p—

Direct and Indirect Use of
Maximum Likelihood






4]

. Stel een vaas bevat 2 gouden en 3 zilveren ballen. Beschouw het volgende spel: voor elke gouden bal die u

uit de vaas trekt, ontvangt u één euro, maar voor elke zilveren bal moet u én euro betalen. Fen getrokken
bal wordt niet in de vaas teruggelegd. Men kan op elk moment stoppen met spelen. De vraag is: is het
verstandig om sowieso te beginnen met dit spel?

Dit probleem is bekend en vrij eenvoudig, maar we kunnen dezelfde vraag stellen met k goudenen n — &
zilveren ballen. Verder kunnen we ons afvragen wat een optimale stoptijd zou zijn. Hoewel het wat lastig
te beschrijven is in woorden, kan het algoritme gemakkelijk grafisch gerepresenteerd worden. Het volgende
plaatje laat het minimale perceniage gouden ballen zien waarvoor het winstgevend is om het spel te spelen.
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Een computer berekening laat zien dat n = 5 en n = 10 in zekere zin optimaal zijn (beiden hebben een
40% minimale ratio) en dat als n — 0o, de minimale ratio naar 1/2 gaat, waarschijnlijk met logaritmische
snelheid. De optimale strategie is: speel totdat de verkregen ratio onder de grafiek valt.

. Van de boeken van Gabriel Garcia Médrquez worden “Honderd jaar eenzaamheid” en “De herfst van de

patriarch” meestal gezien als zijn beste. Zij zijn echter vrij lang en somber en niet iedereen die deze boeken
begint te lezen, zal ze ook uitlezen. Ik denk dat een ander, eerder boek van Mérquez, “De kolonel krijgt geen
post”, meer aandacht en erkenning verdient. Het bevat alle opmerkelijke aspecten van Mérquez’ idee€én en
stijl in een notendop en zou waarschijnlijk meer mensen helpen om zichzelf bekend te maken met de werken
van deze auteur en om te wennen aan hun sfeer.

. De Duivel die een rol speelt in Boelgakov’s “De Meester en Margharita” is nogal atypisch. Door consistent

slechte daden af te straffen en goede daden te belonen (zij het niet op een algemeen aanvaarde manier), speelt
hij in feite de traditionele rol van God. Het citaat uit “Faustus”, dat in het boek is opgenomen, is gebaseerd
op het gebruikelijke geloof dat de duivel alleen een instrument in de handen van God is. Desondanks kan
dit citaat niet het gedrag van deze Duivel van Boelgakov verklaren, omdat hij omschreven wordt als veel
machtiger dan Christus. Deze interpretatie van de duivel is misschien uniek in de wereldliteratuur.

. Ondanks mijn waardering voor de “The Lord of the Rings” trilogie, met name voor het eerste boek, denk ik

dat de trilogie het stempel van de Koude Oorlog draagt. De wereld verdelend in “Noord”, “West”, “Zuid”
en “Oost”, suggereert het boek dat mensen uit het Westen half-elfen zijn, en daarom het beste van het beste
(naast de elfen), mensen uit het Noorden zijn sterk en fatsoenlijk, in feite nakomelingen van Westerlingen.
Mensen uit het Zuiden zijn gecorrumpeerd, maar nog niet zonder hoop, terwijl in het Qosten het Kwaad
huist, dat volledig vernietigd moet worden en wel zo snel mogelijk.

. Als men de kwaliteit van de werken van Tolstoj en Leskov vergelijkt, zou het een verrassing kunnen zijn

dat Tolstoj veel populairder is. Een mogelijke reden van Tolstoj’s populariteit is dat de lange novellen van
Tolstoj de enige Russische tegenhangers zijn van de lange Europese novellen (Stendhal, Flaubert, Dickens)
die zo populair waren in die tijd. Fen andere reden zou kunnen zijn dat Leskov, een zeer traditioneel man,
niet de revolutionaire veranderingen kon accepteren, noch de mensen die achter deze veranderingen stonden.
Misschien dat zij om deze reden omgekeerd geen waardering voor zijn schrijven konden opbrengen.

DEZE STELLINGEN WORDEN VERDEDIGBAAR GEACHT EN ZIJN ALS ZODANIG GOEDGEKEURD DOOR
DE PROMOTOR, PROF.DR. P.GROENEBOOM.



PROPOSITIONS ACCOMPANYING THE THESIS
DIRECT AND INDIRECT USE OF MAXIMUM LIKELIHOOD
BY V.N.KuLIKOV

1. Consider the supremum distance between the maximum likelihood estimator F, of the current status censored
distribution function and the distribution function F itself. It is proved in [1}, §5.4, that, if the support S of
the distribution F is compact and the infima of the densities of the censored distribution F’ and the censoring
distribution G are positive on S, then

P {igg Iﬁ',,(t) - F(t)l >nmi3 logn} — 0, n— oo. (2)

Using techniques, similar to those applied in §2.2 and §3.2 of this dissertation, the proof of this fact can be
extended to a proof of the following statement:
as soon as
0 < inf f(8)/g(t) < sup £(t)/9(t) < oo,
tesS tesS

where S can be unbounded, (2) holds.

(1] GrOENEBOOM, P. AND WELLNER, J.A. (1992) Information bounds and nonparsmetric mazimum likelihood
estimation, Birkhduser Verlag.

. In the case of testing against alternatives other than Lehmann (Proportional hazard) alternatives, the state-
ment of Theorem 3.1.1 of this dissertation does not have to hold. For example, when considering location
shift alternatives Fi(t) = Fo(t — 6), 8 € R, we would have to deal with score functions, depending on the
density as well as the distribution function. A simulation study shows that in this case the distribution of
twice the logarithm of the likelihood ratio is unlikely to be approximately xf, but it is much heavier tailed.
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Here the two solid lines are empirical distribution functions of 2logT, under the null hypothesis for a
Lehmann alternative and for a location shift alternative, and the dotted line corresponds to the distribution
function of x3.

. The statement (3i) of Theorem 5.3.1 of this dissertation suggests that
fa(Boan™3) — n~3EV/ Ag,,

where parameters Ag2 and By are estimates, based on f,., is a much better estimator of f(0) than f,,(n"/ 3.

Unlike f (n=1/3), it is asymptotically unbiased and its limiting distribution will probably not depend on the
underlying distribution. Nevertheless, computer simulations show that for n = 10000 the estimation of
F'(0), playing a role in Agz and Byg, is still far too inaccurate, which leads to a much worse estimate of f(0).
Simulations indicate that EV =~ —0.3115.

. It follows from Theorem 2.1 in [2} that
sup |Un(t) ~ 9(t)] = Oy (n™*/*(10g n)'*)..
te[£(1).£(0)

This result does not provide any information on the length of the first interval, where the Grenander estimator
fn is constant. We can prove that the length of this interval is Op (n~(log n)’) To obtain this result, one
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can follow a line of argument that is similar to arguments, used in Chapter 5 of this dissertation.

{2} GrRoENEBOOM, P., HOOGHIEMSTRA, G. AND LopuHAaA, H.P. (1999). Asymptotic normality of the L,-error of
the Grenander estimator, Ann. Statist. 27, No.4, p.1316-1347.

. Suppose a vase contains 2 golden and 3 silver balls. Consider the following game: for each golden ball taken

from the vase one obtains one euro, whereas for a silver ball one must pay one euro. A ball taken from the
vase is not put back. One can stop playing at any moment. The question is: does it make sense to play at
all?

This exercise is well-known and rather simple but we can ask the same question for k golden balls and n — k
silver balls. Furthermore, what would be an optimal stopping time? Although it is difficult to describe in
words, the algorithm is easily represented graphically. The following picture shows the minimal percentage
of golden balls for which it makes sense to play the game.
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A computer calculations show that n = 5 and n = 10 are the most favorable numbers of balls in the vase
(both having 40% minimal ratio) and that, as n — oo, the minimal percentage tends to 1/2, probably at a
logarithmic rate. Then the optimal strategy is: play until the obtained ratio crosses the graph.

. Among the books of Gabriel Garcia Marquez, “One hundred years of solitude” and “The autumn of the

patriarch” are usually considered as the most outstanding. Nevertheless they are quite long and grim and
not everyone who starts reading them will finish even one book. On the other hand, I believe that another,
earlier book of Marquez, “No one writes to the colonel”, deserves more attention and recognition. It contains
all remarkable aspects of Marquez’ ideas and style in a nutshell and would probably help more people to
familiarize themselves with the works of this author and to get used to their atmosphere.

. The Devil acting in Bulgakov’s “The Master and Margarita” is rather atypical. Consistently punishing bad

actions and rewarding good actions (though not doing this in a commonly accepted way) he is, in fact,
playing the traditional role of God. The quotation from “Faustus”, accompanying the book, is based on the
usual belief that after all the devil is just an instrument in the hands of God. Nevertheless, this quotation
fails to explain the behavior of this Devil of Bulgakov, since he is described as much more powerful than
Christ. This interpretation of the devil may be unique in world literature.

. In spite of my admiration for the “The Lord of the Rings” trilogy, in particular for the first volume, I think

that it bears the stamp of the Cold War. Dividing the population of the world into “North”, “West”, “South”
and “East”, the book suggests that people of the West are half-elfs, and therefore the best of the best (next
to elfs), people of the North are strong and decent, in fact being offsprings of the Western folk. The people
of the South are very spoilt, but still not beyond hope, whereas the East is the residence of evil, which must
be completely destroyed as soon as possible.

. If one compares the quality of the works of Tolstoy and Leskov, it may come as a surprise that Tolstoy is

much more popular. A reason might be that the long novels of Tolstoy were the only Russian match to
the long European novels (Stendhal, Flaubert, Dickens) so popular in his time. Another reason might be
that Leskov, being very traditionalistic, could not accept revolutionary changes and people supporting these
changes. Perhaps for this reason they, in turn, could not have appreciation for his writing.

THESE PROPOSITIONS ARE CONSIDERED DEFENDABLE AND AS SUCH HAVE BEEN APPROVED BY
THE SUPERVISOR, PROF.DR. P.GROENEBOOM.
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STELLINGEN BlJ HET PROEFSCHRIFT

DIRECT AND INDIRECT USE OF MAXIMUM LIKELIHCOD
DOOR V.N.KULIKOV

1. Beschouw de supremum afstand tussen de maximum likelihood schatter F, van de current status gecen-
sureerde verdelingsfunctie en de verdelingsfunctie F zelf. In [1] wordt bewezen dat als de drager S van
de verdeling F' compact is en de infima van de dichtheden van de gecensureerde verdeling F' en de cen-
sureringsverdeling G positief zijn op S, dan

P {sup
S
Gebruik makend van technieken analoog aan die toegepast in §2.2 en §2.3 van dit proefschrift, kan het bewijs

van dit feit worden uitgebreid naar een bewijs van de volgende stelling:
Als geldt

Eo(t) - F(t)l >n13 logn} — 0, n— oo. (1)

0<inff (t)/g(t) < sup f(¢)/g(t) < oo,
t tes

waarbij S onbegrensd kan zijn, dan geldt (1).
[1}] GRoENEBOOM, P. EN WELLNER, J.A. (1992) Information bounds and nonparametric mazimum likelihood esti-
mation, Birkhduser Verlag.

2. In het geval van het toetsen tegen alternatieven anders dan de Lehmann (Proportional hazard) alter-
natieven, hoeft Stelling 3.1.1 van dit proefschrift niet te gelden. Bijvoorbeeld, als we translatie alternatieven
beschouwen, krijgen we te maken met score functies die athangen van zowel de dichtheid als de verdelings-
functie. Een simulatie studie laat zien dat in deze situatie de verdeling van twee maal de logaritme van de
likelihood ratio niet goed de verdeling van x? benadert, maar een veel dikkere staart heeft.
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De twee doorgetrokken lijnen zijn de empirische verdelingsfunctie van 2 log Ty, onder de nulhypothese voor een
Lehmann alternatief en voor een translatie alternatief, en de stippellijn komt overeen met de verdelingsfunctie
van x3.
3. Stelling 5.3.1 van dit proefschrift suggereert dat
fa(Boan™/3) — n"3EV /] A,

waar de parameters Ag2 en By schattingen zijn, gebaseerd op fas een veel betere schatter is van f(0) dan
fa(n=1/3). Anders dan f,(n~1/3) is deze schatter consistent en wij vermoeden dat bewezen kan worden dat
de limietverdeling niet afhangt van de onderliggende verdeling. Desalniettemin laten computer simulaties

zien dat voor n = 10000 de schatter voor f'(0), die een rol speelt in Aoz en Bog, zo onnauwkeurig is dat dit
leidt tot een veel slechtere schatting van f(0). Deze simulaties suggereren dat EV =~ —0.3115.

4. Het volgt uit Theorem 2.1 in [2] dat

sup |Un(t) = 9(t)| = Op (n"/3(logn)/*) .
telf(1),4(0)}
Dit resultaat geeft geen informatie over de lengte van het eerste interval waar de Grenander schatter f,.
constant is. Wij kunnen bewijzen dat de lengte van dit interval Op (n"1(logn)?) is. Om dit te bewijzen kan
men gelijksoortige argumenten gebruiken als in Hoofdstuk 5 van dit proefschrift.
[2] GROENEBOOM, P., HOOGHIEMSTRA, G. EN LOPUHAA, H.P. (1999). Asymptotic normality of the Lj-error of
the Grenander estimator, Ann. Statist. 27, No.4, p.1316-1347.
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Chapter 1

Introduction

1.1 Scope of the dissertation

In this dissertation we consider estimators that satisfy certain order restrictions. Thesc esti-
mators can arisc in different ways. For example, if we want to estimate a distribution function,
there are natural monotonicity constraints. But also in the context of density estimation, as
well as estimation of regression curves, monotonicity constraints can arise naturally. For these
situations certain isotonic estimators have been in use for considerable time. Often these esti-
mators can be seen as maximum likelihood estimators in a semi-parametric setting. Although
conceptually these estimators have a great appeal and are casy to formulate, their distributional
properties are usually of a very complicated nature.

PRrAKASA RAO (1969) obtained the earliest result on the asymptotic pointwise behavior of
the Grenander estimator, which is the maximum likelihood estimator of a decreasing density.
One immediately striking feature of this result is that the rate of convergence is of the same
order as the rate of convergence of histogram estimators, and that the asymptotic distribution
is not normal. It took much longer to develop distributional theory for global measures of
performance for this estimator. The first distributional result for a global measure of deviation
was the convergence of the L;-distance in GROENEBoOM (1985). Moreover, only a sketch of proof
was given there and a rigorous proof was given fairly recently in GROENEBOOM, HOOGHIEMSTRA
AND LoPUHAR (1999). A similar result in the regression setting has been obtained even more
recently by DuroT (2000).

In this dissertation we will extend the result for the L,-distance to the Lj-distance. Im-
mediatcly, new interesting features emerge. In our study of the behavior of the Li-distance it
becomes clear that there is a kind of transition point at k& = 2.5 in the sense that for the valuc
of k > 2.5 we need a modification of the Lj-distance in order to obtain the analogous limiting
result. The major reason for this is the behavior of the estimator near zero. As a spin-off of
our study of the behavior near zero we also develop a n!/3-consistent estimator for f(0+).

A pointwise result also exists in the case of estimating a concave distribution function,
studied in KIEFER AND WoLrowITz (1976). They showed that the convergence rate of the
supremum distance between the empirical distribution function F, and its concave majorant
13"" is faster than \/n, whereas pointwise convergence of the difference Fn — F,, was obtained by
WANG (1994). We extend this result to process convergence of this difference and in addition
obtain a distributional result for the L;-distance between Fn and F,,. Recently, similar results
for the pointwise behavior and the Lj-distance were obtained in a regression setting by DUROT
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AND TOCQUET (2002).

The maximum likelihood estimator (MLE) of the distribution function in a situation where
only interval censored observations are available, turns out to have some properties which are
similar to those of the Grenander estimator. For example, the rate of pointwise convergence in
the simplest case of interval censoring, case I (also called current status), is the same as that of
the pointwise convergence of the Grenander estimator (see GROENEBOOM AND WELLNER (1992)).
On the other hand, certain smooth functionals of the distribution function can be estimated
at the usual n!/%-rate by estimators that are based on the MLE. These estimators also have
the usual asymptotic normal behavior (see GESKUS AND GROENEBOOM (1996), GESKUS AND
GROENEBOOM (1997) and GESkUS AND GROENEBOOM (1999)). These results suggested that
in the situation of interval censored data, a n'/>-convergent test based on the MLE can be
developed. One of the first results of this type was obtained in HuanG (1996), where the Cox
model for the interval censored data is considered and where the finite-dimensional parameter
is estimated at n'/%-rate (test for the finite-dimensional parameter). In this dissertation we
develop several tests of different nature in the context of two-samples testing. One type of test
that we develop is a score-type test, which is easy to apply and has certain optimality properties
in a restricted setting. The other type of test is the likelihood ratio test, which is harder to
implement, but has a somewhat wider range of applicability. We also prove efficiency of both
tests.

In the remainder of this introductory chapter we will discuss the above matters in more
detail and also provide some background information. Full proofs of the results are given in
Chapters 2 to 6.

1.2 Maximum likelihood and likelihood ratio

Consider a class P of distributions and for each P € P, let fp be the density with respect to
some dominating measure. The maximum likelihood estimator of the distribution Py based on
the sample {X;} from Py, is the element P, of the class that maximizes the likelihood

mmzﬂﬁmx

when it is well-defined. Sometimes it is more convenient to use the loglikelihood
l.(P) =log L,(P),

because logarithms transform products into sums, and maximizing L, (P) is equivalent to max-
imizing [, (P). Therefore,

P, = argmax L,(P) = argmax,(P).
PeP PeP
Often the MLE has the fastest possible rate of convergence and a normal limiting distribution.
This fact is explained by the theory of smooth functionals, which we will shortly discuss in
Section 1.7. However, the functional of P that is of interest may not always be a smooth
functional. For instance, the value of the distribution function of interval censored observations
at a fixed point, is a non-smooth functional. For this rcason, instead of converging at rate n'/?
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and being asymptotically normal, the MLE converges at rate n'/% and has a limiting distribution
that is the same as the last point where a two-sided Brownian motion with parabolic drift attains
its maximum (see Section 1.3).

The convergence in Hellinger distance is also of interest. If f; and f; are two densities with
respect to a measure ji, then the Hellinger distance between the deusitics is defined as

ot = (5 [ (VB - VE) )

In van DE GEER (2000) it is shown that, under certain entropy conditions, the maximum
likelihood estimator is Hellinger consistent:

1/2

h( fu, fo) — 0, almost surely.

The notion of entropy is discussed in Section 1.8. This result applies to many settings such
as estimation of smooth densities and estimation of a monotone density. The last case will be
discussed in Section 1.6, whereas in Section 1.3 another example of a Hellinger consistent MLE
is given. The rate of convergence of the maximum likelihood estimator is also well-studied.
According to vaN DE GEER (2000),

~ L—2
P{utjun ) > o} < Com {-T5 |

for any ¢ > §,, where (8,) is a sequence satisfying \/nd2 > C7T(8,), for a universal constant
C and a suitably chosen function T. In the case of estimating smooth densities, which have
at least m derivatives, the rate will not be slower than n~™/2m+1)  The casc of estimating a
monotone density is discussed in the Section 1.6 and Section 1.3 is devoted to the model for
current status data.

In the context of testing hypotheses a likclihood based test statistic is the likelihood ratio

_ SWPpep, L,(P)
suppep, Ln(F)’

where Hy represents the null hypothesis and H; the alternative. The better the underlying
distribution fits the null hypothesis, the smaller is the likelihood ratio T,. This immediately
implies that the critical region corresponding to testing at level « is of the form [t,, 00), where
te is the (1 — a)-quantile of the distribution of T,.

Often it is possible to show that 2log T, has a limiting x? distribution. To illustrate this,
first consider the simple case of testing the null hypothesis that parameter § of an exponential
distribution is equal to one, against a two-sided alternative. In this case f, is sufficiently smooth
with respect to 6. Writing I,(6) instead of I,(P) and using that I,(6,) = 0, by definition of f,,
one can expand 2log T, in terms of \/n(f, — 1) as follows,

2108 T, = 2, (0,) ~ 20a(1) ~ £2(6,) (B - 1)2 ~ %z;;(l) (Va6 - 1))2.

Next, a limiting x? distribution is obtained if V1(6, — 1) can be shown to be asymptotically
normal. For this, use that

0 =1(8,) ~ 15, (1) + 1, (1) (6 — 1),
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which means that the MLE én behaves as

l(1)
\/E(én - 1) V;—"
(1)

Since Ey [% log fo(X)] = 0, asymptotic normality of V(6 —1) now follows from an application
of the central limit theorem and the fact that

ll”(1) — Eq [;92 logfo(X)]

The x? distribution is obtained as limiting distribution by using that

2 2
Ey (-g—glog fa(X)) - B [5‘?93 log fe(X)] .

A brief sketch of a similar proof for models with finite dimensional parameters can be
found in MURPHY AND VAN DER VAART (1997). Other examples of more complicated setups in
which 2log T, has a limiting x} distribution are given in MURPHY AND VAN DER VAART (1997),
MURPHY AND VAN DER VAART (2000) and HuaNG (1996). Among these is the Cox regression
model for current status data, which is the most interesting for our purposes. This model is
discussed in Section 1.4. The general scheme of proof in MURPHY AND VAN DER VAART (1997) is
the same as we have described above for the one-dimensional model. First 2log T, is expanded
in terms of \/n(6, — 6p) and then one uses the following result obtained in HuanGg (1996)
(writing Pg for [ gdP)

V(B — bo) = I VaPul" + 0p(1) = N(0, 15,

where P, denotes the empirical measure, I* is the efficient score function, and I = Py(1*)? is
the Fisher information. The main difference between the Cox model and the model we will
work with (see Section 1.4) is that we have to deal with logarithmic terms, which introduces
additional difficulties near zero, whereas in the Cox model one deals with exponential terms
having negative powers.

The model we will consider in Chapter 3, also described in the Section 1.3, is a semi-
parametric model. Therefore, it contains a one-dimensional parameter #, which will be shown
to be a smooth functional. This makes it possible to construct a test for # = 0 against
contiguous alternatives 6, = 6,//n. Furthermore, the theory of smooth functionals allows
us to investigate whether the test is asymptotically (locally) most efficient. The test based
on the score statistic studied in Chapter 2 is most cfficient, as well as the test based on the
likelihood ratio statistic. Another advantage of the likelihood ratio statistic is the following.
Usually its limiting distribution does not depend on initial parameters. Other statistics, like
the score statistic, although easier to calculate (methods of simulation will be discussed in
Section 1.5), may depend on initial parameters in a quite complicated way.

1.3 Current status data

Sometimes one cannot observe the variable of interest directly. Instead, another variable (or
several other variables) is observed, that carries some indirect information on the distribution
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of the variable of interest. One such example is interval censoring. As an illustration, consider
the situation where one is interested in the distribution of the time of onset X of a certain
disease. One screens a patient at censoring time T and is only able to observe whether the
patient already has the disease, i.e., X < T, or not. Hence, instead of the variable of interest
X, we observe another random variable T, independent of X, and an indicator A = Lix<ry
The space of all possible realizations of (X, T') is usually called the hidden space, and the space
of all possible realizations of (T, A) is called the observation space. Interval censoring can then
be considered as a mapping from the hidden space into the observation space (with loss of
information). In the model described above, we observe the status of a patient only at a single
time point. In a more complicated setup one would observe the status at more than one time
point. We will confine ourselves to the simplest model, often called interval censoring: case I,
also known as the current status model.

The maximum likelihood estimator of the distribution function of the random variable X
1s defined as follows. Since the distribution G of the censoring variable T is not an object
of interest here, we consider the density of the pair (T, A) with respect to the measure p =
G X (counting measure on {0, 1}). The density fi;.4) is given by

Jaay(t,8) =0F () + (1 - 0)(1 — F(t)),

where F'is the distribution function of X. The likelihood of a sample {(T;, A;)}7, is then given
by

Lu(F) = [[HAF@) + (1 - 2)(1 - FE))},

and the maximizer £, of L,(F) in the class of all (possibly degenerate) distribution functions is
well defined. Usually, the likelihood is maximized over the set of piecewise-constant distribution
functions with jumps only at points T3,...,T,. In this case it is also unique (see e.g. GESKUS
AND GROENEBOOM (1999)). Later we will consider the loglikelihood

n

L(F) =) {Ailog F(T}) + (1 — A;) log(1 — F(T3))}.

i=1

An important property of the MLE, which can be found e.g. in GROENEBOOM AND WELLNER
(1992) is that for any a,(t) > 0, that is piecewise constant on the same intervals as F),(t), it
holds that

/ an®) | =— - 129 Vapt.6) <o,
Fa(t)€(0,1), t<to F.(t) 1—F,()

6 1-6
/Fn(t)e(O,l) a(f) (ﬁ‘n(t) - F,,,(t)) dPq(t,6) = 0.

Both relations play an important role in finding the MLE, as well as in the study of its asymp-
totic behavior and in fact they have a close connection to the theory of smooth functionals (see
Section 1.7). The second equation is often called the score rule.

Consistency and the rate of convergence of F, have been established. GROENEBOOM AND
WELLNER (1992) have shown that, if the distribution functions Fy and G of X and T have
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densities, and the measure Pr, is dominated by Fg, then the MLE is strongly consistent:

P {
N—=X teR

Another convenient measure of the accuracy of the estimator is the Hellinger distance. In van
DE GEER (2000) it is shown that the Hellinger distance between the underlying density fira)
and its maximum likelihood estimator f(T,A) converges to zero at rate n!/3:

Ault) - Fo(t)l—o}—l

h(fer.a) fizay) = Op(n™7).

By using boundedness of the distribution function, it follows that

\/ / — R )) dG(t) = O,(n~"13).

Extra conditions on the distribution G may provide a more informative bound. The maximum
likelihood estimator in the smaller class of possible distributions can have a faster rate of
convergence. For example, in the case of compact support, the MLE of a concave density of
interval censored observations can be estimated at rate n®° (for more details see VAN DE GEER
(2000) and DUMBGEN, FREITAG AND JONGBLOED (2002)). Further results on the supremum
distance can be found in GROENEBOOM AND WELLNER (1992). For instance, if Fy has bounded
support, on which densities f, and g are bounded and bounded away from zero, the MLE
converges at a rate faster than n'/3/logn:

P{ sup |En(t) — Fy()| >n l/3logn} — 0, n— o0.
tesupp Fo

Some distribution theory has also been obtained for the MLE. GROENEBOOM AND WELLNER
(1992) have shown that for a point ¢, in the interior of the supports of Fp and G, it holds that

g{to)
{4f0(t0)Fo(t0)(1 -F

(t0)>}1/3 nl/3 (F,,(to) - Fo(tg)) 2,z

where Z denotes the last time where standard two-sided Brownian motion minus the parabola
y(t) = t* reaches its maximum. The rate n!/? is characteristic for non-smooth functionals,
such as Fy(tp). Functionals, such as [tdFy(t) = [(1 — Fy(t))dt are smooth, and therefore
the corresponding estimator [(1 — F,(t))dt converges at rate \/n. Moreover, under certain
conditions, the estimator is asymptotically normal:

v / (Fu(t) — Fo(t)) dt 2 N(0,02),

supp Fo

with limiting variance o2 depending on Fj and G (see e.g. GROENEBOOM AND WELLNER (1992)).
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1.4 Current status and two samples testing

The ordinary two-samples test is concerned with testing the null hypothesis whether two inde-
pendent samples (possibly of different size) are from the same distribution. For further nota-
tional convenience, instead of considering two samples &, ..., &,, and n, ..., 7,, separately, we
will join them and consider a single sample of pairs

(X1, 21),-- -, (Xn, Zn). n=n1+ng,

where {X1,..., X, } ={&, .- &M, - - My } and Z; is an indicator, specifying to which origi-
nal sample X; belongs. Hence, Z; = 1<Yie{771-<-~\'7112} is a Bernoulli random variable with parameter
p = ny/(n1 + ny). We consider the two-sample problem in the context of interval censoring,
case | (see Section 1.3). Supposc that X; is censored by some random variable T;. In practice,
the possibly different nature of the two original samples often implies a different distribution
for the censoring variable. Therefore T is assumed only to be conditionally independent of X;
given Z; = z. For z =0, 1, define

i

F.(z) P{X,<z|Z ==z},
G.(t) = P{L;<t|Z ==z}.

Then the null hypothesis we need to test is Hy : Fy = Fj.

Next, we will make some assumptions about the alternative Hy, since for the general al-
ternative H; : Fy # Fj, the construction of a test and the investigation of its distribution
becomes much more complicated. Interval censoring has a lot of applications in biostatistics
and medicine, where, as well as in many other fields of science, the proportional hazard model
plays an important role. An important concept in this model is the cumulative hazard function
corresponding to distribution function F, which is defined by Ap(z) = —log(l — F(z)). Its
derivative represents the instantancous death rate of individuals who have survived up to time
z. The alternative hypothesis in the two-sample problem for the proportional hazard model
is: Ap = 0AR,, for some 6 > 0, i.e., the death rate corresponding to F} is proportional to the
death rate corresponding to Fy. In view of this, we will consider alternatives of the form

1—F1 5(1_F0)1+0, fOI'9> -1
Another possibility are Lehmann alternatives
Fy=F}*® for6> -1

In both cases we test the null hypothesis Hy : 6 = 0 against H; : § # 0.

Note that we only need to consider Lehmann alternatives, since the proportional hazard
alternatives can be related to Lehmann alternatives as follows. Suppose that 1-F; = (1 Fy)+e.
Define new random variables X; = — X;, T; = —T;, A; = 1¢%,<7,) and Zi=Z;. Then A; = 1—A,;
and

Fi(z) P{X,<x|Z;=1}=P{X;> -2 | Z =1}
L= Fy(=z) = (1= Ry(—a)""’

P{X; > —z| Zi = 0}'"** = P{X; <z | Z; = 0}'"" = Fy(a)**".

Il
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This means that we are back with Lehmann alternatives, and all results obtained for Lehmann
alternatives can immediately be transferred to proportional hazard alternatives.

To apply likelihood based methods we consider the density f(r,a z) of the triple (T, A, Z)
under a Lehmann alternative. Similar to Section 1.3 we will consider the density with respect
to a measure , such that fira z) will not depend on Gy and G,. Let yp and p; be defined on
R x {0,1} by

o = Gy X (counting measure on {0,1}),
= G; X (counting measure on {0, 1}),

and for A C R x {0, 1}? define
u(A) = pof(t,0) : (£,6,0) € A} + i {(2,0) : (¢,6,1) € A}.
Then the density fir,a z) with respect to u is given by
feram(t,6,2) = 6F(8)%% + (1 - 6) (1 - F(1)"*%),

where F is the distribution function of X, and the loglikelihood is given by

(0, F) = Z{A (1+6Z;)log F(T;) + (1 — Ai)log(1 — F(T;)'*%%)} .

i=1

Calculation of the maximum likelihood estimator (6,, F,,) = argmax [, (6, F), where the maxi-
mum is taken over all pairs (8, F), with § > —1 and F a piecewise-constant (possibly degenerate)
distribution function with jumps only at points T, .. ., T, will be discussed in Section 1.5. This
estimator is always well-defined and is studied in Chapter 3. Its basic properties turn out to
be similar to those of the MLE for Fj in the interval censoring model for a single sample.

In Chapters 2 and 3, two different tests of the null hypothesis against Lehmann alternatives
are derived. In Chapter 2 we investigate a score test, which is obtained as follows. Define

ﬁ‘,? = argmax [, (0, F)
F

as the MLE under the null hypothesis. Next, consider the loglikelihood I (6, I:’O) as function
of 6, and define 8% = argmax 1, (6, F?). This means that (6, £0)/06 = 0 at 6 = 6°. Hence,
under the null hypothesis, it seems reasonable that §% = 0, so that dl,(6, F0)/88 is small at
6 = 0. This leads to the following statistic, which we will call the score statistic (the term
‘score’ refers to the fact that it has a close relation to the theory of smooth functionals, see
Section 1.7):

1 01 (0, F? A 1-A
Vi o9 \/’ZZ (T)los ()<F0(T) —Fg(n))'

In Chapter 2, asymptotic normality of S, is established, and it is shown that the test based on
S, is asymptotically most efficient (see Section 1.7 for the definition of efficiency). The proof of
this result uses appropriate versions of the Chaining lemma and stochastic equicontinuity (see
Section 1.8) and methods similar to those from GESKUS AND GROENEBOOM (1999). The score

Sp =




1.5. IMPLEMENTATION 9

test is easy to implement, since it only depends on the observations and the MLE 15’,? of a single
sample, which can be computed fast. Its major disadvantage is that the limiting distribution
depends on the underlying distributions Fy, Go and G;. Estimation of these quantities leads to
additional computations and makes the test less accurate.

A traditional statistic, whose limiting distribution is independent of the initial parameters,
is the likelihood ratio statistic T, = L,(6,, F,)/ L, (0, F?). In Chapter 3 we show that 2log T,
has a limiting x? distribution. The gencral scheme of the proof is similar as that for the
one-dimensional model considered in Section 1.2. The main difference is, that in the casc
of Lehmann alternatives, the loglikelihood 1,(6,, I:",,) must be expanded with respect to both
arguments. To overcome this difficulty, analogously to MURPHY AND VAN DER VAART (1997),
we use optimality of the MLE together with the following bounds

2y (B F2() = 0,10(8)) — 20,0, F2) < 210g T,y < 20, (00, £7) — 20,(0, Fu(8) + Ok (2)),

where h,(t) and h%(t) are piecewise constant approximations of the least favorable subdirection.
Both bounds can be expanded as functions of ,, and can be shown to have a limiting x?
distribution.

As one may expect, the likelihood ratio statistic is asymptotically most efficient as well.
Computer simulations provided in Chapters 2 and 3 suggest that the distributions of the score
statistic and likelihood ratio statistic are close to the limiting distribution already for sample
size n = 50. The likelihood ratio statistic, which has a limiting distribution independent of the
underlying distributions, is preferable for practical applications with samples of sizes n < 1000.
For the larger n, faster computation of the score statistic may become crucial.

1.5 Implementation

In this section we discuss the calculation of the non-parametric MLE 13‘,? and the semiparametric
MLE (6, F},) introduced in Section 1.4. One of the methods to compute 0 is the EM algorithm.
That is: first take the set 1, ...,%,,t,+1, Where all ¢’s are ordered and t,,; is an arbitrary point
greater than all #’s in the sample. Furthermore, take an arbitrary starting distribution F©
with positive masses at all points ¢;:

0
pg ) = PFO{X = ti})
for example the discrete uniform distribution p{® = 1/(n + 1).
An ”Expectation step” consists of calculating the conditional expectation of the log likeli-

hood
E© { > log f(X:)
i=1

where f(z) = Pp{X = 2}, and E® is an expectation under the probability measure Pp. In
the next ”Maximization step” we maximize the above expectation over all discrete distributions
with probability density f with respect to the counting measure on the set {¢i,...,%;}. This

: 613'-~,6rnt1»~~,tn}a

yields new probability masses pl(-l). These steps are repeated until certain solution criteria (for
example the Fenchel duality conditions, see below) are satisfied. The number of iterations
needed to reach the solution with an accuracy of, say, two decimals, will incrcase with the
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sample size n (more on this and on why the method works can be found in GROENEBOOM AND
WELLNER (1992), Section 3.1).

The EM algorithm can be applied in various settings but for the case of interval censoring,
case I, there exist one step algorithm letting to find MLE F,? exactly. It is based on Theorem
1.5.1 of ROBERTSON, WRIGHT AND DYKSTRA (1988), according to which maximization of

n
P(z) = Z(&logmi—i—(l —&)log(l—x;)), 0<z: <... <2, <1
i=1

is equivalent to minimization of
n

$(z) =Y (@i — &),
i=1
where §; are ordered with respect to the t-component of the pair.
The minimizing & can be represented as = 3 i, 4;2%), where z) = 37 .e; and ¢; =
(0,...,0,1,0,...,0) (1 at position j). Furthermore, # is a minimizer if and only if

n n

w2 & i=1,....n

j=i j=i

n n

D dj=) 8, ifa>00ri=1
j=i i

Jj=t

Let Py = (0,0) and P = (4,3_7_;4;), s = 1,...,n. Moreover, let C be the pointwise largest
convex function on [0, 1], lying below (or touching) the points of P;. The set of points P; is
called cusum (cumulative sum) diagram and the function C - the (greatest) convex minorant
of this cusum diagram. Then #; is the left derivative of C at i. Executing the one step convex
minorant algorithm takes approximately Cn? operations.

Finding the semi-parametric MLE (9n, Fn) consists of maximizing

n
U(h,z) = Z {6:(1 + 6z;) log z; + (1 — &) log (1 — zi*ez")} ,0<, €. <2, <1,

i=1
which is neither convex nor concave in z for all , —1 < 8 < co. The ICM (iterative convex mi-
norant) algorithm, applicable for finding non-parametric MLE in the case of interval censoring,
case I1, can be applied here as well. The method is based on approximation of a non-convex
loglikelihood by a parabola (Taylor expansion up to the second term). At the first step we
choose one of the interior points z° of the cone 0 < z; < ... < z, < 1 and a diagonal matrix
D with positive diagonal elements. Approximate ¥(z,§) by

- 1
U(0,z) = ¥(0,2°) + (z — 2% V¥(z°)) — i(x — 29T D(z — z%),
and take z! to be a minimizer of the convex function
T — (T ~2° - D7V (mo))T D (:r -2 - D7'VY (xo))
over the convex cone. Then z} is the left derivative of the convex minorant of the cusum

diagram

i

i 0 .
P = (Zdj,z {djil'? - 6,79‘1’(20)}) ,1=1,2,...n.
=1 1

j=
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Usually one can get arbitrarily close to the solution (as far as numerical accuracy allows) by
repeating these iterations.

The minimizer of the convex approximation at each step does not necessary lie in the convex
cone but to avoid this difficulty one can use Jongbloed’s modification of the ICM algorithm. This
means that instead of the minimizer of the approximation we choose the point of the segment
between each z' and the minimizer of the quadratic form such that ¥ decreases sufficiently.
For more details on the ICM algorithm and Jongbloed’s modification, see GROENEBOOM (1996)
and JONGRLOED (1998).

The above method allows one to find the maximizer Fn(O) of L,(8, F) for any § > —1, and,
by further maximizing over the grid, to find the absolute maximizer (én, E,). This is possibly
not the fastest method, since it takes about Cn' operations to find the estimator, which differs
considerably from Cn? for finding F,?

1.6 Grenander estimator

The Grenander estimator is another name of the maximum likelihood estimator of a monotone
density. In this class of densities the MLE is well-defined and as GRENANDER (1956) has shown,
it is equal to the left derivative of concave majorant of the empirical distribution function F,
(the smallest concave function greater than or equal to F),).

PRrRAKASA Ra0 (1969) has shown that if f'(t) < 0, for some point ¢ in the interior of the
support of f, then the Grenander estimator f,,(t) converges at rate nl/3:

~1/3

(futt) - 1) 222,

nl/3

ST

where Z is distributed as the location of maximum of the process {W (u) — u?, u € R} and W
is standard two-sided Brownian motion on R originating from zero. Later a more elegant proof
of this result was given in GROENEBoOM (1985). In this paper also the limit behavior of the
Li-error of the Grenander estimator was formulated for the first time. It was proved rigorously
in GROENEBOOM, HOOGHIEMSTRA AND LoPUHAA (1999). Assume that f is a strictly decreasing
density with compact support. Let its first derivative be bounded away from zero and let the
second derivative be bounded. Then

!/ {n1/3 /0 1 ‘ Falt) — f(t)‘ dt — p} 2, N0, 5%).

The Grenander estimator and related objects are difficult to study since they depend (in
principle) on the whole empirical distribution. In GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA
(1999) the natural interpretation of the integral as an area leads to considering the L;-error of
the inverse process {U,(a) : a € [f(1), f(0)]} as an estimator of g(t) = f~'(¢), where U,(a) is
defined as the last time when the process F,(t) — at attains its maximum:

Un(a) =sup{t € [0,1] : F,,(t) — at is maximal} .

Nevertheless the process U, (a) still depends on the whole process {F,(z) : = € [0, 1]}, although
there are reasons to believe that asymptotically there will only be local dependence in shrinking
neighborhoods. The latter phenomenon is perhaps casiest to see by approximating the process
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F, locally by Brownian motion. To this end, the so-called Hungarian embedding (see Komvos,
MAJOR AND TUSNADY (1975)) is used. It establishes that a version of the Brownian Bridge can
be defined on the same probability space as F,, in such a way that for any x

1
P sup |Faly) - Fy) - n"V2 B, (F(y))| > =(Clogn + ) p < Ke ",
yESUPPOrt(F) n

where C, K and ) are some positive absolute constants.
In Chapter 6 we will generalize the result for L;-error of the Grenander estimator to the
Ly-error. It will be shown that k& = 2.5 is a kind of transition point in the sense that for

1<k<25
1
nl/8 J ni/3 (/
0

whereas for k£ > 2.5 there is no converge at all. To get convergence for k > 2.5 we need to
consider a modified Li-error by taking the integral over the interval [n™¢,1 — n™¢]. Then for

any 1/6 < € < ﬁ,

1-n—*
"1/6 n1/3
n—(

The main differences with the L; case are that, firstly, the interpretation of the integral as an
area will be lost, and, secondly, the inconsistency of the Grenander estimator at the boundary
of the support of the underlying density is going to play a role for k > 2.5.

Pointwise convergence of the Grenander estimator takes place only at interior points of
the interval of support. The limiting distribution of f,.(0+) is given in WOODROOFE AND SUN
(1993):

1/k
ho) = 10 da) - uk} 25 N(0,5D),

‘ 1/k
fn(x) — f(z)‘kdx) — Jbg &N(O,aﬁ).

fa(04+) 2 f(0+) sup
1<k<oo 1 k
where I',, are the partial sums of i.i.d. standard exponential random values. Similar kind of
inconsistency occurs at the other end of interval of support (if the support is bounded).
There are different ways to construct an estimator that has the same properties as the
Grenander estimator in the interior of the interval of support and also estimates f(0) consis-
tently. In WOODROOFE AND SUN (1993) a penalized maximum likelihood estimator is proposed.
The penalized maximum likelihood estimator in this case is the maximizer fn(a, z) of the
penalized likelihood

la(f) = Zlog flzi) — naf(0+),

where f is continuous non-increasing density with f(¢) = 0 if ¢ < 0 and where o > 0 is a
smoothing parameter. The exact formula for the solution of this maximization problem can be
found in SUN AND WOODROOFE (1996), where consistency of the penalized estimator fnga, 0+)
is proved as @ — 0 and na — oo. For z > 0, the difference between the penalized MLE f,(c, x)
and the Grenander estimator is negligible.

In Chapter 5 we introduce another approach to this problem. Extending the result for the
pointwise convergence of the Grenander estimator to values ¢, = n™® tending to zero, and
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using an inverse functions technique proposed in GROENEBOOM (1985), we prove convergence
in distribution of n?(f,(n™%) — f(n™%)) to

11—«
£(0) algmax{w -t} for g= TO if 1/3<a<1l,

[0,00)

0)|f' ()] 173 argmax {W(t) — t*} for 3=1/3 if 0<a <1/3.

tE(—00,00)

For o = 1/3 we prove convergence in distribution to a non-degenerate random variable Z for
B =1/3. Based on this result we introduce an estimator fa(n=13) of § (0} which has a smaller
mean squared error than that of f(c,, 0) proposed in WOODROOFE AND SUN (1993).

We also introduce a procedure for testing whether the underlying distribution function is
concave. The testing procedure we propose is to compare two estimators of the underlying
distribution function: the empirical distribution function F, and the integrated Grenander
estimator. The latter represents the concave majorant £, of F,,. If the underlying distribution
function is concave, one would expect that the process f:_’n(t) — F,(t) is asymptotically small in
a certain sense. For convenience of notation, we define the process {A,(t) : t € supp F}, where

An(t) = 0P (Fu(t) = F(1)).

The process n~%/3 A, was studied by KIEFER AND WoLFOWITZ (1976), where the upper bound of
the supremum distance was established. They showed that if the underlying decreasing density
f has a compact support and continuous derivative, then for sufficiently large n

P { sup
zeSUPP F

The pointwise convergence of A, was obtained in WANG (1994). Under the condition that the
density is strictly decreasing and differentiable at ¢q:

f'(to)
2f(to)?

where CMr{Z} denotes the concave majorant of the process Z(t) = W(t) — t2, which is two-
sided Brownian motion on R originating from zero with a parabolic drift. A similar result was
established in DuroT AND TOCQUET (2002) for monotone regression.

