angle of attack of 45 deg. Vor-
tex breakdown was found to occur at midspan and is characterized by axial flow reversal,
entrainment of opposite-sign vorticity and a rapid expansion of the vortex structure into a
bubble like-structure. A proper orthogonal decomposition and the location of the centroid
of a vortex were concluded to be most useful in identifying the phase angle at which vortex
breakdown occurs.

Spanwise characteristics Poelma et al. (2006) experimentally studied an impulsive re-
volving wing at an angle of attack of 50 deg with a Reynolds number of 256. The wing
planform is based on a Drosophila wing. In Figure 2.8 the spanwise circulation as function of
formation number is given. The spanwise component of the LEV grows proportional to the
formation (traveled distance / chord) number (FN). The peak for different spanwise sections
is observed at a similar formation number of 2. At the TE the circulation peak builds up at
roughly the same rate. However, at the TE-base. significant circulation is shed early in the
revolving motion. The peak circulation at the tip is higher than at the base.

Birch et al. (2004) studied a steady revolving rigid wing that is based on a Drosophila wing
planform at an angle of attack of 45 deg for a Reynolds number of 120 and 1,400. The
sectional lift coefficient that is based on the Kutta-Joukowski theorem is given in Figure 2.9.
For decreasing Reynolds number less circulation is built up due to the influence of viscosity.
For a Reynolds number of 1,400 the sectional lift distribution is increased along the span of
the wing until approximately 0.65r/R at which the sectional lift reached a maximum, after
which it decreases towards the tip. Garmann & Visbal (2014) calculated the sectional lift
coefficient for steady-state conditions, i.e. a rotation angle of 270 deg as given in Figure 2.9.
For an aspect ratio of two, the sectional lift distribution is increased along the span of the
wing until approximately 70% at which the sectional lift reached a maximum, after which it
decreases to zero at the tip.
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Figure 2.8: Spanwise circulation Γz as a function of formation number FN (Poelma et al., 2006).
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Wing planform shape In (Usherwood & Ellington, 2002) it was found that quite radical
changes for different leading edge shapes did not significantly influence the aerodynamic forces.
Kruyt et al. (2015) experimentally studied the revolving flat-plate wings with different aspect
ratios. It was found that the lift and drag values of the rectangular flat-plate wing models fall
in the range of the lift and drag values generated by the wings of 12 hummingbird species.

2.3.2 Flexible wings

Natural flyers typically have flexible wings which are challenging to model because of the
complex fluid-structure interference effects. This can be simplified as follows: The fluid flow
creates pressure and viscous stresses which deform the wing. As a result, the wing changes
shape which affects the fluid flow again. This results in a moving boundary problem under
the effect of the fluid flow around the boundary.
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Flexural stiffness Flexural stiffness is expressed as EI, where E is the Young’s modulus
and I is the area moment of inertia of a cross sectional area. Combes (2003) found that
for natural flyers the wing size is the dominant factor in flexural stiffness scaling and that
the spanwise flexural stiffness is 1-2 orders of magnitude higher than the chordwise flexural
stiffness. This anisotropy is bigger for larger wing sizes.

Effective stiffness The ratio of elastic bending forces over fluid-dynamic forces for a rigid
chordwise flexible wing is approximated using the effective stiffness parameter Π1. Combes
(2003) report that if the wing flexural stiffness is a functional scaling parameter, elastic
similarity should be maintained. Elastic similarity holds that the angular wing deflection
should remain constant: δ/L = cons (McMahon, 1973).

Wing shape: Wing inertial, elastic and fluid forces In general the passive pitch mo-
tion of flapping wings are balanced by the wing inertial, elastic and fluid forces. In Figure 2.10
an illustration is given of the relative importance of the inertia-elastic, and the fluid dynamic
vortex force and added mass contribution as function of the reduced frequency (k), and the
density ratio (ρ∗) times thickness ratio (h∗s).

high: e.g. air flying

low: e.g. water swimming

vortex 
force

added
mass

inertia

low high
k

ρ* hs
*

Figure 2.10: Dominant mechanisms for force generation that is responsible for the wing defor-
mation as function of the reduced frequency (k), and the density ratio (ρ∗) times thickness ratio
(h∗s). Inertia force is the inertial-elastic force acting on the wing due to the wing acceleration
relative to the imposed motion at the wing root. (Shyy et al., 2013).

where the density ratio is defined as ρ∗ = ρs/ρf , ρs is the density of the wing structure and ρf
is the fluid density The thickness ration is defined as h∗ = h/c where h is the wing thickness
and c is the mean chord. At low density ratios the fluid-dynamic vortex force, indicating
the interaction of the vortices with the wing and the added mass force, is of higher relative
importance compared to high density ratios in the formation of the wing shape.

For water the density ratio is of the order (O(1)) and the forces that are responsible for the
wing deformation are dominated by the fluid-dynamic vortex or added mass forces. For air
the density ratio (ρ∗) is of the order O(103) and the forces that are responsible for the wing
deformation are dominated by the inertial-elastic forces. As a result, for high density ratios
that are dominated by inertial-elastic forces, it may be possible to decouple the fluid-structure
problem (Daniel, 2002). A simplified model structural model (i.e. linear beam theory or
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finite element method) can be used to compute the instantaneous spatial bending patter.
Subsequently, this wing design can be used within the fluid-dynamic model to determine the
fluid forces acting on the model.

For a constant angular velocity wing inertia is negligible and the forces can be attributed to
fluid dynamic phenomena (Dickson, 2004). Subsequently, for a unidirectional steady-state
chordwise flexible revolving wings the TE deflection can be expressed in terms of the fluid-
dynamic normal force coefficient CN and the effective stiffness Π1 (see Equation 2.7) by means
of the steady Euler-Bernoulli beam equation as,

δTE/c =
CN

16Π1
(2.8)

Flexible revolving wings Although several studies have indicated the possible beneficial
effects of flexibility on the aerodynamic performance (Shyy et al., 2010), experimental studies
investigating flexible revolving wings remain scarce. Zhao et al. (2009) studied chordwise
flexible wings with different degree of chordwise flexibility for different angles of attack at
a Reynolds number of 2,000 for a steady-state revolving motion. The flexural stiffness was
changed using different materials and sheet thicknesses over a range measured for insects
(Combes, 2003). In Figure 2.11 the force coefficients are given as a function of angle of
attack for different flexural stiffness values. It was observed that the lift-to-drag ratio is
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Figure 2.11: Force coefficients as a function of angle of attack for different flexural stiffness
values (Zhao et al., 2009).

relatively insensitive to wing flexibility for angles of attack from 20 deg to 60 deg, while the
ability to generate both lift and drag decreased. For α < 45 deg the lift decreases with
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18 Flapping-wing aerodynamics

decreasing flexural stiffness. However for α > 45 deg low flexural stiffness wings reach a
plateau while high flexural stiffness wings show a decrease in lift. For a rigid wing (high
flexural stiffness) the maximum lift is observed at α = 45 deg, however for flexible wings the
maximum lift is dependent on the flexural stiffness. The aerodynamic force generation reduced
monotonically for decreasing flexural stiffness. (Zhao et al., 2011) found that flexibility does
not fundamentally change the aerodynamic flow structures, but the LEV is smaller for lower
flexural stiffness and correlates with the aerodynamic forces. Beals & Jones (2015) studied a
passive chordwise flexible revolving wing for Reynolds numbers from 10,000 to 25,000. For
the flexible wing the lift was measured to be consistently lower than that of the rigid wing
throughout the revolving motion, however, passive wing deformation mitigated the lift losses
when a wake was encountered, i.e. for rotation angles larger than 360 degrees.

Besides from the possible beneficial effects of wing flexibility related to revolving wings, wing
flexibility is also thought to be important in enhancing aerodynamic forces during rapid stroke
reversals (Mountcastle & Daniel, 2009; Eldredge et al., 2010; Beals & Jones, 2015).

2.4 Summary

Natural flyers benefit from unsteady aerodynamic effects which enhance the aerodynamic per-
formance. The unsteady mechanisms inherent for flapping-wing aerodynamics are: Wagner
effect, clap and fling effect, Kramer effect, added mass effect, wake capture effect, and delayed
stall and LEV. The stable LEV is one of the most prominent mechanisms sustaining flapping
flight and is driven by a revolving wing motion.

Revolving wings translate around a central axis and approximate the sweeping (translational)
aspect of a full flapping-wing motion. The sustained LEV occurring in a revolving motion is
accompanied by a low pressure region at the suction side of the airfoil. The suction forces that
act normal to the wing surface are dominant throughout the motion. The LEV lifts off as an
arch-like structure and reorients itself along the chord through its connection with the TV.
Different hypotheses have been proposed to explain the stability of the LEV during revolving
flight, such as the spanwise advection of vorticity (Ellington et al., 1996), the downward
induced flow from the tip, limiting the growth of the LEV (Birch & Dickinson, 2001) or the
apparent rotational (Coriolis and centrifugal) accelerations that are characterized by a low
Rossby number (Lentink & Dickinson, 2009). In this respect (Jardin & David, 2014, 2015)
showed that although LEV attachment can be obtained by the spanwise advection of vorticity,
the high aerodynamic performance is ensured by the apparent Coriolis effect. The Coriolis
effect causes the LEV to stay close to the wing surface, such that the low pressure region
associated with the LEV is located close to the wing surface resulting in high lift coefficients.
An increased coherency of the vortex system was observed for a decreased aspect ratio and
lower Rossby number, and it was suggested that the stability or retention of the LEV is
coupled with the interior structure of the tip and root vortices. The LEV and overall vortex
system are relatively insensitive for a significant range of low Reynolds numbers, however,
at higher Reynolds numbers the vortex system becomes susceptible to instabilities and small
scale structures are formed. A stable LEV was observed for a large range of angles of attack
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2.4 Summary 19

from 15 deg to 70 deg. The maximum lift coefficient for a rigid revolving wing is found at
an angle of attack of 45 deg. LEV breakdown was found to occur near midspan for different
aspect ratio, at which a substantial bubble-like structure is formed that extents to the wing
tip. The LEV bubble-like structure grows with span until about 75% of the span at which
the LEV is lifted-off the surface. The sectional lift distribution is increased along the span of
the wing until approximately 70% at which the sectional lift reached a maximum, after which
it decreases to zero at the tip.

Although natural flyers have flexible wings and several studies have indicated the possible
beneficial effects of flexibility on the aerodynamic performance (Shyy et al., 2010), the ma-
jority of the studies have investigated rigid revolving wings. For natural flyers the wing size
is the dominant factor in flexural stiffness scaling of which the spanwise flexural stiffness is
1-2 orders of magnitude higher than the chordwise flexural stiffness. The lift-to-drag ratio is
relatively insensitive to wing flexibility for angles of attack from 20 deg to 60 deg, while the
ability to generate both lift and drag decreased. Flexibility does not fundamentally change the
aerodynamic flow structures, but the LEV is smaller for lower flexural stiffness and correlates
with the aerodynamic forces. For the flexible wing the lift was measured to be consistently
lower than that of the rigid wing throughout the revolving motion, however, passive wing
deformation mitigated the lift losses when a wake was encountered, i.e. for rotation angles
larger than 360 degrees.
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Chapter 3

Pressure & load reconstruction from PIV
measurements

In this chapter the different methods available for the pressure and load reconstruction from
PIV measurements are explained. The numerical methods for the reconstruction of the pres-
sure field and loads that are used in this study are addressed in more detail in chapter 5.
First, the pressure reconstruction is addressed, after which more findings about the load re-
construction are given. An overview is given of the image and spatial resolution that have
been used in literature for the reconstruction of pressures and loads from flow field data.
Finally, findings about the pressure and load reconstruction for a rigid revolving wing are
given.

3.1 Pressure reconstruction

Pressure fields contributions corresponding to a set of velocity data can be derived using:

• Navier-Stokes equations under incompressible flow conditions (van Oudheusden, 2013)

• Coupling with Computational Fluid Dynamics (CFD) (Jaw et al., 2009)

• Analytically eliminate the surface pressure integral from the Navier-Stokes equations
in integrals of pure kinematic flow characteristics (velocity and vorticity) (Noca et al.,
1999)

By assuming incompressible flow the pressure reconstruction from velocity field data by means
of the Navier-Stokes equations involves 2 steps,

• Computation of pressure gradients
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22 Pressure & load reconstruction from PIV measurements

• Integration of pressure gradients

Pressure gradient Assuming incompressible flow (ρ=cons; ∇ · u = 0) and a constant
viscosity (µ = cons) in the absence of gravity, the pressure gradient in an inertial reference
can be obtained using the momentum equation as (van Oudheusden, 2013),

∇p = −ρDu

Dt
+ µ∇2u (3.1)

where p is the pressure, u is the velocity, ρ is fluid density and µ is the dynamic fluid viscosity.

For instantaneous pressure information of an unsteady flow phenomena, time information
data is needed irrespectively of the integration technique chosen. For instance, for divergence
free flow (∇ · u = 0) there is no time information needed in the Poisson formulation, but to
prescribe the Neumann condition (pressure gradient) time information is still required. In
theory the formulation of the different pressure gradients (based on Eulerian, Lagrangian,
or Poisson) are essentially equivalent. However, the different methods are used in discrete
form and the type of implementation implies the propagation of the velocity error and the
sensitivity to the spatial and temporal discretization. To get accurate spatial and temporal
derivatives the velocities need to be accurately measured which puts additional constraints
on the PIV experiment settings.

For the determination of the pressure field the most important sources of error are,

• Truncation error: Error by numerical discretization to estimate the acceleration

• Precision error: Error by propagation of the uncertainty of the individual velocity data

In the evaluation of the material derivative of the velocity (Du
Dt ), the Eulerian approach is

expected to be more sensitive to advective motion, while the Lagrangian is more sensitive to
rotation dominated flows because this complicates the flow path reconstruction (de Kat &
van Oudheusden, 2012).

Integration of pressure gradient The integration of the pressure gradients can be per-
formed using,

• Direct integration

– Space-marching integration (Baur & Kongeter, 1999)

– OMNI-directional integration (Liu & Katz, 2006)

∗ Median polling (Dabiri et al., 2014)

• Poisson equation

• Coupling with CFD
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3.2 Load reconstruction 23

For external incompressible PIV flow measurements setting up a Poisson problem to integrate
the pressure gradients is expected to perform best due to its smoothing properties that can
suppress the errors present in PIV data (Charonko et al., 2010; Gurka et al., 1999). The
Poisson equation is an elliptic linear partial differential equation. Because the equation is
elliptic there are no characteristic directions of information propagation, such that boundary
conditions are required along the full boundary of the domain of integration.

Phase averaging At low Reynolds numbers the flow is very repeatable for the same kine-
matic motion and justifies the use of phase-locked measurements (Poelma et al., 2006; Percin
& van Oudheusden, 2015b), such that the acceleration information can be derived in the
rotating reference frame. For phase-locked measurements the signal-to-noise ratio can be in-
creased by means of ensemble averaging, such that the temporal resolution may be relieved.
By assuming a Gaussian distribution of the measurements error its the random error scales
with the standard deviation σ and the sample size N as σ/

√
N .

3.2 Load reconstruction

By evaluating a time-resolved flow and pressure field in a control volume, the loads on an
immersed object can be evaluated using a control volume approach (Anderson, 2011).

The Reynolds transport theorem allows to release the full-spatial-temporal acceleration in-
formation as,∫

V (t)

∂ρu

∂t
dV =

d

dt

∫
V (t)

ρudV −
∫

S(t)+Sb(t)

ρu(uCV (b)
· n)dS (3.2)

where V (t) is the control volume, S(t) is the external contour of the control volume, and
Sb(t) is the internal contour of the control volume (as depicted in Figure 5.4). By assuming
a divergence free flow (∇ · u = 0), the control volume approach can be expressed in pure
surface integrals using the ”Derivative Moment Transformations” (DMT) (Wu et al., 2005;
Mohebbian & Rival, 2012) as,

d

dt

∫
V (t)

ρuidV =
d

dt

∫
S(t)+Sb(t)

ρxiujnjdS (3.3)

where xi is the position vector from any fixed origin in space.

3.2.0.1 Overview of image and spatial resolution for pressure/load reconstruc-
tion from flow field data

Based on (Poelma et al., 2006; van Oudheusden et al., 2006, 2007; David et al., 2009; Ragni
et al., 2011; Mohebbian & Rival, 2012; Gharali & Johnson, 2014; Tronchin et al., 2015) the
spatial resolution (SR) and image resolution (IR) are evaluated that have been used for the
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pressure and load reconstruction from flow field data. In Figure 3.1 the SR is plotted against
the IR, and the SR and IR with the chord as reference length are plotted against the field of
view (FOV) for the studies mentioned above.
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Figure 3.1: Left: Spatial- and Image resolution. Right: Spatial (◦)- and Image (�) resolution as
a function of FOV. Resolutions taken in the freestream direction corresponding to the direction
of drag.

It can be seen that the SR and IR in the different experimental studies differs significantly.
Although no common set of SR and IR are observed, some limits can be identified. An
approximate lower limit for the SR of 31 vec/c, and an approximate lower limit for the IR
of 285 pix/c can be identified. Moreover, it can be observed that for a smaller FOV often a
higher SR and IR are used.

Mohebbian & Rival (2012) numerically studied the unsteady load estimation of a flat-plate
with a periodic gust input by means of the DMT method. It was concluded that the loads
from velocity field data were determined accurately if the spatial resolution is sufficiently
high. A line integration was performed around the control volume boundary to evaluate the
pressure term. If wake vortices are present on the control volume boundary large velocity
gradients need to be evaluated. With limited spatial and temporal resolution, large errors
are introduced within the evaluation of these velocity gradients which mainly affects the drag
estimation. Gharali & Johnson (2014) experimentally studied the loads in dynamic stall for
a Reynolds number of 40,000 for a reduced frequencies range of 0.05 < k < 0.12. A line
integration was performed to evaluate the pressure term from the PIV measurements. In
this study it was concluded that the lift is determined best for a small FOV with a high SR.
If vortices are present at the downstream control volume boundary, the drag is determined
best if the location of the downstream control volume boundary is placed such that it is not
disturbed by the wake vortices and its large velocity gradients.

Ragni et al. (2011) experimentally studied the loads of a propeller blade at a Reynolds num-
ber of 310,000 and a Mach number of 0.6. Phase-locked stereoscopic measurements were
performed. The pressure field data was reconstructed from the flow field data with of a Pois-
son integration scheme. A comparison of the pressure field with CFD computations shows a
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3.3 Pressure & load reconstruction on a rigid flapping revolving wing 25

reasonable agreement, with a maximum mismatch on the order of 10%, in the entire measur-
able PIV region. The PIV-based lift coefficient was comparable to the CFD computations,
while the drag coefficient is predicted less accurately, showing differences in the order of 20%.

3.3 Pressure & load reconstruction on a rigid flapping revolv-
ing wing

Tronchin et al. (2015) experimentally studied the loads and pressure field for a flapping
revolving wing at a Reynolds number of 1,000 using 3D3C velocity data obtained from phase-
averaged cross-correlated stereo-PIV planes. The pressure was evaluated using an iterative
direct integration technique with alternating directions of the integration paths to limit the
directional dependency of error propagation. The acceleration information is determined in
an inertial frame by acquiring, per phase angle, 5 volumetric images with small time shifts and
subsequently calculating the acceleration from the velocity fields furthest separated in time,
with a corresponding temporal resolution of 150 ms. The reconstructed force coefficients,
based on an integral momentum approach as well as an integral of the pressure field on the
surface of the wing, are compared with DNS simulations as illustrated in Figure 3.2.

Exp Fluids (2015) 56:77  Page 14 of 16

(a) (b) (c) (d)

1 3

Figure 3.2: Force coefficients as a function of time over plunging period (Tronchin et al., 2015).
x, y indicate the forces in respectively the drag,lift direction. Left: Integral momentum equation.
Right: Integral at the surface of the wing

The results of the integral momentum equation approach are similar to those obtained by
directly evaluating the pressure field on the surface of the wing. The low level of variance for
both the integral momentum equation and the integral at the surface of the wing suggests
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an homogeneous evolution of loads over different periods of motion, excepted during the
deceleration phase. This study suggests that the calculated pressure field is obtained with
sufficient accuracy for a global analysis of the topology of the flow field and the evaluation of
loads acting on an immersed object.

3.4 Summary

For an incompressible flow the instantaneous pressure field can be calculated from a time-
resolved velocity field. Pressure gradients are obtained from the Navier-Stokes momentum
equation and the pressure field is calculated by the integration of the pressure gradients. At
low Reynolds numbers the flow is very repeatable for the same kinematic motion and justifies
the use of phase-locked measurements (Poelma et al., 2006; Percin & van Oudheusden, 2015b),
such that the acceleration information can be derived in the rotating reference frame. In the
evaluation of the material derivative the Eulerian approach is expected to be more sensitive
to advective motion, while the Lagrangian is more sensitive to rotation dominated flows
because this complicates the flow path reconstruction (de Kat & van Oudheusden, 2012). For
external incompressible PIV flow measurements, setting up a Poisson problem to integrate
the pressure gradients is expected to perform best due to its smoothing properties that can
suppress the errors present in PIV data (Charonko et al., 2010; Gurka et al., 1999). Tronchin
et al. (2015) experimentally studied the loads and pressure field for a flapping revolving
wing at a Reynolds number of 1,000 using 3D3C velocity data obtained from phase-averaged
cross-correlated stereo-PIV planes. This study suggests that the calculated pressure field is
obtained with sufficient accuracy for a global analysis of the topology of the flow field and
the evaluation of loads acting on an immersed object. The spatial resolution and the FOV
that have been used in PIV measurement campaigns show a large variation in the literature.
For the PIV imaging settings it is expected that when a wake contains many vortices, it is
beneficial to have a smaller FOV with a higher spatial resolution to accurately evaluate the
relative high velocity gradients in a vortex. Based on literature a lower limit for the spatial
resolution of approximately 31 vec/c is found for the reconstruction of pressure and load
information from flow field data.
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Chapter 4

Experimental Methods

Phase-locked tomographic PIV measurements were performed in three volumes along the
wing span for different phases of the revolving motion in order to obtain time resolved 3D3C
flow field data sets around the wing. Simultaneous direct force and moment measurements
were carried out by means of a six component water submergible force sensor.

4.1 Experimental Setup & Model description

The experiments were conducted in a water tank (Figure 4.1) at the Aerodynamic Laboratory
of Delft University of Technology (TU Delft). The octagonal tank (600 mm in diameter and
600 mm in height) is made of Plexiglas walls allowing full optical access for illumination and
imaging (Figure 4.1). The main axis of the driving system is mounted vertically in the water
tank. The revolving motion of the model is controlled by a brushed DC motor and a gearbox
(gear ratio of 132:1). A submerged servo motor connected to the wing is used to control the
angle of attack, which is set to 45 deg in the present experiments. The model consists of a
flat plate with a chord length (c) of 50 mm and a span length (R) of 100 mm, resulting in
a wing aspect ratio of 2. At the leading edge 1.5 mm radius halfround carbon fiber rods are
glued on the upper and lower side of the wing to provide spanwise rigidity. This leading edge
structure extends at the wing root at which it is clamped in the mount. The offset between
the mount and the wing root is 1 mm. An overview of the wing planform parameters can be
found in Table 4.1.
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Table 4.1: Wing planform parameters (Carbon fiber properties: vDijk Pultrusion Products).

Property Value

Chord (c) 50 mm

Span (R) 100 mm

Aspect ratio (AR) 2

LE carbon fiber rod radius 1.5 mm

Figure 4.1: Experimental setup; Left: Overview. Right: Close-up of the wing model.

4.2 Kinematics

The three-quarter (75%) span length of the wing model is taken as the reference position to
characterize the motion kinematics. The non-dimensional parameters describing the motion
kinematics are: convective time (t∗ = t ·Vt/c, where t is time in seconds and Vt is the constant
terminal velocity established after the acceleration phase) and chords traveled (δ∗ = δ/c,
where δ is the distance traveled by the wing at the reference spanwise position). The revolving
wing motion starts from rest and is subjected to by a constant acceleration to reach a pre-
defined Vt of 0.2 m/s over a time interval corresponding to a displacement of one chord length
(i.e. 0 < δ∗ < 1), after which the wing continues to revolve at a constant velocity (i.e. for
δ∗ > 1).

The distance between the root and the rotation axis is 42 mm, giving a reference revolving
length Rref= 117 mm. This gives a terminal angular velocity Ωt of 1.7094 rad/s and a
constant angular acceleration dΩ/dt of 3.4188 rad/s2. The chords traveled (δ∗) in the constant
acceleration phase is described by δ∗ = 1

4 t
∗2 and in the constant velocity phase by δ∗ = t∗. One

chord length of travel (1δ∗) corresponds to a rotation angle of θ= 24.49 deg. The prescribed
wing kinematics for the phase angles of the PIV measurements is illustrated in Figure 4.2.
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Figure 4.2: Wing kinematics for all phase angles: chord traveled (δ∗), rotation angle (θ), angular
velocity (Ω) and angular acceleration (dΩ/dt) as a function of convective time (t∗).

Based on the chord length and the terminal velocity defined at the reference position, the
Reynolds number is 10,000 (see Equation 2.1). The approximate radius of gyration Rg around
the revolving axis is calculated as,

Rg =
√
Ixx/S (4.1)

where Ixx is the area moment of inertia of the wing area about the axis of forward motion
(x-axis, see Figure 4.4) and S is approximately the wing area (S = R · c). Based on the
distance between the root and rotation axis, the radius gyration is Rg= 96.4 mm (0.54r/R)
and the Rossby number is approximately Ro= 1.93 (see Equation 2.3).

An overview of the kinematics parameters is given in Table 4.2.

Table 4.2: Kinematics parameters based on 75% span position.

Property Value

Constant acceleration phase 0 < δ∗ < 1

Constant velocity phase δ∗ > 1

Rotation angle 1δ∗= 24.49 deg

Terminal velocity Vt 0.2 m/s

Reynolds number Re 10,000

Rossby number Ro 1.93

4.3 Wing Flexibility

The chordwise flexural stiffness is approximated by using EI, where E is the Youngs modulus
and I = Rh3/12 is the area moment of inertia of the wings cross section along the chord,
h being the thickness (variable). The effective stiffness, which represents the ratio of elastic

MSc. Thesis Remco van de Meerendonk



30 Experimental Methods

bending forces over fluid dynamic forces, is approximated using Π1, see Equation 2.7. Three
models with different flexural stiffness have been studied by changing the material and plate
thickness as given in Table 4.3.

Table 4.3: Wing model parameters for c = 50 [mm], Uref = Vt= 0.2 [m/s], AR=2 and ρf =1000
[kg/m3]. (PET properties: Hostaphan GN, Mitsubishi polyester film GmbH.)

