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ABSTRACT
Seismic images provided by reverse time migration can be contaminated by artefacts
associated with the migration of multiples.Multiples can corrupt seismic images, pro-
ducing both false positives, that is by focusing energy at unphysical interfaces, and
false negatives, that is by destructively interfering with primaries. Multiple predic-
tion/primary synthesis methods are usually designed to operate on point source gath-
ers and can therefore be computationally demanding when large problems are con-
sidered. A computationally attractive scheme that operates on plane-wave datasets
is derived by adapting a data-driven point source gathers method, based on convo-
lutions and cross-correlations of the reflection response with itself, to include plane-
wave concepts. As a result, the presented algorithm allows fully data-driven synthe-
sis of primary reflections associated with plane-wave source responses. Once primary
plane-wave responses are estimated, they are used for multiple-free imaging via plane-
wave reverse time migration. Numerical tests of increasing complexity demonstrate
the potential of the proposed algorithm to produce multiple-free images from only a
small number of plane-wave datasets.

Key words: Multiple attenuation, Reverse-time migration, Seismic imaging.

1 INTRODUCTION

Most standard processing steps, for example velocity analy-
sis (Yilmaz, 2001) and reverse time migration (McMechan,
1983; Whitmore, 1983; Zhu et al., 1998; Gray et al., 2001;
Mulder and Plessix, 2004), are based on linear (Born) ap-
proximations, for which multiply scattered waves represent
a source of coherent noise. When linearized methods are em-
ployed,multiples should then be suppressed to avoid concomi-
tant artefacts. Free-surface multiples particularly affect seis-
mic images resulting from marine data (Wiggins, 1988), and
many algorithms have been designed to attenuate the pres-
ence of free-surface multiples (for a comprehensive review,
see Dragoset et al., 2010). On the other hand, internal mul-
tiples strongly contaminate both land (Kelamis et al., 2006)
and marine data (van Borselen, 2002). Fewer techniques have
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been designed to estimate and remove internal multiples. The
seminal method by Jakubowicz (1998) uses combinations of
three observed reflections to predict and remove internal mul-
tiples. However, this scheme requires prior information about
reflections to allow proper multiple prediction and removal.
On the other hand, applications of inverse scattering methods
(Weglein et al., 1997) can predict all orders of internal multi-
ple reflections with approximate amplitudes in one step with-
out model information (ten Kroode, 2002; Löer et al., 2016;
Zhang et al., 2019a).

Multiple-related artefacts can also be dealt with via
Marchenko methods. Marchenko redatuming estimates
Green’s functions between arbitrary locations inside a
medium and real receivers located at the surface (Broggini
et al., 2012; Wapenaar et al., 2012, 2014; da Costa Filho
et al., 2014). In Marchenko redatuming, Green’s functions
are estimated using reciprocity theorems involving so called
‘focusing functions’, that is wavefields which achieve focusing

1834 © 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.



Retrieval of primary plane-wave responses 1835

properties in the subsurface (Slob et al., 2014). In contrast to
seismic interferometry, Marchenko redatuming requires an
estimate of the direct wave from the virtual sources to the
surface receivers, only one-sided illumination of the medium
and no physical receivers at the position of the virtual sources
(Broggini et al., 2012; Wapenaar et al., 2014). Focusing
functions and redatumed Green’s functions can provide
multiple-free images directly (Slob et al., 2014; Wapenaar
et al., 2014). Moreover, combining Marchenko methods and
convolutional interferometry allows estimating internal mul-
tiples in the data at the surface (Meles et al., 2015; da Costa
Filho et al., 2017b). Other applications of the Marchenko
method include microseismic source localization (Behura and
Snieder, 2013; van der Neut et al., 2017; Brackenhoff et al.,
2019), inversion (Slob andWapenaar, 2014; van der Neut and
Fokkema, 2018), homogeneous Green’s functions retrieval
(Reinicke and Wapenaar, 2019; Wapenaar et al., 2018) and
various wavefield focusing techniques (Meles et al., 2019).
Despite its requirements on the quality of the reflection data,
and more specifically its frequency content, the Marchenko
scheme has already been successfully applied to a number
of field datasets (van der Neut et al., 2015b; Ravasi et al.,
2016; Jia et al., 2018; da Costa Filho et al., 2017a; Staring
et al., 2018; Zhang and Slob, 2020b). Further developments
have also shown how a successful Marchenko redatuming
can be achieved either via correct deconvolution of the source
wavelet from the measured data or by including wavelet
information in the Marchenko equations (Ravasi, 2017; Slob
and Wapenaar, 2017; Becker et al., 2018). Recent advances in
Marchenko methods led to revised derivations which resulted
in fully data-driven demultiple/primary synthesis algorithms
(van der Neut and Wapenaar (2016); Zhang and Slob (2019);
Zhang et al. (2019b). Different from standard Marchenko
applications, in these revised derivations the focusing func-
tions are projected to the surface, thus leading to the retrieval
of specific properties of reflections responses in the data at
the surface (i.e. internal multiples/primaries) instead of reda-
tumed Green’s functions. We refer to the class of applications
introduced by van der Neut and Wapenaar (2016) and Zhang
et al. (2019b) as to ‘data domain Marchenko methods’.