In Chapter 4 we study further properties of the process {A,(t) : t € supp F}. First we
extend the pointwise convergence, cstablished in WANG (1994), to the local convergence in
distribution of the whole process. The rescaled process

F.(z) - Fn(:lr)‘ > n"3(log n)s/ﬁ} <2n7?

Anlto) = [CM{Z}] (0),

{cl(to)An (to + n‘1/302(t0)s) (s € R} ,

where outside of the interval of support the difference is taken to be zero, converges in distri-
bution to the process
{[lCMRZ] (s) — Z(s) : s € R}

in the space D(—o0,00) of cadlag functions. For criteria of convergence in distribution in
D(—00,00), see e.g. Section 1.9.
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Although this result may be of interest in its own right, it does not provide a test statistic. A
possible test statistic is provided by the integral [ |, (t)— F,(t)|*dt. In Chapter 4 we prove that
if the underlying decreasing density f has compact support and a continuous second derivative
on the interval of support, than for any & > 1 and any continuous function g

nl/® { / An(t)Fg(t)dt — uk} 25 N(0,0).

The proof is based on techniques developed in GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA
(1999). A similar result was obtained by DUROT AND TOCQUET (2002) for monotone regression.

1.7 Smooth functionals and efficiency of testing

We now briefly discuss the theory of smooth functionals and its application to proving the
asymptotic efficiency of the test. Suppose the unknown distribution P, is contained in a family
of distributions P, which is dominated by a o-finite measure u. We want to estimate some
function of this underlying distribution P (that may be Py as well), which we denote as ¥(F).
The family P need not be one-dimensional, but we nevertheless consider one-dimensional sub-
models {P;, s € [0,6)} C P, with P, the same as before. Such a submodel is called Hellinger
differentiable if it is smooth in the following sense:

2
/ E(ﬁs—ﬁo)—%a po] du— 0, s 10, for some a € L(Fy).

Here p, denotes the density P, with respect to the dominating measure u. Hellinger differen-
tiability can be seen as an L,-version of the pointwise differentiability of logps(z) at s = 0,

since N P
Ps - Do — ‘_\/1_’(;( > )
=0

3 Ds log p,

The function @ in the last definition is called a tangent or score function. The linear space
Tp, of all tangents a corresponding to all Hellinger differentiable submodels of P, having Fp
the endpoint is called the tangent space. As proved in, e.g., GROENEBOOM (1996), one has
Tr, C L3(P).

The functional ¥ : P — R is pathwise differentiable at F, if for each Hellinger differentiable
one-dimensional submodel {P;, s € [0,4)} of P with tangent a € Tp,,

lim
510

lim < (¥(P,) = U(Ry)) = Wy, (a),

si0 8
where \Il'pu : Tp, — R is continuous and linear. Each functional of this kind can be represented
as an inner product (a,b)p, = [ abdP,. Consider an extension to a continuous linear functional
\Il'pu : Ly(Py) — R. This extension (which we denote by liJ'PO) is not unique, but by the Riesz
representation theorem for cach extension we can find a unique g, € Lo(Fy) such that

Uy (h) = (8, h)p, for all h € Ly(Fp).

Such a p, is called a gradient. Note that the orthogonal projection Pr(6p,) onto T, the closure
of the subspace T', is uniquely defined and also represents a gradient. This projection (denoted
by k = Pr(fp,)) we call the canonical gradient or efficient score.
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The following thcorem shows that smooth functional theory provides a criterion for the
asymptotic cfficiency of an estimator of ¥(Fp). It is Theorem 3.11.2 of VAN DER VAART AND
WELLNER (1996), but here we state it as formulated in GroENeEBOOM (1996). Let T, =
ta(X1, ..., X,) be a real valued measurable function of the sample. We consider a collection of
sequences { P, s}, where ¢ > 0.

Theorem 1.7.1 (Convolution Theorem)
Suppose that

1. U is pathwise differentiable at Py € P along a Hellinger differentiable path.

2. T, is a regular estimator. meaning that /n(T, — \I/(Pc/ﬁ)) converges, under PC/ Ja n
distribution to a random variable Z, which does not depend on the direction, i.e., the
tangent of the path {P.; m} to P.

3. The set of all directions is a lincar space.
Then there exist random variables Zy and Ay such that
A. Z has the same distribution as Zy + Ag.

B. Zy and Ay are independent.
C. 2o~ N (0,l1knl,)

An efficient estimator of the parameter W(F,) is a regular estimator with limiting distribution
equal to the distribution of Zy in the theorem. As one can see from condition 2 (excluding
superefliciency), Z, has minimal variance within the set of all regular estimators.

We will apply the theory of smooth functionals to testing. Suppose we want to test the null
hypothesis Hy : U(P) < 0 against the one-sided alternative H, : ¥(P) > 0.

Theorem 1.7.2 (VAN DER VAART (1998), Theorem 25.44)

Let the functional ¥ : P — R be differentiable at P relative to the tangent space Tp with the
canonical gradient kp. Suppose that W(P) = 0. Then for every sequence of power functions
P — 7,(P) of level- test for Hy : W(P) < 0, and for every a € Tp with (kp,a)p > 0 and every
c>0,

lim sup 7 (Poyysa) <1 =@ | 2120 — ¢ (kp,a)

Jilkelz)

where ® is the normal N'(0,1) distribution function and z, denotes a corresponding quantile.

Note that if (IEp, a)p < 0, the subfamily P,, s, lies in Hy for n sufficiently large, and then the
power of the test converges to zero. The theorem provides an upper bound for the asymptotic
power function and if this bound is attained by some test, it is asymptotically (locally) the
most efficient one. The analogous result can be proved for the simple null hypothesis.
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Theorem 1.7.3 Let the functional ¥ : P — R be differentiable at P relative to the tangent
space Tp with the canonical gradient kp. Suppose that W(P) = 0. Then for every sequence of
power functions P — 7w,(P) of a level-a test for Hy : ¥(P) = 0, and for every a € Tp and
every ¢ > 0,

(Z:P’ a) <’}P’ a)

Zl-q/2 — C—F———= Zajy — C—F—=
v lkell% \V |kp||%

1.8 Empirical CLT and stochastic equicontinuity

limsup m,( Py ma) S 1— @ +&
n—o0

In this section we discuss results which play an important role in many of our proofs. Let S be
a set, endowed with a metric p. The covering number N (4, S, p) is defined by

N(,S,p) = igf#{S(; C S :for every s € S there is s € S5 such that p(s, ') <6}
1]

or in words, the number of elements in the minimal d-net in S. If there is no such finite §-net
we assume N (4,5, p) = co. The set S will often be a set of functions with metric p, defined by

»
prai@ (o) = s = salb = ( [ I - sattiPaQe))
For a set of functions S the covering number with bracketing is defined by

Np(4,S,p) = igf#{Sg C S :for any s € S there are s',s” € S5,
1]
such that p(s',s") < 4 and for any t §'(t) < s(t) < s"(t)}.

The entropy H (4, S, p) is the logarithm of the covering number H(4, S, p) = log N(3, S, p), and
the entropy integral is defined by

J(4,8, p) = /‘/lg N(fSp dt.

Let S be a subset of Lo(FPy). The uniform law of large numbers (ULLN), which can be found
e.g. in VAN DE GEER (2000) implies that if S has a P-integrable envelope and : H (6,3, pripy))
converges to zero in probability, then the ULLN holds, i.e., sup,cg ] [ sd(P, — Po)‘ converges to
zero almost surely.

The empirical central limit theorem can be formulated in a similar way. Let us denote the
empirical process, indexed by the functions s, as {v,,(s), s € S}, where v, is defined by

Va(s) = \/'r—l/sd(P,, - BR).

Assume that the sample X}, ..., X, is defined on the probability space (Q, F, ). Let K be
the set of all bounded, real-valued functions on S, equipped with the supremum norm and let
S be equipped with the Ly(Py)-norm. Moreover, let B be the o-algebra generated by the set
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of all (open or closed) balls in K. Suppose v, to be (F/B)-measurable. If {v(s), s € S} is a
Gaussian process with zero mean and

cov(v(s1), v(s2)) = /SlSQdPQ -/sldPo /.egdPo, s1,82 €8

(the proof of existence of such a process can be found in PoLLARD (1984)), we call the class S
FPy-Donsker if

Ef(vn) — Ef(v),
for every bounded, continuous function f : K — R that is B/B-measurable, where B is the
collection of Borel sets on R. This means that the empirical process converges in distribution
to the Gaussian process, defined above, and therefore the two statements: “the empirical central
limit theorem holds” and "S5 is a Py-Donsker class” are equivalent.

DUDLEY (1984) has given a sufficient condition for the class S to be Fy-Donsker class. Tt
can be expressed in terms of stochastic equicontinuity. Processes Z, indexed by elements of the
set S are called stochastic equicontimious (with respect to the metric p), if for all > 0 there
exists a ¢ > 0 such that

limsupP{ sup | Znl(s1) = Zn(s2)| > 77} <.
n—oa 51.82€8, p(sl.sg)ﬁls

The sufficient condition for S to be Py-Donsker class is total boundedness of the class S (which
means that for any § > 0, N(3, S, pL,(m)) < 00) together with the property that the empirical
process v, is stochastic equicontinuous with respect to the La(Pp)-metric.

A sufficient condition for the class S to be stochastic equicontinuous, which can be applied in
proving Py-Donsker property of this class, is given in, e.g., POLLARD (1984). It characterizes the
class S as stochastically equicontinuous with respect to pr,(p,), if it has an envelope G € Ly(Fp)
and if for each 7 > 0 and € > 0 there exists v > 0 such that

limsup P {J (7,5, procpy) > 0} <€ (1.8.1)
As further detailed in POLLARD (1984), the given condition is a necessary condition as well for
a large set of classes. In Chapter 2 an analogue of the criteria for the class S to be Py-Donsker
is established for the casc when S = S, depends on n and when (1.8.1) fails.

For proving various modifications of the Donsker property, we often use Hoceffding’s inequal-
ity and the chaining lemma. Hoeffding’s inequality is used for obtaining a probability bound
for a sum of zcro mean independent random variables Y;. If a; <Y; < b;, for any ¢, then, for

any n > 0:
p {ZY; > n} < exp [—-‘2772 Z(bi - a.,;)2:| .
i=1

=1

The chaining lemma holds under the exponential type bound,
2
P{1Z(t) — Z(s)| > np(s,t)} < 2exp (—%ﬁ) for any s,t € T and 1 > 0,

for a stochastic process Z with index sct T. Often, a countable dense subset T* of the set T
can be found, such that for any ¢, 0 < € < 1,
P{|Z(s) — Z(t)| > 26DJ(p(s,1),T, p) for some s,t € T with p(s,t) < e} < 2e.

The same holds for T* replaced by 7', if the process Z has continuous sample paths.



18 CHAPTER 1. INTRODUCTION

1.9 Convergence of stochastic processes

In this section we discuss the notation for convergence of stochastic processes in distribution.
Consider the process {Z(t), t € T}, where the parameter ¢t does not have to be real. This
process is considered to be a random element of the space X’ of functions on T, assumed to be
large enough to contain all possible realizations of the process. The process Z, converges to
the process Z in distribution if

lim Ef(Z) = Ef(2)

for every real-valued continuous bounded function f, f : X — R, measurable with respect to
the o-algebra on X and the Borel g-algebra on R. Therefore the definition of the continuous
bounded function depends on the choice of metric on X.

Consider first the case T' = [0, 1] and X = D|0, 1], the space of cadlag functions, i.e., right
continuous functions having left limits in each point of T, provided with the uniform metric

d(21,22) = sup |z1(t) — z(t)]-
te[0,1]

The name cadlag comes from the French expressions ” continue 4 droite” and ”limites 4 gauche”.
In most applications, in particular those where Brownian motion arises as a limit, more com-
plicated settings are not required. For a sequence of random elements X;, i = 1,2,... and X in
the cadlag space D|0, 1], assumed to be measurable under the uniform metric and projection
o-field, suppose that there is some separable subset C of D[0,1], such that P{X € C} = 1.
Then a necessary and suflicient condition for X; to converge to X in distribution, given in,
e.g., POLLARD (1984), is that firstly, any finite dimensional projection (X, (¢1), ..., Xn(t)), for
0<t <... <t <1, must converges in distribution to (X(¢1), ..., X (t)), and, secondly, for
each e >0 and § > 0 thereisa grid 0 =ty <t < ... < #; = 1 such that

limsup P {maxsup]Xn(ti) - Xa ()] > 6} <€,
[} J;

where J; denotes the interval [t;,2;,1), fors = 0,..., k—1. The projection o-fields are introduced
to avoid certain measurability difficulties.

The space D[0, 1] has the same structure as any cadlag space, indexed by a closed interval
[a,b] of the extended real line (possibly [—00,c0]). This gives that the empirical process v, =
v/n(P, — Py), based on independent sampling from a distribution function Fp, converges as a
random element of D[a, b], to a Gaussian process v, which has zero mean and covariance given
by

cov(v(r), v(s)) = Fo(r)(1 — Fy(s)) forr < s.

The proof of this result can be found in, e.g., POLLARD (1984), where also the existence of
the Gaussian process is shown. In this setting, convergence of the empirical process v, to
the Gaussian process v mentioned in Section 1.8 can be considered to be a generalization of
the central limit theorem for processes, mentioned above (we can take the subset Sy C 9,
Sp = {1(—00,6]7 te R})

In Section 1.8 we looked at process convergence in another setting. The index space S was
supposed to be totally bounded with respect to pr,(p,) class of functions, having an La(Fp)-
integrable envelope. Furthermore, K was assumed to be the set of all bounded, real-valued
functions on S, equipped with the supremum norm.
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If the space of functions X = D[0,00) (therefore limits in +co does not have to exist), a
necessary and sufficient condition for the process to convergence can be expressed in terms of
convergence of restrictions of the process to finite closed intervals. Let the processes X;, X5 ...,
and X be random eclements of D[0,00) and assume that there is a separable subset C' of
D[0, 00) such that P{X € C} = 1. Then (see again POLLARD (1984)) a necessary and sufficient
condition for X,, to converge to X is that, for any k& € N, the restriction L;X,, of the process
{X,(t) : t € [0,00)} to the interval [0, k] converges in distribution in D[0, k] to the restriction
L. X of the process X to [0, k]. Similar result can be established for the space X = D{—o0, 00).

1.10 Open problems

We think that the results we have obtained for two sample tests under Lehmann alternatives
are rather general (in this setting) and that our conditions are close to the weakest possible.
The case of different supports of the censored and censoring distributions follows immediately
from our results. But how to test in the case of interval censoring, case II or higher, remains
an open problem. We hope that this can be solved in the near future. Another challenging
problem is to consider the covariate Z to be not simply Bernoulli but, as in MURPHY AND VAN
DER VAART (1997), to be distributed according one or another continuous distribution. Both
of thesc extensions of the theory have many practical applications, so it is unfortunate that
solutions are not yet available.

Concerning practical application we did not give any advice on the best way of estimating
the parameters of the limiting distribution of the score statistics. Furthermore, to make the
likelihood ratio test easier to apply in practice, faster algorithms for computing the maximum
likelihood estimator in the case of Lehmann alternative are needed. Combination of the EM
algorithm with some other existing algorithm may be the way to go here.

Next, in connection with the Grenander estimator, one can think of the supremum distance,
for which the exact rate of convergence and asymptotic distribution have not been established
yet. The supremum distance between the empirical distribution function and its concave majo-
rant is probably easier to study than the supremum distance for the Grenander estimator itself,
but for the supremum distance between the empirical distribution function and its concave
majorant there are no (sharp) results available either.

In the monotone regression setup (considered by DUROT AND TOCQUET (2002)) the study
of the behavior of the supremum distance may be somewhat easier, since then the process can
be directly embedded into Brownian motion. Convergence as a process in D(—00,00) may be
a stepping stone in such a proof, which will be analogous to what we have done in Chapter 4.






Chapter 2

Two samples score test

We propose a two-sample test for testing that the distribution functions Fy and Fj, generating
the two samples, are equal, in the case that the samples are subject to current status censoring
(also called ”interval censoring, case 17). The proposed test is a score test and tests the null
hypothesis Fy = F) against Lehmann alternatives Fy = Fj % for some § > —1. The test
statistic is shown to converge at rate v/n and to be asymptotically normal. Moreover, we show

that the test is asymptotically efficient for testing against the alternative Fy = Fgt.

2.1 Introduction

We say that a random variable X is subject to interval censoring, case 1, if instead of the
(unobservable) X, we observe a pair (T, A), where T is a random variable independent of X,
and distributed according to an unknown distribution G, and where A is defined by

A = lix<ry. (2.1.1)

Data. of this type are also referred to as “current status data”.

To facilitate treatment and also to put everything into the more general context of linear
models, we consider instead of two samples just one joint sample where each element has a
covariate Z equal to zero or to one. Formally the situation considered in the present paper is
as follows:

Given the i.i.d. sample of triples {(X;, T;, Z;)}?., where X;,T; € R and Z; € {0,1}, X; and T,
are independent and distributed in the following way:

Z; ~ Bernoulli(p)

P{Xi<t] Z;=0} = Fy(t
P{X;<t| Z;=1}y=Fi(t
P{T, <t Z; =0} =Go(t
P{T, <t| Z;=1}=G,(¢

~— N e ~—

We want to test the null hypothesis Hy : Fy = Fy on the basis of the sample of triples

{(T:,,A;, Z;)},—, (interval censoring, case I)

i=1

21
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Note that we allow the distribution of the observation times T; to be different for the two
samples. Two sample permutation tests for interval censored data have been considered by
PETO AND PETO (1972). Since they rely on the permutation distribution, such tests can only
be used when the censoring mechanism is the same in both samples.

Up to now we did not specify the alternative H;. All results given below are proved for
Lehmann alternatives. That is: the null hypothesis is given by:

Hy: Fo=F
and the alternative by:
Hy: Fi(t) = Fy(t)'*?, 0¢€(-1,0)\ {0}.
The alternative in terms of survival functions:

Hl c1— Fl(t) = (1 - FO(t))l+oy 9 € (—1,00) \ {0}7

is treated similarly.
To explain the construction of the test and the intuition behind it, we first have to introduce
some notation. Fixing the measure y on R x {0,1}? by

I = BLebesgue X (counting measure on {0, 1}?),
the density of the triple (T, A, Z) under the Lehmann alternative is given by
(L(6, F)] (¢, 6,2) (1 = 2)(1 — p)go(t) + 261 (2)) ,
where
[L(F,0)] (t,8,2) = 6F(t)"* + (1 - 8) {1 - F(t)'***},

and where F' and @ are the underlying distribution and parameter in the Lehmann alternative
model, respectively. The likelihood L,(8, F) of our sample of triples (T}, A;, Z;) is then given
by:

L0, F) [ (1 = 2)(1 = p)go(ts) + pzigs(£:)) ,
i=1
where
Lo(0,F) = [ (L6, P))(T:, A, Z:)
i=1
and the maximum likelihood estimator (é,,, Fn) of the underlying pair (6o, Fp) is defined by

(0, ;) = argmax L, (8, F), (2.1.2)
6.F

where the argmax is taken over all possible distribution functions F and parameters 6 €
(-1, 00).
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To test the null hypothesis, we also need the restricted maximum likelihood estimator F 0
of the underlying distribution function Fy, under the null hypothesis:

F? = argmax L, (0, F). (2.1.3)
F

We now show how this leads to a score test. Define the functions

W8.7,6.z) = §(1+ z0) logx + (1 — &) log (1 — &' +7)

. ol#.x,8.2) %% Jog

11(9,1‘,0,2) = —T :()Zlog'ﬂ_(l—(s)zl_—mlﬁ?7
_olfx,d.z)  0(1+20) Q-6+ 20)z*
ba(6.2,0.2) = ox - T 1 — gi+=t '

Using this notation, we can rewrite (2.1.2) and (2.1.3) as

(0., F,) = argmax/ 1(6, F(t),06,2)dP,(t,9, 2) (2.1.4)
8.F
and
o= a.rgmax/l(O, F(t),8, 2)dP,(t,4, z). (2.1.5)
F

Consider f A F,?(t), 8, 2)dP,(t,8,2) as a function of  under the null hypothesis 8y = 0. The

function L,(6, F?) is approximately maximized by § = 0. This means that, at the derivative
level, we get

/ 1,(0, F2(t), 8, 2)dPa(t, 8, z) = 0, (2.1.6)

while this will not be true for (local) alternatives.
The statistic on the left-hand side of (2.1.6) can also be written as

B0 20 0 B 1-9 .
/"Fn(t) log F3,(t) (F,?(t) 1= Fg(t)) dF,(t,6, ).

Now let the functional [S(F)](t,4, z) be defined by

where w is a (weight) function w : [0,1] — R.
The main result of this paper is:

Theorem 2.1.1 (Main Theorem)

Consider alternatives of the form: 6, = 6y/\/n, where 6 = 0 is allowed. Suppose that Fy, Gy
and G, satisfy

(i) support(Fp) = support{Gg) = support(G),
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(i) Fy,Go and Gy have densities satisfying

. fo(t) fo(t)
0< inf < su < 00,
tesupport(Fo)° (1 — p)go(t) + pgi(t) tesuppo}:t(Fo)O (1 —p)go(t) + par(t)
_ (2.1.7)
where support(Fy)° denotes the interior of the support of the density of Fy, and
go(F (1) . . ' 2
r(t) = is differentiable and sup |r (¢)] (L AT(¢)7°) < o0. 2.1.8
a(Fs1(t) I OHEAE) 219
Finally, suppose the weight function w to be
e either a Lipschitz function satisfying w(0) = w(1) =0
e or the function w(z) = z|logz|™, m > 1.
Then
= Vi [ [S(ED] (06,21 (6,6.2) 2> M)
where the mean and variance of the asymptotic distribution are given by
w (Fo(t))log Fo(t) 90(t)91(t)
=p(1-p)b / . dt, 2.1.9
w=p(=nb [ SR T e + pn® (219
" (Ry(0) 0
2 w F() t gO(t)gl t
c=p(l-p / . dt 2.1.10
=2 | RO G- RO T=palt) +p0® (2110

and where p € (0,1) is the Bernoulli parameter.

We need condition (2.1.8) in certain entropy calculations below. Among the cases where
this condition is satisfied one may think of

e The censoring distributions Gy and G, are the same.
[ ]

inf fo(t) >0, sup
tesupport(Fy,) tesupport(F)

g;(t)‘ <00, i=0,1

This can only occur if the support of Fj is compact.

o Fy~exp(\), Go ~ exp(Az), Gi ~ exp()3) distributions
(thus Fy(x) = (1 — exp(—A12)) 1op0 etc.). Suppose A; < As.

For the third example with the exponential distributions, (2.1.7) is equivalent to
A1 = Ag. The condition (2.1.8) then boils down to Az > A + Aq.

The requirements (2.1.8) can be replaced by the following conditions.
Let A, and B, be defined by

Ay = {t e0,1]: @) (1 Ar@)?) > u} (2.1.11)
B,={te[0,1]: 3s€ An, |t—s| <u?}. (2.1.12)
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Then there must be
lim u(loguw)*™9G, 0 F7Y(B,) =0, i=1,2, (2.1.13)

and
go(t)
ai(t)
In case if w is a Lipschitz function we assume here and later m = 0.

For the exponential distributions condition (2.1.13) is always satisfied. In relation (2.1.7)
we suppose that support(£}) is an interval (possibly infinite). If somewhere inside this interval
fo is equal to zero, condition is satisfied if gy and ¢; are also equal to zero in this region.

The proof of this theorem is given in the next section. In that section we give the main line
of argument, which relies on certain technical lemmas the proof of which is postponed to later
sections.

The third section is contributed to the proof of the asymptotic efficiency of the testing
procedure based on the statistic S, and the Theorem above. This relies on the theory of
smooth functionals (in the present case the smooth functional is given by 6(F)).

The fourth section describes properties of the maximum likelihood estimator we will use.
This is mostly a generalization of the results of vaN pE GEER (2000) and GROENEBOOM AND
WELLNER (1992) to the present situation. In sections 5 and 6 we analyze the Donsker terms in
the main representation separately and thereby complete the proof of our main result. Section 7
gives some results of the computer simulations showing convergence to the limiting distribution
in the Main Theorem.

Finally, we want to make some comments on the merits of the proposed test. The score test
is asymptotically efficient. The likelihood ratio test, to be discussed in separate paper, is also
asymptotically efficient. But in choosing the test in practical applications we have to think of
(at least) the following three things:

— monotone on support(Fp).

e How large should the sample size be for the distribution of the test statistic to be suffi-
ciently close to the theoretical?

o How accurate can we estimate the parameters of the theoretical distribution?
e How difficult is it to compute the test statistic?

Comparing the likelihood ratio test and the score test, we would recommend to use the
score test when the sample size is rather large (say, larger than 1000), whereas for the smaller
sample size it is more advisable to use the likelihood ratio test. Computer simulations indicate
that the likelihood ratio statistics converges somewhat faster to the asymptotical distribution
both under the null hypothesis and under alternatives.

The score test, however, has the advantage of being easier to compute. For the score statistic
Sy, we only have to compute the maximum likelihood estimator under the null hypothesis. Under
the null hypothesis we can apply a one step algorithm that uses a number of operations of order
n?. On the other hand, for the likelihood ratio test we must (in principle) compute the maximum
likelihood estimator for all possible #’s. For this we need to use an iterative algorithm, and
maximize the likelihood over a grid of @’s, since L, (8, F,L,g) is not a simple explicit function.
This will amount to a number of operations of order n.
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2.2 Proof of the main theorem

The maximum likelihood estimator for interval censored data is usually studied under the as-
sumption of compact support of the distribution of the censored variables X; and positivity of
the density (respectively marginal densities in the case of interval censoring with more observa-
tion times per unobservable) of the observation distribution on the support of the distribution
of the censored variables. But generally speaking we would expect that a condition, stipu-
lating that the censored and censoring values are “comparably densely” distributed would be
sufficient.

Note that the statistic S, evaluates F? only at the observation times T} and that F? depends
on {T;} only via the ordering of {A;} (see (2.1.3)). This suggests making a transformation in
the hidden space (the space corresponding to the unobservable triples (X;, T}, Z;)) that would
change the distributions of X; and T; without changing the indicators A; = 1yx,<7) or the
ordering w.r.t. T;. The solution of the maximization problem (2.1.3) will change, but not the
statistic S,. The transformation is quite simple and given in the next lemma. The construction
is somewhat similar to the quantile transformation.

Lemma 2.2.1 The statement of Theorem 2.1.1 is implied by the corresponding statement where
Fy is the Uniform(0,1) distribution function.

Proof: Suppose that for the parameter 6, for the censoring distributions G¢ and G,, and for
the censored distribution Fj, the conditions of the main theorem are satisfied. Consider the
sequence of i.i.d. random triples {(X;, T}, Z;)}%, in the hidden space, where the distribution
of the triples satisfies the conditions of Theorem 2.1.1. Now take another sequence of triples
{(Uhﬂ’ Zt')}?=1 defined by

U = (X)), T; = F(Ty), Zi = Zi.
Their distributions are given by
P{U;<u| Zi=z} =P{F(X))<u| Zi=2}=P{X; < Fy'(w)| Zi =z}
= FO (]?0_1 (u))1+29n = (FU11[0,1])1+20"
and
P{T,» < t‘ Z; = z} =P{FR(T) <t| Z;=2)
=P{T<Fy'(t)] Zi=z}=G.(F;' (1),

where F, ' is defined by
Fyl(z) =sup{t: Fp(t) < z}.
Note that, by continuity, Fy (FO_ 1(:49)) =z.
Now consider the corresponding sequences of triples in the observation space:
(X0 T Z) — (T, 0= Lixien), Z6), (2.2.1)
(Ui,’f}, Z,») - (TiaAi = liy<hys Zz)




2.2, PROOF OF THE MAIN THEOREM 27

Note that since Fy is monotone, and since almost surely there are no points X; and 7} on the
intervals where it is constant, we have:

Fo(’\") SHK(I) < Xi<T,
Due to (2.2.3) the A;'s in the observed triples (2.2.1) and (2.2.2) have the same values.

Define R
"= (BT, FXT)
Then 2" satisfies

" = argmax Zl(o i AL Zy).

reR", 0<x; i< 1Sy
Similarly. let

i = (BT, E(T).
where Fn is defined as

F, = argmaxil (O. F(Ti),Ai, Zl) .
oo

Then we get:

n n
= argmax Zl((), xi, Ay Z;) = argmax Z 00,2, A, Z;) = 2™
*€R™, 0<ai<wip1<1 7Ty @€R™, 0S@i<wi41<1 5=y
Hence the statistics S, and S,,, corresponding to the samples (2.2.1) and (2.2.2), are equal since

they can be represented as

e (3-128) - e (5-22) -

The above lemma shows that the proof of the Theorem 2.1.1 will follow from
Theorem 2.2.1 Suppose that 6, = 6y/+/n where 8y = 0 is allowed. Suppose
() supp Go = supp G, = [0, 1]
(i) Go and G, satisfies (2.1.7) and (2.1.8) with Fo = Fyn,)
Moreover, suppose the weight function w to be
o either the Lipschitz function satisfying w(0) = w(1) =0
o or w(z) = z|logz|™, m > 1.

Then
S—ﬁ/ | (0.6, 2)dP,(¢.6,2) 2 (o)

where the parameters 1 and o are given by (2.1.9) and (2.1.10).
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We need to pay special attention to the behavior of our test statistic near the boundary of
the support of Fy (from now supposed to be the Uniform(0,1) distribution function). To this
end we define

I, = [n""3(logn)?, 1 — n~Blogn)?], I¢ = [0,1]\ I,

If; = [0, n"1/3(logn)2] , In = [1 - n'l/a(logn)Q, 1] .
In the proof of the following lemma and also in the rest of this section we will use that for F'
belonging to the set:

Fo= {F : distributions on [0,1], sup |F(t) — Fp(t)| < n~1/3 logn} (2.2.4)
te[0,1]

we have:

1 . F(t) F(t)
=< in < <2, 2.2.5
2 T ten FeFa Fo(t) ~ ter, Fer, Fo(t) ~ ( )

for n sufficiently large. It will be shown in Lemma 2.4.6 that
P{F’ e F,} =1, n — 0.
Lemma 2.2.2 Under the conditions of Theorem 2.2.1:
=vn [ FO)] (t,5, 2)dPa(t, 8, 2) + 0,(1)
Proof: We have:

R~ [S(Ff)] (t,8, 2)dPa(t, 8, 2)| < [S(ﬁg)] (t,6, 2)dPa(t, 8, 2)

|w Fo(t))‘ 1- 5)

/Illw ) ) dP,(t,6,2) +vn

P R
/,, [ ( Fo(t) L EO) o, (téz)-l—\/?_I/ ] FO_tQJ((;_J)dPn(t,&Z)-

Denote the last four terms by I , I I, IIT and IV. Before we show them all to be negligible we
note that

lw(t)| |w(t)|/¢
su <Ciy<oo and sup —————— <y <0 2.2.6
Sup ToE T (226)

as follows from the condition on w. Using this we obtain
< VG, /1 1+ log B(0)[") ddPu(t,6.2) < Vi(log )Gy /{ 8dPa(t,8,2) = 0y(1)
since, by Lemma 2.4.4, FO(T;) > & = and since, by the Markov inequality and (2.1.7),
P {/p ddP,(t,0,z) > 7z'1/2(10g'n)'(m+1)} < Va(logn)™+h /I, ddPy(t,9,z)

= V/n(log n)t™+Y /,, (1 = p)Fo(t)go(t) + pFo(t)**g:(2)) dt — 0, n — oo.
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For the second term we have:

1< vn / w (ﬁ?(t)) dP.(t,6,2)
[l

1 — FO (n-13(log n)?)
<05¢’/ F° )+ E9(t) llog f)l )dl’ £,0.2) + 0,(1)

< Cavllogn)™ [ E2(0APA(15,2) + o)
5
< Csv/n(logn)™E° (n™3(log n)?) / dP,(t,0,2) + 0,(1) = 0,(1),
JI

by an application of (2.2.5), Lemmas 2.4.4 and 2.4.6, and the Markov inequality.
For the terms 777 and IV the proof is similar to the proof for the terms I and I7:

/i N

@ FA;? (1 —n-13(logn)?) / (l By (t)) dPy(t,d,z2)

\/7_7{1 — FO(1 — n~3(log n)z)}
F2{1 - n-13(logn)?}

I

A

Cs / dP,(t,0,z) = 0,(1)
I"
and
IV < Cov/n | (1—6)dP,(t,6,2) = op(1).
I3
[ ]

We are now ready to give the outlined proof of Theorem 2.1.1. Let the functional [R(F)] be
defined by

60 =t (5~ )

We can then write the statistic S, as

S. = va [S(F,?)] (£,8,2)dPy(t, 5, 2) + 0,(1)

- Vva / (t,6,2) ~ [S (FO)] (t,6,2)) d(Pu — P66, gy, (227)
—a / (t,6,2) — [R (Fy)] (t,é,z)) d(Py — Po)(t,8,2)Lner,  (228)
A / )] 0:6.2) = [R(E2)] (1.6,2)) dPo(t. 6, 2)1 e, (2.2.9)

+V/n ’ ([S(Fo)] (8,6, 2) — [R(F0)] (£, 0,2)) d(Pn — Po)(t,8,2)1 pger,  (22.10)
+0P(1))

where we used that, by Lemma 2.4.3 in section 2.4,

/ [R (FO)] (t,8,2)dPa(t,8,2) = 0
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and that, as in Lemma 2.2.2,
v [R (Fg)] (t,8,2)dPp(t, 6, 2) = 0,(1).
I

Now convergence S, 2, N(u,0?) follows from the Lemmas 2.5.1, 2.5.2 and 2.6.2. Note
that the first two terms in the final representation are so-called Donsker terms that are shown
to be asymptotically small, using the analog of the equicontinuity lemma in POLLARD (1984).
The last two terms (say IV,,) are the non-negligible Central Limit terms and will also be treated
in Lemma 2.5.2. It is perhaps not immediately clear why the (2.2.9) term is a Central Limit
term (if §p = 0 and Gy = G it is simply equal to zero by the independence of Z and (T, 9)),
but this will be explained in Lemma 2.5.1. ]

2.3 Asymptotic efficiency of the score test

In this section we will show that the score test is asymptotically efficient. The proof relies on
the theory of smooth functionals.
The model we consider has the following form:

P = {(Fy, Go, G1,0,p), where Fy, Gy, G, are distribution functions,
fe(-1,00), pe(0,1)}.

The functional we have to estimate (and for which we have to show “smoothness”) is:
¥(Fo, Go,Gh,0,p) =0,

and we have to study its behavior in the neighborhood of the fixed point:
P° = (Fy,Go,G1,0,p).

Take the dominating measure p to be:

1 = (Lebesgue measure on R) x (Counting measure on {0, 112

For P = (Fy, Go, Gy, p, 5) the density of the triple (T, 6, Z) w.r.t. u is given by

Tolt6,2) = {8Fa0) = + (1= 8) (1= Fo(t)*) H{(1 = 2)(1 = B)do(t) + 5 ()} .

We assume here that the densities o and g; exist.
Our first step is to find the tangent space corresponding to the model. It is given in the
following lemma.

Lemma 2.3.1 Each element of the tangent space of the family P at the point P° can be rep-
resented as

a(t,6,z) = (1—2)ag(t) + za:(t) + (% — 1 :;) P

+ (zB’FO(t) log Fo(t) + h(t)) (F_j(t_) - %Fj@)) ’

where
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e ag € L}(Go)

e a; € L3G)

e 0,peR

® SUP,cgupport(Fy) |h(t)| < oo, h|asupport(Fo) =0
and h?/{Fy(1 - Fy)} € LYGo) (LY Gy).

The lemma gives us that if the path f? is differentiable, then the one-dimensional parameters
6° and p° are differentiable in the usual sense, as real-valued functions of s, and the paths g}
and gj are Hellinger differentiable.

The proof of this lemma uses standard techniques and is therefore omitted. One can check
that the usual interpretation of the tangent — the logarithmic derivative of the family of densities
along the path — remains true here.

Lemma 2.3.2 The canonical gradient (or “efficient influence function”) l~c, corresponding to
the model P at the point P° is equal to

N B 5 1-9 L pa1(t) o
k(t,é,z)-C(Fo(t) 1_F0(t)>< pgl(tH(l_p)go(t))Fo(t)lgFo(t),

where

- - Fo(t)(log Fy(t))* 90(t)g1(t) -
¢= <p(1 P) /support(po) L=Ft)  pa(t)+(1-p)g(t) dt)
Proof:

Since the canonical gradient is a unique element of the tangent space we write

k(t,6,2) = (1= 2)ao(t) + za:(t) + Cy (Z - 1 :;)

4 (ZC’QFO(t) log Fo(t) + Mt)) (E% B i%j(f)) ’

where @, @; and h are as in Lemma 2.3.1. The derivative %

in the “direction” a, has

s=0

the representation as an inner product {(a, l~€> po. We write this in the following form:

0
—( 1— )>
s=0\p 1-p0//po

_93
5~ F
Fylog Fy + h) ——"> ,
—0 po

s=0

<(1 - Z)&(] + za, + C, (p

J
1_p>,(1—z)ag+za1+£ps

d—Fpy ( 0

S I PV
Fo{l — Fot’ \“0s

s

Os
z 1—-2
0 - 40

since the integral of {§ — Fo}/{Fu(1 — Fy)}, multiplied by a function that does not depend on
J, is zero when integrated w.r.t. the measure dP°.
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The first inner product is independent of 3 0 5.0° and must therefore be equal to zero. The

choice ag = dg, a; =0, asp |s=0 = () gives

<(1 — 2)dg + 2, + Oy (% - 1 :;) (11— z)&0>PO =
/ {(1 _ @ claoi :;} dPY(t,5,2) = (1 -p)/ao(t)'zgo(t)dt ~0,

and hence dp = 0. Similarly, @, =0 and C; =
The second inner product must be equal to 5—10’

9 . N §-F {0 R}FRlgk
(_9_;9 |s 0<{CQZF010gFO+h} 1.7‘0{1—1:‘()}7 FO{l_FO} PO
N 6—Fy {6 — Foth

lo=o

~s=0’ and hence we should have:

g
-0°| _,

T s le=0

and hence for any h as in Lemma 2.3.1 the second inner product should be zero. This means

/ {CozFu®)log Fo(t) + h()} Fg{% h(t) dPY(t, 6, 2)

h(t)

o)1= Fo®) {ﬁ(t)((l —P)g0(t) + pg1(?)) + Capgr(t) Fo(t) log Fo(t)} dt =0.

Taking

5 pg:(t)
h(t) = h(t) + C; EOESTI0 Fy(t) log Fo(t),

the above can only be satisfied if

Py pgi(t) o
M) = O = gufe) + pan(p) ) o8 FOLE)

To find the constant Cy we use condition on the first inner product above:

F
2CoFylog Fo + b 0=k , 2Fylog FO—O
Fo{l - FO} Fo{l - Ry} / po

PG - F §—F >

= z— CyFylog Fy, zFylog Fp———+—

<( (1-p) go+pg1) Foll = Fpy 2 ooefosfologfopa—ry
1.

That is

L wm® \G-ROF,.
& [+ (1= Gt ) (TR 8 P06

Fy(t) log® Fy(t t)oi(t
= Cyp(l —p)/ o(t) log” Fy(t) 90(t)g1(t) =1,
1- K@) (1-p)g(t) + pgi(t)
which finishes the proof of Lemma 2.3.2. ]
To prove the next lemma we need the Theorem 25.44 of vAN DER VAART (1998)
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Theorem 2.3.1 (van der Vaart)

Let the functional ¢ : P — R be differentiable at P° relative to the tangent space T with
the canonical gradient k. Suppose (P°) = 0. Than for every sequence of power functions
P — 7,(P) of level-x tests for Hy : ¢(P) <0, and every Hellinger differentiable path P* with
the corresponding tangent a € T, {k,a)po > 0 and every h > 0,

limsup 7, (Ph/‘/ﬁ) <1—@ | 210 — h(klﬂ ,
oo \/ (k, k) po

where z1_q 1s the (1 — a)-quantile of the standard normal distribution.

(2.3.1)

By the same arguments the asymptotic power for the two-sided alternative Hy : #(P) # 0
satisfies

limsup 7, (Ph/ﬁ) <1-—-¢ Z1-8 — hw +9 zg — hﬁ——
e A/ (k, k) po \/ <l€ k)po

Lemma 2.3.3 For w(t) = tlogt the score test (based on the statistic S,) of Hy against Hy is
(locally) asymptotically efficient.

(2.3.2)

Proof: We have to prove that the asymptotical (local) power function of the score test attains
the upper bound, given by (2.3.2). The alternative distribution P/ V™ is in our case given by

6
Pl/\/ﬁ = (F07G07G179n = \/_OE,P> ]

which can be considered as the point of the Hellinger differentiable path
P¥ = (Fo, Go, Gl, Hn = GOS,p) .

taking the value P° at s = 0. According to Lemma 2.3.1 the corresponding tangent is:

a(t,d,z) = 26, (F(%B 11_;F6()) Fy(t) log Fo(t).

Calculating the value of (k,a)po/1/(k,k)po in (2.3.2), we obtain

(]:3, a> po =
N g .0 I Y o
oo / SUPpOrt(Fo) Fo(t)"log” Fult) Fo(t)2{1 — Fy(t)}2 (1 — p)go(t) + pai () dho(t,9,2)
_ Fo(t)(log Fp(t))? go(t)gr(t) _
Cop(1 =) / spportny  1—Fo) L= pa(®) +pand) "~

where the constant C is the same as in the Lemma 2.3.2. It also follows from this lemma that

A Fo(t)(log Fo(t))* go(H)gi (t)
T Y I o o e PR EE
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and hence

(k, a) po Fy(t)(log Fo(1))*  go(t)gu(t) }/
ey

N {p(l_p)/supporm) T-Fo() (1= p)aold) + ponlt

If w(t) = tlogt, the ratio p/c of the parameters of the limiting distribution of the statistic S,,,
given in the main theorem, is equal to this value and hence the (local) asymptotic power of the
score test attains the upper bound given by (2.3.2). ]

2.4 Properties of the maximum likelihood estimator

In this section we discuss properties of the maximum likelihood estimator ﬁ‘,? defined by (2.1.3)
under conditions of the Main Theorem. As mentioned in the introduction, the results pre-
sented here are mostly generalizations of results in VAN DE GEER (2000) and GROENEBOOM AND
WELLNER (1992).

First of all we note that the relation (2.1.3) only defines F? in the points 7} and for this
reason the statistic S, depends on 2 only via its values FO(T}), i = 1,...,n. We define F? to
be the piecewise constant right continuous function, with jumps only at the points T}, which
maximizes L,(F,0). We put ﬁ‘,?(t) = 0 for any ¢ < T{;. This may sometimes result in a
defective distribution function, but this does not cause a real problem, as is clear from the
following lemma.

Lemma 2.4.1 Under the conditions of Theorem 2.1.1:
P {13’,? is defective} — 0, n— oo

Proof:
P{lim £3(2) = 1} = P{Eu(Tw) =1} = P{A =1},

since, if I:‘n(T(n)) =1 and A, = 0, the log likelihood would be equal to minus infinity. Here
and in the sequel the lower index (i) in Ay indicates that the triples are ordered w.r.t. the
order statistics T(;), following a convention, introduced in GROENEBOOM AND WELLNER (1992).

To show that P {A(n) = 1} tends to one, we note that, from the conditions on the intervals
of support in Theorem 2.1.1, there exists an increasing sequence of numbers «,, satisfying:
P {T(,,) < an} — 0 and Fy(a,) — 1, n — oco. This implies:

P{Aw =0} < P{Au =0 T 2 an} P{Tim) > an} + P{Tm) < an}

2 — (Folan) + Folay)""™) + P{T) < an} = 0, n — .

IAIA

The next lemma gives a unicity property of the MLE.

Lemma 2.4.2 There exists only one piecewise constant right continuous function with jumps
at the points T; satisfying (2.1.3).
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Proof: We use the alternative definition (2.1.5). The proof of the lemma will then follow from
the strict concavity of I(0,z, d, z) w.r.t. z.

