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Abstract

Over the past decade, the offshore industry, particularly the wind energy sector, has exhib-
ited continuous growth, emphasizing the escalating significance of sustainability within this
domain. The current work seeks to enhance this aspect by exploring offshore access systems
featuring composite gangways.

Composite offshore structures however pose challenges due to the involved complex dam-
age mechanisms and the need for novel maintenance procedures, introducing uncertainties
concerning their operation. A Structural Health Monitoring (SHM) system is proposed for
increasing confidence in the safe operation of the new composite gangway.

The suggested SHM system relies on Inverse Finite Element Methods (iFEM) deflection re-
construction using Fiber Optics (FO) strain data. The gangway design is simplified to a
U-shaped beam geometry under bending load, modeled using Inverse Quadrilateral Shell 4
Points (1Q)54) elements. Its performance was assessed using mock strain data generated
numerically through Finite Element Methods (FEM) software.

Deflection reconstruction using both tri-axial and uni-axial strain measurements was inves-
tigated, revealing that uni-axial measurements can be sufficient for the current application.
The sensing network was streamlined by focusing on line configurations along the length of
the beam, leveraging the capabilities of FO sensors.

The introduction of strainless inverse elements highlighted the limitations of strain pre-
extrapolation with Smoothing Element Analysis (SEA) for such a geometry. Modeling guide-
lines and their effect on improving the robustness of SEA are explored. A strain sensing
network using four uni-axial sensing lines is found to offer a sufficiently accurate deflection
reconstruction for the application.
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Chapter 1

Introduction

Ensuring personnel safety remains a primary objective in offshore operations. The transfer of
personnel and cargo offshore represents a notably vulnerable process, prompting the imple-
mentation of various methods such as Crew Transfer Vessels landings, transfer baskets, swing
ropes, and more in an effort to enhance safety [Hu and Yung, 2020]. Recently, gangway-based
solutions, particularly when integrated with motion control systems, have emerged as a safer
alternative on the market.

Ampelmann Operations is a company that specializes in gangway-based offshore access solu-
tions. In line with its commitment to innovation, the company is embarking on the develop-
ment of the industry’s first composite offshore gangway. The main drivers for switching away
from steel lie in improved sustainability which is hoped to be enabled by the higher specific
properties and corrosion durability of composites. However, venturing into new technological
territory brings its fair share of challenges and uncertainties. To ensure the utmost safety in
offshore access operations with a new gangway, the implementation of a Structural Health
Monitoring (SHM) system is proposed.

The current work begins with a preliminary investigation on the needs of such a SHM system
and which technologies could be employed and draws up a research proposal for a level 1-
SHM system using shape reconstruction through Inverse Finite Element Methods (iFEM).
The research aims to determine how iFEM can be used for the gangways, what would be a
sensible sensing network and what could be the accuracy of such a system. The conducted
work thus represents a feasibility study from the technical and operational perspectives.

The report is divided into three parts. Part I presents the literature study on the topic. As-
pects such as the offshore environment, operation and maintenance of offshore access systems
are discussed. The findings of the literature study are used for defining the research proposal
in chapter 9.

Part II covers the work done in the project. Firstly, the methodology is laid down. This
covers the theoretical background of iF'EM and Smoothing Element Analysis (SEA), details
on the implementation and how the sensor networks are evaluated. Lastly, Part III includes
the appendices and could be relevant for readers interested in the programming side of the
project.



Part |

Literature Study



Chapter 2

Literature Study Starting Point

The current project had as starting point the following task: "Design a Structural Health
Monitoring (SHM) system for a composite gangway". To tackle this assignment and narrow
down the scope of the MSc thesis, a literature study was first conducted on the topics of
interest.

The research during the literature study phase was defined by the preliminary research ques-
tions:

e What characterizes the offshore environment?

e What are the common practices regarding design, operations and maintenance in the
offshore access industry?

o What loading conditions does a gangway typically experience?
e What are the causes of damage in a gangway?
e What detection techniques can be used for determining damage in composites?

e What sensors can be used in these techniques? How suitable are they for the operating
environment?

Using these research questions as a guide for navigating the current literature and resources,
it was aimed to reach the following goals:

1. Establishing suitable sensors for the application.
2. Establishing a suitable damage mechanism or parameter to track.

3. Establishing a detection method for tracking the parameter in question.

The literature review adheres to the following structure. Chapter 3 offers background infor-
mation regarding offshore access systems. Chapter 4 focuses on composites, covering general
definitions, applications and the main considerations for switching to a composite gangway.
Chapter 5 aims to give an understanding of both typical and accidental gangway operations.



Standard maintenance strategies and the current practices along with an introduction to SHM
will be discussed in chapter 6. The findings from chapters 3-6 are discussed for narrowing
down the scope of the SHM system in chapter 7. Chapter & offers background information
on Inverse Finite Element Methods (iFEM). Lastly, in Chapter 9 a research proposal is

formulated based on the findings of the literature review.



Chapter 3

Background

The offshore sector covers a wide range of activities such as oil and gas exploration, wind
energy, fishing and telecommunications. Irrespective of the exact application, offshore ac-
cessibility remains of utmost importance. Both passengers and cargo need to be transferred
effectively and safely even in extreme weather conditions. This is increasingly done through
gangway access systems. Such systems are commonly mounted on vessels, allowing transfer
between the origin vessel and the target vessel, wind farm or platform. Ampelmann is one of
the main manufacturers of gangway access systems.

Transfer Deck

Main Boom

Telescopic Boom

Figure 3.1: Ampelmann system diagram. Courtesy of Ampelmann.

Figure 3.1 shows a general diagram of an Ampelmann offshore access system. The bridge-like
structure is known as the gangway and is made of two parts: the Main Boom (M-Boom)
and the Telescopic Boom (T-Boom). The T-Boom slides in and out with respect to the
M-Boom allowing for adjustable lengths of the gangway. The gangway itself can be mounted
on different systems. The systems can be either motion-compensated systems (such as the
A-type and E-type that are shown in the figure), or not (such as the F-type). These systems



play an important role in defining the loads acting on the gangway as each of them is designed

for different operating conditions and cases.

There are three key terms describing the movement of a gangway:

o Telescoping represent the movement of the T-Boom along the M-Boom

e Luffing represents the vertical movement of the gangway.
e Slewing is the rotational movement along the base of the system and is provided by the

slewing ring.



Chapter 4

Composites

The current chapter focuses on general information regarding composite materials and their
application in the offshore sector. Section 4.1 offers general definitions regarding composite
materials. Section 4.2 describes the main damage mechanisms of composite structures. Lastly,
section 4.3 briefly highlights current applications of composites in the offshore sector and offers
an overview of the considerations regarding a composite gangway.

4.1 General Definitions

Composites can be defined as materials that are made out of two or more constituent mate-
rials. Fiber Reinforced Polymer (FRP) are a popular type of composites used in advanced
engineering applications (aerospace, automotive, marine etc.) due to their high specific prop-
erties. They are made out of a polymer matrix and continuous fibers as shown in Figure 4.1.

Reinforcement fibre Polymer matrix Fibre reinforced composite

M- =i

Figure 4.1: General structure of FRP. Courtesy of [Hesseler et al., 2021]

Laminated composites are a specific type of composite materials that consist of multiple
layers. These layers are stacked together to form a laminate structure. Each layer is typically
referred to as a lamina or a ply. A layer can be a continuous, unidirectional FRP ply for
example.

In a laminated composite, the layers are stacked in a specific orientation to achieve desired
properties and performance. The orientation and sequence of the layers can be engineered to
optimize characteristics such as strength, stiffness, impact resistance, and other mechanical
properties.

For the current gangway application, FRP’s composites will be considered.
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4.2 Damage Mechanisms of Composites

This section aims to give an overview of composites’ damage mechanisms. [Talreja, 2016]
identifies the damage mechanisms within composites. FRP can be subjected to interlaminar
damage:

e Fiber Breakage. This can occur due to excessive tensile or compressive stresses.

e Matrix Cracking. Can be caused by tensile, compressive or shear stresses.

o Interface failure. This occurs at the interface of the composite constituents, leading to
their separation.

Laminated composites can also have intralaminar failure which is also known as delamination,
representing a fracture between two adjacent plies.

Nevertheless, isolating these damage mechanisms in real operation scenarios is quite difficult.
Composites have complex and interrelated damage mechanisms [Kefal et al., 2021b]. For
example, impact events can lead to a combination of some or all of these types of damages
[Agrawal et al., 2014].

4.3 Composites Application in Offshore

One of the most well-established applications of composites in the offshore sector is wind
turbine blades. They are typically made out of glass fibers reinforced epoxies. Measuring
on average 52 [m], but reaching up to 107 [m] ', composite wind turbine blades allow for
considerable weight saving. Composite materials are also regularly used for offshore pipe
risers © and offshore platform handrail system °.

Even though the use of composites has become more widespread in the offshore sector, access
gangways remained a steel-only part. The motivation for introducing composite gangways
can be resumed as follows:

e Energy savings. Composites allow for high tailorability of the design. This usually leads
to considerably lower weights of the designs. Moreover, due to the snowball effect, the
weight of other components such as actuators for the motion-compensated systems will
be reduced, leading to energy savings.

e Durability. As opposed to steel, composites are resistant to corrosion. In the offshore
environment, corrosion is extremely aggressive, leading quite often to complete part
replacement as repair does not suffice.

However, their implementation also comes with a series of challenges:
e Less effective visual inspection. As will be discussed in section 6.2, visual inspection is a

highly used tool in the current maintenance strategy. Composite materials can present
large internal damages, but only small indents at a surface-level [Shah et al., 2019].

"https://tinyurl.com/29j6z6vc
2https://tinyurl.com/pva63e97
3https://tinyurl.com/bdhpeezu
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o Environmental effects. Offshore conditions such as high humidity or UV exposure can
impact negatively composites’ mechanical properties. This will be discussed in sec-
tion 5.1.

e Limited knowledge in the material characterization for the gangway application and lack
of current certification guidelines. This leads to a more complex certification process
and a more conservative design which can limit the weight savings.



Chapter 5

Operations

The current chapter will focus on the operational aspects of access gangways. Section 5.1
gives an overview of the main environmental factors and their effect on composite structures.
Section 5.2 aims to offer a general understanding of the loads that are defined for a gangway,
while section 5.3 describes some of the incidents to which the gangway can be subjected.

5.1 Operational Environment

As the name indicates, offshore activities take place away from the terrestrial shore, typically
in the open sea which leads to harsh environmental conditions, affecting both human operators
and the integrity of the structures. The offshore environment can be characterized by the
following factors:

o Wind. The wind creates side forces on the walls of offshore structures. [Hu and Yung,
2020] highlights the trend of moving wind farms farther from shore due to preferable
conditions. For an open profile access gangway, this strong wind can lead to excessive
torsion of the structure. To counteract this, openings are introduced on the side walls.
This is done by decreasing the surface area and thus, the wind loading. This also allows
for improving visibility and reducing mass.

e Humidity. While composites are not subject to corrosion issues such as traditional
steel structures, humidity can still harm their performance due to the absorption of
moisture into the matrix. [Randhawa and Patel, 2021] conducted a study on the effect
of humidity on polymers’ mechanical properties. The identified general trends were a
decrease in Young’s Modulus and strength, but an improvement in impact strength and
elongation.

e« UV Exposure The degradation effect of UV is typically limited to the top microns
of the surface. However, it can lead to the variability of the mechanical properties,
thus creating concentration factors [Aldajah et al., 2009]. [Shi et al., 2022] aimed to
quantify the variation of mechanical properties of epoxy-based Carbon Fiber Reinforced
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Polymer (CFRP) under accelerated UV exposure during 80 days. The results showed a
decline of 23% in the longitudinal compressive strength, but also embrittlement of the
matrix.

5.2 Operational Loads

This section aims to give a general understanding of the operational loads that an access
gangway is expected to encounter. Certification codes for such systems will be used as a
reference. The new composite gangway will be used in both people transfer Figure 5.1 and
cargo transfer Figure 5.2.

Figure 5.1: Ampelmann system used for Figure 5.2: Ampelmann system used for
people transfer ' cargo transfer ?

For personnel transfer, some of the operational loads and conditions that are prescribed can
be summarized as follows:

1. Principal Load (Art. 4.1.2 [DNV, 2017])

(a) Self-weight of the structure and all installed equipment
(b) Live load (maximum number of persons including luggage allowed on the gangway
at the same time)

2. Vertical loads due to operational motions (Art. 4.1.3 [DNV, 2017])

(a) Inertia forces due to acceleration or deceleration of horizontal motions. These
forces are typically associated with the starting or interruptions of luffing motions.

3. Horizontal loads due to operational motions (Art. 4.1.4 [DNV, 2017])

(a) Inertia forces due to acceleration or deceleration of horizontal motions. These forces
are typically associated with the starting or interruptions of slewing motions.
(b) Centrifugal forces created by slewing motions.

4. Loads due to climatic effects (Art. 4.1.5 [DNV, 2017])

(a) Ice and snow loads if relevant.

(b) Wind load. For operational cases, a value of minimum 20 [m/s] needs to be ac-
counted for. However, the minimum value can be increased to 51.5 [m/s] in certain
conditions. These values are described for 10 [m] above sea level and need to be
adjusted to the gangway’s height.

2https://tinyurl.com/2pjm786u
2https://tinyurl.com/bdhey24y
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(c) Vortex-induced oscillations. [Fu, 2018] describes vortex shedding as the phenomenon
where alternating vortices are released from one side to the other of a structure ex-
posed to wind, creating fluctuating forces perpendicular to the wind direction due
to alternating low-pressure zones on the downwind side. These forces can induce
oscillations in the structure.

(d) Sea pressure loads (green sea loads). In case of extreme ship motions during storms,
water can flow onto the gangway, leading to green sea loads [Buchner, 2002].

5. Loads due to motion of the vessel on which the gangway is mounted (Art. 4.1.6. [DNV,
2017]) Usually expressed in terms of vertical/transverse/longitudinal accelerations.

6. Contact loads (Art. 3.21 [LR, 2021a]). When the tip comes into contact with the target
unit.

7. Mothership static inclinations (Art. 3.12 [LR, 2021a]). They are defined using the heel
and trim angles of the ship.

8. Temperature effects (Art. 3.18 [LR, 2021a]). Loads can result from thermal expan-
sion/contraction.

In addition to the personnel transfer loads, cargo lifting has other design considerations.
The horizontal distances between the payload and the boom tip (offlead and sidelead) are of
importance (Art. 2.2. [LR, 2021b]). They define the loading path on the tip and can create
a load swing.

Both Det Norske Veritas (DNV) and Lloyd’s Register (LLR) define distinct load combinations.
For each of these conditions, different indications are given for applying the loads (magnitudes,
locations, inclinations etc.). Using the current legislation, a series of load cases for designing
the gangway can be constructed.

5.3 Gangway Operational Incidents

Gangway incidents encompass a wide range of events, from equipment failures to human
errors. This section aims to briefly present the main incidents affecting the structural integrity
of the gangway.

1. Tool drops. Transferees are usually carrying with them different pieces of equipment
and tools. Some of these tools can get dropped. Although the grating provides some
protection from drops, some incidents still lead to dents in the gangways.

2. Drift off. The gangway is mounted on the target and fully extended. The target moves
farther away from the origin (drift-off), leading to an over-extension of the gangway and
a possibility of it getting stuck in that position, leading to increased stresses at the level
of the telescoping rail.

3. Drift on. The gangway is mounted on the target and fully retracted. The target
moves towards the origin (drift-on). In severe scenarios, this can cause the Telescopic
Boom (T-Boom) to push excessively onto the Main Boom (M-Boom), possibly leading
to buckling.

4. During parking of the tip, impacts between the target and the tip are quite common.
However, when slewing for parking, also the gangway railing can be hit by the target
platform leading to torsion of the gangway.
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5. Collision between the gangway and a large body (another vessel, a wind turbine blade

etc.)
6. Extreme weather conditions such as hailing can create structural damage to the gang-

way.



Chapter 6

Maintenance

Maintenance is of paramount importance for offshore structures due to the harsh and cor-
rosive marine environment they are exposed to. Regular maintenance ensures longevity and
integrity, minimizing the likelihood of costly repairs, and safeguarding the transferees from
possible accidents. Section 6.1 offers an overview of general maintenance strategies, while
section 6.2 covers the current maintenance strategies within Ampelmann. Lastly, section 6.3
offers an introduction to Structural Health Monitoring (SHM).

6.1 Maintenance Strategies

Factors such as requirements, part failure modes, available resources and costs associated
with the downtime of the system will influence the maintenance strategy. [Ren et al., 2021]
distinguishes between maintenance strategies as follows:

1. Corrective Maintenance. Also known as failure-based strategy, requires intervention
when a part breaks down, being reactive and unscheduled. It offers the advantage of
allowing a part to go through its whole operational life while reducing activity-based
waste. Such a strategy is not optimal for a primary structure such as the gangway as
its failure leads to an operational halt of the complete system.

2. Preventive Maintenance. Preventive maintenance implies scheduling maintenance
activities at set predetermined time intervals. While it allows for planning into the
operational schedule, it leads to increased waste in the form of labor and activities.

3. Condition-based Maintenance. Condition-based maintenance requires the mount-
ing of sensors on the target structure to monitor its structural integrity. [Farrar and
Worden, 2012] formulate axiom IVa of SHM which states: "Sensors cannot measure
damage". Thus, these readings need to be processed in different ways to establish
whether or not there is damage to the structure. This is generally done through dam-
age feature extraction [Sohn et al., 2003]. These damage features are compared against
an established threshold which, when exceeded, determines the need for maintenance
activities.
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4. Predictive Maintenance. Predictive maintenance is the next step of condition-based
maintenance. Making use of the detected damage features and data analysis, it aims
to predict system degradation and failures before they occur. Thus, the optimal tim-
ing for maintenance activities can be determined. This prevents unplanned downtime,
minimizes costs, and maximizes operational efficiency.

6.2 Current Practices

Currently, for regular operation, Ampelmann uses a preventive maintenance strategy based
on time intervals:

1. Daily, as done by operators using the Daily Progress Report (DPR). The DPR contains
a checklist of different systems and areas to check. For structural components, the
checks are highly based on visual inspection.

2. Weekly, as done by operators. Similar procedures to the daily checks, but different areas
are investigated(less prone to damage or harder to access).

3. Monthly, as done by operators. Similar procedures to the daily and weekly checks, but
different areas are investigated.

4. Yearly, done by technicians in agreement with legislation (App. B.3 [DNV, 2017]). This
check focuses on thorough visual inspection, proper lubrication and Non-destructive
testing (NDT) where considered necessary. The repair plan for any damaged primary
structure must be agreed on with the certification body.

5. b-yearly, done by engineers in agreement with legislation (App. B.4 [DNV, 2017)).
In addition to the yearly check, this check can require repeating the load testing and
examination done for the initial certification.

In case of operational incidents, the decisions regarding the maintenance approach are, usu-
ally but not only, taken between the reliability, asset and operations engineers. If needed,
these decisions are also taken in consultation with certification bodies. Thorough inspection,
potentially employing ND'T, is typically used at the location of the incident and the locations
specified by the Critical Areas in Structure document. This document is developed within
Ampelmann during the design phase and identifies prime areas for inspection. These areas
are typically high-stress points, welds or connection points.

6.3 Structural Health Monitoring

It is important to note that the current practices discussed in section 6.2 have been developed
for steel gangways. Due to the limited experience of working with composites, the environ-
mental effects discussed in section 5.1 and the challenges in section 4.3, it cannot be decided
if the current preventive maintenance strategy will be sufficient for ensuring the safe and
efficient operation of the composite gangway.

Opting for an additional condition-based maintenance plan can offer more confidence in the
operation of the new design. For this purpose, an SHM system can be implemented. The
importance and benefits of SHM systems for maritime application were officially recognized
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already in 1994 by the International Maritime Organisation. Certification bodies for maritime
and offshore applications such as Det Norske Veritas (DNV) (2011) and Lloyd’s Register (LR)
(2011) followed ( [Kefal, 2019]), further contouring the necessity of SHM implementation in
gangway systems.

According to [Gliemes et al., 2020],a SHM system can be divided into three main components:

1. A sensing network.
2. Data acquisition system.
3. Algorithms for data processing.

Taking into account all three components, the current report aims to review relevant literature
on SHM systems for composite offshore gangways.

SHM can be distinguished between active and passive methods. Active methods require
excitation of the structure through energy self-generated by the SHM system ( [Nelson and
Maclver, 2006]). They allow for the repeatability of the measurement, and also for its variation
through the probe’s controllable variables such as intensity, direction or timing. Such methods
are ultrasonics where ultrasonic waves need to be propagated externally from the structure
or experimental modal analysis which requires excitation through external vibration such as
an impact hammer.

Passive sensing methods are based on intrinsic energy sources. Strain measurements and
Acoustic Emission (AL) are typical passive methods. Passive sensing is preferred to ac-
tive sensing in situations when measurement during operation is required ( [Saeedifar and
Zarouchas, 2020]).

SHM technology can also be classified on multiple levels of [Farrar and Worden, 2010]:

Level 1 Detection. Is there damage present in the structure?

Level 2 Localization. Where is the damage located?

Level 3 Type. What kind of damage occurred?

Level 4 Extent. What is the severity of the presented damage?

Level 5 Prognosis. What is the remaining useful life of the structure?



Chapter 7

Discussion on gangway SHM goals

The current chapter aims to narrow down the scope of the literature study based on the
previously discussed information. Section 7.1 discusses the sensing options, while section 7.2
defines the operational scope. Section 7.3 identifies which behavior shall be tracked. Lastly,
section 7.4 discusses the possible methods for tracking the selected behavior.

7.1 Sensors

There is a wide variety of available sensors. For Structural Health Monitoring (SHM) ap-
plications, two sensor options emerge often in literature: Lead zirconate titanate (PZT) and
Fiber Optics (FO) ( [Tinghu and Jones, 2004], [Hafizi et al., 2015], [Kudela et al., 2008]).
However, when looking at implementations in the offshore or marine industries, FO emerges
in literature as a highly preferred choice. A comprehensive review of different uses of FO in
marine applications can be found in [Min et al., 2021]. This preference is explained by the
main advantages of FO, as highlighted by [Floris et al., 2021]’s review on FO shape sensing:

1. Compactness, small size and lightweight.

2. Embedding capability.

3. Resistance to harsh environments, including humidity, severe temperature, chemicals
and radiation.

4. FElectrically passive operation. This is a considerable advantage for operations in off-
shore environments. Humidity affects the conductivity of the sensors, leads to internal
corrosion and decreases their average life. Moreover, carbon fibers are electric conduc-
tors and in case of current leakage in the SHM sensors, safety hazards can occur.

5. Immunity to Electromagnetic Interference (EMI).

6. Multiplexing capability. Large structures such as the gangway usually require an in-
creased amount of sensors, which can lead to issues in terms of cable management.
Thus, sensors with multiplexing capabilities such as FO are preferred.

7. High sensitivity and accuracy.
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PZ'T sensors stand at a disadvantage for marine and offshore as they are electrically based.
This explains the overall trend of moving towards optic-based sensors for measurement tech-
niques using traditionally PZT sensors such as acoustic emission ( [Vidakovic et al., 2016]) or
ultrasonics ( [Soman et al., 2021]).

The goal of the current research is developing an SHM system, not a sensing technology. This
leads to a strong preference for previously proven sensors that can be used as building blocks
in the project. FO are considered mature technologies for SHM applications [Inaudi and
Glisic, 2005], [Rocha et al., 2021]. Thus, the current research scope will focus on FO-based
SHM.

7.2 Operational Focus

As discussed in section 5.3, gangways can undergo a wide range of incidents, each resulting
in different damage patterns. To be able to identify the damage in all of these situations, the
SHM would require a highly dense network of sensors.

Nevertheless, even with such a dense network reliable detection cannot always be guaranteed.
Multiple studies including [Ussorio et al., 2006], [Hafizi et al., 2015] [Vidakovic et al., 2016]
highlight that even for lab conditions and network sensors which are optimized for a certain
location and type of damage, the detection rate is not without failure. Overlapped with
additional unknowns, the accuracy of such a system would only degrade. If there is little
reliability in the SHM system, its justification for implementation becomes rather limited.

Moreover, the SHM system would not influence considerably the current maintenance ap-
proach in case of incidents. In case of an incident, the system would still require to be
stopped from operation and assessed as described in section 6.2. Any SHM data would prob-
ably only be used as a confirmation at the end of the assessment. Thus, it is expected that
it will not result in a big reduction in system downtime, limiting its economic justification at
this time.

Using a system for normal operation would be of use from multiple perspectives. Firstly,
it can highlight an issue before it is detected in regular maintenance or it leads to failure,
increasing both safety and reducing the chance of unplanned downtime. Secondly, because
the loadings and critical areas are better defined in normal operation, the SHM system can
be optimized to a higher degree, which should increase the reliability of the provided results
and decisions.