Inspired by work on areal-source methods for primaries
(Rietveld et al., 1992), Marchenko redatuming and imaging
schemes were recently adapted to include plane-wave con-
cepts (Meles et al., 2018). Here, we follow a similar approach
and extend the applications of data domain Marchenko
methods, originally derived for point sources, to plane-wave
sources. The benefit of using plane-wave data for imaging,
that is an overall reduction in the data volume and the

possibility to get subsurface images by migrating fewer plane-
wave gathers than shot gathers (Schultz and Claerbout, 1978;
Stoffa et al., 2006; Dai and Schuster, 2013; Wang et al.,
2018) is then combined with a fully data-driven demultiple
scheme.

2 METHOD AND THEORY

2.1 Data domain Marchenko method

In this section, we briefly summarize the primary reflections
retrieval algorithm recently proposed by Zhang et al. (2019b)
and in Sections 2.2 and 2.3 discuss how it can be extended
to include plane-wave concepts. First, we briefly introduce
the definitions and properties of the so-called Marchenko fo-
cusing functions, upon which the work on projected focusing
functions is based. Following standard notation, we indicate
time as t and the position vector as x = (xH, z), where z stands
for depth and xH for the horizontal coordinates (x, y). An
acoustically transparent acquisition boundary ∂D0 is defined
at z0 = 0 and points in ∂D0 are denoted as x0 = (xH, z0). Sim-
ilarly, points along an arbitrary horizontal depth level ∂Di are
indicated as xi = (xF, zi), where zi indicates the depth of ∂Di

and xF denotes the horizontal coordinates of a focal point at
this depth. Note that boundaries ∂D0 and ∂Di in 2D and 3D
are lines and planes, respectively (for a comprehensive anal-
ysis of generalized Marchenko concepts in 2D and 3D, see
Wapenaar et al. (2018)). The focusing function f1(x0, xi, t ) is
the solution of the source-free wave equation in a truncated
medium, which focuses at the focal point xi. We define the
truncated medium as being identical to the physical medium
between ∂Di and ∂D0, and reflection-free elsewhere (Wape-
naar et al., 2014). The focusing function f1(x0,xi, t ) is de-
composed into down- and up-going components, indicated
by f+

1 (x0, xi, t ) and f−
1 (x0, xi, t ), respectively. The down-going

component of the focusing function, f+
1 (x0, xi, t ), is the in-

verse of the transmission response T (xi, x0, t ′) of the above-
mentioned truncated medium, that is

∫
∂D0

dx0

∫ ∞

0
T (x′′

i , x0, t ′) f+
1 (x0, xi, t − t ′)dt ′ = δ(x′′

F − xF )δ(t ),

(1)

where δ(x′′
F − xF ) is a two-dimensional delta function along

∂Di. Both f+
1 (x0, xi, t ) and T (xi, x0, t ′) can be decomposed

into direct and coda components, indicated by d and m sub-
scripts, respectively:

f+
1 (x0, xi, t ) = f+

1d (x0,xi, t ) + f+
1m(x0, xi, t ) (2)

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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1836 G.A. Meles et al.

and

T (xi, x0, t ) = Td (xi, x0, t ) + Tm(xi, x0, t ). (3)