Assume that there are two different solutions of (2.1.5): Fi, and Fy,, take F,(t) =
3(F1,(t) + Fo,(t)). This will mean

/ 10, F,(t), 6, 2)dPy(t, 6, 2)

, .
>3 / 10, Fun(t), 6, 2)dPa(t, 8, 2) + % / U0, By n(2), 8, 2)dPo (L, 5, 2).

But the last two terms must be equal. This leads to a contradiction, since then F) ,, and Fy,
cannot be solutions of (2.1.5). m

The next lemma provides the necessary condition for 13’3 to be the solution of (2.1.5).

Lemma 2.4.3 For any function a : IR — IR, constant on the same intervals as FT?,

/a(t)l2(07 FJ(1):6,2)1 pe(o,)@Pa(t, 6, 2) = 0. (24.1)

Proof:
Let {[T,-,r,;H)}g\’:O be the system of intervals where ﬁ’,? is piecewise constant, where 7 = 0 and
Tn 1 = 1. Note that {r;}¥, C {T}}2;.

Assume that £ is non-degenerate. Consider F,(t,u) = FO(t) + Ulierimpyy
i =1, ..., N — 1. There exists an ¢ > 0 such that for any u, satisfying |u| <, t — F;(t,u)
is a distribution function. Hence

/ 10, Fy(t, w), 6, 2)dPa(t,6,2) < / 10, EX(2), 8, 2)dPa(t, 8, 2).
We now obtain (2.4.1) by taking derivative w.r.t. u. ]

Another important property of F,? we will need is that it can, for fixed n, not be arbitrarily
close to zero or one, without actually becoming equal to zero or one, respectively. This property
is somewhat analogous to a corresponding property of a 1-dimensional empirical distribution
function.

Lemma 2.4.4
o 1 . 1
FA(T) 2 —Ligarysop and 1= F5(T) 2 —Lipgeryany -

Remark 2.4.1 Note that analogously to Lemma 2.4.1, Lemma 2.4.4 can also be formulated
as

. A - 1-A

R R

Proof of Lemma 2.4.4: The two statements of Remark 2.4.1 are symmetric and we therefore
only prove Fo(T}) > Aj/n. If A; = 0 or F(T;) = 1 the statement is trivial. Otherwise

0< F,?(T]) < 1. Using Lemma 2.4.3, with a(t) = Ly pocry)ys We obtain

0= Z Al _ 1 Az 1 _ n—1
FNT) 1-FNT) )~ FNT) 1-FATy)

i FO(T;)=F2(Ty)
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and hence FO(T}) > 1/n. [

The following lemma relates the maximum likelihood estimator FO to the maximum likeli-
hood estimators of Fy and F %", respectively, not using the restriction of the null hypothesis
for these distribution fun(‘tlonq

Lemma 2.4.5 Let the triples {(T;, Ai, Z;)}2, be defined as before. Then we can define on the
same probability space i.i.d. random pairs {( Tz, AN and {(T;, AD)}2, such that the T;’s are
the same as the T; in the triples and such that Al j =0,1, are mdu‘ators satisfying

P{A] = 1| T; = t} = Fy(t)"+i%.
Let ﬁ’,? be as in (2.1.3) and let ngn, 13"1'" be functions satisfying

Fy,= argma.xHL (0, F)(T;, A%,0), j =0,1. (2.4.2)
F

i=1

Then, if 8y > 0, we have for all t
Fl,n(t) S Fg(t) S Fﬂ,n(t)
with reversed inequalities if 6y < 0.

The usefulness of this lemma is that Fo,. and F1 » are the maximum likelihood estimators of
Fy and Fj*® in the usual current status problem. These maximum likelihood estimators are
well studled and we are going to show uniformity of the results w.r.t. the parametric class
{F3*% 6 € (—1,00)}. We will then use the fact that Fp(t)+% is sufficiently close to Fp for
obtaining a bound on the supremum distance between Ff and Fy.

Proof: Let {(T},U;, Z;)}, be i.i.d. triples such that U; is a Uniform(0,1) random variable,
mdependent of the other two elements of the triple, Z; a Bernoulli(p) random variable, and
such that 7} is distributed according to

P{T; <t| Z; = 2} = G.(1).
We consider the sequence of triples {(T}, A;, Z;)} as the image of the sequence above
T; = Til; A; = {Ui < FO(T,-')“'Zig"}; Z; = Z;; i=1,...,n,
where we write {-} instead of 1;. Now take
T?=T,; A)={U; < R(T)} i=1,...,n,

and

T =T; A ={U: < R(L)™"™} i=1,....n
Note that if 6, < 0, we have A? < A; < Al| with reversed inequalities if 6, > 0. It is therefore
enough to prove that if there are two sets of pairs {(T;, A?)}2, and {(T;, A})}%, for which
there exists J, 1 < J < n, satisfying

89 = 6}, 1 #
60 0,8 =1, i=1J,
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then the functions F7, defined as in (2.4.2), satisfy:
Fonlt) < Fin(t), vt > 0. (2.4.3)

_ We first prove that in the point ¢ = t; the inequality (2.4.3) holds. This is trivial if
Fon(ts) =0. To obtain it for Fo,(T,) > 0, use the definitions of Fp, and F) ,:

H:’:l [L(Oa Fl,n):| tu 5117 ) H [L(O, Fﬂ,n)] (ti; 6}; O)»
T [£60, Bi)] (8 82, 0) < Ty [L(0, B (8,9,0).
Dividing the first inequality by the second one we obtain

Fl,n(t‘/) > FO,n(tJ)
1- Pﬁl,n(t‘]) - 1- FO,n(tJ)

Thus Fy,(t7) < Fya(ts), since & — x/(1 — ) is an increasing function on (0, 1).
Now take F(t) = Fou(t)\V Fia(t). By definition

11 [L(o, Fl,n)] (t:,61,0) = [T (L(0, Fu)] (t:, 6%, 0).
=1 =1
Divide the last inequality by
I ([t0A)] @0 / [£0 R ¢68,0).
{:F1n(t:)> Fon(ts)}
Note that except for ¢ = J all delta’s are the same. Hence we obtain the inequality
H [L(07 Fl,n /\ FO,n)] (t17 5?7 0) 2 H I:L(Oa FO,n):| (t'h 6?7 0)7
i=1 =1

and thus, by Lemma 2.4.2, 13'0," = 13'0," A Fl,n. n

The next lemma shows that the supremum distance between FS and the underlying Fj is
O,(n~31o
» g1n).

Lemma 2.4.6 Under conditions of the Theorem 2.2.1

P< sup
tefo,1]

Proof: Using Lemma 2.4.5 we only have to obtain the supremum distance for FO,n and I:ﬂlyn.
But since these are the nonparametric maximum likelihood estimators (MLE’s) for interval
censoring, case I, we can apply results from GROENEBOOM AND WELLNER (1992). Fp, is the

(1) — Fy(t)| = n~1/3 logn} -0, n— oo. (2.4.4)
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MLE of the distribution Fy censored by the distribution (1 —p)Gy(t) + pGi(t). Thus by Lemma
5.9, GROENEBOOM AND WELLNER (1992), p. 116,

P{ sup |F‘O,n(t) — Fy(t)| >n3 logn} — 0, n— oo. (2.4.5)
te(0,1]

To obtain the analogous result for ﬁ‘lyn we have to take a closer look at the proof of Lemma,
5.9 in GROENEBOOM AND WELLNER (1992). The estimated distribution F3 ™" in that case can
have a density that is not bounded from above (if §; < 0) or a density that is not bounded
away from zero (if 6y > 0). But to obtain the inequality analogous to (2.4.5), it is sufficient to
have

0< inf ) < sup  falt) < oo, (2.4.6)

nt>n—1/3logn nit>n-1/3logn

where F,(t) = Fy(t)'*% and f, is the corresponding density f.(t) = (1 + 6,)fo(t)Fo(t)? .
Relation (2.4.6) follows from:

inf  fu(t) > (14 6,)(inf fo) (n"1/3 log n(inf fo))lon| > Cpe Oon P logn 0,

t>n=1/3logn
and

Sup  fa(t) < (1+6,) (sup fo) (n"3logn(inf fo)) """ < Chelin/"lo8m < o,
t>n—1/3logn

uniformly in n.
In the proof of Lemma 5.9 in GROENEBOOM AND WELLNER (1992) the following inequality
is obtained:

E~Yag) — F~Ya;)| > n/3 logn} < Csexp (—Cs(logn)?), i=1,...,m, — 1,

where F' is a distribution on [0, 1] with inf f > 0, censored by the distribution G with den31ty
g, satisfying 0 < inf ¢ < sup g < oo, E, is the corresponding MLE and where F ~* is the
pseudo-inverse

F(a) = sup {t €0,1): F.(t) < a} ,
and where the sequence a; is defined as

logn, i =1,...,m, —1; m, = [n}?/logn] (= the integer part of n*/3/logn).

a; = mn
The constants Cs and Cg are proved to be absolute constants only depending on the infimum
and supremum of densities.

More precisely the constants Cs and Cy are dependent on the supremum and infimum on the
interval [al —n Y3logn;am, 1 +nlog n] and hence, using (2.4.6), we can similarly prove

P{[ﬁ’ ) — F7Ya)| > n Y log n} < Csexp (—Cs(logn)?), i =2,...,my, — 2.
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'

Now fix C7 = 25UDys,-1/3 105 (F ') (@) + 1 < 00. Then by monotonicity

n
P sup
a€laiait1)

Ff,}(a) - Fn_l(a-)‘ > Cym '3 logn}

< 2Csexp(—Cgs(logn)?), i=2,...,m, — 2.

and

P{ sup  |F7}a) — Fn_l(a)’ > Cmn Y3 log n} < 2C; exp(—Cg(log n)?),
(lE[am",hl]

which means

P { sup
a>az

Fi(a) = Fn_l(a)\ > O3 log-n} < 2C5n"/3 exp(—Cs(logn)?). (2.4.7)

Let
Cs=C7 sup  falt),

t>n=1/3logn

and suppose that for t > o, def Elag) + (2 + Cr)n~ B logn:

F1,n(1‘-) - Fn.(t)‘ > Can~ 3 log n.

We will then find an a > ay such that ’F’fﬁ(a) - Fn‘l(a)| > Con~Y3logn, implying, by (2.4.7),

P { sup
t>an

The choice of a depends on which is larger: ﬁ‘l,n(t) or F,(t). Suppose

Fiat) - Fn(t)\ > Csn™3log n} — 0, n — oo (2.4.8)

Flyn(t) — F,(t) > CsnVlogn

take then

o

= Fia(t) > Fu(t) > Fu(F7 Y (ay)) = as.
By Taylor expansion for & € [Fn(t), Fl,n,(t)]

Foi@) -t

(Bt + (Bal®) = B0)) = t = (F) (€ (Fin(®) ~ Fal®)

e (Fult) = Falt)) >

S Csn~Y3logn
I O (39))

= Cm Y3 logn.
SUDy>n~1/3logn fn (’LL)

With the present choice of @, we get 13‘17,1 (@) > t, but by the continuity of F,, we can choose a
such that ay < @ < @, F}(a) < tand F,'(a) —t > Con~Plogn.
For the case

Fin(t) = Fo(t) < —Csn™Y3logn, (2.4.9)
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we take
a=F,(t—Cm ™ logn) > F,(F;'(a2)) = az.

This a also satisfies

a = F(t— Cm 3logn) = F\(t) — fu(&)Crn~/3logn
> Fu(t) — (SuPusn-1/810gn fa(u)) Crn~Blogn > Fo(t) — Csn~"3logn > Fyo(2),

due to (2.4.9), since & € [t — Cyn/*logn, t]. But this gives us E (@) > t (by right continu-
ity) and thus
FMa) = F7Ya) > Cin VP logn.

1n

This proves (2.4.8). So the only thing left to prove is:

P{ sup

0<t<Lan

Fyo(t) — Fo(t)| > Cen™'2 logn} — 0, n — oo.

But we have:

sup
t<an

Fin(t) — Fn(t)‘ < Fin(om) + Fa(om) < 2Fa(om) + ‘ﬁ‘lm(an) — Fa(an)

IA

2F, () + sup |F o(t) — Fo(t)‘ , (2.4.10)
t>an

and
F(a,)=F, (Fn'l(ag) +(2+ C'7)n'1/3 logn) =ay+ fu(&)(2+ C'7)n‘1/3 logn,
where F;1(az) < & < FY(ag) + (24 C7)n~logn.
Using the explicit form of f, and the fact that F7'(t) = Fy* (tl—f‘?ﬁ) we get
Fal€s) = (14 0n) fol&8) Fo(&s)% < (1 + [60])(sup fo) Fo (7 (a)) ™

_lo" —ion
—1 o | 1—|€an|| 1 |6o|logn
< CoFy | Fy ' | ag < Cya, < Cyexp 2vmifl) 1, n— o0

and finally
Faulan) < Cion~?logn,

for finite positive constants Cy and Cig. Relations (2.4.8) and (2.4.10) now imply

P{ sup ’ﬁl,ﬂ(t) - Fn(t)l > Cyn '3 10gn} — 0, n— oo.
te(0,1]
The statement of Lemma 2.4.6 now follows from the above and from

sup |Fa(t) — Fo(t)] = sup [t1+% —t| = O(n"V/?)
te(0,1] te(0.1]
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since the monotonicity of the derivative

% (£ —t) = (1 +8,)t —1

shows that the supremum is reached at z = (1 +6,)~'/%* and since we have:

[6n|

) (1+6,)7 Y% |6l /e, n— .

\/ﬁ|$1+9n _‘EI - Vn
[

Remark 2.4.2 The supremum distance evaluates 13’3 only in the points of jump and thus, by
arguments similar to those given in Lemma 2.2.1, the result of Lemma 2.4.6 can also be proved
under the conditions of Theorem 2.1.1.

Remark 2.4.3 For 7; defined as in Lemma 2.4.3
P {sqp |Tip1 — | > 0”3 logn} — 0, n — oco. (2.4.11)

Proof: Note that

sup |Tz+l - Tz| <2 sup
a€l0,1]

k]

()" @~ F '@

due to the continuity of F; . Furthermore, using that both Fy and ﬁ’,? are monotone, we write

inf t)- su
it o) acii]

< sup |E(t) - Foft)|
te[0,1]

()" @~ @)

to obtain the statement of the remark. [ ]

2.5 The normal components of the representation

In this section we consider terms (2.2.9) and (2.2.10). Since (2.2.10) already has the Central
Limit form, we only have to derive the limit behavior of (2.2.9). The term (2.2.9) will be proved
to be asymptotically equivalent to an integral w.r.t. the measure /n(P, — Fy), and next we
will consider the joint limiting distribution of (2.2.9) and (2.2.10). We first have the following
representation of (2.2.9).

Lemma 2.5.1 The expression (2.2.9) is equivalent to

u=p1 =0V [ e s (5= Ft) AP, = P68 s, + 051,

where p s given by (2.1.9) and d(t) by (2.5.7) below.
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Proof. The proof of this lemma is mostly based on Lemma 2.4.3 and the lemmas for the
Donsker-type components proved in the section 2.6. We have the following representation:

v / téz) [ (")] (t,5,z))dP0(t,6,z)-1{ﬁ£€f"}
w (Fo(t )
=p(1-p) \/’/ (1—F0(t) [(pFo(t)*gi(t) + (1 — p)Fo(t)go(t)) - (2.5.1)
a(t) - ~0 B ‘
T e~ ) g““”] A Nipger
w F,?(t)) .
+p(1—p)Vn [Fo(t)+*g1(t) — Fo(t)go(t) (25.2)

1 B9(t) (1 - Fo(e))

~ (PFRo(t)* g1 (t) + (1 — p) Fo(t)go(t)) 91(t) — 9o(t)

(1 —p)go(t) + par(t)

The last term will be shown to converge to the constant y. We rewrite it as

] 4t Ligger,y-

v (F’?(t)) Fo(t)go(t)g1 () 0
PPV [ £o) (1- Fow) 0= Pa® -+ par(l) (B0 = 1)t ey (253

Taylor expansion shows that the last factor of the integrand, multiplied by 1/n, is equal to

Vi (Fo(®)™ — 1) = v/ (18RO _ 1) = 6 log Fy(t) + 6 (log \i%t))2 il

where for any t € I, |&] < |0, log Fo(t)] < CI|80|'%;"-. Hence:

vV (Fo(t)% — 1) = 6y log Fy(t) + ra(t),

6% (10g n)? exp (1160|552

()] < C. = o(1).
tsgllzlr()l 2 NG o(1)

The term (2.5.2) is therefore equal to:

w(B0) e (R log Falt)
pL= )b /1,, E0(t) (1 - Fg(t)) (1= p)ao(t) + i (2)

dt-1pecr, — (254)

v (F) Falt)oo(t)gs ()
" /I £ (1 - FS(t)) = D) + )™ rpery (299

For the class F,, and the set I, we have that supp.x F(:‘)’((f_(t})(‘)) i1,y is bounded by

[log(F ()™

Cs , if w is a Lipschitz function,
SUPper, —1-F@  Utel}) » if w(z) = z[logz|™.
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In the second case this is bounded by

)| log z|™ [log (F(¢))|™

log(F (1)) |log z|™ g

SUDPper, 3o “lyger,) £ sup + sup ——— " ler,
S 1RO 1<e<t 1=%  per, rpp<t 11— F(1)

m

<Cy+2 < Cs (1 + |log Fy(t)[™)

log (%Fg(ﬂ)

for n sufficiently large. Using the upper bound, obtained for (2.5.5), we get
1 m
@205 <, [ (LELERO) R0 ()
Jo (1 = p)go(T) + pgr(T)

since, under the conditions of Theorem 2.2.1, the integrand is bounded by a constant (if w is a
Lipschitz function, we take m = ().
To treat the term (2.5.4) we define

A =p(1= )b / w(F®)  gar®)Fo(t)log Frlt)

dt = o(1),

el FO (L= F()  (L—p)go(d) + pgr(t)

and

- ; w (F(t) Go(t)g1(t) Fo(t) log Fo(t)
A, =p(1- 0/ inf : =
AE=Ph | B FOU-F®)  (1- ) + por(®)
and show that A} and A, converge to the same constant p. Then we are done due to the
fact that (2.5.4) belongs to the interval [A;, A}] with a probability given by P{F? € F,}.
Convergence of both A, and A7 to

o Pow(() gt () Fo(t) log Fo(t)
u=rl p)t90/0 Fo(t) (1= FK(t)  (1-p)go®) +pa:(t)

follows from Lebesgue’s dominated convergence theorem, since we have found an integrable
majorant, and since for any ¢ € (0,1):

WD) w(Fl)  _ w(A)
o FO—FO) RS T FE) R =R

using the continuity of the function z — w(z)/{z(1 — z)} at the point Fy(t).

Denote (2.5.1) by N,. Then ﬁf}ﬁ equals to

w (F0) A () = golt)
n £ (1 Fe(0) (6~ R20) T + a0

Vvn dPy(t,6,2) - 1poer,y-  (2.5.6)

We can now use Lemma 2.4.3, after replacing the function d, defined by

_ ai(t) = go(t) .
O = T Do + 0@ 25.1)

by a piecewise constant function d,,, defined by

dn(t) = d(Ti), <t< Tit+1,
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where the 7; are the same as in the section 2.4. The function d,, is close to d, since by Remark
2.4.3:
P {sqp |Tig1 — 7| > n~1/3 logn} — 0, n — oo,
and since, under the conditions of Theorem 2.2.1, d is differentiable, implying:
( 1—r(t) ) _’ v (t)
(I—pr(t)+p (L=p)r(t) +p)?

Hence sup;cp,, |dn(t) — d(t)| = Op(n~"3logn).
This allows us to rewrite (2.5.6). First of all, Lemma 2.4.3 implies that it is equal to

w (Fg(t))
ﬁ/fn E(e) (1- F9(e)

(Fo)

_ﬁ/fn £ (1 F20) (6= F20) dalt)d(Pa = Po)(t8,2) Visgerye - (259)

1
T pA(l-p)p?

d'(t)] =

I OIA7(E)2).

] (6- Fg(t)) (d(t) = dn())dPo(t:5,2) - Lipoesy (2.5.8)

Applying Lemma 2.4.6, we bound the absolute value of (2.5.8) by

. / w (£2(t))

FR(t) (1 - )

] (1= Poo(®) | Fo(t) — E2(8)| + pon (&) [Fo(®)*+*» — E28)| -

d(t) — dn(t)| dt - 1ipoc s,

FAt) - Fo(t)’ + sup |Fp(t)'+e — Fo(t)[}

tel0,1]

< Cev/n(logn)™ sup |da(t) — d(t)| {
te[0,1)

<o
g [(1 ~ p)go(t) + pgi(t)]dt
= 0,(1).

The term (2.5.9) can be rewritten as a sum

w (Fo(t))
—/n . o) (L= Fo®) (6 — Fo(t) d®)d(Pn — Fo)(t, 6, 2) joc , (2.5.10)

(w (F20) ) o (m1)) det)
"/ﬁ/rn B RO

8d(Po — Po)(t,6,2)1 g9z, (2.5.11)

[w (F20)) dn®) o (1) dt)|
J”/ﬁ/z,, 1-Eot)  1-Fo(t)

(1= 6)d(P. — Ro)(t,8,2) - Ligger,y (25.12)

where (2.5.10) is what we intended to obtain in the current lemma, while (2.5.11) and (2.5.12)
will be shown to be asymptotically negligible in Lemma 2.6.2. ]

The last lemma of this section is an application of the Central Limit theorem to the sum of
(2.5.10) and (2.2.10).
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Lemma 2.5.2
A - N(N»Uz)'
Proof: Let p be defined by (2.1.9). It was shown in Lemma 2.5.1 that N, is cquivalent to

ot Vi [ et s (5 Flt) 2 = 0= (L= p)()) (B, = P)(65.2) + (1),

since P{F? € F,} — 1, n — oo. Let

por(t)
do(t) = p + p(1 — p)d(t) = (1= p)go(t) + por (1)
and let
fo W) (A R(1)) (2 - do(T) ger; €8 — €6 — EED,

Fo(T3) (1 - Fo(Th))

where £¢, ..., & are i.i.d. random values with a distribution dependent on n (which is the reason
that we have to check the Lindeberg condition). The variance of £ is

ar (£7)  — w (Fy(t))? _ 20, _ 2 .
var (§) = /I" Fo(t)2 (1 - Fo(t))? (0 — Fo(t))" (2 — do(t))" dPo(t, 6, z)

[ R o 2
- /0 R (L Fogg))? L) = Folt)} (1= phan(®)dot)
+ {Fo() (1 = 2Fo(t)) + Fo(t)?} por(6)(1 — do(t))?] - Lyeen

For n sufficiently large there exists an integrable majorant C1{go(T") + ¢1(7)} for the absolute
value of the integrand, where C) is a positive finite constant. This follows from the definition
of dy, convergence of 0, to zero, and boundednes of w(Fy(T))/{Fo(T)3(1 = Fo(T))} (under
conditions of the Theorem 2.2.1). Hence, using the pointwise convergence of the integrand we
obtain

war(gl) = [ gt L [0~ D7 + s 01 — (0] + o)
[ w(RBY)* g0(t)g1(t)
-0 [ o @) T o

To finish the proof we have to check the Lindeberg condition, namely that, Ve > 0,

dt + o(1).

%Z E [(5?)2116?2\/55] - 0, n — 00.
=1

But this follows from

lw(Fo(t))] Cs(logn)™ , if w(z) = z|log z|
<G Fo(t)(1 — Fy(t)) her. =9 g, , if w is Lipschitz.

m

é’n
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2.6 The Donsker components of the representation

In this section we show the terms (2.2.7), (2.2.8), (2.5.11) and (2.5.12) to be asymptotically

negligible. To explain the idea, let us, as an example, consider the term

w (F,?(t)) dn(t)  w (Fo(t))d(t)
FO(t) Fo(t)

Vn 8d (P, — Py).
In

If the expression within the brackets were a fixed function, the integral would be asymptotically
normally distributed according to the Central Limit theorem. But in our case the pair (F,S, d,

is getting closer to (Fy,d) as n goes to infinity. If the set of functions to which (ﬁ‘,? , dn) belongs

is not too rich this will guarantee that our expression is asymptotically small. This result is
given in the next lemma which is essentially the generalization of the equicontinuity lemma of
POLLARD (1984), p 150 and uses the same chaining technique. It is close in spirit to Theorem
3.3 of GESKUs AND GROENEBOOM (1999).

We now first introduce some notation and summarize relevant results. Following POLLARD
(1984), we denote the empirical measure \/n(P, — %) by E, and the symmetrized empirical
measure /nP? by E2. It is known that for any fixed function f

P{ /de,, >e} §4P{ /de; > %e} (2.6.1)

see (11), p. 15, POLLARD (1984), where it is called the “second symmetrization lemma”. Note
that [ fdE; is a function of the random sample X, and the Rademacher symmetrization
sequence (call it &,). Taking X, = z fixed, we can apply Hoeffding’s exponential inequality
(see for example POLLARD (1984), p 191), yielding

P{ /de; >e| X, = z} < exp (-ﬁ) . (2.6.2)

We also need the covering integral J(4,.A, p). Suppose A is the relevant set of functions and
p a pseudo-metric on A. Let N(u, A4, p) be the number of elements of the minimal u-net in A

w.r.t. the metric p. Then
8 N 2
J(8, A, p) =/ \/log (——(i;t—’/i)du.
0

Note that Vp > 0: J ( %, A, p) > %\/ log2 > %, since each u-net consists of at least one element.
This means that independently of the chosen metric the inverse function J(-, A, p)~(¢) is well-
defined for any € < % and that

sup J(-, A, p)"1(e) < (2.6.3)

1
5
Finally, we define

P = PY| X, = z,},
where z,, is a realization of the sample X,,, with empirical measure P,. We have the following
lemma:
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Lemma 2.6.1 Let P™ be a sequence of the probability measures on the set X with a sequence of
subsets {An}on,. Let B be the set of all functions from X to R and let A be some fized set with a

sequence of subsets {An},. ;. Suppose Jag € A: ag € (o, An. Furthermore, let {0}, be a

n=1
sequence of functions a,, : A — B. Suppose that for some sequence p,,, n=1,2,..., z, € X",
of metrics on A, depending on the sample realizations X,, = z,, the following is satisfied:

1. PM{A,} =1, n — oo,

2. For any x, € A, and for any a;,as € A,

/«%mo—aAW»wpugpnmh@ﬁ

3. For any €, 0<€<%

. SUP,e,, Pr, (@ Q0)
lim sup ]"_ 1 =0,
=0, e, I3 (e)

where J!(€) is the inverse function of J(-, A, py,) (which we will further denote as

Iz, (6))-
Then

= 0p(1).

[ (@ate) - anlao)) dE

sup
a€A,

Proof: Let 0 < € < 1 be fixed. We intend to show that

/(an(a) — agp(ag))dE,| > 126} =0.

lim P" < sup
n—oo a€A,

Symmetrizing (see (2.6.1)) gives

P { sup /(a"(a) — ap(ag)) dE,| > 126}
a€ A,

< 4P" { sup /(an(a) — aplag))dE,| > 36}
a€Ay,

< 4P" { sup /(an(a.) —an(ao))dE;| > 3¢| X, € An} + P*{A%}
a€An

and
pr { sup /(an(a) — an(ao)) dEL| > 3¢l X, € An}

a€An

> 3e

X, = T,.,}

We now temporarily fix an arbitrary z,, € A, and bound the probability from above. For
simplicity we will write P for P*{-| X,, = z,} and p, for p,,.

< sup P"‘{ sup /(an(a) — an(ao)) dE;,

Tn€An a€A, |.
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Define
Br=2""J1(e/8), i=0,1,..., n=1,2,...

and fix

e €
kn =1nf{z=0,l,...: gt < %}
For each n and 4 choose the minimal 8P-net P! in A, w.r.t. p, metric and denote |P}*| = NJ".

One of the possible ways to choose a (possibly non-minimal) 3*-net is to take the minimal
%B{‘-net in A and take p’ € B% an(P) N An for each element p of this net when it is not empty.

If p is an element of the first net and, for some a € A, p,{a,p) < %ﬂi", we get by the triangle
inequality

pn(a,0) < pala,p) + pa(p,p) < BF.

The new net consists of no more than N(38", A, p,) points. Let af(a) € P} be a point,
minimizing the function a’ — p,(a’,a). For any fixed a € A, we get:

\ [ (@at@) - antan) a;
< ‘ [ (ant@) — antet, (@) dE;
< [ [ (@ntat (@) - an(ao)) 2B

N ‘ [ (antat, (@) = an(ao) dE:

+Vnp(a, a;, (a)),

where, by the definition of k,,, the last term is less than or equal to €. Therefore we need to

bound
P { sup > 26} .
aEP,’.}k

At this stage Py, is still too large to get a useful bound from Hoeffding’s inequality and therefore
we have to tighten the set one more time.

Define

[ (@n(a) = antan)) dE;

Nry?
m = 40 10g<( i) )
i+1

Then Zf;l nf is bounded from above by

83 (6~ ), inf \/log (L) < s ) < 80728 =

BEIBY, 2% B

-
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> 26}

and:

/(an(a) — ap(ag)) dE;,

P < sup
a€PR

g

kn
{sup /(o,, — anlag)) dE;, Z sup /(an(a) — an(a}_(a))) dE;, 226}
acPy —~ acP
< N7 sup P {l / (@) — an(ao)) dE| > e} (2.6.4)
a€P]
+ Z N sup P {‘ / an(a) — e, (al 1 (a))) dEf;‘ > 7],7‘} . (2.6.5)
aeP?

Applying (2.6.2) to bound (2.6.4) we get

62

€2
Njexp | — < Nlexpl| — = 1.
’ P ( 2 SupaE‘P"]‘ f (an(a) - an(ao))2 dr’n) = P ( 2 SupaEAn Pn ((l. (1'0)2)

Moreover, log NJ can be estimated from above in the following way:

o5 <t (LU AY L (BN’

since J;!(€/8) < § and (2.6.4) is bounded by

62 52 )
- . 2.6.6
p(Mbk%d&f D SUPaca, P ( ) (26.6)

This takes care of (2.6.4). For (2.6.5) an application of Hoeflding’s inequality (see (2.6.2))
provides the upper bound

al n kn 2og (2
ZN:L exp {— (Th )2 } — Z N:z exp . ( l+1) og ( ) ‘
=1

2 Supae?}’ Pn (av a?— 1 ((,L))2 i=1 2 Supae’l’l" pn(aw a‘i-—l (a’))z

k. - 2
. B
< exp log l - . 2.6.7
2 *1<~ (m%Aw») (267)

SUPgepr P

Let v, = sup,c4, Pn(a,ao). We divide the sum (2.6.7) into two parts, a summation over
indices 7 such that 3", > \/7, and a summation over the rest of the indices. The first set of
indices satisfies

1
—| log Yn|-

1
0<i<in= log <
tst 2log 2 og( Yn 2log 2

This yields the estimate:

> (B) é(;_"l> + S <27+ Y\ /B

0<i<in 1> i>%n

Lo, [/ 514
- 2log2 V2-1

S g <

(2.6.8)
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Combining (2.6.6) and (2.6.8) we now have obtained the following exact inequality, valid for
any n:

P"{sup 2> 3e vaEAn}

aEA,

/ (an(@) — an(a0)) dES

2 2
< Cj sup {exp - +
! Tn€An { (64 (Jx—nl (6/8))2 2 SquGAn pmn (a¥ ao)z)

~ ; 1/4
2 TePacdn o) (sup pu(a, ao)) 4
a€A,

+ |log sup pn(a,ag)

a€An

The right-hand side converges to zero, as n tends to infinity. Note that it follows from condition
3 of Lemma 2.6.1 that

lim sup sup p,,(a,a0) =0.
N0 2, €A, a€A,

Now we can apply Lemma 2.6.1 to prove the asymptotically negligibility of the terms con-
sidered in this section. First consider (2.5.11). Taking the set X and the sequence of the
probability measures corresponding to the random triple (T, A, Z) we define the set A = F x D
and A, = F, x D,, where

F = {all df’s on [0, 1]},
Fo={all df’s on [0,1]; sup |Fy(t) — F(t)| < n"Y3logn},
tel0,1]
D= {J d(t) = din)iften,mm), 0O=nn<n<...<7= 1} U{d},
D, = {J d(t) = d(n:) if t € [13,7i41),

0=T0<T1 <... <Tk:17 sup ’Ti+1_Ti| <n_1/3logn} U{d}
i=0... k1

=0,

¥

Taking ag = (Fp,d) and

wi?(g))“2(t)51uefn>’

we note that (2.5.11) can be bounded in the following way:

an(a)(t,6,2) =

w (ﬁ,?(t)) du(t)  w (Fo(t)) d(t)
n[n ﬁ',?(t) - F()(t) 6d(Pn - PO)(tv 67 z)lﬁ’,?efn

< sup /(an(a) — an(a9)) dE,| + 0p(1), (2.6.9)

a€An

since, as we have seen in Remark 2.4.3, P{d, € D,} — 1, n — oco. In order to show that this
is asymptotically negligible we have to find the proper metric p,, on A and sequence {4, },

such that conditions 1, 2 and 3 of Lemma 2.6.1 are satisfied.
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Using (2.2.5), uniform boundednes of the set D, and

tdns,uigefn ___|w(FF(‘g))| < Ci(logn)™; u‘vels’ll%eﬂ JU)(ﬁgz(g; : 1;((5)(|v))| < Cy(logn)™,

one can write, for any a;,as € A, and for any ¢ € I,

an(ar) — anfes)) < M) - oo + ot |5 - 2Ca0)]
< @O 2y 21
a3(t)
ooy O] Tlalt) —w(al(O)] ) lak(t) — a}(0)
+2 '(”'{ a4 T Jal() —al(0)] } XOR

< Catogny { O30 1) - o |

where C; does not depend on a; and a;. Moreover, the metric p,, (a1, as) defined by

Pz, (alw ag) = p;n (aiv a;) + pi,. ((er, a%)'

where
1
2

Méd&(t, 5, z)) ,

L (Fy, Fy) = (lo n"‘“(/
px,,( 1 2) ( g ) . Fo(t)2

1 3
62 (s o) = Qogy ([ (@06~ a()"am0.6.))
0
satisfies condition 2 of Lemma 2.6.1 independently of A,,. To satisfy condition 3, we choose a

specific A,:
)
A, =< X, / ———dP,(t,6,2) < (lo nQ}.
{2 [ Fstpute.8.2) < ogn)

By the Markov inequality P{A,} tends to 1, since

P{A} < (logn)™2 /I #d%(t,é,z)ﬁﬂl@gn)’z 1 (1_”)9"(:)+p91(t)dtﬁo,

A

as n — 00.

To check condition 3 of the Lemma 2.6.1, we will estimate the covering number from above,
providing us with a lower bound for the inverse. One way to construct an appropriate (8, A, p,..)-
net is to construct a (§/2, F, p}_)-net as well as a (6/2, D, p2_)-net and take their product. The
covering number will be bounded by the product of these two covering numbers.

The result for the (6/2,F, pL )-net follows from the estimation obtained by Birman and
Solomjak (see for example VAN DE GEER (2000), p. 18). The supremum over all Ly(P)-metrics
for uniformly bounded measures P is bounded as

A
sup log N(6,F, prop)) < 5

PLy(P)
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where A only depends on the uniform bound of the measures. Our measure p! is the Lo-
measure and the measure
prn = (logn)~ ™D pp

is bounded by one for any z, € A,. Thus

m+2
sup log N(6/2,F,ps ) < M.

Tn€An - )

(2.6.10)

The function d has a bounded variation on the interval [0, 1]. Therefore, it can be represented
as a difference between two monotone increasing, bounded functions d; and dy. Then defining
D, and D, similar to D and using the triangle inequality we conclude that

log N(8,D, p) < log N(6/2,D1,p) +log N(6/2, Dy, p) < 2log N(6/2, F, p).
The result of Birman and Solomjak above implies

1 m+1
sup log N(6/2,D,p%,) < B(logn)™"

suw ; (2.6.11)

Collecting (2.6.10) and (2.6.11) we get

s
sup Jg,(6, A, ps,) < Cl(log")%z/ du_ Cg(logn)m?ﬁ\/g,
Tn€Ap 1] \/—d

and

sup < Cie~%(logn)™*2,

1
Tn€An Jx—"l (6)

Furthermore sup, ¢ 4. SUP,c4, Pz. (@, Go) is less than

Cy(logn)™*? (sup [Fo(t) — F(8)] + sup |d(t) — (i(t)|) < Csn~Y3(log n)™+s.

€Fn deDy,

Application of Lemmas 2.6.1 to 2.6.9 finishes the proof. The terms (2.2.7), (2.2.8) and (2.5.12)
can be treated similarly.

Lemma 2.6.2 Under conditions of the Theorem 2.2.1 terms (2.2.7), (2.2.8), (2.5.11) and
(2.5.12) are of asymptotically small order in probability.

2.7 Results of simulations

This section is contributed to the results of the computer simulations of the statistic .S,, for
different sample sizes n. All twelve pictures below represent the empirical distribution functions
of S, (solid lines) compared to the proved above limiting normal distribution (dotted lines); the
sample size cverywhere equals to 1000. The first series of pictures corresponds to the underlying
distributions Z ~ Bernoulli(0.5), Fy, Go ~ exp(1), G; ~ exp(2).
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Another series of pictures corresponds to the underlying distributions Z ~ Bernoulli(0.5),
Fy,Go, Gy ~ Un0, 1].
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Chapter 3

Two samples likelihood ratio test

We propose a two-sample test for testing that the distribution functions Fy and Fj, generating
the two samples, are equal, in the case that the samples are subject to current status censoring
(also called “interval censoring, case 17). The proposed test is a likelihood ratio test and tests
the null hypothesis F = F; against Lehmann alternatives F; = Fg 1, for some § > —1. Two
logarithms of the likelihood ratio statistic is shown to be asymptotically distributed as a normal
random variable squared. Moreover, we show that the test is asymptotically efficient for testing
against the alternative Fy = Fy ™.

3.1 Introduction

In this paper we study the two sample likelihood ratio test for current status data. We want to
test whether two samples &, ...,&,, and 7i,...,n,, are generated from the same distribution,
where both samples are subject to current status censoring. To facilitate notation we will join
both samples in Xj,..., X,, where n = n; + n,, and introduce indicators Z; = LX;€{mmpiing b
describing to which of the two samples an element X; belongs. All elements are censored,
i.e.,, we do not observe X; directly, but instead we observe triples (T}, A;, Z;), where T; is
the censoring time and A; = lx,<r, is an indicator specifying whether X; lies before or after
T:. The (T;, A;, Z;) are assumed to be independent and identically distributed, with 7} being
independent of X;, conditionally on the indicator Z;, which is assumed to have a Bernoulli
distribution with parameter 0 < p < 1.
Denote the marginal distributions of X;, conditionally on Z;, by

F(z)=P{X;<z|Z; ==z}, z=0,1,

and similarly for T;
G,(t)=P{T; <t|Z;=2}, =z=0,1.

Hence, &, ...,&,, is a random sample from Fj and 7, ..., 7,, is a sample from Fj.
Our null hypothesis is Hy : Fy = F;. We will consider Lehmann alternatives

Fi(t) = F()'™?, 6 (-1,0).

Lehmann alternatives are often applied in biostatistics and are closely connected to the pro-
portional hazard model 1 — Fi(t) = (1 — Fy(¢))'*?, 8 € (—~1,00). The proportional hazard

95
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model can be transformed into a Lehmann alternative by considering X; =-X;, T, = -T; and
A =1-A,.

Denote by F the family of all distribution functions and © = (—1,00). Then, as explained
in more detail in Section 3.3, the likelihood ratio test statistic for testing the null hypothesis
against Lehmann alternatives is given by

sup []1L(6, P)1 (T, A, Z2)
FeF,0€0
T, = , (3.1.1)

sup [ [ [L(0, P))(T:, Ay, Z:)
FeF i1

where

[L(g, F)] (t,é, Z) = JF(t)1+z€ + (1 _ 5) (1 _ F(t)1+29) )

We will investigate the asymptotic behavior of T, under contiguous Lehmann alternatives, i.e.,
we let 8 depend on n: 6, = 6y/+/n, and consider a sequence of alternatives Fy(t)!*#%0/v,

The purpose of this paper is to show that in this case, T, behaves similar to the likelihood
ratio statistic in the uncensored case, i.e., 2log T, converges in distribution to a x% random
variable. We will assume that

(C1) the distributions Fy, Gy and G; have the same support,
and that Fy, Gy and G; have continue densities fy, f; and g, satisfying

: fo(t) fo(t)
C2)0< inf < s
(©2) tesupport(%) (1 —p)go(t) + par(t) ~ tesupll)lgrt(Fo) (1= p)go(t) + pgr(t)

and

_ gO(FO_l(t)) ST . : ' -2
(C3) r(t) = =212 is differentiable with sup |r'(t)] (LA 7(t)"?) < oc.
g1(Fy (1)) t€[0,1]

Conditions (C2) and (C3) are somewhat technical. However, note that if the censoring distri-
butions are the same, i.e. Gy = G, then (C3) is automatically satisfied. Moreover, if f; and
g; have compact support, such that inf fo > 0 and sup|gi] < oo, then (C3) is satisfied as well.
Finally, if all three distributions are exponential with parameters Ag,, Ag, and A¢,, assuming
g, < Ag,, then it can be shown that the statement of Theorem 3.1.1 below (our main theorem)
holds if Ag, = Ag,.

Theorem 3.1.1 (Main Theorem)

Suppose that Fy, Gy and Gy satisfy conditions (C1)-(C3) and that 6 depends on n in the following
way: 0, = 0y/+/n. Let T, be the likelihood ratio statistic defined by (3.1.1). Then 2logT,
converges in distribution to the random variable Y2, where Y ~ N (80/+/Ir,, 1), and

(o Fa()(log Fo(t)*  go()gu(t) -
I = (p(l P /support(Fo) 1-F@) (1-pgo(t) +P91(i)dt>
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In GroENEBOOM, KULIKOV AND LOPUHAA (2002) it was shown that the power m,(6;) of testing
Hy against H, is bounded by:

limsupm, (6)) <1—-@ (21_0/2 - 90/\/1_;70) +® (20/2 - 90/\/E) .

n—oe
Hence, as a corollary of Theorem 3.1.1, we have that the test based on the likelihood ratio
statistic is also asymptotically (locally) most cfficient.

The method used to prove Theorem 3.1.1 is similar to methods used in MURPHY AND VAN
DER VAART (1997), and uses optimality of the maximum likelihood estimator én for 8y together
with the fact that én is asymptotically normal. In Section 3.3 we derive some properties
of maximum likelihood estimators for the parameters in the current scmi-parametric setup.
Asymptotic normality of @, is obtained by analogous means as used in Huang (1996). For
this we need stochastic equicontinuity of empirical processes corresponding to the derivatives
of the log likelihood, which is obtained in Section 3.4, and a suitable Taylor expansion, to be
discussed in Section 3.5. Consequences of the optimality of the maximum likelihood estimators
are studied in Section 3.6, whereas the proof of Theorem 3.1.1 is presented in Section 3.7. We
conclude the paper by a small simulation study in Section 3.8.

3.2 Some notes on the proof

We can, at the cost of some extra technicalities, prove the Theorem 3.1.1 under conditions
weaker than (C3).

Remark 3.2.1 Define
A, = {t c0,1]: Ol (1ArE)?) > u}
B, = {t €[0,1]: thereis s € A, such that |t — 5| < u~?}.
If r(t) is a monotone function on support(Fy), condition (C3) can be replaced by
Jim u(log u)®G; 0 FyY(B,) =0, i =0, 1.

This remark takes care of the important case of exponential-type distributions. Monotonicity
of 7(t) makes entropy calculations for the quite special class Q (see section 3.6) unnecessary,
since then this class is included into well-studied class of monotone bounded functions.

The general scheme of proof of Theorem 3.1.1 is discussed in section 3.1. But before following
this scheme we need to show that the proof of Theorem 3.1.1 for the bounded support case
implies the proof for more general distributions.