Limiting the scope of the research to a system tailored for the normal operation would allow
for more confidence in the provided results and a higher chance of economic savings.

7.3 Tracked Behaviour

[Farrar and Worden, 2010] identifies multiple four key questions for conducting the underlying
operational evaluation for the SHM system. A critical one in the current gangway case is "How
is damage defined for the system being investigated and, for multiple damage possibilities,
which cases are of the most concern?’. It can be considered critical due to the limited
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knowledge and experience of composites in gangway applications. What is considered damage
in the current case? Without answering this question, further defining of alert thresholds for
autonomous measurement evaluation becomes impossible.

Looking at a local level, a simple matrix crack could be considered damage in the system.
However, giving an alarm for the mere presence of a crack could lead to high waste for
investigation activities. Ideally, it would be desired to give an alarm when such a crack, or
any type of local damage really, starts affecting either the operational performance or the
safety of the gangway.

Parameters that are set for evaluating either of these factors (maximum allowable strength-
s/deflections/angles) are of global nature. Drawing conclusions about the impact of localized
damage on these global parameters, considering the limited application experience of com-
posites in gangways, can result in significant inaccuracies.

Directly monitoring global behavior can prove as a better approach for the current application.
A composite gangway would still need to comply with at least the current legislation which can
be used as a starting point for threshold setting. Art. 7.3.2.2 [DNV, 2017] sets the standard
for allowable deflections. The deflections are defined in Figure 7.1 and their maximum values
in Table 7.1.

Table 7.1: Bridge load test condition prescribed by [DNV, 2017].

Condition | Limit for max | Limit for d
G <2*TL L /150
G =2*TL L /100 L /200
G >2FTL L /300
| ' 0
‘ G = gangway self-weight
Y TL = testload
’ i L = gangway maximum operational length
Omax = gangway total deflection
&p = gangway pre-camber
&4 = gangway initial sag due to G
o)) = deflection due to TL.

Figure 7.1: Bridge load test schematic. Courtesy of [DNV, 2017].

7.4 Methods for Tracking Deflection

'O shape-sensing has emerged as a popular technique for the 3D dynamical reconstruction
of structures. First picked up in the 90’s [Greenaway et al., 1999] as curvature sensing, it
evolved over time to continuous strain measurement based on Rayleigh scattering.
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Its advantages lie in its capability of mapping in the absence of visual contact [Floris et al.,
2021]. TIts applications are focused on curvature-critical applications such as medical equip-
ment ( [Larkin and Shafer, 2011], [Park et al., 2014]), bridges’ deformation ( [Yang et al.,
2017]) and aircraft wing shape monitoring ( [Sun et al., 2018]).

In their review work, [Esposito and Gherlone, 2020] distinguish four types of shape-sensing
approaches using strain measurements:

1. Numerical integration of experimental strain

2. Linear continuous basis functions for displacement field approximations
3. Inverse Finite Element Methods (iF'FEM)

4. Artificial Neural Network-based methods

In the current study, the first three approaches will be discussed. The first three methods
are model-based, while the fourth is data-driven. Data-driven methods are highly dependent
on the dataset that is used for training. This fact was also confirmed for shape-sensing
applications by [Mao, 2008]. The study compared the performance of a data-driven approach
with a modal approach. The conclusions of the study confirmed that the modal approach
always rendered more accurate results. The only exception was tested with concentrated
forces. In these cases, the data-driven approach rendered better results because the system
was trained with similar data.

There is the possibility of creating some training data numerically through Finite Element
Methods (FEM) for different loading cases. However, for the current application, there is no
in-operation experimental data available for training. This would make the system unprepared
for handling the material degradation, inherent defects, possible damage or an unpredicted
loading combination, reducing greatly the confidence in the obtained reconstruction. Thus,
for this review, the focus will be put on model-based approaches.

[Tidriri et al., 2016] highlights that data-driven methods are advantageous for large-scale
systems as they require few computations. Therefore, such an approach could be considered
for a later gangway SHM implementation if adequate data is collected.

For now, the three other candidates will be discussed in subsections 7.4.1 to 7.4.3. subsec-
tion 7.4.4 concludes by choosing the deflection monitoring option that will be pursued in the
study.

7.4.1 Numerical Integration

First introduced in [Ko et al., 2007], Ko’s Displacement Theory (IKOT) was developed for the
reconstruction of an aircraft’s wing shape. It is based on the Euler-Bernoulli beam theorem,
making use of the numerical integration of experimental strains. Considering the classical
beam differential equation:

d*w  M(x)

dz® ~  EI (7.1)
Taking the case of a beam loaded in simple bending:
M(x)h

o(z) = M) (7.2)
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Substituting e(x) = o(z)/E, the basis equation of Ko’s theory can be obtained:

2
A C) (7.3)
dx? h
[Ko et al., 2007] developed formulations for different types of beams (uniform, tapered, can-
tilevered, simply supported etc.) and for bending and torsional loads. [Jutte et al., 2011] used
the method for shape-sensing during a ground load test of a full-scale wing. The deflections
are reconstructed accurately. However, the quality of twist reconstructions is considerably
poorer due to an identified sensitivity to the error in bending. Generally, strain integration
along a linear path in this approach leads to spatial resolution errors, thereby restricting its
applicability primarily to beam structures [Freydin et al., 2019].

7.4.2 Linear Continuous Basis Functions

Modal methods are the most popular ones in this category ( [Kefal et al., 2021b]). [Bang,
2012] applies Fiber Bragg grating (FBG)-based shape-sensing for the dynamic monitoring of
displacement of a wind turbine. The displacements are determined using the displacement-
strain transformation (DST) following Equation 7.4.

{y}le = [T]NXM{S}MXI (7.4)

where [T] is defined using according to Fquation 7.5 using the strain mode shape matrix [¥]
and the mode shape matrix [®].

(Tlxear = @l - (050 - [Waren) - [0y (7.5)

The displacement-strain matrix was constructed using the FEM results for the modes dom-
inant in X-directional bending (axis pointing through the nacelle length). This choice was
made as the motions of the structure are expected to be dominant in this direction as it
aligns with the primary wind direction. Using the F'BG reading, the tower top deflection was
determined.

Although the authors present the current approach for SHM applications, it remains unclear
how the approach can be used for damage/degradation identification. The DST is determined
numerically from the idealized, damage-free F'EM model. This makes the shape reconstruction
dependent on both the material properties and the loading conditions, both being hard to
obtain pieces of information during operation. Although [Rapp et al., 2009] conducted a
successful experimental validation of the method for the simplified case of a cantilevered
plate, [Bang, 2012]’s wind turbine application is also lacking a validation of the results.

[Pak, 2016] proposed a two-step method for shape reconstruction, combining both KOT and
modal methods. The first step consists of the double-integration of strain over a straight
line for obtaining deflections. Then, the slopes and deflections in the whole structure are
determined using the System Equivalent Reduction and Expansion Process which required
FEM-generated matrices. [Pak, 2016] validated the approach successfully on the test data of
a cantilevered swept-plate wing model.
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The application of modal methods for shape-sensing has been widely investigated in the field
of aircraft aeroelasticity. Nevertheless, their potential for damage identification is currently
restricted due to the reliance on FEM outputs for displacement reconstruction. This re-
liance decreases the accuracy of shape reconstruction which is the first step before damage
identification.

7.4.3 Inverse Finite Element Methods

iIFEM was first introduced by [Tessler, 2003] and [Tessler and Spangler, 2005]. The approach
allows for the reconstruction of elastic deformations in plates and shell elements from ex-
perimental strain. It is presented as real-time reconstruction for SHM applications due to
its robustness and reduced computation time compared with previous methods such as the
modal transformation technique introduced by [Bogert et al., 2003].

Moreover, iFEM does not require any information on material properties or loading conditions
for the reconstruction of both static and dynamic displacement responses ( [Gherlone et al.,
2014]). The iFEM was further developed, adding formulations for other types of elements
such as curved shells ( [Kefal, 2019]), beams ( [Gherlone et al., 2014]) and solid elements
( [Mooij et al., 2019]).

The iFEM was validated in multiple studies. [Abdollahzadeh et al., 2022] proved the shape
reconstruction accuracy of iFEM of thin Carbon Fiber Reinforced Polymer (CFRP) plates
under large deformation using FBG. [Gherlone et al., 2014] investigated the behavior of a
circular cross-section Aluminium-6000 cantilever beam under both static and dynamic load-
ing using strain gauges. Overall, there was good agreement between the il'EM-computed
displacements and the displacements obtained using linear variable differential transformers.
The errors did not exceed 10% for any of the investigated cases.

[Gherlone et al., 2014] also looked into the effect of strain gauge configurations. The results
highlighted a change in accuracy for the different loading cases depending on the configuration.
Typically a higher amount of sensors is preferred, however, their orientation also needs to be
considered. For example, the tip twist rotation is better predicted by configuration Cs (6
strain gauges out of which 1 inclined at f = 45°) than Cy (8 strain gauges out of which
3 inclined at 8 = 45°). This was explained by the inherent loss in the accuracy of strain
gauge measurements over curvatures. Thus, while iFEM offers a robust computation method,
its results remain sensitive to sensor-generated errors. [Gherlone et al., 2014] concluded the
accuracy of the present method could be increased when using FO-based sensing and an
optimized distribution of measurement points.

[Kefal et al., 2021a] aimed to validate the use of iFEN on a larger specimen with a more
advanced geometry than a beam or plate. A 1 [m] long composite sandwich wing undergoing
tip deflections was monitored using both FBG and strain rosettes. Digital Image Correlation
(DIC) is also used to monitor the leading edge of the wing (denoted as l3). A high-fidelity
FEM model was also built to replicate the test case. Figure 7.2 shows a comparison between
the iFEM, FEM and DIC. What is especially interesting, is that, as noted by the authors, the
DIC results are matched better by those of iF'EM than those of FEM. The study increased
confidence in the usefulness of iF'EEM for engineering structures of larger scales.

Although iFEM is more computationally costly than other shape-sensing techniques, it is
judged as a fast algorithm, suitable for real-life monitoring ( [Gherlone et al., 2011]).
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Figure 7.2: Comparison of deflection [mm] along the leading edge (I3) between iIFEM, FEM and
DIC at different time stamps. Courtesy of [Kefal et al., 2021a]

7.4.4 Concluding Discussion

As discussed in the previous subsections, there are multiple methods for tracking deflection.
It was already concluded that Artificial Neural Network (ANN) methods are placed out of
scope due to the lack of relevant training data. Modal methods offer limited confidence in
reconstruction due to their dependence on FEM outputs.

Although KOT is quite limited due to its simplicity, it is considered suitable to beam-like
structures, category in which the gangway falls. Thus, the applicability of KOT in this
application can still remain of interest for further studies. Nevertheless, it will not be pursued
in the current study due to the limited timeframe. Moreover, KO'T is currently restricted to
only damage detection and the literature does not identify any potential for higher levels of
SHM.

Out of all the presented methods, [Esposito and Gherlone, 2020] identifies that iFEM is the
most accurate one for shape reconstruction. Its main disadvantage lies in the need for more
sensing points compared to other methods. Nevertheless, this is not considered a showstopper
as FO allows for scalability through its multiplexing and reduced cost per sensor [Guo et al.,
2011]. Thus iFEM will be chosen as a method of interest for the study. Additional background
information on iFEM will be presented in chapter 8.
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Inverse Finite Element Methods

The current chapter provides additional information on the Inverse Finite Element Methods
(iIFEM). The goal of this chapter lies in exploring the full capabilities of iFEM and its
potential for higher levels of Structural Health Monitoring (SHM). Section 8.1 introduces
the concepts of smoothing and its benefits, while section 8.2 highlights the use of iF'EM for
damage identification.

8.1 Data Smoothing

Smoothing Element Analysis (SEA) was first introduced by [Tessler, 1998] for obtaining
continous strain and stress fields in Finite Element Methods (FEM) from discrete points. It
uses a variational principle combining discrete least-squares and penalty constraint functions.
The method has been applied also for recovering stresses and error computing in adaptive
mesh refinement. In general, the advantage of smoothed FEM lies in more accurate results
and higher convergence rates as noted by [Zeng and Liu, 2018]. SEA implementations also
reported similar results, leading to superconvergent stress of significantly higher accuracy
when compared with standard FEM ( [Tessler, 1998]).

[Tessler and Spangler, 2005] states that SEEA can also be coupled with iFEM for minimizing
experimental error in each strain components. [Kefal et al., 2021b] offers a method for coupling
SEA and iFEM and its advantages.

[Abdollahzadeh et al., 2022] opts for a polynomial interpolation for smoothing the experi-
mental strain. The study gives a quantification of the contribution of smoothed iFEM. A
visual comparison can be seen in Figure 8.1. The authors reported an error of 7% between
iIFEM (using discrete strains) and FEM, and an error of 0.9% between smoothed iFEM and
FEM.

It can be concluded that smoothed iFEM methods render more accurate results compared to
the standard iFEM implementation.
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Figure 8.1: Comparison between displacement contours obtained through (a) iIFEM using discrete
strained (b) Smoothed iIFEM (c) FEM

8.2 Damage ldentification

iFEM started being explored for damage identification. The current techniques for doing so
are based on the discrepancies within the FEM and iFEM strain fields. However, [Colombo
et al., 2021] notes that at that time few applications of iFEM for damage identification are
available and most of them are limited to metallic structures.

For example, [Roy et al., 2020] aims to identify cracks in a metal plate under bi-axial loading.
The technique is based on identifying points where the €., (reconstructed equivalent strain)
is higher than ecq noise (baseline equivalent strain including measurement uncertainties). The
authors identify that €. noise is dependent on the measurement precision of the equipment,
the placement and the density of the sensor network. €. noise defines the smallest damage
that can be picked up. The method is verified numerically through ABAQUS. It was possible
to localize the cracks with the precision of the grid cell. It is important to note that for this
implementation, the loading case was known, allowing for accurate XM modeling. However,
knowing the load cases in true operational conditions is a challenge.

[Colombo et al., 2019] introduced a load adaptive method for damage identification through
iFEM, allowing for damage localization independent of loading conditions. The authors define
an anomaly index based on percentage difference. The authors separate their sensing grid
into input sensors (at positions x;,) and test sensors(at positions x;). The strains of the input
sensors are then fed into the iFEM algorithm, allowing the reconstruction of the iFEM strain
also at x; locations.

Figure 8.2 highlights the workflow of the load-adaptive framework. For each unknown loading
condition I, a test strain and an input strain will be measured. The input strain is inserted
in iFEM and used for calculating an equivalent strain e.q;rpnm at every z; position. The
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test strains are used directly for computing the equivalent strain e.,; at the z; positions.
The equivalent strains are then used for computing the anomaly index i at the x; positions.
If the anomaly index is 0, then the structure is considered to be "healthy". This condition
only holds true under a strict set of assumptions, the authors recognizing that for operational
applications a certain type of threshold based on the sensor layout, noise and uncertainty
needs to be established.
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Figure 8.2: Schematic of load-adaptive algorithm for damage localisation. Courtesy of [Colombo
et al., 2019]

Healthy structure

[Colombo et al., 2019] verifies the load adaptive framework numerically in 4 loading con-
ditions. Figure 8.3 shows visually the results for a plate containing two cracks. Subfigures
(a),(c),(e) and (g) have the same position and size of the two cracks. Subfigures (b),(d),(f) and
(h) share another configuration of the two cracks. Thus, each column has the same damage
condition.

The study also tries different loading cases:

Subfigures (a) and (b): Tension
o Subfigures (c) and (d): Bending
Subfigures (e) and (f): Torque
Subfigures (g) and (h): Combination of previous three loading cases

Thus, in Figure 8.3 each row of subfigures has the same loading condition.

The authors of the study consider that the damages were localized within reasonable accuracy.
It was noticed that the anomaly index is dependent on the loading conditions, as can be seen
by looking at the variation of the head map across the column in Figure 8.3.

Later on, the authors applied this framework also on a composite structure. [Colombo et al.,
2021] recognizes it as the first application of damage identification through iF'EM on composite
structures. The method was validated for delamination within a Carbon Fiber Reinforced
Polymer (CFRP) stiffened panel under impact damage and fatigue testing. Although the
same load-adaptive framework was kept, the Mahalanobis distance was used for describing
the anomaly index this time, as opposed to the previous percentage difference approach
in [Colombo et al., 2019]. The Mahalanobis index was concluded to be independent of the
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Figure 8.3: Anomaly index computed for plates with two cracks.
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applied load cases. In the same year, [Kefal and Tessler, 2021] proposes a different method
for delamination identification through iFEM. Although a load-dependent method is used,

its capability for thorough thickness damage detection remains of interest.

The research on damage identification through iF'EM for composites is still quite limited and
in its incipient phases. Nevertheless, the available studies agree in their conclusions regarding
the potential of further development of iF'EM for damage identification in SHM applications.

This possibility is of high interest as it could enable achieving in the future higher levels of
SHM using iFEM based methods. This justifies further the usage of iFEM in this preliminary
investigation compared to simpler methods such as Ko’s Displacement Theory (IKXOT) which
do not present the potential of upgrading in the future.



Chapter 9

Research Proposal

Based on the discussion from chapter 7 and the additional information about Inverse Finite
Element Methods (iFEM) in chapter 8, the research questions of the subsequent project can
be formulated.

The initial part of the research will focus on the implementation of iFEEM. Aspects such as
the numerical implementation, the type of elements that are relevant for the gangway and
the iFEM representation of the gangway shall be tackled.

The next point of attention is investigating a suitable sensor network for shape reconstruction.
Aspects such as the number of sensors, their location and directions of measurements shall
be discussed.

Lastly, the performance of the proposed Structural Health Monitoring (SHM) system shall
be assessed. A comparison between the accuracy of iFEM and Smoothed Inverse Finite
Element Methods (iFEM(s)) is of interest. This would allow us to quantify the merits of
smoothed-iFEM for the specific gangway application.

The research questions can be summarized as follows:

RQ1 How can iFEM be implemented for SHM of a composite gangway?

RQ1.1 How can iFEM be implemented in a Python framework?
RQ1.2 What type of inverse elements is suitable for the application?
RQ1.3 How can the gangway structure be simplified for a first iFEM implementa-

tion?
RQ1.3.1 How can the geometry be simplified?
RQ1.3.2 What would be the dimensions of this shape?
RQ1.3.3 What are representative boundary conditions?

RQ1.3.4 What is a representative loading case? What is the magnitude of
this loading?
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RQ1.3.5 How do the deflections/deformations of the simplified load com-
pare to the deformations of the reference model under the same
load?

RQ1.3.6 What aspects of the real structure are ignored in this simplifica-
tion?
RQ1.3.7 How would these aspects affect the deformation of the structure?

RQ1.3.8 Could these aspects be implemented in a later iFEM implementa-
tion? How?

RQ2 What is a suitable sensing network architecture for the gangway?
RQ2.1 Are all strain components necessary for deflection reconstruction? Which are
dominant?
RQ2.2 Is it possible to use only uni-axial strain measurements?
RQ2.3 What kind of strain measurement configurations should be assessed?

RQ2.4 How should the accuracy/performance of a sensing network be assessed?
RQ3 What is the performance of the proposed SHM system?

RQ3.1 What is the accuracy of the iFEM reconstruction with respect to the Finite
Element Methods (FEM) model?

RQ3.2 How does it change when opting for a smoothed iF'EM implementation?
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Chapter 10

Methodology

This chapter outlines the steps taken for exploring and answering the research questions.
Sections 10.1 to 10.3 build up the required theoretical background. section 10.4 highlights
how verification is conducted, while section 10.5 covers the implementation of the Inverse
Finite Element Methods (iFEM) framework in code. section 10.6 outlines how the gangway
model was simplified for the current project. section 10.7 describes some of the considerations
regarding the assessment of sensing networks and section 10.8 defines the indices for assessing

the reconstruction.

10.1 iFEM

As discussed in chapter 8, iFEM offers the possibility of shape reconstruction of a structure
without information regarding the material characterisation or the loading conditions. The
completeness of the shape reconstruction is dependent on the formulation of the chosen inverse
element type. These elements dictate the degrees of freedom for which the reconstruction can
be done.

10.1.1 General Functional

The general approach of iF'EM is first formulating a functional ®, (u€).Equation 10.1 gives a
general form, accounting for membrane (e), curvature (k) and transverse shear (g) strains.

This functional captures the difference between the analytical strain components e (u), e (k),
e(g®) and their experimental counterparts e, k® and g°. The squaring of the norm allows
for reducing the effect created by a potential outlier on the complete reconstruction. This
becomes very useful to experimental strains where noise or a faulty sensor can occur.

e (u) =we e (u®) — e[| + wy [[k (u%) = k|| + wy [|g (u) — | (10.1)
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Such a functional needs to be expressed for each element, as indicated by the subscript e in @.
The expression also accounts for the lack of strain measurement for an element through the
weights w.,wy and w,y. These weights are positive, but always smaller or equal to 1. When
the strain component of an element is recorded, then its value can be set to 1. However,
when the strain component is lacking its value should be set to a lower value. It becomes
apparent that their use becomes critical when sensor networks with a limited amount of strain
sensing points are used. [Tessler and Spangler, 2005] assists in illustrating the role of these
penalty parameters by describing them as a balancer between the correlation of measured
and analytical strains.

The functional can be further expanded using the normalized Euclidian norms. This is shown
for both instrumented elements in Equation 10.2. n denotes the number of discrete measure-
ments within an inverse element and serves as a normalization parameter. Depending on the
number of measurements assigned per element it could or not factor out.

le (u® // e Z 2 dady

n

e () — K| = % / / 3 (), — 16 dady (10.2)

=1

lg (u® // Z — g7)” dudy

For strainless elements, the expansion is given in Equation 10.3.

e (u // )2 dady with (we = )

|k (u® (2h) // k (u®)? dzdy with (w; = a) (10.3)

g (u // )% dady with (wg = )

10.1.2 Variational Approach

The second step in the iFEM approach is using the least-square variation principle on the
functional ®, for minimizing the error between the analytical and experimental solution.

0P, (u°)
—= =0 10.4

Bt (10.4)
The variational condition Equation 10.4 dictates that the functional should not vary with a
change in any of the kinematic variables vector u®. This is one of the conditions for enabling a
system with a Total Potential Energy in equilibrium, thus a compatible system for the iFEM
problem.
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10.2 Inverse Element Formulation

As mentioned in subsection 7.4.3, previous work was put into extending the library of inverse
elements. Although it would be more simple to use beam elements for this application, the
main issue with them is not allowing for a lot of flexibility in terms of configuring the sensor
network as only the number of elements along the length of the gangway could be changed.

Three types of inverse shell element formulations are currently available in the literature.
iMIN3 is a three-node plate element [Tessler and Spangler, 2004]. 1QS4 is a 4-node quadri-
lateral shell element [Kefal et al., 2016]. IQS8 is an inverse curved shell element employing 8
nodes [Kefal, 2019].

Out of the three options for inverse plate elements, Inverse Quadrilateral Shell 4 Points
(IQ)S4) will be investigated. Firstly, its accuracy exceeds that of IMIN3 [Abdollahzadeh et al.,
2020] and the geometry of the current application is regular enough for being meshed with
quadrilaterials. The geometry is also flat and the deformation pattern has a low omplexity,
not requiring the use of the more computationally demanding 8-node element.

Moreover, 1QS4 is the correspondent of the Nastran’s CQUAD4 element that is used for
modelling in the Finite Element Methods (FEM) of the current composite gangway design
(will be explained further in section 10.6). This allows for better correspondence between the
FEM and iFEM formulations. This allows the use of the same mesh in both the iFEEM and
FEM model and hopefully reduces the sources of error as the correspondence between the
iFEM and FEM models is increased. Thus, the 1QS4 formulation and its particularities will
be discussed in this chapter.

10.2.1 Element Overview

The 1S4 element has 4 nodes, each defined by 6 Degree of Freedom (DOF') as shown in
Figure 10.1. The formulation also includes a drilling degree of freedom for reducing the
effect of shear-locking (artificial shear created in in-plane bending) and overall improvement
membrane deformation reconstruction [Abdollahzadeh et al., 2020].

Figure 10.1: Visual representations of 1QS4 element DOF.

The I1QS4 is based on the Mindlin kinematic framework, which imposes the following assump-
tions:
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MINDLIN-1 The displacement varies linearly across the thickness of the plate.
MINDLIN-2 Thickness remains unchanged throughout loading.

MINDLIN-3 Normals to the plate do not remain perpendicular to the mid-plane surface
after deformation.