Using source–receiver reciprocity, equation (1) can be gener-
alized as∫

∂Di

dxi

∫ ∞

0
Td (xi, x′′

0, t
′) f+

1d (x0, xi, t − t ′)dt ′ = δ(x
′′
H − xH )δ(t ),

(4)

where δ(x′′
H − xH ) is now a two-dimensional delta function

along ∂D0. The up-going component of the focusing function,
f−
1 (x

′
0,xi, t ) is by definition the reflection response of the trun-

cated medium to f+
1 (x0,xi), and it is equivalent to

f−
1 (x

′
0,xi, t ) =

∫
∂D0

dx0

∫ ∞

0
R(x′

0, x0, t ′) f+
1 (x0, xi, t − t ′)dt ′,

(5)

where R(x′
0, x0, t ) is the impulse reflection response (with the

source ignited at time t = 0 to allow standard Marchenko
derivations) at the surface of the physicalmedium, with x′

0, x0

denoting receiver/source locations. This relationship is valid
for −td + ε < t < td + ε, where td is the one-way traveltime
from a surface point x′

0 to xi and ε is a small positive value ac-
counting for the finite bandwidth of the data.Note that, unlike
for the original Marchenko scheme, we have chosen an asym-
metric time interval, following Zhang et al. (2019b). For this
time interval, the coda of the down-going focusing function,
namely f+

1m(x
′
0, xi, t ), satisfies the following relationship:

f+
1m(x

′
0, xi, t ) =

∫
∂D0

dx0

∫ 0

−∞
R(x′

0, x0, −t ′) f−
1 (x0, xi, t − t ′)dt ′.

(6)

Next we project the focusing functions to the surface. The pro-
jected focusing functions v− and v+

m are then introduced as

v−(x′
0, x

′′
0, t, zi) =

∫
∂Di

dxi

∫ ∞

0
Td (xi, x′′

0, t
′) f−

1 (x
′
0, xi, t − t ′)dt ′

(7)

and

v+
m(x

′
0, x

′′
0, t, zi) =

∫
∂Di

dxi

∫ ∞

0
Td (xi, x′′

0, t
′) f+

1m(x
′
0,xi, t − t ′)dt ′,

(8)

where the variable zi indicates that these functions depend
on the depth level along which standard Marchenko focusing
functions are defined. Note that differently than in previous
literature (van der Neut and Wapenaar, 2016; Zhang et al.,
2019b) we now make explicit the dependence of v− and v+

m

on zi (Zhang and Slob, 2020a). By convolving and integrating
in space along ∂Di both sides of equations (5) and (6) with Td
as indicated in equation (4), we obtain

v−(x′
0,x

′′
0, t, t2) =

∫
∂D0

dx0

∫ ∞

0
R(x′

0,x0, t
′ )v+

m(x0,x
′′
0, t − t ′, t2)dt ′

+R(x′
0,x

′′
0, t ), (9)

and

v+
m(x

′
0, x

′′
0, t, t2)

=
∫

∂D0

dx0

∫ 0

−∞
R(x′

0, x0, −t ′)v−(x0, x′′
0, t − t ′, t2)dt ′, (10)

for ε < t < t2 + ε, where for convenience we have replaced the
dependence on zi by the new variable t2 = t2(x′

0, x
′′
0, zi) corre-

sponding to the two-way traveltime from a surface point x′′
0 to

the specular reflection at a (hypothetical) interface at level zi
and back to the surface point x′

0. Different from previous liter-
ature on this subject, we make all the relevant variables in v−

and v+
m explicit, by considering also t2. Note that for t < ε and

t > t2 + ε both v− and v+
m are zero, which is why the integrals

on the right-hand side are evaluated only for the time interval
ε < t < t2 + ε. Using the time-domain formalism introduced
in van der Neut et al. (2015a), we rewrite equations (9) and
(10) as

v−(x′
0, x

′′
0, t, t2) = (�t2+ε

ε R+ �t2+ε
ε Rv+

m )(x
′
0, x

′′
0, t, t2), (11)

and

v+
m(x

′
0, x

′′
0, t, t2) = (�t2+ε

ε R�v−)(x′
0, x

′′
0, t, t2), (12)

where R indicates a convolution integral operator of the mea-
sured data R with any wavefield, the superscript � indicates
time-reversal and �

t2+ε
ε is a muting operator removing values

outside of the interval (ε, t2 + ε).
Terms in equation (11) are rearranged using equation