Consider the sequence of triples {(X;,T;, Z;)} in the hidden space and define

Xi = Fo(Xs),
7}' = FO(T;)v

They are distributed as
P{X;<ua|Zi=2} = (FL!n[O.l](I))l+ozv z=0,1,
P{T; < t|Z;= 2} = G, (Fy\(t)), 2=0,1,
Z; ~ Bernoulli(p),
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where Fy! is defined by
Fyl(z) = sup{t: Fy(t) <z}

Notice that almost surely

Therefore for the observation space sequences of triples {(T;, A;, Z;)} and {(Tz, A;, Z;)} (assume
they are both ordered w.r.t. the first element) we have A; = A; and
__ SUPpcroeo H?:l (Az‘F(Tz’)HBZ’ +(1-4A) (1 - F(Ti)lwzi))
" supper [[im (AF(T3) + (1 — By) (1 - F(T)))
SUPg<y <...<yn <1,0€0 H?=1 (Aiyilwzi +(1-4A) (1 - inWZi))
SUPo<y, <..<ym<t I limn (Di¥i + (1= A) (1 — 1))

subperpeo [Ty (AF (1) 4% + (1 - A) (1- F() %))

supper [Ty (AF(T) + (1 - ) (1- F(D))
Making a substitution in the formula of I, we conclude that as soon as we have proved
Theorem 3.1.1 for the case of Fy = Fypp,1;, which we will assume from now on, the proof for
all Fy, Gy and G; will follow automatically.

3.3 Properties of the maximum likelihood estimator

In this section we discuss properties of the maximum likelihood estimator in the current semi-
parametric setup. Define measures pp and y; on R x {0,1} by
o = G % (counting measure on {0,1}), (3.3.1)
w1 = G1 X (counting measure on {0,1}). (3.3.2)

Then, if x4 is a measure on {(¢,4,2) : t € R,é € {0,1},2 € {0,1}} defined by
H(A) = po{(t,6) : (¢,6,0) € A} + p{(£,0) : (£,6,1) € A},
the density of the triple (T, A, Z) under the Lehmann alternative Fy(t)}*%0 is
(L8, Fo))(t, 8, 2) = Fa(t)™° + (1 — §)(1 — Fo(t)'+*9).
The log likelihood can be written as

ln(Fo, 8) = Y 18, Fo(T3), A, Z2),
i=1
where
10,7,8,2) = 6(1 + 20) log z + (1 — &) log (1 — ' 1%%) .

Denote by (én, Fn) the maximum likelihood estimator of (6, Fp).

The next lemma shows that the maximum likelihood estimator én of the one-dimensional
contiguous parameter 8, = f/+/n is of order O,(n~/3) in probability. In fact, the quality of
the estimator is better than O,(n~'/3) but to prove this we will need the preliminary estimate
below.
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Lemma 3.3.1 Suppose that conditions of Theorem 3.1.1 are satisfied. Then 6, = Op(n173).

Proof: Define the family
Py = {\/L((). F), 6 € (—1,0), F is a distribution function} .

Estimate the entropy with bracketing Hp(e, PV/2, pi,(,), where PLa(y 18 La-distance w.r.t. mea-
sure j using

Pf/z = {\/Ll(FO, F), Fy, Fy are distribution functions} ,

where
Ly(Fo. F1)(t,6,2) = (1 = 2) (6F0(t) + (1 = 6)(1 — Fo(1)) + = (6 Fu(t) + (1 = 8)(1 — Fi(1))) -
Since PY2 C 'Pll / ? by the triangle inequality
Hp(e, P2, prog) < Hu(e/2. Py, prog)-
Furthermore for the family
Pé/ = {m , F'is a distribtuion function}

and measures gy and gy defined by (3.3.1) and (3.3.2),

A
1/2 1/2 1/2
HB(G/Z’PI/ 7PL2(u)) < HB(€/4a PQ/ vpLQ(uo)) + HB(6/47 P:z/ vpLz(m)) < ?»

where A is a positive universal constant (see VAN DE GEER (2000)). By Theorem 7.4 in VAN DE
GEER (2000), the Hellinger distance between estimated and underlying densities satisfies

B (LB, Fr), L0, Fo)) = Op(n™"1%),

uniformly in F and 8,,. Uniform boundednes of L(8, F) implies

<8 [ 3 (Vilou )~ VIO )

Continuity of gy and g, together with support(G;) = [0,1], ¢ = 0,1 implies the existence of an
interval [a, b] such that 0 < a < b < 1 and inf,e[ap) gi(t) > 0, ¢ = 0, 1. Therefore

N N 2
||L(()n, E) — L(6n, FO)HLM

/b (ﬁ‘,,(t) - Fo(t))2 dt = 0,(n"2"), 533
/ab (Fn(t)uén _ Fo(t)l+0")2¢{t = 0,(n"2%).

The maximum of the function |t — ¢1*%| on [0, 1] is given by

sup |t — t'%| = |6,|(1 + Gn)‘(Hﬁ) = o(n~13). (3.3.4)
te[0,1]
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Using the triangle inequality one more time we get

b . 2
/ (Bt ~ Fo(t)) " dt = Op(n~%). (3.3.5)

a

Let an(t) = Fu(t) — Fo(t), Ba(t) = Fu(t)’ — 1 and subtract (3.3.3) from (3.3.5). Then

b b
2 / o (£) B () B (t)dt + / Fu(t)2Ba(t)2dt = O,(n-2%), (3.3.6)

a
Next consider the integrals

1/2

A, = ( / ban(t)zdt) ,
B, = ( /a ' [3,,(t)2dt> 1/2.

By the Cauchy-Schwarz inequality, the left hand side of (3.3.6) is bounded from below by
B, (F,,(@?Bn - 2A,,), which is less than ¢, ¢ > 0 if and only if

2 \/ A2 i 2
OSBR<W(A"+ An+tF,,(a)).

Using (3.3.3) we conclude B,, = O,(n~*/3). It also follows from (3.3.3) that for some C; and
Cu0<Ci<(Cy<1
n—0o0 t€(a,b]

lim P {01 < til[:lfb] F,(t) < sup B < 02} =1.
€|la,

Since Fn(t)é" is monotone in ¢, we get that with probability tending to one

Y

Bu/(b—a)2 |1 - C&

and therefore A
10.] < —Cslog(1 — | B,|/(b — a)) = Op(n~ /%),

The next result is trivial to prove, but we give it as a lemma for easier references. It prevents
us from using the same argument twice in the sequel.

Lemma 3.3.2 Let F and G be two sets and H: F — G, so that there exists H™!: G — F
satisfying HY(H(F)) = F for all F € F. Then for any W : F - R:

argmax W(F) = H™! (a.rgmax W(H'I(G))> .
FeF GEH(F)
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To show that the supremum distance sup |F,(t) — Fo(t)| is small, we will use the follow-
ing construction closely connected to a construction in GROENEBOOM, KULIKOV AND LOPUHAA
(2002). Define for the sample of triples {(¢;,;,2;)} and 6 € (-1, 00)

Y, = argmax Y _1(0, F(t;),4;,0), (3.3.7)
F i=1

Ff, = ‘drg‘maxz 16, F(t:), 6, 1), (3.3.8)

= algma\Zl (0, F(t:),6;, 2;). (3.3.9)

The derivatives of [,, can be written in terms of the functions

- ol(8,x,6, = 1 —§)xt+?
ll((),.”l?,é,;’) = "(OIT) = olOgLE ((5— %) f

olo,x,0,z 1 —8)z%
120, 2,9, 2) —(T) = (1+ 20) (; - _ _,L.l)+f)z ) :

1

Lemma 3.3.3 Suppose |0| < 1/2. Then E,, lies between FO,n and ﬁ’lyn.
Proof: Take t; and t; such that FO(t;_,) < F?(t;) = F®(t;) < F®(t;11). Then

J
2l2(67 Fg(tk)vlsk"zk) = 07 (3310)
k=i
since otherwise for some small € we can define F, (t) = F¥(t) + €1, Fo(t)=Fo(s,) Satisfying

1(E?,0) < l,(F, 6). Analogously, for any { > i

1
Z 26, B2 (te), Ok, zi) > 0. (3.3.11)
k=i

Consider the case 8 > 0 first. Then

5(1 + 6z) (1462)2% _§ 1-6
—=(1=-0) = -~ . 3.
z (1-9) 1—zt92 T g 1-¢g (3.3.12)

Suppose now there is a minimal ; such that F?(t) < an(tl). Consider the interval [t, ¢;],
where E9(t) = F2(t;) < F®(t;4;). Using (3.3.10), (3.3.11), (3.3.12) and that interval wherc
F0 n 18 constant starts at ¢; we obtain

0> Z l2(0 F tk) Jky*k) > ( , "(tk) 6k,0)

M- 10

J
1o(6, B (1), 05,0) > Y 1a(60, FY, (), 65, 0) > 0
{ k=l

>

ES
1l
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This is a contradiction.

Assume there is a maximal #; such that F?(t;) > Fﬁ ,(t) and consider the sum over: < k < |,
where Ef(t;_,) < F8(t;) = F2(t;). This again leads to a contradiction. For the case § < 0 apply
Lemma 3.3.2 with F = {all distributions} and H(F) = F'*. Rewrite

Ff = argmaxz (8:(1 + 6z:) log F(t;) + (1 — &;) log (1 — F(t;)"%))

Fer T4

—{a,rgmaxZ( 1 gF(t)+(1—6)log(1—F(ti)%))}m

|

FeF
T+
= ¢ argmax 1462 ) log F(t;) + (1 —6&)log (1 — F(¢; 146’z ’
{gg;(( Ylog F(t) + (1 - 8 1og (1 - F(8)' %))
where 6 = _1—+—e and z; = 1 — 2. The proof of Lemma 3.3.3 for # < 0 follows from the

0 ; po o
— 119> since for the functions £/, Fy, and

Y, defined by (3.3.7), (3.3.8) and (3.3.9), we have for any t € [0, 1]:

B0 = (F0)™ ¢ [(#a0) ™ (Fa0)™] = [0, 8.00).

statement of Lemma 3.3.3, proved for positive § =

Lemma 3.3.4 Suppose that conditions of Theorem 3.1.1 are satisfied. Then

Fo(t)l = Op(n"logn).
tef0,1]

Proof: Note that F}ﬁ ,, in fact does not depend on 6 and represents the estimator under the null
hypothesis. For the case of contiguous alternatives it is already studied in GROENEBOOM, KU-

LIKOV AND LOPUHAA (2002) and from this we know sup ES (1) — Fo(t)| = O,(n~31logn).
tc[0,1] |4 0n 4

1
48

By an argument similar to one used in Lemma 3.3.3, F¥,(t) = (ﬁ‘({n(t)) . Using Lemma

3.3.1, (3.3.4) and that F,(t) = F8n(t), we obtain Lemma 3.3.4. ]

Closing this section let us prove a fact we later need in upper bound estimates:

Lemma 3.3.5 Suppose |6,| <1/2 and n > 1. Then

lnf{F,,(t) F(t)>0}> el

inf{l — Eu(t): Fu(t) < 1} > L

5n’
Proof: If F,, does not take values in the interval (0, 1), both statements are trivial. Otherwise,
to obtain the first incquality take ¢; and ¢; such that mf{ w(te) : Fulty) > 0} = F,(t;) =
Fo(t;) < Eo(tj+1) and F,(t;) = 0 if any. Using (3.3.10)
i (6"(1 +0az)  (1=8)(1+ 0)”) =0

r 1— m1+énzk

k=1
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where © = ﬁ’n(ti). At least one of 6, kK = 4,...,7 is equal to one and using lén| < 1/2 we
conclude

130 - i)ax~1/? <o.
2c 2(1—2x'/?2) —
Next we bound j — i < n — 1 and obtain x > 1/(9n?). . . R
To get the second inequality, take t; and t; such that F,(t,_)) < F.(t;) = F.(t;) =
sup {If‘n(ti) : Fn(ti) < 1} and Fn(tjﬂ) = 1 if any. By the same argument we obtain an in-
equality

: _ /2
3n-1)  a S0,
2x 2(1 — x3/2) =
where as before r = F,,(t,—). The second statement of Lemma follows from the inequality
r<(l-z5)" <1- & .

3.4 Stochastic equicontinuity

In this section we show stochastic equicontinuity of the “derivatives” of the loglikelihood. The
method of proving the asymptotic normality of the maximum likelihood estimator 8, is anal-
ogous to the treatment in Huang (1996). We will consider both stochastic equicontinuity
expressions from Lemma 3.4.4 and use consequences of the optimality of (én, F,), considered in
section 3.6. Moreover we use exact calculations for the underlying model applying an expan-
sion in terms linear in 6, and F;,. The proof of this expansion can be found in the section 3.5.
Application of the Central limit theorem and properties of the efficient score function discussed
later in this section will complete the proof.
First we need some notation. For the interval I, = [n~'/3(logn)®, 1 — n~'/3(log n)?] let

S1n(0, F) = / L(8, F(£),6,2)dP,,
teln

S2n(0 F)lH) = [ B(6.F(0,6.2)h(0dP,

tel,

Sl(O,F)z/ L1(0, F(t),6,z)dPs,,
tel,

S3(8, F)[h] = / (8, F(£), 6, 2)h(t)dPy,
teln
where h is a function on [0, 1] and under P, we understand the probability measure corre-
sponding to the underlying distribution (thus dPy, = L(6,, Fy)du) and under P, - the empirical
measure. Define further

SI,I(H,F) =/ ll(O,F(t),é,z)zdPgn,
tel,

S12(0, F)[H] = / L0, F(),3, 2)la(6, F(t). 6. 2)h(t)dP,.

Jiely

Saa(0, F)[h1, ho] = / 18, F(t), 8, 2)2h( (t)ha(t)d s, .

tel,
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As we will see later this functions play role of the first and second derivatives in expansion of
likelihood w.r.t. F and 8.

As we have seen in Lemma 3.2 of GROENEBOOM, KULIKOV AND LopuHAA (2002), the canon-
ical gradient & for this model is

P _ 6 1-4 ”e pgi1(t) o
’“(t"s’z)"p"(Fo(t) 1—Fo(t>)( pgl<t)+(1—p>go<t>>F°(t“gF"(“’

where

3 Fy(t)(log Fo(t))* go(t)g1(t) -
( a )/ 1-FKt)  pa@®+01 —P)go(t)dt> .

In fact, this is :
k‘(t, 6, Z) = IFo (l1(0, Fo(t), 5, 2) - 12(0, Fo(t), 6, 2)[11*])

with

() — pyl() o

Lemma 3.4.1 Suppose that conditions of Theorem 8.1.1 are satisfied. Then
VL (1,00 Fo) = Sz(bm, Fo) 7)) = N(0,1/I,).

Proof: We need to show that

Z ll en) FO(T) An Z) - 12(0'11 FO(T) Ai? Z) (Ti)) ]'T;’E’n

t—l

is asymptotically normal. Taking expectations, conditional on T = ¢, we show that
/ (0, Fo(t),6, 2)dPy, = O,
tely
/ la(6n, Fo(t), 6, 2)h*(£)dPy, = 0.
tel,

The next thing is to consider the variance of Y; defined as

Yi - (ll(6n7 FO(/T‘l)v Ai7 Z‘l) - 12(6117 FO(E)? Ai) Zl)h*(ﬂ)) lT.‘EIn'

EY?

1

_ / 2 ((1 = p)go(t) + 6npg1 (1))* + (1 — 2)(pgs (1))*
tel, (Pg:(t) + (1 — p)go(t))”

& (L=t
(t_2 + —(1 BIEEY t*(logt)*dP,,

_ p(l— p)2go(t)2g1(t) 4 t1+0"(10g t)2
B /el,. ((:091 (t) + (1 - p)go(t))” * Tl(t)) o &

P*(1 = p)go(t)gi(t)* t(logt)?
+/tezn (pg1(t) + (1 = p)go(1))* 1—t at,
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26.p%(1—p)go (g1 (f)2+0,,p’gl °
(g1 (1) +(1-p)go(1)?

where r(t) = , satisfying |r1(t)] < C1]6.](go(t) + 1(t)) for any t.

Define next r(t) as
titon(logt)?  t(logt)?
1— 140 1—t

Tz(t) =

For n sufficiently large and ¢t € I,

40 (logt)?  t(logt)?| _ |t — 1| t(logt)? |6, t(log t)°
— < < (% - <(C 3.4.
1 — tl+6n 1—+¢ - (l—t) (1—1‘“’6") - Cl (1At)2 = C3|9”| (341)
and
|EY? ~1/1p| < C:/ (Ir ()] + [r2(0)|(91(2) + g2(2))) dt = O(6y,).
tel,
Finally, the Lindeberg condition is satisfied, since |Y;| < n'/3. ]

Lemma 3.4.2 Suppose conditions of Theorem 3.1.1 are satisfied. Then
Sl,l(ens F()) - 5172(9,1, Fg)[h*] — 1/[1?0, n — o0, (342)
|S1.2(6n, Eo)[h] — S22(0n, Fo)[h*, A}l < C1]6,] s1[1p] |h(t)]. (3.4.3)
te(o,1

Proof: Rewrite (3.4.2)

/I (11(On, Fo(t), 0, 2) — la(On, Fg(t), 8,2)h*(t)) Li(6n, Fo(t), 0, 2)d Py, =
) / t1+0 (log t)2 go(t)g1(t)
=t pgi(t) + (1 - p)go(t)

Use of the dominated convergence theorem finishes the proof.
On the other hand, for any function A, (3.4.3) can be written as

(ll (0717 FO(t)7 5* ;) - 12(6nv FO(t)v 57 Z)[h*]) l?(en., Fo(t), 5, Z)h(f)dpgn =

) p(1 — p)gi(t)ga(t) P2au(t)? # log t
/In ((1 - p)g()(t) + pgl(t) + 0"(1 - p)go(t) + p!h(t)) 1 — ¢l46n h(t)d’t

1-— 4 t) logt
_/ p(1 — p)gi(t)ga(t) log h(t)dt.
rm (1=P)go(t) +pgr(t) 1 -t
Using (3.4.1), and the fact that for any ¢ € (0,1), |logt|/(1 —t) < Co(1 + |logt]), the absolute

value of the right hand side of the above equality is bounded by

(t)] (1+ (logt)?) dt.
teln

To prove stochastic equicontinuity of S;, and Sy, on sets

= {F: F is a distribution function on [0, 1]; sup |F(t) — Fy(t)| < n~*(logn)?}

1/3

0, = [-n" Y3 logn,n V3 logn]

we will use Lemma 6.1 in GROENEBOOM, KULIKOV AND LOPUHAA (2002):
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Lemma 3.4.3 Let P" be a sequence of the probability measures on the set X with a sequence of
subsets {An}or,. Let B be the set of all functions from X to R and let A be some fized set with a
sequence of subsets {An},_ ;. Suppose Jag € A: ag € (\ney An. Furthermore, let {a,}, be a
sequence of functions oy, : A — B. Suppose that for some sequence p,,,n=1,2,..., z, € X,
of metrics on A, depending on the sample realizations X,, = z,, the following is satisfied:

1. P{A,} -1, n — oo,

2. For any x, € A, and for any ay,a, € A,

/(an(al) — an(a2))?dP™ < p,, (a1, a2)%,

3. For any e, 0<6<%

. SUP,e 4, Pan (@, G0
lim sup ————“eA"_II"( ! )=0,
n—o0 Tn€An Ja:n (6)

where JZ () is the inverse function of J(-, A, ps,) (which we will further denote as
Jen (6)).

Then

[ (@n(@) = an(an)) dEn| = 0,(2).

sup
a€A,

Lemma 3.4.4 Suppose conditions of Theorem 8.1.1 are satisfied. Then
Vi {(Sin = 81) (bu, ) = (S1a = 51) (6a, Fo) } = 0y(1),

Vi { (San = S2) (Bn Fo) 0] = (San = S2) (B, FO)IB']} = 05(1).

Proof: Using Lemmas 3.3.1 and 3.3.4 and separating terms, corresponding to § and (1 — §) it
suffices to show that, for ¢(t) = pg1(t)/{pe1(t) + (1 — p)go(t)},

A. sup / 20 (log F(t) — log Fo(t)) dE,| = 0,(1),
B Wl B Fo(t)log Falt)
B, s ([ w00 <F(1t)— FO™ 1- Ry )"E =a(l)
e | (T~ i) Fotes pttee, = o0,
p. o | [ -0 (S0 - i) RlOlos B0u(0aE] = 0,0

To prove it we apply the same technique to all terms A-D. As an example we treat term C.
Apply Lemma 3.4.3 with X = R x {0,1}2, a sequence of probability measures P , A =0 x F
and A, = 6,, x F,. The intersection [} A, = (0, Fy) will be denoted by ag. It will follow from
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Lemma 3.4.3 that C is asymptotically of smaller order in probability, if we show that for the
function a;, : A — B defined by

ay(a) = 61 +(z)9 (t)Fo(t) log Fo(t)Literay

where B is the set of all functions from X to R, conditions of Lemma 3.4.3 are satisfied.
For any functions £y, I, € F,, any 6 € ©,, and t € I, we have:

lan(a) — cm(az)] gzﬁ|().—()2|f’;z’5; 4 |F;§ ()) f( ()t)i

< (10 - o+ POTE) 510,

for n sufficiently large, since for n > 2, we have

tlogtdlser,

t n~13(logn)?
sup  —— < - ; .
Ferater, F(t) ~ n7'3(logn)*(logn — 1)

Therefore, for the metric p,,, defined by p,, (a1, a2) = p,, (61.62) + p;, (F1, F»), where

1/2
o (6.62) = 10, — 6,]C ( [ ogtpaar,)
tel,

o 1/2
o (P Fy) = C ( LI (o8 t)” sy F2(t)>2adpn) ,

it holds that, for any a;,as € A, and n sufficiently large,

[ @nlar) = auen))* P, < pryfar, 00"
Define the set A, by

A, = {mn e X": / §(logt)*dP, <logn and / (logt)* ~—4dP, < (log n)4}
teln ter, 1
By the Markov inequality P{A%} — 0, n — oo, since, for large n, expectations are bounded as
5(logt)2dP,, < C:;/ Vi(logt)?dt < oo
0

teln

and

/@ (loit)?éPon =/ (log t)? (t* pgy(t) + ¢~ (1 — p)go(t)) dt = o ((logn)*).

In

Thercfore for any z,, € A, holds that sup,c 4, Pun (@, a0) < Cyn~3(logn)*. To bound J. ' (e)
from below we need to bound the entropy from above. Since a d-net in A can be chosen as a
product of §/2-nets in © and F,

log N(8, A, ps,) < log N(6/2,0, p, )+ log N(§/2,F, p,,)-
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Uniform bounds on the entropy of the set 7 w.r.t. the Ly(u)-norm for a bounded positive
measure u were studied in BIRMAN AND SoLoMJAK (1967). This gives, for any z,, € A4,,

2
log N(6/2, F, pi. ) < @

Boundary N(§/2,0,p, ) < @ is trivial and therefore

) 2
J(6, A, py.) = / \/log (M)dt < CV/5logn.
0

t

Condition 3 of Lemma 3.4.3 is therefore satisfied with

sup SupaEAn Pzn (CL, a[)) S 076—2nv1/3(10g n)(i.

Znchn Jo(e)

3.5 Smoothness

We first obtain an approximation of 51(0, F') and S,(¢, F)[h*] in a neighborhood of (0, Fy) by
terms linear in § and (F — Fp). To prove asymptotic normality of /nf, we will need the error
to be op(n=1/2).

Lemma 3.5.1 Suppose conditions of Theorem 8.1.1 are satisfied. Then

sup {|S1(0, F) = $1(6n, Fo) + S11(6n, Fo) (6 = 0a) + S12(60, Fo) [F = Foll} = o(n™"/%),

FEFn 060,

sup {|Sz(0, F)[h*] - 52(9117 FO)[h*] + Sl,2(0m FO)[h*](e - 9”)

FeFn,0e6,

b Saalla, P b, F — Rll} = 0 (n~7)

Proof: The argument is analogous for both expressions. Therefore we will only prove the first
statement of the lemma. We have:

_ 146
S1(8, F) =/t€] zlog F(t) <6—(—11%) dp,,

— titbn 1486
- p/tel log F(t) (t1+9,, - a 1 t_*F();’lErtg) )Ql(t)dt.

Expand this, for t € I,,, # € ©, and F € F,,

log Fi(#) (1 — 1=ttt ) ﬂ o, 2Lip_p 3.5.1

og F(t) I-FE@0 ) = (1—u1+")2u (logu)® ¢ ( ) (3.5.1)
1 1 —tlttn 1 — tl+on 0

“(1- - . (352

+ {u (1 = u1+“) 1= u1+”)2(1 + v)u logu} (3.5.2)

(F(t) —1),
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where u lies between t and F(t) and v between 6, and #. We will also use that 5,(6,, Fo) =0
and

’ tl+9n
Sl,l(gnv Fo)(0 — 90) = p(0 — 90) , (lOg t)Z]__f—l-H)ngl(t)dt’ (353)
Jiel, g
tgn 1 + ()n
S|,2(9,1. F(])[F — F()] =p / logfﬁ(F(f) — f)g.(z‘)df (35—1)
Jtel, g

Consider the difference between (3.5.1) and integrand of (3.5.3). Let w; = uw!*" and wy =
16+ Further define

F, = {F . Fis a distribution function, sup |t — F(t)| < 2n~3(log n)z} .
te[0,1]

From (3.3.4) we have that both w, (t) and w(t) belong to F for large n. For the same reason,

1 1- %N t 1- i 4 R
=< inf—u() Ssup—w—() <2 i=1,2.
2 teln 1-—-t tel, -1
Then we get for the difference of integrands:
1w (logw,)? 1 wy(logws)?

(1 —ws) < Cp (1 + (logt)?) n=3(log n)?.

(1402 I—w)? (1+6,)2 1—w)? |~

To obtain the last inequality we have used the boundednes of the function t(logt)?/(1 —¢)? on
the interval (0, 1), and the bound

t(logt)? ' 1+ (logt)?
(7%5) 'SC? -t

for any ¢ € (0,1).

Integrating we find that the difference of #-terms is bounded by

pCin~**(log '71)3/ (1+ (logt)*)g1(t)dt = o (n*'/z) .

n

Next consider the difference between (3.5.2) and integrand of (3.5.4). First we bound

1 ] 1— %0 wy — wsl < Cin~3(log n)?
u T—ul* |~ (1 —w)u ~ t(1-1)
Using the inequality
sup |F(t)0 - 1| < Cyn~Y3(logn)®
FeFn 0€0y tcly,
we conclude that
——l—ﬂuo logwy — " logwy| <
(1 —wy)? 1— w, -
log uy log wy n~3(logn)* n~Y3(logn)*
(1 - /w'Z) 2 2 5 = Y6 )
(l—wl) (1—’LU2) 1-1¢ t(l—t)
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(=)

Cin~*3(log n)® / . t(gf(—t)t) dt = o (n"17?).

using the inequality

’

Cr
=1 -2

Integrating we get

3.6 Two important lemmas

In this section we discuss consequences of the optimality of the maximum likelihood pair ((9,,, F,)
for Si» and Sy,[h*]. The next two lemmas together with the results of sections 3.4 and 3.5
will be applied in showing that 6, is asymptotically normal.

Lemma 3.6.1 Suppose that conditions of Theorem 8.1.1 are satisfied. Then
Sl,n(é’n, El) = 0p (n—1/2) .

Proof: The maximizer of

61 / 19, Ei(t),6, 2)dP
(seen as a differentiable function of 6) is f,,. This implies

/z1 O, Fo(t),6,2)dP, =0
and to prove Lemma 3.6.1 we need to show that

/ ll (ény F;L(t), 6, Z)C”J" =0p (n_1/2) .
€01\

Denote the intervals
I, = [0,n"3(logn)’] and I} = [1—n"(logn)*1].

Separating integrals of - and (1 — §)-terms over I} and I? it suffices to prove

/ 2] {logﬁ’,,(t)} dP, =0, (n'7?),
tell

/ 2
tely

log Fn(f)l dP, = o, (n“l/z) ,
(1)
1— ﬁ‘n(t)l+én

/teli,
. f ($)1+0n ]
/ z(1-96) ‘log Fn(t)( Ldﬂ, =0, (n71?).
tely

1 - Fn(t)l+9n

z(1-46) ‘log ﬁ‘n(t)’ P =0, (n7'/?),
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Here we only consider the first and the third expressions since the rest is treated analogously.
/ z0 'log Fn(t)’ dP, < C; logn/ 20dP, = o, (n‘1/2)

tell, T

by an application of Lemma 3.3.5 and the Markov inequality.
Using boundednes of the function t'/3logt/(1 — ¢) on the interval (0, 1) we cstimate

R ﬁ‘n t 146, C. N : . i)/
/ z(1-6) ‘log Fn(t)‘ S ) _dp, < —2_F, (n‘l/d(log n,)3)2(1+6 )/3/ dpP,
Jiel, 1-— F,,(t)1+9" 1+86, tell,
which is o, (n"/ 2) due to the Lemmas 3.3.1, 3.3.4 and the Markov inequality. |

Lemma 3.6.2 Suppose that conditions of Theorem 3.1.1 are satisfied. Then
Syn(fny E)N] = 0, (n71/?)

Proof: The function I:“"(t) + eh*A(t) can not be a distribution funAct,ion for~bot.h positive and
negative €. To use optimality of F,, we consider first h,(t) = gn(t) F,(¢) log F,(t), where ¢, is a

piecewise constant version of ¢, defined by ¢,(t) = q (FO_] (Fn(f))) We also use the notation

e’n = min{ Fn(u) - ﬁ}l(v)‘ : F,,(u) £ Fn(v)}

and R R
en = min { €, Fullkn), 1 = Full = k) }

where k, = n~/3(logn)®. For 7. and 77 defined by
T,

D —min{r: 7> kn},
o=max{m: T, <1—k,},

where the 7; are the points of jump of Fn(t), it follows from Lemma 3.3.4 that intervals JL =
[kn, 2kn) and JI = [1 — 2ky, 1 — k] usually contain 7% and 77:

P{r, > 2k,} < P{ sup

tel0,1]

and, for the same reason, PA{T:; <1-2k,} -0, n— o0o.
Finally define F, (t) = Fy.(t) + €hn(t)1,ef, 01, for any €, || < en/2sup,ep, |hn(t)|. For such
¢ the function F,, . remains a distribution function with probability tending to one and therefore

/ U(B,, Fo (1), 6, 2)dP, < / U6, (1), 6, 2)d P,

Differentiating w.r.t. ¢ we conclude

/ [ ] l?(ém Fn(t), d, z)h.,,(t)d[’n =0.




72 CHAPTER 3. TWO SAMPLES LIKELIHOOD RATIO TEST

Therefore we need to show

/teJ,l, uJzr

Separating as in Lemma 3.6.1 and using boundednes of ¢ it suffices to prove:

sup / (1 + 260)d|1log F(t)|dP, = o0p (n'l/z) ,
teJh

lz(én,ﬁn(t), d, z)hn(t)‘ dP, = o, (n—1/2) '

FeFn,0€0n
sup / (1 + 28)|log F(t)|dP, = o, (n"1/?),
FeFn,0€0n JteJr
(1 + 26)F(t)***| log F(t)| e
o 1-4 dPn =0, N ,
Fefn,geen /teJi. 1— F(t)i+e ( ) o ( )
(14 20)F(#)'+*| log F(t)| B
4y 1= 8)dP, = o, (n~1/?) .
Fef'n,geen /teJ; 1 — F(t)+=0 ( ) - ( )

We are integrating over subsets of I,, and therefore inequalities, used in Lemmas 3.4.4 and
3.5.1, can be applied here as well. Consider, for example, the third expression:

(1+ 20)F(t)+*|log F(t)| /
su 1—-6)dP, < C t|log t|d P,
Fefn,fl))een /teJﬁ, 1 — F(t)!+=0 ( ) ! teJl [tog |

which is o0, (n"'/?) using the Markov inequality and the fact that, for n sufficiently large,

SUPreF, 0c0m, tct, F(t)a/ {1 - F(t)Ho} <2
Next we will prove

/ 1B, Fo(),6, 2) (0*(£) — ha(t)) Py = 0p (n~?).
teln ’
Considering expectations w.r.t. Py, conditional on 7" = ¢, we obtain
/ la(6n, Fo(t), 6, 2) (0 (£) — hn(£)) dPy, = 0.
tely,

Therefore we must show

Feﬁugsg /tEI 1(0n, Fy(2),9, 2) (G(t)F(t) log F(t) — q(t) Fo(t) log Fy(t)) dE,| = 0,(1), (3.6.1)
where

Q={q(t): q(t) =q(ss), si <t <sip},
Qn = {d(t) : 4(t) = q(s1), si <t <sig1, sup|sipr — s;| < n"Y3(logn)?}.

As we have seen in the current proof, P{g, € Q,} — 1, n — 0o. To prove (3.6.1) it is sufficient
to show that

A. sup
FeFn,gEQn

[ 22 (0 tog Fi6) — a(0)Fofe) og Fot) | = 031,
er, Fo(t)

/ (1= 6)(1 + 28,) Fy(t)%n*
tely, 1 — Fo(t)!+0n=
-(G(t)F(t)log F(t) — q(t) Fo(t) log Fy(t)) dE,| = 0,(1)-

B. sup
FeFn,GeQn
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The proofs of A and B are similar and here we will consider only A. Apply Lemma 3.4.3 with
X=Rx{0,1}), A=F x Q, A, =F, x Q, and ag = (Fy,q). Define a,(a) as

an(a) = (s(l—tz—e”—)(j(t)F(t) log F(t) ey,

Using boundednes of ¢ and the fact that, for large n, any Fy, Fy € F,, and any t € I,,,
[F1(t) log Fi(t) — Fy(t) log Fa(t)| < Cy ([logt| + 1) |Fi(t) — Fa(t)],
uniformly in ¢, we get the bound

|Fi(t) — Fa(t)] "

lan(al) - an(a2)| < Cg ( ;

00) = (01 ) 61081 + DL,
If we define metrics pf, on F and p} on Q

3 ((log t 2 1/2
p(Fr) = ([ B - morar,)

1/2
JL (@) = Gy ( [ ttosty + @) - @(t))?dpn) ,
Jteln
then for p,, (a1,a2) = pl, (F1, F2) + 0}, (41, G2):

[(en(a1) = an(@)*dPu < (021

For A, given by

5 2
{:1:,, eX": / Mdpn < (logn)* and /
tel,

: ((logt)® +1)dP, < logn}
t tel,

the Markov inequality implies P{A,} — 1, n — oc.
It is proved in GROENEBOOM, KULIKOV AND LOPUHAA (2002) that, under condition (C3),

log N (4, Q, p:n) < Cy67 /logn,

uniformly in z,, € A, and sup,¢( ) ¢ (t)] < 0o. Together with log N(4, F, ) < Cs6~(logn)?,
which is obtained in BIRMAN AND SoLoMiAk (1967), and arguing similarly as in Lemma 3.4.4,
we obtain

S pan(a,00) < 3 (logn)t,
In€An,a€An
Cs

i f -1 2 > -_—T .
I:IE-IA,\J (€A, pe,) 2 (log n)2e?

Hence the conditions of Lemma 3.4.3 are satisfied, which finishes the proof of A.
Therefore we now need to show

/t S (lQ(én’ F"'(t)’ 67 Z) - l2(0m Fﬂ(t)vls’ z)) (h*(t) - hn(t)) dr, = Op (n_l/Q) .
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It suffices to prove that

sup

/ (1a(8, F(£), 6, 2) — La(Bn, Fo(£), 6, 2))
FEeF, GEQn ,0EBn (Jicl,

(§(t)F(t) log F(t) — q(t)Fo(t) log Fo(t)) dPu| = o, (n™"/%) .
Recalling the argument above this can be reduced to

/tez,, (% * ﬁ) (1 + (logt)*)dP,

2
: (sup |F'(t) — Fo(t)] + Sup 1g(t) — q(®)] + 16 — 9n|> -

sup
FEFn,GERn,0€0n

tel0,1]

Application of the Markov inequality finishes the proof of the lemma. [ ]

3.7 Proof of Theorem 3.1.1

Using Lemmas 3.4.1, 3.6.1 and 3.6.2, the statement of the Lemma 3.4.4 can be rewritten as

VA (5100, Br) + S1n(6n, F)) = 0p(1)
V7 (826, Fu)B] + Sa(6n Fo) B7]) = 05(1).

Next we apply Lemma 3.5.1 to expand:

{ NG Esl,,.(on, Fo) = 5126, Fo) (Bn — 00) — 512(6n, Fo) [ En = Fol ) = 0(1)

VA (S2.n(0s Fo) (0] = S1.2(60, Fo)l07)(Bn — 60) — S3.2(6, Fo) 1", Fr — Fo]) = 0,(1).
Hence, using Lemmas 3.3.1, 3.3.4 and 3.4.2 we get
V1l — 6,) = Inv/1t (Sun(0n, Fo) — So.n(0n, Fo)[07]) + 0,(1). (3.7.1)

Application of Lemma 3.4.1 now leads to a proof of the theorem:
Theorem 3.7.1 Suppose conditions of Theorem 3.1.1 are satisfied. Then
Vb, 2, N (6o, Ir,), n — oo.
Let us define the second derivatives of (8, x, d, z):

oli(8,,6, z) (1 = 8)z(log x)?x*®
hall2,8,2) = =55 = =T (1 ey’

oL(0,x,6,2z) 20 (1-08)za® (1-18)2(1+6)zlogz
R A P e TR

’
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a6, 2,6, z)

fzvz(g,l',(s, Z) = Oz
o 6(1+20) (1—-0)z(1+0)0z'¢ (1 —6)(1+6z)x¥*>
" (1 — z'+6)? B (1—zl+62)2 7

We will also need the piecewise constant versions
wt)=a(F (F0)),

& =a(Ft (F0)).

where F,? = argmaxy [,(0, F'). Therefore the piecewise constant versions of the efficient score
function will be

ha(t) = QH(t)Fn(t) log F, (t),
ho(t) = a0 (1) FR (1) log F)(2).
The next three lemmas are important in proving Theorem 3.1.1. They allow us to apply

the Taylor expansion up to the second power of the argument deviation. The following lemma
was proved in GROENEBOOM, KULIKOV AND LOPUHAA (2002):

Lemma 3.7.1 Suppose conditions of Theorem 3.1.1 are satisfied. Then

/ (zl(o, FQ(t),8,2) — 1p(0, F2(t), 6, z)h‘,’,(t)) dP, =
On/Ir, + ((S1,(0, Fo) = S2.,(0, Fo)[h*]) — (S1(0, Fo) — Sa2(0, Fo)[h*])) + 0, (n72/2)..
Proof: As we have seen in (3.3.10)
/ 2(0, F2(t), 8, 2)R(t)dP, = 0.

In Lemma 5.2 of GROENEBOOM, KULIKOV AND LOPUHAA (2002) we obtained:

[ ]
But for the proof we need another representation of this expression, given in the next lemma.

Lemma 3.7.2 Suppose the conditions of Theorem 3.1.1 are satisfied. Then

/ (800, E(2),6,2) — 10, E2(8), 6, 2)A2(1)) P, =
O,L/IFO + (51,,1(0,“ F(]) — Sg‘n(an, F())[h*]) + Op (n‘l/z) .
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Proof: Using Lemmas 3.4.1 and 3.7.1, it is seen that the statement of Lemma 3.7.2 is equivalent
to
((S1,n(0, Fo) = S2a(0, Fo)[h*]) — (51(0, Fo) — S2(0, Fo)[h7])) =
((S1,0(6ny Fo) = Sz, (6, Fo)[0"]) = (S1(6n, Fo) — S2(6n, Fo)[1*])) + 0, (n7172) .

Now proof follows by the application of Lemma 3.4.4. ]

Continuity of the second order derivatives is stated in the next Lemma. Its proof is in fact
a series of applications of Taylor expansion, as in the proof of Lemma 3.5.1. Here we will state
it without proof:
Lemma 3.7.3 Suppose the conditions of Theorem 3.1.1 are satisfied. Let égt < |8.| and FO(t)

be a function on [0,1], such that for any t € [0,1] FO(t) lies between FO(t) and FO(t) — 6,h0(t).
Then

sup /(llwl(ég,ﬁ’,?(t),é,z)——ll,l((),Fo(t),J,z)) dP,| = 0,(1),

F2.,69

sup / (1208, F2(),8,2)13(8) — 1,200, Fo(8), 8,2)1°(1)) dPa| = 0p(1),
F2.8

sup / (12,2(52,F‘,?(t),é,z)hg(t)z—lz,g(O,Fo(t),cS,z)h*(t)z) dP,| = 0,(1).
.68

The last lemma we will need to prove Theorem 3.1.1 gives convergence of the second order
derivatives in probability:

Lemma 3.7.4 Suppose conditions of Theorem 3.1.1 are satisfied. Then

/ (=11.1(0, Fo(t), 6, 2) + 20 2(0, Fy(t), 8, 2)h* (t) — 122(0, Fo(t), 6, 2)h*(¢)?) dP,
=1/Ig + 0,(1).
Proof: First we define
Y = (=11.1(0, Fo(T), A, Z) + 201 5(0, Fo(T), A, Z)h*(T) — lp2(0, Fo(T), A, Z)) h*(t)*.

By straightforward calculations we get EY; = 1/Ig +0(1), as n — co. On the other hand Y; <

Ci (1 + (log T)2), which assures that all moments of Y; are uniformly bounded. Application of

the Markov inequality finishes the proof. ]
Now we are ready to prove Theorem 3.1.1. The statistic 2log T, can be written as

2log T, = 277,/ (l ((}n, I:"n(t),(i, z) -1 (0, F,?(t),&, z)) dP,.
If we can show that both E,(£) + 0,h,(t) and F2(t) — 8,h0(t) are distribution functions (with
probability tending to one) it will follow from the optimality of the maximum likelihood esti-
mator that, for L, and R,, defined by

Ln=2n / (1 (B E9(0) ~ 81(0),5,2) — 1 (0, E(2),6,2) ) dP,

R, = 2n / (1 (B £a0,6,2) ~ 1 (0, Fu(t) + Buha(t). 6, 2) ) P,
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we have:

L,<2logT, <R, (3.7.2)
with probability tending to one. Therefore we need to study the function ug(t) = t+6q{t)tlogt
on the interval [0,1]. We have: lim .gug(t) = 0, lim,; ug(t) = 1 and for |#] small enough we

get, by comparing the derivative u, with zero, that for exp (—C/|f]) < t < 1, the function
t = wuy(t) is increasing. The statement now follows from Lemma 3.3.5.

Expanding integrand of L, around (O, F,?) we get:
L.= 2nb, / (0 EO(t), 8, )dPn — 2nb, / Iy (0. EO(). 4. H) KO (1)dP,
nf? / Ii (92.1:’,?(0.5, :) dP, — 2né? / ls (ég.ﬁ;?(t),a, z) Ko (t)dP,
nb? / 122(9", FO(1),6 )h?,(t)zdl’n,

0,| and FO(t) is a function on [0, 1], such that, for any ¢ € [0,1], FO(f) lies
between F?(t) and FO(t) — éﬂnhg(t). Using Lemma 3.7.2 and (3.7.1), we obtain that the first
two integrals are equal to 2n62 /I, + op(l) and using Lemmas 3.7.3 and 3.7.4, we get that the

last three integrals are equal to —né) */Ir, + 0p(1). Applying all this together with Theorem
3.7.1 we obtain

where

Lo 25 Y2, n— o0, (3.7.3)

where Y ~ N (6o//Ir,, 1).
On the other hand, by expanding the integrand of R,, around ( F, ) we obtain

R.= 204, / 4 (6., Eu(t 5,z) dP, — 2nb, [ 1, (é,l,ﬁ},(t),é,z) ha(t)dP,

_nd? / s (B, Fu(1),6,2) AP, + 206 / o (B, Fult),6,2) ha(t)dP,

—’I‘Léi / 12‘2

<

TN

6o, E(t), 6, k) ha(t)2d Py,

where, as before,

6, , and F},(t) is a function on [0, 1] such that, for any ¢ € [0,1], Fy,(t)
lies between E),(t) and £, (t) + 6,k (t). Now we have that

/ll (é”, Fn(t),é, :) dFP, =0,
/ by (6n, Fo(0),0,2) ha()dP, =0,

due to the optimality of the pair (0", F,,) and since the deviation lies in the accepted area, as
we saw above. Now, by application of the Lemmas 3.7.3 and 3.7.4 together with Theorem 3.7.1,
we obtain

R, 2 Y2 n— oo, (3.7.4)

where Y ~ N (0y/+/Ig,, 1). Combination of (3.7.2), (3.7.3) and (3.7.4) completes the proof of
Theorem 3.1.1.
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3.8 Results of simulations

This section shows results of the computer simulations of the likelihood ratio statistic for differ-
ent sample sizes n. All twelve pictures below represent the empirical distribution functions of
the likelihood ratio (solid lines) compared to the theoretical limiting distributions (doted lines);
the sample size everywhere equals to 1000.