For each 1QS4, the element nodal displacement vector is defined using Equation 10.5.
T
u® = { uf u§ u§ uj } (10.5)

u vectors are defined using Equation 10.6 and the definitions of kinematic variables as illus-
trated in Figure 10.1.

ue:[ui v Wy Gm Gyi ezi }T (106)

Following assumption MINDLIN-1, the displacement’s components can be written as Equa-
tion 10.7. u and v are the displacements at the midplane.

Uz (2, Y, 2) = up = u + 26,
uy(z,y,2) = uy =v — 26, (10.7)

uy(x,y,2) =uy =w

The analytical strains can be generated through the derivation of the displacement com-
ponents described in Equation 10.7 and are shown in Equation 10.8. The presence of the
transverse shear strains «,. and 7,. is permitted by the assumption MINDLIN-3. The €.,
strain component is omitted in the formulation as it is set to 0 by assumption MINDLIN-2.

v = By T 9z 0z

w0 on,

W oy o oy y
ouy Oup Ov Ou (86y 89x>
— z

Ou, Ou 00,
+

Ty Ox oy or Oy

ou, Ou, Ow
= = — 6

Yo =gy T Tar T
ou, Ouy Ow

Ty oy 0z oy v

The previous set of equations can be written in a compact form as shown in Equation 10.9.

This is done through the use of strain-displacement matrices B™P* and the division in

membrane e (u€), bending k (u®) and transverse g (u) strain components.

Exx

gy ¢ =e(u)+ 2k (u) = B™u® + 2B'u®

Yy (10.9)
fYI'Z = g (ue) — BSue

Yyz

The strain-displacement matrices will be further discussed in subsection 10.2.4.
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10.2.2 Shape Functions

Before giving a formulation of the strain-displacement B, a discussion on the shape functions
of 1QS4 is required. Shape functions are used for describing the behaviour of the element.
They allow for generating approximation functions for the kinematic variables. They es-
sentially allow for interpolation throughout the element. [Cook, 1994] introduced the shape
functions for a quadrilateral element which takes into account coupling with the drilling ro-
tation. These shape functions are also used for the [Q)S4 formulation.

Shape functions require a switch to a natural coordinate system as illustrated in Figure 10.2.
The natural coordinates s,t are defined over a [-1,1] interval.

y

(x3,y3) (S45t4) (s3.t3)

(4,4)

(x1,31) 0)
2 ) Grh (52 t2)

Physical Coordinate System Natural Coordinate System

Figure 10.2: Natural Coordinate System

The isoparametric shape functions Ny 234 can be used as geometry mapping functions from
the natural coordinate system to the local coordinate system.

x(s,t) Niz;

xr =

M-

s
Il
—

(10.10)
N;y;

y(s,t) =y =

M-

ﬁ
Il
—

Starting from Equation 10.7, the in-plane translational displacements can be rewritten as:

4

4
w(,y) =u=> Nuj+ > Ll
i=1

=1 (10.11)

1 1
v(z,y) =v=> Nuvi+ Y M
i=1 i=1

The interpolation of the out-of-plane displacement captures also the membrane-bending cou-
pling caused by both nodal rotations 0.; 6,;.

4 4 4
w(z,y) =w =Y Niw;— Y Liflyi — Y M0y, (10.12)
=1 i=1 =1
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The interpolation of the rotational kinematic variables is done solely through the isoparamet-
ric shape functions:

4
035(37, y) = ex - ZNzem

7 (10.13)
Oy(z,y) =0, = Niby
i=1
The complete definition of the shape functions is provided as follows:
1—s)(1—t¢
SESES:
1 1-—t¢
M ETIE
10.14
(I+s)(1+1¢) ( )
Ny =
4
N, — (=911
4
_ 2 _
N — (1-s*)(1—1)
16
1 1—t2
N — At 8)1(6 )
10.15
(1—s*) (1 +1) 10.15)
Ny TY
16
1—3s)(1—¢2
=9 (-8)
16
Ly = y14Ng — y21 N5
Lo = N5 — N,
2_y21 5 — Y324V6 (10.16)
L3 = y32Ng — ya3N7
Ly = y43N7 — y14Ng
My = x41Ng — x12N5
My = x19N5 — 293N,
2_ 12N5 — 223Ng (10.17)
M3 = x93Ng — 234 N7
My = x34N7 — w41 N3
Tij = i i=1,2,3,4,j=1,2,3,4 10.18
yl] — y’L _— y] } ( M M ) 7] b ) ) ) ( )

10.2.3 Strain Location

As can be seen in Equation 10.1, both the analytical and the experimental strain need to
be divided in components. Depending on the loading condition, the strain placement with
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respect to the top and bottom surface of the plane can be adjusted. For strictly in-plane
loading, sensors on just one side of the plate element can be sufficient. Nevertheless, for cases
where bending is also involved, sensors on only one side cannot capture also the bending
strain components, leading to insufficient data for reconstruction.

Az

— he o+ ot +
z = h: €%, €5y, Vay

........................................................ E.".."..."...."."""""""""""" ...............> X, y

—(0 0 O 0 - _
z = 0: €xx, €yy, Yay P z= —hi€xy €y, Vay

Figure 10.3: Strain sensor placement across plate.

Thus, a two-sided configuration as illustrated in Figure 10.3 is a preferred approach for cases
where bending is involved such as the gangway. Based on these two measurements, the mem-
brane strain and curvature can be reconstructed at the mid-plane level using Fquation 10.19
and Equation 10.20.

+ —
=Tt (10.19)
2
KT — K™
_f R 10.2
Ko 57 (10.20)

10.2.4 Matrix Formulation

Using the shape functions defined in subsection 10.2.2, the strain-displacement matrices
BY, B, B¢ introduced in Equation 10.9 can be defined in their matrix notation.

Niz. 0 000 L,
B"=| 0 N 00 0 M; , (10.21)
Ni7y Nz,:c 0 00 Luy + M%y
0 00O Niz 0O
B=|000 -N;y, O 0 (10.22)
0 00 —N;z Niy O
0 0 N L; . —Mz‘,g;"i‘Ni 0

(10.23)
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It is also possible to rewrite the set of equations obtained from the variational principle in a
matrix formulation as shown in Equation 10.24.

9P, (u)

= kfuf — f¢ =
auc " 0 (10.24)

keue — fe

Combining 10.2 ,10.9, 10.21, 10.22, 10.23 the following notations can be obtained.
T
ke — / / <we (B™)7B™ + wy(21)? (B) B + w, (B°)” Bs) dzdy (10.25)
e L // En: (we (B™)T & + wy(2h)? (Bb)Tk¢ gy (B*)" gF ) dady (10.26)
n . P 1 1 g 7

The k,f notations are used to highlight the similarity to direct FEM. However, the meaning
of the matrices is different compared to FEM. k does not represent anymore a stiffness matrix
as it does not actually contain any material properties. And f is not the standard load matrix.
The literature is not consistent in nomenclature for either of these matrices in the context of
iFEM. In this report, k¢ will be referred to as the analytical element matrix and f¢ as the
input element matrix (it encapsulates the strain data).

10.2.5 Coordinate System Transformation

k¢ and f¢ are formulated in the local coordinate system of each element. In order to be
assembled in the global matrix K and F, they need to be rotated to the global coordinate
system and added to their corresponding positions as dictated by the DOF.

el
K=> (T°)"k°T® (10.27)
e=1
Tlel
F=>(T°7f (10.28)
e=1

T*® is defined as a square matrix with 24 DOF:

-
e}
e}

Te

(10.29)

cCcocoocoqJO oo

coogoO00O0o
o O OoOoOOoOo
©CHOC OO0 OO Oo
_H O O OO OOCO

=R e R el e B o B e B e}
C o CcoOoOOoOH
cCcoocooHgOo

Here, T is defined in Equation 10.30 as the vector allowing transformation from the local to
the global coordinate system per [Oboe et al., 2021b].
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T = [ 17 pT nT } (10.30)

n and p describe the in-plane vectors, while 1 is the normal on the plane. The z;; terms are
represented by z; — x;.

n— 3L X T42 (10.31)
[lz31 X 42|

_ T3+ Ta2 (10.32)
|[231 + Z42]|

l=pxn (10.33)

[Oboe et al., 2021b] also gives a method for calculating the centroid of a general quadrilateral.
The coordinates of the centroid are given in Equation 10.34.

a1 Cada

o=t da
cq describes the mid-point of every edge and d,, the length for each edge using a cyclic rotation
on the coordinates of the edges X using o =1,2,3,4 and =2,3,4,1.

C= (10.34)

. Xﬁ + Xa
N 2
do = ||Xp — Xal| (10.36)

(10.35)

Ca

The determination of the centroid is relevant for switching to the natural coordinate system
which has its origin in the centroid itself. This is used when filling in the strain-displacement
B matrices and the shape functions (N, L and M) when performing integrations as described
later on subsection 10.5.1.

10.2.6 Boundary Conditions

Using our global matrices K and F, the system Equation 10.37 could be solved for U.

KU =F (10.37)

Nevertheless, just like in direct FEM, iFEM should also include the kinematic boundary
conditions and constraints. By removing the entries corresponding to them, the system can
be reduced to its unknown form:

K.U, =Fy

10.38
U, =K, 'F, ( )

From equations 10.25 and 10.26, it can be also noticed that only F depends on the strain
measurements. K however is constant and only depends on the geometry, element formulation
and sensor network, allowing for doing the inverting operation only once.
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10.3 Smoothed Element Analysis

As discussed in section 8.1, the current project will also look into the performance of Smoothed
Inverse Finite Element Methods (iFEM(s)) in this application. Smoothing Element Analysis
(SEA) will be for strain pre-extrapolation due to its superior performance with respect to
other methods such as polynomial interpolation. This superiority is enabled by its adaptivity
to different complexity levels of the strain field [Oboe et al., 2021a] and its development based
on the FEM framework.

10.3.1 Overview

[Kefal et al., 2021b], [Oboe et al., 2021a] are studies in which SEA is implemented using
triangular elements. There is one study [Minigher et al., 2022] which proposes a quadrilateral
SEA element. The authors report better predictability of £, behavior when the drilling
degree of freedom is included in the quadrilateral element compared to the triangular one.

The inclusion of the drilling degree of freedom in the current application is important due to
the side walls which experience in-plane bending. Moreover, the presence of this DOF allows
for proper transformation to the global coordinate system for 3D models [Minigher et al.,
2022]. Moreover, the addition of the drilling degree of freedom also allows for the use of the
same shape functions N, L, M as in [Q)S4.

10.3.2 Quadrilateral SEA Element Formulation

S3
V4 554 Sx3
M y SX4 Sy3
v4 Sz3
v, Sza
Wy
S1
Sx1
Sy1 S,
Sz1 Sx2
Syz
Sz2

Figure 10.4: SEA 4-node element

Figure 10.4 gives an overview of the smoothed quadrilateral element. The degrees of freedom
are defined as s, s;, 5y, 5.. s, is illustrated in gray as it is an artificial DO that is added in
later steps in the matrices of interest. Thus, in the following derivations the DOF vector is
defined as u§g, = [ssxsy].

In some literature, such as [Oboe et al., 2021b] s, s, are sometimes referred as 6, §, which
can cause confusion. These variables simply represent the first derivatives of the extrapolated
strain field and do not have any correlation with the rotational degrees of freedom.
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This allows for interpolation of the ¢ field at any of the points. Moreover, it can be seen that
strain is not divided in components in the SEA formulation. This is due to the fact that the
pre-extrapolation is done for each strain component independently. Thus, the DOF of SEA
can be interpolated using Equation 10.39.

€ = Ns — Lsy — Msy,
1 = Nsy (10.39)
1y = Nsy

Just like iFEM, SEA can be characterized by a general functional Equation 10.40. An ad-
ditional SEA subscript will be added to avoid confusion. [Minigher et al., 2022] warns that
@E;}E 4 can be slightly different than other formulations such as [Oboe et al., 2021a]. The
difference occurs due to the definitions within the quadrilateral framework concerning the
rotation coupling, which can be noticed at the level of the transverse shear strains 7y;., vy..

When comparing with the iFEM functional in Equation 10.1, it can be seen that the discrete
points €° has switched to € (x;) suggesting a continuous strain domain in SEA.

n(e)
& 1 g
Oha =% 2[5~ (xo))
=1
+a// (&+¢)2+(&_¢)2 dA(€)+ (10.40)
Al |\ Oz v oy *

O \2  [OU,\2 1 [0, O, \?
A oG+ () 3 (5 =52 |
+4 A©) ox + oy * 2\ Oy + Ox
FEquation 10.40 can be written in a compacted form such as Equation 10.41.
o) | = .+ By + Py (10.41)

Next, each of the ®., ®,, ®3 components will be expanded. Just like in the regular il'[2M for-
mulation, the variational principle with respect to the ugg s will be applied. After derivation,
the results are rewritten in the classical FEM form ku = f. As can be seen in Equation 10.40,
®. is the only component containing experimental strain €5, thus the only component that
will have a non-zero f. Starting with ®.:

2. =+ S[ef — e(u)]
(2
_ %Z[gg _ [N—L - M]u®]? (10.42)
(2
= % Z[(sf)Q +u"NTNue — QEfNue]
(2
where N is defined through Equation 10.43.

N:[N ~L —M} (10.43)
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k.u® =1f.
k. = iZNTN
€ N -
1 i
f. = NZQN

®,, can be expanded into Equation 10.47.

[ G
15 -F RN T+ [ (-5

By applying the variational principle and rewriting in the form:

k,u®=0

FEquation 10.47 can be rewritten in the compacted form Equation 10.48.

k, — // (B1"B1 +B,"B)

Matrices B1 and Bg are simply defined by equations Equation 10.50.

relation to the strain-displacement B matrices)
_ | ON _ 0L oM
B: = |: Or = Or ( Or + N) }
— | ON (_0L _ _ oM
Bz = [ dy ( y N) dy }

Lastly, the ®3 can be tackled.

o [ ) 4 ) o

_A<e)_8y$ ox Y 2\ oy OxY

Lo (B, g (Y, (o
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(10.44)

(10.45)

(10.46)

(10.49)

(they do not have a

(10.50)

8N ON
ay 89:
(10.51)

Due to the lack of ugg, as a whole, separate derivations for the sy and sy, DOL" that are

present need to be done, as shown in equations 10.52 and 10.53.

o
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Os, JJae© T\ dy oy ) oy oy ) " oy ox? (1052)
_ //  (ONTON 1ONTONY  1ONTON| ()0 '
—JJae@ I oy Oy 2 Oy Oy 2 Oy Ox
osy  JJa@ i oxr Ox )Y ox Ox )Y oy Ox "
_ // o LONTON  (ONTON 1ONTONYI ) (10.53)
- JJae@ 2 oy Oz Or Or 2 Oxr Ox
By using the form:
ksul® =0 (10.54)
kg can be defined as:
0 0 0
ONT 9 ONT 9 e
kﬁzf/ 0 JONTON 1ONTON | 44(c) (10.55)
A g LONTON 39NT 9N
2 0y Ox 2 Or Ox
Finally, after defining all the components they can all be put together using the
SEa = ke + ak, + fkg (10.56)
fSpa = f- (10.57)

After constructing the element matrices k§ga and f§g 5, the artificial drilling degree of free-
dom s, can be added. This is done through entries equal to the drilling stiffness kg, in the
k§ga and 0 entries in the f§g , matrix. Thus, from a 12x12 matrix, k§g 4 turns into a 16x16
matrix and from 12x1, f§g o gets a shape of 16x1.

Just like for regular iF'EM, the local matrices need to be transformed to the global coordinate
system through transformations 10.27 and 10.28. However, for computing the Ugga, the
inclusion of the boundary conditions is not mandatory. [Minigher et al., 2022] describes that

this is due to the fact that the @g})jﬂ 4 simply represents an interpolation error minimization,
rather than a Total Potential Energy minimization like in the one used in direct FEM.

10.3.3 Involved Parameters

This subsection will describe the parameters a,5,ky,.
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e « is a hyperparameter that defines the smoothness of the interpolation. A higher value
of « allows for a smoother strain field while a smaller value of a permits for a better
fit of the interpolated function through the control points. This effect is documented
in [Oboe et al., 2021a]. Multiple sources indicate that the contribution of o [Oboe et al.,
2021a], to the iFEM(s) is critical. Thus, o will be investigated.

o [ controls the curvature of the interpolated function. Multiple studies such as [Oboe
et al., 2021a], [Minigher et al., 2022] highlight that it has a negligible contribution to
the quality of the results compared to «. In the current study, the effect of 5 was not
investigated. Based on the literature, a factor of 3 of 10~* was assumed.

o kg, is the artificial drilling stiffness. It is a penalty parameter that allows for reducing
singularity issues when the drilling degree of freedom is implemented in the element for-
mulation. k\p6:10_5 was used as suggested in [Minigher et al., 2022], [M. Adam, 2013],
. [Minigher et al., 2022] highlights that the variation of kg, affects the quadrilateral
SEA formulation only for very low values of a.

10.4 Method for Verification

In the current work, the verification of iFEM will be done through FEM simulations. This
implies that before constructing any il'EEM model, a reference F'EM model will be built. The
strains computed in the direct FEM analysis will be used as mock experimental data for
the iFEM algorithm. Afterwards, a comparison between the reference FEM data and the
reconstructed data through iFEM can be conducted.

The FEM software used in the current work is FEMAP 2022.1. Unless otherwise mentioned,
the analysis uses simple or laminate 4-noded plate elements.

10.5 Implementation Overview

All the literature presented so far on iFEM makes use of in-house developed code imple-
mentations that are not made publicly available. Thus, for the purpose of this research,
implementing the theoretical background of iFEM and SEA presented in sections section 10.1-
section 10.3 was necessary.

It was chosen to use Python (v 3.11.4 is used) for development. This was done for multiple
purposes. Firstly, Python is the main programming language at Ampelmann, allowing en-
gineers to use it further and build on it. Secondly, it is an open-source language, allowing
anyone to become a potential user.

The developed code uses elemental data patterns inspired by the pyfe3d package [Castro,
2023]. The currently developed iFEM package will be called and referred to as pyife3d.

Some aspects that are not immediately obvious from the previous discussions will be presented
in subsections 10.5.1-10.5.4. A quick overview of how hyperparameters w and « are selected is
given in subsection 10.5.5, while subsection 10.5.6 highlights the required input for the code.
Lastly, subsection 10.5.7 gives a visualization of the implementation.
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10.5.1 Integration

It can be seen throughout the methodology that most of the final expressions are expressed
in integration form. These integrals are solved numerically through the Gaussian Quadrature
as shown in Equation 10.58, where w; represent weights that are determined based on the
number of the used integration points. Throughout this study, unless otherwise mentioned,
a 3-point integration is used. Nevertheless, the code implementation offers the possibility of
using others as well.

flz) = iwif(xi) (10.58)

This method is defined for the natural coordinate system [-1,1]. Thus, a change of variables
from the local coordinate system to the natural coordinate system needs to be done. For
the coordinates of the element corners, this can be done by relating the point as a distance
from the centroid of the element (the new origin of the coordinate system). As for the partial
derivates, this can be done with the help of the Jacobian as shown in Equation 10.59.

0xdy — |J(&,n)|dsdt (10.59)

Where |J(§,n)| represents the Jacobian of the local to natural transformation.

o oc
\J(ﬁ,n)lzlgf, 32] (10.60)
o On

10.5.2 Weights Assigning

It was chosen to treat the w.,w; and w, weights used in the iFEM functional as vectors
with independent values for each strain component rather than constants. This allows for the
investigation of strain networks with only axial measurements as opposed to being limited
to only strain rosettes. The code checks for each element which strain measurements are
measured. If the measurement is present, then the weight of the component stays 1. If it is
not, then the weight becomes equal to a factor wy. The same factor wy is assigned to any
missing strain component, no matter if it is membrane or curvature. By default, transverse
shear will be set to a low value of wy = 1078 as they cannot be directly measured without
additional error-prone computations [Colombo et al., 2021]. Moreover, for thin shells it is
possible to completely omit the transverse shear components from the iFEM formulation due
to their small contribution [Kefal et al., 2018], [Abdollahzadeh et al., 2023]

10.5.3 Sensor Placement Correction Factor

A correction is added when integrating over the f€ in Equation 10.26. It is assumed that
for each element the strain is recorded at its centroid. Thus, when the Gaussian integration
point does not correspond to (0,0), an alignment factor is added. Its value was aimed to be
kept low and in a similar range to typical values of the weight wy. Thus, its value was set to
a fixed value of 107%.
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For f§g 4, it can be seen that such a factor is not required by looking at Fquation 10.46.
In this case, only the actual strain measurements are taken into account, not requiring a
correction factor.

10.5.4 Strain pre-extrapolation Usage

As also suggested by the notation, Ugga is expressed for nodal values. Nevertheless, the
interpolated strain needs to be expressed in an elemental value. This can be done by using
the relation for ¢ from Equation 10.39. By filling in the shape functions with the natural
coordinate of the centroid in the current case, a single strain value for the element can be
obtained. This is verified by the matrix shapes:

e=N s — L s, — M sy (10.61)
NN N N
1x4 4x1 1x4 4x1 Ix4 491

10.5.5 Hyperparameters Determination

The determination of the w; and a parameters is done in a two-step coefficient selection.
The upper limit for w; is limited to 1 by its definition. The other boundary values are
recovered from the literature. The iteration for w; was conducted on the [107%;1] ( [Kefal
et al., 2016], [Tessler and Spangler, 2005], [Oboe et al., 2022]) interval, while for a on the
[107%;10%] ( [Oboe et al., 2021a], [Minigher et al., 2022]).

Especially for « it is a long iteration due to the prolonged duration of running the SEA strain
pre-extrapolation. Thus, a logarithmic scale was used for evaluating these intervals. Each
coeflicient was selected based on its performance which was assessed through a Mean Absolute
Percentage Difference (MAPD) as discussed in section 10.8.

Iterate wy Select wy lterate a Select a for

values for for lowest values for lowest
iFEM MAPD of iFEM(s) MAPD of

analysis T3 analysis T3

Figure 10.5: 2-step coefficient selection iFEM(s)

The following assumptions are made:

PARAM-1 It is assumed that the same optimum w can be used for both the iFEM and
iIFEM(s) analysises.

PARAM-2 The effect of 8 and kg, on the reconstruction performance is considered
minimal and is not currently investigated.

10.5.6 Input

In the current implementation, the iF'EM code uses the same geometry and mesh discretization
as in the direct FEM model.
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1. Node coordinates. A file containing the (x,y,z) of all nodes.

2. Element nodes. A file containing the nodes of each element and their corresponding
order. Their order is important for the establishment of the local coordinate system as
described in section 10.2.

3. Strain Results. A file containing the ID of the element and the associated strains for
top and bottom sides of the plate element. Can be only partially filled in.

4. Boundary Condition (BC). The BCs need to be hardcoded for the analyzed case in the
U vector at the corresponding DOF’s.

5. Thickness. The thickness of the plate elements needs to be hardcoded in the iFEM
script that is run.

6. Material Direction. This input is optional and should only be given in the case of
anisotropic materials. It is defined as a vector which shows the alignment directions of
the fibers in the global coordinate system.

7. Reference U. This file is not specifically needed for running the code, but used for
computing the performance of the reconstruction. More information on how this is
assessed is offered in section 10.7.

The First three inputs can be directly be extracted from FEMAP with the use of VBA.NET
Macros. Appendix B gives an example of such a macro and how the input files for the iFEM
code need to be formatted.

10.5.7 Layout

The following assumptions/simplifications are made in the current code simplification.

CODE-1 All the plate elements have the same thickness.

CODE-2 The iFEM code uses the same mesh as the FEM model.

CODE-3 The strain is always measured at the centroid of the element.

CODE-4 The input strains are given in the local coordinate system of the elements.

CODE-5 Same « is used for the SEA of all strain components.

10.6 Gangway Structure: Model Simplifications

The structure simplification will be done in an iterative and incremental manner. This means
that the starting point will be represented by the least complex simplification of the gangway
structure. In each iteration, complexity will be added to the structure. This approach was
chosen in order to allow inspection of individual effects and improvement of methods. The
goal of the simplification was to replicate as much as possible the behavior of the designed
composite gangway, despite the use of a simpler model.

The general approach for each design iteration is the following.
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Figure 10.6: Block Diagram of IFEM SEA implementation

1. Aim to recreate as much as possible from the current dimensions of the gangway.

2. Use the thickness of the plate to match the Dead Load Test Load (DLTL) deflection of
the designed gangway. The DILTL deflection is chosen for matching as it is the deflection
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that is defined per legislation and can also be measured directly through iF'EEM. The
Dead Load (DL) deflection is not regulated explicitly. The Test Load (TL) deflection
is. However, it cannot be measured independently as the DL is always acting on the
structure in real life. A preliminary thickness is determined through the use of analytical
formulas. Afterwards, if necessary it is adapted through iteration based on the results
obtained in FEM

. The density of the material becomes an artificial parameter that is used to match the
DL of the designed gangway through the total mass as given in Appendix A.