(12) to get

(I − �t2+ε
ε R�t2+ε

ε R�)v−(x′
0, x

′′
0, t, t2) = �t2+ε

ε R(x′
0, x

′′
0, t ), (13)

which, under standard convergence conditions (Fokkema and
van den Berg, 1993), is solved by

v−(x′
0, x

′′
0, t, t2) = �t2+ε

ε R(x′
0, x

′′
0, t )

+
[ ∞∑
M=1

(�t2+ε
ε R�t2+ε

ε R�)M�t2+ε
ε R

]
(x′

0, x
′′
0, t ). (14)

This procedure allows to retrieve v−(x′
0, x

′′
0, t, t2), whose

last event, when its two-way travel time t is equal to
t2(x′

0, x
′′
0, zi) is a transmission loss compensated primary re-

flection in R(x′
0, x

′′
0, t ) (Zhang et al., 2019b). In practice, the

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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transmission loss compensated primary is obtained by com-
puting v− via equation (14) for all values t2 (i.e. by consid-
ering the corresponding windowing operator �

t2+ε
ε ) and by

storing results in a new, parallel dataset at t = t2. Similarly
to other Marchenko schemes, in practical applications only a
few terms of the series in equation (14) need to be computed
to achieve proper convergence (Broggini et al., 2014). More-
over, following Zhang and Staring (2018), instead of comput-
ing t2 as the space- and model-dependent two-way traveltime
via a chosen depth level zi, we can evaluate equation (14) for
all possible constant values t̄2 (to include values large enough
to allow waves to reach the bottom of the model and come
back to the surface) and store results at t = t̄2. In this way,
the (transmission-compensated) primary reflection response
in R(x′

0, x
′′
0, t ) is then fully retrieved.

2.2 Extension to horizontal plane-wave data

In this paper, following a similar approach to what was re-
cently proposed to extendMarchenko redatuming from point-
source to horizontal plane-wave concepts (Meles et al., 2018),
we consider integral representations of the projected focusing
functions v− and v+

m. More precisely, we first define new pro-
jected focusing functions V−(x′

0, t, t2) and V
+
m (x′

0, t, t2) as

V−(x′
0, t,T2) ≡

∫
∂D0

dx′′
0v

−(x′
0, x

′′
0, t, t2), (15)

and

V+
m (x′

0, t,T2) ≡
∫

∂D0

dx′′
0v

+
m(x

′
0, x

′′
0, t, t2), (16)

whereT2 = T2(x′
0, zi) is the two-way traveltime of a horizontal

plane-wave propagating down from the surface to the specular
reflection at a (hypothetical) interface at level zi and back to
the surface point x′

0. We then integrate equations (9) and (10)
along ∂D0 to obtain:

V−(x′
0, t,T2) =

∫
∂D0

dx0

∫ ∞

0
R(x′

0, x0, t ′)V+
m (x0, t − t ′,T2)dt ′

+ RPW(x′
0, t ), (17)

and

V+
m (x′

0, t,T2) =
∫

∂D0

dx0

∫ 0

−∞
R(x′

0, x0, −t ′)V−(x0, t − t ′,T2)dt ′,

(18)

for ε < t < T2 + ε and where RPW(x′
0, t ) ≡ ∫

∂D0
dx′′

0R(x′
0,

x′′
0, t ) is by definition the horizontal plane-wave source re-

sponse of the medium (i.e. the source emits a vertically down-
ward propagating plane wave). Using again the time-domain

formalism, we can therefore rewrite equations (17) and (18)
as

V−(x′
0, t,T2) = (�T2+ε

ε RPW + �T2+ε
ε RV+

m )(x′
0, t,T2), (19)

and

V+
m (x′

0, t,T2) = (�T2+ε
ε R�V−)(x′

0, t,T2), (20)

and therefore

(I − �T2+ε
ε R�T2+ε

ε R�)V−(x′
0, t,T2) = �T2+ε

ε RPW(x′
0, t ), (21)

which is solved by

V−(x′
0, t,T2) = �T2+ε

ε RPW(x′
0, t )