The first series of pictures corresponds to the underlying distributions Z ~ Bernoulli(0.5),
Fo,Go ~ exp(1), G; ~ exp(2).

00-‘—0 0():1

1.00 — 1.00 —

0.75 — 0.75 —
0.50 — 0.50 —

0.25

0.00 —J

0.25 —

0.00 -

1.00 — 1.00 —

0.75 — 0.75 —
0.50 — 0.50 —

0.25 — 0.25 —

0.00 —~ 0.00 —
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1.00 — 1.00

0.75 — 0.78 —

0.50 — 0.50 —

0.25 — 0.25 —

.00 ~ 0.00 —
n = 500

Another series of pictures corresponds to the underlying distributions Z ~ Bernoulli(0.5),
F(), GQ7 Gl ~ Un[O, 1}

6o=0 =1

1.00 — 1.00 —
0.75 — 0.75 —
0.50 — 0.50 —
0.25 — 0.25 —
0.00 — 0.00 ~
n =50
1.00 — 1.00
0.75 — 0.75 —
0.50 — 0.50 —
0.25 — 0.25 —
.00 — 0.00 —
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1.00 —

0.75 —

0.50 —

0.25 —

0.00 —

n = 500




Chapter 4

Test of concavity

We consider the process Fj, — F,, being the difference between the empirical distribution
function F, and its least concave majorant E,,. We prove that this difference process con-
verges in distribution to the corresponding difference process for two-sided Brownian motion
Wit}} parabolic drift. As a consequence we also derive asymptotic normality for Li-functionals
[1F, = Fal*g(t) dt.

4.1 Introduction

Let X;, Xo,..., X, be a sample from a decreasing density f. Suppose that f has bounded
support, which then without loss of generality may be taken to be the interval [0,1]. Let E,
be the least concave majorant of the empirical distribution function F), on [0,1], by which we
mean the smallest concave function that lies above F,,. In this paper we study the difference
between the processes 1311 and F,. Apart from being of interest in its own right, the distribution
of this difference is needed if one wants to construct a statistical test for concavity based on the
difference between F, and F,. For instance a test based on the Ly-distance fol |E(8) = F, ()" dt.
Define the process

Au(t) = n?3 {F,L(t) - F,L(t)} . telo). (4.1.1)

In KIEFER AND WoLFOWITZ (1976), it was shown that (logn)~' sup, |A,(t)| converges to zero
with probability one, but the precise rate of convergence or limiting distribution was not given.
WANG (1994) investigated the asymptotic behavior of A,(t), for ¢ being a fixed point in (0,1).
The limiting distribution can be described in terms of the operator CM; that maps a function
h: R — IR into the least concave majorant of A on the interval I C IR. If we define the process

Z(t) = W(t) -3 (4.1.2)
where W denotes standard two-sided Brownian motion originating from zero, then it is shown
in WANG (1994) that, for t € (0,1) fixed, A,(t) converges in distribution to ¢;()¢(0), where
c1(t) is some constant depending on f and ¢, and

((t) = (CMRZ) (t) — Z(¢). (4.1.3)

Recently, DUROT AND TOCQUET (2002) obtained the same result in a regression setting.

81
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In the present paper we will extend the pointwise result of WANG (1994) by proving that
for any t € (0,1) fixed, a properly scaled version (u(s) = ¢1(8)An(t + c2(t)sn~1/3) converges
in distribution to the process {(s) in the space D(IR) of cadlag functions on IR. Moreover we
show that for any function g that is continuous on [0, 1], the Lx-functional [ A.(t)*g(t)dt is
asymptotically normal. This result is similar to the one in DUROT AND TOCQUET (2002) who,
independently of our efforts, proved asymptotic normality of L distances in the regression
setting.

One of the main tools in proving process convergence is the continuous mapping theorem.
Observe that A, is the image of F,, under the mapping A — CM;h — h, which is a continuous
mapping from the space D(I) into itself. This is one of basic properties of concave majorants
that are described in Lemma 4.2.1. In Section 4.3, we use the Hungarian embedding and the
representation B(F(s)) = W(F(s)) — W(1)F(s) for the Brownian bridge, to approximate the
empirical process by the process

s W (n'B(F(t+n7'3s) - F(t))). (4.1.4)

As a consequence, a properly scaled version of the process F, converges to Brownian motion
with parabolic drift. After establishing some preliminary results for this process in Section 4.3,
application of the continuous mapping theorem yields convergence of the process A4,. The limit
process is obtained in Section 4.4.

In Section 4.5 the Ly~functionals are shown to be asymptotically normal. One of the main
differences between the regression setting and our setup is the embedding of the empirical pro-
cess. In the regression setting it can be embedded directly into Brownian motion itself, whereas
in our setup it can only be embedded in the process (4.1.4). This introduces an additional dif-
ficulty of approximating the value of the concave majorant of the process (4.1.4) at zero by the
corresponding value of the process s — W( f (t)s). Although the maximum difference between
the two processes is too large, the key observation that makes things work is that the values
of the concave majorants at zero are sufficiently close, as is shown in Lemma 4.5.3. Next, the
proof of asymptotic normality is along the lines of the proof of Theorem 1.1 in GROENEBOOM,
HOOGHIEMSTRA AND LOPUHAA (1999). We first approximate the process A, by a Brownian
motion version AY. Then we use that Brownian motion has independent increments to obtain
strong mixing for the process A¥ and prove asymptotic normality by using the method of big
blocks and small blocks.

4.2 Basic properties of concave majorants

We start by proving a number of properties of the operator CM. By h. and h}, we will denote
the right- and left-derivative of a function k. The following lemma lists a number of general
basic properties of the operator CM.

Lemma 4.2.1 Let g and h be functions on an interval B C IR. Then the following properties
hold.

1. [CMpg] (t) < supgy, for allt € B.

2. For any linear function l(t) = at + b on B, we have [CMp(g + 1)] (t) = [CMpg] (t) + I(t)
for allt € B.
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3. For any interval A, such that A C B, we have [CMag] (t) < [CMpg] (t). for all t € A.
4. If g < h on B, then CMpg < CMph on B.
5. (CMpyg) + infg h < CMp(g + h) < (CMpgg) +supgh on B.
6. Let a,b,t € B, such that a <t < b and suppose that
[CMpg].(a) > [CMpg];(t) > [CMpg].(t) > [CMgg];(b).
Then [CMpg] (t) = [CM 9] (¢).

7. Suppose [r — 1,z + 1] C B. Then
I[CMBg], (1)’ < max {supg —g(x —1),supg — g(z + 1)} .
B B

8. Let [a,b] C B C IR and suppose that [CMp,4g](a) = [CMggl(a) and [CM[yg](b) =
[CMpg|(b). Then [CM,y9](t) = [CMpg|(t), for all t € [a, b].

Proof: ad 1. The statement is trivial in the case supy g = 00. In the case supp g < 0o, CMpg
attains its maximum at some vertex 7. At each vertex 7 we must have g(7) = [CMpg|(7),
which proves 1.

ad 2. Let t € B and let 7, < 7 be two consecutive vertices of CMpg(g + ), such that
71 £ t < 79. By definition of CMp(g +1), on the interval B, the function g + ! is below the line
trough the points (7, g(7;) + a7 + b), with ¢ = 1,2. This means that for any s € B,

g(s) < [CMp(g+1)](s) = U(s)

< g(m) +an+b+ (M
T2 — T

+a) (s—7) —(as+b)

g(m) + %i—i—f—“—)(s — 7).

Hence, on the interval B, the function g is below the line through the points (1, g(71)) and
(72,9(72)). This means that the line segment between (7, g(n1)) and (73, g(72)) is part of a
segment of CMpg. This implies that

Il

[CMp(g+ D] (@) g(m)+ars+b+ (M + a) (t—m)

2— T

g(m) + M(t
To—T1

[CMpg] () +1(£)-

—T2)+at+b

f

ad 3. Suppose that for some ¢+ € A we have [CMag](t) > [CMpg](t). Let [11,72] C A be
the segment of CM 4¢ that contains t. Then 7,75 € B and by concavity of CMpg it follows
that either g(m) = [CMagl(m) > [CMpg](n1) or g(72) = [CM,g](r2) > [CMpg|(r2). This is in
contradiction with CMpgg > ¢ on B.
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ad 4. Suppose [CMgy|(t) > [CMgh|(t) for some ¢ € B and let [, 73] C B be the segment of
CMpg that contains ¢. Then by concavity of CMpg we either have [CMpg](m) > [CMgh](m)
or [CMgg|(72) > [CMpgh|(72). This implies that

9(s) = [CMpg] (s) > [CMph] (s) = h(s),

either for s = 71 or s = 75, which is in contradiction with g < h on B.
ad 5. By property 2, we have CMpg(g + ¢) = (CMpg) + ¢, for any constant ¢ € IR. Hence,
by applying property 4, we get

(CMpg) + inf h = CMp(g + inf k) < CMp(g + h) < CMp(g +suph) = (CMpg) + sup h.

ad 6. Let [r, 73] C B be the segment of CMpg that contains ¢. Consider the line through
the points (11, g(m)) and (73, g(72)):

s g(m) + g—(Tl)_ﬂ(s — Ty). (4.2.1)
nh—T
It remains to show that the line segment between through (71, g(71)) and (72, g(2)) is a part of
CM(gpg. For this, it is sufficient to show that for any s € [a,71) and any s € (72, 8], the value
g(s) is below the line (4.2.1). By definition of CMpg, we have for any s € B such that s < 7y
or s > 7o, that g(s) is below the line (4.2.1). Since [CMpgg],.(a) > [CMpg].(t) = [CMpg].(n),
by concavity of CMpg, we must have a < 7. Hence for any s € [a, 1), the value g(s) is below
the line (4.2.1). Similarly for s € (72,8}, since [CMpg];(72) = [CMgg];(t) > [CMpg];(b) implies
that » < b.
ad 7. Suppose [CMpg]'(z) > 0. Since [z — 1,z] C B, g(z — 1) is below the line through
the points (x,[CMpg|(z)) and (z — 1,[CMpg](x — 1)). This means that the line through the
points (z,[CMpg](x)) and (z — 1, g(z — 1)) has a slope that is greater than [CMpg)'(z). Hence
by property 1 we find

0 < [Mag) ) < IO =0 < (qpg) - oo - ).

Similarly, if [CMpgg]'(z) < 0,

[CMpg|(z) —g(z +1)

0 > [CMpg]'(z) > z— (x+1)

> — (supg) +g(z +1).
B

ad 8. In view of property 3, suppose that there exists a t € (a,b), such that [CM[a,b] g] () <
[CMpg] (). Let [n, ] C [a,b] be the segment of CM[gyg that contains ¢. Since CMa 49 =
CMpg at the endpoints of the interval [a,b], there must be a vertex 7y of CMpg between 7
and 7y, for which [CM[avb]g] (10) < [CMpg| (10). But then g(70) = [CMpg](7) > [CM[g4](70),
which is in contradiction with CMgg > ¢ on B. ]

4.3 Brownian approximation

In this section we show that by means of a local scaling the empirical process can be approx-
imated by a Brownian motion, and we prove some preliminary results for Brownian motion
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with drift. Let E, denote the empirical process \/n(F, — F) and let B, be a Brownian bridge
constructed on the same probability space as the uniform empirical process E, o F~! via the
Hungarian embedding of Komros, MAJOR AND TUsNADY (1975). Then

sup |En(t) — Bu(F())] = Oy(n™"2logn). (43.1)
te[0,1]

Define versions W,, of Brownian motion by
Wo(t) = Ba(t) 4 &xt, t€[0,1). (4.3.2)
For t € (0,1) fixed, define the process
Xou(s) =n?? (Falt + snTV3) — Fo(t) — (F'(t +sn7V3) - F(t))) . (4.3.3)
Let F have a continuously differentiable density f on [0, 1] that satisfics

(A)0 < inf |f/(t)| < sup |f(t)] < .
telo.]] telo,1]

Then on compact sets the process X,,, converges to a time-scaled Brownian motion.

Lemma 4.3.1 Let F satisfy condition (A). Fix t € (0,1) and let X, be defined by (4.3.3).
Then the process { X.:(s) : s € IR} converges in distribution to the process {W(f(t)s) : s € IR}
in D(IR), the space of cadlag functions on IR.

Proof: All trajectories of the limiting process belong to C(IR), the separable subset of contin-
uous functions on IR. This means that similar to Theorem V.23 in POLLARD (1984), it suffices
to show that for any compact set I C IR the process {X,:(s) : s € I'} converges in distribution
to the process {W(f(t)s) : s € I} in D(I), the space of cadlag functions on I. We will apply
Theorem V.3 in PoLLARD (1984), which is stated for D[0, 1], but the same result holds for
D(I).

By applying (4.3.1), we can write

Xn(s) = n'S{E.(t+ sn~3) — E.(t)}
n!/%{ B, (F(t + sn™/%)) — B,(F(t))} + Op(n*logn)
nO W, (F(t + sn™/3)) — W,(F(t))} + Op(n" S logn),
where the big O-term is uniform for s € I. By using Brownian scaling, a simple Taylor
expansion, and the uniform continuity of Brownian motion on compacta, we find that
Xua(s) £ W(F(1)s) + Ru(s),

where sup,¢; |R.(s)] — 0 in probability. From this representation it follows immediately that
the process {X,;(s) : s € I'} satisfies the conditions of Theorem V.3 in POLLARD (1984). This
proves the lemma. [ ]

Let Dy be the operator that maps a function h : IR — IR into the difference between the
least concave majorant of h on the interval I and h itself

D[’L = Cl\/l[h —h.
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Then the process A, can be written as a functional of F,, only: A, = n?3[DjgyjF,]. This means
that in order to obtain the limiting behavior of A, we must investigate the limiting behavior
of F, itself. Note that

/3 (F‘(t + sn—l/s) _ p(t)) =~ nl/af(t)s + %f’(t)s'l.

By property 2 of Lemma 4.2.1 the operator Dy will be invariant under addition of linear
functions. Hence the term n!'/3f(¢)s will have no effect on the limiting behavior of A,,. In view
of Lemma 4.3.1 this means that limiting behavior of A,, will be determined by the concave
majorant of Brownian motion with a parabolic drift.

The following two lemmas are concerned with the tail behavior of Brownian motion with
polynomial drift. The first lemma ensures that the probability that the process W(t) — K|t|*
is still positive for |t| > a, decreases exponentially as a — co. The second lemma states that
the distribution function of sup,. p(W(t) — K|t|*) has exponential tails.

Lemma 4.3.2 For all K >0 and a > %, there exists a C > 0, such that for every a > 0,

2
P {sup (W(t) - K|t|n) > 0} < Cexp (_4{:;1(120—1) )
Iti>a

Proof: The statement is trivial for 0 < a < 2, since in that case we can take C = exp(K?/8).
For a > 2, we have

P {3&2 (W(t) - K|t|°’> > o}

< 2§:P{ sup W(t) > K@a}

iofa  \t€liit]
< 22{5}P {t;ﬁgu (W(t) - W(i)) > %Ki"} + 22{2} P {W(i) > %Ki"‘} . (4.34)
Note that for any ¢ > 1 we have that
P{W(i) > 2} = P{W(1) > 2/Vi} < e % /Ow () du = %e_%, (4.3.5)
and that for all x > 0 and 8 > 0,
(1+2z)°>142°. (4.3.6)

Then, by using (4.3.5) and (4.3.6), we can bound the first term in (4.3.4) as follows.

QiP{ sup (W(t) - W(z)) > %Kz""} = 2§:P{ sup W(t) > %Ki"}

i=[a] tefii+1] pa et
=4 i PIw(l) > Tl <o i o= 5Kl (14i/[a]) 2
>3 <

i=[a) =0

s 2
< 2¢~ K%l Ze'%KZih < Cre # K1 < Ol exp (—%a%) ,
=0
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where €y = 232,785 < o0, and where we used that [a] > a — 1 > a/2, for a > 2.
Similarly, the second term in (4.3.4) can be bounded by

2
22 P{ ) > A7 } < Cyexp (—%a%‘]) ,

i=la)

where Cy, =23 02, e~ #FE°T 5o Tt follows that

r {sup (W(t) - K]t]") > 0}
|t|>a
Af? . Kz
< exp (—ma2“‘1> {CI exp (— 220%(1,2"”1((1 — 2)) + Cg}

K? .
S Cexp (_4n+la2a—l> ,

where C > 0 only depends on K and «, since a**~'(a — 2) > 0, for a > 2. ]

Lemma 4.3.3 For all K > 0 and o > % there exists a C > 0, such that for every x > 0,
1
P {sup (W(t) - Kltl“) > x} < C( + zY*) exp <~§K1/"x2“5> A
R

Proof: We have that

P {s%p (W(t) - K|t|"> > J:}

< 2213{ sup W(t) > :L'+Kz'"‘}

=0 tefi,i+1]

< 22 P{ sup W(t) > (x + Kz“)/Z} + 2iP{W(z) > (z+ Ki%)/2}. (4.3.7)

=0 (€] o1

By application of (4.3.5) and (4.3.6), similar to the proof of Lemma 4.3.2, we can bound the
first term in (4.3.7) by

(o)
2" K < 0yt

where €y = 3°%° e K" < 0. Similarly, the second term in (4.3.7) can be bounded by
1=0

o0
Z o~ (Ki*+2)?/(83) _ Z —(Ki+)?/(8) 4 Z o~ (Ki*+z)?/(8i)
i=1 1§i§(z/K)1/°’ i>(z/K)He

By using (Ki® + z)® > 22, the first term on the right hand side can be bounded by

(17/1")l/ae‘%"l/““’?’”“

b
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and by using (Ki® + z)? > K?2i2*, the second term on the right hand side can be bounded by

Z e_%KZiZa-—l _ Z e—%l@(ﬂ(x/l\’)“”)““ S CQ€_§K1/022—1/0,
i>(x/K)He >0

where Cp = 3,.0e #K"*™ < o0, again using (4.3.5) and (4.3.6). Similar to the proof of
Lemma 4.3.2, it follows that

P {sup (W(t) - K|t|") > :c} <C(+ xl/“)e“%K”%H/“,
R

for C' > 0 only depending on K and a. ]

With suitable standardization, the limiting Brownian motion with parabolic drift can be
transformed to the process Z defined in (4.1.2). We will be dealing with the concave majorants
of this process on large bounded intervals and on the whole real line. Property 8 of Lemma 4.2.1
guarantees that both concave majorants are the same on an interval as soon as their values
coincide on the boundary of the interval. The next lemma states that for large intervals this
happens with large probability. For d > 0, consider the event

N(d) = { [CMgZ] (s) = [CM[_q,9Z] (s), for s = :td/2} (4.3.8)

Lemma 4.3.4 There exist constants Cy > 0 and C3 > 0, such that for alld > 0
P(N(d)*) < C1(1+ d"*) exp (—Cad*/?) .

Proof: Let Z be the process B
Z(s) = Z(s + d/2).

Then, by symmetry and property 3 of Lemma 4.2.1, we have
P{N(d)’} < 2P{[CMgrZ](d/2)> [CM[_d,d]Z] (d/2)}

— 2P {[CMRZ] (0) > [CM-q/2.34/2Z] (0)}
2P { [CMRZ] (0) > [CM[_d/gyd/z]Z] (0)} .

A

Note that
Z(s) = W(s+d/2) — (s + d/2)* £ Z(s) + W(d/2) — /4 — sd.

Hence by property 2 of Lemma 4.2.1, we find that
P{N(d)} < 2P{[DrZ](0)> [Di-4y2a22] (0)}

2P {[DrZ](0) > [D-aj2.4/2Z] (0)}
2P {[CMRZ] (0) > [CM-a24/212] (0)} -

Distinguish between
1. Z(s) < —1s?, for all |s| > d/2,

2. Z(s) > —3s?, for some |s| > d/2.
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Consider the first case. Let [, 7] C [=d/2,d/2] be the segment of CM[_4/2,4/2) that contains
zero. If [CMgZ](0) > [CM|_q/2,4/9Z] (0), then the line through the points (7, Z()) and
(T2, Z(7,)) must intersect the process Z outside the interval [—d/2,d/2]. In case 1, this can
only happen if this line intersects the parabola p(s) = —38% outside the interval [—d/2,d/2].
This is only possible if the slope of this line is greater than the tangent of p(s) in the point
§ = —d/2 or smaller than the tangent of p(s) in the point s = d/2:

‘ [CM[—d/Z,d/Z]Z], (0)| >d/2.

We find that

P{N(@)} < 2P{ sup (Z(s) + ng> > o} +2P {' [CM{_a/2.4/92] (0)’ > d/2} . (4.3.9)

Is|>d/2

By Lemma 4.3.2, the first term on the right hand side of (4.3.9) is equal to

QP{ sup (W(s) - %82> > 0} < 2Ce /2088,

s|>d/2

By property 7 of Lemma 4.2.1 the second term on the right hand side of (4.3.9) is bounded by

s€ER

2P {Sup (W(s) — &%) + 1 — min{W (1), W(~1)} > d/2}

<2P {sug (W(s)—s*) > d/4} + 2P {1 — min{W (1), W(-1)} > d/4}.

According to Lemma 4.3.3, the first term is bounded by C(1+dY/2/2)e~4"*/64, Property (4.3.5)
implies that the second term on the right hand side is bounded by

2P {W(1) < 1 —d/4} + 2P {W (1) < 1 — d/4} < e~ 101-4/0"
This proves the lemma. [}

Likewise we will have to deal with the difference between concave majorants of F, on
intervals [t — dn='/3,t + dn='/3] and on [0, 1], as well as with the difference between concave
majorants of the Brownian approximation of F,. To this end define Ff = F, and let F¥ be
its Brownian approximation defined by

EY(t) = F(t) + n \2W,(F(t)), telo,1], (4.3.10)

where W, is defined in (4.3.2). For t € [0,1] and d > 0 let I,,,(d) = [t — dn~Y/3,t +dn~'/3], and
for J = E, W define the event

N(d) = {[CMpy FJ](t + sn™'/%) = [CMy,, @ EJ)(t + sn~Y2), for s = +d/2}.  (4.3.11)

The following lemma ensures that the value of the two concave majorants of F coincide at
t & 2dn~'/® with high probability.
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Lemma 4.3.5 Lett € (0,1) and d > 0 be such that 0 < t—n~'/3d < t+n"3d < 1. Moreover,
suppose that for €, = } inf | f!ln~1d,

FQ) < ft+n73d) — e, < f(t —nPd) + €, < f(0).

Then, for any distribution function F satisfying condition (A), there exist a constant Cy > 0,
such that
P {N}(d)} < 8exp (—Cad®),

where Cy does not depend on d, t and n.

Proof: For J = E, W define f7 as the left-derivative of CMy .y F)Y. Define

Ul(a) = arg[lélftX{ J(t)—at} and V)(a)=n'*(U](a) - 9(a)),

where g denotes the inverse of f. The process U is related to fn’ by the relation
f(t) < a <= UJ(a) < t with probability one. (4.3.12)

Suppose that the concave majorants of F on the intervals [0,1] and [t — dn=%/3,t + dn='/%]
differ at ¢t —dn~'/3/2. A simple picture shows that in that case there cannot be point of jump of
7 between t — dn='/3 and t — dn~1/3/2, which implies that fJ(t — dn~1/3) < f(t —dn=1/3/2).

Similarly, if the concave majorants of F on the intervals [0, 1] and [t — dn~Y/3, ¢ +dn~1/3] differ
at t +dn=1/3/2, then fJ(t+dn~'/3) < fJ(t + dn~%/3/2). Hence

P{Ny(d)} < P {f,f (t—n"'d) < fl(t - n‘1/3d/2)} (4.3.13)
+P { Ft+n13d) > (¢ + n-1/3d/2)} :

Consider the first probability on the right hand side of (4.3.13). Then with s = t — n~'/3d and
z = d/f2, we have

P{f(t-n"d) < flt - n"Pd/2)}

= P{florn 2 o)

=P { (f,{(s +nV3) - f(s+ n‘1/3z)) - (f;‘.{(g) - f(s)) > f(s) = f(s+ ,n~1/3z)}

< P{(f,f(s +n7Y3) — f(s+ 7;"/3;5)) _ ( I (s) — f(s)) > n~ Vg inf |f'|}

< P{fl(s+n7) = fls +n7P2) 2 e} + P{fl(s) = fl5) < —en} - (4.3.14)
By using (4.3.12), the first probability on the right hand side of (4.3.14) is equal to

P {U,{ (f(s+ n~3) + €) > 5+ n‘l/aa:}
=P{V! (f(s+anP) + &) = n'B (s +n Pz — g(f(s + an ) + €0)) }
> P{V;! (f(s +an7%) + €,) > n'e, inf |¢|}

_ Yy inf]f’|d}
_P{Vn‘] (fs+azn ') +e,) > Tsup IS
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Since f(s+xn™13) + €, = f(t —dn=13/2) +¢, € [f(1), £(0)], it follows from Theorems 2.1 and
3.1 in GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA (1999) that

L inf | f'|d
J n=1/3 > e
p{V,l (f(s+an7?) +€,) > Tsup ||

for some constant C, > 0, not depending on n, t and d. The second probability on the right
hand side of (4.3.14) can be bounded similarly,

} < 2e~ 2 (4.3.15)

P{fl(s) = f(s) < —en} < 20700

Together with (4.3.15) we conclude that the probability of the first event on the right hand side
of (4.3.13) can be bounded as follows

P{fltt—n"0d) 2 fl(t = 0" Pd/2) } < om0
The probability of the second event on the right hand side of (4.3.13) can be bounded similarly,

by taking s = t + n~/%d/2 and x = d/2 and using the same argument as above. This proves
the lemma. [ ]

4.4 Process convergence

For ¢ € (0,1) fixed and ¢ + co(t)sn~!/? € (0,1), define

Cut(8) = 1 (D) Ap(t + ca(t)sn™1/3), (4.4.1)
e THOIA 47\
a(t) = (2f2(t)) and c(t) = (W) . (4.4.2)

Define (y(s) = 0 for t + co(t)sn~*/3 ¢ (0,1). The following theorem states that the process (e
converges to the process ¢ on D(RR).

Theorem 4.4.1 Let f be decreasing with support on [0,1]. Suppose that f is continuous
differentiable on [0, 1] and satisfies

(A) 0 < inf |f(t)] < sup |f'(t)| < co.
tel0,1] te[0,1]

Let the processes ¢ and (,,; be defined as in (4.1.3) and (4.4.1). Then the process {(.(s) : s € R}
converges in distribution to the process {{(s) : s € R} in D(IR), the space of cadlag functions
of IR.

Proof: Similar to the proof of Theorem 4.3.1 it is enough to show that for any compact sct
K C R, the process {Gu(s) : s € K} converges in distribution to the process {((s) : s € K}
on D(K). Note that for this, it suffices to show that the process {4,(t + sn~'/3) : s € K}
converges in distribution to the process {{DrZ(s) : s € K}, where

2s) = W(F(#)s) + 31 (615" (4.4.3)
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This follows from the fact that by Brownian scaling c; () Zi(ca(t)s) £ Z(s) = W (s) — s*.
Let t € (0,1) fixed, and let I, = [—tr!/3, (1 — t)n'/3]. Write En.(s) = n?3F,(t + sn~1/3),
for s € I;;. Then by definition

An(t +sn713) = Dy, Epn] (8) for s € L.

Now take K fixed. For the processes {[Dy,,En|(s) : s € K} and {[DrZ(s) : s € K}, we must
show that for any g : D(K) — IR bounded and continuous:

|Eg (D1, Ent) — Eg (DrZ:)| — 0.

Let € > 0 and let I = [—d, d] be an interval, where according to Lemmas 4.3.4 and 4.3.5, d > 0
is chosen sufficiently large such that K C [—d/2,d/2], and such that

P(N@)) <e and P(NE(d))<e, (4.4.4)

where N(d) and NE(d) are defined in (4.3.8) and (4.3.11). Let n be sufficiently large, such
that K C [—d/2,d/2] ¢ I C I,;. For g : D(K) — IR bounded and continuous, and processes
{Dr1,.Eni(s) : s € K}, {[DrZ:](s) : s € K}, and {[D;Z,](s) : s € K}, we have

|Eg (D, Ent) — Eg(DrZ))| < |Eg(Dp, En) — Eg(D1Ey)| (4.4.5)
+ |Eg (D]Ent) - Eg (D[Zg)l
+|Eg(D1Z:) — Eg(DrZ:)| -
For the first term on the right hand side of (4.4.5) we have that
|Eg (D1, Ent) — Eg (D1 Eny)|

< 2sup|g| - P{Dy,,Ent # D1 Ey; on [-d/2,d/2]}

< 2sup|g| - P{[Dr1,,Ent)(s) # [D1En](s) for s = —d/2 or s = d/2}

= 2sup|g| - P{[CMy,,Ens](s) # [CM1E](s) for s = —d/2 or s = d/2}.
Suppose that [CMy,, E.](s) # [CMjEn](s). This means that the concave majorants of F,

itself on the intervals [0, 1] and I(d) = [t — dn~1/3,t + dn~1/3] differ at t + sn™'/3. Hence the
probability on the right hand side above can be bounded as follows:

P{[CMy,,E(s) # [CM;En](s) for s = —~d/2 or s = d/2} < P(NE(d)°).
According to (4.4.4), this yields
|Eg (D1, Ent) — Eg(DrEn)| < 2suplg| - e. (4.4.6)
Similarly, application of property 8 of Lemma 4.2.1 gives

|Eg(D1Z:) — Eg (DrZ:)| 2sup|g|- P{D;Z; # DrZ; on K}

2sup |g| - P {D;Z; # DrZ; on [-d/2,d/2]}
2sup|g| - P(N(d)°).

INIA A

Once more (4.4.4) yields
|Eg(D1Z;) — Eq(DrZ;)| < 2sup|g| - €. (4.4.7)
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In order to bound the second term on the right hand side of (4.4.5) define
Zn(s) = n*3 (Fu(t+ sn7'%) — Fo(t) — (F(t +sn7'3) — F(1))) + %f'(t)sz.
It follows from Lemma 4.3.1, that the process {Z.(s) : s € I} converges in distribution to
the process {Z(s) : s € I}. Because according to property 5 of Lemma 4.2.1, the mapping
Dy : D(I) — D(I) is continuous, this means that
|Eh (DyZy) — ER(D1Zy)] — 0,
for any h : D(I) — IR bounded and continuous. Note that we can also write
Eni(s) = Zu(s) + P, () + f(£)sn'”* + Ru(s),

where
Rou(s) = n?3 {F(t +sn™V3) — F(t) — f(t)sn™3 — %f’(t)szn‘w3 .

Note that for some |6 — t| < n~1/3|s|, with s € I, we have

Rua(s) = 111(0) = J'(0)1s" = 0,

uniformly for s € I, using that f’ is continuous. By continuity of the mapping D; together with
property 2 of Lemma 4.2.1, it then follows that on I:

D1 Zyn = Dy (Eu — Ryt) = DiEpe + 0(1),

where the o(1)-term is uniform for s € I. We conclude that for any h : D(I) — IR bounded
and continuous, and processes {[Dy,,En:|(s) : s € I'} and {[D;Z,)(s) : s € I},

|ER (D) Ep) — ER (D1 Z,)] — 0. (4.4.8)

Now let mx : D(I) — D(K) be defined as the restriction of an element of D(I) to the set
K. Since for any g : D(K) — IR bounded and continuous the composition h = g o wx is also
bounded and continuous, (4.4.8) implies that for ¢ : D(K) — IR bounded and continuous, and
processes {[Dy,, E](s) : s € K} and {[D;Z](s) : s € K},

|Eg(D;Ew) — Eg(D1Z:)| — 0. (4.4.9)

Putting together (4.4.6), (4.4.7), (4.4.9) and (4.4.5) proves the theorem. [

4.5 Convergence of L,-functionals

To obtain asymptotic normality of fol An(t)*g(t) dt, we will approximate the process A, =
n?3[Dy 1) F,] by a Brownian version. We will need slightly stronger conditions of f. In addi-
tion to the conditions imposed in Theorem 4.4.1 we will assume that f is twice continuously
differentiable satisfying
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(B) sup [f"(t)] < oo.
te(0,1]

Let FV be defined as in (4.3.10), and let
AV (t) = n*P[Dy y FY (). (4.5.1)

The next lemma shows that for J = E, W, a properly scaled version of F;/ can be approximated
by the process

You(s) = W, (n1/3 (F(t+n3) — F(t))) + % f'(t)s?, for —o0 < s < o0. (4.5.2)

plus linear term, where W, is defined in (4.3.2).

Lemma 4.5.1 Suppose that f satisfies conditions (A) and (B). Let F¥ = F,, and let F¥ be
defined as in (4.3.10). Then fort € (0,1) fixed, J = E,W and s € (—tn*/3,(1 - t)n'/3):

n?PEI(t +n73s) = You(s) + L (s) + R],(s),
where Yy is defined in (4.5.2), LZ,(s) is linear in s, and where for all k > 1,

E sup |Rl(s)|" = O(n*3(logn)*),

ls|<iog n
uniformly in t € (0,1).
Proof: Taylor expansion together with (4.3.10) and (4.3.2) yields that
nBEY (t + nY3s) = Yyu(s) + L% (s) + R% (s),
with Y, as defined in (4.5.2), L% (s) is linear in s:
L¥(s) = n*3F(t) + n/W,(F(t)) + n'/3f(t)s,
and RY,(s) = In=13 f"(6,)s%, for some |0; — t| < n~1/3|s|. Similarly

nBEEt 4 n13s) = nPEY(t4+n13%)
+n'/S {Eq(t + n"%s) — B,(F(t + n™3s))}

—nt/S¢, {F(t) + fit)n Y35+ %f’(@g)n_z/352}
Yu(s) + Lrlft(s) + th(s)7

where L (s) = L¥ (s) — n'/%¢, F(t) — n='/8¢, f(t)s is linear in s, and
RE(s) = Ry (s) — n' {E,(t +n7'3s) = Bo(F(t +n"'s))} - En_'/?‘fnf'(t‘)z)sz,

for some |8, — t| < n~Y/3|s|. It follows immediately from condition (B) that:

sup 'RZ(s)lk < Cin 3 (log ). (4.5.3)

Js|<logn
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Note that

1 _
sup |Ry(s)| < sup [Ry(s)] + /%S, + 5 sup|f'|n~"(log n)?|&,

[sl<log n ls|<logn

where S, = sup,e g |En(s) — B, (F(s))|. From KomLos, MAJOR AND TUsSNADY (1975) we have
that
P{S,>n""*(Clogn+1)} < Ke™*,

for positive constants C, K, and A. This implies that for all £ > 1,
ES® = O(n~*?(logn)¥). (4.5.4)
Next use that for all a,b > 0and k> 1
(a + bk < 2F(ak +b%). (4.5.5)
Then from condition (A) together with (4.5.4) and (4.5.3) we find that

E sup ‘th(s)\k = 0 (n_k/s(log n)*) +0 (n_k/3(log n)¥) + 0 (n‘k/Q(log n)Zk)

|s|<logn

@ (n‘k/3(log n)*).
This proves the lemma. [ ]

The next step is to approximate the moments of AJ(¢) by corresponding moments of the
concave majorant of the process

Yi(s) = W(nl/3 (F(t+n"3s) - F(t))) + %f’(t)s:l7 for — o0 < 5 < 00. (4.5.6)

Lemma 4.5.2 Suppose that f satisfies conditions (A) and (B). For t € (0,1) fixed let Y; be
defined as in (4.5.6). Let AE(t) = A,(t) and AY(t) be defincd in (4.1.1) and (4.5.1). Then for
allk> 1, and for J=E, W

EAi(t)k =E [D[— logn,logn]yt] (O)k + 0('”71/6)7
uniformly for t € (0,1).

Proof: Let I, = [t — n~/*logn,t + n~*3logn] and note that for J = E,W on the event
NZi(logn), as defined in (4.3.11), we have

[CMgF)] (t —nlogn) > [CMgF], (t)

Y
fe)
=
5
e

Hence by property 8 of Lemma 4.2.1 we have

AL (O togny = P D1 N8 ng, togmy  for J = E,W. (4.5.7)
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By definition |AZ(¢)| < 2n%? and

$€(0,1) s€[0,1]

sup |AY(s)| < 2n?/® (1 +n% sup |W,,(s)|) ,

so that
E |‘A1(t)’c - nzkla[DlntFr{](t)kl lN"t(logn)C

n

k
< 4n2k/3E (1 +n—1/2 s]i:)pll |W"(S)|> 1N,{,(logn)°
s€(0,

s€[0,1]

o) 1/2
S 4n2k/3 {E (1 + ’I’l_l/2 sup |Wn(s)|) } {P (IV;).’t(lOgn)c)}1/2 :

Next use (4.5.5) together with the fact that all moments of sup,cpg 1) |Wn(s)| are finite. Then it
follows from Lemma 4.3.5 that

EA,'{(t)k = n2k/3E[D1ntFr{](t)k +E (AZ(t)k - n2k/3[D1mFr{ (t)k) lN,{!(logn)c
— n?k/aE[DI zFﬁ]] (t)lc + n2k/30(6—§02(logn)3)’
uniformly for ¢ € (0,1). According to Lemma 4.5.1, for s € [—logn,logn]:
n2/3F;‘I(t + n—l/as) = Yue(s) + L'{t(s) + Ry, (s),

where Y, has the same distribution as the process Y; defined in (4.5.6) and LZ,(s) is linear in
s. Hence by property 2 of Lemma 4.2.1

n2/3 [D[MFnJ] (t) = [D[ﬁ logn,logn](ynt + Ly{t + Rit)} (0)

[Di-togntog ) (Yne + Ri)] (0)
= [D[— logn,log'n]Y;'Lt:l (0) + Ant;

where
A"'t = [D[“ l"E"leS"](Y"t + R:It)] (0) - [D[— logn,logn]yn.t] (0)
We find that

BA[()" = E [Di- gniogmYr] (0)* + e + 20 (e=1ca008n") (4.5.8)
where, by application of the mean value theorem,
k
‘fntl S E ‘([D[—logn,logn]ynt] (0) + Ant) - [D[— logn,logn]Ynt] (O)k‘

IcE|0nt|’”“1|Am|
k{E0.* 2} {B|AuP}?, (4.5.9)

Il

IA

With [0ne — [Di- togn,iogn) Ynt] (0)] < |Ane. Since Yn £ Y,, by application of (4.5.5)

B0, |2 < 4%-2 (E sup |Yi(s)|*2 + E[Ant|2k_2) , (4.5.10)

|sj<logn
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where according to property 5 of Lemma 4.2.1 together with Lemma 4.5.1, for all k > 1

E|Au|* < 2XE sup |RL(s)|F = O (n*3(logn)™), (4.5.11)

|s]<log n

uniformly in ¢ € (0,1). On the other hand, for |s| < logn, there exist constants Cs, Cyq > 0 that
only depend on f, such that

sup |Yi(s)| < sup |W(s)| + Ci(logn)? < (Cslog n)/? sup |W(s)| + Ci(logn)?.
ls<1

[s|<logn |$|€C3 log n
Because all moments of SUpyy<, W (s)| are finite, from (4.5.10) and (4.5.11) we conclude that
Bl6u 2 = O((log )" ~) + O(n~ /3 (log n)*-").

Hence from (4.5.9) and (4.5.11), we find that €, = O(n"'/3(logn)?***+!). Together with (4.5.8)
this implies that

EAI(t)* = E[Di ogniognYar) (0)F + O(n P (log n)?+1) 4+ n?/30 (e~ 3Ca008n)?
n [~ log n,log ]
E [D[—logn,logn]y;] (O)k + 0(71,—1/6)’

uniformly for ¢ € (0,1). [

By uniform continuity of Brownian motion on compacta, the process Y; is close to the
process Z;(s) = W(f(t)s) + 3 f/(t)s?. Hence the next step is to approximate the value of the
concave majorant of Y; at zero by the corresponding value of Z;. In view of Theorem 4.5.1 this
difference must be of smaller order than n~Y/¢. Unfortunately, it does not suffice to bound the
difference of the concave majorants by

sup
[s|<logm

il

W<n1/3 (F(t+n7"3%s) — F(t)) ) ~W(i(®)s)

which is of order O(n~'/%logn) according to the properties of the modulus of continuity for
Brownian motion. However, as a consequence of Lemma 4.5.3 the two concave majorants at
zero are sufficiently close, as is shown in the next lemma.

Lemma 4.5.3 Let g be a function on an interval B C IR. Let 0 € B° and let ¢ : R — R be
invertible with ¢(0) = 0. Let supy g < oo and suppose there cxists an a € [0,1/2] such that

0]
t

1-a< 8 <1+a, (4.5.12)

for allt € B. Then

[CMy 109 2 9] 0) ~ [CMagl (0)] < da {supg ~ [OMng] 0)
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Proof: Consider the function h(t) = g(t) — supg g, so that h( ) <0. Let @ <0 < b, then with
property (4.5.12), t and ¢(f) have the same sign. Hence, ¢~!(a) < 0 < ¢~1(b). This yields the
following inequality

1+a h(a)b— h(b)a < h(a)¢~1(b) — h(b)¢p~(a) < 1—a h(a)b— h(b)a
l-a  b—a ¢ 1(b)—¢(a) l+a  b—a

(4.5.13)

Let [n,72] C B be the segment of CMph that contains zero, and denote ¢; = ¢~1(r;), for
i = 1,2. Similarly, let [£;,&)] C ¢~!(B) be the segment of CM- 1(gy(h o ¢) that contains zero,
and denote z; = ¢(&;), for ¢ = 1,2. Consider the line between (z;, h(x1)) and (2, h(z3)). Since
[x1, z2] C B, the intercept at zero of this line must be below [CMpgh](0):

h(xy)xy — h(wg); < [CMph)(0) = h(m)T — h(T‘l)Tl'
T2 — Xy To—T

(4.5.14)

Similarly, consider the line between (¢, (ho¢)(t1)) and (ta, (ko ¢)(t2)). Since [t1, ) C ¢~Y(B),
the intercept at zero of this line must be below [CM-1(5)(h 0 ¢)](0):

(ho¢)(t1)ta — (ho¢)(t2)ty (ho ¢)(€1)€2 — (ho d)(&2)6
ta— 1 &L—& ’

< [CMy-1(m)(h 0 $))(0) =

or equivalently,

h(n)¢~ (r2) — h(m2)o™!
) — ¢7Hm)

Together with (4.5.14) and (4.5.13), this implies that

li_"‘_[CMBh]( 0) h(ﬁ)z:gz; — Z(_le()Tf;l(Tl)

h(11)¢‘1($2) h(z2)¢ l(Wl)
¢~Hz2) — ¢~ Hz1)

™) < (M1 (0 ))(0) =

IA

< [CMy-ri)(ho ¢)](0)
< l-a h(zy)xg — h(xe)m: < 1-— a[CMBh](O).
1+ To — ) 1+«
Now use that (1-«)/(1+¢a) > 1—4a and (1+a)/(1 - a) < 1+4a, for a € [0,1/2] and apply
property 2 of Lemma 4.2.1 to the function g(t) = h(t) + supg g. ]

Lemma 4.5.4 Suppose that f satisfies conditions (A) and (B). Let t € (0,1) and let ¢ be
defined as in (4.1.3). Let AZ(t) = A,(t) and AY(t) be defined in (4.1.1) and (4.5.1). Then for
allk > 1, and for J = E, W,

s = (HONT ook 4 ofn-1e

uniformly in t € (0,1).