Material Young’s modulus Thickness Flexural stiffness Π1 Description

E [Nm−2] h [mm] EI [Nm2]

Plexiglas ≈3300·106 1 2.75·10−2 55 1 [mm] Rigid

PET ≈4350·106 0.175 1.94·10−4 0.389 175 [µm] Moderate flexibility

≈4500·106 0.125 7.32·10−5 0.147 125 [µm] High flexibility

The flexible wing thicknesses were selected based on preliminary balance measurements. The
175 [µm] flexible wing was selected because the drag was lower while the lift had a similar
magnitude compared to the 1 [mm] rigid wing. The 125 [µm] flexible wing was selected
because the lift decreased while the relative decrease in drag was still higher compared to the
175 [µm] flexible wing.

The refractive index of the Plexiglas, PET and water is approximately 1.49, 1.57 and 1.33
respectively. Because the thicknesses are small the light distortions are limited.

4.4 Force Measurements

The force measurements are performed for an extended time interval of 0 < δ∗ < 14.

Experimental setup The forces and moments exerted on the wing were measured with a
water-submergible ATI Nano17/IP68 force sensor. The sensor is calibrated to have a maxi-
mum sensing value of 25 N in x, y and 35 N in z-direction with a resolution of 1/160 N, and
a torque capacity of 250 N·mm with a resolution 1/32 N·mm. The force and moment data
were acquired at 2 kHz acquisition frequency via an in-house developed LabVIEW code.

Signal processing For ensemble averaging of the force signals about 260 data records were
used for the rigid wing and 200 for the flexible wings. These data records are based on the
total number of force measurements. In Figure 4.3 the mean Power Spectral Density (PSD),
based on an ensemble average size of 200, for both lift and drag force signals is given. From
the 3 wing models, the test-rig for the rigid wing was observed to have the lowest natural
frequency, which is 10 Hz. To eliminate electronic noise, effects of mechanical vibrations from
the driving system and resonance of the test-rig, the ensemble averaged force data is filtered
with a Chebyshev II low-pass filter that has a cut-off frequency of 8 Hz with a stopband
attenuation of 80 dB. A forward-backward filtering technique is applied to prevent a time-
shift of the data. Lift and drag coefficients are defined with respect to the reference velocity,
which is the terminal wing velocity at the 75% span reference plane, see Equation 5.17.
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Figure 4.3: Mean Power Spectral Density based on an ensemble size of 200. Left: Lift. Right:
Drag.

4.5 Volumetric flow imaging by tomographic PIV

4.5.1 Experimental setup & Experimentation

Imaging Figure 4.4 left shows a schematic top view of the tomographic PIV setup. Four 12
bit PCO Sensicam CCD cameras were used to record the particle images. Camera 1, 3 and 4
have a resolution of 1376×1040 pixels and a pixel pitch of 6.45 µm and are arranged on the
same horizontal x − z-plane with an aperture angle of 90 deg. Camera 2 has a resolution of
1280×1024 pixels and a pixel pitch of 6.7 µm and is located above camera 3 with an aperture
angle of 20 deg with respect to the horizontal plane. Double frame images were are taken
at the moment in the motion when the wing is oriented normal to camera 3 and data for
different revolving phases are obtained by appropriately changing the starting position of
the wing revolution. Each camera was equipped with a Nikon 60 mm focal objective with
numerical aperture f#= 16. Scheimpflug adapters were used on the three off-axis cameras to
align the mid-plane of the measurement volume with the focal plane.

Illumination The volume was illuminated by a Quantel CFR 200 mJ double-pulsed Nd:Yag
laser at a wavelength of 532 nm. Knife edges filters were used to constrain the illuminated
volume.

Field of view The full flow field around the wing was captured by combining three to-
mographic measurement volumes, each measuring 100×75×45 mm3 (2c×1.5c×0.9c) in the
x, y, z-direction, respectively, as shown in Figure 4.4. The corresponding magnification factor
is approximately 0.09. The volumes are symmetric with respect to the mid-span plane of the
wing and have an overlap of 5 mm. The illumination volume was kept at a fixed position
in the water tank, which corresponds to measurement volume 2 as indicated in Figure 4.4
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left. To change the measurement volume the complete driving system was translated along
the z-direction corresponding to the viewing direction of camera 3. The IR is approximately
13.76 pixels/mm (≈ 688 pixels/c). The particle images were interrogated using windows with
a final size of 48×48×48 voxels with an overlap factor of 75% giving an approximate spatial
resolution of 0.87 mm/vector (≈ 57 vectors/c).
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Figure 4.4: Left: Schematic top view and experimental setup. Middle: Schematic of the mea-
surement volumes. Right: Schematic representation of the chordwise field of view. Schematics
illustrated with a rigid wing.

Alignment of the Wing model - Field of view The wing model was connected to the
brushed DC motor which was fixed to the top plate of the water tank. The top plate of
the water tank can be translated in one direction. To align the wing chord normal to the
viewing direction camera 3 for all three volumes, an additional alignment camera was used,
see Figure 4.1. Finally the following conditions have to be met:

• The wing chord should be aligned normal to viewing direction of camera 3. This is
manually checked with camera 3.

• The wing translation should be aligned with the top part translation. This is manually
checked with the alignment camera. The top part can translate along the side edges of
the water tank as indicated by the red dotted lines in Figure 4.4. When translating the
top part of the water tank the wing model LE carbon fiber rod should only translate
along its longitudinal direction.

Finally, to measure volume 2 the top plate was fixed with screws. To measure volume 1 & 3,
the top part was translated over a predefined distance of 40 mm such that there is a 5 mm
overlap between volumes.

Seeding Polyamide spherical particles of 56 µm diameter were used as tracer particles.
They have a sufficiently small slip velocity with respect to water, remain suspended in the
water for a long time and have good scattering properties due to its relatively large size.
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Furthermore they have shown to be good tracer particles in similar tomographic PIV experi-
ments (Percin & van Oudheusden, 2015b). The seeding concentration, expressed in particles
per pixel (ppp), is approximately 0.035-0.04. The corresponding source density (Ns) is ap-
proximately 0.35-0.4.

Flow conditions After each measurement there is a pause of 3 minutes in order to let
the water in the tank reach quiescent conditions. The waiting period of 3 minutes between
consecutive measurements was tested by means of reconstructing the velocity fields for the
first phase angle (δ∗ = 0.0625). It was confirmed that the flow is undisturbed in the domain
upstream of the wing.

Image acquisition Because the flow is repeatable at low Reynolds numbers for the same
kinematic motion a time resolved velocity field can be created from phase-locked measure-
ments (Poelma et al., 2006; Percin & van Oudheusden, 2015b). An ensemble averaging size
of 5 is used to further increase the signal to noise ratio of the velocity field data. The PIV
measurements were taken for the interval 0.0625 < δ∗ < 4. For the rigid case a temporal res-
olution (TR) is set to 62.5 ms for the entire interval, which corresponds to a non-dimensional
temporal resolution (TR*= TR·Vt/c) of 0.25, generating 19 revolving phases. For the flexible
wings, the TR*= 0.25 for 0.0625 < δ∗ < 1.5 and TR* =0.5 for 1.5 < δ∗ < 4, generating a
total of 14 revolving phases. The three-dimensional flow fields were ensemble averaged with
a sample size of 5 obtained by repeating the measurements for each phase. This gives a total
number of 705 measurements. The average time required for each measurement was approx-
imately 6 minutes. In Table 4.4 an overview is given of all the measured phase angles for the
rigid and flexible wings.

Table 4.4: Overview measured phase angles in terms of δ∗.
δ∗ 0.0625 0.140625 0.25 0.390625 0.5625 0.765625 1 1.25 1.5

1 [mm] Rigid X X X X X X X X X
175 [µm] Moderate flexibility X X X X X X X X X
125 [µm] High flexibility X X X X X X X X X

δ∗ 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

1 [mm] Rigid X X X X X X X X X X
175 [µm] Moderate flexibility X X X X X
125 [µm] High flexibility X X X X X

The lower number of measurements for the flexible wings was a compromise to limit the total
measurement time. Because the exact temporal requirements for a good pressure reconstruc-
tion were not known beforehand the rigid wing had a high temporal resolution for all phases.
For the flexible cases a high temporal resolution was taken in the initial acceleration and
velocity phase up to δ∗ = 1.5.

The time separation between the double frame exposures is set such that the maximum par-
ticle displacement is about 10 pixel. An approximate time separation ∆t between exposures
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is approximated in terms of the kinematics, camera properties and field of view as,

∆t =
10 · 1

IR

Ω ·Rmax
(4.2)

where Rmax is the spanwise distance between the revolving axis and the tip part of each
volume.

Table 4.5: Summary of experimental settings for tomographic PIV measurements.

Tomographic PIV Phase-locked double frame images

Time resolved velocity field

Imaging 4 × PCO Sensicam CCD camera

Resolution Camera 1,3,4: 1376×1040; pixel pitch: 6.45 µm

Resolution Camera 2: 1280×1024; pixel pitch: 6.7 µm

4 × Nikon 60 mm objective, f#= 16

Field of view 3 volumes of 100×75×45 mm3 (2c×1.5c×0.9c) in the x, y, z-direction

Image resolution: 13.76 pixels/mm (≈ 688 pixels/c)

Spatial resolution: 0.87 mm/vector (≈ 57 vectors/c)

Illumination Quantel CFR 200 mJ double-pulsed Nd:Yag laser

Wavelength: 532 nm

Seeding Polyamide spherical particles

Mean diameter: 56 µm

Concentration: ppp≈ 0.035-0.04

Source density: Ns ≈ 0.35-0.4

Flow conditions Time between consecutive measurements: 3 minutes

Image acquisition Rigid: TR*=0.25

Flexible: TR*= 0.25 for 0.0625 < δ∗ < 1.5 and TR*= 0.5 for 1.5 < δ∗ < 4

Ensemble average size: 5

Maximum particle displacement: 10 pixels

Discussion on the limitations of the experimental setup & experimentation Due
to the strong scattering behavior of the particles a numerical aperture of f#= 16 could be
used ensuring that the focal depth spanned the 45 mm field of view in the z-direction. To
ensure the relative high spatial resolution of 0.9 mm/vector for a field of view of 100×75
mm2 in the respective x, y-direction (see in Figure 4.4 right), the particles were interrogated
with a window box size of 48×48×48 and an overlap factor of 75%. To perform a robust
cross-correlation 5-10 particles in an interrogation box are required (Scarano, 2013). To cover
the complete model in spanwise direction (z-direction) with 3 volumes of 45 mm and an
interrogation window of 48×48×48, an approximate minimum of ppp= 0.03 is required. The
high ppp and corresponding high source density was a compromise in order to span the model
with only 3 volumes. Because the seeding concentration drops over time an 0.035 < ppp <
0.04 was used when new seeding was applied. The reconstruction quality was additionally
monitored by an intensity z-profile as given in Figure 4.5. The edge of the measurement
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volumes drop quickly which indicates that only particles inside the volume are illuminated.
The signal-to-noise ratio is approximately 14/8 counts ≈ 1.75, with a corresponding ghost
level of approximately 8/(14 - 8) counts·100% ≈ 130%. Although this ghost level is relatively
high, the correlation for the vector calculation is quite robust. Therefore, it is expected that
the reconstructed velocity vectors are representative for the true flow field vectors. To increase
the signal to noise ratio of the velocity data an ensemble averaging sample size of 5 for each
phase is used. Ensemble sizes of 3, 5 and 8 were tested. The ensemble size of 5 was selected
as it is a compromise between the incremental improvement of the velocity field data and the
measurement time.
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Figure 4.5: Intensity z-profile 1 [mm] Rigid wing, δ∗=0.0625, Volume 3. Red and blue lines
indicate the 2 double frame image laser pulses

4.5.2 Data processing

In the following section the data processing is explained. The commercial software package
DaVis version 8.1.6. from LaVision GmbH is used for all the data processing.

4.5.2.1 Calibration

All tomographic PIV measurements are calibrated using a single geometric calibration to
ensure that the coordinate system is fixed in inertial space for all measurements. For geometric
calibrations a type-10 3D calibration plate from LaVision GmbH is used. The geometric
calibration is based on a third order polynomial fit of 4 equidistant images that span from
0 to 45 mm in z-direction. The 0 and 45 mm plate calibration planes are aligned with the
illumination volume (Figure 4.4 left). The residual of the curve fitting the calibration data is
approximately 0.2 [pix]. To ensure an accuracy of 0.1 [pix] in misalignment error, volume self
calibrations are performed once every 2 revolving phase measurement series. The volume self
calibration is based on 100 images of particles moving in the measurement volume in absence
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of the wing. The obtained misalignment error, after volume self calibration, is reduced to
approximately 0.01 [pix].

4.5.2.2 Image pre-processing

All images are pre-processed first by subtracting a sliding minimum of 7×7 pixels in order to
remove the background noise and eliminating most of the reflections of the model. Second,
the images are normalized to the first exposure of camera 1 based on a local average. The
size of the local normalization filter is 51 pixels and is applied for each image separately.

4.5.2.3 Vector calculations

After 2 consecutive phase angles new volume self-calibrations were performed. Because the
volume self-calibrations needed to be performed manually only 2 phase angles per measure-
ment day were processed per data processing day. This allowed for a higher number of
iteration and search window related settings for the vector calculations than necessary with-
out increasing the total time required for the data processing. As a result a high convergence
was reached for the resultant vector calculations.

Volume reconstruction The reconstructed volume is based on the common volume seen
by all cameras to increase the quality of the volume reconstruction. The particle volume is
reconstructed using the fast MART algorithm with a MinLOS initialization, 13 CSMART
iterations and 12 Smooth iterations.

Volume correlation (direct correlation) The cross correlation was performed with 4
steps. All steps have a spherical window shape with Gaussian weighting to decrease the
number of outliers. All steps have an overlap of 75% to allow for a more accurate detection
of the small flow structures.

The correlation window size is lowered within 4 steps from 128×128 - 96×96 - 64×64 -
48×48 voxels. The principle of multiple steps is that the rough particle shift (predictor) is
detected in the initial step. Next, the volumes for the next step are deformed by the estimated
shift (predictor) and the remaining particle shift is calculated (corrector), and added to the
predictor.

In step 1,2 and 3 volume binning is used to detect the rough shift. This approach allows to
decrease the computation time. In the final step no volume binning is applied to resolve the
remaining detected sub pixel changes as the final corrector.

The maximum peak search radius in the step 1 is 24×24 voxels in order to find the maximum
particle shift in the flow field. Next, the peak search radius is lowered in order to decrease
the computation time.

In Table 4.6 an overview is given of the vector calculation parameters.
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Table 4.6: Overview parameters vector calculation.

Step Size [voxel] Shape Overlap % Peak search Volume Binning Passes

radius [voxel]

1 128 Spherical-Gaussian 75 24 8×8×8 2

2 96 Spherical-Gaussian 75 8 4×4×4 2

3 64 Spherical-Gaussian 75 2 2×2×2 2

4 48 Spherical-Gaussian 75 1 no 4

Between the different passes within a step spurious vectors that are present after cross corre-
lation are detected and replaced using the universal outlier detection algorithm (Westerweel
& Scarano, 2005). The parameters for the universal outlier detection are based on 2x remove
& insert with an epsilon value of 0.1 pixels. The remove threshold is 2, the insert threshold
is 3, the number of neighbors used for the calculation is 5×5×5 and the filter is only applied
to vectors when the number of neighbors is above 6. Missing vectors are recursively replaced
by the average of its direct neighbor vectors. Finally the vector field is smoothed twice using
a Gaussian kernel of 3×3×3. For step 1, 2 and 3 two passes are used, while for the final step
four passes are used in order to ensure the convergence.

4.5.2.4 Vector post-processing & Ensemble averaging

After the volume correlation again the universal outlier detection algorithm is applied. The
parameters are the same as the one applied between the different passes, however the final
vector field is only smoothed once.

Finally the 5 images per phase angle are ensemble averaged, giving the resultant vector field.

4.5.3 Wing reconstruction

The wing is reconstructed by use of a number of tracer points along the wing model. By
visually identifying these points in all camera images and using the imaging calibration in-
formation, these points can be reconstructed in 3D space. At the leading edge, the angle of
attack (AoA) is set to 45 deg by the servo motor at the beginning of the experiment. The
deflection of the rigid wing is negligible and the flexible wings deform during the revolving
motion under the effect of hydrodynamic loads.

For the rigid wing the tip-LE is reconstructed in volume 3. Next, tip-TE edge is reconstructed
based on an angle of attack of 45 deg. Finally, the wing profile at the tip is extruded with 2c
in the negative z-direction.

The flexible wings deflect and twist during the revolving motion. The chordwise deflection at
the tip is reconstructed by defining equidistant points between the leading and trailing edge
points in all images and further triangulation of these points (note that the leading edge point
is defined on the wing surface after the carbon fiber rod). Subsequently, the twist angle is
obtained by measuring the geometric angle of attack at 4 spanwise positions,

MSc. Thesis Remco van de Meerendonk



38 Experimental Methods

1. At the wing tip in volume 3

2. At the edges of measurement volume 2 by use of light reflection on the wing planform
(see Figure 4.6 right.

3. At the wing root in volume 1.

A second degree polynomial is fitted to the acquired data point to represent the spanwise
variation of the geometric angle of attack. The full wing is reconstructed based on the
chordwise deflection information at the wing tip and the geometric angle information along
the span. The wing reconstruction has a resolution of 60 points along the chord and 121
points along the span. The wing is spanned with 2c in z-direction from the identified tip
region. In Figure 4.6 the images with reconstruction points for camera 1 are given by use of
which the 125 [µm] High flexible wing is reconstructed at δ∗ = 4.

Figure 4.6: 125 [µm] High flexible wing reconstruction seen by camera 1 for δ∗ = 4. Left: Tip
region - volume 3. Right: Middle region - volume 2

4.6 System integration & Measurement procedure

The full data acquisition setup is given in Figure 4.7. Three groups of equipment can be
identified:

• Motion control and Force acquisition (Blue)

• PIV image acquisition (Orange)

• Synchronization (Green)

Blue The blue system controls the kinematics and acquires the forces. The setup contains
a computer (PC 2), a data acquisition system, a balance which measures the forces and
moments, a servo which controls the angle of attack and a brushed DC motor which controls
the revolving motion. On PC 2 the LabView software is installed.
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Orange The orange system acquires the PIV images. The setup contains a computer (PC
1), a Programmable Timing Unit, a laser and cameras. On PC 1 the DaVis software is
installed.

Green The green system contains a digital pulse generator which can be set at a certain
frequency.

PTU
LaVision

Data Acquisition System  
NATIONAL INSTRUMENTS

cDAQ-9178

 Digital Pulse Generator
Stanford Research Systems 

DG535

Balance 
ATI Nano17/IP68

PC 1

Nd:Yag laser 532 nm 
Quantel CFR 200 mJ

12 bit CCD Cameras
PCO Sensicam QE

Brushed DC 
Motor

Maxon Motor 285805 
& Gear 166174

Servo 
HITEC HS-5086WP

TTL

PC 2

Figure 4.7: Data acquisition setup.

Blue-Orange-Green integration The digital pulse generator provides a reference signal
for both the blue and orange system. An in-house developed LabView code controls the servo
and brushed DC motors, and synchronizes the wing motion with the force data acquisition
and the PIV measurements. This is accomplished by externally triggering the PTU by a TTL
trigger signal which is generated by the LabView script. The image acquisition starts with
the rising edge of the TTL trigger signal. Within the LabView script a time delay between
the start of the revolving motion and the TTL trigger signal is introduced such that the 2
double frame images are taken symmetric with respect to the normal position of the wing,
i.e. when the wing chord is aligned normal to viewing direction camera 3 (see Figure 4.4).

Measurement procedure The daily measurement procedure is given below. The sub
items indicate the steps for each phase angle measurement.

• Morning

• The water tank is filled.

• Plate calibration images are taken.

• Seeding is applied.
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• Volume self calibration images are taken.

– Once every 2 phase angles the wing is cleaned, the seeding is checked and images
for the volume self calibration are taken.

– The phase angle is set in LabView.

– The time separation between the double frame exposures is set such that the
maximum particle displacement is about 10 pixels.

– The time delay within LabView to generate the TTL trigger signal is set such that
the double frame images are taken symmetric with respect to the aligned normal
position of the wing chord in the viewing direction of camera 3.

– A waiting period of 3 minutes is applied to reach quiescent flow conditions in the
water tank.

– Measurements are taken.

• The water tank is drained.

• Evening
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Chapter 5

Numerical Methods

From the phase-locked tomographic PIV measurements 3D3C flow fields are obtained. In
this chapter the methodology, which is followed to reconstruct pressure fields and loads from
the 3D3C velocity data, is explained in detail. The calculations of the pressure fields and
the loads are performed for each measurement volume individually. Additionally the pressure
field is scaled between the volumes and expressed with respect to a reference pressure value.

The experiments are performed in water with the following approximate reference values,

Table 5.1: Fluid reference values based on water.

Property Value

Density (ρf ) 1,000 kg/m3

Dynamic viscosity (µf ) 1 · 10−3 N s/m2

In the remainder of this chapter the fluid subscript f is omitted unless stated otherwise.

5.1 Pressure reconstruction

The pressure field reconstruction is carried out under the assumption of incompressible flow,
employing the Navier-Stokes equations (van Oudheusden, 2013). Pressure gradients are ob-
tained from the momentum equation and the pressure field is calculated by the integration
of the pressure gradients.

At low Reynolds numbers the flow is very repeatable for the same kinematic motion, which
justifies the use of phase-locked measurements (Poelma et al., 2006; Percin & van Oudheusden,
2015b). In view of this phase-locked measurement procedure, the pressure reconstruction is
most conveniently set up in the rotating reference frame aligned with the revolving wing,
regarding the evaluation of the temporal derivatives from the phase-locked flow field data
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sets. The flow fields obtained in the PIV measurements are given in the inertial ‘laboratory’
reference frame. First, the conversion of the flow field from the inertial to the rotating
reference frame is explained. Second, the pressure gradients are calculated in the moving
reference frame. Third, the pressure gradients are integrated.

Note that, as the pressure is a scalar quantity, the reconstructed surfaces of constant pressure
are independent of the reference frame (inertial or moving) that is used (Vanyo, 2015).

5.1.1 Flow field in rotating reference frame

The velocity field data is converted from the inertial reference frame to the rotating reference
frame as,

urotating = uinertial −Ω× rpv (5.1)

where u is the velocity vector, Ω the angular velocity of the wing (see Figure 4.2) and rpv the
position vector measured from the rotation axis. The distance between the root of the wing
and the rotation axis is 42 mm (0.84c, see Figure 4.4 left). From the rigid wing reconstruction
the x, y, z-coordinates of the root-LE are approximated with respect to volume 1 as 29.9 [mm],
13.9 [mm], 11 [mm]. Consequently the position vector for each data point in the flow fields is
calculated.

In the remainder of this section the considered velocity is the apparent velocity in the rotating
reference frame unless specified otherwise.

5.1.2 Pressure gradient

Assuming incompressible flow (ρ=cons; ∇ · u = 0), a constant viscosity (µ = cons) and
discarding gravity, the pressure gradient in a rotating reference frame is given as (Vanyo,
2015),

1

ρ
∇p = −Du

Dt
−Ω× (Ω× rpv)︸ ︷︷ ︸

Centrifugal

− 2 Ω× u︸ ︷︷ ︸
Coriolis

− dΩ
dt
× rpv︸ ︷︷ ︸

Euler

+ν∇2u (5.2)

where p is the pressure and ν is the kinematic viscosity. Where for a Newtonian fluid and
incompressible flow the shear stress τij can be approximated as (White, 2006),

τij = µ

{
∂ui
∂xj

+
∂uj
∂xi

}
+ δijλ

∂uj
∂xj

(
∂uj
∂xj

=0

)
= µ

{
∂ui
∂xj

+
∂uj
∂xi

}
(5.3)
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and,

∂

∂xj
τij =

∂

∂xj

µ{∂ui
∂xj

+
∂uj
∂xi

} 〈µ=cons)
= µ

∂

∂xj

{
∂ui
∂xj

+
∂uj
∂xi

}
(

∂uj
∂xj

=0

)
= µ

∂2ui
∂xj2

= µ∇2u

(5.4)

Newton’s laws of motion are valid in an inertial reference system. The centrifugal, Coriolis
and Euler effects introduce apparent forces due to working in a non-inertial reference frame.
The centrifugal effect is independent of the fluid motion relative to the rotating reference
frame and can be represented by a radial pressure distribution. The centrifugal effect, seen
as a radial pressure distribution, can be calculated as the gradient of a scalar function as
Ω×(Ω×rpv) = −1

2∇[(Ω×rpv)·(Ω×rpv)] (Vanyo, 2015). The Coriolis effect is dependent on the
velocity of the fluid relative to the rotating reference frame and therefore less straightforward
to interpret when dealing with complex flows. The Coriolis effect is significant at low Rossby
numbers. Its significance can be interpreted as the time required for a particle to complete its
translational motion while having rotated a significant angle (Vanyo, 2015). The Euler effect
is independent of the fluid motion relative to the rotating reference frame, and scales with the
rotational angular acceleration of the rotating reference frame and the position vector. Note
that the the Euler effect only has a contribution in the acceleration phase (up to 1δ∗). Because
the rotating reference frame is rotating purely about the y-axis the centrifugal, Coriolis and
Euler effect do not contribute in the direction of lift (y-axis).

The material derivative (Du
Dt ), i.e. the acceleration of a fluid particle followed from a La-

grangian perspective, is calculated by means of an Eulerian or an iterative pseudo-Lagrangian
description. For the Eulerian approach the material derivative is calculated by separately
evaluating the local time-derivative and convective terms as,

Du

Dt
=

∂u

∂t︸︷︷︸
local

+ (u · ∇)u︸ ︷︷ ︸
convective

(5.5)

The iterative pseudo-Lagrangian approach is given as (de Kat & van Oudheusden, 2012),

xkp(t, τ) = x + u(x, t)τ +
1

2

Duk

Dt
(x, t)τ2 (5.6)

Duk+1

Dt
(x, t) =

u
(
xkp(t,∆t), t+ ∆t

)
− u

(
xkp(t,−∆t), t−∆t

)
2∆t

(5.7)
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where τ is taken as the temporal spacing of the measured flow fields (∆t). Predicted particle
positions xkp(t, τ) outside the domain are not extrapolated to prevent associated errors. In-
stead, at these locations the material derivative is calculated based on the Eulerian approach.
This algorithm is iterated until convergence is obtained/reached. Decreasing τ and finding
more predicted particles positions inside the domain, such that a larger part of the domain
is calculated with the pseudo-Lagrangian approach, was found to marginally effect the recon-
structed pressures so that it is not considered in the present study to decrease the amount of
computation time.

An Eulerian based material derivative is found to perform best in order to evaluate the
material derivative and is used for the remainder of this study, see subsection 5.3.1.