+
[ ∞∑
M=1

(�T2+ε
ε R�T2+ε

ε R�)M�T2+ε
ε RPW

]
(x′

0, t ). (22)

This procedure allows to retrieve V−(x′
0, t,T2), whose last

event, when its two-way travel time t is equal to T2(x′
0, zi),

is a transmission loss compensated primary reflection in
RPW(x′

0, t ). Instead of computing T2 as the space- and model-
dependent two-way traveltime via a chosen depth level zi, we
can evaluate equation (22) for constant values T̄2. By com-
puting equation (22) for all possible constant values T̄2 and
storing results at t = T̄2, the (transmission-compensated) pri-
mary reflection response in RPW(x′

0, t ) is then fully retrieved.
Note that in practical applications, the integrals along ∂D0 in
equations (15)–(18) and in the definition of RPW are replaced
by summations over source locations.

2.3 Extension to dipping plane-wave data

In standard Marchenko derivations, it is assumed that point
sources are fired at t = 0 (Wapenaar et al., 2014; Zhang et al.,
2019b). Since dipping plane waves are associated with many

sources excited at different times, we cannot expect standard
algorithms, such as that in equation (22), to predict primaries
when delayed source gathers are considered. To illustrate how
to proceed when dipping plane waves are taken into account,
we first consider the obvious corresponding projected focus-
ing functions:

V−(x′
0, p, t,T2) ≡

∫
∂D0

dx′′
0v

−(x′
0, x

′′
0, t − p · x′′

H, t2) (23)

and

V+
m (x′

0, p, t,T2) ≡
∫

∂D0

dx′′
0v

+
m(x

′
0, x

′′
0, t − p · x′′

H, t2), (24)

where p is a ray parameter vector and T2 = T2(x′
0,p, zi) is the

two-way traveltime of a plane wave with ray parameter p,

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 1 The shaded green areas show the support of representative muting operators for horizontal (�T̄2+ε
ε in (a)) and dipping (�

ε+T̄2+p·x′
H

ε+p·x′
H

in

(b)) plane-wave sources (the corresponding data are shown in the background).

propagating down from the surface to the specular reflection
at a (hypothetical) interface at level zi and back to the surface
point x′

0. Substituting equations (9) and (10) into equations
(23) and (24), and indicating the reflection response associated
with a dipping plane-wave source characterized by ray param-
eter vector p as RDW (x′

0, p, t ) ≡ ∫
∂D0

dx′′
0R(x

′
0, x

′′
0, t − p · x′′

H ),
we obtain

V−(x′
0,p, t,T2) =

∫
∂D0

dx0

∫ ∞

0
R(x′

0,x0, t
′ )V+

m (x0,p, t − t ′,T2)dt ′

+ RDW (x′
0,p, t ), (25)

and

V+
m (x′

0, p, t,T2)

=
∫

∂D0

dx0

∫ 0

−∞
R(x′

0, x0, −t ′)V−(x0, p, t − t ′,T2)dt ′, (26)

for ε + p · x′
H < t < T2 + ε. The relationship between

V−(x′
0, p, t,T2) and V+

m (x′
0, p, t,T2), using again the time-

domain formalism, is then established by

V−(x′
0, p, t,T2) =

(
�

T2+ε

ε+p·x′
H
RDW + �

T2+ε

ε+p·x′
H
RV+

m

)
(x′

0, p, t,T2),

(27)

and

V+
m (x′

0, p, t,T2) =
(
�

T2+ε

ε+p·x′
H
R�V−

)
(x′

0, p, t,T2). (28)

Combining equations (27) and (28) together, we finally get(
I − �

T2+ε

ε+p·x′
H
R�

T2+ε

ε+p·x′
H
R�

)
V−(x′

0,p, t,T2) = �
T2+ε

ε+p·x′
H
RDW(x′

0,p, t ),

(29)

which is solved by

V−(x′
0, p, t,T2) = �

T2+ε

ε+p·x′
H
RDW (x′

0, p, t )

+
[ ∞∑
M=1

(
�
T2+ε

ε+p·x′
H
R�

T2+ε

ε+p·x′
H
R�

)M
�
T2+ε

ε+p·x′
H
RDW

]
(x′

0, p, t ). (30)