Proof: For ¢ € (0,1) fixed let Y; and Z, be defined as in (4.5.6) and (4.4.3). Define the interval

L nl/3 (F(t — -3 logn) — F(t)) nl/3 (F(t 4+ n-/3 logn) — F(t))
nt ™ f(t) ’ f(t) ’
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and the mapping ‘
n'A(F(t+n""3s) = F(t))

ft)

Then [-logn,logn] = gb,‘,t‘(J,,t), and there exists constant C; > 0 only depending on f, such
that for all s € [—logn, logn],

¢nt(3) =

. S d)nl(s)
S

l—« <1+ ay,

where a, = Cyn~Y3logn. By definition of Z; and Y;, we have

(o au)(s) = vits)+ 3105 (24 - )

52

According to property 5 of Lemma 4.2.1, there exists constant C; > 0 only depending on f,
such that

I[D[— logn,logn]yt](o) - [D[— lugn,lugn](Zl o (bnt)](o)' < C27L71/3(10g 71)3- (4515)

Now apply Lemma 4.5.3 with g = Z;, ¢ = ¢, @ = @, and B = J,,. This yields that

HD[— logn,]ogn](Zt © ¢nr)](0) - [D/er](O)[ < 8an Sgg |Zt(s)|

Together with (4.5.15) we conclude that there exists a constant C' > 0 only depending on f,
such that

|[D= togmytog m Yo (0) — (D, Z)(0)] < Cn~logn ((Iog n)? + sup | Z:(s) ) . (4.5.16)
s€

Similar to the proof of Lemma 4.5.2, this implies that
E[D[- 1ognogn Y1) (0)" = E[Dy, Zi](0)* + €u, (4.5.17)
where |eq| < k { E|6n|*2} " {E|Aw[2}/?, with
Apt = [Di-1ogn,logn Ye](0) — [Dy,, Z:](0),

and |0n: — [D(=1ogn,iogn Y2)(0)] < |Ant|. Note that with ¢ (t) and cs(t) as defined in (4.4.2), by
Brownian scaling

a() Zy(ex(t)s) £ Z(s). (4.5.18)
Hence, by means of Lemma 4.3.3 it follows that for all & > 1,
k

E (sup |zt<s>|)k <OEB (§3£|Z<s>|) <0,

s€R

for a constant C; > 0 only depending on f. From (4.5.16) we conclude that for all & > 1

E|Au|F = O3 (log n)). (4.5.19)
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Similar to the proof of Lemma 4.5.2, using an inequality similar to (4.5.10) together with
(4.5.19), we find that
Efn|**~* = O((log n)*~) + O(n~ /% (log n)™**).
Together with (4.5.19) this implies that €,; = O(n~'/3(log n)**1), so that from (4.5.17)
E[D[— logn,lognlyt](o)k = E[DJneZt](O)k + 0(n'1/3(10g n)2k+l)-

Together with Lemma 4.5.2 and scaling property (4.5.18), we find that

EA](t)* = c1(t)™E [DrZ] (0)F + c1(t) *E ([D1,, 2] (0)* — [DrZ] (0)¥) + o(n~V/%), (4.5.20)

where In; = co(t)"'Jn. Let M > 0 be a constant, only depending on f, such that I, C
[~Mlogn, Mlogn]. According to property 8 of Lemma 4.2.1, on the event N(2M logn), as
defined in (4.3.8), we have [Dyr,,Z] (0)* = [DrZ] (0)*. Hence

|E (ID1,.2] (0 — [DrZ] (0)*)| < E|[Ds,,2](0)* — [DRZ] (0)*] Ln(zattognye

k
ok E (sup |Z(s) I) LN@M1ogn)e
seER

IA

IA

kY 172
2"*1{E (jggIZ(S)l) } {P(N(2Mlogn)*)}'/*.

Since Lemma 4.3.3 yields that E(sup|Z|)* < oo, it follows from Lemma 4.3.4 that
E (D, 2] (0)* — [DrZ] (0)*) = O((logn)' /e~ 30208 = o(n1/5).
Together with (4.5.20) and the fact that { = DrZ this proves the lemma. ]

A direct consequence of Lemma 4.5.4 is that for all k& > 1, the difference between the
processes A, (t)* and A% (t)* is of smaller order than n=1/6.

Lemma 4.5.5 Suppose that f satisfies conditions (A) and (B). Let AF = A, and AY be
defined by (4.1.1) and (4.5.1). Then for all k > 1

A lAf(t)k — AZV(t)kl dt = Op(nvl/ﬁ).

Proof: By Markov’s inequality it suffices to prove that E |AE(t)¥ — AW (t)¥] = o(n~"/%) uni-
formly int e (0,1). Let I, = [t —n~Y3logn,t + n~'3logn] and let K,, = NE(logn) N

N¥ (logn), where for J = E, W, the event N,(logn) is defined in (4.3.11). Then according to
(4.5.7):

E|A7 () - AV W) = n™PE|[Dy, F))* - [Dr B 1) 1k, (4.5.21)
+E|AE(t)F — AY (t)¥| 1ke,.

We first bound the second term on the right hand side of (4.5.21). We have that

E|AZ ()" — AV (t)*| 1ks, < EAE(t)*1ke, + EAY (t)1xc,
{E (t)2k}1/2 (P(KE t)}1/2+ {EAW 2k}1/2 {P(K,) }1/2

IA
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where P(K¢,) < 16e~C2(oe™® ypiformly in ¢ € (0,1), according to Lemma 4.3.5. Since from
Lemma 4.5.4 we know that FA!(t)* are bounded uniformly in n and ¢ € (0, 1), we conclude
that

E|A7(0) = AV (4] 1xz, = O(e 228, (4.5.22)
uniformly in ¢t € (0,1).
To bound the first term in (4.5.21), apply the mean value theorem to write
n* | [Dy, FENO* = (D1 FY (1) 11\,"
< k|Gl 0 | D FEI(E) = (D B 1(1)] L
S k(AT + AV O ) ¥ D FA®) - DR EFNG]. (45.23)

Note that
(D1, F)(8) = [Di-tognsognl il (0) - for J = B W,
where F(s) = F(t + n~/3s), so that
0 |11 FENE) ~ (D1, FX 10| = 12 | 1Dt g FENO) ~ 1D g E1(0)]
Taylor expansion together with (4.3.10) and (4.3.2) yields that
FE(t+n3s) = FV(t+nBs)+n 2 {E(t+n"3) — B(F(t + n7/3))}

—n Y%, {F(t) + f(t)n~V3s + %f’(f))n'z/asz} .

Since F(t)+ f(t)n~/3s is linear in s, first applying property 2 of Lemma 4.2.1 and then property
5 of Lemma 4.2.1 yields that the right hand side of (4.5.23) can be bounded by

K (A0 + A @) (705, + g sup o8l

. 2y 1/2
<k{E (Af(t)'*-l+A§Y<t>’°-l)2}l”{E (s + g sup =2 og i) } ,

where S, = sup,cp | En(s) — Bn(F(s))|. From Lemma 4.5.4 together with (4.5.5), it follows that
the first expectation is bounded uniformly for ¢ € (0,1). Similarly, condition (A) together with
(4.5.4) and (4.5.5), yields that the second expectation is of the order O(n~'/3logn). Together
with (4.5.21) and (4.5.22) this proves the lemma. ]

We will need some independence structure for the process {AW(¢) : t € [0,1]}. The fact
that Brownian motion has independent increments will ensure that the process A% is mixing,
as is stated in the next lemma.

Lemma 4.5.6 Suppose that f satisfies conditions (A) and (B). The process {A¥(¢) : t € [0,1]}
is strong mixing process with mixing function

an(d) = Cre~Cond,
where Cy > 0 and C5 > 0 only depend on f. More specifically, for d > 0,
sup |P(AN B) — P(A)P(B)| < au(d),

where the supremum is taken over all scts A € o{A)Y(s) : 0 < s < t} and B € a{AY (u) :
t+d<u<1}
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Proof: Let t € (0,1) arbitrary and take 0 < 5, < 53 <+ < sp=t<t+d=u Sup <-.- <
u; < 1. Consider events

Ey = {AV(s1) € By,..., A¥(sy) € B},

E, = {AY(wm)€Cy,....,A¥(w) e G},
for Borel sets By, ..., By and Cy,...,C; of R. Note that cylinder sets of the form E, and F,
generate the o-algebras o{AY (s) : 0 < s <t} and o{A% (u) : t + d < u < 1}, respectively. Let
UY be defined as in the proof of Lemma 4.3.5. Take M, = 1dn!/3 and define the events

E, = En{UN.,(F®)=UY(f¢)},
Ey = Exn{UN, (ft+d)=UY(ft+d)},

where similar to the definition of UY,

Uom,(a) =  argmax {F:V(.s) —as}.
nl/3{s—g(a)l <M,

L, it follows that the event E depends only on the increments of Brownian
motion before time F(t+n~'/3M,,) and the event E} depends only on the increments of Brownian
motion beyond time F(t + d — n"Y/°M,,). By definition of M, we have F(t + n'/3M,) <
F(t+d—-n"'3M,), so that E} and E, are independent. Therefore by means of Theorem 3.1
from GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA (1999),

By monotonicity of U

|P(E, N Ey) — P(Ey)P(Ey)|
<3P (Uph, (f(®)) # UY (F(1))) + 3P (Ulos, (F(t + d) # UY (£(t + d)))
<3P (n'BUY(f(t)) —t| > M,) + 3P (n'BU¥ (f(t + d)) — (¢t + d)| > M,,)
< 12¢7OM3

for some constant C > 0 that only depends on f. This proves the lemma. =

From Lemmas 4.5.5 and 4.5.4 it follows immediately that for proving asymptotic normality
of nl/6 fol (An(t)k — EAL(t)¥) g(t) dt, it suffices to prove that its Brownian version

TV = nl/s / l (AY ()% — EAY ()F) g(t) dt, (4.5.24)

is asymptotically normal. The proof runs along the lines of the proof of Theorem 4.1 in GROENE-
BOOM, HOOGHIEMSTRA AND LOPUHAA (1999) and needs two lemmas that bound covariances by
the mixing coefficient. The lemmas are analogous to Theorems 17.2.1 and 17.2.2 in IBRAGI-
MOV AND LINNIK (1971) and can be proven similarly, since stationarity is not essential in these
theorems.

Lemma 4.5.7 If X is measurable with respect to {c{A¥(s) : 0 < s < t} and Y is measurable
with respect to {o{AY (u) 1t +d <u <1} (d>0), and if | X| < C, and |Y| < C; a.s., then

|[E(XY) — E(X)E(Y)| < 4C,Chan(d).
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Lemma 4.5.8 If X is mcasurable with respect to {o{AY (s) : 0 < s <t} and Y is measurable
with respect to {a{AY (v) 1t +d < u < 1} (d > 0), and if for some é > 0,

E|X|* < ¢y and E|Y** <y,

then
|E(XY) — E(X)E(Y)| < Cs (an(d))”

where C; > 0 only depends on C5 and Cj.

We first derive the asymptotic variance of T/V. To this end we introduce the Brownian version
of the process (e defined in (4.4.1): t € (0,1) fixed and ¢ + co(t)sn™ /3 € (0, 1),

CWi(s) = e ()AY (¢ + ca(t)sn/3), (4.5.25)

where AY is defined in (4.5.1) and ¢;(t) and ¢,(t) are defined in (4.4.2). From Theorem 4.4.1
and Lemma 4.5.5 it follows immediately that the process

{¢¥(s) : s € R} — {¢(s) : s € R} in distribution. (4.5.26)

Furthermore, note that Lemma 4.5.4 implies that for every m = 1,2, ... there exists a constant
M > 0 such that EAY (t)* < M, uniformly in n = 1,2... and ¢t € (0,1). Hence it follows
from Markov’s 111equahty, that for all m = 1,2,... there exists a constant M’ > 0

7

PUCY (s)* > y} < ?

uniformly in n = 1,2..., ¢t € (0,1) and t + ca(t)sn~/® € (0,1). This guarantees uniform
integrability of the sequence ¥ (s)* for s,¢ and k fixed, so that together with (4.5.26) it implies
convergence of moments of (Cm (0)*, % (s)¥) to the corresponding moments of (¢(0)%, {(s)F).
This leads to the following lemma.

Lemma 4.5.9 Suppose that f satisfies conditions (A) and (B). Then for any function g that
is continuous on [0,1], and any k > 1,

1 1 2(2k+5)/3f t)(4k+l)/3 00
wr (e [ A otatar) — [T g [ vt s

Proof: We have with ¢!¥ as defined in (4.5.25),

var (nwﬁ / 1 A:y(t)kg(t)dz)

= 2111/1/ / cov (AW (1), AW (w)¥) g(t)g(u) dt du

( nl/3(1=1)/ca(t) A
- 2/ : / cov(C (0)F, ¢ (5))g(t)g(t + ealt)sn™%) it ds,
o a(t)?
by change of variables of integration u =t + ca(t)sn~1/3. As noted above for s and t fixed,

cov(Gay (0%, G (8)F) = cov(C(0)*,¢(5)").
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Lemma 4.5.4 implies that uniformly in n = 1,2,..., s and ¢, we have E|¢(% (0)]3* < Cj5 and
E|¢¥ (s)I** < Cy. Hence by Lemma 4.5.8, it follows that

cov(¢W (0)F, ¥ (s)%) < Csa (n‘1/3c2(t)s) 1/ < D, exp(—Dq|s[?),

where Dy, Dy > 0 do not depend on n,s and t. Substituting ¢;(t), cz(t) as defined in (4.4.2),
and using that g is uniformly bounded on [0, 1], it follows by dominated convergence that

1 ) 1 2(2Ic+5)/3f $)(4k+1)/3 oo )
var (nl/ﬁfo A,‘:V(t)kg(t)dw> —>/0 |f’(t)[((2’°)+2)/3 g(t)?dt/O cov(C(0)*,¢(s)¥ds. m

Theorem 4.5.1 Let f be decreasing with support on [0, 1]. Suppose that f is twice continu-
ously differentiable satisfying conditions (A) and (B). Let g be a continuous function on [0, 1]
and let A, by defined by (4.1.1). Then for all k > 1, with

1 ok/3 £(4\2k/3
4 = EC(0)* /0 317{;(;')7/39@) d,

nl/6 ( fol An(t)kg(t) dt — u) converges in distribution to a normal random variable with mean
zero and variance

_ 1 9(2k+5)/3 £ (1) (4k+1)/3 o0
o’ =/0 7 ) (@7 a(t)? dt/0 cov(((0),¢(s)) ds.

Proof: It suffices to prove the statement for TV as defined in (4.5.24). Define

Xat) & (A () — EAY (8)*) g(2).

Let

1
Ly=n""log’n, M,=n""logn, N,= [Ln + Mn] ’

where [z] denotes the integer part of z. We divide interval [0, 1] into blocks of alternating length

A; = [( = 1D(Ln+ M), (j — 1)(Ln + My) + La),
B; (G = V(Lo + Mp) + Ln, j(Ln + M,)],

where 1 < j < N,,. Now write TV = S, + S, + R,,, where

Nn

S = nl/GZ/ Xa(t)dt,
j=174;
Nn

S = 77,1/62/ X, (t)dt
j=17Bi

1
R, = nl/ﬁ/ X, (t) dt.
Ny (Ln+My)

According to Lemma 4.5.4 and the Cauchy-Schwarz inequality, for all s,t € (0,1),
E|Xu(s)Xa(t)] < C, (45.27)
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where C is uniform with respect to s,t and n. Together with a fact that length of the interval
of integration for R, is O(n=*/3(logn)®) this shows E|R,| — 0 and hence R, = o0,(1).

Next we show that contribution of integrals over small blocks is negligible. To this end
consider

N'l
E(S,)’ —nWZE(/ " t)dt) +n1/32/ / EXu(3)Xa(t) dsdt.
. By

it
We have that
|EX(8) X0 (8)] = lg(s)g(t)][cov( AW (s)F, AW (H)F)| < Dye”P2mtetl,

where Dy, Dy > 0 do not depend s, and n, using the fact that g in uniformly bounded on [0, 1]
together with Lemma 4.5.8. Moreover, for s € B; and t € B, we have |s — t| > n='/3(log n)®.
Since N, = O(n~3(log n)®) this implies that

1/32/ / EX,( t)ds dt
B;

i#]

< nMBNEMED e P2lesn)?” _,

Hence, using (4.5.27) we obtain
B(S,)? = O(n'AN,M2) + o(1) — 0,
so that the contribution of the small blocks is negligible.

Define N
Y, = 711/6/ X.(t)dt and o2 = var (Z Y,) ,
Aj

J=1

so that S|, = Z;V:"l Y; and 02 = var(S,). We have
L o u
Eep{ Sy, b = Yy
eXp{UnZ J} .Hexp{an ]}
Jn i iu A u
E Y.» — Fe — Y; 3 —Y;
exp{ Z } exp{anjg1 ]}Eexp{an k}

>

S 4(Nn - l)an( n)v

where the last inequality follows from Lemma 4.5.7. Observe that (N, — 1)a,(M,,) — 0, which
means that we can apply the Central Limit Theorem to independent copies of Y;. Asymptotic
normality of S/, follows if we can show that the independent copies of the Yj's satisfy the
Lindeberg condition, i.e., for all € > 0,

Nn
o Z EY}1{y;5c0n) — 0,
n .=

as n — co. Note that by the Markov inequality EY1{y;>c0,} < E|Yj[*/(e0,). Again using
the Cauchy-Schwarz inequality and uniform boundedness of the moments of | X, (¢)| we obtain

sup ElY;|P = n20(|4;]*) = O(n~*(log n)®).

1<j<Nn
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Hence N
1 2 1 3 _ -3,,-1/6 6
a—%;EYj Ly, >eom < aan;%%nmm = O(0;3n"Y5(log n)").
Note that

0% = var(8,) = var (T\V) +var(S, + Ra) = 2T, (S, + Rn).

Using the already obtained results E(S,)? = o(1) and ER? = o(1), together with the Cauchy-
Schwarz inequality, we conclude that

var(S. + R,) = E(S.)*+ ER? + 2E(S.R,) — 0,

and that according to the Lemma 4.5.9

ETY (S + R) < \/E(TW) var(St + Ra) — 0.

So we find that o2 = var(S,) = 0% + o(1), which implies

N,
1 n ) B
s z EY_jzl{m|>w"} =o(n YS(logn)®) - 0. m

n j=1




Chapter 5

Grenander estimator at the boundaries
of support

We investigate the behavior of the nonparametric maximum likelihood estimator f, for a de-
creasing density f near the boundaries of the support of f. It is shown that fn(n“") is consistent
for £(0), and its limiting distribution is obtained, where we need to distinguish between differ-
ent values of 0 < « < 1. Similar results are obtained for the upper endpoint of the support, in
the case it is finite. This yields consistent estimators for the values of f at the boundaries of
the support. The limit distribution of these estimators is established and their performance is
compared with the adjusted NPMLE of WooDROOFE AND SuN (1993).

5.1 Introduction

Let f be a non-increasing density on [0, co). The non-parametric maximum likelihood estimator
fa for f has been discovered by GRENANDER (1956). It is defined as the left derivative of
the concave majorant of the empirical distribution function F, constructed from a sample
Xi,..., X, from f.

PRAKASA RAO (1969) obtained the asymptotic pointwise behavior of f,. GROENEBOOM
(1985) provided an elegant proof of the same result, which can be formulated as follows,

14 (@) (@)l ™7 { fulwo) ~ f(mo) } — argmax {W(1) ~ 7}

for each 2y > 0, where W denotes standard two sided Brownian motion originating from zero.
In contrast, WoODROOFE AND SuN (1993) showed that fn is not consistent at zero. They
proposed a penalized maximum likelihood estimator f}: (0) and in SUN AND WOODROOFE (1996)
it was shown that

8 {720) - 10} — sup WO = HOIOF)

>0 t

where ¢ depends on the penalization.

The first distributional result for a global measure of deviation for fn was the convergence
of the Ly-distance ||f, — f|; in GROENEBOOM (1985) (see GROENEBOOM, HOOGHIEMSTRA AND
LOPUHAA (1999) for a rigorous proof). Here, the density f was assumed to have compact

107
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support, and surprisingly, the inconsistency of f, at the boundaries of the support did not
influence the behavior of || f, — f||;. Nevertheless, the inconsistency at the boundaries will have
an affect if one studies other global measures of deviation, such as the Li-distance, for k larger
than one, or the supremum distance.

In this paper we study the behavior of the Grenander estimator at the boundaries of the
support of f. We first consider a non-increasing density f on [0, 00) and investigate the behavior

f
° n? {f,,(n"“) - f('n"")} , (5.1.1)

where 0 < @ < 1, and 3 > 0 is chosen suitably in order to make (5.1.1) converge in distribution.
This will imply that f,(n=/3) is a consistent estimator for f(0) at rate n'/3 with a limiting
distribution that is some complicated functional of W. This estimator will be compared with the
penalized maximum likelihood estimator from SUN AND WOODROOFE (1996). For non-increasing
f with compact support, say [0,1], we also investigate the behavior near one. Similarly, this
will lead to a consistent estimator for f(1). Moreover, the results on the behavior of f. at the
boundaries of [0, 1] allows an adequate treatment of the L-distance between f, and f. It turns
out that for & > 2.5, the inconsistency of f, starts to have an affect on the behavior of || f, — f]|x
(see KULIKOV AND LOPUHAA (2002)).

In Section 5.2 we give a brief outline of our approach for studying differences such as (5.1.1),
and prove some preliminary results for the argmax functional. Section 5.3 is devoted to the
behavior of f, near zero. Section 5.4 deals with the behavior of fn near the boundary at the
other end of the support for a density f on [0,1]. In Section 5.5 we compare our estimator
fa (n~%/3) with the penalized maximum likelihood estimator from SUuN AND WOODROOFE (1996).

5.2 Preliminaries

Instead of studying the process {f,() : t € [0,1]} itself, we will use the more tractable inverse
process {Uyn(a) : a € [0, f(0)]}, where U,(a) is defined as the last time that the process F,(t)~at
attains its maximum:
U,(a) = argmax { F,,(t) — at} .
te[0,00)
Its relation with f, is as follows: with probability one

falz) <a & Uyla) <o (5.2.1)

Let us first describe the line of reasoning used to prove convergence in distribution of (5.1.1).
We illustrate things for the case 0 < a@ < 1/3. It turns out that in this case the proper choice
for 3 is 1/3. Hence, we will consider events of the following type

n'/3 {f,,(n_“) - f(n_")} <.
According to relation (5.2.1), this event is equivalent with
Un (f(n™*) +zn ') —n > < 0.
The left hand is the argmax of the process

Zn(t) = Fp(t +n7%) — f(n~%)t — xtn~/3.
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With suitable scaling, the process Z, converges in distribution to some Gaussian process Z.
The next step is to use an argmax version of the continuous mapping theorem from KiMm AND
PoLLARD (1990). The version that suffices for our purposes, is stated below for further reference.

Theorem 5.2.1 Let {Z(t) : t € IR} be a continuous random process satisfying
(i) Z has a unique maximum with probability one,
(ii) Z(t) — —o0, as |t| — oo, with probability one.

Let {Z,(t) : t € IR} be a sequence of random processes satisfying

(iii) argmax,cp Zn(t) = Op(1), as n — oo.

If Z,, converges in distribution to Z, in the topology of uniform convergence on compacta, then
argmax,. g Zn(t) converges in distribution to argmax,cp Z(t).

Application of this theorem yields that U, (f (n=) + an~Y %), properly scaled, convergences in
distribution to the argmax of a Gaussian process. Convergence of (5.1.1) then follows from
another application of (5.2.1).

The main difficulty in verifying the conditions of Theorem 5.2.1, is showing that (iii) holds.
In the process of proving condition (iii) we will frequently use the following lemma, which
enables us to suitably bound the argmax from above.

Lemma 5.2.1 Let f and g be continuous functions on K C R.
(i} Suppose that g is non-increasing. Then argmax,., {f(z) + g(z)} < argmax g f(z).

(ii) Let C > 0 and suppose that for all s,t € K, such thatt—s > C, we have that g(t) < g(s).
Then argmax,.x {f(z) + g(x)} < C + argmax, i f(z).

Proof: Let zp = argmax, ., f(z) < oo. If &y = oo, there is nothing left to prove, therefore
assume that zq < oco.

(i) By definition of zp and the fact that g is non-increasing, for z > x¢, we must have
f(z) + g(z) < f(za) + g(z0). Hence, we must have

argmax { f(z) + g(z)} < o = argmax f(x).
zeK zeK

This proves (i).

(il) If (C + xg,00) N K = §, the statement is trivially true, so only consider the case
(C + x9,00) N K # @. Then by defintion f(z) < f(zg), for all z € (C + xg,00) N K, and
by the property of g, we also have g(z) < g(zo), for z € (C + z9,00) N K. This implies
f(@) + g(z) < f(zo) + g(xy), for all z € (C + xp,00) N K. Hence, we must have

argmax { f(x) + g(z)} < C + z9 = C + argmax f(z).
€K reK

This proves the lemma. ]

In studying processes like Z,, we will use a Brownian approximation similar to one used in
in GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA (1999). Let E,, denote the empirical process
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Vn(F, — F). For n > 1, let B, be versions of the Brownian bridge constructed on the same
probability space as the uniform empirical process E,oF ! via the Hungarian embedding, where

sup] |En(t) — Bo(F(t)] = Op(n~/?1og n) (5.2.2)

t€(0,1
(see KoMLOS, MAJOR AND TusNADY (1975)). Define versions W,, of Brownian motion by
W’n(t) = Bﬂ(t) + gnta t € [Oa 1]7

where &, is standard normal random variable independent of B,. This means that we can
represent B, by By(t) 4 Wa(t) — tW,(1).

5.3 Behavior near zero

We first consider the case that f is a non-increasing density on [0, 00) satisfying
(C1) 0 < £(0) = lim,p f(x) < oo.
(C2) f'is right continuous at zero, such that 0 < |f'(0)| < sup,q |f'(s)] < oc.

The latter condition will ensure that F(t) — f(0)¢ is suitably bounded, as is shown in the
following lemma.

Lemma 5.3.1 Suppose that f satisfies (C2). Then there exists a value ty > 0, such that
infocs<t, |f(s)| > 0, and for any 0 < ¢ < 34,

—}infososs, [f'()I2, 0 <t < B,
F(c+t) = F(c) - f(e)t <
—itoinfocecr, [f'(s)|t, t > §to.

Proof: The existence of ty > 0 follows directly from condition (C2). For 0 < t < %to, the
inequality is a direct consequence of a Taylor expansion. For ¢t > %to,

F(c+1t)~F(c) - f(e)t = F(c+3to) — F(c) — 3f(c)to
+F(c+t) — Flc+ 3to) — fle+ to)(t — 1to)
F(fle+ 3to) - £(0) (¢ - o)
Lf(00)t5 + 3£/ (82)(t — 3t0) + 1 £(65)(t — Sta)to

< -1 ")t2 — 1 i ! _1
- 80S1§1£t0|f (9)|t0 2051.Ie1£t0|f (s)lto(t 2t0)
< —Lg i (s)]t.

< —ato dnf |f(s)lt. m

In studying the behavior of (5.1.1), we follow the line of reasoning described in Section 5.2.
We start by establishing convergence in distribution of the relevant processes. It turns out that
we have to distinguish between three cases concerning the rate at which n™ tends to zero.

Lemma 5.3.2 Let f satisfy (C1)-(C2) and let W denote standard two-sided Brownian motion
onR. For1/3<a<1,t>0 andz € R, define

Zp(,t) = nOFI2 (Fy(tn=2) = f(0)tn™) — zt.
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(i) For 1/3 < o < 1, the process {Zni(z,t) : t € [0,00)} converges in distribution, in the
uniform topology on compacta, to the process {W (f(0)t) —«t : t € [0,00)}.

(ii) For a = 1/3, the process {Z,;(x,t) : t € [0,00)} converges in distribution, in the uniform
topology on compacta, to the process {W (f(0)t) — at + 5 f'(0)t2 : £ € [0,00)}.
(ili) For 0 < a <1/3,t> —n'/3* and x € IR, define
Zna(z,t) = n?? (Fo(n™® +tn~'/?) = Fy(n™*) — f('lz,_")tvfl/s) — xt.
Then the process {Zy2(x,t) : t € [—n'/3-2 00)} converges in distribution, in the uniform
topology on compacta, to the process {W (f(0)t) — zt + 3 f'(0)t* : t € R}.
Proof: (i) Decompose the process Z,; as follows,
Za(xt) = n®W, (F(tn ) + nUF2{F(tn™) — f(0)tn *} — xt
—n®2E(tn )W, (1) + n®/2H,,(tn™%),
where H,(t) = E,(t) — B,(F(t)). By Brownian scaling, the process n®2W,, (F(tn"®)) has
the same distribution as the process W (n®F(tn~*)), and by uniform continuity of Brownian
motion on compacta,
W (n®F(tn™")) — W (£(0)t) — 0,
uniformly for ¢ in compact sets. Since o > 1/3 we have that
nfl+a)/2 {F(tn—rx) _ f(O)tn_“} —0,

uniformly for ¢ in compact sets. Because n®/2F(tn~*)W,(1) = Op(n~%/?), together with (5.2.2)
this proves (i). In case (ii), where @ = 1/3, the only difference is the behavior of the deterministic
term

n?/3 {F(tn_1/3) — f(())tn_l/a} — %f’(O)tz,

uniformly for ¢ in compact sets. Similar to the proof of (i), using Brownian scaling and uniform
continuity of Brownian motion on compacta this proves (ii).
For case (iii) the process Z,2 can be written as

nE W, (F(n™ + tn™'?)) = Wo (F(n™*)) }

+n? {F(n* +tn~'/%) — F(n™) — f(n™*)tn""/*} — xt

—n{F(n* + tn7%) = F(n™*)} W, (1) + n'/S Hy(n™ + tn™ /%) — n'/SH, (n™°).
The process n/ {W,,(F(n=® + tn~'/3)) — W, (F(n=)) } has the same distribution as the pro-
cess W(n'/3(F(n™* + tn~/3) — F(n™*))), and by uniform continuity of Brownian motion on
compacta,

W (n!3(F(n™ + tn™/3) — F(n™))) — W(f(0)t) — 0,
uniformly for ¢ in compact sets. Finally,
23 {F(n= +tn~%) — F(n™®) — f(n=*)tn"'/*} — 1 f(0)%,

uniformly for ¢ in compact sets. Since n'/S {F(n™* +tn~%) — F(n™*)} W,(1) = Op(n=/5),
together with (5.2.2) this proves (iii). ]

The next step is to use Theorem 5.2.1. The following lemma will ensure that condition (iii)
of this theorem is satisfied.
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Lemma 5.3.3 Suppose that f satisfies (C1)-(C2). Let Z,, and Z,3 be defined as in
Lemma 5.3.2.

(i) For1/3 < a <1 and z > 0, argmax,e(g o) Zn1(, t) = Op(1).
(i) For a =1/3 and x € R, argmax,c(g o) Zn1(Z,t) = Op(1).
(iii) For 0 < a < 1/3 and z € IR, argmax¢[_,1/3-a o0) Zn2(2,t) = Op(1).
Proof: (i) First note that argmax, Z,,(z, t) has the same distribution as argmax, M, (t), where

M (t) = W, (n*F(tn™)) + /2 (F(tn=) — f(0)tn™®) — xt
—n®2F(tn~ )W, (1) + n®/2H,(tn~).

Let 0 < € < 7 and define Xy, (t) = n®/2H,(tn"*) — jet. Next, consider the event
Any = {Xa1(s) 2 Xoa(2), for all s,¢ € [0,00), such that t —s > 4§,}. (5.3.1)

Then with 8, = n~1~%/2(logn)?, by using (5.2.2) we have that

P(Aw) > P{ sup |Hn(t)] < in—”“‘(logn)"’} —L

t€[0,00)
Also define the process Xng(t) = —n®/2F(tn"*)W, (1) — 3€t, and consider the event
Anz = {Xna(s) > Xpa(t), for all 0 < s <t < 00} . (5.3.2)
Then, since every sample path of the process X, is differentiable, we have
P(An) > P {_ Fltn)Wi(1) - %n"/? <0, for all t € [0, oo)} -1

Hence, if A, = Ap M Ape, then P(A,) — 1. Since for any > 0,
P {argmax My (t)14e > 17} < P(AL) — 0,
t€[0,00)

we conclude that (argmax, M,;(t)) 14c = Op(1). This means that we only have to consider
(argmax, M, (t)) 14, . From Lemma 5.2.1, we have

(argnl‘dx Mnl(t)) IAH < argmax Snl (t) + (5117 (533)
te[0,00) te[0,00)

where
Sni(t) = Wy (n7°F(tn™%)) — (z — )t + n"+2 (F(tn=) — f(0)tn™) .

Since F(tn~*) — f(0)in~" is non-increasing for ¢ > 0, according to Lemma 5.2.1,

argmax Sy (¢) < argmax {Wn(n“F(tn"')) —(z — e)t}. (5.3.4)

te(0,00) te[0,00)
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By change of variables u = G(t) = n®F(tn~%), and using that for u € [0,n],

u

f(0)

<G () < -

= 'fm, (535)

we find that
Pl {Wn (n*F(tn™)) - (x = ‘>’} < sup {‘4”n(n"F(tn‘a)) —(r—et> 0}
1€[0,00) te[0,00)
=G (sup{u € [0,n°]: W(u) — (& — €)G (u) > 0})

<G (sup {u € [0,00) : Wy(u) — %" 2 0}) :

By Brownian scaling, sup {u € [0, 00) : W,,(u) — f(0)"*(z — €)u > 0} has the same distribution
as

(zi(—%b‘up {ue0,00): W(u) —u 20},

which is of order O,(1). The latter can be seen for instance from the law of iterated logarithm

for Brownian motion:
r {hmsup—M = 1} =1. (5.3.6)

oo 4/ 2|u| log log |u

Because 8, = n~1=*/2(logn)? = o(1), together with (5.3.3), (5.3.4) and (5.3.5), it follows that

0 < argmax My (£) < (argmax Mnl(t)) L+ 0,1 < 2 oy,

t€]0,00) t€]0,00) = F(FY(Op(n)))

which proves (i).

(i) In this case o = 1/3, so that the argument up to (5.3.3) is the same. Let € > 0 and
A, = An N Ay, where A, as defined in (5.3.1) with 6, = n~/*(logn)? and A, as defined in
(5.3.2). We now find that

(argmax M,,l(t)) 14, < argmax S, (t) + 6, <sup{t>0:S5,.(t) > 0} + 0y, (5.3.7)
t€[0,00) t€[0,00)

where
Sni(t) = Wy (n'2F(tn="3)) — (x — e)t + n*® (F(tn™'/%) — F(0)tn=3) .

Let to be the value from Lemma 5.3.1 and consider the event

1
D, = {n_l/B sup {t >0:Sult) > 0} < 52‘,0} .
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If Sni(t) > 0, then according to Lemma 5.3.1, writing inf |f'| instead of infocs<y, |f/(s)|, for
tn~13 > %to and n sufficiently large, we find that

0 < Wa(n'PF(tn™'2)) — (z — &)t + n*® (F(tn™'/3) — f(0)tn™"/?)
< nlft { sup |Wa(u)| = (z — €)tn™ /6 — :ll-to inf | f/ |tn1/6}
, 1, . (x —e)n~1/3
< 1/"{ W (s ~—t inf | f’|tn!/¢ (1—1——
< n 0sup |Wa(u)] oinf | f'| ot |/

< i {sup [Wa(u)] - et |7 |n1/2}

0<u<
Therefore

P(D;) < P{ sup |[W(u)| > ltg inf [f'|n'/?) = 0.
0<us1 16

This means we can restrict ourselves to the event A, N D1, so that by analogous reasoning as
before, from (5.3.7) we get

(argma.anl(t)) 1a,np,, < sup {t >0:Su(t) > O}ID“1 +6,
t€[0,00)

< sup{OStS t0n1/3:S,,1(t)20}+5,,.

DO =

According to Lemma, 5.3.1, for 0 < tn™'/3 < 1t;, we have n*3 (F(tn='/3) — f(0)tn~'/3) <
—3inf|f')t2, so that

0 < <argmaan1(t ) la,.0Dm (5.3.8)
te[0,00)
' L
< sup {0 <tn V< 3to : Wa(n!BF(tn™%)) — (z — e}t — 1t%inf |f| > 0} + bp-

Next, distinguish between
(A) —(z —e)t — H2inf | f'| > 0,
(B) —(x —e)t — 3t*inf|f'] <0,

Since t > 0, case (A) can only occur when z — € < 0, in which case we have 0 < t <
4(e —x)/ inf | f'|, which is of order O(1). In case (B), it follows that W, (F(t)) — 1¢2inf|f'| > 0
We conclude from (5.3.8) that

0 S (argmax Mnl(t)> lA,,ﬁD,,1
t€[0,00)
< sup {0 <tn V3 < %to : Wn(n1/3F(tn‘I/3)) - 12inf|f| > 0} +Oy(1)+ 6
< sup{t € [0,00) : W, (n'PF(tn"'/3)) — 1t%inf |f'] > 0} + O,(1). (5.3.9)
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Similar to the proof of (i), by change of variables u = G(¢) = n'/*F(tn"'/*) and using (5.3.5)
with o = 1/3, we find that the argmax on the right hand side of (5.3.9) is bounded from above

By Brownian scaling, sup {u € [0, 00) : Wy (u) — (4f(0)2) Vinf | f'lu? > 0} has the same distri-
bution as

4£(0)2 2/3
(ﬁ%f)—’l) sup {u € [0,00) : W(u) —u* > 0}.
Again by using (5.3.6), this is of order O,(1). Similar to the proof of (i), from (5.3.9) we find
that

O,(1)
= FFEHO(nY)

+ Op(l)a

0 < argmax M, (¢) < (argmax Mnl(f)> La,apn, +0p(1) £
tef0,00) t€(0,00)
which proves (ii).
(iii) Because adding constant terms to the process Z,, does not change the location of the
maximum, we have that argmax, Z,»(z,t) has the same distribution as argmax, Mus(t), where
for t € [-n'/?*, 00),

Mo(t) = W, (7L1/3 (F(n_" + t'n,_l/3) — F(n."")))
0?3 (F(n= + tn~1%) — F(n™*) — f(n™*)tn™"/%) — at
—n M + tn VYW, (1) + 0O Ho(n™ + tn~1/3),
Let € > 0 and A, = Ap, N Ang, With A, defined similar to (5.3.1) with 8, = n~'/*(logn)?, and

Ay defined similar to (5.3.2). By the same argument as in the proof of (i) and (ii), it suffices
to consider (argmax, Mpa(t)) 14,. We find

( argmax Mng(t)) 14, < argmax  Spa(t) + 6, < sup{t > 0: Spa(t) > 0} + 9y,

te[—nt/3=,00) te[—nl/3-w o0)
where
Swa(t) = W, (n'P(F(n™+ tn~13) — F(n™)))
3 (F(n™ +tn~Y%) — F(n™) — f(n~)tn" %) — (z — )t
As in the proof of (ii), consider Dy, = {n~"/*sup{t > 0: Spa(t) > 0} < 3to.}. By the same

reasoning as used in the proof of (ii), it again follows from Lemma 5.3.1 that P(D;,) — 0, so
that we only have to consider (argmax, Sn2(t)) 1p,,. Hence, similar to the proof of (ii) we get

11,2(t) > 0} + 611

( argmax Mng(t)> 1a,nDn, < sup {0 <tn 'A< %

te[—nl/3- 00)

According to Lemma 5.3.1, n?/3 (F(n=* + tn~V/3) — F(n™*) — f(n™*)tn"/?) < —4#%inf|f'],
for 0 < tn~/% < Lty, so that sup{0 < tn='/® < 1t : Spa(t) > 0} is bounded from above by

sup {O <tn VB < Lty W, (n3(F(n™™+ tn~13) — F(n™®)))

—(z —e)t — 3t inf |f'] > 0}.
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Similar to (5.3.9), we conclude that (argmax, M,2(t)) 14,np,, is bounded from above by
sup {t € [0,00) : W, (n'3(F(n™ + tn~'3) — F(n™®))) — }%inf | f'| > 0} + 0,(1). (5.3.10)

Next, change variables u = G(t) = n'/3(F(n=® + tn~'/3) — F(n™)). Then for any u €
[Ov n1/3(1 - F(n-“))]’

u
(F~Y(un=13 + F(n-)))’

<G Nu) < 7 (5.3.11)

o
£(0)
so that (5.3.10) is bounded from above by
inf | '] ,
— > , .
4f(0)2u >0 ] +0,(1)

As in the proof of (ii), by Brownian scaling together with (5.3.11), we find that

Gl (sup {u >0: W(u)

argmax Mys(t) < ( argmax Mng(t)> 14,00, + Op(1) (5.3.12)

tE[—n‘/a—",oo) tG[—nl /a-ayoo)
< o,(1)
S TET@,m ) T Fw )

To obtain a lower bound for the left hand side of (5.3.12), first note that

+0,(1) = 0,(1).

argmax Mpo(t) > argmax Mp,(t) = — argmax Muo(—t). (5.3.13)

te[—nl/3-a o) te[—nl/3-a ) te[0,nl/3~a]

From here, the argument runs along the same lines as for the upper bound. Let ¢ > 0 and,
similar to (5.3.1) and (5.3.2), define the events A,; and A,, with

Xar(t) = n'SHu(n ™ — tn™'3) - let,

Xno(t) = —nYSF(n= —tn~V3) — 3et.
With A, = An1 N Ana, as before we get (argmax, Mno(—t)) 15 = O,(1). Moreover, using that
F(n=*—tn71%) — F(n=*)+ f(n=*)tn"*+ L inf | f'[n~?/ is non-increasing for ¢ € [0, n!/3-¢,

similar to proof of the upper bound, we find that — (argmax, M,2(—t)) 14, is bounded from
below by

— sup {t € [0, : W, (n'3(F(n™* — tn7%) — F(n™))) - L2 inf || > 0} + Op(1).

After change of variables u = G(t) = n'A(F(n=® — tn~'/3) — F(n™®)), and using that for
u € [-n'3F(n=*),0], one has

we now find that

— argmax M(—t) > Z}f(l(j;,lu? > 0} + O,(1).

te[0,nt/3~a) f(n—n)

sup {u <0:Wy(u) —
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As above, by Brownian scaling together with (5.3.13), it follows that

1
argmax M,;(t) > O"(_a)
te[—nl/3- o0) f(" )

+0,(1) = 0,(1).

Together with (5.3.12) this proves the lemma. [ ]

We are now able to determine the behavior of the Grenander estimator at zero. With the
proper normalizing constants the limit distribution of n="# (fn(n_") — f(n™®)) is independent
of f. In the case @ = 1/3. we arc only able to specify the distribution function of the limiting
random variable.

Theorem 5.3.1 Let f satisfv conditions (C1)-(C2). Then

(i) For1/3 < a < 1 and Ag, = f(0)"Y/2, we have that

t€[0,00)

Agnli=e)/2 (f,,,(n_") - f('n_‘")) — \/a.rgmax {W(¢t) -t}
in distribution, as n — oc.
(i) For Aoz = |4£(0)f (0)|7'/3 and By, = 43 f(0)}/3|f'(0)|~%/*, we have that
Aoe {711/3 (ﬁz(Bozn-l/a) - f(”_l/g)) + f’(o)} -V
in distribution, as n — 0o, where V' has distribution function

U(z)=P {argt;léax{W(t) —(t+x)?} < 1} .

(iii) For 0 < a < 1/3 and Ags = |4f(0)f (0)|~'/3, we have that
Aggn® (fuln™®) = f(n7%)) — argmax {W () - £}
el
in distribution, as n — oo.
Proof: (i) First note that by condition (C1),
n=2 (fy(n7) = f(n™%) = 0072 (f1(n™) = £(0)) + o(n=*/2),
where (1 — 3a)/2 < 0. For z > 0, according to (5.2.1),
P {'rz(l_")/2 ( Fuln™) — f(O)) < 1‘} = P{n®Un(f(0) +an~0=®/%) <1} . (5.3.14)

If Z,1 is the process defined in Lemma 5.3.2(i), then

0 < n®Un(f(0) + zn~'=*72) = argmax Z, (z,t) = O,(1), (5.3.15)
t€[0,00)
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where, according to Lemma 5.3.2, the process {Z,1(x,t) : t € [0,00)} converges in distribution
to the process {W(f(0)t) — zt : t € [0,00)}. To apply Theorem 5.2.1, we have to extend the
above processes to the whole real line. Therefore define

5 Zoi(z,t) ,t2>0,
an(t)z{ 15& : t<o0.

Then, for z fixed, Zo1 converges in distribution to the process Z;, where

Zl(t)={ W(f(ogt)—zt :28

Moreover, since Z,(x,0) = 0, together with (5.3.15), it follows that

argmax Zn, (t) = argmax Zn; (t) = n®Un(f(0) + ztn~1"9/2) = 0,(1).
teR te[0,00)

The process Z; is continuous and since Var(Z;(s) — Z;(t)) # 0, for s, > 0 with s # ¢, it follows

from Lemma 2.6 in Kim AND POLLARD (1990) that Z; has a unique maximum with probability

one. By an application of (5.3.6) it can be seen that Z,(t) — —o0, as [t| — oco. Theorem 5.2.1

now yields that

argmax Z,, (t) — argmax Z; (t)
teR teR

in distribution. Using (5.3.14), this implies that
P{n= (fu(n) - 1) <} = P{argmaxZua) <1}
teR
- P {a.rgmale(t) < 1}
teR

= P {amgmex (W 0) - o1} <1

=P {\/f(o) argmax {W (t) ~ £} < x} .