5.1.3 Integration of pressure gradients

The pressure field is integrated by setting up a Poisson problem as,

∇2p = ∇ · (∇p) (5.8)

Coordinate system The flow field data obtained from the PIV measurements is given on
an ordered grid that is equally spaced with ∆x, ∆y and ∆z in the x, y, z-direction respectively.
The coordinate system and grid that are used for the pressure reconstruction are identical to
the velocity measurements and are given in Figure 5.1.

pi+1,j,k
pi,j,k

pi,j-1,k

pi-1,j,k

pi,j+1,k
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∆x

j
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i=0, j=0, k=0
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∆y
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i=0, j=0, k=0

JMax

IMax

p1 p2 p3 p4 p5

p6 p7 p8 p9 p10

p11 p12 p13 p14 p15

O

Figure 5.1: Coordinate system; Left: General matrix format. Right: Global node index.

The x-direction is aligned with the i-direction with a vector size of IMax. The y-direction is
aligned with the j-direction with a vector size of JMax. The z-direction is aligned with the
k-direction with a vector size of KMax. The global node index (NI) coordinate system is
illustrated by the red arrows and given as,

NI = i+ (j − 1) · IMax+ (k − 1) · IMax · JMax (5.9)
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Discretization The 3D Poisson problem discretization is set up using finite second-order-
accurate central-difference schemes as,

∂2pi,j,k
∂x2

=
pi+1,j,k − 2pi,j,k + pi−1,j,k

∆x2
;

∂2pi,j,k
∂y2

=
pi,j+1,k − 2pi,j,k + pi,j−1,k

∆y2
;

∂2pi,j,k
∂z2

=
pi,j,k+1 − 2pi,j,k + pi,j,k−1

∆z2

(5.10)

with,

∇2pi,j,k =
∂2pi,j,k
∂x2

+
∂2pi,j,k
∂y2

+
∂2pi,j,k
∂z2

(5.11)

Consequently, a 7-point stencil is created.

System of equations A system of equations is generated based on the global NI coordinate
system. The final system of equations is given as: [B][pNI ] = [S]. [B] is a sparse matrix
containing the discretized Poisson problem (LHS of Equation 5.8). [B] is built using a triplet
format. This format allows incorporating all types of boundary conditions with ease and it
is computationally cheap. [S] is the solution vector (RHS of Equation 5.8). The pressure
vector [pNI ] is obtained by numerically solving the system of equations using the ‘mldivide,
\‘ operator of Matlab 2015a R©.

Boundary conditions At the boundaries of the integration domain Neumann boundary
conditions (spatial gradient of pressure) normal to the boundary are imposed. The Neumann
boundary conditions are set up using a second-order-accurate central-difference scheme by
introducing ghost points outside of the calculation domain. To insert a Neumann boundary
condition at a specific node point the following strategy is applied:

1. Create a new ghost point in the outward normal direction of the node face at which the
Neumann boundary condition is imposed

2. Set up the standard 7-point stencil with this additional ghost point

3. Use the ghost point to set up a new equation in the sparse matrix which evaluates the
Neumann boundary condition. The discretization of the pressure gradient is based on
the second-order-accurate central-difference scheme as:

∂pi,j,k
∂x

=
pi+1,j,k − pi−1,j,k

2∆x
;

∂pi,j,k
∂y

=
pi,j+1,k − pi,j−1,k

2∆y
;

∂pi,j,k
∂z

=
pi,j,k+1 − pi,j,k−1

2∆z

(5.12)
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For instance if the problem is set up in 1D along the x-axis based on Figure 5.1, the contribu-
tion of node 1 at which a Neumann boundary condition is imposed towards the left (outward
normal direction) is evaluated as,



−2/∆x2 1/∆x2 0 0 0 1/∆x2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 1/(2∆x) 0 0 0 −1/(2∆x)





p1

p2

p3

p4

p5

pghost


=



S1

S2

S3

S4

S5

∂p1
∂x


(5.13)

This strategy allows to apply the Neumann boundary condition in 3D space by adding more
ghost points. This approach was verified by directly substituting Equation 5.12 in the stan-
dard 7-point stencil and thereby eliminating the ghost points.

Applying Neumann boundary conditions on the entire boundary of the domain leads to a
pressure defined up to an arbitrary constant.

Note, when applying only Neumann boundary conditions the reconstructed pressure values
is generally not be equal to the reference pressure because the pressure is defined up to an
arbitrary constant.

Mask implementation Based on the position information obtained from the wing re-
construction a mask around the wing is created at which Neumann boundary conditions are
imposed. The mask has an equal offset of 7 vectors from the wing surface in the x, y-directions
extending over the full span of the wing (see subsection 5.3.2 for the mask convergence study).
The masked region in the field of view is illustrated in Figure 5.2.

0.7c 

0.3c 

0.5c 

0.7c 0.3c 1.0c 

x 

y 

Mask offset (N) =7 vectors 

N 

N 

N 

N 

Figure 5.2: Mask implementation.

For a fixed mask over time, the matrix [B] is constant. This allows to benefit from factorizing
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[B] before solving the system of equations for varying [S] (flow fields) over time which decreases
the computational time.

Pressure field scaling After the pressure fields are obtained for each volume individually,
they are scaled with respect to volume 2 at the mid-planes of the overlap regions from volume
1-2 and volume 3-2 (as depicted inFigure 4.4) to obtain a smooth transition between volumes.
Subsequently, the complete pressure field is expressed with respect to a reference pressure of
0 Pa.

In the lower right corner of the flow field (maximum x-location, minimum y-location) the flow
is assumed to be undisturbed. Accordingly, the pressure at this location is taken as pref = 0
Pa. A box of 5 × 5×KMax (x, y, z-direction) vectors in the lower right corner is referred as
the ”scale box”. In Figure 5.3 the ”scale box” for volumes 1, 2 & 3 are given in orange and
the midplane of the overlap regions is given in dark blue.

Figure 5.3: Pressure scaling.

The pressure fields are scaled between the volumes and the reference pressure as follows:

• Subtract the mean pressure of ”scale box 1” from the pressure field of volume 1. Subtract
the mean pressure of ”scale box 2” from the pressure field of volume 2. Subtract the
mean pressure of ”scale box 3” from the pressure field of volume 3.

• Subtract the mean pressure of the midplane of the overlapping region of volume 1 with
respect to volume 2 from the pressure field of volume 1. Subtract the mean pressure of
the midplane of the overlapping region of volume 3 with respect to volume 2 from the
pressure field of volume 3.

• Subtract the mean pressure of ”scale box 1, 2 & 3” from the pressure fields of volume
1, 2 & 3.
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5.2 Load reconstruction

The fluid-dynamic loads are reconstructed by evaluating the integral momentum balance
obtained by integrating the Navier-Stokes equation within a control volume (Anderson, 2011).
The general control volume matches the field of view with volume V (t), is bounded by an
external contour S(t), and an internal contour Sb(t), which is the outer surface of the wing.
n is the outward normal on both inner and outer contours.

The general control volume configuration can be found in Figure 5.4.

F

Sb(t)

S(t)

V(t)
n

-

-

n-

Figure 5.4: General control volume configuration.

In the absence of gravity the instantaneous force F is given as,

F(t) =−
∫
V (t)

∂ρu

∂t
dV

︸ ︷︷ ︸
I

−
∫

S(t)+Sb(t)

ρu(u · n)dS

︸ ︷︷ ︸
II

+

∫
S(t)

(−pn + τ · n)dS

︸ ︷︷ ︸
III

−
∫
V (t)

ρΩ× (Ω× rpv)dV

︸ ︷︷ ︸
IV

−
∫
V (t)

2ρ Ω× udV

︸ ︷︷ ︸
V

−
∫
V (t)

ρ
dΩ

dt
× rpv dV

︸ ︷︷ ︸
VI

(5.14)

with,

F(t) =

∫
Sb(t)

(−pn + τ · n)dS (5.15)

where,

I volume integral of the time rate of change of momentum
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II surface integral on the external and internal contours, which accounts for the
momentum flux through the control volume boundaries

III surface integral on external contour accounting for the pressure and viscous stress
contributions

IV,V & VI volume integral of respectively the centrifugal, Coriolis and Euler acceleration
contributions

The shear stress τ is evaluated as given in Equation 5.3. For a steady control volume the
Reynolds transport theorem allows to evaluate the temporal derivative outside the integral of
term I. This is advantageous because the temporal derivative of the total momentum inside
the control volume is less sensitive to measurements errors. For an impermeable solid object
the no slip condition applies at the body surface and the fluid will have zero velocity relative
to its boundary. As a result the integration region Sb(t) of term II drops out.

Finally, the loads are evaluated as,

Fi =− ρ d
dt

∫
V

uidV − ρ
∫
S

uiujnjdS +

∫
S

(−pni + µ

{
∂ui
∂xj

+
∂uj
∂xi

}
nj)dS

− ρ
∫
V

Ω× (Ω× rpv)dV − ρ
∫
V

2 Ω× udV − ρ
∫
V

dΩ

dt
× rpv dV

(5.16)

The spatial and temporal derivatives are calculated with a second-order-accurate central-
difference scheme, except at the boundaries of the temporal evolution at which a first-order-
accurate finite difference scheme is employed.

The lift (CL) and drag (CD) coefficients are defined as,

CL =
L

1
2ρV

2
t cR

; CD =
D

1
2ρV

2
t cR

(5.17)

Sectional lift & drag coefficient By evaluating the loads in a thin sectional control
volume with dimensions matching the field of view in the x, y-directions and a spanwise
thickness of dz in the z-direction that is centered at a given chordwise oriented plane, the
sectional lift & drag coefficient for that chordwise oriented plane can be approximated as,

Cl =
L′/dz
1
2ρV

2
t c

=
l

1
2ρV

2
t c

; Cd =
D′/dz
1
2ρV

2
t c

=
d

1
2ρV

2
t c

(5.18)

where L′, D′ is the lift, drag calculated from the sectional control volume.
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5.3 Discussion on the pressure & load reconstruction

For the analyses in this study the control volume has an offset of 1 vector from the borders of
the flow field domain unless stated otherwise. This allows to calculate the spatial gradients
at the CV boundary with a finite second-order-accurate central-difference scheme.

5.3.1 Material derivative of velocity: Eulerian - Lagrangian

The pressure field is obtained by the integration of the pressure gradients. In order to cal-
culate the pressure gradients the material derivative of the velocity needs to be evaluated.
In Figure 5.5 the influence of the Eulerian and pseudo-Lagrangian calculation methods for
the material derivative of velocity on the reconstructed forces is shown. The presented force
coefficients are obtained by summing the reconstructed lift and drag coefficients of each in-
dividual volume. The solid line represents the force reconstruction results by use of the data
with a high temporal resolution (TR*= 0.25), whereas the calculations with the coarsened
data set are depicted by the dashed lines (TR*= 0.5).

With an Eulerian based material derivative, the reconstructed lift and drag coefficients that
are based on a temporal coarsened data set (dashed lines) agree well with the high tem-
poral resolution data set (solid lines). However, with a pseudo-Lagrangian based material
derivative discrepancies are found between the high and coarsened temporal resolution. It
can be observed that the reconstructed lift coefficients match reasonably well, but significant
discrepancies are found for the reconstructed drag coefficients.

The Eulerian approach is expected to be more sensitive to advective motions, while the
Lagrangian approach is more sensitive to rotation dominated flows because this complicates
the flow path reconstruction (de Kat & van Oudheusden, 2012). Within a rotating reference
frame the dominance of rotation over advective motion is increased compared to an inertial
frame such that the Eulerian approach may be anticipated to perform better for evaluating
the material derivative. Not only the loads were found to be comparable for a temporally
coarsened data set with an Eulerian based material derivative, but also the pressure field.
For the calculation of the pressure fields and loads exerting on the tested wings throughout
the revolving motion, the Eulerian based material derivative is used for the remainder of this
study.
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Figure 5.5: Temporal evolution of the reconstructed lift (left column) and drag (right column)
coefficient based on the summation of volume 1-3. Top row: Eulerian based material derivative of
velocity. Bottom row: pseudo-Lagrangian based material derivative of velocity. Solid line depicts
a high temporal resolution of TR*= 0.25 and the dashed line depicts a coarsened temporal
resolution of TR*= 0.5.

5.3.2 Mask convergence

Due to the presence of the wing in the measurement region, the reconstructed velocity vectors
at its location and in the close vicinity have a relatively high uncertainty and need to be
excluded from the pressure reconstruction. Based on the position information obtained from
the wing reconstruction, a mask around the wing is created. The mask convergence study is
performed by varying the mask size from no mask N=0 to N=10, see Figure 5.2. For each
different configuration, the corresponding Poisson problem is solved for the calculation of
pressure fields and the loads acting on the wing are estimated by means of the aforementioned
control volume approach. The optimum mask size is defined as the smallest mask size for
converged lift and drag such that the pressure values can be obtained close to the wing surface
while estimating the loads accurately. The size of the mask is determined by a lift and drag
convergence study for the 1 [mm] Rigid wing as given in Figure 5.6.
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Figure 5.6: Mask convergence study of the 1 [mm] Rigid wing for different mask vector off-
set values (N) Left: Temporal evolution of lift coefficient. Right: Temporal evolution of drag
coefficient.

It can be observed that in the case of no mask, the pressure fields are calculated such that
the resultant forces are found to be close to zero (Figure 5.6). The no-mask case is essentially
non-physical since there is a solid body in the field of view and velocity vectors measured at
its location and in the close vicinity are generally erroneous. Therefore, this region should be
masked and thus the velocity vectors with relatively higher uncertainty should be excluded
from the pressure and load calculations. It can be observed that for a vector offset of 7 both
lift and drag coefficients are converged. It is assumed that this offset value also gives converged
results for the flexible wings. Therefore, for the remainder of the analyses the optimum mask
size is determined to have an offset of 7 vectors is used unless stated otherwise.

5.3.3 Dirichlet boundary condition

In this section Dirichlet boundary conditions are compared to Neumann boundary conditions.
The errors in this section are based on the difference between the reconstructed pressure
gradients and input pressure gradients (Equation 5.2).

Instead of applying Neumann boundary conditions in the undisturbed lower right corner of
the flow field, a Dirichlet boundary condition of p = 0 Pa can also be applied. Two different
Dirichlet boundary condition approaches are tested: a Dirichlet boundary condition at a
single single node located at the midplane of each volume or Dirichlet boundary conditions
at KMax nodes extending over the full spanwise direction as illustrated in Figure 5.7.
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Figure 5.7: Dirichlet boundary condition in the lower right corner of the field of view. Left: 1
Dirichlet boundary condition at the midplane of each volume. Right: Dirichlet boundary conditions
over the full spanwise direction of each volume.

When applying a Dirichlet boundary condition at a point in the midplane or at KMax points
along the span of the lower right corner; the mean of the error, RMS error and sum of the
absolute errors are of similar magnitude compared to those obtained by applying Neumann
boundary conditions. In Figure 5.8 the sum of the absolute errors and the RMS error are
given for volume 2 of the rigid wing .
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Figure 5.8: 1 [mm] Rigid wing volume 2. Errors based on dpdx indicated by the solid line, dpdy
indicated by the dashed line and dpdz indicated by the dotted line. Left: Temporal evolution of
sum of absolute errors. Right: Temporal evolution of RMS error.

The error levels of the different types of boundary conditions are the same. When applying
a single or KMax Dirichlet boundary conditions, the transition of the pressure field between
volumes was most representative when additionally scaled as described in section 5.1.3. Not
only the scaled pressure field was found similar, but also the reconstructed lift and drag.
Because the force gradient errors (expressed in terms of pressure gradient errors), scaled
pressure fields and reconstructed loads between Neumann and Dirichlet boundary conditions
are similar, both approaches are considered to give a representative pressure distribution.
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5.3.4 Euler effect

The Euler effect scales with the rotational angular acceleration dΩ
dt . Incorrect modeling of

the Euler effect leads to an incorrect pressure field. The acceleration phase of the motion
profile is modeled using a step input of full angular acceleration from 0 < δ∗ < 1. However,
at beginning and the end of the acceleration phase (δ∗=0 and 1), the angular acceleration
is singular. The actual motion profile is different from this ideal definition and the angular
acceleration at δ∗ = 1 is calculated as approximately half of the full acceleration by use of
the velocity data acquired from the motor encoder. In order to investigate the sensitivity of
the pressure calculations to the Euler effect term, the pressure fields of the rigid wing are
obtained for three different acceleration values (i.e., zero, half and full angular accelerations)
at the end of the acceleration phase as shown in Figure 5.9.

Figure 5.9: 1 [mm] Rigid wing. Influence of Euler effect at δ∗ = 1 for chordwise oriented slices
and at the 75% span reference plane. Left: Zero angular acceleration dΩ

dt = 0 rad/s2. Middle:

Half of the full angular acceleration dΩ
dt = 1

2 · 3.4188 rad/s2. Right: Full angular acceleration
dΩ
dt = 3.4188 rad/s2.

For the zero angular acceleration case at δ∗ = 1, high negative pressure levels downstream of
the wing model are observed, whereas for the full acceleration case, positive pressure levels
are present at the downstream locations. Temporal evolution of the pressure fields shows that
neither the full nor zero acceleration case generates pressure fields that are in accordance with
the general temporal behavior. On the other hand half of the full acceleration results in a
smooth transition from the acceleration phase to the constant phase which is physically more
reasonable, see section A.6 for a time-animation of the pressure fields.

In Figure 5.10 the lift and drag contributions are given. The lift and drag coefficients did not
change. For the drag contribution a peak in the pressure distribution is found at zero angular
acceleration which is due to the absence of Euler effect contribution. This can also be observed
at the 75% span reference plane. The pressure gradient difference between zero angular
acceleration and half of the full angular acceleration acts in the downstream x-direction (see
Figure 5.9) which only influences the pressure contribution in the calculation of the drag
coefficient (see Figure 5.10). On the contrary, for the full angular acceleration case a dip
is found. Only for half of the full acceleration a smooth transition in the pressure field is
present which reflects in a smooth pressure contribution in the calculation of drag. Although
the loads acting on the wing are estimated similarly for different Euler term contributions, it
is of importance to use correct motion kinematics in the calculation of the pressure fields.

Remco van de Meerendonk M.Sc. Thesis



5.3 Discussion on the pressure & load reconstruction 55

0 0.5 1 1.5 2 2.5 3 3.5 4

δ*

0

0.2

0.4

0.6

0.8

1

1.2

C
L
 c

on
tr

ib
ut

io
n

Sum
umdt
fm

fp
fs
mCen

mCor
mEul

0 0.5 1 1.5 2 2.5 3 3.5 4

δ*

-3

-2

-1

0

1

2

3

C
D
 c

on
tr

ib
ut

io
n

Sum
umdt
fm

fp
fs
mCen

mCor
mEul

0 0.5 1 1.5 2 2.5 3 3.5 4

δ*

0

0.2

0.4

0.6

0.8

1

1.2

C
L
 c

on
tr

ib
ut

io
n

Sum
umdt
fm

fp
fs
mCen

mCor
mEul

0 0.5 1 1.5 2 2.5 3 3.5 4

δ*

-3

-2

-1

0

1

2

3

C
D
 c

on
tr

ib
ut

io
n

Sum
umdt
fm

fp
fs
mCen

mCor
mEul

0 0.5 1 1.5 2 2.5 3 3.5 4

δ*

0

0.2

0.4

0.6

0.8

1

1.2

C
L
 c

on
tr

ib
ut

io
n

Sum
umdt
fm

fp
fs
mCen

mCor
mEul

0 0.5 1 1.5 2 2.5 3 3.5 4

δ*

-3

-2

-1

0

1

2

3

C
D
 c

on
tr

ib
ut

io
n

Sum
umdt
fm

fp
fs
mCen

mCor
mEul

Figure 5.10: Influence of Euler effect of unsteady momentum umdt (I), momentum flux fm (II),
pressure fp (III), viscous stress fs (III), centrifugal momentum mCen (IV), Coriolis momentum
mCor (V) and Euler momentum mEul (VI) contribution, see Equation 5.14. Top: Zero angular
acceleration dΩ

dt = 0 rad/s2. Middle: Half of the full angular acceleration dΩ
dt = 0 = 1

2 · 3.4188

rad/s2. Bottom: Full angular acceleration dΩ
dt = 3.4188 rad/s2.

MSc. Thesis Remco van de Meerendonk



56 Numerical Methods

5.3.5 Divergence free flow

Although the Mach number is low and the flow can be assumed incompressible and divergence-
free, the implementation of this condition leads to erroneous pressure fields.

The Poisson equation for the pressure without rotational effects (∇2p′) can be written as,

∇2p′ = ∇ · (∇p′) = ∇ ·
(
−ρDu

Dt
+ µ∇2u

)
= ∇ ·

(
−ρ∂u

∂t
− ρ(u · ∇)u + µ∇2u

)
(5.19)

Assuming incompressible flow (ρ=cons; ∇ · u = 0) Equation 5.19 can be written as,

∇2p′
(ρ=cons; ∇·u=0)

= −ρ∇ · (u · ∇)u = −ρ ∂

∂xi

(
uj
∂ui
∂xj

)
= −ρ

{
∂uj
∂xi

∂ui
∂xj

+ uj
∂2ui
∂xi∂xj

}
(

∂ui
∂xi

=0
)

= −ρ∂uj
∂xi

∂ui
∂xj

(5.20)

leading to a modified Poisson problem of,

∇2p = ∇2p′ +∇ · ρ
(
−Ω× (Ω× rpv)− 2 Ω× u− dΩ

dt
× rpv

)
(5.21)

Solving this problem gives an incorrect pressure field. Also when plotting the divergence of the
velocity field, non-zero values are found. During the PIV measurement and post-processing
of the velocity field errors are introduced such that the resultant measured velocity field is
not divergence free. It is concluded that for this experimental study the pressure field cannot
be reconstructed under the assumption of a divergence free velocity field. To account for a
non-divergence free velocity field, Equation 5.8 is used instead.

5.4 Verification

In this section a verification study is presented. First, the pressure reconstruction algorithm
is verified using an analytic test problems. Second, the pressure and load reconstruction
methods are verified by a numerical simulation.

In this section the material derivative of the velocity is based on the Eulerian approach and
only Neumann boundary conditions are imposed unless stated otherwise.
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5.4.1 Verification of the pressure reconstruction algorithm with analytic
test problems

The pressure reconstruction algorithm is verified using 2 analytic test problems:

• 2D: Taylor green vortex Green & Taylor (1937)

• 3D: Solution from Ethier & Steinman Ethier & Steinman (1994)

When Neumann boundary conditions are applied on all boundaries, the pressure is defined
up to a constant. The verification study is based on a Cp value defined such that the range is
scaled to [-1 1]. This modified Cp allows to compare the distribution of the pressure field. For
this verification study ‘PIV’ refers to the reconstructed pressures from the analytical velocity
fields.

2D: Taylor green vortex The Taylor green vortex is an unsteady flow of decaying vortex
which has an exact closed form solution of the incompressible Navier-Stokes equations. In
Figure 5.11 the reconstructed pressures, indicated with PIV, are compared to the numerical
results. A 2D diamond shaped mask is added with Neumann boundary conditions on the
edges. The spatial resolution is ∆x = ∆y = π/150 mm and the temporal resolution is
∆t = 0.1 s. It can be observed that there is a good agreement between the pressure fields.

X direction
0 0.5 1 1.5 2 2.5 3

Y
 d

ire
ct

io
n

0

0.5

1

1.5

2

2.5

3

t = 0.5, Cp NUM

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X direction
0 0.5 1 1.5 2 2.5 3

Y
 d

ire
ct

io
n

0

0.5

1

1.5

2

2.5

3

t = 0.5, Cp PIV

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.11: Pressure field distribution of Taylor green vortex Green & Taylor (1937). Left:
Numerical-Analytical. Right: PIV all Neumann

3D: Solution from Ethier & Steinman The solution from Ethier & Steinman is a
closed form of the incompressible Navier-Stokes equations for the verification of solvers. In
Figure 5.12 the reconstructed pressures, indicated with PIV, are compared to the numerical
results. A 3D diamond shaped mask is added with Neumann boundary conditions on the
edges. The results are compared for the center z-plane. The spatial resolution is ∆x = ∆y =
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0.005 mm and the temporal resolution is ∆t = 0.1 s. It can be observed that the results
match and the pressure is calculated quite accurately.
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Figure 5.12: Pressure field distribution of Ethier & Steinman solution at midplane with a = π/4
and d = π/x Ethier & Steinman (1994). Left: Numerical-Analytical. Right: PIV all Neumann.

5.4.2 Verification of the pressure and load reconstruction methods with a
numerical simulation

The pressure and load reconstruction results are verified using a numerical data set based on
an immersed boundary method1. The data set contains a plunging NACA 0012 airfoil at a
Reynolds number of Re= 5,000 and a reduced frequency of k= 1.2566 (k = πfc

Uref
), where f

is the frequency of the plunging motion. The reference pressure at inflow conditions is zero
(pref = 0 Pa). The data is equally spaced with a spatial resolution of ∆x = ∆y= 6 mm or
0.006c and the temporal resolution is ∆t= 0.1 s or 1/25T (T is the plunging period).

In Figure 5.13 the flow field and control volume are shown. The control volume has an offset
of 0.5c from the upper and lower edge of the airfoil, 0.3c from the LE and 1c from the TE of
the airfoil when starting plunging. Note that the control volume is fixed for this study.

1The numerical data set was provided by TAY Wee-Beng, see (Tay et al., 2013)
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Figure 5.13: Flowfield and control volume (red) of plunging airfoil.

In this section ‘CV’ indicates that the loads are reconstructed based on a control volume
analysis.

Verification of load reconstruction The load reconstruction is verified by comparing the
reconstructed loads with the numerical simulation. The reconstructed loads are obtained as
described in section 5.2 using the control volume approach in which the pressure field from
the numerical data is used. The results are given in Figure 5.14.
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Figure 5.14: Load reconstruction with pressure from numerical data. Left: Lift coefficient. Right:
Drag coefficient.

It can be observed that the reconstructed lift coefficients match very well with the numerical
data. For the drag coefficients a slight overshoot is found.
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Verification of reconstructed pressure field The reconstructed pressure field is verified
by comparing the pressure fields and the reconstructed loads with the numerical simulation.
The pressure field is obtained as given in section 5.1, and the reconstructed loads are obtained
as described in section 5.2 using a control volume approach in which the reconstructed pressure
field is used. For the pressure reconstruction a rectangular mask with an offset of 0.1c from
the, upper edge, lower edge, LE and TE of the airfoil is used. Neumann conditions are applied
on all boundaries unless specified otherwise.

The reconstructed pressure field is scaled to the reference pressure at the uniform inflow
conditions (pref = 0, over the left side of the domain). At t/T= 0.4 the reconstructed pressure
field is given in Figure 5.15.