This procedure allows to retrieve V−(x′
0,p, t,T2), whose last

event, when its two-way travel time t is equal to T2(x′
0, p, zi),

is a transmission loss compensated primary reflection in
RDW (x′

0, p, t ). Note that, in principle, the muting operators
in equation (30), similarly to those in equations (14) and
(22), are space and model dependent. However, in analogy
to the previous cases, the upper boundary of the muting op-
erators in equation (30) can be taken parallel to the lower
one (see Fig. 1), thus exhibiting a space-dependent but model-
independent shape, that is T2(x′

0, p, zi) + ε ≈ ε + T̄2 + p · x′
H

for a generic constant value T̄2. By computing equation (30)
for all possible constant values T̄2 and storing results at t =
T̄2 + p · x′

H , the (transmission-compensated) primary reflec-
tion response in RDW(x′

0, p, t ) is then fully retrieved. The per-
formance of the algorithm in equation (30) is assessed in the
following numerical examples.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 2 (a) Velocity and (b) density models used in the first numerical experiment.

3 NUMERICAL EXAMPLES

We explore the potential of the proposed scheme for the re-
trieval of plane-wave source primary reflections with numeri-
cal examples involving increasingly complex two-dimensional
(2D) models. Evaluation of the series in equation (22) requires
computation of the operators R and R� and of the plane-wave
reflection response RPW(x′

0, t ). The reflection responses in R
and R� need to be recorded with wide band and properly sam-
pled (according to the Nyquist criterion in space and time)
co-located sources and receivers placed at the surface of the
model. In the following numerical examples, source–receiver
sampling is set to 10m, while gathers RPW(x′

0, t ) are computed
with a 20-Hz Ricker wavelet. All data used here are simulated
with a finite difference time domain solver (Thorbecke et al.,
2017).

For our first numerical experiment ,we consider a
2D model with gently dipping interfaces (see Fig. 2). The
recording surface is reflection free. The dataset associated
with a horizontal plane-wave source fired at the surface of
this model is shown in Fig. 3(a). Notwithstanding the geo-
metrical simplicity of the model, due to the strong impedance
variations, the data are contaminated with many internal mul-
tiples, as indicated by the red arrows. We then apply to this
dataset the method as described in Section 2.2. More pre-

cisely, we compute V− via equation (22) for all values T̄2,
and by storing results at t = T̄2 we build a parallel dataset,
which theoretically only involves primaries. Note that the al-
gorithm is fully data driven, and no model information or
any human intervention (e.g. picking) is involved in the pro-
cess. For this dataset, we only computed the first 20 terms
of the series in equation (22). The result of the procedure is
shown in Fig. 3(b). We then image both datasets in Fig. 3
via standard plane-wave reverse time migration (based on the
zero lag of the cross-correlation between the source and re-
ceiver wavefields, Claerbout (1985)) using a smoothed ver-
sion of the true velocity distribution in Fig. 2 and constant
density. Migration results are shown in Fig. 4. When the full
dataset is migrated, internal multiples contaminate the im-
age as shown in Fig. 4(a), producing many false positive arte-
facts (indicated by red arrows). The image is much cleaner
when the dataset in 3(b) is migrated. Each interface is prop-
erly recovered, as demonstrated by a comparison between
Figs. 2 and 4(b). Green arrows in 4(b) point at physical in-
terfaces which are invisible in Fig. 4(a), where they are at-
tenuated by interfering multiple-related artefacts. Black ar-
rows point at physical interfaces only partially resolved. The
relatively poor performances in imaging dipping interfaces
is not due to residual internal multiples, but to the intrinsic

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers,Geophysical Prospecting, 68, 1834–1846



1840 G.A. Meles et al.

Figure 3 (a) Full dataset associated with a plane-wave source fired at the surface of the model. Red arrows point at internal multiples. (b)
Estimated primaries obtained by computing V− via equation (22) for all possible values T̄2 and storing results at t = T̄2. Differences in amplitude
between gathers in (a) and (b) are due to multiple removal and transmission loss compensation.

limitations of horizontal plane-wave imaging. However, note
that only one demultipled plane-wave response and a single
migration were required to produce the multiple-free image in
Fig. 4(b).We conclude that for gently dipping models horizon-

tal plane-wave datasets are sufficient to produce satisfactory
results.