. When the material is modeled as isotropic, the equivalent elastic properties of the
laminate in Appendix A are used. This is done following relations Equation 10.62 from
[Kassapoglou, 2013, p. 51] where the lower case letters a,b,d represent the entries of the
matrix (ABD)~1. When the material is modelled as anisotropic, only plies will be used
for modelling. The foam part of the sandwich structure is disregarded currently as nor
solid elements, nor other methods such as Refined Zig-Zag Theory (RZT) for handling
are implemented. The low transverse modulus of the core can create contradictions in
the first-order shear deformation theory that is assumed by the Mindlin plate [Birman
and Genin, 2018].

. In the case when the material is modeled as anisotropic, the plies are all stacked in the
same direction to obtain the required thickness.

1 12
Eim = Eyy = 55—

han Wi
Eom = has Egp = 73d
Grom = s Gh2o = o (10.62)
Vigm = — g2 vigy = — g2
Vo = — 22 v1p = —%

The assumptions regarding simplifying the gangway iF'EM model can be identified as follows:

STR-SIM-1 The tip of the gangway is neglected in the current modelling.

STR-SIM-2 The cutouts on the side-walls are ignored in the geometry modelling. This is
due to the complexity induced by the stress redistribution. The effect of this
assumption would be especially important when modelling wind loading,
as its effect is dependent on the surface area of the profile. Nevertheless,
this type of loading is not considered in the current implementation of the
Structural Health Monitoring (SHM) system.

STR-SIM-3 Connecting interfaces between the side walls and the gangway deck are ig-
nored.

STR-SIM-4 The telescoping interface is neglected.
STR-SIM-5 Only the TL and DL are considered in a static loading case.

STR-SIM-6 The boundary conditions are modelled as a fixed end.
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STR-SIM-7 DL includes only the structural mass of the gangway. Traditionally, the DL
also includes the mass of all installed equipment. However, during this point
of the composite gangway development, this is not determined and therefore
excluded from the current study.

10.7 Sensor Network

The current study is interested in exploring the performance of different sensing networks,
and hopefully identifying a suitable candidate for the SHM system. The general guidelines
for conducting this task are:

1. Start from a complete set of measurements and reduce the number of sensing points
gradually. This initial reconstruction with the set of complete measurements will rep-
resent the best accuracy that can be achieved.

2. Assess the performance of individual strain components. In certain load conditions and
applications, certain strain components are more relevant than others. Assessing if only
one component is sufficient for an acceptable reconstruction, then it is possible to keep
the sensor network with only axial measurements. This can be preferred if distributed
Fiber Optics (FO) is used for continuous measurements. Nevertheless, if this is not
possible, placing Fiber Bragg grating (F'B() strain rosettes remains a viable possibility.

3. As in the current SHM system implementation only the DT case is considered, this
implies that the gangway is mainly loaded in bending. Thus, the focus will be on line
configurations that span along the whole length of the gangway.

The current approach introduces the following assumptions regarding the sensor network.

SENSING-1 The strain is measured at the centroid of the element.

SENSING-2 It is possible to place sensors at both the top and bottom of the plate at
the locations of interest.

10.8 Performance Assessment

The performance of a sensor network reconstruction will be assessed using two measures.
Firstly, the Percentage Difference (PD) between the maximum deflection in the FEM model
and the reconstructed one. PD,,;(7y) is the main factor of interest due to the legislation.
Ampelmann agreed that a reconstruction for this first SHM implementation should offer an
accuracy of 95% for the maximum deflection.

max(13)irpym — maz(T3)rEm
maz(Ts)pEnm

PDpaa(ry) = 100 (10.63)

Secondly, the MAPD between the FEM deflection field and the reconstructed one. This allows
for assessing the performance of the whole reconstruction through a single value. This value
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is considered of value to ensure that not only a critical value is replicated, but also the overall
behavior of the structural deformation.

N’ﬂO €es
MAPDz,) = Zd T?’”E;f — e 09 (10.64)
i=1 3rEM




Chapter 11

Results

The current chapter presents and discusses the findings of the current study. section 11.1
highlights some findings obtained during initial verification procedures of the code. Sections
11.2 and 11.3 give an overview of the results of the deck configurations, while section 11.4
tackles the insight gathered when exploring the U-shape geometry.

11.1 Inverse Finite Element Methods (iFEM) Exploration

Before diving into the actual design configurations, an exploration of the iFFEEM implementa-
tion was done on some preliminary cases, including a cantilevered plate under a distributed
load. This was chosen due to the representative loading to the gangway.

A cantilevered plate under a distributed load was studied. t=4mm E=72.4 GPa v = 0.33
!, The distributed load q=-1000Pa was chosen arbitrarily with the condition of keeping the
deformation in the linear domain, which was considered achieved as a maximum Von Mises

stress was 28.7 MPa, while the yield strength of an Aluminum alloy is typically in the range
of 300 MPa.

One interesting phenomenon was observed when exploring sensing network options. The
location of a sensing line (along the length) across the width of the plate can introduce
an artificial torsion effect in the iFEM reconstruction. Three key locations are shown: the
edge of the plate, the quarter of the plate and the middle of the plate. All these cases are
instrumented with only one strain direction along the Inegth of the plate (defined as x-axis),
as it was identified as sufficient for the reconstruction. A finer mesh was chosen in order to
allow for space between these locations along the width.

Figures 11.2 to 11.10 show for each of these configurations how the sensors are placed, how
the out-of-plane displacement reconstruction based on the iFEM analysis looks like and a map
of errors. The map of errors will be used as a reference for the rest of this report. They are
created by plotting the Percentage Difference (PD) error between the reconstructed variable

"https://asm.matweb.com/search/SpecificMaterial . asp?bassnum=ma2024t4
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and the reference variable from FEMAP. The values between the nodes are interpolated
automatically by the function tricontourf’ from Pyhton’s matplotlib. Thus, a continuous
contour map is obtained.

The twist effect was quantified through a twist angle as defined in Figure 11.1. The twist angle
is defined at the mid-plane of the plate and computed at the free tip of the plate x=0.4 [m]. For
the EDGE-LINE-EXX a 0.613°, QUARTER-LINE-EXX 0.446° and MID-LINE-EXX 0.063°.
Thus, by using the same amount of sensors, simply moving the sensing location can diminish
the twist angle by one order of magnitude. This also allows for an overall improvement of the
reconstruction, reducing the Mean Absolute Percentage Difference (MAPD) from 5.86 % to
2.83%.

This phenomenon could be explained by the Finite Element Methods (FEM) formulation
which imposes a unique value per node. Thus, when a strain is provided for one element, the
adjacent elements are also affected as nodes are shared. If the sensing line is placed at the
edge of the plate, then there is only one row of adjacent elements that gets influenced by the
strain measurements as opposed to two sides (like in the case of the QUARTER-LINE and
MID-LINE configurations).

The effect cascades to the rest of the structure and gets lesser with an increasing distance
from the fed strain data. As such, the MID-LINE sensing network has a greater effect in
propagating the values of the nodes, leading to a better reconstruction. Moreover, it also
leads to a more uniform reconstruction which results in less twist.

Az

Undeformed

.............................. >y

Deformed
................... > y’

Figure 11.1: Twist angle visualization. The x-axis is aligned with the length of the plate, the
y-axis with the width and z-axis with the thickness.

Nevertheless, sometimes there is not much freedom to change the locations of the sensing
networks. Thus, it was investigated whether this effect can be minimized in other ways.
Subsections 11.1.1 and 11.1.2 explore two alternatives for minimizing this artificial twist
phenomenon on the cantilevered plate under distributed load study case.

’https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.tricontours.html
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Figure 11.2: Cantilevered plate under distributed load discretized using a 800 element mesh.
Visualization of instrumented elements for the EDGE-LINE-EXX strain sensing configuration.

0.000000

0001111
Nodal contour: T3 [m] at mid plate

0.200

0175
-0.002221

0150

0125 ~0.003332

E 0100
=

0075 ~0.004443
0.050

0005553
0.025

0,000
0.00 0.05 00 015 0.20 X ) 0.40

0006664
xm]

~0.007775

Figure 11.3: Cantilevered plate under distributed load discretized using a 800 element mesh.
iIFEM reconstruction of Out-of-plane displacement (T3) for the EDGE-LINE-EXX strain sensing
configuration.
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Figure 11.4: Cantilevered plate under distributed load discretized using a 800 element mesh. PD
error map for T3 iIFEM reconstruction wrt. FEM results for the EDGE-LINE-EXX strain sensing
configuration.
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Figure 11.5: Cantilevered plate under distributed load discretized using a 800 element mesh.
Visualization of instrumented elements for the QUARTER-LINE-EXX strain sensing configuration.
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Figure 11.6: Cantilevered plate under distributed load discretized using a 800 element mesh.
iIFEM reconstruction of T3 for the QUARTER-LINE-EXX strain sensing configuration.
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Figure 11.7: Cantilevered plate under distributed load discretized using a 800 element mesh.
PD error map for T3 iIFEM reconstruction wrt. FEM results for the QUARTER-LINE-EXX strain
sensing configuration.
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Figure 11.8: Cantilevered plate under distributed load discretized using a 800 element mesh.
Visualization of instrumented elements for the MID-LINE-EXX strain sensing configuration.
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Figure 11.9: Cantilevered plate under distributed load discretized using a 800 element mesh.
iIFEM reconstruction of T3 for the MID-LINE-EXX strain sensing configuration.
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Figure 11.10: Cantilevered plate under distributed load discretized using a 800 element mesh.
PD error map for T3 iFEM reconstruction wrt. FEM results for the MID-LINE-EXX strain sensing
configuration.
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11.1.1 Effect of symmetric Boundary Condition (BC)

Figures 11.4,11.7 and 11.10 all show the same behavior: a sudden jump in error to extremely
high values at the corners of the cantilevered edge.

It is assumed that this effect is caused by the input strain gradient. By analyzing the FEMAP
strain gradient in Figure 11.11, a discontinuity can also be noticed. This effect is caused by
the Poisson effect. The width would tend to slightly shrink due to the bending, however, due
to the fixed constraint that is not possible leading to the strain pattern. It can be seen that
by moving the sensing line inwards, the gradient becomes smoother, leading to both smaller
MAPD and smaller twist angle, as discussed earlier.

0.000301

-4.0592E-7

Figure 11.11: Cantilevered plate under distributed load discretized using a 800 element mesh.
€z¢ Strain field on the top plate surface obtained in FEM using fixed BC.

It is possible to remove this effect through the use of symmetric boundary conditions on the
long edges of the plates. This modelling method essentially mocks an extended width. The
FEMAP strain results using also the symmetric boundary conditions are given in Figure 11.12.
It can be seen that the discontinuities and circular pattern is moved, replicating the bending
stress behaviour expected for a cantilevered beam.

0.0002701

1.154E-7

Figure 11.12: Cantilevered plate under distributed load discretized using a 800 element mesh.
€2 Strain field on the top plate surface obtained in FEM using fixed and symmetric BC.

This highlights the impact of BC modeling on the iFEM reconstruction. The updated PD
error maps are shown in figures 11.13a to 11.13c. It is interesting to see that although now
the strain field along the length stays similar for each sensing line location, the reconstruction
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error has quite different patterns. It can be clearly seen in these figures that the error on the
first line of nodes at the fixed end stays 0 due to the cantilevered constraining, while the second
row generally inflicts the highest error. This could be caused by their proximity to the BC.
For the EDGE-LINE-EXX a 0.582°, QUARTER-LINE-EXX 0.468° and MID-LINE-EXX
0.055° twist angles are obteined.

A robust reduction in twist cannot be concluded from this method as for the QUARTER-
LINE-EXX the symmetric BC actually inflict a slight increase. The MAPD however is
consistently reduced for all strain configurations. An overview of all the quantitative results
is given in Table 11.1.

11.1.2 Effect of Smoothing Element Analysis (SEA)

While the solution for reducing artificial twist in subsection 11.1.1 presents an interesting
dependency of iFEM to BC, it does not offer an alternative that could be implemented on a
real-life structure that needs to be monitored, but a mere idealization.

By applying the SEA to this case, it was possible to reduce both the MAPD and the arti-
ficial twist. This was done for both the cantilevered and catilevered4+symmetric BC cases.
Thus SEA can provide a more robust method for diminishing the artificial twist effect in the
reconstruction.

Table 11.1: Quantification of the effect of sensing line placement for the cantilevered plate under
distributed load. The twist angle was computed at the free tip of the plate. Smoothed Inverse
Finite Element Methods (iFEM(s)) columns reveals contribution of strain pre-extrapolation.

FEM FEM(s)

Strain Configuration BC MAPDI[%] | Twist[deg] | MAPD[%] | Twist[deg]
EDGE-LINE-EXX Fixed Root 5.86 0.613 4.09 0.16
QUARTER-LINE-EXX Fixed Root 3.57 0.446 2.9 0.145
MID-LINE-EXX Fixed Root 2.83 0.063 2.81 0.022
EDGE-LINE-EXX Fixed Root + Symmetry 3.46 0.582 0.77 0.248
QUARTER-LINE-EXX | Fixed Root + Symmetry 2.33 0.468 0.57 0.124
MID-LINE-EXX Fixed Root + Symmetry 1.37 0.055 0.51 0.023

11.2 Design Simplified Configuration | - Isotropic Deck

As described in section 10.6, the current gangway design will be simplified. The least complex
case was identified to be the isotropic deck.

The deck was modelled as a cantilevered plate of 15.896[m] length. This length was chosen
based on the [DNV, 2017] which requires the gangway to be extended to its "maximum
operational length". The width of the plate was 0.858 [m], as an average between the Main
Boom (M-Boom) and the Telescopic Boom (T-Boom).

The equivalent material properties of the laminate that are used for this iteration are given in
Table 11.2. The required thickness for matching the Dead Load Test Load (DLTL) maximum
deflection of the gangway is calculated using the analytical formulas for a cantilevered beam
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(a) PD error map for T3 iFEM reconstruction wrt. FEM
results for the EDGE-LINE-EXX strain sensing configura-
tion.
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(b) PD error map for T3 iFEM reconstruction wrt. FEM
results for the QUARTER-LINE-EXX strain sensing config-
uration.
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(c) PD error map for T3 iFEM reconstruction wrt. FEM
results for the MID-LINE-EXX strain sensing configuration.

Figure 11.13: Cantilevered plate under distributed load discretized using a 800 element mesh
including symmetry BC.
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Figure 11.14. As the current analysis is kept in the linear domain, the analytical cases can be
overlapped for replicating DT loading. A thickness of 0.55 [m] was found and used in the
modelling. For the length of 15.896 [m], this leads to a thickness-to-length ratio of well under
1/20 which is generally considered for beam idealisations, confirming the validity of using the
formulas in Figure 11.14 for a quick thickness determination.

Figure 11.14: Analytical formulas for maximum deflection 4,54, of a cantilevered beam.

Table 11.3 gives an overview of the results for the Isotropic Deck. Based on the findings
provided in section 11.1, it was decided to focus on configurations using the mid-line sensing.
As can be seen by the error computed using each strain component, only e,, is sufficient
for correct reconstruction. Using a single uni-axial sensing line (MID LINE EXX) can be
sufficient for accurate reconstruction. It is interesting to note that when also applying strain
pre-extrapolation, the error for the maximum deflection of this configuration can match that
of the complete strain configuration.

The effect of using a discontinuous sensing line was also explored through configurations MID
LINE EXX EVERY 6 ELEMENTS. As reported in [Oboe et al., 2021a], a discontinuity in
the sensing pattern can lead to a breakdown of iFEM. This is also reflected in the current
results, where the errors for these strain sensing configurations increase in a highly unexpected
manner. Applying SEA provides a method for considerably improving the reconstruction of
such discontinuous sensing patterns for the isotropic deck.

Table 11.2: Equivalent elastic properties of the composite gangway deck floor laminate.

Ex [GPa] | Ey [GPa] | Gxy [GPa] | vxy[—] | vyx[—]
Membrane 3.14 3.14 1.2 0.3 0.3
Bending 8.7 8.7 3.33 0.3 0.3

Table 11.3: Overview of T3 reconstruction performance for the Isotropic Deck under DLTL.
Discretized with 396 elements.

Strain Configuration

Sensing Elements x | T3 MAPD[%] max(T3) PD[%]

Strain Components | iFEM | iFEM(s) | iFEM | iFEM(s)
Complete 396x3 0.59 - -0.12
ONLY EXX 396x1 0.88 - -0.12
ONLY EXY 396x1 98.58 - -100.00
ONLY EYY 396x1 98.76 - -99.98
MID LINE EXX 66x1 0.91 0.80 -0.16
MID LINE EXX EVERY 6 EL 11x1 96.27 6.06 -96.73




11.3 Design Simplified Configuration II - Laminated Deck 61

11.3 Design Simplified Configuration Il - Laminated Deck

Advancing from the Isotropic Deck to the Laminated Deck did not create any hassle to the
iFEM reconstruction. A thickness of 0.30728 [m] was determined for recreating the DLTL
deflection of the composite gangway.The reconstruction behaviour was highly similar to that

of the Isotropic Deck, thus only the final reconstruction results are shown in Table 11.4.

Table 11.4: Overview of T3 reconstruction performance for the Laminated Deck under DLTL.

Discretized with 396 elements.

Strain Configuration Sensing Elements x | T3 MAPD[%] | max(T3) PD[%]
Strain Components | iFEM | iFEM(s) | iFEM | iFEM(s)
Complete 396x3 0.50 - -0.35
ONLY EXX 396x1 0.50 - -0.35 -
ONLY EXY 396x1 98.51 - -99.99 -
ONLY EYY 396x1 98.51 - -99.99 -
MID LINE EXX 66x1 0.66 0.5 -0.39 -0.33
MID LINE EXX EVERY 6 EL 11x1 92.73 5.26 -92.74 -4.75

11.4 Design Simplified Configuration Ill - Isotropic U-Shape

The next step in advancing the geometry representation was including the side-walls. This
was done through the use of a simple U-shape. subsection 11.4.1 highlights how this geometry
was modeled and compares it against a case from the literature. subsection 11.4.2 covers the
final results and findings of the U-shape applied for the gangway structure.

11.4.1 U-Shaped Geometry Literature Study Case

[Abdollahzadeh et al., 2023] investigated the performance of shape reconstruction of 3D
beam-like structures using Inverse Quadrilateral Shell 4 Points (10)S4) elements. Multiple
geometries including the U-shape were studied. In the paper, the U-beam was represented
with a length of 1[m], a width of 0.02[m] and a height of 0.04[m]. The thickness was 5[mm],
using a material with E=210 [GPa], v = 0.3 and p = 3000[kg/m3].

The studied case was replicated to first of all confirm the correctness of the FEM modeling
of such a structure. Reusing the same 90 elements mesh, the results of [Abdollahzadeh et al.,
2023| are shown in Figure 11.15, and the replicated results are shown in Figure 11.16. In
FEMAP, the one-piece structure was obtained using the "Nonmanifold Add" command for
avoiding repetition of curves and nodes at the intersection of the surfaces. To recreate the
flush cross-section, the thickness offset with respect to the nodes was adjusted for each wall.

It can be seen that the overall behaviour of the FEMAP simulation is agreeing with the
results of [Abdollahzadeh et al., 2023], and the maximum total displacement results in a PD
of 1.85% between the two models.

When it comes to comparing the performance of the iF'EEM reconstruction between the current
implementaiton and that of [Abdollahzadeh et al., 2023], a considerable difference can be
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Figure 11.15: Results for FEM (left) and iFEM (rights) analysis for the U-shape study case.
Total translation under its own weight in micrometer. Courtesy of [Abdollahzadeh et al., 2023].

noticed. The authors report a reconstruction PD error of 6.8%, while in the current study
the error is reduced to about 0.17%. It was tried to reproduce to the best of the abilities
the iFEM analysis using the same type of 1()S4 elements, the same inverse mesh and the
same wy = 10~%. It remains diffcult to further assess where this reconstruction performance
error could be coming from, as no information is provided by the authors on the numerical
implementation (as discussed in subsection 10.5.1 or subsection 10.5.3).

Nevertheless, this preliminary investigation satisfied the initial goal: gathering confidence in
the chosen method of FEM modelling of beam-like structures using quadrilateral elements.

0.0000879 —

Output Set: a
Nodal Contour: Total Translation 0

Figure 11.16: Reproduction of U-shape study case in [Abdollahzadeh et al., 2023] in FEMAP
using strain rosettes on all elements. Total translation under its own weight in [m].

11.4.2 Actual Implementation

The height of the side walls was set to 1.39 [m], averaging the original measurements of
the gangway design booms. The Test Load (TL) load was distributed equally over the two
edge points to prevent stress concentrations. A thickness of 15.5 [mm] was computed for
matching as much as possible the DT deflection of the reference FEMAP gangway model.
The analytical beam model predicted a DLTL maximum displacement of 0.101 [m], while the
FEMAP model led to a total displacement of 0.104 [m)].

A mesh of 528 elements was used for this analysis. This was done in order to reduce the
computational effort of running the required hyperparameters optimizations described in sub-
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Figure 11.17: iFEM reconstruction of the total displacement for the U-shape study case in
[Abdollahzadeh et al., 2023].

section 10.5.5 for the multiple investigated strain configurations. Secondly, the current mesh
allows for separating the lines on all faces into FDGFE and MID configurations with each
their SYMM equivalent. For the side-walls, any possible MID line configurations are not
taken into account as they would overlap with the cut-outs. Thus, it is important to see if the
reconstruction for this simplified geometry can already be done without MID measurements
on the side walls.

Complete Triaxial Reconstruction

Firstly, a complete reconstruction using tri-axial measurement was done to assess the most
optimistic reconstruction scenario using the 528 mesh discretization. This led to a value an
MAPD of 2.02% and -2.02% for the PD(T3).

Complete Uniaxial Reconstruction

As opposed to the previous simplified configurations section 11.2 and section 11.3, doing an
iFEM reconstruction using only one strain component is not as trivial.

Due to the presence of the side walls, the elements will have different local coordinate systems
based on the surface (bottom or side-walls) they are part of. Figure 11.18 shows the default
local coordinate systems set by FEMAP for the U-shape geometry. We can see that if we
were to select let’s say the strain in X-global it would actually imply taking the local €,
measurements for the side-walls, but the local ¢,, measurements for the deck.

By default, the output of FEMAP (and other FEM software) comes in the local coordinate
system. As the ¢ S . matrices are built using local strains taking advantage of this default
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option is advantageous. Nevertheless, for real-life measurements, this is not common practice.
Typically, strain recording devices are placed using either a global direction or the alignment of
a material (for anisotropic). Thus, an option for isolating the strain components consistently
is to export the data from FEMAP in global coordinates, keep only the €;, and to transform
it back to local coordinate systems within the iF’EM implementation.

It is expected that the option of only using these strain transformations for the output will
lead to issues for SEA analysis. This is due to the fact that the interpolation is done for
the local strains. By using the default coordinate systems in Figure 11.18, all the strain
components will have discontinuities at the level of the deck to side-wall interface. This is
expected to pose a problem due to the assumption of C; continuity in SEA.

This issue can be reduced by aligning the local coordinate systems. Due to assumption
CODE-1, an alignment of all axes is not possible as the €., is ignored. It is possible to align
along the global x-axis, as shown in Figure 11.19. This solution allows for both a consistent
exploration uniaxial sensing configurations, and a better domain for applying SEA.

By reconstructing using uniaxial €., measurements on all elements, the M APD(T3) is in-
creased to 6.85% and the PD,,q,(7y) to -3.79%. As it is still within the 95% accuracy, uniaxial
configurations were still explored further. Figures 11.20a to 11.20c¢ illustrate the results for
the ONLY EXX configuration.
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Figure 11.20: Design Simplified Configuration Ill plate under DLTL discretized using a 528
element mesh.
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Multi Surface Line Configurations Reconstruction

Figure 11.21 shows a schematic of how the investigated multi-surface line configurations are
derived. This is done in an inverse incremental manner, reducing the number of sensing points
in each sensor network configuration.

BT
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Figure 11.21: Strain configurations overview for the U-shape geometry. Red lines correspond to
the strain sensing lines.

As mentioned previously, it is desired to obtain a sufficiently good reconstruction without
placing sensors at the level of the side-wall cut-outs. Thus, the first step consists of removing
the sensing lines in the middle of the side wall resulting in configuration B. Table 11.5 gives
an overview of the key results of configurations A,B,C for both tri-axial and uni-axial strain
measurements. A key observation for all these configurations is that switching from triaxial
to uniaxial measurements has a higher impact on the overall T'3 reconstruction and a lesser
impact on the prediction of the maximum deflection.