Figure 5.15: Pressure field in Pa. Top-Left: Numerical pressure field. Top-Right: Reconstructed
pressure field form numerical flow field. Bottom-Left: Reconstructed pressure field form nu-
merical flow field, material derivative based on pseudo Lagrangian approach. Bottom-Right:
Reconstructed pressure field form numerical flow field, numerical pressure values are imposed on
the inflow boundary in the form of Dirichlet boundary conditions

It can be observed that the distribution of the reconstructed pressure field as well as its
magnitude agrees well the numerical pressure field. For the other time steps, the reconstructed
pressure fields also match the numerical pressure fields. If the material derivative is based
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on the pseudo Lagrangian approach, the high negative peaks in the center of a vortex is not
captured as well as the Eulerian approach. This is probably due to the fact that the path
reconstruction is more difficult in the vortex center in which large flow field gradients are
present. If Dirichlet boundary conditions are prescribed, the pressure values in the vicinity
of this boundary are not calculated as accurate as the case in which only Neumann boundary
conditions are used.

Next the reconstructed loads by use of the reconstructed pressure fields are given in Fig-
ure 5.16.
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Figure 5.16: Load reconstruction with reconstructed pressure field from numerical flow field.
Left: Lift coefficient. Right: Drag coefficient.

It can be observed that the reconstructed lift coefficients agree well with the numerical data
when Neumann boundary conditions are applied on all boundaries. For the drag coefficients a
larger overshoot can be observed compared to Figure 5.14 in which the pressure field was taken
from the numerical data. This is as expected from literature because the highest uncertainty
in the load reconstruction is expected to origin from the reconstructed pressure field. The
high discrepancy peaks for the lift and drag coefficients correlate with a vortex moving over
the control volume boundary in which large flow field gradients are present. The Lagrangian
approach gives very similar reconstructed lift values compared to the Eulerian approach. The
reconstructed drag values display an overshoot compared to the numerical data, although the
trend is slightly different compared to the Eulerian approach. When imposing both Dirichlet
boundary conditions obtained from Bernoulli or directly prescribed from the numerical data
on the inflow (left) side of the domain, a higher discrepancy with the numerical load data is
found. In this case, also the pressure field has higher discrepancies with the numerical pressure
field compared to the Neumann boundary conditions. When setting up a first-order-accurate
finite difference scheme (FD) for the Neumann boundary conditions of the Poisson problem,
the reconstructed lift is relatively well captured, however the drag shows high discrepancies.
This is caused by the relative high errors in the spatial gradients of velocities that arise from
the first-order-accurate difference scheme.

MSc. Thesis Remco van de Meerendonk



62 Numerical Methods

Remco van de Meerendonk M.Sc. Thesis



Chapter 6

Results: Wing reconstruction & Force
measurements

In this chapter the wing reconstruction results are given, after which the force measurement
results are presented and discussed. The wing reconstruction methods, based on the volu-
metric flow imaging measurements, are explained in subsection 4.5.3. The experimental setup
and the signal processing methods for the force measurements are given in section 4.4.

6.1 Wing reconstruction

At the leading edge, the angle of attack of the flat plate wings is set to 45 deg by means of the
servo motor at the beginning of the experiment. However, the flexible wings deform during
the revolving motion under the effect of hydrodynamic loads which changes the geometric
angle of attack. For the deformed flexible wings, the geometric angle of attack for a given
spanwise location is defined as the angle between the wing motion and the line connecting
the reconstructed leading edge and trailing edge points,

αgeo(z) = tan−1
(
YLE(z)− YTE(z)

XLE(z)−XTE(z)

)
(6.1)

where LE(x, y, z) describes the location of the reconstructed LE in x, y-coordinates for a
given span (z) location, and TE(x, y, z) describes the location of the reconstructed TE in
x, y-coordinates for a given span (z) location.

The local angle of attack is the angle of attack at each chordwise position for a given span (z)
location. The variation in the local angle of attack along the chord, which reflects the curva-
ture of the wing, is computed from the gradients between the chordwise reconstructed points.
As a result, the local angle of attack calculation is more sensitive wing reconstruction errors
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compared to the geometric angle of attack. Therefore, the local angle of attack calculations
are performed to attain the general trend of the wing curvature during the revolving motion.

6.1.1 Reconstruction quality

The average uncertainty in the triangulation of the identified points at the tip is approximately
0.3 of the vector spacing, corresponding to an uncertainty of 0.6 deg in the geometric angle
of attack.

At the tip the chordwise profile is reconstructed. The mean absolute uncertainty between the
reconstructed total length of the tip chord profile and chord (c) over the revolving motion is
given in Table 6.1.

Table 6.1: Mean absolute uncertainty between the reconstructed total length of the tip chord
profile and chord (c). Uncertainty expressed in terms of vector spacing.

Wing Model Error [vec]

175 [µm] Moderate flexibility 0.19

125 [µm] High flexibility 0.23

The uncertainty for both flexible wings is low, indicating that the chordwise profile length is
reconstructed correctly.

After the chordwise profile is reconstructed, the wing is extruded in z-direction towards the
root. The mean absolute uncertainty between the image identified root-TE point and the
reconstructed root-TE point over the revolving motion is given in Table 6.2.

Table 6.2: Mean absolute uncertainty between the image identified root-TE point and the re-
constructed root-TE point. Uncertainty expressed in terms of vector spacing.

Wing Error [vec]

x y z

175 [µm] Moderate flexibility 0.54 1.49 3.58

125 [µm] High flexibility 0.21 1.27 2.81

It can be observed that the highest uncertainty is present in z-direction. This is caused
because the wing chord profile is reconstructed at the tip and extruded towards the root over
the same z-coordinate. The uncertainty for both x, y-direction are significantly lower and
below 2 vectors.

6.1.2 Deformation characteristics

1 [mm] Rigid wing The deflection of the rigid wing is negligible such that it can be
assumed to be fully rigid with a fixed geometric and local angle of attack of 45 deg for all
phase angles.
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175 [µm] Moderate flexible wing In Figure 6.1 the temporal evolution of the geometric
and local angle of attack are given for the moderate flexible wing.
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Figure 6.1: 175 [µm] Moderate flexible wing. Left: Temporal evolution of geometric angle of
attack. Right: Temporal evolution of local angle of attack at the tip.

Due to the deflection of the wing the geometric angle of attack decreases as the motion
progresses. As expected, at the start of the revolving motion the geometric AoA at the root
and tip is close to 45 deg, due to the relatively low fluid forces. The local AoA at the LE
is not exactly 45 deg as set by the servo motor. This is because the first detected LE point
corresponds to the 1st chord profile point after the LE CF rod. At this chordwise section the
wing starts deflecting which results in a local AoA that is slightly lower than 45 deg. The local
AoA at the TE is significantly lower than at the LE. When the motion further progresses the
wing starts to deflect rapidly until the end of the acceleration phase (δ∗ = 1), after which it
starts to converge to a final wing shape. At the end of the revolving motion the approximate
geometric angle is 41 deg at the root and 39 deg at the tip, resulting in a wing twist angle of
2 deg. The local AoA at the TE of the tip is approximately 39 deg and the difference in local
AoA between the LE and TE is approximately 3.5 deg.

In Figure 6.2 the temporal evolution of the root and tip deflection is given.
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Figure 6.2: 175 [µm] Moderate flexible wing. Left: Temporal evolution of root chord profile.
Right: Temporal evolution of tip chord profile.
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It can be observed that the deflection at the tip is higher than at the root for the complete
revolving motion. The rate of deflection in chordwise direction is highest close to the LE. This
is caused by the increasing moment from TE to LE (zero moment at the TE and maximum
moment at the LE). In the later phase of the revolving motion, the wing converges to its final
shape in correlation with the forces reaching steady-state values.

125 [µm] High flexible wing In Figure 6.3 the temporal evolution of the geometric and
local angle of attack are given for the high flexible wing.
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Figure 6.3: 125 [µm] High flexible wing. Left: Temporal evolution of geometric angle of attack.
Right: Temporal evolution of local angle of attack at the tip.

It can be observed that until δ∗ = 0.39 the geometric AoA at the root and tip is approxi-
mately equal indicating that the wing deflects evenly along the wing span. Subsequently, the
wing deflects more at the outwards spanwise positions which corresponds with a decreased
geometric angle of attack. At the end of the revolving motion the approximate geometric
angle is 34.5 deg at the root and 31 deg at the tip, resulting in a wing twist angle of 3.5 deg.
The local AoA at the TE of the tip is approximately 28 deg and the difference in local AoA
between the LE and TE is approximately 10 deg.

In Figure 6.4 the temporal evolution of the root and tip deflection is given. Similar to the 175
[µm] moderate flexible wing, the deflection at the tip is higher than at the root for greater
phases of the revolving motion. Due to the decreased flexural stiffness, the wing deflects more
compared to the 175 [µm] moderate flexible wing which is evident from the stronger deflected
chord profiles.

The chordwise variation of the local angle of attack at the tip and the spanwise distribution of
the geometric angle of attack at δ∗ = 4 are given in Figure 6.5. The geometric angle of attack
increases approximately linearly over the span with approximately 3.5 deg indicating torsional
deformation of the wing and the formation of wing twist. As can be deduced from the shape
of the flexible wings during the revolving motion (see Figure 6.4), the maximum deformation
occurs close to the leading edge resulting in a prominent variation of the local angle of attack
for the chordwise locations from the leading edge (x/c = 0) until approximately x/c = 0.4,
after which it is mostly constant (see Figure 6.5 right).
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Figure 6.4: 125 [µm] High flexible wing. Left: Temporal evolution of root chord profile. Right:
Temporal evolution of tip chord profile.
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Figure 6.5: 125 [µm] High flexible wing. Left: Spanwise evolution of the geometric angle of
attack at the end of the revolving motion. Right: Chordwise evolution of the local angle of attack
of the tip at the end of the revolving motion, x′ is the distance along the chord profile.

Chordwise deflection The chordwise deflection is expressed as the distance between the
reconstructed TE point of the flexible wing with respect to the rigid wing. In Figure 6.6 the
deflection is given for both moderate and high flexible wings.

The chordwise deflection is related to the geometric angle of attack, such that both quanti-
ties show a similar temporal variations. At the end of the revolving motion the chordwise
deflection at the tip is approximately 0.234c for the 125 [µm] high flexible wing and 0.116c
for the 175 [µm] high flexible wing, and the chordwise deflection at the root is approximately
0.195c for the 125 [µm] high flexible wing and 0.088c for the 175 [µm] high flexible wing.
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Figure 6.6: Temporal evolution of the chordwise deflection in terms of chord length. The solid
line gives the chordwise deflection at the tip and the dashed line gives the chordwise deflection
at the root.

6.2 Force measurements

6.2.1 Measurement uncertainty in the reported steady-state value

For greater rotation angles approximate steady-state conditions are expected to occur for uni-
directional revolving wings (Percin & van Oudheusden, 2015b,a; Harbig et al., 2013; Jardin
& David, 2014, 2015; Beals & Jones, 2015; Jones & Babinsky, 2011). The average measure-
ment uncertainty of the reported lift and drag steady-state value is calculated based on the
ensemble averaged and the low-pass filtered data in the steady-state phase (5 < δ∗ < 10).
The average measurement uncertainty with a 95% confidence level is expressed as twice the
standard deviation in percentage of the mean steady-state ensemble averaged data and low
pass filtered data are given in Table 6.3.

Table 6.3: Average measurement uncertainty of the reported steady-state lift,drag in percentage
of the mean steady-state (5 < δ∗ < 10) ensemble averaged data (left), and low pass filtered data
(right) with a 95% confidence interval.

Wing Average measurement uncertainty [%]

Ensemble averaged Low-pass filtered

CL CD CL CD

1 [mm] Rigid 4.2 4.5 1.1 0.9

175[µm] Moderate flexibility 5.1 4.6 1.6 1.1

125[µm] high flexibility 9.2 4.6 1.5 0.9

The approximate relative average measurement uncertainty for the low-pass filtered steady-
state lift and drag are respectively 1.5% and 1%. Because the low-pass filter eliminates the
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electrical noise, mechanical vibrations from the driving system and the natural frequency of
the test-rig, the measurement uncertainties based on the low-pass filtered data are the most
representative for the reported force data.

6.2.2 Lift, drag and performance characteristics

In Figure 6.7, the temporal evolution of the lift and drag characteristics for the different
flexible wings considered in this study (i.e. rigid, moderate flexibility and high flexibility) are
given.
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Figure 6.7: Left: Temporal evolution of lift coefficient. Right: Temporal evolution of drag
coefficient. The light background signal is the ensemble average of the raw lift and drag data,
and the solid line is the corresponding low-pass filtered data.

The drag and lift for the rigid wing are comparable suggesting that the pressure forces are
dominant, so that the net force vector is oriented normal to the wing surface. For all wings, the
forces build up rapidly at the start of the motion due to non-circulatory added mass effects.
During acceleration the wing encounters an added mass reaction force due to the accelerated
fluid, causing an additional force component which is absent after the acceleration phase. For
a thin two-dimensional rigid flat plate wing moving in an inviscid fluid the force due to the
inertia of the added mass acting normal to the wing surface can be expressed as (Percin &
van Oudheusden, 2015b; Ellington, 1984),

F = ρ
π

4
c2
dΩ

dt
sin(α)

∫ r′tip

r′root

r′dr′ (6.2)

where r′ is the spanwise distance from the revolution axis, α is the angle of attack and dΩ/dt
is the angular acceleration (see Figure 4.2). The added mass reaction force acts normal to
the local wing surface and is proportional to the acceleration component in this direction.
Therefore, for the rigid wing, its contribution is constant throughout the acceleration phase.
However, for the flexible wings, the acceleration component in the wing-normal direction
changes since the wings deform (see Figure 6.2 and Figure 6.4) and so does the magnitude of
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the added mass force. As the wing deflects, the added mass contribution decreases while its
net force vector tilts toward the direction of lift. Summarized, for decreasing flexural stiffness,
the net added mass effect is decreased in magnitude and tilted more in the direction of lift.
As a result, the build-up of lift during the acceleration phases is comparable for the different
wings while the build-up of drag decreases with decreasing flexural stiffness and the associated
wing deformation. In addition to the added mass reaction force, circulatory forces associated
with the generation of the LEV build up gradually with increasing velocity. For increased
flexibility the starting TEV advects quicker downstream (see subsection 7.2.2), such that the
velocity field induced by starting TEV counteracting the growth of circulation is attenuated,
allowing for a more rapid build up of circulation. At the end of the acceleration phase, there is
a slight decrease in the force coefficients as the added mass contribution ceases to contribute.
The reduced contribution of the added mass contribution to the drag for the flexible wings is
also evident from relatively small decrease of the drag coefficient at the end of acceleration
phase when compared to the rigid wing case. After the acceleration phase, the lift and drag
continue to increase until a maximum is reached at approximately δ∗ = 4.5. Subsequently,
the forces decrease slightly until for all wings nearly steady-state conditions are reached at
approximately δ∗ = 5.

The comparison of the lift data shows that the lift generation of the rigid and the moderate
flexible wings are comparable, while smaller lift levels are achieved in the high flexibility
case. The drag shows a monotonic decrease with decreasing flexural stiffness. At steady-state
conditions, for δ∗ = 10, the lift coefficients of the high flexible wing is approximately 7%
lower compared to the rigid wing, while the lift coefficient of the moderate flexible wing is
approximately 1% higher. The steady-state drag coefficients of the moderate and high flexible
wings are respectively 15% and 36% lower compared to the rigid wing

In Figure 6.8, the temporal evolution of the resultant force is given. Due to the monotonic
decrease in drag with decreasing flexural stiffness and the decrease in lift for the high flexible
wing, the resultant force acting on the model is decreased with decreasing flexural stiffness
throughout the revolving motion. For steady-state conditions the resultant forces of the
moderate and high flexibility are respectively 6% and 19 % lower compared to the rigid wing.
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Figure 6.8: Temporal evolution of the resultant force coefficient (CR =
√
C2

L + C2
D). The light

background signal is the ensemble average of the raw lift and drag data, and the solid line is the
corresponding low-pass filtered data.

At the leading edge of the wing the flow separates and a LEV is formed which is accompanied
by the formation of a low pressure region. The associated suction forces acting normal to
the wing surface are the dominant factor determining the net forces acting on the wing
(Usherwood & Ellington, 2002). Birch et al. (2004) studied a steady revolving rigid wing for
a Reynolds number of 120 and 1,400. At the high Reynolds number of 1,400, for an angle
of attack higher than 20 deg, the net force vector is normal to the wing indicating that the
pressure forces are dominant (see Figure 2.4). The net force vector for rigid wings acts normal
to the wing surface such that,

αgeo = tan−1
(
D/L

)
(6.3)

However, flexible wings deflect which leads to a deviation of the net force vector orientation
with respect to the angle of attack that is initially set at the LE (Zhao et al., 2009). Based on
Equation 6.3 (i.e., using the ratio of drag to lift) the geometric angles of attack αgeo at δ∗ = 4
for the rigid, moderate flexible and high flexible wings are calculated as 43.7 deg, 38.6 deg
and 32.6 deg, respectively. The geometric angles of attack for these cases are also obtained
from the reconstructed wing shapes and a comparison is given in Table 6.4.

Table 6.4: Comparison of the geometric angle of attack αgeo based on the wing reconstruction
results (section 6.1, Figure 6.1 & Figure 6.3) and the lift-to-drag force relation ratio Equation 6.3.
Results apply to δ∗ = 4.

Wing αgeo root [deg] αgeo tip [deg] αgeo [deg]

Wing reconstruction Wing reconstruction Force relation

1 [mm] Rigid 45 45 43.7

175[µm] Moderate flexibility 41 39 38.6

125[µm] high flexibility 34.5 31 32.6
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The spanwise centroid of lift and drag is located at approximately r/R = 0.7 − 0.75 for the
different wings, see subsection 6.2.3 and subsection 8.2.3. Although the wing reconstruction
presented in this section is an approximation of the true wing shape, it can be observed that
the reconstructed geometric angles of attack near the tip (or at approximately the spanwise
centroid of lift and drag, r/R = 0.7−0.75) of the wing for δ∗ = 4 agree well with the direction
of the net forces for the studied wings. This observation suggests that for a chordwise flexible
wing the lift-to-drag ratio at steady-state conditions can be estimated based on the geometric
angle of attack as illustrated in Figure 6.9.

αgeo αgeo

Figure 6.9: Net force angle as a function of geometric angle of attack at steady-state conditions.
Left: Rigid wing. Right: Chordwise flexible wing. Apparent reference flow from left-to-right.
Small vectors represent local net forces that act normal to the wing surface, and big vector
represent resultant net force that is aligned with respect to the geometric angle of attack.

The approximate aerodynamic efficiency can be estimated using the power factor (C1.5
L /CD)

(Wang, 2007). The power factor is a non-dimensional aerodynamic ratio of the mass supported
per power. The performance characteristics expressed as the lift-to-drag ratio and the power
factor are given in Figure 6.10.
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Figure 6.10: Left: Temporal evolution of the lift-to-drag ratio CL/CD. Right: Temporal evolu-
tion of power factor expressed as C1.5

L /CD. The light background signal is the ensemble average
of the raw data, and the solid line is the corresponding low-pass filtered data.

Due to the relatively higher decrease in drag than lift for decreasing flexural stiffness, both
lift-to-drag ratio and power efficiency increase with decreasing flexural stiffness. At the steady-
state conditions, for δ∗ = 10, the lift-to-drag for the moderate flexible wing and high flexible
wing is approximately 18% and 45% higher than for the rigid wing, respectively. The power
efficiency for the moderate flexible wing and high flexible wing is approximately 20% and 40%
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higher than for the rigid wing at steady-state conditions, respectively.

6.2.3 Spanwise and chordwise location of the center of pressure

The spanwise location of the center of pressure is the location at which the resultant force
vector produces the same moment about the root of the wing and is approximated as,

Center of pressure, r = −Mx

Fy
− offbal (6.4)

where r is the spanwise location of the center of pressure. Within the reference frame of the
balance, that is rotated with 45 deg (as set by the servo motor) with respect to the flow field
data, Mx and Fx are respectively the moment and force vector in x-direction. The term offbal

is the offset between the wing root and the balance, of approximately 15 mm. Because the
LE is rigid in spanwise direction, the spanwise location of the center of pressure represents
the location along the span of the wing. The chordwise location of the center of pressure is
the location at which the resultant force vector produces the same moment about the LE of
the wing and is approximated as,

Center of pressure, x′geo = −Mz

Fr
; Fr =

√
F 2
x + F 2

y (6.5)

where Mz is the moment in z-direction and Fx is the force vector in x-direction within the
reference frame of the balance. The lift-to-drag ratio at steady-state conditions agrees well
with the geometric angle of attack, see Table 6.4. This implies that the line connecting the
LE and TE, which is inclined with the geometric angle of attack, is approximately normal to
the force vector Fr, such that the chordwise location of the center of pressure is located on
this line as illustrated in Figure 6.11.

αgeo

x'geo x'geo

αgeo

Figure 6.11: Chordwise location, x′geo, of the center of pressure located along the line that
connects the LE and TE of the wing (indicated by the magenta dot). Left: Rigid wing. Right:
Chordwise flexible wing. Apparent reference flow from left-to-right.

In Figure 6.12 the spanwise and chordwise location of the center of pressure are given. The
spanwise location of the center of pressure is approximately equal for the different wings
and decreases slightly during the revolving motion. At steady-state conditions, for δ∗ = 10,
the center of pressure is located at approximately 0.73 r/R. The chordwise location of the
center of pressure is approximately constant from the end of the acceleration onwards for the
different wings. However, for decreasing flexural stiffness the chordwise location of the center
of pressure is located closer to the LE of the wing. At δ∗ = 10, the chordwise location of the
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center of pressure x′geo of the rigid, moderate flexible and high flexible wing is approximately
0.45c, 0.425c and 0.38c, respectively.

0 2 4 6 8 10

δ*

0

0.2

0.4

0.6

0.8

1

S
pa

nw
is

e 
po

si
tio

n 
r/

R

constant acceleration constant velocity

1 [mm] Rigid
175 [µm] Moderate flexibility
125 [µm] High flexibility

0 2 4 6 8 10

δ*

0

0.2

0.4

0.6

0.8

1

C
ho

rd
w

is
e 

po
si

tio
n 

x'
ge

o
/c

Figure 6.12: Temporal evolution of the location of the center of pressure Left: Spanwise location
along the span in r/R. Right: Chordwise location along the line connecting the LE and TE in
x′geo/c (inclined with the geometric angle of attack).

6.2.4 Comparison with literature

Percin & van Oudheusden (2015b) studied a revolving rigid wing at an angle of attack of 45 deg
and a Reynolds number of 10,000. The motion kinematics were the same as in this study. The
trend in the temporal temporal evolution and magnitude of the lift and drag coefficients are
similar compared to the current study. The most pronounced difference between the results
is that the magnitude of the drag peak at the end of the acceleration phase is approximately
equal to the steady-state value, while in the current study this peak is approximately 13%
lower than the steady-state value. The steady-state lift in (Percin & van Oudheusden, 2015b)
is approximately 10% higher than the current study. Also in (Percin & van Oudheusden,
2015b) the reported drag closely matches the lift (within approximately 6% at steady-state
conditions), which further suggests that the pressure forces are dominant, so that the net force
vector is oriented normal to the wing surface. Although the LE structure, clamp position and
Rossby number are slightly different in (Percin & van Oudheusden, 2015b), this comparison
shows that the steady-state values of the lift and drag are very similar which further validates
the current measurements.

Zhao et al. (2009) studied wings with different chordwise stiffness for a large range of angles
of attack at a Reynolds number of 2,000 for a steady-state revolving motion. From this study,
the force coefficients for varying effective stiffness parameter at an angle of attak of 45 deg
are extracted. The effective stiffness parameter Π1 is calculated based on the flexural stiffness
EI, the span (R = 100 mm), the mean chord (c = 33.7 mm), the fluid density (ρf = 850
kg/m3) and the reference velocity at 75% span (Uref = 0.18 m/s) as,

Π1 =
EI

Rc3ρfU
2
ref

(6.6)

Uref is approximated by means of the wing planform characteristics and the distance between
the root of the wing and the rotation axis (RA = 127 mm). The lift and drag coefficient as
a function of effective stiffness are given in Figure 6.13.
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Figure 6.13: Lift and drag coefficient from (Zhao et al., 2009) expressed as function of Π1 at an
angle of attack of 45 deg.

The lift and drag coefficients for a high effective stiffness, corresponding to large Π1 values,
are similar in magnitude to the measured lift and drag coefficients of the rigid wing in this
study. Note that the lift and drag coefficients extracted from (Zhao et al., 2009) are corrected
to the force coefficient definition as given in Equation 5.17. In the approximate range of
0.8 < Π1 < 2 the lift is relatively constant, while the drag is already significantly lower. For
Π1 < 0.8 the lift starts decreasing as well.

Note that Zhao et al. (2009), measured the flexural stiffness EI by means of a custom-built
bending apparatus, while in this study EI is approximated based on the wing planform char-
acteristics and material parameters. The approximated Π1 parameter for the rigid, moderate
flexible and high flexible wing are respectively 55, 0.389 and 0.147, see section 4.3. The general
trend for the lift and drag coefficient for flexible wings with a decreased Π1 value is similar.
For moderate flexible wings in the range of 0.8 < Π1 < 2, the lift is similar compared to the
rigid wing (Π1 >> 1) while the drag is lower. Moreover, for high flexible wings in the range
of Π1 < 0.8, a decrease in lift is observed as well as a monotonic decrease in drag. However,
from this comparison the force coefficients do not exactly match for the same effective stiffness
Π1 parameters. The differences may be due to the different wing planform and definition of
EI. Furthermore the Rossby number in (Zhao et al., 2009) is approximately 5.3, which is
significantly higher compared to the a Rossby number of approximately 1.9 in the current
study.

M. Percin, R. Vester and B.W. van Oudheusden studied the lift and drag force coefficients for
a steady-state revolving rigid wing with Reynolds number of 10,000 for a range of angles of
attack 1. The motion kinematics and the wing planform were the same as in this study. The
Rossby number (1.66) is slightly smaller compared to the current study. The steady-state lift
and drag coefficients as a function of angle of attack are given in Figure 6.14.

1Results provided by M. Percin, study not published to date
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Figure 6.14: Steady-state lift and drag coefficient as function angle of attack.