In the second example (Fig. 5). we consider a more
challenging model with critical features for any Marchenko

Figure 4 (a) Standard plane-wave reverse time migration (RTM) of the dataset in Fig. 3(a). Red arrows point at artefacts related to internal
multiples. (b) Standard plane-wave reverse time migration of the dataset in Fig. 3(b). Green arrows point at well-resolved interfaces barely
visible in (a) due to the superposition of internal multiples. Black arrows point at dipping interfaces only partially visible via horizontal plane-
wave illumination. Differences in amplitude between images in (a) and (b) are due to multiple removal and transmission loss compensation.
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Figure 5 (a) Velocity and (b) density models used in the second numerical experiment.

method, that is the presence of thin layers, diffractors and
dipping layers (Wapenaar et al., 2014; Dukalski et al., 2019;
Zhang et al., 2019b). We initially follow the same imaging
strategy as for the first example. We first compute the dataset
associated with a horizontal plane-wave source fired at the
surface of the model shown in Fig. 5(a). Also for this dataset,
we only computed the first 20 terms of the series in equation
(22). Given the complexity of the model, many events, pri-
maries as well as internal multiples (red arrows) cross each-
other, especially in the lower part of the plane-wave gather.
Picking specific events in the gather in Fig. 6(a) would be chal-
lenging. However, as discussed above, our method does not
involve any human intervention, and by applying the same
scheme as for the first model we retrieve the dataset shown
in Fig. 6(b), where primaries otherwise overshadowed by in-
terfering multiples are clearly visible (green arrows). We then
migrate datasets in Fig. 6(a) and (b) and show in Fig. 7(a) and
(b) the corresponding images. Large portions of the image in
Fig. 7(a) associated with the dataset in Fig. 6(a) are dominated
by noise due to the presence of internal multiples (red arrows).
On the other hand, the image in Fig. 7(b), which is associated
with the estimated primaries in Fig. 6(d), is much cleaner, with
fewer artefacts (red arrows) contaminating limited domains
of the image. Note that relatively poor imaging performances
of dipping interfaces (black arrows in Fig. 7b) are not neces-
sarily associated with shortcomings of the discussed demulti-

ple method but with the intrinsic limitation of what can be
illuminated by a single plane-wave experiment. For this spe-
cific model, we then decide to process and migrate also dip-
ping plane-wave data. In total, we then consider 10 additional
datasets, uniformly ranging from −25◦ to 25◦ (as discussed
in Section 2.3, the angle of the plane wave is implemented
by adding time delays to the shot positions on the horizon-
tal array). Representative dipping plane-wave data are shown
in Fig. 6(b,c), next to the corresponding processed gathers (in
Fig. 6e,f). Red and green arrows point again at internal multi-
ples and recovered primaries, respectively. We finally consider
aggregate plane-wave migrated images. By migrating a total of
11 full-data gathers, the image in Fig. 7(c) is obtained. While
thanks to the better illumination, the improvement over the
image in Fig. 7(a) is clear, some of the key features of the fi-
nal result are still misleading (red arrows point at false pos-
itives associated with the migration of internal multiples). A
significantly better result is obtained when the 11 processed
gathers are imaged and stacked (Fig. 7d). The dipping features
poorly visible in (b) are now properly resolved. This example
shows that the proposed method can successfully process dip-
ping plane-wave datasets and therefore benefit from the corre-
sponding improved illumination. Residual artefacts in the mi-
grated image indicated by the red arrow in Fig. 7(d) are likely
due to the presence of thin layers, diffractors and dipping lay-
ers that are known to be critical in Marchenko methods.
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Figure 6 (a–c) Reflection responses associated with plane-wave sources at −15◦, 0◦ and 15◦, respectively. Red arrows show internal multiples.
(d–f) Estimated primaries associated with plane wave sources at −15◦, 0◦ and 15◦, respectively. Differences in amplitude between gathers in (a–c)
and (d–f) are due to multiple removal and transmission loss compensation. Green arrows show primaries barely visible in the corresponding full
datasets (a–c).
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Figure 7 (a) Standard plane-wave reverse time migration of the dataset in Fig. 6(a). Red arrows point at artefacts related to internal multiples. (b)
Standard plane-wave reverse time migration of the dataset in Fig. 6(b). Black arrows indicate dipping interfaces that are only partially recovered
due to the poor illumination provided by a single plane-wave experiment. Note that these interfaces are also not properly imaged in (a). (c)
Aggregate reverse time migration of 11 plane wave full datasets (uniformly ranging from −25◦ to 25◦). Red arrows point at artefacts related
to internal multiples. (d) Aggregate standard reverse time migration of synthesized primaries. Green and red arrows indicate interfaces barely
visible in (a) and minor residual artefacts, respectively. Differences in amplitude between images in (a,c) and (b,d) are due to multiples removal
and transmission loss compensation (see Fig. 6).
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Figure 8 (a) Full dataset associated with five point sources with different spectrum content fired at the same time. Red arrows point at internal
multiples. (b) Corresponding estimated primaries.