As the results of configuration C are still within the required accuracy, the sensor network was
even further reduced. Configurations D, E, F all use the same number of sensing elements:
176. Each configuration explores different combinations of edge-based locations. Table 11.6
shows the results for both uniaxial and axial D, E, F configurations.
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Table 11.5: Error overview for sensing strain configurations A, B, C

Strain Strain | iFEM T3 MAPD[%] | iFEM max(T3) PD|[%]
Configuration | Elements | cxx,cyy,exy Exx Exx; Eyys Exy Exx
A) 528 2.02 6.85 -2.02 -3.79
B) 352 3.80 6.74 -2.38 -3.23
C) 264 5.12 7.25 -3.46 -3.81

Table 11.6 highlights the importance of the location of the sensors in iFEM and how a certain
number of sensors cannot guarantee always a correct deflection reconstruction. Configurations
D and E did not satisfy the limit required accuracy with using only the iF'EM analysis. Thus,
iFEM(s) was also applied to see if the reconstruction can be improved.

Table 11.6: Error overview for sensing strain configurations D, E, F

Strain T3 MAPD[%] | max(T3) PD[%)]
Configuration | iFEM | iFEM(s) | iFEM | iFEM(s)
D) exx,Eyy;exy | 28.65 28.58 -29.87 -29.90
D) exx 39.41 40.06 -36.13 -36.66
E) exx,€yy,exy | 7.64 4.00 -5.85 -3.27
E) exx 9.39 7.47 -6.05 -4.07
F) exx;€yy,exy | 6.09 3.14 -3.54 -1.84
F) exx 7.12 7.02 -3.26 -3.15

Overall, D offers the poorest reconstruction. This can be expected in a qualitative manner
when looking at the strain distribution Figure 11.22a. There is a stress transition along
the height of the side walls. When applying SEA the difficulty of reconstructing with only
this data becomes clear. Figure 11.22b shows the reconstructed strain field through SEA
for strain sensing configuration D. While the behaviour for the deck is relatively similar
despite the presence of the radial pattern towards the root, the behaviour of the side-walls
is completely inconsistent. Due to the lack of measurements at the top of the side-walls, the
strain is interpolated as almost constant from the base to the top.

Figure 11.22h displays the interpolated strain gradient for strain sensing configuration F. It
can be seen how the strain behavior of the side-walls can be much better replicated through
SEA when critical strain values are recorded. This also illustrates how applying SEA improves
the results for E and F, but leads to an even poorer reconstruction for D which simply does
not cover the critical strain values. In Table 11.6 it can also be seen that the effect of SEA
is lesser in uniaxial F' than it is in uni-axial E. This could be explained by the fact that the
error of uni-axial F is already approaching closely the complete uni-axial recomstruction in
A (MAPD=6.85%).

It was tried to further reduce the sensing networks by looking at asymmetric option of strain
configuration F. Nevertheless, the reconstruction offered highly inaccurate overall results of
over 23% MAPD(T3). Thus, for the current implementation, four sensing lines (on each plate
side) are required for correct reconstruction.
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Figure 11.22: Strain gradients for Design Simplified Configuration IlI.
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11.4.3 Influence of Local Coordinate System Definition on iFEM(s) analysis

It was previously discussed how using local coordinates that are not aligned might impact
negatively the contribution of SEA. The iFEM and iFEM(s) results were computed again
for the default coordinate system created by FEMAP which does not have any aligned axis.
Table 11.7gives a comparison overview.

Table 11.7: Errors comparison between default local coordinate systems and aligned local coor-
dinate systems.

Strain Coord. | T3 MAPD[%] | max(T3) PD[%]
Configuration | System | iFEM | iFEM(s) | iFEM | iFEM(s)
D Aligned | 28.65 28.58 -29.87 -29.90
Default | 28.65 32.13 -29.65 -28.82
E Aligned 7.64 4.00 -5.85 -3.27
Default 7.59 6.39 -5.83 -5.48
F Aligned 6.09 3.14 -3.54 -1.84
Default 5.89 7.81 -3.52 -3.08

It can be seen that the selected local coordinate systems do not have a big effect on the
results of the il'EM analysis. Also, it is interesting to note that the iteration for wy leads,
for both the default and not-aligned coordinate systems, to the same MAPD(73)-minimizing
wy, further highlighting that the effect of local coordinate systems on iF'EEM results is small.

Nevertheless, the results start diverging for the iFEM(s) analysis. For D and F, the MAPD
is actually increased by a few percentages. Figure 11.23¢ shows the cause of this. SEA is
imposing the continuity condition at the interface of the side-walls and deck, which is not
viable in the case of these local coordinate systems. In this way, both the strain patterns
in the side-walls and the deck plate get destroyed. Moreover, only the highest strain value
gets captured, but the minimum does not, also having an effect on the range of extrapolated
values.

It can be seen that only for configuration E SEA leads to error reduction. Looking at Fig-
ure 11.23b, the success of the strain pre-extrapolation can be explained by the mere coin-
cidence that the sensing points are grouped on the parallel surface (side-walls), rather than
perpendicular ones which require the different local coordinate system. Thus, the strain gra-
dient in the side-walls, which is continuous in the first place, is extrapolated correctly and
only the strain pattern in the bottom deck gets affected. As the surface area of the deck is
smaller, its contribution to MAPD is also smaller leading to an improved error despite its
erroneous behavior reproduction.

Thus, it can be seen that for not-aligned local coordinate systems, SEA is not a robust method
for improving the performance of iFEM due to the discontinuities.
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11.4.4 Effect of Hyperparameters on Deflection w;, o Reconstruction

An interesting observation during the hyperparameter optimization was determining that the
U-shape is more sensitive to changes in wy than a simple rectangular beam.

Figures 11.24 and 11.25 illustrate the difference in behavior. Typically, the effect of wy
increases with the number of strainless elements. It can be seen that for a rectangular beam
with an extremely reduced sensing network (2.8% sensing elements), the error barely varies
3%. However, for a U-shape geometry, even with a dense sensing network (66.66% sensing
elements), the MAPD varies dramatically by up to 35%.

Variation of MAPD with w Variation of MAPD with w
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Figure 11.24: Variation of MAPD(T3)
with wy for Design Simplification |. Itera-
tion run for MID-LINE-EXX EVERY 6 ELE-
MENTS using iFEM in which only 2.8% of
the elements contain strain measurements.

log10(wl-])

Figure 11.25: Variation of MAPD(T3)
with wy for Design Simplification Ill. Iter-
ation run for strain sensing configuration B
using iIFEM in which only 66.66% of the el-
ements contain strain measurements.

It was found that the impact of « on the reconstruction accuracy is lesser than that of w.
Table 11.8 highlights this difference for the strain configurations. The standard deviation
SD is computed for variation of MAPD(T3) with respect to both wy and a. A higher SD
highlights a bigger impact of the parameter, highlighting increased sensitivity to it.

Table 11.8: Comparison of effect of w; and « on the MAPD(T35) for different strain configurations
of Simplified Design Configuration Ill. Effect expressed in the standard deviation SD of MAPD(T3)

of different wy «

Strain Configuration | SD(w)[%] | SD(a)[%)]
C) exx;Eyy; Exy 12.29 0.15
C) exx 9.37 0.08
D) exx, Eyy;Exy 15.50 0.14
D) exx 10.44 1.53
E) exx, €yy; €xy 21.99 0.43
E) exx 14.75 0.36
F) Exx; Eyy; Exy 19.73 0.25
F) exx 12.16 0.02
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This observation is highly interesting as generally, the literature highlights more often the
importance of «, rather than that of w which is treated as a rather trivial parameter. One of
the roles that wy satisfies is creating continuity between the strain and strainless elements as
noted by [Abdollahzadeh et al., 2020]. Thus, the increased sensitivity of the U-shape to wy
could be explained by the discontinuities present in the strain field patterns.



Chapter 12

Conclusion

The current study investigated the design of a Structural Health Monitoring (SHM) system
for a still in-development, composite offshore access system gangway. The preliminary liter-
ature study focused predominantly on available in-situ monitoring techniques for composite
structures. The obtained knowledge was framed from the perspective of gangway structures,
concluding that a deflection monitoring system should be pursued based on the current leg-
islation and knowledge of using composites in this application.

RQ1 How can Inverse Finite Element Methods (iFEM) be implemented for SHM
of a composite gangway?

In the current analysis, an iFEM implementation was developed in-house in Python. Plate
elements have been selected for the application due to the tailor-abilities they offer for simu-
lating different sensing networks. Specifically, the Inverse Quadrilateral Shell 4 Points (10)54)
elements were implemented for the application in an effort to match as much as possible the
reference FEMAP model which employs CQUAD4 NASTRAN elements.

In the current study, the most complex investigated structure was a constant cross-section,
constant thickness isotropic U-shape beam. The simulated load respected the Det Norske
Veritas (DNV) legislation. Thus, an Dead Load Test Load (DLTL) was used for the analysis
with a Test Load (TL) of 300 kg and a dead load correspondent to the total mass of the
gangway in the latest design iteration.

RQ2 What is a suitable sensing network architecture for the gangway?

Sensing networks were exploited hierarchically, starting from denser networks with both tri-
axial and uni-axial measurements. Due to the bending load, sensing on both sides of the plate
is required for separating the membrane and bending strain components.

In the investigated DT, uni-axial strain measurements of €., were found to be sufficient for
satisfactory deflection reconstruction which was established by Ampelmann at 95% accuracy
for the maximum deflection.
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Line configurations were investigated due to both the geometry at hand and the Fiber Optics
(FO) mounting feasibility. It was shown that the extreme strain points need to be captured
for correct reconstruction. This favourizes the placement of the sensing lines at the top of the
side walls and in the deck plate.

RQ3 What is the performance of the proposed SHM system?

A 4-sensing line (with sensors on each side of the plate structure) configuration was deemed to
be a possible alternative, allowing for the placement of 'O outside the cut-outs region of the
side-walls. For tri-axial strains, the reported iF'EM mean absolute difference of the deflection
was 6.09% while the percentage difference of the maximum deflection was -3.54% which were
reduced through Smoothing Element Analysis (SEA) to 3.14% and -1.84%. For uni-axial
measurements, the iFEM results were 7.12% and -3.26%. The SEA did not prove itself as
effective as the errors only were reduced to 7.02% and -3.15%. This reduced effectiveness
could be explained as the errors were already approaching those of a complete reconstruction
with only uni-axial measurements.

Contribution

In conclusion, despite its current limitations, the study established the potential of iFEM
based SHM system for offshore access gangways. It laid down a detailed guideline on both
the theory and implementation of iFEM with 1S4 elements. The study also offers a first
open-source iF'EM implementation. It is one of the few studies quantifying iF'EM deflection
reconstruction performance for uni-axial strain measurements for plates under bending loads.
Moreover, it is the first study on iFEM reconstruction using strainless elements on beam-like
geometries with webs. The current work also highlights the pitfalls of SEA under such a
geometry and proposes an easy modelling approach for improving the robustness of strain
pre-extrapolation in such a case.



Chapter 13

Recommendations

Although the current study helped trace some initial ideas regarding Inverse Finite Element
Methods (iFEM)-based Structural Health Monitoring (SHM) for gangways, the current in-
vestigations were not only subject to a series of limitations but also opened new questions
that need to be tackled. The discussion on recommendations is divided into the following
categories: iFEM model, strain pre-extrapolation, structure representation, hyperparameters
tuning, gangway SHM and experimental validation.

iIFEM model

The current implementation of the iFEM should be further developed. Firstly, only the
Inverse Quadrilateral Shell 4 Points (1()54) element types are currently set up. Other type of
elements should be implemented. More information on how new element types can be added
are provided in Appendix C. Refined Zig-Zag Theory (RZT) formulations should also be
implemented, especially for the current gangway application. These would allow for overall
better shape reconstruction of thick laminated and sandwich structures.

Additionally, it would be desired to also allow for meshes which use more than one type of
element. This topic needs to be generally explored in iFEM as in the read literature there
couldn’t be found any reports on using multi-element meshes.

Another point of attention is implementing the use of an iFEM mesh that does not coincide
with the Finite Element Methods (FEM) mesh. This would allow in more flexibility for
sensitivity studies regarding the number of inverse elements. Moreover, it would become an
asset for using iFEM with experimental strain data.

The iIFEM code should also allow for more geometrical flexibility. Currently, the code only
allows for constant thickness throughout the structure. This problem could be solved by
also exporting the thickness of the element (where applicable) and storing it as an element
attribute.
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Strain Pre-extrapolation

It was shown in this study that the positive effect of Smoothing Element Analysis (SEA)
can be rendered null for a U-shape geometry. An interesting topic to explore would be how
can SEA be accommodated for such cases. An idea that was explored preliminarily during
the study was separating the structure in sub-structures and conducting SEA individually,
however, it was not possible to develop it to a tangible conclusion during the timeframe.
Another research direction could be on whether different strain pre-extrapolation techniques
other than SEA are better suited for such geometries.

Structure Representation

As mentioned throughout the report, quite a few simplifications were done on the iFEM
gangway model. Now that this preliminary feasibility study has concluded favorably, using
the recommendations regarding the implementation, more complexity should be added to the
model. This would allow for a better assessment on the reliability of implementing such a
system.

It was noticed that adding geometry complexity was more difficult in iFEM than adding
material complexity. Thus, as a first step, probably simpler, sandwich composites should be
modeled to the current U-shape. Secondly, the variable thickness should be enabled, allowing
for the thicker side walls and thinner bottom deck. Furthermore, the cut-outs should be
included. This step already will represent a challenge on its own in the field of iIFEM. The
work on iFEM reconstruction of tensile specimens with holes done in [Oboe et al., 2022]
can represent a starting point for such an endeavor. However, scaling from simple holes to
cut-outs resembling truss structures should not be treated as a trivial task.

Hyperparameters Tuning

In the current study, a 2 step optimization through iteration and error minimization was con-
ducted for wy and a. Currently, the relevant literature on il'EM mostly deals with uni-variate
sensitivity analysis for the hyperparameters and rarely with bi-variate analysis [Minigher
et al., 2022]. Thus, the relation and interaction of the 4 parameters w¢, o, f and ky, is not
exactly known for SEA using neither quadrilateral nor triangular elements. Thus, a general
recommendation for the further development of smoothed-iFEM is exploring a robust method
for multi-variate optimization involving all the hyperparameters.

Gangway SHMV

The current system proposal only covers level 1 SHM in a specific static loading condition.
While this offers a tangible beginning for introducing SHM in gangway access systems, it
leaves plenty of unexplored possibilities. Firstly, the acquired data could be post-processed in
other ways. For example, by collecting the deflection data under the same loading over time,



7

a potential degradation pattern could be identified and possibly associated with a certain
property or damage mechanism.

Secondly, a more advanced iFEM based SHM system could be evaluated. For example, the
inclusion of dynamic cases would be of high value.

Experimental Validation

The current study focused solely on the feasibility of an iF'EEM implementation using numer-
ically generated data. To confirm the potential of the current outcomes, experimental vali-
dation is required. At the current stage, a series of tests on U-shape beams under different
bending loads and of different materials (both isotropic and anisotropic) are recommended for
confirming the robustness of iF' M and Smoothed Inverse Finite Element Methods (iFEM(s))
of such a geometry. At more advanced stages, the proposed SHM could first be installed on
one of the steel gangways to confirm its functionality in real-life operation conditions.
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Appendix B

FEMAP Macros

’Macro for saving the displacements,
Ezcel

Sub Main
’Define Number of Plies
Dim NoPlies As Integer
NoPlies = 1

’Select OUTPUT ID to use
Dim OutputID As Integer
OutputID = 1

Dim excelFilePathRoot As String
excelFilePathRoot = "Your_Path"
’excel Paths
excelFilePathNodeCoord =
excelFilePathElemNodes =
excelFilePathReferenceU3 =

excelFilePathStrainResults =

strains,

excelFilePathRoot &
excelFilePathRoot &
excelFilePathRoot &
excelFilePathRoot &

element modes and node cooridnates from FEMAP to

"Node_coordinates.xlsx"
"Element_Nodes.xlsx"
"Reference_U3.xlsx"

"StrainResults.xlsx"

’ Create Exzcel objects and a workbooks

Set objExcelNodeCoord = CreateObject("Excel.Application")

Set objWorkbookNodeCoord = objExcelNodeCoord.Workbooks.Add

Set objExcelElemNodes = CreateObject ("Excel.Application")

Set objWorkbookElemNodes = objExcelElemNodes.Workbooks.Add

Set objExcelReferenceU3 = CreateObject ("Excel.Application")
Set objWorkbookReferenceU3 = objExcelReferenceU3.Workbooks.Add
Set objExcelStrainResults = CreateObject("Excel.Application")

Set

’ Set up Ezcels

objExcelNodeCoord.Visible =

objExcelNodeCoord.Disp

Set objWorksheetNodeCoord =

objExcelElemNodes.Visible =

objExcelElemNodes .Disp

Set objWorksheetElemNodes =

objWorkbookStrainResults =

objExcelStrainResults.Workbooks.Add

False
layAlerts = False

objWorkbookNodeCoord.Sheets (1)

False
layAlerts = False

objWorkbookElemNodes .Sheets (1)




N

-~
ot

96
97
98
99
100
101
102

87

objExcelReferenceU3.Visible = False
objExcelReferenceU3.DisplayAlerts = False
Set objWorksheetReferenceU3 = objWorkbookReferenceU3.Sheets (1)

objExcelStrainResults.Visible = False
objExcelStrainResults.DisplayAlerts = False
Set objWorksheetStrainResults = objWorkbookStrainResults.Sheets (1)

’Iterate Per Node

Dim femap As femap.model

Set femap = GetObject(, "femap.model")
Dim nd As Object

Set nd = femap.feNode

’Results

Dim MyResultsQuery As femap.ResultsIDQuery
Set MyResultsQuery = femap.feResultsIDQuery
Dim MyNodalResults As femap.Results

Set MyNodalResults = femap.feResults

’Find ID’s for Outputs of interest

Dim U3ID As Long

U3ID = MyResultsQuery.Nodal (VNV_TRANSLATION, VNT_Z)
femap.feAppMessage (FCM_NORMAL, "U3 ID:" + Str$(U3ID))

’Add columns

Dim nColumnsAdded As Long

Dim nColumnIndices As Variant

Dim dValU3 As Double

MyNodalResults.AddColumnV2 (OutputID, U3ID, False, nColumnsAdded, nColumnIndices)
MyNodalResults.Populate

’ Write headers to Exzcel Node Coodinates

objWorksheetNodeCoord.Cells (1, 1).Value = "Node ID"

objWorksheetNodeCoord.Cells (1, 2).Value = "X Coordinate"
objWorksheetNodeCoord.Cells (1, 3).Value = "Y Coordinate"
objWorksheetNodeCoord.Cells (1, 4).Value = "Z Coordinate"

’ Write headers to Ezcel ReferenceU3

objWorksheetReferenceU3.Cells (1, 1).Value = "Node ID"
objWorksheetReferenceU3.Cells (1, 2).Value = "U3[m]"
Row = 1
While nd.Next

Row = Row + 1

objWorksheetNodeCoord.Cells(Row, 1).Value = nd.ID
objWorksheetNodeCoord.Cells(Row, 2).Value = nd.x
objWorksheetNodeCoord.Cells(Row, 3).Value = nd.y
objWorksheetNodeCoord.Cells(Row, 4).Value = nd.z
’femap. feAppMessage (FCM_NORMAL, "Value:" + Str$(nColumnIndices (0)))

objWorksheetReferenceU3.Cells (Row,1).Value = nd.ID

MyNodalResults.GetValue (nd.ID,nColumnIndices (0),dValU3)

objWorksheetReferenceU3.Cells (Row,2).Value = dValU3
Wend

’Iterate Per Element

’ Write headers to Element Nodes Ezcel
objWorksheetElemNodes.Cells (1, 1).Value = "ID"
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objWorksheetElemNodes.Cells (1, 2).Value = "C1"
objWorksheetElemNodes.Cells (1, 3).Value = "C2"
objWorksheetElemNodes.Cells (1, 4).Value = "C3"
objWorksheetElemNodes.Cells (1, 5).Value = "C4"

‘Write headers to Element Strains Ezcel

objWorksheetStrainResults.Cells (1, 1).Value ="ID"
objWorksheetStrainResults.Cells (1, 2).Value ="Top
objWorksheetStrainResults.Cells (1, 3).Value ="Top
objWorksheetStrainResults.Cells (1, 4).Value ="Top
objWorksheetStrainResults.Cells (1, 5).Value ="Bot
objWorksheetStrainResults.Cells (1, 6).Value ="Bot
objWorksheetStrainResults.Cells (1, 7).Value ="Bot

Dim elems As Object

Set elems = femap.feElem

’Find ID’s for Outputs of interest
Dim topStrainXID As Long

Dim topStrainYID As Long

Dim topStrainXYID As Long

Dim botStrainXID As Long
Dim botStrainYID As Long
Dim botStrainXYID As Long

’Results
Dim MyElementResults As femap.Results
Set MyElementResults = femap.feResults

topStrainXID = MyResultsQuery.Laminate (VPV_STRAIN,
topStrainYID = MyResultsQuery.Laminate (VPV_STRAIN,
topStrainXYID = MyResultsQuery.Laminate (VPV_STRAIN

botStrainXID = MyResultsQuery.Laminate (VPV_STRAIN,
botStrainYID = MyResultsQuery.Laminate (VPV_STRAIN,
botStrainXYID = MyResultsQuery.Laminate (VPV_STRAIN

’Add columns

Dim eColumnsAdded As Long

Dim eColumnIndicesTSX As Variant
Dim eColumnIndicesTSY As Variant
Dim eColumnIndicesTSXY As Variant
Dim eColumnIndicesBSX As Variant
Dim eColumnIndicesBSY As Variant
Dim eColumnIndicesBSXY As Variant
Dim dValTopStrainX As Double

Dim dValTopStrainY As Double

Dim dValTopStrainXY As Double

Dim dValBotStrainX As Double

Dim dValBotStrainY As Double

Dim dValBotStrainXY As Double

MyElementResults.AddColumnV2 (OutputID, topStrainXID,
MyElementResults.AddColumnV2 (OutputID, topStrainYID , False,
MyElementResults.AddColumnV2 (OutputID, topStrainXYID,
MyElementResults.AddColumnV2 (OutputID, botStrainXID,
MyElementResults.AddColumnV2 (OutputID, botStrainYID,
MyElementResults.AddColumnV2 (OutputID, botStrainXYID,

MyElementResults.Populate
MyElementResults.SendToDataTable

’femap. feAppMessage (FCM_NORMAL, "eColumnIndices:"
Row = 1

Strain
Strain
Strain
Strain
Strain

Strain

VPT_X,
VPT_Y,

VPT_X,
VPT_Y,

X
yo
o
X
yo
el

NoPlies, VPL_CENTROID)
NoPlies, VPL_CENTROID)
, VPT_XY, NoPlies, VPL_CENTROID)

1, VPL_CENTROID)
1, VPL_CENTROID)
, VPT_XY, 1, VPL_CENTROID)

False, eColumnsAdded,
eColumnsAdded,

False, eColumnsAdded,
False, eColumnsAdded,
False, eColumnsAdded,
False, eColumnsAdded,

+eColumnIndices)

eColumnIndicesTSX)
eColumnIndicesTSY)
eColumnIndicesTSXY)

eColumnIndicesBSX)

eColumnIndicesBSY)
eColumnIndicesBSXY)
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While elems.Next

Row = Row + 1

’elem_modes = elems.node
objWorksheetElemNodes.Cells (Row, 1).
objWorksheetElemNodes.Cells (Row, 2)
objWorksheetElemNodes.Cells (Row, 3)
objWorksheetElemNodes.Cells (Row, 4)
objWorksheetElemNodes.Cells (Row, 5)

Value = elems.ID
.Value elems.node (0)
.Value = elems.node (1)
.Value = elems.node(2)
.Value = elems.node (3)

MyElementResults.GetValue(elems.ID,eColumnIndicesTSX(0),dValTopStrainX)
MyElementResults.GetValue(elems.ID,eColumnIndicesTSY(O),dValTopStrainY)
MyElementResults.GetValue(elems.ID,eColumnIndicesTSXY (0),dValTopStrainXY)
MyElementResults.GetValue (elems.ID,eColumnIndicesBSX (0) ,dValBotStrainX)
MyElementResults.GetValue (elems.ID,eColumnIndicesBSY (0) ,dValBotStrainY)
MyElementResults.GetValue (elems.ID,eColumnIndicesBSXY (0),dValBotStrainXY)

objWOrksheetStrainResults.Cells(Row,
objWorksheetStrainResults.Cells (Row,
objWOrksheetStrainResults.Cells(Row,
objWorksheetStrainResults.Cells (Row,
objWOrksheetStrainResults.Cells(Row,
objWorksheetStrainResults.Cells (Row,
objWOrksheetStrainResults.Cells(Row,
Wend

’Save Ezcels

objWorkbookNodeCoord.SaveAs excelFilePathNodeCoord
objWorkbookElemNodes.SaveAs excelFilePathElemNodes

1)
2)
3)
4)
5)

7)

.Value
.Value
.Value
.Value
.Value
6) .