It remains to show that
P {nﬂ—")/? ( Faln) — f(O)) < 0} - 0.
But this is evident as for any € > 0,
PLat=2 (fun o) = f(0)) <0} < P{n0-72 () - £(0)) < ¢}
= P{\/1Oargmax,cp ) (W(t) — t} < e}

When € | 0, the right hand side tends to zero, which can be seen from

P limsup—M—=1 =1.
ulo  /2uloglog(1/u)
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This proves (i).
(ii) First note that by condition (C2),

n/2 (fu(Boan™%) = f(n7) + £1(0) = n'/* (fa(Boan™%) = £(0)) + o(1).
According to (5.2.1), we have
P {n1/3 (f‘,l(an—l/S) _ f(O)) < .L} = P{Byn'PU,(f(0) + 20~ <1}, (5.3.16)
With Z,, being the process defined in Lemma 5.3.2 with o = 1/3, we get

By nPU,(f(0) + an~/%) = argmax {Za(x, Bpat)} = Op(1).

te{0.00)

Again, we first extend the above process to the whole real line:

= Zoi(x, Boat) ,t >0,
an(t):{ 1(1‘t ) t<0.

Then, according to Lemma 5.3.2, Z,; converges in distribution to the process

W (£(0)Byst) — Buazt + 3 f/(0)Bot? |t >0,
Zo(t) = t t<0.

Similar to the proof of (i), it follows from Theorem 5.2.1 that argmax, Z,,(t) converges in
distribution to argmax, Z,(t), which implies that

P{ Agn® (fu(Boan™%) = £(0)) < 2} = W(a),
where

¥(z)

P {argmax {W(f(0)Byt) — Agy Bozzt + 3 f'(0) Bjyt*} < 1}
£>0

Il

P{ar%gl)ax{W(t) — 2zt — 7} < 1} = P{ar%réax {W(t)— (t+2)*} < 1},

by means of Brownian scaling.
(iii) According to (5.2.1), we have

P {nl/s (fn(n_“) — f(n_“)) < :c} =P {n1/3 (Un(f(n™) + xn~ %) — n~*) <0}, (5.3.17)
and with Z,; as defined in Lemma 5.3.3(iii), we get

02 (Ua(f(n™®) +an™ /") =n™%) = argmax  Zng(z,t) = Op(1).

te[-nl/3-= o0)

As in the proof of (i) and (ii), we first extend the above process to the whole real line:

Z (f) _ ZnZ(l‘»t), vt 2 _nl/34a’
n2\t) = Zna(m, =nl3=2) 4 (t + n'/30) [t < —nl/3-e,
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Then, by Lemma 5.3.2, Z,2 converges in distribution to the process Z3, where
Zy(t) = W(f(0)t) —xt + 1 f'(0)?, te R

Similar to the proof of (i) and (ii), it follows from Theorem 5.2.1 that argmax, Z,»(t) converges
in distribution to argmax, Z3(t). Together with (5.3.17), this implies that

{1/3-403( fa(n™%) = f(n™ ))Sx}

qP{artgg;ax{tV(f(O)t)— Agat+1f(0)2} <0
. £10) e \?

- P{ o {W(t) 2/7(0) (++ o) } 8 0}
N o s

_P{ ER {W(t) 2./f } Ags|f'(0 )|}

=P {artgél;zax (W) -} < z} ,

——

by means of Brownian scaling. This proves the theorem. ]

5.4 Behavior near the end of the support

Suppose that f has compact support and, without loss of generality, assume this to be the
interval [0,1]. In this section we investigate the behavior of fn near one. Although there
seems to be no simple symmetry argument to derive the behavior near one from the results in
Section 5.3, the arguments to obtain the behavior of

w2 {f1-n7) - a1 =07},

are similar to the ones used in studying (5.1.1). If f(1) > 0, then fn(1) will always under
estimate f(1), since by definition f,(1) = 0. Nevertheless, the behavior near the end of the
support is similar to the behavior near zero. We will assume that

(C3) 0 < f(1) = lim,p f(z) < o0.
(C4) f'is left continuous at one, such that 0 < | f'(1)] < supsep g |f(s)] < o0.
Similar to Section 5.3 we need suitable bounds for F(1 —t) — F(1) + f(1)t. This is guaranteed

by the following lemma. The lemma is the complete analogue of Lemma 5.3.1, so that the proof
is left to the reader.

Lemma 5.4.1 Suppose that f satisfies (C4). Then there exists a value 0 < ty < 1, such that
infi_<s<1 | f(8)] > 0, and for any 1 — {1ty <c¢ < 1,

—3infi et |[F(9)E%, 0 <t < 3o,
Flc—t)—F(e)+ f(e)t <

—ito illfl_t03331 lfl(S)It, t> %1‘0
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The next lemma is the analogue of Lemma 5.3.2 and states that, with a suitable normalization,
the processes corresponding to the argmax’s in Lemma 5.4.3 converge in distribution.

Lemma 5.4.2 Let W denote standard two-sided Brownian motion on IR. For x € IR and
1/3 < a < 1 define Yy, (z,t) by

Yoi(z,t) = ntt)/? (Fa(l —tn™®) = Fo(1) + f(1)tn ) — at.

(i) For 1/3 < a < 1, the process {Yu(z,t) : t € [0,n%]} converges in distribution, in the
uniform topology on compacta, to the process {W(f(1)t) — zt : t € [0,00)}.

(ii) For @ = 1/3 and = € IR, the process {Y,i(x,t) : t € [0,n'/%]} converges in distribution, in
the uniform topology on compacta, to the process {W(f(1)t) —xt+3f'(1)t* : t € [0, 00)}.

(iii) For0 < a < % and x € R, define Y,5(x,t) by
Yoa(z,t) = n®? (Fo(1 —n™® = tn™ %) — Fo(1 = n) + f(1 — n~*)tn %) — at.

Then the process {Yoa(,t) : t € [~n'/*~ n1/3(1 — n~)]} converges in distribution, in
the uniform topology on compacta, to the process {W (f(1)t) — xt + 3 f'(1)t* : t € R}.

Proof: (i) Similar to the proof of Lemma 5.3.2, the process Y,1(z,t) can be written as

n®2 {Wo(F(1 — tn™%)) — W,(1)}
A2 (1 —tn™) — 1+ f(1)tn™} — 2t
—n?{F(1 - tn™*) — 1} W,(1) + n*?H,(1 — tn™%).
First note that the process n®/? {W, (F(1 — tn=%)) — W,(1)} has the same distribution as the

process W (n*(1 — F(1 — tn™%))), which can be approximated by the process W(f(1)t), using
uniform continuity of Brownian motion on compacta. Since @ > 1/3,

2L — tn7) — 1 + fQ)in™*} — 0,

uniformly for ¢ in compact sets. As in the proof Lemma 5.3.2, the remainder terms vanish, which
proves (i). In case (ii), where a = 1/3, the only difference is the behavior of the deterministic
term

n?A{F(1—=tn73) — 1+ f(1)tn"'3} — L/ ()82,
uniformly for ¢ in compact sets. Similar to the proof of (i), using Brownian scaling and uniform
continuity of Brownian motion on compacta this proves (ii). For case (iii), the process Y2 can
be written as
W (F(1 = n™ — tn™'3)) — W, (F(1 — n*))}
+n?B{F(1-n"" —tn" )~ F(1 —n ™) + f(1 - n)tn "3} — 2t
S {F(1-n—tn ¥ - F(1 - n~%)} Wa(1)
+nl/6Hn(1 —n" —tn7V3) — nl/an(l —n%).

The process n'/¢ {W,(F(1 — n~* — tn~1/3)) — W,,(F(1 — n™))} has the same distribution as
the process W(n'/3(F(1 — n~%) — F(1 — n=® — tn~1/3))), which can be approximated by the
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process W{(f(1)t), again by using uniform continuity of Brownian motion on compacta. Because
a < 1/3,

A {FQ—n—tn?) —F1-n")+ f(1- n~*)tn"3} - L (1),
uniformly for ¢ in compact sets. As before, the remainder terms vanish, which proves (iii). =
Lemma 5.4.3 Let x € IR and Y,,; and Y, as defined in Lemma 5.4.2.
(i) For1/3 < a <1 and x > 0, argmaxeg o) Yn1(2,t) = Op(1).
(ii) For ¢ = 1/3, argmax,e(g 5173 Ya1(z,t) = Op(1).
(iii) For 0 < a < 1/3, argmaxye(_n1/3-a n1/3(1-n-a)) Yn2(Z,t) = Op(1).

Proof: The proof mimics the proof of Lemma 5.3.3. In case (i), first note that
argmax, Yy (z,t) has the same distribution as argmax, Ny;(¢), where

Nu(t) = W (n®(F(1—tn™®) = 1)) + o2 L{FQ1 —tn"") - 1 + f(1)tn ">} — at
—n2{F(1 —tn™®) — 1} Wyo(1) + n*/2H,(1 — tn™®).

Let 0 < € < z. Define processes
1
Xoui(t) = n*2H,(1-tn™®) — -2—et,

Xn2(t)

il

—n2{F(1—tn"%) — 1} Wy(1) — %et,

and define the event A, as in the proof of Lemma 5.3.3(i). It follows that

(argmax, Np1(t))1as = Op(1), so that we only have to deal with (argmax, Nu1(t))14,. Proceed-
ing as in the proof of Lemma 5.3.3(1), using that the function F(1 —tn=®) — 1+ f(1)tn™ is
non-increasing, we find that

t€[0,ne] te[0,n2]

0< (argmaanl(t)) 14, < argmax {Wn (n*(FQ—tn*)—1)) — (z - E)t} + 6n,

where 6, = n~(1=%/2(log n)?. Finally, by change of variables u = H(t) = n*(1 — F(1 — tn™?)),
and the fact that for any u € [0,n%],

-1 _’L_L_
o) SH WS 1y (5.4.1)

we find that

argmax {Wn (n*(FQ—tn"*)=1)) — (z — e)t}

te[0,n)
< sup {t € 0,n%: W, (n*(F(1 = tn™®) — 1)) — (z — €}t > 0}

T — €

- TO)U > 0} = Op(1),
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which proves (i).
(ii) As in the proof of Lemma 5.3.3(ii), similar to (5.3.7) we obtain

argmax Ny (t) | 1a, < argmax R, (t) + 8, <sup{t > 0: Ry (t) > 0} + 4y,
te[0.n1/3) te0.n1/3)

where
Ry (t) =W, (n'3(F(1 - tn 1) —1)) - (z —e)t + n*? (F(1 - tn3) — 1+ f()tn1/3).

As in the proof of Lemma 5.3.3(ii), restrict to Dp, = {77..‘1/3 sup{t > 0: R,1(t) >0} < %to},
for which P(D¢,) — 0. Then by application of Lemma 5.3.1. similar to (5.3.8) we find that
(argmax, N,1(t)) La,np,, is bounded from above by

sup {t € [0,00) : W, (-n.l/3(F(l —tn13) — 1)) = (x —e)t — 3t*inf [f| > 0} + 68,
Proceeding as in the proof of Lemma 5.3.3(ii), similar to (5.3.9) this supremum is bounded by
sup {t € [0,00) : W, (nA(F(1 —tn™'%) = 1)) — H2inf | f'| > 0} + Op(1).

By change of variables u = H(t) = n'/*(1 — F(1 — tn~/3)), and using (5.4.1), we find that this
argmax is bounded by
1

o) sup {u € [0,00) : W(u) —

inf | £ -
P 2 0} = (D,

which proves (ii).
For case (iii), first note that argmax, Yo(z,t) has the same distribution as argmax, Nya(t),
where
No(t) = W, (77,1/3(17'(1 - =3~ F(1 - n~*)))
+n?3 (F(1—n™ - tn”V3) — F(1 —n™%) + f(1 —n"*)tn"'3) — at
—nSF(1 =0~ — tn"VHW,(1) + nYCH, (1 — n™® — tn~'3).
Let € > 0 and let A,, be same event as in the proof of (i) and (ii) with &, = n~/3(log n)%. Write

I, = [-n'/3=% n'/3(1 —n~%)], then by the same argument as in the proof of (i) and (ii), we find
that

(argmax Nng(t)> 14, < argmax Ruo(t) + 6, <sup{t > 0: Rya(t) > 0} + 4y,

tely teln

where

Rua(t) = W, (n3(F(1—n —tn3) — F(1 ~ n™)))
+n?/3 (F(1—n"*— V3~ FQ—n")+ f(1 - n“’)tn_l/s) —(z — et

According to Lemma 5.4.1,

P (F(l=n"—tn™3) = F1—n™) + f(1 —n~*)tn" ) < —%t(" inf | f'],
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for 0 < tn=1/3 < 1t,, so that sup{0 < tn™1/3 < 3to : Rya(t) > 0} is bounded from above by
sup {t €[0,00) : Wy (n'3(F(1 - —tn3) — F(1 —n™))) — L2inf|f'| > 0}

Then by change of variables u = H(t) = n'/3(F(1 —n=%) = F(1 = n™® — tn"/3)), and using
that for any u € [0,n'/3F(1 — n™?)),

7@ S HW < 7y

it follows that this argmax is bounded by

inf|f’ | }
supqu € [0,00) : W(u) — 2>0 O,(1).
e {v € 0.9 W - "
The lower bound for argmax, N,2(t) is obtained by the same type of argument as for the lower
bound in the proof of Lemma 5.3.3(iii). This proves the lemma. ]

We are now able to determine the behavior of the Grenander estimator at the end of the
support. Similar to Theorem 5.3.1, in the case @ = 1/3, we are only able to give the distribution
function of the limiting dlstrlbutlon of fu(1 —n=).

Theorem 5.4.1 Let f satisfy conditions (C3)-(C4). Then

(i) For1/3 < o < 1 and Ay; = f(1)~Y/2, we have that

Apn-o72 (f(l -n ) — fu(1- n“’)) —  [argmax {W(t) — t}

te[0,00)
in distribution, as n — oo.

(ii) For Aiz = |4f(1)f (1)|7/® and By, = 43 f(1)V/3|f'(1)|~2/3, we have that
Arz {n1/3 (f(1 —n7%) — fu(Bra(1 - "_‘/3))) + f'(l)} -V

in distribution, as n — 0o, where V has distribution function

U(z)=P {a.rg%ax{W(t) —(t+2)?} < 1} .

(iii) For 0 < oo < 1/3 and A3 = [4f(1)f (1)|'/3, we have that
/3 ) _ £ — ) -, . _ 42
Apn (f(l n - fu(l-n )) argmax {w(t) -}

in distribution, as n — oo.
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Proof: To prove case (i), similar to the proof of Theorem 5.3.1(i), it suffices to consider
n=9/2(f(1) — f,(1 —n~*)). For z > 0, according to (5.2.1), we have

P{n(l“’)” (f(1) — full = n‘“)) < r} = P{n* (1= Un(f(1) — 2n~0=)/2)) < 1},
where according to Lemma 5.4.3(i),

n® (1= Un(f(1) — an~07/2)) = arg[ma]x Yau(z,t) = O,(1).
te[0n

From here on, the proof proceeds in completely the same manner as that of Theorem 5.3.1(i).
We conclude that for x > 0,

p{n(l‘a)/‘z (f(l) — fa(1— .n—"‘)) < ,1} — P {ar%;réax{l@’(f(l)t) —xt} < 1}

= P {\/f(l) argmax {W(t) —t} < ;17} .
20
Furthermore, similar to the proof of Theorem 5.3.1(i) it follows that

P {7z(1_°)/2 (f(l) —fa1- n'a)) < 0} ~0.

This proves (i). For (ii), first note that

n' (f(1 =071 = fu(Ba(l = n713) ) + (1)
=1 ((1) = fa(Bra(1 = n712)) ) + o(1).

According to (5.2.1), we have

P{n'? (1) = fu(Bu(l - n7'%)) <z} = P{Bg!* (1 = Un(f(1) - an™'/%) <1},
where, according to Lemma 5.4.3(ii),

Byinl/? (1 =Un(f(1) —an™'13)) = ar[%mlz/i:](Ynl(r, Bist) = 0,(1).
te(0n

The rest of the proof is completely similar to that of Theorem 5.3.1(ii). For (iii), note that
according to (5.2.1), P {n1/3 (f(l —n%) — fu(1— n,'o‘)) < x} is equal to

P{n* (1—=n""-U,(f(1 —n™®) —zn /%)) < 0},
where, according to Lemma 5.4.3(iii),

n*(1-n"% = U(f(1 = n™) —an™'3)) = ar[gms/xs)](Yng(z, t) = 0,(1).
te[o,n?

From here the proof is completely similar to that of Theorem 5.3.1(iii). u
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5.5 A comparison with the penalized NPMLE

Consider a decreasing density f on [0,00). As pointed out in WOODROOFE AND SUN (1993),
the NPMLE f, for f is not consistent at zero. They proposed a penalized NPMLE fF(«,0),
and in SUN AND WOODROOFE (1996) it was shown that

—(c—-1 1(0)¢2

where c is related to the smoothing parameter o,, = cn~?/3. SUN AND WOODROOFE (1996)also
provide (to some extent) an adaptive choice for ¢ that leads to an estimate &, of the smoothing
parameter, and report some results of a simulation experiment for f¥(éy,0).

We propose f,(n~1/3) as an estimate for £(0). This estimator is straightforward and does not
have any additional smoothing parameters. As a consequence of Theorem 5.3.1, this estimator
is consistent for f(0) with rate n'/3, and has a limiting distribution that is some complicated

functional of W: A
2 { fan7%) = FO)} = S0,

where Sy has distribution function
Fo(s)=P {argmax{W(f(O)t) —st+1f(0)} < 1} .
>0

Similarly, in the case of a density f with compact support [0, 1], we propose fo(1 — n~'/3) as
an estimate for f(1). As a consequence of Theorem 5.4.1,

w2 {f(1) = Ll -nP)} = 8,

where S} has distribution function
Fi(s)=P {argma.x {W(fyt) — st + %f’(l)tZ} < 1} .
>0

In this section we will compare the estimator f,(n~1/3) for f(0) with the penalized NPMLE by
means of a simulation study.

We simulated 10000 samples of sizes n = 50, 100,200, and 10000 from a standard expo-
nential distribution with mean one. For each sample the values of n/3{ f,(n""/3) — £(0)} and
nt/3{ f: (6m,0) — £(0)} were computed. The value of &, was computed as proposed in SUN AND
WOODROOFE (1996),

Gy, = 0.649 - 37130723

where ) A
- ~ P __ P -
ﬂn = max { :(007 O) - (aO’ 0) fn (aOv z ) ) n‘_q} 5
2%,
is an estimate for 3 = —3 f(0)f'(0). Here, x,, denotes the second point of jump of the penalized

NPMLE f*(ag,) computed with smoothing parameter ag. The parameter ag = con™?/3, and

g should be taken between 0 and 0.5. However, SUN AND WOODROOFE (1996) do not specify
how to choose ¢ and ¢g in general. We took ¢ = 1/3, and for g the values as listed in their
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Table 2: oy = 0.0526,0.0325 and 0.0205 for sample sizes n = 50, 100 and 200. For sample size
n = 10000 we took the theoretical optimal value o = 0.649 5~/3n2/3 with 8 = 0.5.

In Table 5.1 we listed simulated values for the mean, variance and mean squared error of
both estimators. The penalized NPMLE is less biased, but has a larger variance. Estimator

n nt3{ fu(n™'%) — £(0)} ni3{ (6, 0) — £(0)}
Mean  Variance MSE Mean  Variance MSE

50 | —~0.8471 0.4392 1.1569 | —0.0721  1.2955  1.3007
100 | —0.8531 0.4835 1.2114 | —0.0785 1.5304  1.5366
200 | —0.8677 0.5363  1.2893 | —0.0747 1.7319  1.7375
10000 | —0.9169  0.7003  1.5410 | —0.1950  1.9130  1.9510

Table 5.1: Simulated mean, variances and mean squared error for both estimators.

Fu(n='73) performs better in the sense of mean squared error. We complete our comparison
by displaying the densities of both estimators. In Figure 5.1, kernel estimates are plotted of
the 10000 simulated values of n/3{ f,(n"/%) = f(0)} (solid line) and 13 fF(Gn, 0) — f(0)}
(dotted line) for samples sizes n = 50, 100, 200 and 10000.
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n =50 n = 100

0.0 4
-4

Figure 5.1: Simulated densities of both estimators for sample sizes n = 50, 100, 200 and 10000.



Chapter 6

The L;-error of the Grenander
estimator

Asymptotic normality of L;-distance between a decreasing density f and its nonparametric
maximum likelihood estimator f, is based on interpreting this distance as the area between the
graphs of f and fn. Since this area is also the area between the graphs of the inverse g of f
and the more tractable inverse U, of f,, the problem can be reduced to deriving asymptotic
normality of the L,-distance between Uy, and g. In this chapter we investigate the limit behavior
of the Li-distance between f and f, for k > 1. Due to the inconsistency of f. at zero, the case
k = 2.5 turns out to be some kind of transition point. We extent asymptotic normality of the
L;-distance to the Lj-distance for 1 < k < 2.5, and obtain the analogous limiting result for a
modification of the Li-distance for k > 2.5.

6.1 Introduction

Let f be a non-increasing density with compact support. Without loss of generality, assume
this to be the interval [0,1]. The non-parametric maximum likelihood estimator f, for f has
been discovered by GRENANDER (1956). It is defined as the left derivative of the concave
majorant of the empirical distribution function F, constructed from a sample X;, ..., X, from
f. Prakasa Rao (1969) obtained the earliest result on the asymptotic pointwise behavior of
the Grenander estimator. One immediately striking feature of this result is that the rate of
convergence is of the same order as the rate of convergence of histogram estimators, and that
the asymptotic distribution is not normal. It took much longer to develop distributional theory
for global measures of performance for this estimator. The first distributional result for a global
measure of deviation was the convergence to a normal distribution of the L;-error mentioned in
GROENEBOOM (1985) (see GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA (1999) for a rigorous
proof). A similar result in the regression setting has been obtained by DuroT (2000).

In this paper we will extend the result for the L;-distance to the Li-distance, for £ > 1.
We will follow the same approach as in GROENEBOOM, HOOGHIEMSTRA AND LOPUHAA (1999),
where, instead of comparing f, to f, the more tractable inverse process U, was compared to
the inverse g of f, where for a € [f(1), f(0)]:

Un(a) = argmax{F,(z) — az}. (6.1.1)
z€{0,1]

129
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Asymptotic normality of the Ly-error

£(0)
U = g, = / \Un(a) - g(a)| da
f(1)

was obtained by approximating F),(t) — at by a Gaussian process and approximating U, by the
argmax of this process. This immediately yields asymptotic normality of L,-error

W= fll = / Fula) - f(2)] dz

between f, and f, since || f, — f ||, represents the area between the graphs of f, and f, which is
also the area between the graphs of U, and g. Clearly, for £ > 1 we no longer have such an easy
correspondence between the two Li-errors. Nevertheless, we will show that the L,-distance
between f, and f can still be approximated by a scaled version of the Li-distance between U,
and g, and that this scaled version is asymptotically normal.

Another important difference between the case & > 1 and the case k = 1, is the fact that
for large k, the inconsistency of fn at zero, as shown by WOODROOFE AND Sun (1993), starts
to dominate the behavior of the Li-distance. By using results from KULIKOV AND LOPUHAA
(2002) on the behavior of fn near the boundaries of the support of f, we will show that for
1 < k < 2.5 the Ly-distance between f, and f is asymptotically normal. This result can be
formulated as follows. Define for ¢ € R,

V(c) = sup{t : W(t) — (t — ¢)? is maximal}, (6.1.2)

with {W(t) : —oo < t < 0} denoting standard two-sided Brownian motion on IR originating
from zero (i.e. W(0) =0).

Theorem 6.1.1 (Main theorem). Let f be a twice differentiable decreasing density on [0,1],
satisfying:

(A1) 0< f(1) < f(y) < f(x) £ f(0) < o0, for0<z <y <1;
(A2) 0 < infze |f'(7)] < sUP,eo 1f/(2)] < 00;
(A3) sup,e(,y [f"(2)] < oco.

Then for 1 < k < 2.5, with y, = E[V(0)] {jol @f(@)|f'(@))*? d.a:}l/k,

n'/® {n“?' ( /0 Nhte) - ()] dw) " uk}

converges in distribution to a normal random variable with zero mean and variance
1
/ f(x)(2k+1)/3|f’($)|(2k_2)/3 dz
0

1 2k—2)/k
) A A de
¢ (Bvor [ v@ire) )

J " cov(EO), [€(0)F)de.
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Note that the theorem holds under the same conditions as in GROENEBOOM ET AL. (1999).
For k > 2.5, Theorem 6.1.1 is no longer true. However, the results from KULIKOV AND LOPUHAA
(2002) enable us to show that an analogous limiting result still holds for a modification of the
Ly-error.

In Section 6.2 we introduce a Brownian approximation of U, and prove asymptotic normality
of a scaled version of the Lg-error between U, and g. The proof relies heavily on results obtained
in GROENEBOOM ET AL. (1999). In Section 6.3 we show that on segments [s,t], where the
graph of f, does not cross the graph of f, the difference

& U, (a) — g(a)|*
’\ o TN I A
/ [fule) = (o))" de /m g@ET

is of negligible order. Together with the behavior near the boundarics of the support of f. we
establish asymptotic normality of the Ly-error for 1 < k < 2.5 in Section 6.4. In Section 6.5
we investigate the case k > 2.5, and prove a result analogous to Theorem 6.1.1 for a modified
Ly-error.

6.2 Brownian approximation

In this section we will prove the asymptotic normality of the Ly-crror of the inverse process of
the Grenander estimator. The proof will follow the same line of reasoning as Sections 3 and 4
in GROENEBOOM ET AL.(1999).

Let E, denote the empirical process v/n(F, — F). For n > 1, let B, be versions of the
Brownian bridge constructed on the same probability space as the uniform empirical process
E,oF~! via the Hungarian embedding, and define versions W,, of Brownian motion by

Wa(t) = Ba(t) + &:t, t€0,1], (6.2.1)

where &, is a standard normal random variable, independent of B,. Then for fixed a €

(f(1), f(0)) and J = E, B,W define

V.l (a) = argmax {X](a,t) +n*® [F(g(a) + n™ /%) — F(g(a)) — n~at]}, (6.2.2)
where
XE(a,t) = n'%{E.(9(a) + n~"%t) - E, q(a N},
XP(a,t) = n!*{Bn(F(g(a) +n"'*)) = Bu(F(9()))},
X¥(a,t) = n'/*{Wa(F(g(a) +n""t)) - Wn(F(g(a)))} (6.2.3)

Oue can easily check that V.F(a) = n'/3{U,(a) — g(a)}, where Up(a) is defined in (6.1.1). The
random variable V.?(a) is a Brownian bridge approximation of V.Z(a) based on the Hungarian
embedding, whereas V¥ (a) can be seen as a Brownian motion approximation. A graphical
interpretation and basic properties of V7 can be found in GROENEBOOM ET AL.(1999). Since
we will use these frequently, we state them for easy reference.

First, the tail probabilities of V,/ have a uniform exponential upper bound.
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Lemma 6.2.1 For J = E,B,W, let V;] be defined by (6.2.2). Then there exist constants
C1,Cy > 0 only depending on f, such that for alln > 1, a € (f(1), f(0)) and z > 0,

P{|V,}(a)| = z} < Cy exp(—Caa?).
Properly normalized versions of V;/(a) converge in distribution to
&e)=V(c) -, (6.2.4)
where V/(c) is defined in (6.1.2). To be more precise, for a € (f(1), £(0)), let
Ja(a) = {c:a~ ga(a)en™ € (£(1), f(0))}

and for J = E, B,W and c € J,(a), define,

Vla(©) = 61(a)V; (a — pa(a)en™/3), (6.2.5)
where
"(a(a))|2/3
$1(a) = I—Jf%((l—)%—>0, (6.2.6)
¢2(a) = (40)%|f'(g(a)["* > 0. (62.7)

Then we have the following property.

Lemma 6.2.2 For J = E, B,W, integer d > 1, a € (f(1), £(0)) and c € J,(a)*,we have joint
distributional convergence of (V,/,(c1), ..., V,!,(ca)) to the random vector (£(cy),. .. ,&(cq)).

Due to the fact that Brownian motion has independent increments, the process V¥ is mixing.

Lemma 6.2.3 The process {V,¥ (a)) : a € (f(1), f(0))} is strong mizing with mizing function:
on(d) = 126797 where the constant Cs > 0 only depends on f.

As a direct consequence we have the following lemma, which is a slight extension of Lemma 4.1
in GROENEBOOM ET AL.(1990).

Lemma 6.2.4 Let | and m be fized such that I + m > 0 and let h be a continuous function.
Define

2((+m)+1 4— 4(l+m)

=2 / (4f(2) ™5 |/ () =" h(f (2)) d

Then,

£(0) o0
var | n'/® / V2l (@) IV (@)|"h(a) da | — cx / cov(£(0)'[€(0)™, &(c) € (c)|™) de,
f(1) 0

as n — 0Q.
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Proof: The proof runs along the lines of the proof of Lemma 4.1 in GROENEBOOM ET
AL.(1999). We first have that

var (n /8 /f()O) V.V @)1V (@)™ h(a) da)

FO) prt/Pea(a) = a-F(O) m aim) :
- —2/ / (4a )2(:+ )41 |g’(ﬂ)[“'+i‘) ‘h(a)h(d—¢2(a)n‘1/3c)
f(

- cov (VW(O)

Vi)™, Vaa (@) Ve (e)™) deda.

According to Lemma 6.2.1, for a and ¢ fixed, the sequence VW((') [V.¥ (¢)|™ is uniformly inte-
grable. Hence by Lemma 6.2.2 the moments of (V% (0)!|[V,7V.(0)["™, V.Y (c)!|V¥.(c)|™) converge

to corresponding moments of {(£(0)!|£(0 )|m',§(c)’|§(cj|m). Again Lemma 6.2.1 and the fact that
I+ m > 0, yields that

EVEOP™ < ¢ and BV QPO <,

where C' > 0 does not depend on n,a and ¢. Together with Lemma 6.2.3 and Lemma 3.2 in
GROENEBOOM ET AL.(1999) this yields that

|COV( ( ) ' na( )|m7Vr:1;(0)l|VnZ(C)|m)! < D]B_D2|c|3’

where D; and D, do not depend on n, a and ¢. It follows by dominated convergence that
£(0)
var | n/® / VYOV (@) h(a) da | —
f£(1)

—en /0 7 cov () IEO)™ £(0) |E)™) de
— e / " cov (€O EO)™  £(0) [E(0)I™) de

using that the process £ is stationary, where

f m m)—
2/ (4a) 2ty ] ,(a)|4(1+3) lh(a)z da
)

Ch

2 / (45 (@)) "5 (@) TS R (2))? dr.
0

This proves the lemma. [ ]

We are now able to prove asymptotic normality for a Brownian version of the Li-error
between U, and g.

Theorem 6.2.1 Let V.V be defined as in (6.2.2) and & by (6.2.4). Then
n
FO [yW )k — W)k
nl/ﬁ / |Vn ((I)| - Ek‘|}fn (a)l da
Jr |g'(a)]

conwerges in distribution to a normal random variable with zero mean and variance

=2 @) @) de [ eovtigot et
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Proof: Write
V¥ (a)* - E|V;¥ (a)]*

k —
Wy(a) = |7 (a)]F-1 ’

and define

Lo = (£(0) — f(1))n""*(logn)?,
M, = (f(0) = f(1))n"logn,

N, = [(fgi)lj{[(j))] - [logn lelsog")g] ,

where [z] denotes the integer part of z. We divide the interval (f(1), f(0)) into 2N, + 1 blocks
of alternating length

Aj = (f(l) + (.7 - l)(Ln + A’In)a f(l) + (J - 1)(Ln + Mn) + Ln]’
Bj = (f(l)+(.7_ 1)(Ln+]\{n)+Ln’f(1)+J(Ln+MN)]a i

where j = 1,..., N,. Now write
Tk = Sni + Sp + R, ‘

where

Spr = I/GZ Wk(a ) da,

S;;k = I/GZ/ Wk

F(0)
Rnx = 'nl/ﬁ/ W¥(a) da
f(1)4+Nn(Ln+My)

From here on the proof is completely the same as the proof of Theorem 4.1 in GROENEBOOM ET
AL.(1999). Therefore we omit all specific details and only give a brief outline of the argument.
Lemmas 6.2.1 and 6.2.3 imply that all moments of W¥(a) are bounded uniformly in a, and that
E|\Wk(a)WEk(b)| < Dyexp(—Dan|b— al®). This is used to ensure that ER%2 — 0 and that the
contribution of the small blocks is negligible: E(S;, ,)* — 0. We then only have to consider the
contribution over the big blocks. When

-—nl/ﬁ/ k(a)da and og—var(ZY>
j=t

then one finds that

. Nn
{—z} HEexp{ q
"j:l

< 4(N, — 1) exp(—=CsnM2) — 0,




6.2. BROWNIAN APPROXIMATION 135

where C3 > 0 only depends on f. This means that we can apply the central limit theorem
to independent copies of Y;. Hence, asymptotic normality of S , follows if we show that the
contribution of the big blocks satisfies the Lindeberg condition, i.e., for each € > 0,

N’"
- ZEY T R (6.2.8)

717'1

By using the uniform boundednes of the moments of |[W¥(a)|, we have that

N,

l n

—ZEY Loy i>eony < —N sup;v E|Y;|? = O(0,*n %(logn)®)).
mj=1 k<Nn

By similar computations as in the proof of Theorem 4.1 in GROENEBOOM ET AL.(1999), we
find that
ol = var(Tnx) + O(1).

By application of Lemma 6.2.4, with [ = 0, m = k and h(a) = 1/|¢'(a)¥71, it follows that
62 — o2, which implies (6.2.8). [

The next lemma shows that the limiting expectation in Theorem 6.2.1 is equal to

1 1k
uk=E|V(0)|{ [ w@isen” dz} ‘ (6.29)

Lemma 6.2.5 Let V¥ be defined by (6.2.2) and let py, be defined by (6.2.9). Moreover let V(0)
be defined by (6.1.2). Then fork > 1

(i) For all a such that

n'* {F(g(a)) A (1 — F(g(a)))} = logn, (6.2.10)
we have
k/3
BIVY ()] = ElV(O)lkﬁ%)m + O (log n)),

where the term O(n~"3(logn)**3) is uniform in all a satisfying (6.2.10).

£(0) Wia)lk
lim n'/% / % da—pk s =0.
noo Q) lg'(a)]

Proof: The proof relies on the proof of Corollary 3.2 in GROENEBOOM ET AL.(1999). There
it is shown that, if we define

H,(y) = n'/* {H (F(g(a)) + n~"%y) — g(a)},

with H being the inverse of F, and

(%)

Ve =sup{y e [-n'*F(g(a)), n*3(1 — F(g(a)))] : W(y) — by? is maximal } ,
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with b = |f'(g(a))|/(2a?), then for the event A, = {|V,¥(a)| < logn, |Hn(Vop)| < logn}, one
has that P{AC} is of the order O(e~C%"&")?) which then implies that

sup  E|VY(a) — Hy(Vyp)| = O(n~3(log n)?).
a€(f(1),f(0))

Similarly, together with an application of the mean value theorem, this yields

sup  E[|[V¥(a)|* = [Ho(Vap)[F| = O(n™3(log n)**¥). (6.2.11)
a€(f(1).5(0))

Note that by definition, the argmax V;,, closely resembles the argmax V;(0), where

Vi(c) = a.rglezax{W(t) —b(t —c)?}. (6.2.12)
Therefore we write
B Ho(Va)l* = E | Ha(G(O)* + B (|Ha (V) = 1Ha(Vi(0))*) - (6.2.13)

Since by Brownian scaling V;(c) has the same distribution as b=%/3V (cb*/3), where V is defined
in (6.1.2), together with the conditions on f, we find that

(4a)*/®
| f(g(a))[2*/3

As in the proof of Corollary 3.2 in GROENEBOOM ET AL.(1999), V,; can only be different
from V;(0) with probability of order =306’ Hence, from (6.2.13) we conclude

E|H,(G(O)* = a *E [(0)|" + O(n%) = E[V(O)I* + O(n™*3).

_ (4a)ks3
f'(g(a))[2/
Together with (6.2.11) this proves (i).

(i1) This immediately follows from (i). The values of a for which condition (6.2.10) does not
hold, gives a contribution of order n=/3logn to the integral [ E|V,"Y (a)|* da, and finally,

E |H (Vo) ¥ E|V(0)F + O(n~1/3).

£(0) 4g)*/3 1 s
L P R = [ @ @ .

The next step is to transfer the result of Theorem 6.2.1 to the Ly-error of V.Z. This is done
in the next two lemmas. The first lemma shows that the difference between the Lj-errors of
VW and VB is of negligible order. The second lemma does the same for the Ly-errors of V.2
and V.F.

Lemma 6.2.6 Let V¥ and V.2 be defined as in (6.2.2). Then for k > 1, we have

)
w0 [ (VB - VY @) da = o).
(1)



|
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Proof: The proof relies on the proof of the Corollary 3.3 in GROENEBOOM ET AL.(1990).
Here it is shown, that if for a belonging to the set

Jo = {a : both @ and a(1 — &n~"?) € (f(1), fF(0))},
we define
VE(a.&) = VP (a(l = n7126,)) + n' {g(a(l - n726,)) — g(a)},

then for the event A, = {|€,| < n'/%, |V (a)| < logn,|V.E(a,&,)| <logn}, one has that P{AS}
is of the order @(e~Cles™") which then implies that

E |V (a,6) = V¥ (@)] da = O™ (log n)?).
acJn
Hence, by using the same method as in proof of Lemma 6.2.7, we obtain:
[ BNV @) - W @] da= 0 ogn) )
a€Jn

From Lemma 6.2.1 it also follows that E|V.Z(a)|* = O(1) and E|V,)V (a)|* = O(1), uniformly
with respect to n and a € (f(1), £(0)). Hence the contribution of the integrals over [f(1), f(0)]\
Jn is negligible, and it remains to show that

e [ (V@& VE @} da = ay(0). (6.2.14)

a€dn

For k = 1, this is shown in the proof of Corollary 3.3 in GROENEBOOM ET AL.(1999), so we
may assume that k > 1. Completely similar to the proof in the case k = 1, we first obtain

w0 [ (VP el - V2 @)} da

a€Jn

£(0) . ‘
=n'/* / {MB (a) — ag'(a)&un 8" = V2 (a)|* } da + Op(n™1?).
Q)
Let € > 0 and write A, (a) = ag'(a)€,n~"/¢. Then we can write
£(0)
w0 [ V@) - o)l - W@} do
e
O .
:nl/b/ {|v;{’(a,) — An(a)|” - |v;f(a)|’°‘} Log([VE(a)) da (6.2.15)
()
s [ {1020 = @) - W@ e (V@D e (6210
1)

First consider the term (6.2.15) and distinguish between
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1. |V2(a)| < 2lAn(a)l,

2. [V;2(a)] > 2|1An(a).
In case 1,

[IV7(a) = An(a)l* = [V (a)*] < 3% An(a)]* + 2| An(a)* < (3" + 2%)[ag/(a)én|*n /"
In case 2, note that
V.2 (@) = An(@)|* = V2 (@] = k6] |An(a),
where 8 is between |V,5(a)| < € and |V,B(a) — An(a)| < 2. Using that &, and V,? are indepen-
dent, the expectation of (6.2.15) is bounded from above by
Cie B /f:l()m lag'(a)|P{|V;2(a)| < €} da + Op(n~*-D/6),

where Cy > 0 only depends on f and k. Hence, since k > 1, we find that

O] .
limsup n*/® /f o (V@ — g @™o - VI @ roq(VE@hde (6217

n—oo

is bounded from above by Cy¢*~!, where C; > 0 only depends on f and k. Letting € | 0 and
using that k > 1, then yields that (6.2.15) tends to zero.
The term (6.2.16) is equal to

10 ~%.ag (0)V,2(a) + (ag'(@)8n)*n™® o iy B(,
/f(l) VB(@) — An(@)| +VE@] @ Leeo(IVa'(@)]) da, (6.2.18)

where 6(a) is between |V,2(a) — An(a)| and |V;2(a)|. Note that for |V,2(a)| > e,

22(a) _ V2@ | _ lag(ajnog|
VE@) — Aala) ¥ VE@] ~ V2@ =

uniformly in a € (f(1), £(0)), so that (6.2.18) is equal to

= Op(n—l/ﬁ)’

£(0)
ke, / ag (@ VE @IV (@)L eony([VE(@)]) da
£(1)

70 ’ VnB(a) B k-1 k-1 B ~1/6

+kén ag'(@)Fgr=r (Ve (@)1 = 8(a)*™") L) IV, (a)]) da + Op(n'75).
F{0)) V.E(a)l

We have that

k-1

A, (a) 1

V:2(a)

VB a k—l_e a)k—l < VB(a k-1 1— =0 n—l/G ,
n n 4

where the big O-term in uniform in a. This means that (6.2.18) is equal to

VE(a)|F2da (6.2.19)

f(0)
s / ag'(@)V2(a)
(1)

1) \
+k&n /f ag'(a)sign(V;2(a)) [V () 100 (IV.E(a)]) da + Op(n™"°).  (6.2.20)
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The integral in (6.2.20) is of the order O(e*~!), whereas E€Z = 1. Since k > 1, this means
that after letting e | 0, (6.2.20) tends to zero. Finally, let SZ(a) = ag’(a)V,?(a) |V,,;B(a)|k_2 and

write
1(0) 2 50 1) 2
E|& SB(a)da = var / SB(a)da | + E/ SB(a)da | .
(1) f F(1)

Then, since according to Lemma 6.2.1, all moments of [S?(a)| are bounded uniformly in a, we
find by dominated convergence and Lemma 6.2.2 that

. YON 1O 4)g'(a)] k2
m L B a)aa = = U,
i e [ st e (RO KOP) do=o

because the distribution of £(0) is symmetric. Applying Lemma 6.2.4 with [l = 1, m = k — 2
and h(a) = ag'(a) we obtain

F(0) .
var (/ ag’(a)VnB(a) lV,LB(a)|k_Z da,) _ 0(71‘1/3),
()

We conclude that (6.2.18) tends to zero in probability. This proves the lemma. ]

Lemma 6.2.7 Let V.E and V.2 be defined as in (6.2.2). Then for k > 1, we have
£(0)
/ l|VnE(a)|k - |VnB(a)|k| da = op(n_1/3(10gn)k+2).
f()

Proof: The proof relies on the proof of Corollary 3.1 in GROENEBOOM ET AL.(1999). There
it is shown that for the event A, = {|V.Z(a)| <logn, |[V,E(a)| < logn} one has that P{A%} is
of the order e CU&™)"  Furthermore, if K, = {sup,|E.(t) — Ba(F(t))| < n~1/?(logn)?}, then
P(K,) — 1 and

E| V(@) = V2 (@)l Launk, = O(n™*(logn)®), (6.2.21)
uniformly in a € (f(1), f(0)). By the mean value theorem, together with (6.2.21), we now have
that

A

E|lVE@F - V(@) 1k, < k(ogn)*E|[VE(a)l - V2 (@] Lk, + 20" P{AZ}

= O(n'R(logn)¥*?) + O(n*/3e~Cloem’),

This proves the lemma. a

Corollary 6.2.1 Let U, be defined by (6.1.1) and let 1 be defined by (6.2.9). Then for any

k>1,
F(0) — k
nl/s nk/B/ _—IU"(G“,) f(?)—l da —pf )} — N(0,0%)
F) |lg'(a)[*~

in distribution, as n — oo, where ¢? is defined in Theorem 6.2.1.
b b
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6.3 Relating both L;-errors

When k = 1, the Ly-error has an easy interpretation as the area between two graphs. In that
case [ |Un(a)— g(a)| da is the same as [ | fu(z) — f(z)| dz, up to some boundaries effects. This is
precisely Corollary 2.1 in GROENEBOOM ET AL.(1999). In this section we show that a similar
approximation holds for [ " fu(z) — f(x)|* dz on segments [s,t], where the graphs of f, and f
do not intersect. In order to avmd boundary problems, we will apply this approximation in
subsequent sections to a suitable cut-off version f, of fn

Lemma 6.3.1 Let fn be a piecewise constant left-coqtinuous non-increasing function on [0, 1]
with a finite number of jumps. Suppose that f(1) < f,, < f(0), and define its inverse function
by
U,(a) = sup {x €0,1] : fulx) > a} ,

fora € [f(1), f(0)]. Suppose that [s,t] C [0,1], such that one of the following situations applies:

1. fu(x) > f(z), for x € (s,t), such that fu(s) = f(s) and fo(t+) < f(2),

2. fu(z) < f(), for z € (s,t), such that f,(t) = f(t) and fu(s) > f(s).
If

(infoepo,y | f'(2)

le) = 1] < 5z T (63.1)

sup
T€[s,t)

then for k > 1,

[

where C > 0 only depends on f and k.

f(s)

- k . k+1
U@ —s@| | /m Ona) —9@)| ~

[0} lg'(a)|*

@ sl @ [ e

Proof: Let us first consider case 1. Let f, have m points of jump on (s,t). Denote them in
increasing order by £ < -+ < &, and write s = & and {ny1 = ¢. Denote by a) > --- > ap
the points of jump of U, on the interval (f(¢), f(s)) in decreasing order, and write f(s) = g
and 41 = f(t) (see Figure 6.1). We then have

/fn<a @)| dw—ij/

Apply Taylor expansion to f in the point g(c¢;) for each term, and note that fn(EH 1) = .
Then, if we abbreviate g; = g(;), for ¢ = 0,1,...,m, we can write the right hand side as

m §it1 o F(z — o)k f”(ei)
> /ﬁ a1+ 21

for some 6; between = and g;, also using the fact that g; < & < z < &41. Due to condition
(6.3.1) and the fact that fr(&iy1) = fal(2), for T € (&, &i41], we have that

£16), | suplf"|1f(x) — fla)l _ supls”]
o T S Raf whir S @)

§z+1)— x)| dz.

k
dz,

1+ (z —gi)

(6.3.2)

N)I)—l

@) - Fulw)] <
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 density f
f(s)=ao0
@ - ] —
| | . .
o LN o functon £,
|
i | | |
I I !
g oy o | | ’
ay - 1 Jo. { e TTTTN
| | | '
ft)=as 4 Il: | : T
I | |
| l | : 1 |_
| | | | | )
| | | | | |
! ' [ | i |
: : ! | ! |
T T T T T T
s=& & &2 9(03) & &4 &=t

Figure 6.1: Segment [s, ¢] where f, > f.