4 DISCUSS ION

In Section 2.2, we have extended a recently proposed primary
synthesis method, devised for point source gathers, to hori-
zontal plane-wave source data. The new scheme still needs
full point-source data as input, but its output is a horizontal
plane-wave response. The method is based on integration of
point-source responses over the acquisition surface (e.g. equa-
tions (9) and (10)), which allows the derivation of relation-
ships associated with plane-wave sources (e.g. equations (17)
and (18)). Both the point-source and plane-wave primary syn-
thesis methods are totally data driven, and both are imple-
mented by inversion of the same family of linear operators,
that is

I − �T̄2+ε
ε R�T̄2+ε

ε R�. (31)

Each operator is defined by a different value of T̄2. In pre-
vious literature that underlies this contribution, an integra-
tion over the focusing surface was used to adapt Greens’ func-
tions redatuming methods to virtual plane-wave redatuming
(Meles et al., 2018).While conceptually similar, there is a sub-
tle yet very important difference between the methods dis-
cussed here and previous methods on virtual plane-wave reda-
tuming. Whereas in any Marchenko redatuming scheme (e.g.
for point or plane virtual sources), a different, model depen-
dent, window operator for each point or plane is required,
as focusing is achieved in the subsurface, the window opera-
tors discussed here are the same for each input data, as the
focusing operators are projected to the surface. Since the op-
erators in equation (31) are linear and do not depend on the
specific gather they are applied to, any linear combination of

point-source data can be processed at once, provided that all
the corresponding sources are fired at the same time (see Sec-
tion 2.2 for more details). The proposed method can then be
used,without anymodification, to blended-source data as well
as to individual point sources and horizontal plane-wave gath-
ers. This is shown in Fig. 8, where the algorithm is applied to a
dataset associated with five sources with different spectra fired
at the same time (Fig. 8a). Application of the proposed scheme
results in the gather shown in Fig. 8(b). A nearly identical re-
sult (relative difference smaller than 0.1%) is achieved when
the method is applied to each single-point source gather sep-
arately, after which the corresponding results are summed to-
gether.

In Section 2.3, we extended the primary synthesis method
for dipping plane-wave source data, which helps to improve
the illumination of dipping interfaces in the subsurface.

5 CONCLUSIONS

We have shown that recent advances in data domain
Marchenko methods can be extended to incorporate plane-
wave source concepts. More specifically, we have discussed
how to retrieve estimates of the primary responses to a plane-
wave source.The retrieved primaries can then be used via stan-
dard reverse time migration to produce images free of arte-
facts related to internal multiples. Whereas previous data do-
main Marchenko methods are applied to point source gathers
and therefore tend to be rather expensive for large datasets,
the proposed method provides good imaging results by only
involving a small number of primary synthesis steps and
the corresponding plane-wave reverse time migration. The
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plane-wave source primary synthesis algorithm discussed in
this paper could then be used as an initial and inexpensive pro-
cessing step, potentially guiding more expensive target imag-
ing techniques. In this paper, we have only discussed two-
dimensional examples and internal multiples, but an obvi-
ous extension would be allowing surface source primary syn-
thesis in three-dimensional problems as well as incorporat-
ing free surface multiples. Finally, applications of data do-
mainMarchenko methods to field data have already been per-
formed. Future work will then focus on applying plane-wave
primary synthesis methods to field data too.
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