Value

.Value

elems.ID
dValTopStrainX
dValTopStrainY
dValTopStrainXY
dValBotStrainX
dValBotStrainY
dValBotStrainXY

objWorkbookReferenceU3.SaveAs excelFilePathReferenceU3
objWorkbookStrainResults.SaveAs excelFilePathStrainResults

> Clean up and close Ezcel
objWorkbookNodeCoord.Close
objExcelNodeCoord.Quit

Set objWorksheetNodeCoord= Nothing
Set objWorkbookNodeCoord = Nothing
Set objExcelNodeCoord = Nothing

objWorkbookElemNodes.Close
objExcelElemNodes.Quit

Set objWorksheetElemNodes = Nothing
Set objWorkbookElemNodes = Nothing
Set objExcelElemNodes = Nothing

objWorkbookReferenceU3.Close
objExcelReferenceU3.Quit

Set objWorksheetReferenceU3 = Nothing
Set objWorkbookReferenceU3= Nothing
Set objExcelReferenceU3 = Nothing

objWorkbookStrainResults.Close
objExcelStrainResults.Quit

Set objWorksheetStrainResults = Nothing
Set objWorkbookStrainResults= Nothing
Set objExceStrainResults = Nothing

End Sub

Listing B.1: Macro for exporting FEMAP model data as iFEM input for anisotropic plate elements
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Appendix C

Code

The procedure for adding a new element type is the following:

Using 1QS4__derivation.py, the shape functions of the new element can be included for
deriving using sympy the B matrices.

The outcomes need to be hardcoded as functions in a file such as igs4__equations.py.

A new element class can be created using igsd.pyx.

The functional definition can be adapted by adapting or adding functions to helpers.py.

import numpy as np

from scipy.linalg import block_diag

from pyife3d.iqs4_equations import matrices_SEA, NLM_matrices
import pandas as pd

from functools import partial

import os

def Gaussian_option(Gauss_type):

wun

Function for generating the data for the Gauss quadrature points

Args:
Gauss_type (_str_): The user can select the type of Gaussian quadrature. It is Based on
the Gauss-Legendre quadrature. Current options avatilable are "l1-point", "2-point”,
"3-point", "4-point", "5-point".

Returns:

Gauss_points_weights (_list_): List of lists (can be converted to numpy array) where the
first column 4s the ewaluation point = and the second column %is the assoctiated weight
for the sum

wnn
#NOTE Gauss quadratures from
#https://keisan.casio.com/ezec/system/1329114617

if Gauss_type == "l1-point":

# 1-point Gauss-Legendre
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23 Gauss_points_weights = [

24 o, 2.1,

25 ]

26

27 elif Gauss_type == "2-point":

28 # 2-point Gauss-Legendre

29 Gauss_points_weights = [

30 [-0.5773502691896257645092, 11,

31 [0.5773502691896257645092, 1],

32 1

33

34 elif Gauss_type == "3-point":

35 # 3-point Gauss-Legendre

36 Gauss_points_weights = [

37 [-0.7745966692414833770359, 0.55555565555555566655556] ,

38 [0, 0.88888888388888888888889],

39 [0.7745966692414833770359, 0.5555555665655565555656656] ,

40 ]

41

42 elif Gauss_type == "4-point":

43 # 4-point Gauss-Legendre

44 Gauss_points_weights = [

45 [-0.861136311594052575224, 0.34785484513745385737311],

46 [-0.3399810435848562648027, 0.6521451548625461426269],

47 [0.3399810435848562648027, 0.6521451548625461426269],

48 [0.861136311594052575224, 0.34785484513745385737311],

49 ]

50

51 elif Gauss_type == "5-point":

52 # b-point Gauss-Legendre

53 Gauss_points_weights = [

54 [-0.9061798459386639927976, 0.2369268850561890875143],

55 [-0.5384693101056830910363, 0.4786286704993664680413],

56 [0, 0.5688888888888888888889],

57 [0.5384693101056830910363, 0.4786286704993664680413],

58 [0.9061798459386639927976, 0.2369268850561890875143],

59 ]

60

61 return Gauss_points_weights

62

63 def read_iFEM_files(path_node_coord, path_element_nodes, path_strain_data):

64 R

65 Function for reading the files required for solving the tFEM model. They can be in either

excel or csv format using comma delimiter.

66

67 Args:

68 path_node_coord (str): Path to the Node_Coordinates file.

69 path_element_nodes (str): Path to the Element_Nodes file.

70 path_strain_data (str): Path to the StrainResults file.

71

72 Returns:

73 node_coord (array): Array of size (N_nodes,4) containing the mnode coordinates of the mesh
in the format: ID | X | Y | Z.

74 element_nodes (array): Array of size (N_elements,5) containing the nodes of each element
in the format: element ID | node 1 ID | node 2 ID | node 3 ID | mnode 4 ID

75 strain_data (array): Array of size (N_sensing,7) element ID | exzxz top | eyy top | gzy top
| ezz bot | eyy bot | gzz bot

76 e

77 #node_coord format: ID | X | Y | Z

78 if path_node_coord[-3:]=="csv":

79 node_coord = pd.read_csv(path_node_coord,delimiter=’,’)

80 elif path_node_coord[-4:]=="xlsx":

81 node_coord = pd.read_excel(path_node_coord)
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node_coord = node_coord.to_numpy ()

#element_nodes format: element ID | node 1 ID | node 2 ID | node 3 ID | node 4 ID
if path_element_nodes[-3:]=="csv":

element_nodes = pd.read_csv(path_element_nodes ,delimiter=’,’)
elif path_element_nodes[-4:]=="x1lsx":

element_nodes = pd.read_excel(path_element_nodes)

element_nodes = element_nodes.to_numpy ()

#format: element ID | exzxz top | eyy top | gzy top | exzz bot | eyy bot | gzz bot

if path_element_nodes[-3:]=="csv":

strain_data = pd.read_csv(path_strain_data, delimiter=’,’)
elif path_element_nodes[-4:]=="xlsx":

strain_data = pd.read_excel(path_strain_data)
strain_data = strain_data.sort_values(by=’ID’, ascending=True)
strain_data = strain_data.to_numpy ()

return node_coord, element_nodes, strain_data

format_strain_data(N_elements,strain_data):
o n
Function for formatting the fed strain data into top and bottom measurements. If a measurement

15 not registered, a 0 ts filled in for that component.

Args:
N_elements (int): Number of elements in the model
strain_data (array): Array of size (N_sensing_points,7) storing the strain corresponding
to each element in the following format element ID | ezz top | eyy top | gzy top |/
exz bot | eyy bot | gzz bot

Returns:
strain_gauge_top (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | exzxz top | eyy top | gzy top
strain_gauge_bot (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | exzxz bot | eyy bot | gzz bot
wnn
#format: Element ID | ezxz | eyy | exy with N in ascending order
strain_gauge_top = np.zeros ((N_elements ,4))
strain_gauge_bot = np.zeros((N_elements ,4))

#Checks if an element is mentioned in the strain elements

check_elements = np.zeros(N_elements, dtype=bool)
total_elements = np.arange(1l,N_elements+1)
check_elements = np.isin(total_elements,strain_datal[:,0])
strain_gauge_top[:,0] = total_elements
strain_gauge_bot [:,0] = total_elements
strain_gauge_top [check_elements ,1] = strain_datal[:,1]
strain_gauge_top[check_elements ,2] = strain_datal:,2]
strain_gauge_top [check_elements ,3] = strain_datal[:,3]
strain_gauge_bot [check_elements ,1] = strain_datal[:,4]
strain_gauge_bot [check_elements ,2] = strain_datal[:,5]
strain_gauge_bot [check_elements ,3] = strain_datal[:,6]

#Handling nan values

I
o

strain_gauge_bot [np.isnan(strain_gauge_bot)]

n
o

strain_gauge_top[np.isnan(strain_gauge_top)]

return strain_gauge_top,strain_gauge_bot
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def

def

assemble_strain_elements(strain_gauge_top):
" n
Function used for saving which element ID’s have strain measurements. This info is later used

for checking of w parameter or SEA implementation.

Args:
strain_gauge_top (array): Array of size (Nelements,4) containing the strain data of the
top surface. The format is: Element ID | exz | eyy | exy with N in ascending order. 0
values are inserted where measurements are missing
Returns:
strain_elements (dict): Dictionary containing arrays of the elements where strain is
recorded for each strain component. Eg. for strain exxz we know whic elemebnts record
strain. The keys are "ezz", "eyy" and "exzy".

wun

strain_elements = {}

check_exx = np.where(strain_gauge_top[:,1]!=0) [0]
check_eyy = np.where(strain_gauge_top[:,2]!=0) [0]
check_exy = np.where(strain_gauge_top[:,3]!=0) [0]

strain_elements["exx"] = strain_gauge_top[check_exx ,0]
strain_elements["eyy"] = strain_gauge_top[check_eyy ,0]
strain_elements["exy"] = strain_gauge_top[check_exy ,0]

return strain_elements

quadrature_alignment_factor(w,xi,eta):

This function 4s used for an additional correction factor alfa. The srain gauges are assummed
to be placed at the the centroid of the element. But when we do the gauss quadrature, we
calculate at multiple points. Some of these points do not coincide with the centroid. In
the case where there is a measurement point (so weight is 1), its contirbution needs to
be lowered with alfa as the integration point does not actually coincide with the
measurement point.

Args:

w (float): Dictionary of weight per compoennts
zi (float) Natural coordinate
eta (float): Natural coordinate

Returns:
alfa (float): Correction factor alfa that needs to be applied.

alfa = np.ones((8)) #for all of our strain.curvature components to keep consistency, although
gzz and gyz we will never obtain experimentally

if xi!=0 and eta!=0:
alfal[w>=1] = le-4

return alfa

exp_strain_builder (quad,strain_elements ,w,location,T_mat,strain_gauge_top,strain_gauge_bot ,i,SE

SEA_U_dict_bot, N, L, M, h):

wnn

Function for building the experimental strain vectors. These wectors are built depending on
whether or not the element has strains measured or not. Also, the w wvector is updated

depending on that.

Args:
quad (object):IQS4 SEA object
strain_elements (dict): Dictionary containing arrays of the elements where strain is
recorded for each strain component. Eg. for strain exxz we know whic elemebnts record

strain. The keys are "ezz", "eyy" and "ezy".

A\_U_dict_top,
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w (array): Array of size 8 representing the Weights for least-squares wariational
principle. Format: ezz | eyy [ gzy | kzz | kyy | kzy | gzz | gyz

location (str): Location for running the iFEM algorithm. Can be "top","mid" or "bot"

T_mat (array): Numpy array of size (3,3) representing the matriz for aligning a coordinate
system with the material direction.

strain_gauge_top (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | ezz top | eyy top | gzy top

strain_gauge_bot (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | ezz bot | eyy bot | gzz bot

i (int): Iteration number for going through element indices.

SEA_U_dict (dict): Dictionary containing the U_SEA for the strain component "exzz", "eyy",
"exy

N (array): Numpy array of size (4,1) containing the filled in wvalues of the shape
functions for the element and zt=0 and eta=0.

L (array): Numpy array of size (4,1) containing the filled in wvalues of the shape
functions for the element and zt=0 and eta=0.

M (array): Numpy array of size (4,1) containing the filled in wvalues of the shape
functions for the element and zt=0 and eta=0.

h (float): Half thickness of the plate.

Returns:
ezp_e (array): (3,1) numpy array containing the ezperimental strains ezz | eyy | gzy
exp_k (array): (3,1) numpy array containing the ezperimental kurvatures kzz | kyy /| kzy
w (array): Updated array of size 8 representing the Weights for least-squares wvariational

principle. Format: exz [ eyy | gzy | kzz | kyy | kazy | gzz | gyz

wun

if quad.eid in strain_elements["exx"] or quad.eid in strain_elements["eyy"] or quad.eid in
strain_elements["exy"]:

strain_gauge_top_mat = np.matmul (T_mat,strain_gauge_topl[i,1:]) #start from indez 1 cause 0
is element ID

strain_gauge_bot_mat = np.matmul (T_mat,strain_gauge_bot[i,1:])

if location == "top":
exp_e = strain_gauge_top_mat

exp_k = np.zeros((3,1))

elif location == "mid":
exp_e = 1/2*(strain_gauge_top_mat+strain_gauge_bot_mat)
exp_k = 1/(2*h)*(strain_gauge_top_mat-strain_gauge_bot_mat)
else:
exp_e = strain_gauge_bot_mat

exp_k = np.zeros((3,1))

#Change indices appropiately

if quad.eid in strain_elements["exx" and location=="mid":
w[0] =1
w[3] =1

elif quad.eid in strain_elements["exx"
w[0] = 1

if quad.eid in strain_elements["eyy"] and location=="mid":
wli]l =1
wl[4] = 1

elif quad.eid in strain_elements["eyy"]:
wl[1] = 1

if quad.eid in strain_elements["exy"] and location=="mid":
wl2] =1
w[s] =1

elif quad.eid in strain_elements["exy"]:
wl[2] = 1




95

def

else:
#We interpolate with SEA
DOF=4 #the DOF that are used in the U_SEA files
ind_nodes = np.array([quad.nl,quad.n2,quad.n3,quad.n4])-1

U_SEA = SEA_U_dict_top["exx"]

exx_top = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

U_SEA = SEA_U_dict_bot["exx"

exx_bot = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

U_SEA = SEA_U_dict_topl["eyy"]

eyy_top = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

U_SEA = SEA_U_dict_bot["eyy"]

eyy_bot = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

U_SEA = SEA_U_dict_top["exy"]

exy_top = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

U_SEA = SEA_U_dict_bot["exy"]

exy_bot = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

e_top = np.array([float (exx_top),float(eyy_top),float(exy_top)])
e_bot = np.array([float(exx_bot),float(eyy_bot),float(exy_bot)])

#Align with material
#Here the strains are not wvectors just floats

strain_gauge_top_mat = np.matmul (T_mat,e_top)
strain_gauge_bot_mat = np.matmul (T_mat,e_bot)
if location == "top": #We do not change the coefficients mnow. It 4is not an actual

measurement

exp_e = strain_gauge_top_mat

exp_k = np.zeros((3,1))
elif location == "mid":

exp_e = 1/2*(strain_gauge_top_mat+strain_gauge_bot_mat)

exp_k = 1/(2xh)*(strain_gauge_top_mat-strain_gauge_bot_mat)
else:

exp_e = strain_gauge_bot_mat

exp_k = np.zeros ((3,1))

quad.probe.epsilontopSEA = strain_gauge_top_mat
quad.probe.epsilonbotSEA = strain_gauge_bot_mat

return exp_e, exp_k, w, quad

compute_local_matrices (B_funct_partial, w, Gauss_points_weights ,h,quad,exp_e,exp_k):
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woun

Function for computing the local matrices ke and fe for <FEM.

Args:

B_funct_partial (function): Partial function in which the natural coordinates of the
points of the element have been filled in. Only the natural coordinates of the
integration point (zi,eta) need to be filled in.

w (array): Array of size 8 representing the Weights for least-squares variational
principle. Format: ezz | eyy | gzy | kzz | kyy | kzy | gzz | gyz

Gauss_points_weights (list): List of lists (can be converted to numpy array) where the
first column is the evaluation point = and the second column is the associated weight
for the sum

h (float): Half thickness of the plate.

quad (_type_): _description_

exp_e (array): (3,1) numpy array containing the ezperimental strains exz | eyy | gzy

ezp_k (array): (3,1) numpy array containing the ezperimental kurvatures kzz | kyy | kzy

Returns:
quad (object) : Updated quad object after computing the local matrices fe and ke
#Bb, Bs, Bm are already calculated for our selected gauss natural coordinates so they need to

be calculated at the natural coordinates

ke = np.zeros((24,24)) # the 3 4is from the shape funct size4*6 DOF
fe = np.zeros((24,1))

#Calculate the strains at the mid-plane
#Compute ke and fe at the same time so you do not need to rebuild the matrices
for xi_val, wi in Gauss_points_weights:
for eta_val, wj in Gauss_points_weights:
wij = wixwj #Gauss (Quadrature factor
#Calculate Bb, Bs, Bm for the current zi and eta
alfa = quadrature_alignment_factor (w=w,xi=xi_val,eta=eta_val)
# alfa = np.ones ((8,1))
detJ, Bm, Bb, Bs = B_funct_partial(xi=xi_val, eta=eta_val)
area = 4 * detlJ

#Calculating the ke infinitesimal function at the prescribed zi and eta

#For ke

ke_curr_Bmexx = w[0] * alfa[0] * np.outer(np.transpose(Bm[0,:]),Bm[0,:])
ke_curr_Bmeyy = wl[1] * alfa[l1] * np.outer(np.transpose(Bm[1,:]),Bm[1,:])
ke_curr_Bmgxy = w[2] * alfa[2] * np.outer(np.transpose(Bm[2,:]),Bm[2,:])
ke_curr_Bm = ke_curr_Bmexx + ke_curr_Bmeyy + ke_curr_Bmgxy

ke_curr_Bbexx = w[3] * pow(2*h,2) * alfa[3] * np.outer(np.transpose(Bb[0,:]1),Bb[0,:])
ke_curr_Bbeyy = wl[4] * pow(2*h,2) * alfa[4] * np.outer(np.transpose(Bb[1,:]),Bb[1,:])
ke_curr_Bbgxy = w[6] * pow(2%h,2) * alfa[5] * np.outer(np.transpose(Bb[2,:]),Bb[2,:])
ke_curr_Bb = ke_curr_Bbexx + ke_curr_Bbeyy + ke_curr_Bbgxy

ke_curr_Bsgxz = pow(10,-5) * alfa[6] * np.outer(np.transpose(Bs[0,:]),Bs[0,:]1) #w/[6]
ke_curr_Bsgyz = pow(10,-5) * alfal[7] * np.outer(np.transpose(Bs[1,:]1),Bs[1,:1) #w[7]

ke_curr_Bs = ke_curr_Bsgxz + ke_curr_Bsgyz

ke_curr = ke_curr_Bm + ke_curr_Bb + ke_curr_Bs

ke = ke + wij*ke_curr/areaxdetJ #adding it to the integral taking into account the
gauss

#Calculating the fe infinitesimal function at the prescribed zi and eta
fe_curr_Bmexx = w[0] * alfa[0] * np.transpose(Bm[0,:]) * exp_el[0]
fe_curr_Bmeyy = w[1] * alfa[1l] * np.transpose(Bm[1,:]) * exp_e[1]
fe_curr_Bmgxy = w[2] * alfa[2] * np.transpose(Bm[2,:]) * exp_e[2]
fe_curr_Bm = fe_curr_Bmexx + fe_curr_Bmeyy + fe_curr_Bmgxy
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fe_curr_Bbexx = w[3] * alfa[3] * pow(2xh,2) * np.transpose(Bb[0,:]) * exp_k[0]
fe_curr_Bbeyy = wl4] * alfa[4] * pow(2*h,2) * np.transpose(Bbl[1,:]1) * exp_kI[1]
fe_curr_Bbgxy = w[b] * alfa[5] * pow(2xh,2) * np.transpose(Bb[2,:]) * exp_k[2]
fe_curr_Bb = fe_curr_Bbexx + fe_curr_Bbeyy + fe_curr_Bbgxy

fe_curr = np.reshape((fe_curr_Bm + fe_curr_Bb),(24,1)) #the reshape is required else
(24,) shape afects the fe shape

fe = fe + wij*fe_curr/area*detl]J

quad.ke = ke
quad.fe = fe

return quad

compute_local_matrices_extrapolation(alfaSEA, betaSEA, drllingfact, B_funct_partial,
Gauss_points_weights ,quad,strain_gauge ,strain_elements):

wun

Function for calculating the local matrices ke and fe for the strain exztrapolation part.

Args:

alfaSEA (float): Alfa factor of SEA strain exztrapolation.

betaSEA (float): Beta factor of SEA strain extrapolation.

drilingfact (float): Drilling degree of freedom assumed factor.

B_funct_partial (function): Partial function in which the natural coordinates of the
points of the element have been filled in. Only the natural coordinates of the
integration point (zi,eta) need to be filled in.

Gauss_points_weights (list): List of lists (can be converted to numpy array) where the
first column is the evaluation point = and the second column %is the associated weight
for the sum

quad (object):IQS4 SEA object

strain_gauge (array): Array of size (N_elements,2) containing strain values of the
selected component with format of ELEMENT ID | strain measurements

strain_elements (list): List containing the indices of the strain elements for which the

strain component s smeasured.

Returns:
quad (object) : Updated quad object after computing the local matrices fe and ke

i

DOF= 4

#Bb, Bs, Bm are already calculated for our selected gauss integration points

ke = np.zeros((12,12)) # 4 nodes * 3 DOF (we do not consider the drilling DOF here. we add it
later)

fe = np.zeros((12,1))

n_sens = len(strain_elements) #number of sensing points

#Calculate the strains at the mid-plane
#Compute ke and fe at the same time so you do not need to rTebuild the matrices
for xi_val, wi in Gauss_points_weights:
for eta_val, wj in Gauss_points_weights:
wij = wi*wj #Gauss Quadrature factor
#Calculate kalfa, kbeta and kepsilon for the current zi and eta
detJ, N_tilde, Kalfa, Kbeta, Kalfa_B1l, Kalfa_B2 = B_funct_partial(xi=xi_val,

eta=eta_val)

#Calculating the ke infinitesimal function at the prescribed zi and eta

#For ke
ke_curr = wij*(alfaSEAx Kalfa * detJ + betaSEA * Kbeta * detJ)
ke = ke + ke_curr

if quad.eid in strain_elements: #for these components we do not need to go through the gauss

integration




408

443

98

def

_,N_tilde,_, s = B_funct_partial (xi=0, eta=0) #assume now that strain is placed in

the centroid of the element

Keps = 1/n_sens * np.matmul (np.transpose(N_tilde),N_tilde)
ke = ke + Keps

exp_e = strain_gauge[strain_gaugel[:,0]l==quad.eid,1]

fe = fe + 1/n_sens * exp_e * np.transpose(N_tilde)

ke_dril = ke
fe_dril = fe

for i in range(0,4):
ke_dril = np.insert (ke_dril ,i*DOF+3,0,axis=0)
ke_dril = np.insert(ke_dril ,i*DOF+3,0,axis=1)
ke_dril [i*DOF+3,i*D0F+3] = drllingfact
fe_dril = np.insert(fe_dril,i*DOF+3,0,axis=0)

quad.ke = ke_dril
quad.fe = fe_dril

return quad

form_global_matrices (quads,N_nodes ,DOF):

wun

Function for assembling the global K matriz (K matriz of inverse FEM not the stiffness matriz)

Args:
quads (list): List containing quad elements.
N_nodes (int): Number of nodes in the iFEM model
DOF (int): Number of degrees of freedom.

Returns:
K (array): Numpy array of size (N_nodes*DOF,N_nodes*DOF) representing the global K matriz
of the tFEM model.
F (array): Numpy array of size (N_nodes*DOF,N_nodes*DOF) representing the global K matriz
of the tFEM model.
wnn
K = np.zeros ((N_nodes*DOF,N_nodes*DOF))
F = np.zeros ((N_nodes*DOF,1))

for quad in quads: #now that we have all of our local matrices assembled we can create the
global ones

T = quad.Te

if DOF == 6: #4FEM
Te = block_diag(T,T,T,T,T,T,T,T)
if DOF == 4: #4FEM SEA

#The last degree of freedom is artificial so we do not mneed rotation for it
Tr = np.eye (4)

Tr[1:4,1:4] =T

Te = block_diag(Tr,Tr,Tr,Tr)

K_curr = np.matmul(np.transpose(Te),np.matmul (quad.ke,Te))
F_curr = np.matmul (np.transpose(Te),quad.fe)

element_indices=[]
for node in [quad.nl,quad.n2,quad.n3,quad.n4]:
idx = node-1
if DOF ==
element_indices.extend ([idx*DOF,idx*DOF+1,idx*D0OF+2, idx*D0F+3,idx*D0F+4,idx*D0OF+5])
elif DOF ==4:
element_indices.extend ([idx*DOF,idx*DOF+1,idx*D0OF+2, idx*D0F+3])
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K[np.ix_(element_indices, element_indices)] = K[np.ix_(element_indices, element_indices)]
+ K_curr

Flelement_indices] = F[element_indices] + F_curr

return K, F

form_global _matrices_partSEA (quads,N_nodes ,DOF):

wun

Function for assembling the global K matriz (K matriz of inverse FEM not the stiffness matriz)

Args:
quads (list): List containing quad elements.
N_nodes (int): Number of nodes in the iFEM model
DOF (int): Number of degrees of freedom.