The steady-state lift and drag coefficients at an angle of attack of 45 deg are approximately
10% higher compared to the current study (as observed in Figure 6.7 for δ∗ = 10). However,
it should be noted that the steady-state lift and drag coefficients in Figure 6.14 are defined
as the average forces in the motion period of 2 < δ∗ < 10. The empirical relation between
the steady-state lift-drag coefficient and the angle of attack is given as,

CL = −0.06− 0.112 cos(2.073α) + 1.026 sin(2.073α) (6.7)

CD = 0.978− 0.903 cos(2.105α)− 0.098 sin(2.105α) (6.8)

In section 6.2 it is observed that the geometric angle of attack, based on the steady-state
lift-to-drag ratio (Equation 6.3), agrees well with the geometric angle of attack near the tip
of the wing (Table 6.4). Based on Equation 6.3 the calculated geometric angles of attack
αgeo at δ∗ = 10 for the rigid, moderate flexible and high flexible wings are respectively 44
deg, 39 deg and 33.5 deg. Although the steady-state lift and drag coefficients in Figure 6.14
are higher than in the current study, it is assumed that the relative differences of the lift
and drag for different angles of attack are similar. Subsequently, the steady-state lift and
drag coefficient found in the current study are compared to the reconstructed steady-state
lift and drag coefficient for a rigid wing revolving at the geometric angle of attack for the
rigid, moderate flexible and high flexible wing for δ∗ = 10 as given in Table 6.5. Note that
the reconstructed steady-state lift and drag coefficients are scaled to match the steady-state
lift and drag coefficients of the rigid wing in the current study.

It can be observed that the relative decrease in steady-state lift is slightly higher compared
to the decrease in drag when revolving a rigid wing at the geometric angle of attack of the
moderate and high flexible wings. However the differences are small and the steady-state lift
and drag coefficients of the moderate and high flexible revolving wings show a good agreement
with a revolving rigid wing at the identical geometric angle of attack of the flexible wing. This
suggests that the geometric angle of attack for different degree of chordwise flexibility wings is
dominant for the lift and drag acting on the model at steady-state conditions. In Figure 6.15
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Table 6.5: Comparison of the steady-state lift and drag coefficient found in the current study
and the reconstructed steady-state lift and drag coefficient for a rigid wing revolving at the
geometric angle of attack for the rigid, moderate flexible and high flexible wing using the data
from Figure 6.14 for δ∗ = 10.

Wing CL CD αgeo [deg] CL CD

Figure 6.7 Equation 6.3 Figure 6.14

1 [mm] Rigid 0.89 0.86 44 0.89 0.86

175[µm] Moderate flexibility 0.9 0.73 39 0.86 0.71

125[µm] high flexibility 0.83 0.55 33.5 0.79 0.54

the suggested net force as a function of geometric angle of attack at steady-state conditions
is illustrated.

αgeo αgeo

Figure 6.15: Net force as a function of geometric angle of attack at steady-state conditions.Left:
Rigid wing revolving at the same geometric angle of attack of the flexible wing. Right: Chordwise
flexible wing. Apparent reference flow from left-to-right. Small vectors represent local net forces
that act normal to the wing surface, and big vector represent resultant net force that is similar
for a rigid wing revolving at the same geometric angle of attack of the flexible wing.

6.3 Conclusion

Wing reconstruction The 1 [mm] rigid wing has a fixed geometric and local AoA of 45
deg throughout the revolving motion, while the flexible wings deflect significantly during the
revolving motion. The 175 [µm] moderate flexible wing deflects and twists along the wing
span. Moreover, the deflection and formation of wing twist increase during the revolving
motion. At the end of the revolving motion the geometric AoA at the tip is approximately 39
deg at the tip and 41 deg at the tip, resulting in a wing twist angle of 2 deg. The corresponding
chordwise deflection at the tip is approximately 0.116c. The 125 [µm] flexible wing deflects
and twists more along the wing span than the 175 [µm] moderate flexible wing. At the end
of the revolving motion the geometric AoA at the tip is approximately 31 deg at the tip and
34.5 at the root, resulting in a wing twist angle of 3.5 deg. The corresponding chordwise
deflection at the tip is approximately 0.234c.

The experimental campaign of this study was set up with the focus on the tomographic PIV
measurements. Therefore, the wing reconstruction can be considered as an approximation of
the true wing shape. For the moderate flexible wing at steady-state conditions, the geometric
AoA at the tip is about equal to the local AoA at the tip-TE because the local AoA chordwise
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profile at the tip suffers from reconstruction errors. The true local AoA at the tip-TE is
expected to be somewhat smaller than 39 deg. The reconstructed wing is used to relate
the flow field characteristics to the wing shape and to determine the mask for the pressure
reconstruction.

Force measurements During the acceleration phase (δ∗ < 1) the build-up of lift is similar
for the different wings, while the build-up of drag is significantly lower for decreasing flexural
stiffness. At steady state conditions, for δ∗ = 10, the lift of the rigid and moderate flexible
wing is comparable, while the lift is only slightly (about 7%) smaller for the high flexible
wing. The drag shows a monotonic decrease with decreasing flexural stiffness. Moreover, for
decreasing flexural stiffness the relative decrease in drag, up to 36% for the most flexible wing,
is higher than that for the lift. As a result the lift-to-drag ratio and power efficiency increase
significantly with decreasing flexural stiffness. For steady-state conditions the lift-to-drag
ratio for the moderate flexible and high flexible wing are approximately 18% and 45% higher
than that for the rigid wing, respectively. Furthermore, the power efficiency for the moderate
flexible wing and high flexible wing is approximately 40% and 20% higher than that of the
rigid wing, respectively.

In the current study a rigid wing and two flexible wings with different degree of chordwise
flexibility have been tested. The observations in the current study suggest that the lift-to-
drag ratio for chordwise flexible wings at steady-state conditions can be estimated based on
the geometric angle of attack near the tip. Moreover, it is shown that a rigid wing with a
geometric angle of attack identical to that of the deformed wing generates similar lift and
drag. This suggests that the geometric angle of attack at steady-state conditions is dominant
for the lift and drag generated by chordwise flexible wings considered in this study. These
observations may simplify the modeling of flexible flapping-wing flight, since the aerodynamic
forces of chordwise flexible wings may be approximated using an aerodynamic model for a
revolving rigid wing at the identical geometric angle of attack of a flexible wing.

At steady-state conditions, for δ∗ = 10, the spanwise centroid of pressure is approximately
equal for all wings, located at 0.73 r/R. The chordwise location of the center of pressure is
approximately located along the line that connects the TE and LE, and is located closer to
the LE with decreasing flexural stiffness. For the rigid, moderate flexible and high flexible
wing this location is approximately 0.45c, 0.425c and 0.38c, respectively.
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Chapter 7

Results: Flow field

In this chapter the flow field results are presented and discussed. First, the definitions that
are used in the evaluation of the results are given. Second, the major flow structures are
presented and discussed. Finally, the spanwise characteristics of the flow field are evaluated
and analyzed.

Based on the balance measurements steady-state conditions are reached for δ∗ > 5, see
section 6.2. However, the imaging measurements are taken up to δ∗ = 4, see section 4.5. In
this chapter steady-state conditions indicate the imaging measurements for the greatest chord
length that has been measured, i.e. δ∗ = 4.

7.1 Definitions

Q-criterion (Hunt et al., 1988) Qualitatively a vortex can be interpreted as a connected
fluid region with a high concentration of vorticity compared with its surroundings (Wu et al.,
2006). Coherent vortex structures in a flow field can be identified using the Q-criterion. The
Q-criterion is Galilean-invariant, is based on the symmetric and anti-symmetric components
of the velocity gradient tensor (∇u), and represents the local balance between shear strain
rate and vorticity magnitude (Hunt et al., 1988; Jeong & Hussain, 1995). The Q-criterion is
evaluated as,

Q = −1

2

∂ui
∂xj

∂uj
∂xi

(7.1)

Flow regions with a positive value for the Q-criterion are used to identify coherent structures
in the flow that are dominated by rotation. Note that the Q-criterion can also be interpreted
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as the source term in the Poisson equation for the calculation of the pressure fields. In absence
of rotational effects for an incompressible and divergence free flow (see Equation 5.20) the
Poisson equation reads,

∇2p′ = 2ρQ (7.2)

In this study, similar to other flapping wing studies (see Carr et al. (2013); Garmann et al.
(2013); Wolfinger & Rockwell (2014); Bross & Rockwell (2015); Percin & van Oudheusden
(2015b)), the Q-criterion is employed because it is useful in the distinction of the shear
and rotation dominated regions in a flow field. Furthermore Carr et al. (2013) showed that
the Q-criterion produces results are nearly indistinguishable compared to the local structure
identification schemes based on the ∆-criterion and λ2-criterion which are also based on the
velocity gradient tensor, see Jeong & Hussain (1995).

Although the Q-criterion is not rotation invariant, i.e. the components dUx/dz (spanwise
variation of chordwise velocity) and dUz/dx (chordwise variation of spanwise velocity) are dif-
ferent in the rotating reference frame compared to the inertial reference frame when revolving
around the y-axis, the identified Q-criterion isosurfaces are very similar and the differences are
negligible. This is because the vorticity is mainly dominated by the chordwise and spanwise
vorticity components.

γ1 & γ2 (Graftieaux et al., 2001) γ1 & γ2 can be used to characterize a vortex. Its
definition is based on a non-local scheme and only considers the topology of the flow field.
γ1 is a non-Galilean invariant scalar function that measures the relative rotation about each
grid point constrained to a definable interrogation window as,

γ1(P ) =
1

N

∑
M

(RPM ×UM ) · z
‖RPM‖‖UM‖

=
1

N

∑
M

sin(θM ) (7.3)

where N is the number of grid points M within a bounded square region centered on grid
point P, UM is the velocity vector, RPM is the radius vector and θM is the angle between
the velocity vector UM with the radius vector RPM . The center of a vortex core is identified
as the local maximum of ‖γ1‖.

The vortex core size is identified using ‖γ2‖ as,

γ2(P ) =
1

N

∑
M

(RPM × (UM −UP )) · z
‖RPM‖‖UM −UP ‖

(7.4)

where UP is the local advection velocity. Note that in contrast to γ1, γ2 is Galilean invariant.
Regions of ‖γ2‖ > 2/π are locally dominated by rotation and therefore represent a vortex
core.
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Since γ1 is not Galilean invariant, γ1 and γ2 are calculated in the rotating reference frame.
For this analysis M is selected as a square region of 15×15 vectors. The detected vortex core
size did not change significantly with different sizes of M .

Helical density (Moffatt, 1969) Helical density h or helicity per unit volume indicates
the degree to which a flow structure is three dimensional and in what sense, and is also an
indicator of vorticity flux along the primary axis of a vortex (Carr et al., 2013). Helical
density h is calculated as,

h = U · ω ; ω = ∇×U (7.5)

where U is the velocity vector and ω is the vorticity vector. The helical density is calculated
in the inertial reference frame such that the vorticity flux along the primary axis of a vortex
is indicative for the spanwise and chordwise advection of vorticity.

Circulation The circulation Γ is calculated as,

Γ =

∫
Sxy

ωzdxdy ; Γ∗ =
Γ

cVt
(7.6)

where Sxy is the chordwise oriented integration plane.

Spanwise vorticity flux The spanwise vorticity flux q is calculated as the integration of
the spanwise vorticity flux density (third component of helical density) as,

q =

∫
Sxy

Uzωzdxdy ; q∗ =
q

cV 2
t

(7.7)

where Sxy is the chordwise oriented integration plane.

Formation number The formation number FN is the distance traveled at each spanwise
position x(r) normalized by the chord length as,

FN = x(r)/c =
δ∗

0.75 +RA/(2c)
·
{
r/R+RA/(2c)

}
(7.8)

where RA is the distance between the root of the wing and the rotation axis, see section 4.2.
r/R is the spanwise coordinate in terms of span length measured from the root. The factor
0.75 is introduced since δ∗ is defined at the reference position (r/R = 0.75).
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7.2 Flow structures

In this section the flow structures for the tested wings are presented. For illustration purposes
the two flexible wings are illustrated with a thickness of 0.5 mm. In all figures the left column
depicts the 1 [mm] Rigid wing, the middle column depicts the 175 [µm] Moderate flexible
wing and the right column depicts the 125 [µm] High flexible wing unless stated otherwise.

7.2.1 Experimental uncertainty of the flow field

For an incompressible flow, a divergence-free flow field is expected. However, due experimental
errors the flow field is not divergence-free in complete measurement domain. Furthermore,
when assuming a divergence-free flow field in the derivation of the modified Poisson problem,
an incorrect pressure field is reconstructed (see subsection 5.3.5).

In Figure 7.1 the temporal evolution of the absolute divergence of the velocity field is given
in terms of its mean and rms error value.
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Figure 7.1: Temporal evolution of the experimental uncertainty of the flow field, evaluated by
the absolute divergence of the velocity field (|∇ · uc/Vt|). Based on measurement volumes 1-3.
Left: Temporal evolution of the mean. Right: Temporal evolution of the RMS error.

It is found that the mean and rms error values are significantly lower for the flexible wings
compared to the rigid wing. During the acceleration phase the mean and rms error values
increase as the revolving motion progresses. Within this phase the vortical structures increase
in size and magnitude which are accompanied by increased spatial velocity gradients. Due to
reconstruction and discretization errors, errors are introduced within the calculation of these
spatial velocity gradients, and subsequently within the reported divergence of the velocity
field. At steady-state conditions (δ∗ = 4) the mean and rms error values reach a relative
constant level.

In Figure 7.2, the spatial distribution of the divergence of the velocity field is given for δ∗ = 1.5.
It is found that the highest measurement uncertainties agree well with the rotation dominated
regions which are accompanied by high spatial velocity gradients. These regions include the
LEV, TV, flow regions in close proximity of the wing and the flow regions in the wake of
the wing that are located downstream of the TE. Due to the significantly higher thickness
of the rigid wing compared to the flexible wings, higher reconstruction errors are introduced,
which increases the measurement uncertainty near the wing surface. Moreover, the rigid wing
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Figure 7.2: Divergence of velocity field (∇ · u c/Vt) for δ∗ = 4. Top: isosurface of ∇ · u c/Vt:
Blue ∇ · u c/Vt = −5 and Red ∇ · u c/Vt = 5. Middle: Divergence of velocity field contour at
r/R = 0.5. Bottom: Divergence of velocity field contour at r/R = 0.75.

has the lowest natural frequency (see section 4.4) which also increases the uncertainty of the
velocity field in close proximity of the wing.

7.2.2 Coherent structures

Q-criterion isosurfaces In Figure 7.3 the vortical structures are depicted for the three
wings at δ∗ = 1 and δ∗ = 1.5. In section A.1 a time-series animation of vortical structures is
given.

The global topology of the vortex system for the three wing models is similar, although the
orientation of the structures is clearly affected by the wing deformation. For each wing an

MSc. Thesis Remco van de Meerendonk



84 Results: Flow field

LEV, an initial coherent starting TEV with a number of smaller scale TEVs, a TV and a
root vortex (RV) are present. The vortex system for the flexible wings is more coherent with
higher Q-criterion values, with the most significant difference occurring for the RV. From the
side views the greater tip deflection for the flexible wings compared to the rigid wing can be
observed.

Until the acceleration phase δ∗ = 1, it can be clearly observed that in relation to the chordwise
deflection of the wings, the TV and the starting vortex system is more elongated in the
streamwise direction in the flexible cases. For decreasing flexural stiffness, the finger-like
swirling vortices that are wrapped circumferentially around the TV are located closer to the
center of the TV. These finger-like vortices connect to the secondary small-scale TEVs in all
cases. At δ∗ = 1.5, a large number of secondary TEVs are present elongating all over the
span in the wake. The flexible wings appear to shed a higher ordered and more continuous
streak of smaller-scale TEVs compared to the rigid wing. The TEVs move downstream along
approximately the local induced angle of attack at the trailing edge of the wing model. For
δ∗ > 2.5 the vortex formation displays significant chaotic features for all three wings. These
results are in accordance with the results reported by Percin & van Oudheusden (2015b),
who also performed revolving-surging rigid wing measurements with the same wing planform
and kinematics. Wolfinger & Rockwell (2014) observed an increased coherency of the vortex
system for lower Rossby numbers and suggested that the stability or retention of the LEV is
coupled with the interior structure of the tip and root vortices. The increased coherency of
the vortex system for the flexible wings could contribute to the stability or retention of the
LEV. The occurrence of vortex breakdown for all wing models is similar. Near the midspan
(r/R = 0.5) position, the core of the LEV is lifted off and expanded into a substantial bubble-
like structure that extends towards to the tip for all three wings which is indicative for the
vortex breakdown. This is in accordance with literature for a rigid revolving wing at which
the vortex breakdown was also reported to occur near midspan (Garmann & Visbal, 2014;
Jones et al., 2016). The LEV grows in size along the span until about 75% for all three wings.
This agrees well with the observations given (Carr et al., 2013) who studied a rigid revolving
wing. For δ∗ > 1.5 there is an onset of vortex burst at which the vortex formation starts
displaying significant small scale chaotic structures, which appears quite similar for all wings.

The location of the LEV in the x, y-plane is similar for the different flexibilities. However, due
to the deflection of the flexible wings the LEV center is located closer to the wing surface. The
top part of the LEV-TV is located at approximately the same upward location for all wing
models, but the bottom part of the LEV-TV is located closer to the top part of the LEV-TV
for decreasing flexural stiffness. As a result the LEV-TV is confined to a smaller region within
the flow field, which is most pronounced for greater chord lengths of travel. The reduced size
of the LEV is also evident from the spanwise vorticity, see Figure 7.6. Further insights about
the LEV properties in terms of its spanwise characteristics are given in subsection 7.2.3.
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Figure 7.3: Vortical structures for different isosurfaces of Q-criterion: White Q/(Vt/c)
2 = 3,

Orange Q/(Vt/c)
2 = 10 and Pink Q/(Vt/c)

2 = 30. Top: at the end of the acceleration phase
after one chord length of travel (δ∗ = 1). Bottom: after δ∗ = 1.5. The vortex system consists
of a starting trailing edge vortex (starting TEV), multiple shed trailing edge vortices (TEVs), a
tip vortex (TV), a root vortex (RV) and a leading edge vortex (LEV). Left: 1 [mm] Rigid wing.
Middle: 175 [µm] Moderate flexible wing. Right: 125 [µm] High flexible wing.
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Q-criterion colored with helical density In Figure 7.4 the vortical structures are iden-
tified using the Q-criterion and colored by helical density at δ∗ = 1.5. In section A.2 a
time-series animation of vortical structures that are colored by helical density is given.

Figure 7.4: Vortical structures for δ∗ = 1.5. Isosurfaces of Q-criterion (Q/(Vt/c)
2=3) colored

by helical density (hc/V 2
t ).

The highest positive and negative helical density levels exist in the LEV and TV, respectively.
However, the high positive levels are more coherent with decreasing flexural stiffness. These
high levels of helical density are indicative of an outboard spanwise vorticity flux along the
axis of the LEV which is associated with the spanwise transport of vorticity contributing to
the stability of the LEV.

7.2.3 Flow field characteristics

Spanwise vorticity In Figure 7.5 spanwise vorticity contours are given in chordwise ori-
ented planes along the span and at midspan (r/R = 0.5) near the onset of the vortex break-
down for δ∗ = 1.5 and 2. In section A.3 a time-series animation of the spanwise vorticity
contours is given.
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Figure 7.5: Spanwise vorticity contours (ωzc/Vt). Top 2 rows: Vorticity contours along the
span and at r/R = 0.5 for δ∗ = 1.5. Bottom 2 rows: Vorticity contours along the span and at
r/R = 0.5 for δ∗ = 2.
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At the start of the revolving motion the spanwise vorticity contours display similar two-
dimensional characteristics for the different wings. It can be observed that at approximately
δ∗ = 2 features indicating the onset of LEV breakdown around midspan (r/R = 0.5) are
present for the different wings. The negative vorticity that is generated between the LEV
and the wing interacts with the LEV resulting in formation of discrete pockets of both negative
and positive vorticity. Subsequently, the cross-sectional area containing the entrained vorticity
starts expanding rapidly. Although for all wings features of the vortex breakdown are present
around midspan (r/R = 0.5) for greater chord lengths of travel, the flexible wings show a
more coherent LEV. In Figure 7.6 vorticity contours are given in chordwise oriented planes
along the span, and at the midspan position (r/R = 0.5) and reference position (r/R = 0.75)
at δ∗ = 4 .

Figure 7.6: Spanwise vorticity contours (ωzc/Vt) at δ∗ = 4. Top: Vorticity contours along the
span. Middle: Spanwise vorticity contour at r/R = 0.5. Bottom: Spanwise vorticity contour at
r/R = 0.75.

It can be observed that the vorticity region accompanying the LEV at midspan (r/R = 0.5)
is more coherent with decreasing flexural stiffness. At the reference position (r/R = 0.75) the
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LEV region remains more coherent further downstream with decreasing flexural stiffness. At
the midspan and reference position it can be clearly seen that the LEV has a similar location
for the different wings, however, due to the deflection of the flexible wings the LEV center is
located closer to the wing surface. Also it is found that the overall cross-sectional area occu-
pied by the recirculating flow containing the entrained vorticity is significantly smaller with
decreasing flexural stiffness. This is especially pronounced within the bubble-like structure
(r/R > 0.5). These observations are in accordance with the observations made in subsec-
tion 7.2.2.

Spanwise Velocity In Figure 7.7 the spanwise velocity is given in chordwise oriented planes
along the span and at the midspan position (r/R = 0.5), and at a spanwise plane oriented
plane (y, z-plane) with an offset of 0.5c downstream of the TE in the inertial reference frame
for δ∗ = 1.5 and 4. In section A.4 a time-series animation of the spanwise velocity contours
is given.

For δ∗ = 1.5, from the different spanwise velocity contours, an outboard flow at the suction
side of the wing can be observed that agrees well with the location of the LEV, see Figure 7.3
and Figure 7.5, respectively. The positive and negative spanwise velocity regions near the tip
of the wing correlate with the location of the TV, see Figure 7.3. From the velocity contours
at midspan (r/R = 0.5), it is found that the highest levels of spanwise velocity correlate
well with the regions of high spanwise vorticity flux density, see Figure 7.5. The shear layer
emanating from the TE is visible as the interface of spanwise velocity above the shear layer
and negligible spanwise velocity below the shear layer. For decreasing flexural stiffness, the
interface of the shear layer is smoother which is associated with the more continuous shedding
of TEVs, see Figure 7.5. At 0.5c downstream of the TE the footprint of the TV is visualized.
Due to deflection of the flexible wing the TV is located more upwards with decreasing flexural
stiffness, while the spanwise location is approximately maintained. Although, for decreasing
flexural stiffness more coherent and slightly higher spanwise velocities near the the LEV are
present, lower spanwise velocities in the TV region are found. When progressing further in
the revolving motion the region of spanwise flow at the suction side of the wing increases. For
δ∗ = 4, a large region of spanwise flow can be observed that extends over a significant part of
the suctions side of the wing. At the midspan (r/R = 0.5) position, the region of spanwise
flow is distributed over the chord of the wing. For decreasing flexural stiffness the region
of spanwise velocity is located more towards the LE. Also, like for δ∗ = 1.5, the smoother
interface of the shear layer with reduced Kelvin-Helmholtz like instability phenomena can
be clearly observed for the more flexible wings. At the reference position (r/R = 0.75), a
significant part of the spanwise velocity is located near the TE, which is caused due to the
interaction of the spanwise velocity with the induced velocities from the TV.
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Figure 7.7: Spanwise velocity contours (Uz/Vt) for δ∗ = 1.5 and δ∗4. Top: velocity contours
along the span and a velocity contour of the wake at an offset of 0.5c from the TE. Middle:
Velocity contour at r/R = 0.5. Bottom: Velocity contour of the wake at a spanwise oriented
plane (y, z-plane) with an offset of 0.5c downstream of the TE for δ∗ = 1.5, and velocity contour
at r/R = 0.75 for δ∗ = 4.
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Spanwise vorticity flux density The spanwise vorticity flux density is the third compo-
nent of helical density and is indicative for the spanwise advection of vorticity. In Figure 7.8
the spanwise vorticity flux density is given in chordwise oriented planes along the span, at
the midspan position (r/R = 0.5) and reference position (r/R = 0.75) for δ∗ = 1.5 and 4. In
section A.5 a time-series animation of the spanwise vorticity flux density contours is given.

For δ∗ = 1.5, the high positive regions of spanwise vorticity flux density agree well with the
location of the LEV core, its high helical density values and the high spanwise velocities, see
Figure 7.3 , Figure 7.4 and Figure 7.7, respectively. Also the secondary negative vorticity
regions just above the suction side of the wing are transported towards the tip as indicated by
the negative spanwise vorticity flux density contour levels. For the flexible cases the regions
of spanwise vorticity flux density are more coherent compared to the rigid wing. Furthermore
the TEVs that are shed from the TEV accompany a more continuous streak of spanwise
vorticity flux density. From the different spanwise vorticity contours it can also be observed
that the spanwise vorticity flux density of the LEV is more coherent for the flexible wings.
These observations agree with the increased helical density values found in Figure 7.4. From
the spanwise vorticity flux density contours and the helical density profile it is found that
the main spanwise vorticity transport, contributing to the LEV stability, does not occur near
the LE of the wing where the shear layers feeds the LEV, but slightly more downstream.
Although the spanwise vorticity is high at the LE (see Figure 7.5), the spanwise velocity is
low (see Figure 7.7) and as a result the spanwise vorticity flux density is low. At δ∗ = 4, it can
be observed that the location at which the LEV starts advecting spanwise vorticity from root
to tip is located slightly closer to the LE for decreasing flexural stiffness. This observation
is most pronounced at the reference position (r/R = 0.75) at which the LEV is fully grown
within the bubble-like structure. Furthermore, it is found that while the shear layer feeding
the LEV mainly had a positive vorticity flux density for δ∗ = 1.5, substantial negative values
are found for δ∗ = 4.
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Figure 7.8: Spanwise vorticity flux contours (ωzUzc/V
2
t ) for δ∗ = 1.5 and 4. Top: Spanwise

vorticity flux contours along the span. Middle: Spanwise vorticity flux contour at r/R = 0.5.
Bottom: Spanwise vorticity flux contour at r/R = 0.75.
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Vorticity in x-direction (ωx) In Figure 7.9 the vorticity in x-direction (ωx) is given for
δ∗ = 1.5 at a spanwise oriented plane (y, z-plane) with an offset of 0.5c downstream of the
TE, see Figure 7.7 for the location of this plane with respect to the wing.

Figure 7.9: Vorticity in x-direction contours (ωxc/Vt) of the wake for δ∗ = 1.5 at a spanwise
oriented plane (y, z-plane) with an offset of 0.5c downstream of the TE.

The positive ωx distribution that is shed from the TE over the model is approximately equal
for the different wings. The widely distributed positive ωx levels are in accordance with the
observations made in (Kim & Gharib, 2010). In this study it was found that for a translating
plate the distribution of ωx is confined to the counter-rotating tip vortices, while for the
rotating plate the positive ωx levels are widely distributed in the shear layer of the wake. The
negative ωx region corresponds to the TV and is slightly more coherent for the the flexible
wings. Near the root higher and more coherent ωx levels are found for the flexible wings
compared to the rigid case.