Hence for = € (&, &i1],

£0)(= — g) "
2f"(gi)

nip. e
<1+ lf (97)|(1 g”> sup kak—'l S 1 —|—C|(17—91)»

1+ > ol f(al
2|f'(!]z’)| z€(3.3]

where C; = ;‘:—:}%k (%) . Similarly,

F(0)(z = g)|*
2f(g:)

Therefore we obtain the following inequality

/

After integration, we can rewrite this incquality in the following way:

m £iv1
<C'Z/ (x — g))F dz.

i=0

ful@) - $@)| do - Z/ (0l x — 0" o

/ fula) - r)[ dr—k—;—lz|f<gz>|*{<a+1—gz>k“ (& — 9"}

m

P2 _ (g, — gi)FH?
< k + 2 -gi) & — i) } . (6.3.3)

Next, let us consider the second integral in the statement of the lemma:

Un(a) ~ g(ﬂ

f(s) u
e o) e = o oY R

(t) i=0 Y g
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now using that ¢; < r < ¢iy1 < &41. Apply Taylor expansion to f’ in the point g;. For the
right hand side, we then obtain

3 / (€t — 21 () + F(B3)(z — gl do,
=0

for some 8; between x and g;. Using (6.3.2), by means of the same arguments as above we get
the following inequality:

~ k
o 0@ -g@| @ e
/f(t) Wl_da—Z/ If (gi)l (st —z)tdx

=0 vV 9i

Gi+1

<C Z/ (&iy1 — :c (x — ¢:) dz. (6.3.4)

Since g; < = < giy1 < €41, for each term on the right hand side of (6.3.4), we have that

N Git1
/ (1 —2)f (@ —g)dz < (1 — ) / (o —o)de
gi 1 )
T k+1 {(&+1 = 9" = (i1 — gir)" (&1 — 90)}
< ﬁ {(Gr1 = 90" = (€1 — gis)**?}

Hence from (6.3.4) we find that

_ k
1) |Un(a) ~ g(a)| 1 . k k
/f(t) lg' (@)1 da — E+1 ;U (@)% {(€is1 — 9)** = (Liv1 — gi1)**}

< kcﬁ'—ll ; {(&+1 — 9" = (€11 — 9i1)* 7} (6.3.5)

For the third integral in the statement of the lemma, similarly as before, we can write

£s) a)‘ o y
/f(t)Wa_Z/ Flg)l" € — )

According to (6.3.2) we have that for z € (g.-,gi+1),

fll
fl

f”( ) . k+1
TP )( 9)

b Fie-a]

so that after integration we obtain

Un(a) - g(a)

F(s 2
/m) g’ (a)|* = k +2 Z {(&r1 = 9" = (&1 — gi)**?}, (6.3.6)

’k+1
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where Cp = (%)k+1 inf | f7]F+1.

Now, let us define A as the difference between the first two integrals:
1 |0n(@) - g(@)]

def/
(t) lg'(a)[*=?

By (6.3.3) and (6.3.5) and the fact that § = go and &1 = gm1, we find that

da.

Fola) — ()| o /f

Al < DZ(§i+l = gir))" 1P (@) = 1 (girn)
im0

P Z {Grr = 9™ = (& — 9%} (6.3.7)
i=0
b Z {61 - A (ST gi+l)k+2} )

where D is some positive constant that depends only on the function f and k. By a Taylor
expansion, the first term on the right hand side of (6.3.7) can be bounded by

m

D Z(€i+l — i) IF ()% — £/ (9:) + £7(6:) (g1 — gi)¥]

i=0

€ 4 109 (gin -g)|*
= ;(5 +1 = Git1) | f’(gz)
< o _ 1k SUD If | . k-1
= DZO:(€1+1 gz+l) (gz+1 gt) b‘lplf l inf lf,| m:él:)%] k
<Cs ) (& — 9t (gin1 — 9),

i=0

with Cs only depending on f and k, where we also use (6.3.2) and the fact that according to
(6.3.1), we have that (gi+1 — i) sup |f”|/inf|f’| < §. Since g; < giy1 < &1, this means that
the first term on the right hand side of (6.3.7) can be bounded by

Cs Z(€i+1 —gi) M g1 — 6) < C3D_{(&n — ) — (Gor1 — gir)} (i1 — gir1)*H

=0 =0

Cs Y {(G1 — g = (G — gi)**}
i=0

IA

Because & = go and £my1 = gmi1, for the second term on the right hand side of (6.3.7), we
have that

m

Z {(§i+1 - gi)k+2 — (& — gi)kH} = Z {(§i+1 - gi)k+2 = (& — 97:+1)k+2} :

=0
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Putting things together and using (6.3.6) we find that

k+1

Al LC Y k+2 k21 <« 0"((1) —9la)
Al < 4%{(5@1 =) — (i — 9in) P} <G " TT@F

f()

da,

where C5 only depends on f and k. This proves the lemma for case 1.

F(8) = g o e

QU] —

/ density f

Q3 — -

Qg — -

[ R  function J,

!
l
t
|
|
|
l

_I._______

b & & & g(aa) §4 &=

Figure 6.2: Segment [s,t] where f, < f.

For case 2, the proof is completely similar. The main difference are that f,,({i) = q; (see
Figure 6.2) and that the Taylor expansions are applied to f in g;; instead of g;. Similar to
(6.3.3), now using that g;1; > &1 > &, we now obtain

folw) = $@)] dr 21 o)l {(gme = €0 = (g = 600"}
< Cl Z {(941 = &)™ = (i1 — &n)* 2} (6.3.8)
1—0

Similar to (6.3.5), now using that g;; > g; > &, we now obtain

k
7 |Un(a) = g(a)[ 1 . .
f T@ET e T S e (0~ 60~ -6

< % > Al = &5~ (g - &)}, (6.3.9)
) i=0
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and similar to (6.3.6) we find

k+1

1) [Un(a) — g(a) oo
- da 2 2. (gz 1= &,)]‘H'Q _ ((] . 5_)]\7+2 . (6310)
/fm lg'(a)|F k+2 ;{ +1 7 & i — &)Y
For the difference between the two integrals, again using that & = go and &y = gmyr, we

now find

Al < DZ(Qi — &£ (g0 F = | F (gis)[¥]

m

+DZ {(gin1 = &)*? = (9. — &)™} (6.3.11)

i=0
m
+DZ {(gi+l = &) = (gin1 - §i+1)k+2}
i=0
where D is some positive constant that depends only on the function f and k. The first two

terms on the right hand side of (6.3.11) can be bounded similar to the first two terms on the
right hand side of (6.3.7), which results in

- k+1
m £s) {Un(a) — g(a)
Al £ Cy (gir1 — &) = (9 — &)} < G5 —— da,
2 flow G )y T @F
where C only depends on f and k. This proves the lemma for case 2. ]

6.4 Asymptotic normality of the L;-error

We will apply Lemma 6.3.1, to the following cut-off version of fn:

) F0) i fule) 2 1(0),
falt) = q fal@) if f(1) < fulz) < F(0), (6.4.1)
f1) if fo(z) < f(1).
The next lemma shows that f, satisfies condition (6.3.1) with probability tending to one.

Lemma 6.4.1 Define the event

A= { sup |fu(2) — f(2)
z€(0,1]

< infzep, [ ()2
- 25“Pte[0,|] |f" ()]

Then P{A5} — 0.

Proof: It is sufficient to show that sup |fn(z) — f(z)| tends to zero. For this we can follow
the line of reasoning in Section 5.4 in GROENEBOOM AND WELLNER (1992). Similar to their
Lemma 5.9 we derive from our Lemma 6.2.1 that for each a € (f(1), f(0)),

P(|Un(a) — g(a)] = n~3logn) < Cy exp{—Ci(logn)’}.
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This, in turn implies, by monotonicity of U, and the conditions of f that there exists a constant
C3 > 0 such that

P sup |Ud(a) - g(a)l = Csn"*logn | < G exp{—1Cy(logn)?}.
a€(f(1),£(0))

This implies that the maximum distance between successive points of j jump of £, is of the order
O(n~'3logn). Since both f, and f are monotone and bounded by f (0), this also means that
the maximum distance between f, and f is of the order O(n~Y3logn). ]

The difference between the Ly-errors for f, and fa is bounded as follows

\ [ 1) - 1@t de - [1ue) - @ da (6.4.2)
0 0

UalsO) L
S/ |faz) — f()|F dz+/ | fulz) ~ f(z)|* da.
0 Un(£(1))

The next lemma shows that the integrals on the right hand side are of negligible order.

Lemma 6.4.2 Let U, be defined in (6.1.1). Then

Un(FO)) et
/0 ule) = F@)* de = opln~ %),

and

/ 1a() — f(@)* dz = op(n~ %),

Un(£Q2))
Proof: Consider the first integral, which can be bounded by

Un(f(0)) Un(£(0))
ot / Fue) = FOFd+2* [ 15@) - 5(0) o
0 0

g [OUO k 2 1k k+1
< [T lh@ - 10k i+ D AU (643)

Define the event B, = {U,(f(0)) < n~'2logn}. Then U,(f(0))**'15, = 0,(n=@+1/6). More-
over, according to the Theorem 2.1 in GROENEBOOM ET AL.(1999) it follows that P{BS} — 0.
Since for any 1 > 0,

P (0™ 0. (£O) 411, > 7) < P(BY) -0,

this implies that the second term in (6.4.3) is of the order o,(n~(**+1)/8)  The first term in
(6.4.3) can be written as

Un(£(0)) Un(f(0))
2k ( / |fn(x)—f(0)|’°dz) lg, +2¢ ( / |fn(w)~—f(0)|kdz> lge,  (6.4.4)
0 0

where the second integral is of the order o,(n~(+1)/6) by the same reasoning as before. To
bound the first integral in (6.4.4), we will construct a suitable sequence (a;)™,, such that the
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intervals (0,n%] and (n~%,n~%+], fori = 1,2,...,m—1, cover the interval (0, Un(f(0))], and
such that the integrals over these intervals can be bounded appropriately. First of all let

1>a1>a2> > am_1 2 1/3 > au, (6.4.5)

and let 2 =0 and z; =n"%, i =1,...,m, s0 that 0 < z; < --- < 2,01 <~ % < z,,. On the
event B,, for n sufficiently large, the intervals (0,n~*] and (n=%, n=%+'] cover (0,U,(f(0))].
Hence, when we denote J; = [2; A Un(f(0)), zi41 A UL(f(0))], the first integral in (6.4.4) can be
bounded by

m—1

= ([ (k) = 7000 o) 16, < 31 = 20l ol = SO
=0 S

i i=0

using that f. is decreasing and the fact that J; C (0.U,(f(0))], so that fu(z) — f(0) >
fn(x) — f(0) > 0 for « € J;. It remains to show that

m~—1
DG — @)l fulz) = FOF = o). (6.4.6)
=0
From WOODROOFE AND SUN (1993), we have that
Fal0) 2 £(0) sup L, (6.4.7)
1<j<00 F]

where T'; are partial sums of standard exponential random variables. Therefore

21| £n(0) — FO)|F = Op(n~). (6.4.8)

Since for any i = 1,...,m — 1 we have that a; > 1/3, from Theorem 3.1 in KULIKOV AND
LoOPUHAA (2002), it follows that

|fn(zi) - f(O)l S |f1z(zi) - f(zz)l + sup If’|zi = Op(n_(l_ai)/z) + Op(n_ai) = Op(,,,,/—(l—a.-)/?).
This implies that fori =1,...,m -1,
(201 — 2)|fal@) = FO)[f = Op(n o —HIma0/2), (6.4.9)

Therefore, if we can construct a sequence (g;) satisfying (6.4.5), as well as

2k
a ; : (6.4.10)
k(1 —aq; 2k +1 .
ai+1 + ( 2(1) > ; , foralli=1,...,m—1, (6.4.11)

then (6.4.6) follows from (6.4.8) and (6.4.9). One may take

2k +7
a = —

12

ka; — 1 2k +3
Giy1 = (a2 )+ ;_, fori=1,...,m—1.
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Note that the left hand side of (6.4.11) is larger than (2k + 3)/8. Therefore, since k < 2.5, it
immediately follows that (6.4.10) and (6.4.11) are satisfied. To show that (6.4.5) holds, first
note that 1 > a; > 1/3, because k£ < 2.5. It remains to show that the described sequence
strictly decreases and reaches 1/3 in finitely many steps. As long as a; > 1/3, it follows that
_2-k 2k -3

@i — iy = ’Tai 8
When k = 2, this equals 1/8. For 1 < k < 2, use that a; > 1/3, to find that a; — a;4; > 1/24,
and for 2 < k < 2.5, use that a; < a; = (2k+1)/7, to find that a; — ;1 > (k+ 1)(2.5 — k)/12.
This means that the sequence (a;) also satisfies (6.4.5), which proves (6.4.6).

Similar to (6.4.3), the second integral can be bounded by

Qk/l 1£(1) = fal@)|F dz + 2 sup [f/[F(1 = Un(f(1))F
Un(£(1)) " T k+1 "

From here the proof is similar as above. We can use the same sequence (a;) as before, and take
B, ={1-Un(f(1)) < n *3logn}. f wenowdefine 20 =1, =1—n"% fori =1,2,...,m—1,
then similar to the argument above, we are left with considering

</U,.(f(1)) 1£(1) = fa(@)]¥ d:r> 1p, < ;(zi — zi)|F(1) = falz)F. (6.4.12)

The first term is R

(1= (1 =) |f(1) = fa(L)IF =n" f(1)%,
and according to Theorem 4.1 in KuLikov AND LoPUHAA (2002), it follows that for i =
1,2,...,m — 1 each term is O,(n~%+~k1-0)/2)  Ag before the sequence (a;) chosen above
satisfies (6.4.10) and (6.4.11), which implies that (6.4.12) is 0,(n~(*+1/6) This proves the

lemma.
[]

We are now able to prove our main result concerning the asymptotic normality of the Ly-
error, for 1 < k < 2.5.

Proof of Theorem 6.1.1: First consider the difference

Y ) — e - [T 1Un(a) - g(a)l*
/0 |[fulz) = fx)|* dx /m) rOE da (6.4.13)
which can be bounded by
1 R 1 .
} | k)= s@pde - [ 1@ - @) de] + R, (6.4.14)
0 0

where
O Uy (a) — g(a)*

1
_ () — f2)* do — bl AN A ol B PN
R, = ‘/0 |fa(z) — f(z)|"d /f(l) g (1 d
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Let A, be the event defined in Lemma 6.4.1, so that P{A%} — 0. As in the proof of
Lemma 6.4.2, this means that R,la; = o,(n~*+1/6). Note that on the event A,, the function
fn. satisfies the conditions of Lemma 6.3.1, and that for any a € [f(1), f(0)],

Un(a) = sup{t € [0,1] : fult) > a} = sup{t € [0,1] : fu(®) > a} = U,(a).
Moreover, we can construct a partition [0.51], (51,89, .-, (s1,1] of [0,1] in such a way that on
cach element of the partition, f, satisfies either condition 1 or condition 2 of Lemma 6.3.1.

This means that we can apply Lemma 6.3.1 to each element of the partition. Putting things
together, it follows that R,14, is bounded from above by

(‘1 /f(O) II]"((I) - g(a)lk+1 d
. F) lg'(a)[*

Corollary 6.2.1 implies that this integral is of order @, (n~*+ /%) so that R, 14, =0,(n=Gk+1/6),

Finally, the first difference in (6.4.14) can be bounded as in (6.4.2), which means that according
to Lemma 6.4.2 it is of the order op(n‘(z“l)/ 8). Together with Corollary 6.2.1, this implies that

o (w7 [ o) = S0t de = ) = N0,

where ¢? is defined in Theorem 6.2.1. An application of the é-method then yields that

RV <n1,3 ( /0 1 |fulz) = f(x)lkd:z) " m)

converges to a normal random variable with mean zero and variance

{1 ( k)l/k—l : 2 o 2
7 (ke } 0'= o3 =0 1
k kg“ik 2

6.5 Asymptotic normality of a modified L;-error for a
large k

For k > 2.5 the result of Thcorem 6.1.1 does not hold. We will use the next lemma to show
that the order of variance of the standard Ly integral is too big then.

Lemma 6.5.1 Let k > 2.5 and z, = 1/(2nf(0)). Then there are ai, by, a2 and by such that
0<a1<b <ay,<by<ooandfori=1,2

Zn
liminf P {n /
n—0oQ 0

. k
(@) — f(z)| dx € [ai,bi]} > 0.
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Proof: Let the event A, = {X(1) > 2.}, so that P{A,} — 1/\/e > 1/2. Then, since a; > 0
and since under A, the function f,(z) is constant on the interval [0, z,],

)

Fulz) = f(a:)’kd:s c [ai,b,-]}

> P{(n [ |0 - 1@ ) 10, € ot}

= P{(57G [0 - 1O + R ) 10, € wbl}. (650

R, = kn/ozn gk! (}f"(O) —f(z)’ -

and 6, lies between ’fn(O) - f(.z)‘ and ‘fn(O) - f(O)’. Using (6.4.7) we obtain that (6.5.2) is
of the order O,(n~!) and therefore

where

Fa(0) - f(O)D dz (6.5.2)

Fal0) = FO)| + Re = 20

2f (0)

in distribution.
Let us choose a;, b;, i = 1,2 so that

1’{%1”(0)’“‘1 3';11)% ke[aub]} > (1-1/Ve).

Then (6.5.1) is bounded from below by

d { (2f(0)

which converges to a positive value. [

7.0 = 10 + B2 € fab)} - PL4)

Application of this lemma implies that

asymptotically will be bounded away from zero. Therefore to have a finite variance of the
Ly-error, other scaling is required. The usual Li-error can be modified so that a result similar
to Theorem 6.1.1 will hold. For k > 2.5 we will consider a modified Li-error of the form

l-n~* & 1/k
( R ECEE] dz) :

where 1/6 < € < (k —1)/(3(k — 2)). In this way we avoid a region where the Grenander
estimator is inconsistent and we are still able to determine its global performance. In order to

fio) - 10| € ot}
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prove a result analogous to Theorem 6.1.1, we define another cut-off version of the Grenander

estimator: .
[ i fule) 2 f(n7),
f@) =3 Fle)Hf1- ) < fule) < (0,
fA=n") if fo(x) < f(1 =n79),

and its inverse function
Us(a) = sup {:r e~ 1—n": fulz)> a} , (6.5.3)
for a € [f(1 —n7°), f(n™)]. The next lemma is the analogue of Lemma 6.4.1.
Lemma 6.5.2 Define the event
e . infejo [ f'(2)[?
4= {,i‘[t‘i] 50— S < 5 TP } |
Then P(AS) — 1.

Proof: Its suffices to show that sup,ep ) [ («) — f(z)| — 0. Using the definition of f; we can
bound

sup |f1(x) = f(2)] < sup |f(z) = fal®@)| + sup |ful2) - f(2)], (6.5.4)
z€[0,1] r€(0,1] z€[0,1]

where f, is defined in (6.4.1). The first term on the right hand side of (6.5.4) is smaller than
sup | f'|n~¢ which, together with Lemma 6.4.1, implies that sup ¢ 1) |f5(x) — f(x)] = 0p(n7/®).
]

Similar to (6.4.2), the difference between the modified Ly-errors for f, and f¢ is bounded
as follows

€

[ @ -s@ta- [ 5@ - i@k

€ n—¢

3

(6.5.5)

€

VU - )
< / 1Ful2) — f(o) Fda + / Fule) - F(@)]* da.

- Ug(f(1-n=¢))
The next lemma is the analogue of Lemma 6.4.2 and shows that both integrals on the right

hand side are of negligible order.

Lemma 6.5.3 Let Us be defined in (6.5.3). Then

U () _
/ |fn(z) - f(it)lkd:l::r)p('nfz—keﬂ)’

—¢

and

€

/ - |fn(l') - f(l)lk dz = op('rfz&cﬂ).

Ui(f(1-n"%))
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Proof: Consider the first integral, then similar to (6.4.3) we have that

Un(f(n™)) | Un(f(n™)) X
2 [ i@ - fekde 2t [ i - faltds (650

—€ n-¢

VST ok
<2 [0 lfu(@) — S de + g sup U A7) = 7O

If we define the event BS = {US(f(n~)) —n~¢ < n~'/3logn}, then by a similar reasoning as
in the proof of Lemma 6.4.2, it follows that (US(f(n™¢)) — n~¢)k*+! = o,(n~(*+1)/6) The first
integral on the right hand side of (6.5.6) can be written as

Us(f(n™9)) . Us(f(n™)) .
[ @ - sotde |1+ ([ 1) - sl de ) 1,

where the second term is of the order op(n‘%i) by the same reasoning as before. To bound

Us(f(n=°)) |
(/ |fn(x) - f(n_e)lk dT) 1Bn7 (657)

we distinguish between two cases:
(i) 1/6 <e<1/3,
(ii) 1/3 < € < (k —1)/(3k — 6).

In case (i), the integral (6.5.7) can be bounded by |f,(n~¢) — f(n~¢)|*n"1/3logn. Since 1/6 <
€ < 1/3, according to Theorem 3.1 in KULIKOV AND LOPUHAA (2002), it follows that | f,(n~¢) —
f(n9)| = Op(n~1/3) and therefore (6.5.7) is of the order o, (n~(2+1)/6),
In case (ii), similar to Lemma 6.4.2, we will construct a suitable sequence (a;)1*,, such that
the intervals (n=%,n~%+], fori = 1,2,...,m~ 1 cover the interval (n™%, U,(f(n™))], and such
that the integrals over these intervals can be bounded appropriately. First of all let

E=a1 > a3 > > Gy > 1/3 > am, (6.5.8)

andlet z; =n"% i=1,...,m sothat 0 < z; < -++ < zm_1 £ n~'/3 < z,. Then, similar to
the proof of Lemma 6.4.2, we can bound (6.5.7) as follows

m—1

Us(f(n™9))
(/ |fula) (fww%m<2wﬂ—|mm-< I

—¢ i=1

For k > 2.5, we have 1/3 < a; < e < 1, for i = 1,...,m — 1. This means that we can apply
Theorem 3.1 in KULIKOV AND LOPUHAA (2002) to each term and conclude each term is of order
O,(n~(=9)/2) Therefore, it suffices to construct a sequence (a;) satisfying (6.5.8), as well as

k(l —a,-) S 2k +1

5 e foralli=1,...,m—1. (6.5.9)

iy +
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One may take

a = €
Blai—1)  2k+1 1[ k-1
% = Tt +§(3

— —c fori=1,...,m—-1.

. (k. — 2) > il k)

Then (6.5.9) is satisfied and it remains to show that the described sequence strictly decreases
and reaches 1/3 in finitely many steps. This follows from the fact that as soon as a; < e, for
k > 2.5 we have:

a k—2/( k-1 1/ k-1 . >4k—9 k-1 -0
G-ty =——7 | —-)—s|l77—F=—-¢€)|]>2— | =7 — .

1T \3k-2) 8 \3(k—2) 8 \Bk-2) °©

As in the proof of Lemma 6.4.2 the argument for the second integral is similar. Now take

By = {1 —n*—U(f(1 —n~)) <n ' logn}. The case 1/6 < e < 1/3 can be treated in the
same way as before. For the case 1/3 < € < %, we can use the same sequence (a;) as above,

but now define z; =1 —n™%, i =1,...,m,sothat 1 > z; > ... > zp.1 21 —n"13 > z,..
Then we are left with considering

1-n~*¢ . m—1 - o "
<‘/U‘(f(l—n“)) 0= ) = et dx) L, < Z i) [f(L=n7) = ful)[*

n

As before, each term in the sum is of the order O, (n“’“l*k(l—ai)/?), fori=1,...,m—1. The
sequence chosen above satisfies (6.5.9) and (6.5.8), which implies that the sum above is of order
0,(n—(2k+1/6). -

Apart from (6.5.5) we also need to bound the difference between integrals for U, and its
cut-off version Uy:

£(0) _ k f(n™%) € _ k
/ Vata) = g(@* / V(@) —g@)tt
(0 l9'(a)| f1-n=¢) lg'(a)l

£(0) _ k Fa(1=n~*) _ k
< / lUn(tf) f_(?)l da+ / Un(‘f) f_(?)l da.
fa(n—<) lg'(a)| F(0) |9’ (a)l

(6.5.10)

The next lemma shows that both integrals on the right hand side are of negligible order.

Lemma 6.5.4 Let 1/6 < € < T(T—Lz) Furthermore let U, be defined in (6.1.1) and let f, be
defined in (6.4.1). Then

FO U (a) — g(a)|* -
[ gl o,
fnln—e) lg'(a)|*~

and

Fall=n"9 |7 (a) — k .
[ =g gy = gy,
Jrw lg'(a)]
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Proof: Consider the first integral and define the event A, ={f(0) — f.(n™) < n~"/%/logn}.
For 1/6 < € < 1/3, according to Theorem 3.1 we have that

F0) = fa(n™) S Ufaln™) = FO) < |fa(n™) = f(n™)] +sup|f'|n”¢
= O,(n7V3) + O(n) = 0,(n""%/logn).

This means that if 1/6 < € < 1/3, the probability P{AS} — 0. For 1/3 <e < 1,
P{AS} < P(f(0) = fuln™) > 0) < P (fa(n™) = f(n™) < n~*sup ') =0,

since according to Theorem 3.1 in KuLIKOV AND LOPUHAA (2002), fn(n“) — f(n™) is of order
n~(1-9/2 Next, write the first integral as

"0 |Un(@) - g(@)]* 0 [Una@) ~g@* ,
</f,.(n—<) |g'(a)|¥1 da) 14, + <~/f-n('n“) g/ (a)[F 1 da ) 1a. (6.5.11)

Similar to the argument used in Lemma 6.4.2, the second integral in (6.5.11) is of the order
op(n‘g_ksﬂ). The expectation of the first integral is bounded by

10 |Un(a) - g(a)[*
! Bro =

0)-n~1/6/logn !gl(a)lk_l

da

IA

. IO .
nF3¢, / E|V,E(a)| da
f(0)—n~=1/¢/logn
< Czn_¥/logn,

using Lemma 6.2.1. The Markov inequality implies that the first term in (6.5.11) is of the order

op(n‘&%&). For the second integral the proof is similar. u

Theorem 6.5.1 Suppose conditions (A1) - (A3) of Theorem 6.1.1 are satisfied. Then for
k > 2.5 and for any €, such that 1/6 < e < %,

1-n"¢ 1/k
n1/6 {nl/S (/_e Ifn(-'lf) _ f(z)lk d:l‘) _,U'Ic}

converges in distribution to a normal random variable with zero mean and variance 0%, where
px and o2 are defined in Theorem 6.1.1.

Proof: As in the proof of Theorem 6.1.1, it suffices to show that the difference

R o) o)
/ . |fulz) = f(2)|Fdz - /f . % da

is of the order o,(n~(®**1/8) We can bound this difference by

3

1-n"*¢ R l—-n—¢
‘/ﬂ |fu(z) — f(2)|* dzx — /ﬁ |fe(z) = f(z)|*da (6.5.12)
10U (@) —g(@)ff (1" |Us(a) - g(a)* o
/f o Ig@E da /f ey @ da (6.5.13)
1-n 01U (@) — a(8)IE
+ /n @) - @) d - /f (l_n_‘)%g'—da . (65.14)
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Differences (6.5.12) and (6.5.13) can be bounded as in (6.5.5) and (6.5.10), so that Lemmas 6.5.3
and 6.5.4 imply that these terms are of the order o,,(n‘%’_l). Finally, Lemma 6.3.1 implies that

(6.5.14) is bounded by
F™) e _ k+1
[ 1wt
f(i-n-¢) |q ((l)|

Write the integral as

0 0, (@) = gl ([0 Wl = g@ ) 1) gl
~/f(1) 1g'(a)[* da+ /;(U g (@)[F da ‘/f(hnrc) ()" da ).

Then Corollary 6.2.1 and Lemima 6.5.4 imply that both terms are of the order op(n_%ﬂ)A This
proves the theorem. u
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Summary

DIRECT AND INDIRECT USE OF MAXIMUM LIKELIHOOD

Maximum likelihood methods certainly belong to the most known and commonly used in-
struments for estimation and testing in statistics. But in contrast with one-parametric problems,
where application of these methods is well-studied and usually does not cause any difficulties, in
case of non-parametric or semi-parametric models it becomes more complicated. 1t may happen
that the rate of convergence will differ from the usual \/n and the limiting distribution will
differ from the normal one. Furthermore, when models with possible loss of data are considered,
even applicability of the standard likelihood ratio testing procedures may depend on the family
of alternatives in a quite sophisticated way. Finally, standard testing procedures based on max-
imum likelihood ideology may become computationally too complicated and other, modified
procedures, combining advantages of the maximum likelihood and simplicity of other known
methods should be established for the practical application.

In the first chapter of this thesis we review some known results on the application of maxi-
mum likelihood methods in case of a decreasing density model and in case of interval censored
Cox model. Besides these particular results we also recall the usual instruments applied to
studying the limiting distributions of certain functionals of the maximum likelihood estimator
and to establish its asymptotic efficiency. Some notes on the implementation of the maximum
likelihood in these settings are also provided.

In chapters 2 and 3 we will construct two-sample tests for testing that the distribution
functions Fy and Fj, generating the two samples, are equal, in the case that the samples are
subject to current status censoring. We will test the null hypothesis Fy = F} against Lehmann
alternatives F; = F,*? for some # > —1 or against the proportional hazard alternatives. This
problem has many applications, for example in medicine and biostatistics. Suppose we want to
find out if some working or living conditions cause certain disease when this disease can only
be found at later medical examination. Comparing two groups of people where members of
the second group have encountered the factor of interest during the known period of time, the
hypothesis of equal distributions of the time until a person from the first and from the second
groups becomes ill can be tested using the established methods.

The test proposed in chapter 2 is based on the score function and the NPMLE under the null
hypothesis. The test statistic is shown to converge at rate /n and to be asymptotically normal
both under the null hypothesis and under a contiguous alternative. Moreover, we show that
the test is asymptotically efficient for testing against the alternative F; = Fat?. This testing
procedure is easy to implement, but the parameters of the limiting normal distribution depend
on the underlying distributions. They must be estimated too, which certainly diminishes the
accuracy of testing.

Therefore we also propose a test based on the likelihood ratio statistic. Under the null
hypothesis this statistic is shown to be asymptotically chi-squared with one degree of freedom
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and under a contiguous alternative the limiting distribution is that of a squared normally
distributed random variable with non-zero mean. This test is also asymptotically efficient
for testing against the alternative F} = Fj*?. Its implementation is more complicated since it
includes a semi-parametric maximum likelihood estimation which takes much more calculations
than non-parametric estimation under the null hypothesis. Pictures showing results of a short
simulation study can be found at the end of chapters 2 and 3.

The most important instrument used in chapters 2 and 3 is a generalization of the chaining
lemma and, in fact, of the uniform central limit theorem. Another important intermediate result
that should be mentioned here is that although the semi-parametric MLE under the Lehmann
alternative has a rate of convergence slower than \/n, under a contiguous Lehmann alternative
the MLE of the one-dimensional parameter 6 converges at rate v/n and has an asymptotically
normal distribution.

In the last three chapters of this dissertation we concentrate on another application of the
maximum likelihood estimation. Properties of the NPMLE of an isotonic density, also known as
the Grenander estimator, such as rate of convergence and pointwise convergence in distribution
are well studied. We tried to answer some questions about applicability and performance of the
method. First of all the Grenander estimator should be applied only if the underlying density
is isotonic, therefore we need a testing procedure to test this null hypothesis against any non-
isotonic alternative. In chapter 4 we consider the difference between the integrated Grenander
estimator and the empirical distribution function under the hypothesis of a decreasing density.
After re-scaling this process converges locally to a limiting process and furthermore the integral
of this difference is shown to converge at rate n*3 and to be asymptotically normal after
appropriate re-scaling. Choosing this as a test statistic we therefore can test the hypothesis
that the underlying density is monotone decreasing.

Furthermore we study the behavior of the Grenander estimator near the boundary of sup-
port (suppose without loss of generality it is [0, 1]). Pointwise inconsistency of the Grenander
estimator at these points is well known and there are some uniformly consistent modifica-
tions of the estimator proposed by other authors. In chapter 5 we show that the difference
(fa(n™®) = f(n™*)) converges at rate n(0=*/2 for 1/3 < a < 1 and at rate n1/3 for 0 < o < 1/3.
We also obtain the limiting distribution of this difference. That result is close in spirit and
method of proof to pointwise convergence results for the Grenander estimator known before.
Based on it we propose another uniformly consistent modification of the Grenander estimator,
which combines small mean squared error and easy implementation. Result of the simulation
study and comparing with the modification known before can be found at the end of chapter 5.

Another consequence of the properties established in chapter 5 is that the Li-error of the
Grenander estimator has k = 2.5 as a kind of transition point. For k < 2.5 this global measure
of performance converges at rate n!/® and after certain re-scaling is asymptotically normal. On
the other hand, for & > 2.5 the rate of convergence of the standard Li-error is slower than
n'/3 and the limiting distribution differs from a normal distribution. This is explained by a
greater contribution of integration near the boundaries of support and by the inconsistency
of the Grenander estimator in these points. Nevertheless, we can modify the Ly-error in a
way that has a close connection to the standard Li-error of the modified estimator, which
modification converges at rate n'/® and after certain re-scaling has normal limiting distribution.
This generalizes the Ly-error result known before.

BY V.N.KULIKOV




Samenvatting

DIRECT EN INDIRECT GEBRUIK VAN MAXIMUM LIKELIHOOD

Ongetwijfeld behoren de maximum likelihood methodes tot de meest bekende en algemeen
aanvaarde instrumenten voor het schatten en toetsen in de statistiek. Maar in tegenstelling
tot één-parameter problemen, waarbij deze methodes volledig bestudeerd zijn en meestal geen
moeilijkheden veroorzaken. is het geval van niet-parametrische of semi-parametrische modellen
meer gecompliceerd. Het kan gebeuren dat de snelheid van convergentie van de gebruikelijke Vn
zal verschillen en dat de limietverdeling zal verschillen van de normale verdeling. Bovendien,
als modellen met eventueel verlies van de data worden beschouwd, kan zelfs toepasbaarheid
van de standaard likelihood ratio toetsingsprocedure op cen ingewikkelde manier van het al-
ternatief afhangen. Ten slotte, standaard toetsingsprocedures, die op de maximum likelihood
ideologie gebaseerd zijn, kunnen ook veel te moeilijk om uit te rekenen worden. Voor praktische
toepassingen moeten andere, gemodificeerde procedures, die zoveel mogelijk voordelen van de
maximum likelihood en eenvoud van andere bekende methodes combineren, ontwikkeld worden.

In het eerste hoofdstuk van dit proefschrift beschouwen we bekende resultaten van de max-
imum likelihood methode toegepast op modellen met een dalende dichtheid en ook op interval
gecensureerde Cox modellen. Behalve deze resultaten beschouwen we ook gebruikelijke instru-
menten, die toepassing hebben op het verkrijgen van de limietverdeling van verschillende func-
tionalen van de maximum likelihood schatter en voor bewijs van zijn asymptotische efficiéntie.
Er zijn ook enkele opmerkingen te vinden betreffende de implementatie van de maximum like-
lihood schatter in de voornoemde modellen.

In hoofdstukken 2 en 3 bestuderen wij het toetsen of twee verdelingsfuncties Fy en Fj,
waaruit twee steekproeven getrokken werden, gelijk zijn aan elkaar, in het geval dat deze
steckproeven interval gecensureerd zijn. We zouden de nulhypothese Fy = F; willen toet-
sen tegen het Lehmann alternatief Fy = 0]+0, voor een # > —1, of tegen het proportional
hazard model. Dit toetsingsprobleem heeft veel toepassingen, onder andere in de geneeskunde
en de biostatistiek. Bijvoorbeeld, om te bepalen of een of andere zickte beinvloed wordt door
bepaalde woon- of werkomstandigheden, als deze zickte pas tijdens later medisch onderzoek
wordt geconstateerd, kan de twee-steekproeven toets voor interval gecensureerde data gebruikt
worden. In dit geval zullen we twee grocpen vergelijken, waar mensen uit de tweede groep
gedurende een bekende termijn met de factor, die we willen bestuderen, zijn geconfronteerd, en
waar de hypothese van gelijke verdelingsfuncties van het tijdstrip waarop een persoon uit de
eerste en uit de tweede groep ziek is geworden wordt getoetst door middel van de ontwikkelde
methodes.

De in hoofdstuk 2 voorgestelde toets is gebaseerd op de score functics en op de NPMLE
onder de nulhypothese. Wij tonen aan dat de toetsingsgrootheid met snelheid v/n convergeert
en asymptotisch normaal is onder zowel de nulhypothesc als cen contigu alternatief. Bovendien
bewijzen wij dat deze toets asymptotisch efficiént is tegen het alternaticf Fy = Fo“'e. Implemen-
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tatie van deze toetsingsprocedure is eenvoudig, maar parameters van de normale limietverdeling
hangen af van de onderliggende verdelingen. Wanneer men de toets uitvoert, moeten de pa-
rameters geschat worden. Dat zal ongetwijfeld de nauwkeurigheid van de toets verminderen.

Daarom stellen we tevens een op de likelihood ratio gebaseerde toets voor. We bewijzen dat
de limietverdeling van deze toetsingsgrootheid onder de nulhypothese chi-kwadraat is met één
vrijheidsgraad, terwijl onder een contigu alternatief de limietverdeling die van een gekwadra-
teerde, niet gecentreerde normaal verdeeld stochast is. Deze toets is ook asymptotisch efficiént
tegen het alternatieve Fy = Fo”o. Implementatie van deze toestsingsprocedure is meer gecom-
pliceerd omdat het de semi-parametrische maximum likelihood schatter bevat die veel meer
rekentijd kost in verhouding tot de niet-parametrische schatter onder de nulhypothese gebruikt
in de eerste methode.

Het belangrijkste instrument gebruikt in hoofdstukken 2 en 3 is een generalisatie van het
stochastic equicontinuity lemma dat, in feite, neerkomt op een generalisatie van de uniforme
centrale limietstelling. Een andere belangrijke tussenstap die we hier willen vermelden is dat
ondanks dat de semi-parametrische MLE onder het Lehmann alternatief convergeert met een
snelheid lager dan \/n, onder een contigu Lehmann alternatief convergeert de MLE van de
één-dimensionale parameter 6 wel met snelheid v/n en zijn asymptotische verdeling is normaal.

In de laatste drie hoofdstukken van dit proefschrift concentreren wij ons op een andere
toepassing van de maximum likelihood schatter. Eigenschappen van de NPMLE van een
monotone dichtheid, ook bekend als de Grenander schatter, zoals snelheid van convergentie
en puntsgewijze convergentie in verdeling, zijn bekend. Wij hebben een studie verricht naar de
toepasbaarheid en prestatie van deze methode. Ten eerste, de Grenander schatter kan alleen
toegepast worden als de onderliggende dichtheid monotoon is. Daarom willen we een toets om
tegen alle niet-monotone alternatieven te toetsten. In hoofdstuk 4 beschouwen we het verschil
tussen de geintegreerde Grenander schatter en de empirische verdelingsfunctie, aangenomen dat
de onderliggende dichtheid dalend is. Na bepaalde herschaling convergeert dit proces lokaal naar
een limietproces. Bovendien, de integraal van dit verschil is aangetoond met snelheid n?/3 te
convergeren en na een herschaling asymptotisch normaal te zijn. Deze integraal kan als een
toetsingsgrootheid gekozen worden om te toetsen of de onderliggende verdeling dalend is.

Daarna bestuderen we het gedrag van de Grenander schatter nabij de grenzen van de drager
van de dichtheid (zonder verlies van algemeenheid stel dit is [0, 1]). Het is wel bekend dat in deze
punten de Grenander schatter niet consistent is en er zijn verschillende modificaties van uniform
consistente schatters door anderen voorgesteld. In hoofdstuk 5 laten we zien dat het verschil
(Fa(n~®)—f(n~*)) convergeert met snelheid n(=)/2 voor 1 /3 < @ < 1en met snelheid n'/3 voor
0 < a <1/3. Ook hebben we de limietverdeling van dit verschil afgeleid. Ons resultaat en het
bewijs hiervan zijn vergelijkbaar met resultaten die bekend zijn voor puntsgewijze convergentie
van de Grenander schatter. Bovendien stellen we een andere uniform consistente modificatie
van de Grenander schatter gebaseerd op dit resultaat voor, die makkelijk te implementeren
is en een kleine verwachte kwadratische fout heeft. Resultaten van computer simulaties en
vergelijking van onze modificatie met een cerder bekende modificatie zijn aan het einde van
hoofdstuk 5 te vinden.

Wanneer we de Li-fout van de Grenander schatter bestuderen, blijkt uit de resultaten van
hoofdstuk 5 dat £ = 2.5 een soort overgangspunt is. Voor k < 2.5 convergeert deze globale
maat van nauwkeurigheid van de schatter met snelheid n!/3 en na een geschikte herschaling is
hij asymptotisch normaal. Maar voor k > 2.5 is de snelhcid van convergentie van de standaard
Li-fout lager dan n'/? en zijn limietverdeling verschilt van de normale verdeling. Dit is een
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gevolg van cen grotere bijdrage aan de integraal door de intervallen nabij de grenzen van de
drager en van inconsistentie van de Grenander schatter in deze punten. Niettemin, in hoofdstuk
6 er is ook een modificatie van de Ly-fout voorgesteld, die verband heeft met een standaard
Li-fout van de gemodificeerde Grenander schatter, deze convergeert met snelheid n'/% en na
een geschikte herschaling een normale limietverdeling heeft.

DOOR V.N.KuLIKOV
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