Returns:
K (array): Numpy array of size (N_nodes*DOF,N_nodes*DOF) representing the global K matriz
of the tFEM model.
F (array): Numpy array of size (N_nodes*DOF,N_nodes*DOF) representing the global K matriz
of the tFEM model.
wnn
K = np.zeros ((N_nodes*DOF,N_nodes*DOF))
F = np.zeros ((N_nodes*DOF,1))

indices_sub = []
for quad in quads: #now that we have all of our local matrices assembled we can create the

global ones
T = quad.Te

if DOF == 6: #4iFEM
Te = block_diag(T,T,T,T,T,T,T,T)
if DOF == 4: #4FEM SEA

#The last degree of freedom is artificial so we do nmot need rotation for <t
Tr = np.eye (4)

Tr[1:4,1:4] = T

Te = block_diag(Tr,Tr,Tr,Tr)

K_curr = np.matmul (np.transpose(Te),np.matmul (quad.ke,Te))
F_curr = np.matmul(np.transpose(Te),quad.fe)

element_indices=[]
for node in [quad.nl,quad.n2,quad.n3,quad.n4]:
idx = node-1
if DOF ==
element_indices.extend ([idx*DOF,idx*DOF+1,idx*D0OF+2,idx*D0OF+3, idx*D0F+4,idx*D0OF+5])
elif DOF ==4:
element_indices.extend ([idx*DOF,idx*DOF+1,idx*D0OF+2,idx*D0OF+3])

K[np.ix_(element_indices, element_indices)] = K[np.ix_(element_indices, element_indices)]
+ K_curr

Flelement_indices] = F[element_indices] + F_curr

indices_sub.extend(element_indices)

indices_sub = np.unique(indices_sub)
return K[np.ix_(indices_sub, indices_sub)], F[indices_sub]l, indices_sub

K_conditioning_number (calculate_bool, K, save_path, name_var, location):

wun

Calculates the conditioning number of the K matriz.
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Args:
calculate_bool (bool): Calculate or mot. If true, save the value in the error tzt file of
the case. If not, just mentioned not calculated. This operation is wvery time
consuming so most of the time is an option that should be skipped.
K (array): Numpy array of size (N_nodes*DOF,N_nodes*DOF) representing the global K matric
of the tFEM model.
save_path (str): Determines where the figure is saved. Required if save_opt is set to true.
name_var (str): Name of the wvariable for which error is computed.
location (str): Location for running the 4iFEM algorithm. Can be "top","mid" or "bot"
if not os.path.exists(save_path):
os.makedirs (save_path)
f= open(save_path+f"\\error_{name_var}_{location}.png","a+")

if calculate_bool:

f.write(£f"\n Inverse conditioning number for K={np.linalg.cond(X)}")

f.write(f"\n Inverse conditioning number for inv K={np.linalg.cond(np.linalg.inv(K))}")
else:

f.write("\n Inverse conditioning number for K=Not Computed")

alpha_iteration_rho_eta(quads, U_SEA, strain_gauge, Gauss_points_weights,strain_elements):

wun

Function for calculating rho and eta for the alpha iteration throught e L2 curve.

Args:

quads (list): List containing quad elements.

U_SEA (array): Array of size (N_nodes*4,1) containing the [s,sz,sy,sz] results of the SEA
analysis in the format [s1,szl,syl,szl,s2,sz2,sy2,sz2..]

strain_gauge (array): Array of size (N_elements,2) containing strain values of the
selected component with format of ELEMENT ID | stratin measurements

Gauss_points_weights (list): List of lists (can be converted to numpy array) where the
first column is the ewvaluation point = and the second column %is the associated weight
for the sum

strain_elements (list): List containing the indices of the strain elements for which the

strain component is smeasured.

Returns:
floats: phi_eps, phi_alpha

nwun

phi_eps = 0
phi_alpha = 0
DOF = 4 #this is how the U_SEA data is formatted

for quad in quads:

x_loc = quad.probe.x_nat

matrices_SEA_partial = partial (matrices_SEA,x1=x_loc[0,0],
yl= x_loc[1,0],
x2= x_loc[3,0],
y2= x_loc[4,0],
x3= x_loc[6,0],
y3= x_loc[7,0],
x4= x_loc[9,0],
y4= x_loc[10,0])

# Initializing arrays of exzperimental strain and curavture of an element at its midplane

n_sens = len(strain_elements)
ind_nodes = np.array([quad.nl,quad.n2,quad.n3,quad.n4])-1
u = np.zeros((12,1))

u_loc = np.zeros((16,1))

T = quad.Te
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Tr = np.eye (4)
Tr[1:4,1:4] = T
Te = block_diag(Tr,Tr,Tr,Tr)

u_loc[0::4] = U_SEA[ind_nodes*DOF]

u_loc[1::4] = U_SEA[ind_nodes*DOF+1]
u_loc[2::4] = U_SEA[ind_nodes*DOF+2]
u_loc[3::4] = U_SEA[ind_nodes*DOF+3]

u_loc = np.matmul (Te,u_loc)
ul[0::3] = u_loc[0::4]
ul1::3] = u_loc[1::4]
ul2::3] = u_loc[2::4]

for xi_val, wi in Gauss_points_weights:
for eta_val, wj in Gauss_points_weights:

wij = wi*wj

detJ, N_tilde, Kalfa, Kbeta, Kalfa_B1l, Kalfa_B2 =matrices_SEA_partial(xi=xi_val,
eta=eta_val)

phi_alfal =

np.matmul (np.transpose(u) ,np.matmul (np.transpose(Kalfa_B1),np.matmul (Kalfa_B1,u
phi_alfa2 =

np.matmul (np.transpose(u) ,np.matmul (np.transpose(Kalfa_B2) ,np.matmul (Kalfa_B2,u

phi_alpha += wij*detJ*(phi_alfal+phi_alfa2)
if quad.eid in strain_elements:

exp_e = strain_gauge[strain_gaugel[:,0]==quad.eid,1]

_,N_tilde,_, _, s = matrices_SEA_partial(xi=0, eta=0)

Keps = 1/n_sens * np.matmul (np.transpose(N_tilde) ,N_tilde)
f_eps = 1/n_sens * exp_e * np.transpose(N_tilde)

phi_eps_curr = 1/n_sens * np.matmul (np.transpose(exp_e),exp_e)+
np.matmul (np.transpose (u),(np.matmul (Keps,u))) -

2*np.matmul (np.transpose (f_eps),u)
phi_eps += phi_eps_curr
return phi_eps, phi_alpha

errors_path(calculated_var ,N_nodes ,reference_path):
Function for plotting the percentage error at each node in the FEM model. 2d view.
When the reference walue is 0, to avoid Nan the error is eplaced by 0. Might not be a

representative error handling in all cases

Args:
calculated_var (array): Array of size (N_nodes,1) with the walues of a calculated array
N_nodes (int): Number of mnodes in the iFEM mesh
reference_path (str): Path to the file where the reference measurements (FEM outputs) are

stored.

woun

MPD = 0 #mean percentage difference
MAPD = O #mean absolute percentage difference
RMSD = 0 #root mean square difference
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if reference_path[-3:] == "csv":

referenece_var = pd.read_csv(reference_path,delimiter=’,’)
elif reference_path[-4:] == "xlsx":

referenece_var = pd.read_excel(reference_path)
referenece_var = referenece_var.to_numpy ()

error = np.zeros (np.shape(referenece_var))

error[:,0] = referenece_var[:,0]

error[:,1] = (calculated_var[:,0]-referenece_varl[:,1]) #simplle difference
RMSD = np.sqrt(np.sum(error[:,1]l*error[:,1])/N_nodes)

a = error[:,1]1*100

b = referenece_var[:,1]

error[:,1] = np.divide(a, b, out=np.zeros_like(a), where=b!=0) #substitute nan by 0. PD
obtained

MPD = np.sum(error[:,1])/N_nodes

MAPD = np.sum(np.absolute(error[:,1]))/N_nodes

return RMSD, MPD, MAPD

errors(calculated_var ,reference_var):

i

Function for plotting the percentage error at each node in the FEM model. 2d view.
When the reference walue is 0, to avoid Nan the error is eplaced by 0. Might not be a

representative error handling in all cases

Args:
calculated_var (array): Array of size (N_nodes,1) with the values of a calculated array
reference_var (array): Path to the file where the reference measurements (FEM outputs) are

stored.

wun

MPD = 0 #mean percentage difference
MAPD = 0 #mean absolute percentage difference
RMSD = 0 #root mean square difference

n = max(np.shape(reference_var))

error = np.zeros (np.shape(reference_var))

error = (calculated_var-reference_var) #simplle difference

RMSD = np.sqrt(np.sum(error*error)/n)

a = errorx*100

b = reference_var

error = np.divide(a, b, out=np.zeros_like(a), where=b!=0) #substitute nan by 0. PD obtained
MPD = np.sum(error)/n

MAPD = np.sum(np.absolute(error))/n

return RMSD, MPD, MAPD

SEA_interpolation_error (quads, strain_elements, U_SEA, strain_gauge):

wun

Function for calculating the iterpolation error of SEA.

Args:
quads (list): List containing quad elements.
strain_elements (dict): Dictionary containing arrays of the elements where strain is
recorded for each strain component. Eg. for strain exzz we know whic elemebnts record
strain. The keys are "ezz", "eyy" and "exzy".
U_SEA (array): Array of size (N_nodes*4,1) containing the [s,sz,sy,sz] results of the SEA
analysis in the format [s1,szl,syl,szl,s2,sz2,sy2,sz2..]
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SEA_strain_1st = []
exp_e_1lst = []

for quad in quads:
if quad.eid in strain_elements:

#Calculate N,L,M

quad.update_nat_coord ()

x_loc = quad.probe.x_nat

N, L, M = NLM_matrices(xi=0, eta=0, #we calculate at centroid the strains
x1=x_1loc[0,0],
y1l= x_loc[1,0],
x2= x_loc[3,0],
y2= x_loc[4,0],
x3= x_loc[6,0],
y3= x_loc[7,0],
x4= x_loc[9,0],
y4= x_loc[10,0])

#Calculate the SES strain
DOF=4 #the DOF that are used in the U_SEA files
ind_nodes = np.array([quad.nl,quad.n2,quad.n3,quad.n4])-1
SEA_strain = np.matmul (N,U_SEA[ind_nodes*DOF]) \
- np.matmul (L,U_SEA[ind_nodes*DOF+1]) \
- np.matmul (M,U_SEA[ind_nodes*DOF+2])

exp_e = strain_gauge[strain_gaugel[:,0]==quad.eid,1]
#Save wvalues

SEA_strain_1lst.append(float (SEA_strain))
exp_e_1lst.append(float (exp_e))

RMSD, MPD, MAPD = errors(mnp.array(SEA_strain_lst) ,np.array(exp_e_lst))

return RMSD, MPD, MAPD

Listing C.1: helpers.py

from pyife3d import IQS4, IQS4Probe

import numpy as np

from pyife3d.helpers import compute_local_matrices
from sympy import var

from functools import partial

from pyife3d.iqs4_equations import B_matrices

import pandas as pd

def iFEM(N_elements,element_nodes,node_coord, strain_gauge_top, strain_gauge_bot, strain_elements,
h, Gauss_points_weights ,w_fact, isotropic, mat_direction, location):

wun

Function for creating and updating all the elements in the mesh per <FEM algorithm.

Args:

N_elements (int): Number of elements in the model

element_nodes (array): Array of size (N_elements,5) containing the nodes of each element
in the format: element ID | node 1 ID | node 2 ID | node 3 ID | mnode 4 ID

node_coord (array): Array of size (N_nodes,4) containing the node coordinates of the mesh
in the format: ID | X | Y | Z.

strain_gauge_top (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | exzxz top | eyy top | gzy top

strain_gauge_bot (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | exzxz bot | eyy bot | gzz bot

h (float): Half thickness of the plate.

Gauss_points_weights (list): List of lists (can be converted to numpy array) where the
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first column is the evaluation point = and the second column is the associated weight
for the sum
w_fact (float): The weight factor to apply in IFEM when the strain measurement is missing.
isotropic (bool): Describes whether the used material %is sotropic or not.
mat_direction (array): Numpy array of size (3,1) describing the material coordinate system.

location (str): Location for running the 4FEM algorithm. Can be "top","mid" or "bot"

Returns:
quads (list): List of quad elements.

probes (list): List of corresponding probe elements.

wun

probes = []
quads = []

for i in range(0,N_elements):
#Initialize the element
probe = IQS4Probe ()
quad = IQS4(probe)

#Idenitfy the nodes
ni, n2, n3, n4d = element_nodes[i,1:]

#Save the nodes for the element
quad.eid = i+1 #ID of the element
quad.nl = nil

quad.n2 = n2

quad.n3 = n3

quad.n4 = n4

#Coordinates of the points

r1 = np.reshape(np.array(node_coord[n1-1,1:1),(3,1))
r2 = np.reshape(np.array(node_coord[n2-1,1:1),(3,1))
r3 = np.reshape(np.array(node_coord[n3-1,1:1),(3,1))
r4 = np.reshape(np.array(node_coord[n4-1,1:1),(3,1))

#Save the coordinates
probe.xe[0:3] = ri1
probe.xe[3:6] = r2
probe.xe[6:9] = r3
probe.xe[9:12] = r4

#0btain natural cooidnates
quad.update_nat_coord ()
x_loc = quad.probe.x_nat

#Create a B matriz for each elemenet by filling in all parameters exzcept zi and eta
(natural coordinates)
B_matrices_partial = partial (B_matrices,xl=x_loc[0,0],
yl= x_loc[1,0],
x2= x_loc[3,0],
y2= x_loc[4,0],
x3= x_loc[6,0],
y3= x_loc[7,0],
x4= x_loc[9,0],
y4= x_loc[10,0])

# Initializing arrays of experimental strain and curavture of an element at its midplane
exp_e = np.zeros((3,1))

exp_k = np.zeros((3,1))

#Weights for least-squares wvariational principle
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# exx | eyy | gzy | kxx | kyy | kzy | gzz | gyz
w = w_fact*np.ones ((8))

#Start changing weights and exzp_e and k only if any of the components is registered
if quad.eid in strain_elements["exx"] or quad.eid in strain_elements["eyy"] or quad.eid in

strain_elements["exy"]:

#Accounting for aniisotropic material:
if not isotropic:
mat_direction_loc = np.matmul (quad.Te,mat_direction) #we align our local coord
system with the material direction
theta = np.arccos(np.dot(mat_direction_loc[0:2].flatten(), np.array([1, 01)) /
(np.linalg.norm([1, 0]) * np.linalg.norm(mat_direction_loc[0:2]))) #in plane

angle between global z azis and material direction

theta = abs(theta)

if mat_direction_loc[1] >=0:
theta = -theta #positive rotation
else:

theta = theta #negative rotation

T_mat = np.array ([
[np.cos(theta)**2, np.sin(theta)**2, np.sin(theta) * np.cos(theta)l,
[np.sin(theta)**2, np.cos(theta)**2, -np.sin(theta) * np.cos(theta)l,
[-2 * np.sin(theta) * np.cos(theta), 2 * np.sin(theta) * np.cos(theta),
np.cos(theta)**2 - np.sin(theta) **2]
1

else:
T_mat = np.eye(3)

#Aligning with material

strain_gauge_top_mat = np.matmul (T_mat,strain_gauge_topl[i,1:]) #start from indez 1
cause 0 4s element ID

strain_gauge_bot_mat = np.matmul (T_mat,strain_gauge_bot[i,1:])

if location == "top":
exp_e = strain_gauge_top_mat

elif location == "mid":
exp_e = 1/2*(strain_gauge_top_mat+strain_gauge_bot_mat)

exp_k = 1/(2xh)*(strain_gauge_top_mat-strain_gauge_bot_mat)
else:

exp_e = strain_gauge_bot_mat
#Save for plotting
quad.probe.epsilontop = strain_gauge_top_mat

quad.probe.epsilonbot = strain_gauge_bot_mat

#Change indices appropiately

if quad.eid in strain_elements["exx"] and location=="mid":
w[0] =1
w[3] =1

elif quad.eid in strain_elements["exx"
w[0] = 1

if quad.eid in strain_elements["eyy"] and location=="mid":
w1l =1
wl4] = 1

elif quad.eid in strain_elements["eyy"]:
wl[1] = 1
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if quad.eid in strain_elements[“exy"] and location=="mid":
wl2] =1
w[5] = 1
elif quad.eid in strain_elements["exy"]:
wl[2] = 1
quad = compute_local_matrices(B_funct_partial=B_matrices_partial, w=w,

Gauss_points_weights=Gauss_points_weights ,h=h,quad=quad,exp_e=exp_e,exp_k=exp_k)

quads . append (quad)
probes.append (probe)

return quads, probes

Listing C.2: {FFEM_main.py

from pyife3d.iqs4SEA import IQS4SEA, IQS4ProbeSEA

from pyife3d import IQS4, IQS4Probe

import numpy as np

from pyife3d.igs4_equations import matrices_SEA, B_matrices, NLM_matrices

from pyife3d.helpers import compute_local_matrices, compute_local_matrices_extrapolation,
exp_strain_builder

from functools import partial

def strain_extrapolation(alfaSEA, betaSEA, drllingfact,
N_elements ,element_nodes ,node_coord,strain_gauge, strain_elements, Gauss_points_weights):

wun

Function for creating and updating all the SEA elements ofr the strain exztrapolation.

Args:

alfaSEA (float): Alfa factor of SEA strain extrapolation.

betaSEA (float): Beta factor of SEA strain exztrapolation.

drllingfact (float): Drilling degree of freedom assumed factor.

N_elements (int): Number of elements in the model

element_nodes (array): Array of size (N_elements,5) containing the nodes of each element
in the format: element ID | node 1 ID | node 2 ID | node 3 ID | mode 4 ID

node_coord (array): Array of size (N_nodes,4) containing the mnode coordinates of the mesh
in the format: ID | X | Y | Z.

strain_gauge (array): Array of size (N_elements,2) containing strain values of the
selected component with format of ELEMENT ID | stratin measurements

strain_elements (list): List containing the indices of the strain elements for which the
strain component is smeasured.

Gauss_points_weights (list): List of lists (can be converted to numpy array) where the
first column is the ewaluation point = and the second column %is the associated weight
for the sum

Returns:

quads (list): List of quad elements.

probes (list): List of corresponding probe elements.

wnn
probes = []
quads = []

for i in range(0,N_elements):
probe = IQS4ProbeSEA()
quad = IQS4SEA (probe)

#Idenitfy the nodes

nl, n2, n3, n4 = element_nodes[i,1:]

#Save the nodes for the element
# quad.eid = t+1 #ID of the element

quad.eid = element_nodes[i,0]
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quad.nl = nil
quad.n2 = n2
quad.n3 = n3
quad.n4 = n4

#Coordinates of the points

rl = np.reshape(np.array(node_coord[ni-1,1:]1),(3,1))
r2 = np.reshape(np.array(node_coord[n2-1,1:1),(3,1))
r3 = np.reshape(np.array(node_coord[n3-1,1:]),(3,1))
r4 = np.reshape(np.array(node_coord[n4-1,1:1),(3,1))

#Save the coordinates
probe.xe[0:3] = ri
probe.xe[3:6] = r2
probe.xe[6:9] = r3
probe.xe[9:12] = r4

#0btain natural cooidnates
quad .update_nat_coord ()

x_loc = quad.probe.x_nat

matrices_SEA_partial = partial (matrices_SEA,x1=x_loc[0,0],
yi= x_loc[1,0],
x2= x_loc[3,0],
y2= x_loc[4,0],
x3= x_loc[6,0],
y3= x_loc[7,0],
x4= x_loc[9,0],
y4= x_loc[10,0])

quad = compute_local_matrices_extrapolation(alfaSEA=alfaSEA, betaSEA=betaSEA,
drllingfact=drllingfact, B_funct_partial=matrices_SEA_partial,
Gauss_points_weights=Gauss_points_weights,quad=quad,strain_gauge=strain_gauge,strain_el

quads . append (quad)
probes.append (probe)

return quads, probes

iFEM_SEA(N_elements ,element_nodes ,node_coord, strain_gauge_top, strain_gauge_bot,
strain_elements, h, Gauss_points_weights,w_fact, isotropic, mat_direction, SEA_U_dict_top,
SEA_U_dict_bot, location):

wn

Function for creating and updating all the elements in the mesh per <FEM SEA algorithm. To be

run after the strain pre-extrapoaltion was conducted for all the relevant components.

Args:

N_elements (int): Number of elements in the model

element_nodes (array): Array of size (N_elements,5) containing the nodes of each element
in the format: element ID | node 1 ID | node 2 ID | node 3 ID | node 4 ID

node_coord (array): Array of size (N_nodes,4) containing the node coordinates of the mesh
in the format: ID | X | Y | Z.

strain_gauge_top (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | ezz top | eyy top | gzy top

strain_gauge_bot (array): Array of size (N_elements,4) storing the strain corresponding to
each element in the following format element ID | ezz bot | eyy bot | gzz bot

strain_elements (dict): Dictionary containing arrays of the elements where strain is
recorded for each strain component. Eg. for strain exxz we know whic elemebnts record
strain. The keys are "exzz", "eyy" and "exzy"

h (float): Half thickness of the plate.

Gauss_points_weights (list): List of lists (can be converted to numpy array) where the
first column is the evaluation point = and the second column is the associated weight

for the sum

ements=strain_el
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w_fact (float): The weight factor to apply in IFEM when the strain measurement is missing.
isotropic (bool): Describes whether the used material %is sotropic or not.
mat_direction (array): Numpy array of size (3,1) describing the material coordinate system.

SEA_U_dict_top (dict): Dictiomary containing the U_SEA for the strain component "ezz",

Teyy", "ezy
SEA_U_dict_bot (dict): Dictionary containing the U_SEA for the strain component "exzz",
neyy ", "exy

location (str): Location for running the 2FEM algorithm. Can be "top","mid" or "bot"

Returns:
quads (list): List of quad elements.
probes (list): List of corresponding probe elements.
o
probes = []
quads = []

for i in range(0,N_elements):
#Initialize the element
probe = IQS4Probe ()
quad = IQS4(probe)

#Idenitfy the nodes
ni, n2, n3, n4d = element_nodes[i,1:]

#Save the nodes for the element
quad.eid = i+1 #ID of the element
quad.nl = nil

quad.n2 = n2

quad.n3 = n3

quad.n4 = n4

#Coordinates of the points

r1 = np.reshape(np.array(node_coord[n1-1,1:1),(3,1))
r2 = np.reshape(np.array(node_coord[n2-1,1:1),(3,1))
r3 = np.reshape(np.array(node_coord[n3-1,1:1),(3,1))
r4 = np.reshape(np.array(node_coord[n4-1,1:1),(3,1))

#Save the coordinates
probe.xe[0:3] = ri1
probe.xe[3:6] = r2
probe.xe[6:9] = r3
probe.xe[9:12] = r4

#0btain natural coordinates
quad.update_nat_coord ()
x_loc = quad.probe.x_nat

#Insert the natural coordinates in the calculation of the strain-displacement matrices
B_matrices_partial = partial (B_matrices,xl=x_loc[0,0],

yi= x_loc[1,0],

x2= x_loc[3,0],

y2= x_loc[4,0],

x3= x_loc[6,0],

y3= x_loc[7,0],

x4= x_loc[9,0],

y4= x_loc[10,0])

# Initializing arrays of exzperimental strain and curavture of an element at its midplane
exp_e = np.zeros((3,1))
exp_k = np.zeros((3,1))

#Weights for least-squares wartiational principle

# exx | eyy | gzy | kzx | kyy | kzy | gzz | gyz
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w = w_fact*np.ones ((8))

#Accounting for aniisotropic material:
if not isotropic:
mat_direction_loc = np.matmul (quad.Te,mat_direction) #we align or local coord system
with the material direction
theta = np.arccos(np.dot(mat_direction_loc[0:2].flatten(), np.array([1, 0])) /
(np.linalg.norm([1, 0]) * np.linalg.norm(mat_direction_loc[0:2])))
theta = abs(theta)

if mat_direction_loc[1] >=0:
theta = -theta #positive rotation
else:

theta = theta #negative rotation

T_mat = np.array ([
[np.cos(theta)**2, np.sin(theta)**2, np.sin(theta) * np.cos(theta)l,
[np.sin(theta)**2, np.cos(theta)**2, -np.sin(theta) * np.cos(theta)l,
[-2 * np.sin(theta) * np.cos(theta), 2 * np.sin(theta) * np.cos(theta),
np.cos(theta)**2 - np.sin(theta) **2]
n

else:

T_mat = np.eye(3)

#We also need to calculate the NLM matrices
N, L, M = NLM_matrices(xi=0, eta=0, #we calculate at centroid the strains
x1=x_loc [0,0],
yl= x_loc[1,0],
x2= x_loc[3,0],
y2= x_loc[4,0],
x3= x_loc[6,0],
y3= x_loc[7,0],
x4= x_loc[9,0],
y4= x_loc[10,0])

#Get the ezperimental strains by going thorugh each component

exp_e, exp_k, w, quad =
exp_strain_builder(quad,strain_elements,w,location,T_mat,strain_gauge_top,strain_gauge_t
SEA_U_dict_bot, N, L, M, h)

quad = compute_local_matrices(B_funct_partial=B_matrices_partial, w=w,

Gauss_points_weights=Gauss_points_weights,h=h,quad=quad,exp_e=exp_e,exp_k=exp_k)

quads . append (quad)
probes.append (probe)

return quads, probes

Listing C.3: iFEM_main.py

import numpy as np

import sympy

from sympy import simplify, integrate, Matrix, diff
from sympy.vector import CoordSys3D, cross

import dill

import os

rhnn

ot ,i,SEA_U_dict.
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/ / positive normal in CCW
/___/
1 2
DOF = 6
num_nodes = 4
save=0

sympy.var(’h’, positive=True, real=True)

sympy.var (°x1, y1, x2, y2, x3, y3, x4, y4’, real=True, positive=True)
sympy.var (’rho, xi, eta, A, alphat’)

sympy.var (’A11, A12, A16, A22, A26, A66°)

sympy.var (’B11, B12, B16, B22, B26, B66°’)

sympy.var (°’D11, D12, D16, D22, D26, D66°’)

sympy .var (’E44, E45, E55’)

ONE = sympy.Integer (1)

R = CoordSys3D(’R’)
rl = x1*R.i + y1x*R.
r2 = x2*R.i + y2*R.
r3 = x3*R.i + y3*R.
r4 = x4xR.i + y4x*R.