7.3 Spanwise characteristics

7.3.1 Total circulation

The integration region of the total circulation is illustrated in Figure 7.10.

Figure 7.10: Integration region (yellow) within the total field of view (white) for the evaluation
of total circulation.
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The lower left corner has an offset of approximately 0.05c in both x, y-direction from the TE of
the rigid wing. For a quiescent flow the total circulation is zero. Due to the close alignment
of the downstream integration region with the TE of the wing, the TEV is shed over the
boundary early in the revolving motion. Consequently, based on Kelvin’s circulation theorem
a net circulation is generated within the integration domain. The upper right corner is aligned
with the maximum field of view. The total circulation values reported in this chapter were
also verified by means of a line integral.

In Figure 7.11 the temporal evolution of the total circulation for different spanwise positions
is given. It can be observed that in general the trends in temporal evolution are similar for the
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Figure 7.11: Temporal evolution of total circulation (Γ∗Total) for different spanwise positions
(r/R).

different wings. The total circulation increases with increasing flexural stiffness. Inboard of
midspan (r/R = 0.5) the total circulation increases until steady-state conditions are reached,
while outboard of midspan features of the vortex breakdown are visible that attenuate the
build-up of circulation at midspan, and even significantly decrease the circulation at the
reference position (r/R = 0.75). At approximately midspan (r/R = 0.5) and the reference
position (r/R = 0.75), for δ∗ = 2, a dip can be observed that correlates with the onset
of the vortex breakdown. These observations are in accordance with the observations in
subsection 7.2.3.

In Figure 7.12 the temporal evolution of the total circulation is given in terms of traveled
chord lengths at the reference position and the formation number. It is found that the
total circulation has a higher correlation with the formation number than the rotation angle
which is related to δ∗. Until a formation number of 1, the different spanwise sections have
approximately the same slope for a given wing configuration. The slope is decreased with
decreasing flexural stiffness. For the moderate and high flexible wing respectively, dΓ∗Total/dFN
is approximately 6% and 18% lower compared to the rigid wing.
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Figure 7.12: Temporal evolution of total circulation (Γ∗Total) for different spanwise positions
(r/R). Temporal evolution is expressed in terms of chord traveled (δ∗) and formation number
(FN).

In Figure 7.13 the temporal evolution of the spanwise distribution of the total circulation
is given. Until the onset of the vortex breakdown (δ∗ < 2) there is an approximate linear
increase of circulation with spanwise position until (r/R = 0.9) which corresponds to the linear
increase in rotational velocity. The total circulation is lower for decreasing flexural stiffness
except near the tip. At the tip the flexible wings often generate more total circulation.
The pronounced dip in total circulation for 2.5 < δ∗ < 3.5 at approximately (r/R = 0.7)
correlates with the onset of vortex breakdown that includes significant chaotic features and a
rapid expansion of recirculating flow. Due to the rapid expansion, part of the LEV containing
positive vorticity is outside the domain of integration. For δ∗ > 3.5 the spanwise distribution
of total circulation settles to a steady-state distribution. The maximum circulation is slightly
shifted outboard with decreasing flexural stiffness.
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7.3.2 LEV circulation

Limited domain of integration First, the LEV circulation region is considered as the
region for which γ2 > 2/π limited to the same integration region that was used in the cal-
culation of the total circulation as illustrated in Figure 7.10. In Figure 7.14 the temporal
evolution of the LEV circulation for different spanwise positions is given.
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Figure 7.14: Temporal evolution of LEV circulation (Γ∗LEV ) for different spanwise positions
(r/R).

The LEV circulation does not change significantly with flexural stiffness except at the mid-
plane (r/R = 0.5). The trend in temporal evolution and magnitude until approximately
δ∗ = 1.5 are similar compared to the total circulation, see Figure 7.11. This suggests that the
bound vorticity (vorticity accumulated in the close vicinity of the wing) is small and most of
the vorticity is kept within the LEV. For δ∗ > 1.5 the total circulation is higher than the LEV
circulation. This is because most of the vorticity within the limited domain of integration
is positive which is fully evaluated within the total circulation, while the LEV circulation
contains the vorticity for which γ2 > 2/π. After the onset of vortex breakdown, the LEV is
less well-defined, such that the entire region of positive vorticity is not completely captured
by γ2 > 2/π. Moreover, this criterion bounds the LEV to a specific region, while it actually
has a smooth transition to its surroundings that encompass some additional positive vorticity.

In Figure 7.15 the temporal evolution of the LEV circulation is given in terms of chord lengths
traveled at the reference position and the formation number. Although the correlation of the
LEV circulation with formation number is not as strong compared to the total circulation
(see Figure 7.12), the correlation is higher with formation number compared to δ∗. Until a
formation number of 1, dΓ∗LEV/dFN is comparable for the different wings at the same spanwise
section. This indicates that the LEV circulation develops comparably in the early phase of
the revolving motion with the traveled distance of each spanwise position.
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Figure 7.15: Temporal evolution of LEV circulation (Γ∗LEV ) for different spanwise positions
(r/R). Temporal evolution is expressed in terms of chord traveled (δ∗) and formation number
(FN).

In Figure 7.16 the temporal evolution of the spanwise distribution of the LEV circulation is
given. Until approximately δ∗ = 1.5 the trend and magnitude of the spanwise circulation
distribution are similar compared to the total circulation (see Figure 7.13), which indicates
that most of the vorticity is kept within the LEV. However, a number of differences are
observed. In general the LEV circulation is similar for the different wings, while the total
circulation is lower for decreasing flexural stiffness. Also a sharp peak at r/R = 0.9 is observed
for the total circulation, while a smoother transition is present for the LEV circulation.
Furthermore, the dip in total circulation for 2.5 < δ∗ < 3.5 is less pronounced in the LEV
circulation. After the onset of vortex breakdown the vortex formation displays significant
chaotic features. Especially within the bubble-structure there is a large cross sectional area
of recirculating flow which contains negative vorticity (see Figure 7.6) that could contribute
to the strong dip in the total circulation.
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Complete flow field domain of integration Before vortex breakdown the LEV is rel-
atively close to the wing, see Figure 7.5. At the onset of vortex breakdown a bubble-like
structure is formed and the LEV expands beyond the TE. In this section the LEV circulation
region is considered as the region for which γ2 > 2/π evaluated in the complete flow field
to fully capture the LEV. In Figure 7.17 the temporal evolution of the LEV circulation for
different spanwise positions is given.
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Figure 7.17: Temporal evolution of LEV circulation (Γ∗LEV ) for different spanwise positions
(r/R).

It can be observed that the dip at the reference position (r/R = 0.75) is less pronounced
because the entire LEV is captured, while the behavior for the other spanwise positions
similar compared to Figure 7.14.

In Figure 7.18 the temporal evolution of the LEV circulation is given in terms of traveled
chord lengths at the reference position and the formation number. The dip at (r/R = 0.6 and
r/R = 0.8) are less pronounced which is in accordance with the onset of vortex breakdown,
while the behavior for the other spanwise positions is similar compared to Figure 7.15 . For all
wing cases, the LEV circulation builds up strongly until roughly the same formation number
(for approximately FN>2) and a relatively constant level is reached. For greater formation
numbers more gradual changes take place.

The increased correlation of the LEV circulation with formation number and the steady-state
conditions that occur at greater formation numbers (for FN>2), are in accordance with the
observations made in (Poelma et al., 2006) who studied an impulsively-started revolving rigid
wing that has a Drosophila based wing planform and a Reynolds number of 256.
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Figure 7.18: Temporal evolution of LEV circulation (Γ∗LEV ) for different spanwise positions
expressed in terms of chord traveled (δ∗) and formation number (FN).

In Figure 7.19 the temporal evolution of the spanwise distribution of the LEV circulation
is given. At steady-state conditions (δ∗ = 4), the circulation inboard of midspan (r/R <
0.5) is similar for the different wings, while outboard of midspan the circulation decreases
significantly with decreasing flexural stiffness. The maximum LEV circulation is found at
approximately the reference position (r/R = 0.75) at which the expanded LEV bubble-like
structure is largest. Subsequently, towards the tip, the spanwise vorticity is tilted into an
x-component and transported downstream by the TV.
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7.3.3 Circulation: Total - LEV - TEV

The integration of the circulation is evaluated in the complete flow field and the TEV is
identified as a region for which γ2 < −2/π. The spanwise distribution of the total circulation
and the total circulation - LEV circulation - TEV circulation are given in Figure 7.20.

Early in revolving motion the flow behaves two-dimensional. According to Kelvin’s circulation
theorem DΓ/Dt = 0 which says that the time rate of change of circulation around a closed
curve consisting of the same fluid elements is zero (Anderson, 2011). It can be observed that
until approximately δ∗ = 1.25, the total circulation is zero and all circulation that is created
by the wing is present in the field of view. For δ∗ > 1.25, the starting TEV is shed over the
downstream boundary of the flow field and net positive circulation is created. Also it can
be observed that until δ∗ = 0.5625 the LEV circulation + TEV circulation is approximately
equal to the total circulation. This indicates that the majority of the circulation is kept within
the TEV and the LEV and little in the bound circulation (vorticity accumulated in the close
vicinity of the wing). For greater revolving phases the TEVs are more difficult to identify
compared to the initial coherent starting TEV. A layer of negative vorticity is shed at the TE
which is not recognized as a vortex based on the γ2 criterion such that the bound vorticity
cannot be differentiated from the vorticity entrained in the TEV within the present analysis
for approximately δ∗ > 0.5625.
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7.3.4 LEV centroid

The LEV centroid location is calculated as,

x̄ =

∫
Sxy

ωzxdxdy∫
Sxy

ωzdxdy
(7.9)

where x̄ is the x, y-coordinate at a chordwise oriented plane measured with respect to the
LE of the wing, and Sxy is the chordwise oriented LEV circulation integration region that is
considered as the region where γ2 > 2/π evaluated in the complete flow field. By use of the
LEV centroid x, y-coordinates and the wing reconstruction information, the closest distance
of the LEV centroid to the wing surface (s) is calculated.

In Figure 7.21 the temporal evolution of the LEV centroid is given for different spanwise
positions. It can be observed that the temporal evolution of the LEV centroid x-location
is similar for the different wings. For δ∗ < 2 the LEV moves downstream for the different
spanwise positions. At midspan, for δ∗ = 2, the LEV centroid x-location starts moving
upstream and the distance of the LEV centroid relative to the wing surface is decreased
which correlates with the occurrence of the vortex breakdown. Identifying vortex breakdown
by means of the LEV centroid is supported by Jones et al. (2016). It was concluded that
the centroid of a vortex and a POD analysis, were found most useful in identifying the phase
angle at which the vortex breakdown occurs. At r/R = 0.9 a strong dip can be observed
at δ∗ = 3 which agrees well with the rapid expansion of the bubble-like structure and the
downstream movement of the identified LEV in the vicinity of the TV. During this process
the LEV centroid is also identified at a more downward location. The approximate similar
location of the LEV centroid for all wing cases is in accordance with the observations made
in subsection 7.2.2. For approximately δ∗ > 1.25, the position of the LEV centroid is located
significantly closer to the wing surface with decreasing flexural stiffness.
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Figure 7.21: Temporal evolution of the LEV centroid for different spanwise positions (r/R). Top:
Chord distance in x-direction from the LE (x/c). Middle: Chord distance in y-direction from the
LE (y/c). Bottom: Chord distance normal to the wing surface(s/c).

In Figure 7.22 the temporal evolution of the spanwise distribution of the LEV centroid x-
location from the LE (x/c) is given. As mentioned above the x-location is similar for the
different wings. In the early phases of the revolving motion the LEV centroid is located
close to the LE for all spanwise positions, after which the LEV centroid starts to move
downstream. Note that the initial peak at δ∗ = 0.0625 and 0.14063 for the high flexible
wing are incorrect and not representative for the LEV centroid. For δ∗ > 1.5, at the onset
of vortex breakdown which corresponds to the formation of a significant LEV bubble-like
structure, the downstream tilt of the LEV centroid outboard of midspan (r/R > 0.5) is
significantly higher than inboard of the midspan. The downstream tilt of the LEV converts
part of the spanwise vorticity (ωz) into ωx, reducing the spanwise circulation. The TE of the
rigid wing is located at cos(45 deg) ≈ 0.7 x/c downstream from the LE and even further for
the flexible wings. Consequently, it is found that the LEV centroid does not move past the
TE. These observations are in accordance with (Carr et al., 2015) who studied a revolving
rigid wing at an angle of attack of 45 deg and a Reynolds number of O(103− 104) depending
on the AR. A greater tilt of the LEV outboard of the region in which the LEV is ‘stable’ was
observed (in the current study this ‘stable’ LEV might be interpreted as the region inboard
of midspan). Furthermore, for an AR= 2 it was observed that the LEV center position does
not move past the TE.
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In Figure 7.23 the temporal evolution of the spanwise distribution of the distance between
the LEV centroid and the wing is given. It can be observed that the LEV centroid is located
significantly closer to the wing surface for decreasing flexural stiffness. At approximately the
reference plane (r/R = 0.75) the LEV has its maximum distance to the wing surface. This
spanwise location corresponds with the spanwise location at which the size of the expanded
LEV bubble-like structure is largest, see subsection 7.2.2. The TV is located at the tip which
constrains the LEV centroid. Inboard of the tip the LEV centroid is located close to the wing
surface, while at the tip the LEV centroid is sometimes recognized at the TV and therefore
located at infinity (boundary of the field of view). Note that these peaks are not representative
for the centroid of the LEV. Especially between the reference position (r/R = 0.75) and the
TV, the LEV centroid is located significantly closer to the airfoil for the flexible wings. At
steady-state conditions (δ∗ = 4), it can be observed that inboard of the midspan (r/R = 0.5)
position the LEV centroid has approximately the same distance to the wing surface for all
wing cases. However, outboard of midspan the distance of the LEV centroid to the wing
surface is significantly reduced with decreasing flexural stiffness.
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7.3.5 Spanwise vorticity flux of the LEV

The integration region for the spanwise vorticity flux of the LEV is considered as the region
for which γ2 > 2/π evaluated in the complete flow field. In Figure 7.24 the temporal evolution
of the spanwise vorticity flux of the LEV for different spanwise positions is given. In general
positive values of spanwise vorticity flux are observed which indicate the advection of spanwise
vorticity within the LEV from root to tip. At the onset of vortex breakdown at midspan
(r/R = 0.5) for approximately δ∗ = 1.5 − 2 a negative gradient is visible. This negative
gradient is an indication that the spanwise transport of vorticity in the LEV is decreased
and vorticity is accumulated in that given plane which leads to the grow of the overall cross-
sectional area of the LEV bubble-like structure. During this process, spanwise vorticity is
tilted into a x-component and in a lesser extent into a y-component generating a strong
decrease in the spanwise transport of vorticity in the LEV, see Figure 7.22. Subsequently,
when the revolving motion further progresses, this leads to the burst of that vortical structure.
For greater chord lengths of travel (δ∗), the vorticity flux approaches steady-state values.
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Figure 7.24: Temporal evolution of the spanwise vorticity flux of the LEV (q∗) for different
spanwise positions (r/R).

In Figure 7.25 the temporal evolution of the spanwise vorticity flux of the LEV is given. Until
approximately the end of the acceleration phase (δ∗ = 1) there is little spanwise transport of
vorticity within the LEV and the flow behaves two-dimensional. Subsequently, there is a very
strong increase of positive spanwise vorticity flux, followed by a transition period that that
accompanies the generation of smaller scale chaotic structures in the flow. Finally, at steady-
state conditions (δ∗ = 4), a constant positive spanwise distribution of spanwise advection of
vorticity within the LEV is reached. The oscillations at steady-state conditions are probably
caused by the smaller scale chaotic structures in the flow field. These results are in accordance
with (Percin & van Oudheusden, 2015b) who also observed a constant spanwise distribution
of spanwise advection of vorticity for δ∗ = 4. Furthermore it can be noted that the spanwise
advection of vorticity within the LEV is stronger for the flexible wings compared to the rigid
wing. Until approximately δ∗ = 2 the moderate flexibility shows the highest values of vorticity
transport, while for δ∗ > 2 they have comparable levels of vorticity transport. Finally it can
be noted that the advection of vorticity within the LEV is constrained at the tip (r/R = 1),
where the TV further advects the vorticity downstream.
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7.4 Conclusion

Flow structures A similar vortex system, comprising LEV, TV, RV and starting TEV
components, are observed in all cases. For decreasing flexural stiffness, the coherency of
this vortex system is increased. Furthermore, the LEV structure of the flexible wings shows
higher helical density values compared to the rigid wing. These high levels are indicative for
an outboard spanwise vorticity flux along the axis of the LEV which is associated with the
spanwise transport of vorticity contributing to the stability and retention of the LEV.

The onset of vortex breakdown is found to occur at approximately midspan (r/R = 0.5), for
δ∗ > 1.5, for all wings. Near midspan, the core of the LEV is lifted off and expanded into a
substantial bubble-like structure that extends towards the tip. The LEV grows in size along
the span until approximately the reference position (r/R = 0.75).

The LEV center is located closer to the wing surface for decreasing flexural stiffness. Also
the TV-LEV is confined to a smaller region within the flow field for the flexible wings. The
reduced size of the LEV is especially pronounced within the bubble-like structure.

The highest levels of spanwise advection of vorticity correspond with the location of the LEV
core. Compared to the rigid wing, a more coherent region of spanwise advection of vorticity
along the span is found for the flexible wings. Furthermore, the location at which the LEV
starts advecting spanwise vorticity is located slightly closer to the LE for decreasing flexural
stiffness.

Due to the increased deflection with decreasing flexural stiffness the TV is located more
upward, while the spanwise location is maintained.

Spanwise characteristics Until the end of the acceleration period (δ∗ = 1) all wings
display similar characteristics in terms of the LEV properties. Subsequently, at about δ∗ >
1.5, a transition period appears to occur which correlates with the onset of vortex breakdown.
Finally, at approximately δ∗ = 4, the spanwise distribution is settled and approximate steady-
state conditions are reached.

Early in the revolving motion, until approximately the end of the acceleration period, the
LEV circulation is similar for the different wings and shows a linear increase in the spanwise
direction until r/R = 0.9 which is associated with the increase of the rotational velocity due
to the curvilinear nature of the motion, after which it decreases to zero at the tip. Although
inboard of midspan (r/R < 0.5) the LEV circulation increases until steady-state conditions
are reached, outboard of midspan (r/R > 0.5) the build-up of circulation is attenuated at the
onset of vortex breakdown. At steady-state conditions, the circulation inboard of midspan
is similar for the different wings, while outboard of midspan the circulation is decreased
significantly with decreasing flexural stiffness. The maximum LEV circulation is found at
approximately the reference position (r/R = 0.75) at which the expanded LEV bubble-like
structure is largest.
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The total circulation and LEV circulation have an increased correlation with formation num-
ber compared to a rotation angle which is represented by the chord lengths traveled at the
reference position (δ∗). Although the slope of total circulation with formation number is
decreased for decreasing flexural stiffness, the slope of the LEV circulation with formation
number is comparable for the different wings.

The temporal development of the spanwise distribution of the LEV centroid location is com-
parable for the different wings. The LEV centroid location is similar in absolute sense.
However, due to the deflection of the flexible wings, the LEV centroid is located closer to the
wing surface. At steady-state conditions, for spanwise locations inboard of midspan, the LEV
centroid has approximately the same distance to the wing surface for all wing cases. However,
outboard of midspan the distance of the LEV centroid to the wing surface is significantly re-
duced with decreasing flexural stiffness. Within the bubble-like structure the LEV is tilted
significantly aft in the downstream direction, which converts part of the spanwise vorticity
(ωz) into ωx such that the spanwise circulation is reduced.

Until approximately δ∗ = 0.5625 most of the vorticity is kept within the LEV and TEV, and
little in the bound circulation. Furthermore, for δ∗ < 1 there is little spanwise transport of
vorticity within the LEV and the flow behaves rather two-dimensional. At the onset of vortex
breakdown (δ∗ = 1.5), at the midspan position, a high negative gradient in the spanwise
vorticity flux of the LEV is present. This negative gradient is indicative for vorticity accumu-
lation which can eventually lead to the burst of the LEV bubble-like structure. Throughout
the revolving motion, the spanwise advection of vorticity within the LEV is higher for the
flexible wings compared to the rigid wing. Finally, at steady-state conditions a constant
positive spanwise distribution of spanwise advection of vorticity within the LEV is reached.

In section 8.3 a summary of the spanwise characteristics in terms of the LEV properties and
sectional force coefficients for δ∗ = 1, 1.5 and 4 is given.
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Chapter 8

Results: Pressure & Load reconstruction

In this chapter the results of the pressure & load reconstruction for the different wings are
presented and discussed. The methods used in the calculation of the pressure fields and loads
exerting on the wing are described in chapter 5.

The temporal resolution of the rigid wing is TR*= 0.25 for all phase angles, while the temporal
resolution of the flexible wings is TR*= 0.25 for 0.0625 < δ∗ < 1.5 and TR*= 0.5 for
2 < δ∗ < 4 (see subsection 4.5.1). In this study a coarsened temporal resolution indicates
that TR*= 0.5 instead of TR*= 0.25. To form the coarsened data set from the high-time-
resolution data for the rigid wing case, every other phase is selected starting from δ∗ = 0.0625
to 4.

For illustration purposes the 2 flexible wings are illustrated with a thickness of 0.5 mm. In
all figures the left column depicts the 1 [mm] Rigid wing, the middle column depicts the 175
[µm] Moderate flexible wing and the right column depicts the 125 [µm] High flexible wing
unless stated otherwise.

Based on the balance measurements steady-state conditions are reached for δ∗ > 5, see
section 6.2. However, the imaging measurements are taken up to δ∗ = 4, see section 4.5. In
this chapter the steady-state conditions indicate the imaging measurements for the greatest
chord length that has been measured, i.e. δ∗ = 4.

8.1 Pressure field

The pressure fields presented in this section are evaluated by use of the temporally coarsened
data with a resolution of TR*= 0.5 such that the different wings can be compared for greater
chord lengths up to δ∗ = 4.
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8.1.1 Spanwise distribution

In Figure 8.1, the pressure contours are given in chordwise oriented planes along the span, and
at the midspan position (r/R = 0.5) and at the reference position (r/R = 0.75) for δ∗ = 1.5
and 4.

The low pressure region at the suction side of the wing correlates well with the location of
the LEV, as depicted in Figure 7.3 and Figure 7.5. At δ∗ = 1.5, a low pressure region is
observed downstream of the wing which is associated with the starting TEV. At midspan
(r/R = 0.5), the location of the low pressure region is similar for the different wings. In
section A.6 a time-series animation of the pressure fields is given. After the onset of vortex
breakdown, the low pressure region outboard of midspan (r/R > 0.5) grows rapidly. At
δ∗ = 4, the low pressure region accompanied by the LEV reduces in size for decreasing flexural
stiffness. Also the high pressure region on the lower side of the wing becomes slightly smaller
in size, such that the net pressure difference between the pressure and suction side of the
airfoil is significantly decreased with decreasing flexural stiffness, which correlates well with
the reduction in the resultant force acting on the wing observed in the balance measurements
(see Figure 6.8). Furthermore, it can be observed that the low pressure peak is relatively high,
and located closer to the wing surface with decreasing flexural stiffness. These observations
are in accordance with the location of the LEV centroid, see Figure 7.21 and Figure 7.22.
Furthermore, the low pressure peak is closer to the LE with decreasing flexural stiffness,
which is in agreement with the chordwise location of the center of pressure obtained from the
balance measurements, see Figure 6.12. Moreover, due to an increased chordwise deflection,
the local suction force vectors have an increased alignment with the direction of lift, such that
the total net force vector is more inclined in the direction of lift. Although the low pressure
region associated with the LEV is reduced in size with decreasing flexural stiffness, resulting
in a smaller resultant force on the wing, the corresponding lift generation remains relatively
high because of the increased alignment of the force vector in the direction of the lift caused
by the wing deformation and the relative high suction peak that is located closer to the wing
surface. These observations suggesting a reduction of the total net force and an increase of
the lift-to-drag ratio agree well with the balance measurements, as depicted in Figure 6.8 and
Figure 6.10.
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Figure 8.1: Pressure contours (p) for δ∗ = 1.5 and 4. Top: Pressure contours along the span.
Middle: Pressure contour at r/R = 0.5. Bottom: Pressure contour at r/R = 0.75.
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In Figure 8.2 the footprint of the wake at a spanwise oriented plane (y, z-plane) located at
0.5c downstream of the TE is given (see Figure 7.7 for the location of this plane relative to
the wing).

Figure 8.2: Pressure contour (p) of the wake at a spanwise oriented plane (y, z-plane) with an
offset of 0.5c downstream of the TE for δ∗ = 4.

Due to the deflection of a flexible wing, the flow becomes more aligned with the direction of
the revolving motion at the trailing edge and a smaller wake is formed which is especially
pronounced in the vicinity of the tip vortex. The reduced size and magnitude of the low
pressure region in the wake associated with the deflection of the wing, which also results in
tilting of the reduced net resultant force vector in the lift direction, accounts for the significant
decrease in drag with increasing wing flexibility.

8.1.2 Comparison with coherent flow structures

In Figure 8.3 the low (blue) and high (red) pressure regions are given in conjunction with
the vortical structures, which are identified using the Q-criterion, for δ∗ = 1.5 and 4. In
section A.7 a time-series of the revolving motion is given.

The vortical structures are dominated by rotation in which a low pressure region is created.
It can be observed that the transition of the pressure field between the volumes is relatively
smooth and that the low pressure regions correlate well with the vortical structures. This
high correlation between the pressure regions and the vortical structures is even found after
the onset of vortex breakdown when small fragmented chaotic scale structures are formed.
Consequently, it can be observed that the vortical structures overlap with the calculated low
pressure regions. The regions of decreased pressure corresponding to the small-scale vortical
features are not resolved due to the limited spatial resolution and smoothing nature of the
Poisson pressure integration scheme. As mentioned earlier the size of the low pressure region
is decreasing with decreasing flexural stiffness, which can be observed by the smaller blue
isosurface regions for decreasing flexural stiffness. The high pressure region (red) is mainly
located outboard of midspan (r/R > 0.5) and also decreases in size with decreasing flexural
stiffness.

Since the pressure field is independent of the reference frame and the Q-criterion is similar
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in both rotating and inertial reference frame for the current case, it is expected that the
pressure field is directly related to the Q-criterion because the latter is essentially the source
term of the Poisson pressure integration scheme for an incompressible flow in the absence of
rotational effects, see Equation 7.2. Although Q > 0 does not guarantee the existence of a
pressure minimum, in most cases they are equivalent (Jeong & Hussain, 1995). In this study
also a high correlation between the low pressure field and Q-criterion is observed.
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120 Results: Pressure & Load reconstruction

Figure 8.3: Vortical structures and reconstructed pressure fields for δ∗ = 1.5 and 4. Isosurfaces
of Q-criterion: White Q/(Vt/c)

2 = 3. Isosurfaces of reconstructed pressure field: Blue p = −13
Pa and Red p = 6 Pa.
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8.1.3 LEV pressure centroid

The LEV pressure centroid location is calculated as,

x̄ =

∫
Sxy

pxdxdy∫
Sxy

pdxdy
(8.1)

where x is the x, y-coordinate at a chordwise oriented plane measured with respect to the
LE of the wing, and Sxy is the chordwise oriented LEV circulation integration region that
is considered as the region for which γ2 > 2/π evaluated in the complete flow field, see
section 7.1.

In Figure 8.4 the temporal evolution of the spanwise distribution of the LEV pressure centroid
x-location is given . The LEV pressure centroid has a high correlation with the LEV centroid
location, see Figure 7.22. The greatest differences between the LEV pressure centroid and
the LEV centroid location are found near the tip at approximately r/R = 0.9 for steady-state
conditions. For instance at steady-state conditions LEV pressure centroid of the rigid wing
is located more downstream than the LEV centroid.

In Figure 8.5 the temporal evolution of the spanwise distribution of the distance between the
LEV pressure centroid and the wing surface (s/c) is given. The distance of the LEV pressure
centroid to the wing surface is again in agreement with the distance of the LEV centroid
to the wing surface, see Figure 7.23. The greatest differences are, like for the x-location,
found at r/R = 0.9 for steady-state conditions. For instance, at steady-state conditions,
the LEV pressure centroid of the rigid wing has a higher distance to the wing surface. The
further downstream location and the higher distance to the wing surface of the LEV pressure
centroid, compared to the LEV centroid are likely to stem from the TV. Although the LEV
and TV are merged and difficult to differentiate at steady-state conditions, a large region of
low pressure can be observed near the wing tip, see Figure 8.3. The LEV-TV accompanies
a low pressure region while contains only a low amount spanwise vorticity the near the tip.
Because the LEV-TV is maintained far downstream of the LE, the LEV pressure centroid is
found further downstream with an increased distance to the wing surface.

In general the LEV pressure centroid has a high correlation with the LEV centroid, such that
the LEV center of pressure can be approximated with the LEV center. Consequently, the
location of the suction peak within the LEV can be approximated by the LEV center without
reconstructing the pressure field from the flow field data.
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124 Results: Pressure & Load reconstruction

8.1.4 Pressure gradient

The pressure gradient is calculated as the numerical spatial gradient of the reconstructed
pressure field. Since the pressure field is independent of reference frame, the spatial gradient
of pressure can be related to the material acceleration in the inertial reference frame for an
incompressible flow with negligible viscous effects as,

Du

Dt
= −1

ρ
∇p (8.2)

Spanwise pressure gradient A negative spanwise pressure gradient is associated with a
positive spanwise acceleration (outboard) of a particle within the flow field. The process of
vortex breakdown correlates well with the formation of a positive spanwise pressure gradient
which is indicative for an inboard acceleration of a particle. As the outboard moving particles
experience an adverse pressure gradient accompanied by an inboard acceleration, the spanwise
advection of vorticity is decreased and vorticity is accumulated in a given plane, which can
eventually lead to the burst of the vortical structure. In Figure 8.6 the spanwise pressure
gradient is given for δ∗ = 1.5 and 4. In section A.8 a time-series animation of the spanwise
pressure gradient regions is given.

Early in the revolving motion a region of negative pressure gradient is formed at the suction
side of the wing that agrees well with the location of the LEV core and promotes the outboard
spanwise advection of vorticity. This spanwise advection of vorticity balances the production
of vorticity such that a stable LEV is created. The negative pressure gradient region that
is formed on suction side of the wing at δ∗ = 1.5 correlates well with the location of the
LEV core (see Figure 7.3 and Figure 7.5) and its strong levels of spanwise vorticity flux
density (see Figure 7.8). However, also a region of positive pressure gradient is formed near
midspan (r/R = 0.5) at the LE on the suction side of the wing which correlates well with
the onset of the vortex breakdown. Also a region of positive pressure gradient is formed
near the tip of the wing above the region of negative pressure gradient, (see the x, y-plane at
r/R = 0.75). Subsequently, the region of positive pressure gradient around midspan starts
expanding. Simultaneously, the region of positive pressure gradient near the tip connects
with the region of positive pressure gradient that is formed around midspan. Both regions
start merging until a coherent region of positive and negative pressure gradient is formed at
respectively the outboard and inboard part of the wing for steady-state conditions (δ∗ = 4).
For decreasing flexural stiffness, the relative region of negative pressure gradient at the suction
side of the wing surface is extended more towards tip of the wing, and agrees well with the
spanwise vorticity flux density (see Figure 7.8). This may account for the enhanced spanwise
advection of vorticity, and the increased stability and retention of the LEV.

Garmann & Visbal (2014) numerically studied rigid revolvings wings in which vortex break-
down also occurred around midspan. Moreover, the vortex breakdown showed a strong de-
pendence on the spanwise pressure gradient established between the root and the tip. It
was found that the pressure gradient force is dominant within the core of the LEV and is
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responsible in the formation of outboard spanwise flow. However, outside the vortex core,
the centrifugal force was found to be equally important in the formation of spanwise flow.
Due to this spanwise flow, vorticity is advected along the span which stabilizes the LEV
(Ellington et al., 1996). These observations are in agreement with (Lentink & Dickinson,
2009) who concluded that the pressure gradient force can explain the spanwise flow in the
LEV core, whereas centrifugal pumping can explain the spanwise flow outside the LEV core.
The current experimental study supports these findings. In this study it was also found that
the negative spanwise pressure gradient has a high correlation with the location of the LEV
core and the strong levels of spanwise transport of vorticity which are driven by an outboard
spanwise velocity. Downstream of the LEV core a relatively large region of spanwise veloc-
ity is observed (see Figure 7.7, r/R = 0.5), while the pressure gradient is negligible. These
spanwise velocities are likely to stem from the centrifugal effects.
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126 Results: Pressure & Load reconstruction

Figure 8.6: Spanwise pressure gradient contours and isosurfaces (dpdz) for δ∗ = 1.5 and 4. Top:
Isosurface of pressure gradient: Blue dpdz = −1000 Pa/m and Red dpdz = 1000 Pa/m. Middle:
Spanwise pressure gradient contour at r/R = 0.5. Bottom: Spanwise pressure gradient contour
at r/R = 0.75.
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Comparison with Navier-Stokes momentum equation The numerical spanwise pres-
sure gradient, based on the reconstructed pressure field, is compared with the pressure gra-
dient given by the Navier-Stokes momentum equation, see Equation 5.2.

In Figure 8.6 the spanwise pressure gradient obtained from the Navier-Stokes momentum
equation is given for δ∗ = 1.5.

Figure 8.7: Spanwise pressure gradient contours and isosurfaces (dpdz) for δ∗ = 1.5, based on the
Navier-Stokes momentum equation. Top: Isosurface of pressure gradient: Blue dpdx = −1000
and Red dpdx = 1000. Middle: Spanwise pressure gradient contour at r/R = 0.5. Bottom:
Spanwise pressure gradient contour at r/R = 0.75.

Although the same global features are visible compared to Figure 8.6, some differences are
observed. First of all the small scale features, such as those associated with the TEVs, are
slightly better reconstructed with the pressure gradient directly obtained from the Navier-
Stokes equation. However, the data also contains more noise. The pressure integration Poisson
scheme has a smoothing nature which suppresses the small scale structures and noise. As a
result the trends between the different wings are better captured by the numerical spanwise
pressure gradient obtained from the reconstructed pressure field.

Pressure gradient in x-direction A negative pressure gradient in x-direction is associated
with a positive acceleration in x-direction of a particle within the flow field. In Figure 8.8
the pressure gradient in x-direction is given for δ∗ = 1.5 and 4. In section A.9 a time-series
animation of the pressure gradient in x-direction is given.
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It can be observed that a region of positive and negative pressure gradient in x-direction is
formed at the suction side of the wing. For δ∗ = 1.5, these regions correlate well with the
location of the LEV core (see Figure 7.3 and Figure 7.5). A positive and negative region is
formed at respectively the upstream and downstream location of the LEV due to its rotational
motion in which the particles experience an acceleration in x-direction. However, the region
of negative pressure gradient is larger than the region of positive pressure gradient. Near the
starting-TEV these regions of positive and negative pressure gradient are also found. Also
for δ∗ = 4, a large region of negative gradient is formed that has a high correlation with the
LEV-TV (see Figure 8.3). Due to these significant regions of negative pressure gradient, the
particles within the LEV will experience a net acceleration in the positive x-direction. This
ensures that the LEV will stay close to the wing surface, such that the low pressure region
associated with the LEV is located close to the wing surface resulting in a high resultant
force acting on the wing. At the tip, vorticity is convected downstream by the TV. At these
spanwise sections near the tip, a positive gradient is found, which is most pronounced for
greater chord lengths (see δ∗ = 4). The positive gradient region at the LE of the wing is
associated with a downstream (negative x-direction) acceleration of particles.

Lentink & Dickinson (2009) indicated that the Coriolis acceleration is an important condition
for the stable attachment of the LEV, because this leads to a continuous acceleration in
the revolving direction. Furthermore, (Jardin & David, 2015) found that the Coriolis effect
stabilizes the rotational flow limiting global burst and concentrates the bursting near the
tip. It was concluded that the Coriolis effect is the main mechanism for the enhanced lift
generation for revolving wings. The current experimental study supports these findings. In
this study a large region of negative pressure gradient in x-direction is found that has a high
correlation with the location of the LEV which is likely to stem from the Coriolis effects. The
associated accelerations in x-direction are likely to be responsible for the stability of the LEV
and its close distance to the wing surface.
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Figure 8.8: Pressure gradient in x-direction contours and isosurfaces (dpdx) for δ∗ = 1.5 and 4.
Top: Isosurface of pressure gradient: Blue dpdx = −1000 Pa/m and Red dpdx = 1000 Pa/m.
Middle: Pressure gradient in x-direction contour at r/R = 0.5. Bottom: Spanwise pressure
gradient contour at r/R = 0.75.
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8.2 Loads

8.2.1 Lift & drag coefficient

Comparison with balance data Figure 8.9 compares the forces obtained by means of
balance measurements and the reconstructed loads by using the temporally coarsened data
set for all the tested wings.
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Figure 8.9: Temporal evolution of the lift (left column) and drag (right column). Solid line
depicts the low pass filtered balance data and the dashed line depicts the reconstructed data with
a coarsened temporal resolution of TR*= 0.5. The reconstructed lift and drag coefficients are
based on the summation of volume 1-3.

It can be observed that for both the lift and drag, the reconstructed loads are higher than
the loads obtained by the balance measurements, which is most pronounced for the drag.
The reconstructed lift and drag coefficient peak near the end of the acceleration (δ∗ = 1) is
approximately equal to its steady-state value at δ∗ = 4, however, the balance measurements
reach a significantly lower value than the steady-state lift and drag. Furthermore the recon-
structed lift and drag coefficient peak at the start of the revolving motion show a discrepancy
with the balance data. With the higher temporal resolution of TR*= 0.25 these peaks are
slightly better captured, see Figure 5.5.

To compare the relative differences of the loads between the wings, the reconstructed lift and
drag coefficients are normalized to the steady-state balance data of the 1 [mm] Rigid wing.
The normalization factor for the lift NFCL

is calculated as,

NFCL
=

1
2

{
CLBalance

(δ∗ = 3.5) + CLBalance
(δ∗ = 4)

}
1
2

{
CLReconstructed

(δ∗ = 3.5) + CLReconstructed
(δ∗ = 4)

} (8.3)

The normalization factor for the drag NFCD
is written analogous in terms of the drag coef-

ficient. In Figure 8.10 the normalized temporal evolution of the lift and drag coefficient is
given.
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Figure 8.10: Normalized temporal evolution of the lift (left column) and drag (right column).
Solid line depicts the low pass filtered balance data and the dashed line depicts the normalized
reconstructed data with a coarsened temporal resolution of TR*= 0.5. The reconstructed lift and
drag coefficients are based on the summation of volume 1-3.

It can be observed that the relative differences in loads between the different wings are similar
for both the reconstructed loads and the balance measurements. The reconstructed lift for
the moderate flexible wing near steady-state conditions (δ∗ = 4) is slightly higher compared
to the rigid wing, while the lift coefficient of the moderate flexible wing is approximately
equal to the rigid wing for the balance measurements. The steady-state lift coefficient for
both the reconstructed loads and balance measurements of the high flexible wing is lower
than the rigid wing. However, the balance measurements display a relatively lower values
than the reconstructed loads. The relative differences in the drag coefficient near steady-state
conditions for the moderate and high flexible wings are similar for both the reconstructed loads
and balance measurements, however, slightly lower values are found for the reconstructed
loads. Furthermore, the relative differences of the global slope of the lift and drag between
the wings in the acceleration phase (δ∗ < 1) is also similar for both the reconstructed loads
and the balance measurements.

8.2.2 Lift & drag force contributions

The load contributions of the different wings within the evaluation of the control volume
analysis are depicted in Figure 8.11.

Due to a positive contribution of the unsteady momentum term (umdt) and the pressure term
(fp), the lift coefficient is not zero at δ∗ = 0.0625 for the moderate and high flexible wing. At
steady-state conditions, the lift coefficient of the moderate and high flexible wing is relatively
high due to the increased pressure term contribution (fp) compared to the rigid wing. The
peak in lift coefficient at the end of the acceleration phase (δ∗ = 1) is caused by the large
unsteady momentum contribution (umdt). During the start of the revolving motion the flow
is deflected downwards which is associated with the build-up of the circulatory effects. As
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a result, the unsteady momentum contribution causes an upward force component. When
the flow starts settling to the steady-state conditions, the unsteady momentum contribution
approaches zero.

It is found that for the steady-state drag coefficient, the pressure term contribution (fp)
decreases for decreasing flexural stiffness, while the momentum flux contribution (fm) is
comparable. Also it can be observed that the Coriolis momentum contribution (mCor) de-
creases (becomes more negative) with decreasing flexural stiffness. The Coriolis momentum
contribution acts in the drag direction and relates to ΩyUz. Since Ωy is the same for each
wing, the volume integral of Uz is more negative with decreasing flexural stiffness. This
implies that the volume integral of the spanwise velocity in the inertial frame is decreased
with decreasing flexural stiffness which is in accordance with Figure 7.7. At steady-state
conditions the unsteady momentum contribution (umdt) approaches zero. At the start of
the revolving motion, the unsteady momentum contribution is negative since the calculations
are performed in a rotating reference frame (Uxrotating = Uxinertial − Ωyzpv, see Equation 5.1).
Due to the constant angular acceleration, Ωy increases linearly during the acceleration phase.
As a result, there is an approximate negative plateau until the end of the acceleration, after
which the unsteady momentum contribution starts increasing. The trend of the unsteady
momentum contribution is opposite to the Euler effect (mEul) in the acceleration phase.

Note that in this section the contributions of the different terms to evaluate the lift and drag
are given by means of a control volume approach. However, it is rather difficult to comment
on their influence on the formation of flow structures. For instance, although there is no
contribution of the rotational effects in the evaluation of the lift based on the control volume
approach, they still influence the flow field indirectly. These rotational effects are suggested
to be responsible for the stability and enhancement of the LEV (Sane, 2003). The sustained
LEV is accompanied by a low pressure region at the suction side of the wing. The suction
forces that act normal to the wing surface are dominant for the resultant force acting on the
model. Consequently these rotational effects are likely to have a positive influence in the
generation of elevated lift.
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Figure 8.11: Temporal evolution of the reconstructed lift (left column) and drag (right column)
coefficient components based on the summation of volume 1-3. Force contributions: unsteady
momentum umdt (I), momentum flux fm (II), pressure fp (III), viscous stress fs (III), centrifu-
gal momentum mCen (IV), Coriolis momentum mCor (V) and Euler momentum mEul (VI)
contribution, see Equation 5.14. Solid line depicts a high temporal resolution of TR*= 0.25 and
the dashed line depicts a coarsened temporal resolution of TR*= 0.5.
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134 Results: Pressure & Load reconstruction

8.2.3 Sectional lift & drag coefficients

The sectional lift and drag are evaluated in control volumes placed side-by-side along the wing
span with a spanwise thickness dz of 7 vectors (0.12c) (see Equation 5.18) and an overlap of
6 vectors. In Figure 8.12 the spanwise sectional lift coefficient distribution is given.

For δ∗ > 0.14063 the lift coefficients calculated from both high and coarsened temporal
resolution data are in a good agreement for the different wings. At the root (r/R = 0) and tip
(r/R = 1) the lift approaches zero. The trend in lift coefficient is comparable for the different
wings. For δ∗ < 1.25 the sectional lift distribution shows a linear increase until approximately
r/R = 0.9 which corresponds to the linear increase in rotational velocity. Subsequently, at
about δ∗ > 1.5 a transition period is observed which correlates well with the onset of vortex
breakdown after which steady-state conditions are reached at approximately δ∗ = 4. For
the steady-state conditions the sectional lift distribution displays a smooth variation over the
span with its maximum at approximately r/R = 0.7.
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136 Results: Pressure & Load reconstruction

For a two-dimensional steady, incompressible and inviscid flow the sectional lift can be related
to circulation using the Kutta-Joukowski theorem. However, within the framework of inviscid
potential flow theory, the predicted sectional lift is expected to be relatively accurate for
viscous flows as long as the flow is steady and unseperated (Anderson, 2011). The main
advantage of the Kutta-Joukowski theorem is its simplicity. Also, for an incompressible flow,
the Kutta-Jouwkoaski theorem is solely related to flow fields, which can directly be obtained
by PIV measurements. The Kutta-Joukowski theorem is given as,

l = ρV∞Γ (8.4)

where V∞ stands for the freestream velocity and Γ the total circulation around the wing. It
should be noted in the calculation of sectional forces by use of the Kutta-Joukowski theorem
(Equation 8.4), instantaneous sectional freestream velocity, which varies linearly over the span
due to curvilinear motion, is used. Since the LEV carries majority of the circulation around
the wing and the bound circulation is negligible, as discussed in section 7.3, it is expected
that sectional lift prediction by use of the LEV circulation performs well.

In Figure 8.13 the sectional lift distribution that is based on a control volume approach, is
compared with the Kutta-Joukowski theorem using the LEV circulation and total circulation
in the limited domain of integration (see Figure 7.10) for δ∗ = 0.5625, 1, 1.5 and 4.

The sectional lift distributions that are based on the control volume approach and the Kutta-
Joukowski theorem - LEV circulation show a similar trend for the different wings. However,
substantially lower lift values are found for the high flexible wing using the Kutta-Joukowski
theorem - total circulation, due to the decreased total circulation (see Figure 7.13). Until the
end of the acceleration phase (δ∗ < 1) the sectional lift coefficient distribution, based on both
the control volume analysis and the Kutta-Joukowski theorem, show a linear increase until
approximately r/R = 0.9 which corresponds to the linear increase in rotational velocity. After
δ∗ = 1.5, during the transition phase, significant differences are observed between the control
volume analysis and the Kutta-Joukowski theorem. At steady-state conditions (δ∗ = 4),
the control volume analysis shows a better match with the Kutta-Joukowski theorem - LEV
circulation compared to the evaluation based on the total circulation because the control
volume approach allows to capture the three-dimensional and unsteady effects. It is further
noted that the control volume analysis predicts a more even lift distribution over the span
with lower peak values near its maximum compared to the Kutta-Joukowski theorem.
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Figure 8.13: Sectional lift distribution for δ∗= 0.5625, 1, 1.5 and 4. Top row: Sectional lift
coefficient based on control volume analysis. Solid line depicts a high temporal resolution of
TR*= 0.25 and the dashed line depicts a coarsened temporal resolution of TR*= 0.5. Middle row:
Sectional lift coefficient based on Kutta-Joukowski theorem using the LEV circulation (LEVC)
evaluated in the complete flow field (see Figure 7.19). Bottom row: Sectional lift coefficient
based on Kutta-Joukowski theorem using the total circulation (TC) evaluated in the limited
integration region bounded by the TE of the wing (see Figure 7.13).

Subsequently, the sectional lift distribution is integrated along the span to obtain the lift
coefficient of the complete wing. In Figure 8.14 the lift coefficient that is obtained from
the balance data is compared with the control volume approach, and the Kutta-Joukowski
theorem based on the LEV circulation and the total circulation. During the acceleration phase
(δ∗ < 1) the Kutta-Joukowski theorem - LEV circulation shows a reasonable prediction of the
lift when compared to the balance and control volume analysis. Also, the Kutta-Joukowski
theorem - total circulation shows a reasonable prediction, however, significant lower values for
the high flexible wing are found due to its lower predicted sectional lift distribution originating
from the lower total circulation. At the start of the revolving motion the balance data shows
a peak in the lift coefficient which are not observed with the Kutta-Joukowski theorem by
evaluating the circulation that is created within the flow field. Also the build-up of lift is
stronger compared to the Kutta-Joukowski theorem. These discrepancies can be explained
by the additional non-circulatory added mass reaction force contribution in the acceleration
phase which results into an additional force in the direction of lift. However, at the end
of the acceleration (δ∗ = 1), the balance data predicts a lower lift value compared to the
control volume analysis and the Kutta-Joukowski theorem. After the acceleration phase
significant discrepancies are found between the predicted lift that is based on the Kutta-
Joukowski theorem and the balance measurements, while the control volume approach shows
a significant better agreement with the balance measurements.
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Figure 8.14: Comparison of temporal evolution of lift. Balance: Lift coefficient obtained from
low-pass filtered balance data (see section 6.2). Control volume: Lift coefficient obtained from
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using the LEV circulation evaluated in the complete flow field (see Figure 7.19). Kutta-Joukowski
based on total circulation: Lift coefficient obtained from the Kutta-Joukowski theorem using the
total circulation evaluated in the limited integration region bounded by the TE of the wing (see
Figure 7.13).
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It is concluded that the lift obtained from the circulation in the flow field by means of the
Kutta-Joukowski theorem shows a reasonable agreement with the lift obtained with a control
volume analysis during the early phases of the revolving motion in which the flow is rather
two-dimensional (see chapter 7). The Kutta-Joukowski theorem - LEV circulation shows a
better agreement with the total lift obtained from the balance data, and the sectional lift
distribution obtained from the control volume analysis compared to the Kutta-Joukowski
theorem - total circulation.

Birch et al. (2004) studied a steady revolving rigid wing that is based on a Drosophila wing
planform at an angle of attack of 45 deg for the Reynolds numbers of 120 and 1,400. The
Kutta-Joukowski theorem was evaluated to predict the sectional lift. It was concluded that
the maximum sectional lift for the Reynolds number of 1,400 occurs at approximately 0.65r/R
(see Figure 2.9), which is also observed in the current study. Inboard of the position of the
maximum sectional lift coefficient, an approximate linear increase along the span was reported
by Birch et al. (2004), which is also in agreement with the current observations. However,
Birch et al. (2004) found a negative sectional lift of approximately half of the maximum
positive sectional lift near the tip of the wing for the Reynolds number of 1,400, while in the
current study the sectional lift is close to zero at the tip.

Garmann & Visbal (2014) numerically studied a rigid revolving rectangular wing at an angle
of attack of 60 deg and a Reynolds number of 1,000 for an aspect ratio of 2. The spanwise
distribution of the sectional lift coefficient for steady-state values (270 deg) is approximately
similar to the sectional lift coefficient distribution found in this study. The maximum peak
is also found at approximately the same spanwise location, at r/R = 0.7 (see Figure 2.9).
However, differences are observed. Garmann & Visbal (2014) found that close to the root,
at approximately r/R = 0.05, a peak in the lift coefficient followed by a dip, while in the
current study a more continuous linear increase is observed along the span. Furthermore
the sectional lift distribution reported by Garmann & Visbal (2014) displays a less-oscillatory
behaviour. This may be due to the fact that the Reynolds number is lower, resulting into more
coherent structures and less smaller fragmented scale structures. Also, this can be caused by
the limited temporal resolution or the experimental uncertainties in the current study.

Although the Kutta-Joukowski theorem has been used to estimate the lift generation in the
context of flapping-wing aerodynamics, it does not always give satisfactory results, as reviewed
in (Wang et al., 2013). Wang et al. (2013) proposed a sectional lift formula to estimate the lift
in highly unsteady and separated flows associated with flapping-wing flight. The lift formula
was derived by neglecting the total pressure and viscous stress terms on the outer boundary
from the integral momentum balance of the Navier-Stokes equation within a control volume.
The presented lift formula is based on the vorticity and velocity information on a freestream
(chordwise) orientated plane. In this respect the Kutta-Joukowski theorem is a reduced
form of the derived lift formula which neglects the vortex force and unsteady inertial effect
contribution. In this study two-dimensional DNS calculations for a flapping flat-plate pitching
and heaving wing were performed. It was found that the application of the Kutta-Joukowski
theorem as a quasi-steady model to unsteady low Reynolds number flows might cause errors
in the prediction of the phase, amplitude and waveform of the unsteady lift of a flapping
wing. In the current study the reconstructed sectional lift and drag was calculated means of
a control volume analysis. Although the lift formula derived in (Wang et al., 2013) might
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140 Results: Pressure & Load reconstruction

give a better estimate in the acceleration phase where the flow is rather two-dimensional,
it is expected that the three-dimensional contributions within the control volume approach
are required to accurately estimate the lift when the revolving motion further progresses.
Moreover, due to the limited field of view in the current study, vortical structures are present
near the upper and lower boundary of the domain such that steady-state conditions are less
well defined. As a result, it is expected that the total pressure term term cannot be neglected
and the pressure term contribution needs to be taken into account for an accurate estimate
of the lift when the field of view is limited.

In Figure 8.15 the spanwise sectional drag coefficient distribution is given. It can be seen
that for δ∗ > 0.14063 the sectional drag coefficient calculated based on the temporally coars-
ened data matches the high temporal resolution well over the complete span for the differ-
ent wings. In general it can be observed that the sectional drag decreases with decreasing
flexural stiffness. Similar to the sectional lift distribution, the sectional drag increases ap-
proximately linearly with span until r/R = 0.9 for δ∗ < 1, 25. Subsequently, a transition
phase is observed, after which steady-state conditions are reached. For steady-state condi-
tions the drag is distributed smoothly over the span with its maximum at approximately
r/R = 0.7. The significant decrease in drag with decreasing flexural stiffness is most pro-
nounced for r/R > 0.3. Consequently, within the significantly expanded LEV bubble-like
structure outboard of midspan (r/R > 0.5), a significant decrease of sectional drag is found
for decreasing flexural stiffness. This is caused due to the significantly reduced pressure drag
(see Figure 8.16). Slightly outward of the tip a significant negative sectional drag coefficient
peak is observed for both flexible wings.
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142 Results: Pressure & Load reconstruction

In Figure 8.16 the contributions of different terms in the calculation of the sectional lift and
drag coefficients are shown for the steady-state conditions. The oscillatory behavior in the
sectional lift and drag distribution mainly originate from the momentum flux contribution
(fm). The pressure term contribution (fp) for the sectional lift increases with spanwise
position until approximately r/R = 0.7 after which it decreases to zero at the tip. The cor-
responding magnitude of the pressure term contribution in the direction of lift is comparable
for the different wings. The pressure term distribution for the sectional drag is approximately
zero until r/R=0.15, 0.225, 0.3 for respectively the rigid, moderate flexible and high flexible
wing. Subsequently, further outboard, the pressure term contribution increases and reaches
a maximum at approximately r/R = 0.6. For decreasing flexural stiffness this pressure drag
contribution is significantly attenuated at the spanwise locations which correspond to the
spanwise locations of the significantly expanded LEV bubble-like structure. This agrees well
with the reduced size of the wake for the flexible wings (see Figure 8.2). Moreover, these ob-
servations are in good agreement with the smaller size of low pressure region accompanying
the LEV for decreasing flexural stiffness (see Figure 8.1). As a result, the total force acting on
the wing is reduced, but also tilted more towards the direction of lift due to the wing defor-
mation. Consequently, at the spanwise locations of the expanded LEV bubble-like structure,
the pressure term contribution in the direction of lift remains relatively high, while its con-
tribution is the direction of drag is significantly decreased. The Coriolis component (mxCor)
has a more negative drag contribution with decreasing flexural stiffness over the complete
span of the wing. This implies that the volume integral of spanwise velocities within these
sectional control volumes is decreased over the complete wing span. Finally, the negative
sectional drag coefficient peak that is found slightly outboard of the tip, is caused by the high
negative momentum flux contribution.

The integrated sectional lift and drag values over all spanwise positions are comparable to the
results given in Figure 8.11 when non-dimensionalized as given in Equation 5.18. The small
discrepancies in absolute values mainly originate from the momentum flux contribution.
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Figure 8.16: Temporal evolution of the spanwise sectional lift (left column) and drag (right
column) coefficient distribution components at steady-state conditions (δ∗ = 4). Force contribu-
tions: unsteady momentum umdt (I), momentum flux fm (II), pressure fp (III), viscous stress fs
(III), centrifugal momentum mCen (IV), Coriolis momentum mCor (V) and Euler momentum
mEul (VI) contribution, see Equation 5.14. Solid line depicts a high temporal resolution of TR*=
0.25 and the dashed line depicts a coarsened temporal resolution of TR*= 0.5.
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144 Results: Pressure & Load reconstruction

Spanwise centroid of lift & drag The spanwise centroid for lift and drag along the span
is calculated as,

Spanwise centroid of Cl =

∫
rCldr∫
Cldr

; Spanwise centroid of Cd =

∫
rCddr∫
Cddr

(8.5)

The spanwise centroid of the lift and drag represent the spanwise locations at which the
resultant lift and drag reproduce the same moment about the root of the wing. In Figure 8.17
the temporal evolutions of the spanwise centroid for lift and drag are given.
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Figure 8.17: Temporal evolution of the spanwise centroid for the lift (left column) and drag
(right column). Solid line depicts the low pass filtered balance data and the dashed line depicts
the reconstructed data with a coarsened temporal resolution of TR*=0.5.

It can be observed that the spanwise centroid for lift and drag is approximately equal to
r/R = 0.7 for the different wings and for the full revolving motion. Until approximately the
onset of vortex breakdown, for δ∗ < 2, the spanwise centroid for lift and drag are located a
bit more towards the root for the flexible wings compared to the rigid wing. The spanwise
centroid in this study may be interpreted as the spanwise center of pressure. This observations
may simplify the modeling of revolving wings at relatively high angles of attack, since the
spanwise centroid for lift and drag is approximately constant during the complete revolving
motion for different chordwise flexible wings.

The steady-state spanwise centroid of lift and drag are similar to the spanwise pressure center
obtained by the balance measurements at greater chord lengths of travel, see Figure 6.12.
Contrary to the spanwise centroid of lift and drag, the spanwise pressure center obtained by
the balance measurement is located significantly more outboard in the early phases of the
revolving motion.
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In Figure 8.18 the spanwise distribution of the LEV circulation, LEV vorticity flux, LEV
centroid, LEV pressure centroid and sectional lift & drag coefficients for δ∗ = 1, 1.5 and 4 are
given.

Until the end of the acceleration period (δ∗ = 1) all wings display very similar characteristics in
terms of the LEV properties and sectional force coefficients. Subsequently, at about δ∗ > 1.5
a transition period appears to occur which correlates with the onset of vortex breakdown.
Finally, at approximately δ∗ = 4, the spanwise distribution is settled and approximate steady-
state conditions are reached. The LEV circulation at (δ∗ = 1) is similar for the different wings
and shows a linear increase of circulation with spanwise position until r/R = 0.9 which is
associated with the increase in rotational velocity due to the curvilinear nature of the motion,
after which it decreases to zero at the tip. At steady-state conditions ( δ∗ = 4), the circulation
inboard of midspan (r/R < 0.5) is similar for the different wings, while outboard of midspan
the circulation is decreased significantly with decreasing flexural stiffness. For δ∗ < 1 there is
little spanwise transport of vorticity within the LEV and the flow behaves two-dimensional.
Subsequently, there is a very strong increase of positive spanwise vorticity flux, followed by a
transition period after which a constant positive spanwise distribution of spanwise advection
of vorticity within the LEV is reached at δ∗ = 4. Furthermore, it can be noted that the
spanwise advection of vorticity within the LEV is stronger for the flexible wings compared
to the rigid wing. The LEV centroid and the LEV pressure centroid have a high correlation
for the different flexibilities with the most pronounced difference near the tip at δ∗ = 4. This
agreement between the LEV and pressure centroid positions is in accordance with Figure 8.1
and Figure 8.3 in which the LEV structure correlates well with the low pressure region. It can
be observed that the LEV pressure centroid is located significantly closer to the wing surface
for decreasing flexural stiffness. This is most pronounced outboard of midspan (r/R > 0.5)
at δ∗ = 4 and correlates with the observations of the spanwise pressure fields, as depicted
in Figure 8.1. The aft tilt of the LEV is approximately similar for the different flexibilities,
except near the tip (r/R > 0.6) at δ∗ = 4, which corresponds with the bubble-like structure,
at which the LEV is tilted less aft with decreasing flexural stiffness. The sectional lift and drag
at the end of the acceleration ( δ∗ = 1) show a linear increase with spanwise position until
approximately r/R = 0.9 which correlates with the increase in rotational velocity and LEV
circulation. The spanwise oscillations in the sectional lift and drag mainly originate from the
momentum flux contribution in the calculations based on the control volume approach. While
the sectional lift for the different wings is comparable, a significant decrease in sectional drag
can be observed with decreasing flexural stiffness. These observations are in accordance with
the behavior of the total forces as determined by the balance measurements (see Figure 6.8).
While the sectional drag inboard of r/R = 0.3 is approximately similar for the different wings,
the sectional drag considerably decreases with the flexural stiffness at the outboard locations.
The spanwise centroids of the lift and drag are located at approximately 70% of the span for
all the cases throughout the complete motion.
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Figure 8.18: Spanwise characteristics for δ∗= 1, 1.5 and 4. From the top to bottom row re-
spectively: LEV circulation (Γ∗LEV ), LEV vorticity flux (q∗LEV ), LEV centroid chord distance
(s/c) normal to wing surface (WS), LEV pressure centroid chord distance (s/c) normal to wing
surface (WS), LEV centroid chord distance in the x-direction (x/c) from leading edge (LE), LEV
pressure centroid chord distance in the x-direction (x/c) from leading edge (LE), Sectional lift
coefficient (Cl) and Sectional drag coefficient (Cd) as a function of spanwise position along the
span (r) non-dimensionalized with the span length (R). The LEV region is considered as the
region for which γ2 > 2/π (see section 7.1) evaluated in the complete flow field. The sectional
control volumes have a spanwise thickness of dz= 7 vectors and an overlap of 6 vectors. For the
LEV pressure centroid and the sectional lift & drag, the solid line depicts a temporal resolution
of TR*= 0.25 and the dashed line depicts a coarsened temporal resolution of TR*= 0.5
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8.4 Conclusion

At low Reynolds numbers the flow field is highly repeatable, notably for the initial develop-
ment phase of the flow considered in the present experiments, which allows obtaining temporal
information from phase-locked measurements. The pressure field and loads have been recon-
structed successfully from ensemble averaged phase-locked tomographic PIV measurements
for different flexible wings, employing the non-inertial moving reference frame of the rotat-
ing wing. Furthermore, the pressure field that covers a complete wing has been successfully
reconstructed from three volumes that have been measured independently, which allowed a
proper comparison of pressure fields between different wings.

Pressure field The vortex system structures encompass a low pressure region which has
a high correlation with the vortical structures identified by the Q-criterion. As a result a
comparative assessment between the different wings regarding the size of the low pressure
zone associated to the LEV as well as the size of the wake can be made on the basis of the
Q-criterion.

The LEV pressure centroid correlates well with the LEV centroid. Consequently, the center of
the LEV suction peak can be approximated with the LEV center. The LEV pressure centroid
location is similar for the different wings in absolute sense. However, due to the deflection
of the flexible wings, the LEV pressure centroid is located closer to the wing surface. As the
low pressure region accompanying the LEV becomes smaller with increasing flexibility, the
total force acting on the wing is reduced, but it is also tilted more towards the lift direction
due to the wing deformation. As a consequence, the lift component remains relatively high,
also because the suction peak is located closer to the wing surface. Simultaneously, the drag
is significantly suppressed for increasing flexibility, which is also reflected in the smaller size
of the wake.

The process of vortex breakdown correlates well with the formation of a positive spanwise
pressure gradient which is indicative of an inboard acceleration of a particle in the flow field.
As the outboard moving particles experience an adverse pressure gradient accompanied by
an inboard acceleration, the spanwise advection of vorticity is decreased and vorticity is
accumulated in a given plane, which can eventually lead to the burst of the vortical structure.
Early in the revolving motion a region of negative pressure gradient is formed at the suction
side of the wing. At the onset of vortex breakdown, near midspan (r/R = 0.5), a region
of positive pressure gradient is formed near the LE at the suction side of the wing. Also
a region of positive pressure gradient is formed near the tip above the region of negative
pressure gradient. Subsequently, the region of positive pressure gradient around midspan
starts expanding. Simultaneously the region of positive pressure gradient near the tip connects
with the region of positive pressure gradient that is formed at midspan. Both regions start
merging until a region of positive and negative pressure gradient is formed at respectively the
outboard and inboard part of the wing for steady-state conditions. For decreasing flexural
stiffness the relative region of negative pressure gradient at the suction side of the wing surface
is extended more towards tip of the wing, which may account for the enhanced spanwise
advection of vorticity and the increased stability of the LEV.
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The negative spanwise pressure gradient that is formed during the revolving motion has a high
correlation with the location of the LEV core and the strong levels of spanwise transport of
vorticity. This transport of vorticity is driven by an outboard spanwise velocity and stabilizes
the LEV. The spanwise velocities outside the LEV core are likely to stem from the centrifugal
effects. Also a region of negative pressure gradient in x-direction is formed which has a high
correlation with the LEV, and is likely to be responsible for the stability of the LEV and its
close distance to the wing surface.

Loads Although the absolute values for the reconstructed loads do not exactly match the
balance measurements, the relative differences between the wings show a high agreement with
the corresponding relative differences of the balance measurements. The most pronounced
difference between the reconstructed loads and the balance measurements are the lift & drag
coefficient peaks near the end of the acceleration which are approximately equal to the steady-
state value for the reconstructed loads, while significantly lower for the balance measurements.

Based on a control volume analysis the lift is relatively high for decreasing flexural stiffness
due to the relatively high pressure term contribution. The drag is significantly reduced with
decreasing flexural stiffness due to the decreased pressure term and Coriolis term contribu-
tions. While the sectional lift distribution remains comparable for the different wings after
the onset of vortex breakdown, a significant decrease of sectional drag is found for decreasing
flexural stiffness at the outboard wing locations. These locations of reduced drag correspond
to the spanwise locations in which the LEV is significantly expanded. For steady-state condi-
tions the sectional lift and drag distribution varies smoothly over the span with its maximum
at approximately r/R = 0.7. The pressure term contribution for the sectional lift increases
with spanwise position until approximately r/R = 0.7, after which it decreases to zero at
the tip. The pressure term distribution for the sectional drag is approximately zero until
r/R=0.15, 0.225, 0.3 for respectively the rigid, moderate flexible and high flexible wing. Sub-
sequently, further outboard, the pressure term contribution increases and reaches a maximum
at approximately r/R = 0.6. The decreased sectional drag at the outboard wing locations
agree well with the significant decreased pressure term contributions.

The lift obtained from the Kutta-Joukowski theorem shows a reasonable agreement with the
lift obtained with the control volume analysis during the early phases of the revolving motion
in which the flow behaves two-dimensional (approximately until the end of the acceleration
phase). The Kutta-Joukowski theorem that is based on the LEV circulation shows a better
agreement with the total lift obtained from the balance data and the sectional lift distribution
obtained from the control volume analysis compared to the Kutta-Joukowski theorem that is
based on the total circulation.

The spanwise centroid for lift and drag is approximately equal to r/R = 0.7 for all wings and
for the full revolving motion, which may simplify the modeling of revolving wings.
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Chapter 9

Conclusions & Recommendations

To improve the understanding of the effect of wing flexibility on the aerodynamic performance
of biological flapping-wing flight, chordwise flexible revolving wings have been extensively
studied. In the present chapter, conclusions of this thesis are given, after which recommen-
dations for further studies in line with the present investigation are summarized.

9.1 Conclusions

The flow fields and fluid-dynamic loads generated by revolving low-aspect-ratio flat-plate
wings with different degree of chordwise flexibility are experimentally studied using tomo-
graphic PIV and simultaneous force measurements. Three different wings were tested in the
experiments in order to investigate the influence of wing flexibility: a rigid wing from 1 mm
thick Plexiglas, a moderately flexible wing from 175 µm PET and a highly flexible wing from
125 µm PET.

The force measurements reveal that during the acceleration phase the build-up of lift is
similar for the different wings, while the build-up of drag is significantly lower for decreasing
flexural stiffness. At steady-state conditions the net resultant force generation is decreased
significantly with decreasing flexural stiffness. However, this does not adversely affect the
lift generation such that the lift coefficients for the rigid and the moderate wings are very
similar, while it is only slightly (about 7%) smaller for the high flexible wing. On the other
hand, the drag decreases monotonically with decreasing flexural stiffness, up to 36% for the
most flexible wing. As a result the most flexible wing has an increased lift-to-drag ratio of
approximately 45% and an increased power efficiency of 40%. It is further found that for
the chordwise flexible wing configurations considered in this study, the lift-to-drag ratio at
the steady-state conditions correlates well with the geometric angle of attack of the deformed
structure near the wing tip. Moreover, it is shown that a rigid wing with a geometric angle
of attack identical to that of the deformed wing generates similar lift and drag. This suggests
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that the geometric angle of attack at steady-state conditions is dominant for the lift and drag
generated by chordwise flexible wings considered in this study. This may significantly simplify
the modeling of flexible revolving wings, since the aerodynamic forces can be approximated
based on a rigid revolving wing model.

A similar vortex system, comprising LEV, TV, RV and starting TEV components, are ob-
served in all cases. With increased wing deformation the TV is located more upwards while
the spanwise position is maintained. Also, the TV and starting vortex are more elongated in
the streamwise direction for the flexible cases. For decreasing flexural stiffness, the coherency
of this vortex system is increased. At greater phases of the revolving motion vortex break-
down occurs for all wings. Near midspan, for δ∗ = 1.5, the core of the LEV structure is lifted
off and expanded into a substantial bubble-like structure that grows in size along the span
until about 75% of the span length which is indicative of vortex breakdown. For increased
wing flexibility the TV and LEV are confined to a smaller region within the flow field, of
which the reduced size of the LEV is especially pronounced in the significantly expanded
LEV structure. Furthermore, the LEV structure of the flexible wings has an increased span-
wise vorticity flux distribution compared to the rigid wing and shows higher helical density
values that are indicative of an outboard spanwise vorticity flux along the axis of the LEV
which are associated with the spanwise transport of vorticity contributing to the stability and
retention of the LEV.

At low Reynolds numbers the flow field is highly repeatable, notably for the initial develop-
ment phase of the flow considered in the present experiments, which allows obtaining temporal
information from phase-locked measurements. The pressure field and loads have been recon-
structed successfully from ensemble averaged phase-locked tomographic PIV measurements
for different flexible wings, employing the non-inertial moving reference frame of the rotating
wing. Furthermore, the pressure field that covers a complete wing has been successfully recon-
structed from three volumes that have been measured independently, which allowed a proper
comparison of pressure fields between different wings. With the increased dominance of ro-
tation in the rotating reference frame compared to the inertial reference frame, the Eulerian
based material derivative performed best to reconstruct the pressure fields and loads. The
vortex system structures encompass a low pressure region which has a high correlation with
the vortical structures identified by the Q-criterion. As a result a comparative assessment
between the different wings regarding the size of the low pressure zone associated to the LEV
as well as the size of the wake can be made on the basis of the Q-criterion. Although the
absolute values for reconstructed loads do not exactly match the balance measurements, the
relative differences between the wings show a high agreement with the corresponding relative
differences of the balance measurements. Based on the control volume analysis, the lift is
relatively high for decreasing flexural stiffness due to the relative high pressure contribution,
while the significant decrease in drag is caused by the decreased pressure and Coriolis term
contributions. During the early phases of the revolving motion, in which the flow behaves
two-dimensional, the lift obtained from the Kutta-Joukowski theorem shows a reasonable
agreement with the reconstructed loads.

The process of vortex breakdown correlates well with the formation of a positive spanwise
pressure gradient which is indicative for an inboard acceleration of a particle in the flow
field. As the outboard moving particles experience an adverse pressure gradient accompanied

Remco van de Meerendonk M.Sc. Thesis



9.2 Recommendations for future work 151

by an inboard acceleration, the spanwise advection of vorticity is decreased and vorticity is
accumulated in a given plane, which can eventually lead to the burst of the vortical structure.
Early in the revolving motion a negative pressure gradient is formed at the suction side of
the wing that agrees well with the location of the LEV core, and drives the high spanwise
transport of vorticity of the LEV structure. At the onset of vortex breakdown, near midspan,
a region of positive pressure gradient is formed near the LE at the suction side of the wing.
Subsequently, this region starts expanding. At steady-state conditions a region of positive
and negative pressure gradient is present at respectively the outboard and inboard part of the
wing. For decreasing flexural stiffness the relative region of negative pressure gradient at the
suction side of the wing surface is extended more towards tip of the wing, which may account
for the enhanced spanwise advection of vorticity and the increased stability of the LEV.

Due to the same predefined local angle of attack of 45 deg at the leading edge for the different
wings, the circulation of the flexible wings is relatively high and over a large extent of the
span and revolving motion similar to that of the rigid wing. The LEV pressure centroid
correlates well with the LEV centroid. Consequently, the center of the LEV suction peak
can be approximated with the LEV center. The LEV pressure centroid location is similar for
the different wings in absolute sense. However, due to the deflection of the flexible wings,
the LEV pressure centroid is located closer to the wing surface. Additionally, it was found
that the chordwise location of the center of pressure is located closer to the LE of the wing
for decreasing flexural stiffness. As the low pressure region accompanying the LEV becomes
smaller with increasing flexibility, the total force acting on the wing is reduced, but it is also
tilted more towards the lift direction due to the wing deformation. As a consequence, the lift
component remains relatively high, also because the suction peak is located closer to the wing
surface. Simultaneously, the drag is significantly suppressed for increasing flexibility, which
is also reflected in the smaller size of the wake. While the sectional lift along the full span is
comparable for the different wings, the sectional drag is significantly reduced for increasing
flexibility at the outboard wing locations. These locations of reduced drag correspond to the
spanwise locations in which the LEV is significantly expanded. The corresponding spanwise
centroids of lift and drag are located at approximately 70% of the span for all the cases
throughout the complete revolving motion, which may simplify the modeling of revolving
wings in the context of flapping-wing flight.

9.2 Recommendations for future work

This study shows that the lift-to-drag ratio of three wings with different degree of chordwise
flexural stiffness at steady-state conditions correlates well with the geometric angle of attack of
the deformed structures near the tip. To further investigate this relation an increased range of
chordwise flexural stiffness should be tested. Moreover, this study suggests that the geometric
angle of attack is dominant for the lift and drag of these chordwise flexible wings. Therefore,
the lift and drag of a rigid revolving wing with the same kinematic parameters, planform,
Rossby number and Reynolds number at steady-state conditions should be acquired over a
range of angles of attack that match the range of geometric angle of attack of the chordwise
flexible wings. Consequently, the lift and drag of the rigid wing that revolves at the identical
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geometric angle of attack of a broad range of chordwise flexible wings can be investigated in
more detail.

During the pressure reconstruction a mask is build around the airfoil to obtain converged
lift and drag values. Subsequently, this pressure field can be used as a Dirichlet boundary
condition to further reconstruct the pressure field towards the wing surface. Alternatively,
the flow field can be divided into sub-domains based on the quality of the measurement data
(Tronchin et al., 2015) to further reconstruct pressure information towards the wing surface.
Consequently, the loads can be verified by integrating the pressure forces around the wing
surface and comparing them with the balance data and reconstructed loads that are based
on a control volume approach. Also, the loads can be verified by analytically eliminating
the pressure from the Navier-Stokes momentum equations and expressing the loads in pure
kinematic flow characteristics (Noca et al., 1999; DeVoria et al., 2014). Additionally, the loads
can be validated using a numeral fluid-structure interaction simulation.

Within this experimental study the main focus was on the tomographic PIV measurements
and to a lesser extent on the wing reconstruction. By performing dedicated measurements
for the wing reconstruction, a more accurate representation of the wing can be obtained. As
a result, the relation between the lift-to-drag ratio and the geometric angle of attack near the
tip of the wing can be studied in more detail. Moreover, this allows to further investigate the
dominance of the geometric angle of attack on the resultant lift and drag for chordwise flexible
wings. Additionally, a smaller mask around the wing for the pressure reconstruction can be
created because the location of the vectors with a relatively high uncertainty in proximity of
the wing can be more accurately estimated.

The flow field in the current study is expected to be incompressible and divergence free.
However, when reconstructing the pressure field under the assumption of divergence-free flow
an incorrect pressure field is obtained. By means of a Helmholtz decomposition the divergence-
free part of the velocity field can be extracted. Subsequently, the pressure field and loads
can be reconstructed with the divergence free part of the velocity field. Consequently, the
sensitivity of a divergence-free flow field assumption in the reconstruction of pressure fields
and loads from PIV based measurements can be investigated in more detail.

Finally, the effect of wing flexibility can be extended to other inherent unsteady aerodynamic
mechanisms in the context of biological flapping-wing flight such as the clap and fling effect,
and the effect of wake capture. In these unsteady aerodynamic mechanisms, in which rapid
stroke reversal mechanisms play an important role, wing flexibility is also thought to be im-
portant in the enhancement of the aerodynamic forces (Mountcastle & Daniel, 2009; Eldredge
et al., 2010; Beals & Jones, 2015). By further studying the effect of chordwise flexibility more
insights will be gained into biological flapping-wing flight which can lead to the design of more
efficient MAVs.
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Appendix A

Time-series animation of flow structures

The time-series animations in this appendix can be accessed with the digital version of the
manuscript which is available at http://repository.tudelft.nl
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160 Time-series animation of flow structures

A.1 Q-criterion isosurfaces

Figure A.1: Temporal evolution of vortical structures. Isosurfaces of Q-criterion: White
Q/(Vt/c)

2 = 3, Orange Q/(Vt/c)
2 = 10 and Pink Q/(Vt/c)

2 = 30. Left: 1 [mm] Rigid wing.
Middle: 175 [µm] Moderate flexible wing. Right: 125 [µm] High flexible wing.
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A.2 Q-criterion colored with helical density 161

A.2 Q-criterion colored with helical density

Figure A.2: Temporal evolution of vortical structures. Isosurfaces of Q-criterion (Q/(Vt/c)
2=3)

colored by helical density (hc/V 2
t ).
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A.3 Spanwise vorticity

Figure A.3: Temporal evolution of spanwise vorticity contours (ωzc/Vt). Top: Vorticity contours
along the span . Middle: Spanwise vorticity contour at r/R = 0.5. Bottom: Spanwise vorticity
contour at r/R = 0.75.
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A.4 Spanwise velocity

Figure A.4: Temporal evolution of spanwise velocity contours (Uz/Vt). Top: velocity contours
along the span. Middle: Velocity contour at r/R = 0.5. Bottom: Velocity contour at r/R = 0.75.
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A.5 Spanwise vorticity flux density

Figure A.5: Temporal evolution of spanwise vorticity flux density contours (ωzUzc/V
2
t ). Top:

Vorticity contours along the span . Middle: Spanwise vorticity flux density contour at r/R = 0.5.
Bottom: Spanwise vorticity flux density contour at r/R = 0.75.
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A.6 Pressure distribution

Figure A.6: Temporal evolution of pressure contours (p). Top: Pressure contours along the span.
Middle: Pressure contour at r/R = 0.5. Bottom: Pressure contour at r/R = 0.75.
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A.7 Vortical structures and pressure distribution

Figure A.7: Temporal evolution of vortical structures and reconstructed pressure fields. Isosur-
faces of Q-criterion: White Q/(Vt/c)

2 = 3. Isosurfaces of reconstructed pressure field: Blue
p = −13 Pa and Red p = 6 Pa.
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A.8 Spanwise pressure gradient

Figure A.8: Temporal evolution of spanwise pressure gradient contours and isosurfaces (dpdz).
Top: Isosurface of dpdx: Blue dpdz = −1000 Pa/m and Red dpdz = 1000 Pa/m. Middle:
Spanwise pressure gradient contour at r/R = 0.5. Bottom: Spanwise pressure gradient contour
at r/R = 0.75.
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A.9 Pressure gradient in x-direction

Figure A.9: Temporal evolution of pressure gradient in x-direction contours and isosurfaces
(dpdx). Top: Isosurface of dpdx: Blue dpdx = −1000 Pa/m and Red dpdx = 1000 Pa/m.
Middle: Pressure gradient in x-direction contour at r/R = 0.5. Bottom: Pressure gradient in
x-direction contour at r/R = 0.75.
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