[ SR S T

rbottom = r1 + (r2 - ri1)*(xi + 1)/2

rtop = r4d + (r3 - rd4)*(xi + 1)/2

r = rbottom + (rtop - rbottom)*(eta + 1)/2
xfunc = r.components[R.i]

yfunc = r.components[R.j]

# Jacobian theory
# http://kis.tu.kielce.pl/mo/COLORADO_FEM/colorado/IFEM.Ch17.pdf
# https://quickfem.com/theory/finite-element —analysis/

J = Matrix ([[xfunc.diff(xi), yfunc.diff(xi)],
[xfunc.diff (eta), yfunc.diff (eta)]])

#Derivatives of Jacobian determinant wrt each coordinate of the quad element node
detJ = J.det().simplify ()

#Invert that Jacobian

j = J.inv(Q)

#Get the Jacobian terms for eastier referral
ji1 = j[0, 0].simplify()
j12 = jl[o, 1].simplify ()
j21 = j[1, 0].simplify()
j22 jl1, 1].simplify ()

#N shape functions
N1 = (eta * xi - eta - xi + 1) / 4

N2 = -(eta * xi + eta - xi - 1) / 4
N3 = (eta * xi + eta + xi + 1) / 4
N4 = -(eta * xi - eta + xi - 1) / 4
N5 = (1 - pow(xi, 2)) * (1 - eta) / 16
N6 = (1 + xi) * (1 - pow(eta, 2)) / 16
N7 = (1 - pow(xi, 2)) * (1 + eta) / 16
N8 = (1 - xi) * (1 - pow(eta, 2)) / 16
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# zijJ
x12 =
x23 =
x34 =
x41 =

yi4 =
y21 =
y32 =
y43 =

and yij
x1 - x2
x2 - x3
x3 - x4
x4 - x1
yi - y4
y2 - yi
y3 - y2
y4 - y3

explained

# L shape functions

Li =
L2 =
L3 =
L4 =

yi4
y21
y32
y43

*
*
*
*

N8
N5
N6
N7

- y21
- y32
- y43
- yl4

#M shape functions
x41%N8 -
x12%N5 -
x23*%N6 -
x34*N7 -

M1 =
N2 =
M3 =
M4 =

#Derivatives wrt to xi
Ldiff (xi)

Nixi
N2xi
N3xi
N4xi
N6xi
N6xi
N7xi
N8xi

Lixi
L2xi
L3xi
L4xi

Mixi
M2xi
M3xi
M4xi

=N
=N
=N
=N
=N
=N
=N
=N

= L
=L
=L
= L

=M
=M
=M
=M

1
2o
3
4.
5.
6.
7.
8

1.
2o
3.
4

1
2.
3.
4.

x12*N5
x23*N6
x34*N7
x41%N8

diff (xi)

Ldiff (xi)

diff (xi)
diff (xi)
diff (xi)
diff (xi)

Ldiff (xi)

diff (xi)
diff (xi)
diff (xi)

Ldiff (xi)

Ldiff (xi)

diff (xi)
diff (xi)
diff (xi)

R

N5
N6
N7
N8

#Derivatives wrt to etas
.diff (eta)

Nieta
N2eta
N3eta
Ndeta
N5eta
Néeta
N7eta
N8eta

Lieta
L2eta
L3eta
L4eta

Mleta
M2eta
M3eta

N1

N2.
N3.
N4.
N5.

N6
N7

N8.

L1

L2.

L3
L4

M1

M2.
M3.

diff (eta)
diff (eta)
diff (eta)
diff (eta)

.diff (eta)
.diff (eta)

diff (eta)

.diff (eta)

diff (eta)

.diff (eta)
.diff (eta)

.diff (eta)

diff (eta)
diff (eta)
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M4eta =

#N derivatives

M4 .diff (eta)

wrt to x

Nix = j11xNixi + j12x*Nleta

N2x = j11xN2xi + j12xN2eta

N3x = j11xN3xi + j12x*N3eta

N4x = j11xN4xi + jl2xN4eta

N5x = j11xNbxi + j12x*Nbeta

Néx = j11xN6xi + jl2xN6eta

N7x = j11xN7xi + j12x*N7eta

N8x = j11xN8xi + j12xN8eta

#L derivatives wrt x

Lix = j11xLixi + jl12x*Lleta

L2x = j11xL2xi + jl2xL2eta

L3x = j11xL3xi + j12x*L3eta

L4x = jl1xL4xi + jl2xL4eta

#M derivatives wrt x

Mix = j11*Mixi + jl2*Mleta

M2x = j11*M2xi + j12*M2eta

M3x = j11*M3xi + jl2*M3eta

M4x = j11*M4xi + jl2x*M4eta

#N derivatives wrt y

Niy = j21xNixi + j22xNleta

N2y = j21xN2xi + j22xN2eta

N3y = j21xN3xi + j22xN3eta

N4y = j21xN4xi + j22xN4eta

N5y = j21xN5xi + j22xNbeta

N6y = j21xN6xi + j22xN6eta

N7y = j21*N7xi + j22xNT7eta

N8y = j21xN8xi + j22xN8eta

#L derivatives wrt y

Lily = j21*Lixi + j22xLleta

L2y = j21xL2xi + j22xL2eta

L3y = j21%L3xi + j22xL3eta

L4y = j21xL4xi + j22xLdeta

#M derivatives wrt y

Mily = j21*Mixi + j22*Mleta

M2y = j21%M2xi + j22%M2eta

M3y = j21*M3xi + j22*M3eta

M4y = j21*M4xi + j22*M4eta

detJfunc = detJ

#ezxx = u,z = (dzi/dz)*u,z% + (deta/dz)*u,eta = j11 w,zi + j12 u,eta

Bmexx = Matrix([[N1x, O, O, O, O, Li1x, N2x, O, O, O, O, L2x, N3x, O, O, O, O, L3x, N4x, 0, O,
0, L4x]1)

Bbexx = Matrix([[O, O, O, O, N1xX, O, O, O, O, O, N2x, O, O, O, O, O, N3x, O, O, O, O, O, Né4x,

#eyy = v,y = (dzi/dy)*v,zi + (deta/dy)*v,eta = j21 v,zi + j22 wv,eta

Bmeyy = Matrix([[O, N1y, O, O, O, M1y, O, N2y, O, O, O, M2y, O, N3y, O, O, O, M3y, O, N4y, O,
0, Mayll)

Bbeyy = Matrix([[0O, O, O, -Nly, O, O, O, O, O,-N2y, O, O, O, O, O, -N3y, O, O, O, O, O, -N4y,
011)

#gzy = u,y + v,z = (dzi/dy)*u,zi + (deta/dy)*u,eta + (dzi/dz)*v,zi + (deta/dy)*v,eta

Bmgxy = Matrix([[N1ly, Ni1x, O, O, O, L1y+Mix, N2y, N2x, O, O, O, L2y+M2x, N3y, N3x, 0, O, O,
L3y+M3x, N4y, N4x, 0, O, O, L4y+M4x]])

Bbgxy = Matrix([[O, O, O, -Ni1x, N1y, O, O, O, O0,-N2x, N2y, O, O, O, O, -N3x, N3y, O, O, O, O,
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-N4x, N4y, 0]1)

Bm = Matrix ([Bmexx, Bmeyy, Bmgxyl)
Bb = Matrix ([Bbexx, Bbeyy, Bbgxyl)

#g9z2

Bsgxz = Matrix([[0O, O, Nix, -Lix, -Mix+N1, O, O, O, N2x, -L2x, -M2x+N2, O, O, O, N3x, -L3x,
-M3x+N3, 0, 0, O, N4x, -L4x, -M4x+N4, 011)

#g9z2

Bsgyz = Matrix([[O, O, N1y, -Liy-N1, -Miy, O, O, O, N2y, -L2y-N2, -M2y, O, O, O, N3y, -L3y-N3,
-M3y, 0, 0, O, N4y, -L4y-N4, -M4y, 011)
Bs = Matrix([Bsgxz, Bsgyzl)

if save == 1:

#Pickling all of our sympy wariables

absolute_path = os.path.dirname (os.path.dirname(__file__)) #needs to be applied two times to
get to git directory

pickle_folder = absolute_path + "\sympy_pickled_iqgs4"

#List of wvariables for which we do not need to create the pickled files

var_exception = ["__builtins__",
" __annotations__",
" __cached__",
" doc "
- s
" file ",
"__loader__",
" __name__",

" __package__",

__spec__",
"absolute_path",
"alphat",
"CoordSys3D",
"cross",
"integrate",

"np
"pickle_folder",

"
B

nosh,
"simplify",
n sympy Il]

for name in dir():
if name not in var_exception:
try:
with open(pickle_folder+f"\sp_{namel}.pkl",’wb’) as file:
dill.dump (obj=eval (name) ,file=file)
except:

print ("Pickling not working for variable ", name)

print ("SAVED!")

print ("J",J)

e B L G et "y
print ("j",3)

PEILAE (T ocsoscsosssssosossrsrsosororsororososororsoomooooo S ")
print ("detJ",detJ)

PEILNE (T ocsoscsssssssosorsrsrsosororororosorororosmooooooo S ")
print ("Nix",Nix)

T G e e ")
print ("N2x",N2x)

print ("
print ("N3x",N3x)
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Prant (Mmoo oo oo oo m oo e "y
print ("N4x",6N4x)

PrAnt (Mmoo oo o m oo oo oo e "y
print ("Niy",Niy)

Praint (M m o m oo oo oo oo "y
print ("N2y",N2y)

Print (Mmoo oo oo oo oo "y
print ("N3y",N3y)

Print (Mmoo oo o m oo "y
print ("N4y",6N4y)

PEILAE (T ocsoscsssssssosossrsrsosororsororososororsmooooooo S ")
PTAint (Mmoo oo "y
print ("L1",L1)

PTAint (Mmoo oo - "y
print ("L2",L2)

PTAint (Mmoo oo oo "y
print ("L3",L3)

PTAnt (Mmoo oo - "y
print ("L4",L4)

PTint (M mm oo oo - "y
print ("Lix",L1x)

PTint (Mmoo oo - "y
print ("L2x",L2x)

Print (M-------mmmmmm oo e )
print ("L3x",L3x)

Print (M-—------mmmmmm oo "y
print ("L4x",L4x)

Print (M-—------mmm oo oo e "y
print ("Liy",L1y)

Print (M-—------mm oo oo oo "y
print ("L2y",L2y)

Print (M------mmmm oo e o "y
print ("L3y",L3y)

Print (M-—-—-—-—-mmmmmm e oo "y
print ("L4y",L4y)

Print (M—-——--mmmmmm o e oo "y
print ("M1",M1)

Print (M mm oo oo "y
print ("M2",M2)

Print (M —mm o m oo oo oo "y
print ("M3",M3)

Print (M —m - m oo oo oo "y
print ("M4",M4)

L B L G e e e L "y
print ("Mix",Mix)

PrAnt (Mmoo oo oo oo oo "y
print ("M2x",M2x)

e B L G et "y
print ("M3x",M3x)

e B L G e e L LT "y
print ("M4x",6M4x)

PrAnt (M mm oo oo oo oo "y
print ("Miy",M1y)

e B L G et "y
print ("M2y",M2y)

PEILAE (T ocsoscsosssssosossrsrsosororsororososororsoomooooo S ")
print ("M3y",M3y)

PEILNE (T ocsoscsssssssosorsrsrsosororororosorororosmooooooo S ")
print ("M4y",M4y)

T G e e ")

Listing C.4: 1QS4_derivation.py adapted from [Castro, 2023]
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wun

File containing the iQS4 equations hardcoded rather than reading from sympy. Dne for improving
code speed

nwun

import numpy as np

def funct_J(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):
return np.array ([[-x1/2 + x2/2 + (eta + 1)*(x1/2 - x2/2 + x3/2 - x4/2)/2, -y1/2 + y2/2 + (eta
+ 1)*x(y1/2 - y2/2 + y3/2 - y4/2)/2], [-x1/2 + x4/2 - (-x1 + x2)*(xi + 1)/4 + (x3 -
x4)x(xi + 1)/4, -y1/2 + y4/2 - (xi + 1)*x(-y1 + y2)/4 + (xi + 1)*(y3 - y4)/411)

def funct_j(xi, eta,x1,x2,x3,x4,y1l,y2,y3,y4):
return np.array ([[(-2*%xxi*yl + 2%xi*y2 - 2*xixy3 + 2xxixyd + 2xyl + 2xy2 - 2*y3 -

2xy4)/(etaxxl*y2 - etaxxl*y3 - eta*xx2*yl + eta*x2*y4d + eta*x3*yl - eta*x3*xy4 - eta*xdxy2
+ eta*x4xy3 + x1*xixy3 - xl*xixyd - x1*y2 + x1*y4d - x2*xi*y3 + x2*xi*yd + x2*yl - x2*y3 -
x3*xxi*yl + x3*xi*xy2 + x3*y2 - x3*y4d + x4*xi*yl - x4*xi*y2 - xdxyl + x4*xy3), (2*etaxyl -
2%etaxy2 + 2xetaxy3 - 2xetaxyd - 2xyl + 2xy2 + 2%y3 - 2%xyd4)/(eta*xl*xy2 - eta*xlxy3 -
eta*x2*xyl + eta*x2*y4 + eta*x3*yl - etaxx3*y4 - etaxx4*y2 + etaxxdxy3 + xlxxixy3 -
x1*xxi*yd - x1xy2 + xlxyd4 - x2*xxixy3 + x2*xxixyd + x2xyl - x2*xy3 - x3*xixyl + x3*xxixy2 +
x3*xy2 - x3*y4 + xd*xixyl - x4*xi*y2 - x4*yl + x4x%y3)], [(2*xl1*xi - 2%xx1 - 2%x2*xi - 2x%x2
+ 2*%x3*xi + 2%xx3 - 2*x4*xi + 2xx4)/(eta*xl*y2 - eta*xl*y3 - eta*x2*yl + etaxx2xy4d +
eta*x3*yl - eta*xx3*y4 - etax*xxdxy2 + eta*x4*y3 + xl*xxi*xy3 - xl*xixyd - xl*y2 + xlx*xyd -
x2*xxi*y3 + x2xxi*y4 + x2%yl - x2xy3 - x3*xix*yl + x3*xi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4xxixy2 - x4xyl + x4*xy3), (-2*%eta*xl + 2%etaxx2 - 2%etaxx3 + 2%eta*x4 + 2%xl - 2%x2 -
2*%x3 + 2xx4)/(eta*xl*y2 - eta*xl*y3 - eta*x2*yl + eta*x2*y4 + etaxx3*yl - eta*x3*yd -
eta*x4*y2 + etaxx4*y3 + xl*xixy3 - xl*xi*y4d - x1*xy2 + x1*y4 - x2*xi*xy3 + x2*xi*y4d + x2x*yl
- x2*y3 - x3*xi*yl + x3*xi*y2 + x3%y2 - x3*xy4 + x4*xixyl - xd*xi*xy2 - x4*yl + x4*y3)]1]1)

def funct_detJ(xi, eta,x1,x2,x3,x4,yl,y2,y3,y4):
return -etaxx1*y2/8 + eta*xlxy3/8 + etaxx2*yl/8 - eta*x2xy4/8 - etaxx3*yl/8 + eta*x3*y4/8 +
eta*x4*y2/8 - eta*x4*y3/8 - xl*xixy3/8 + x1*xi*y4/8 + x1xy2/8 - x1*y4/8 + x2%xixy3/8 -
x2*xxixy4/8 - x2%yl/8 + x2xy3/8 + x3*xi*yl/8 - x3*xi*y2/8 - x3*y2/8 + x3%y4/8 - xd*xixyl/8
+ x4*xi*y2/8 + x4*yl/8 - x4%y3/8

def funct_Ni1(xi, eta):

return (eta * xi - eta - xi + 1) / 4

def funct_N2(xi, eta):

return -(eta * xi + eta - xi - 1) / 4

def funct_N3(xi, eta):
return (eta * xi + eta + xi + 1) / 4

def funct_N4(xi, eta):

return -(eta * xi - eta + xi - 1) / 4

def funct_L1(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
return -(1 - eta)*(1 - xi**2)*(-y1 + y2)/16 + (1 - etax*2)*(1 - xi)*(yl - y4)/16

def funct_L2(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4):
return (1 - eta)*(1 - xi**2)*(-y1 + y2)/16

(1 - eta**2)*(xi + 1)*(-y2 + y3)/16

def funct_L3(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
return (1 - eta**2)x(xi + 1)*(-y2 + y3)/16 - (1 - xi**2)x(eta + 1)*(-y3 + y4)/16

def funct_L4(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4):
return -(1 - eta**2)*(1 - xi)*(yl - y4)/16 + (1 - xi**2)*(eta + 1)*x(-y3 + y4)/16

def funct_M1(xi,eta,xl1,x2,x3,x4,y1,y2,y3,y4):
return -(1 - eta)*(1 - xi**2)*(x1 - x2)/16 + (1 - eta**2)*x(1 - xi)*(-x1 + x4)/16

def funct_M2(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
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return (1 - eta)*(1 - xix*2)*(x1l - x2)/16 - (1 - eta**2)*x(x2 - x3)*(xi + 1)/16

def funct_M3(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4):
return (1 - etax*x2)*(x2 - x3)*(xi + 1)/16 - (1 - xi**2)*(eta + 1)*(x3 - x4)/16

def funct_M4(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
return-(1 - etax*x2)*(1 - xi)*(-x1 + x4)/16 + (1 - xi**x2)x*(eta + 1)*(x3 - x4)/16

def funct_Nix(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(eta/4 - 1/4)*(-xi*yl + xi*y2 - xi*y3 + xi*y4 + yl1 + y2 - y3 - y4)/(etaxxl*xy2 -
etaxxlxy3 - eta*x2*%yl + eta*x2%y4d + eta*x3*yl - etaxx3*y4d - etaxxdxy2 + etakxxdxy3 +
x1*xi*y3 - xlxxi*y4 - x1*y2 + xlxy4 - x2*xxix*y3 + x2xxi*y4 + x2xyl - x2xy3 - x3*xixyl +
x3*xxixy2 + x3*y2 - x3*%y4 + xd*xi*yl - x4*xi*y2 - x4*yl + x4xy3) + 2x(xi/4 - 1/4)*(etaxyl
- etaxy2 + eta*y3 - etaxy4 - yl + y2 + y3 - y4)/(eta*xl*y2 - eta*xl*y3 - eta*x2xyl +
eta*xx2*xy4 + eta*x3*yl - eta*x3*yd - etaxxd*y2 + etaxx4*y3 + xlxxi*y3 - xl*xi*yd - x1*y2 +
x1*xy4 - x2*xxixy3 + x2*xxix*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xxixy2 + x3xy2 - x3*xy4 +
x4xxixyl - x4*xxixy2 - xd*yl + x4%y3)

def funct_N2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*x(1/4 - eta/4)*(-xi*yl + xi*y2 - xi*y3 + xixy4 + yl + y2 - y3 - y4)/(eta*xxl*y2 -
etaxxl*y3 - eta*x2xyl + etaxx2*yd + eta*x3*xyl - etaxx3*y4d - eta*xdxy2 + etaxxd*y3 +
x1*xi*y3 - xlxxi*y4 - x1*y2 + x1xy4 - x2*xix*y3 + x2*xxi*y4 + x2*yl - x2*xy3 - x3*xixyl +
x3*xxixy2 + x3*y2 - x3*y4 + x4*xi*yl - x4*xi*y2 - x4*yl + x4xy3) + 2*x(-xi/4 - 1/4)*(etax*yl
- etaxy2 + etaxy3 - eta*xy4 - yl + y2 + y3 - y4)/(eta*xl*y2 - etaxxlxy3 - eta*xx2xyl +
eta*xx2*xyd4 + eta*x3*yl - eta*x3*y4d - etaxxd*y2 + etaxxd*y3 + xlxxi*y3 - xl*xi*yd - xl*xy2 +
x1*xy4 - x2*xixy3 + x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xxix*y2 + x3xy2 - x3*xy4 +
x4*xi*xyl - x4*xixy2 - x4*yl + x4*y3)

def funct_N3x(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(eta/4 + 1/4)*(-xi*yl + xi*y2 - xi*y3 + xixy4 + yl + y2 - y3 - y4)/(eta*xxl*y2 -
etax*xl*y3 - eta*x2xyl + etaxx2*y4d + eta*x3*xyl - etaxx3*y4 - eta*xdxy2 + etaxxd*y3 +
x1*xi*y3 - xl*xxi*xy4d - x1*y2 + xl*xyd - x2*xi*y3 + x2*xi*y4 + x2*yl - x2%y3 - x3*xixyl +
x3*xi*y2 + x3*%y2 - x3*y4 + xd*xi*yl - x4*xi*y2 - xd*xyl + x4*y3) + 2x(xi/4 + 1/4)*(etaxyl
- etaxy2 + etaxy3 - eta*y4 - yl + y2 + y3 - y4)/(eta*xl*y2 - etaxxlxy3 - eta*xx2xyl +
etaxx2*yd + eta*x3*xyl - etaxx3*yd - eta*xdxy2 + etaxxd*y3 + xl*xxi*y3 - xl*xi*yd - xlx*y2 +
x1*y4 - x2*xxi*xy3 + x2*xi*y4 + x2*xyl - x2%y3 - x3*xi*xyl + x3*xi*y2 + x3*%y2 - x3*y4d +
x4*xi*yl - x4*xixy2 - x4*yl + x4*xy3)

def funct_N4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*(1/4 - xi/4)*(eta*yl - eta*y2 + eta*y3 - eta*y4 - yl + y2 + y3 - y4)/(etaxxl*xy2 -
eta*xxl*xy3 - eta*x2*yl + eta*x2*y4 + eta*x3*yl - etaxx3*y4 - eta*xxdxy2 + eta*xxdxy3 +
x1*xxi*y3 - xlxxi*yd - x1*y2 + x1xy4 - x2*xxi*y3 + x2*xxi*y4d + x2%xyl - x2xy3 - x3*xixyl +
x3*xxi*xy2 + x3*y2 - x3*y4 + x4*xi*yl - x4*xi*y2 - x4*yl + x4xy3) + 2*x(-eta/4 -
1/4) *(-xi*yl + xi*y2 - xi*y3 + xi*y4 + yl + y2 - y3 - y4)/(etaxxlxy2 - etaxxlxy3 -
eta*x2*xyl + eta*x2*y4 + eta*x3*yl - etax*x3*y4 - etaxx4*y2 + eta*xxdxy3 + xlxxixy3 -
x1*xxi*xyd - x1xy2 + xlxyd - x2*xxixy3 + x2*xxi*xyd + x2xyl - x2*%xy3 - x3*xixyl + x3*xixy2 +
x3*xy2 - x3*y4 + x4*xi*yl - x4*xi*y2 - xd*yl + x4xy3)

def funct_N1ly(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(eta/4 - 1/4)*(x1*xi - x1 - x2*xi - x2 + x3%xi + x3 - x4*xi + x4)/(etaxxl*y2 -
eta*xxl*xy3 - eta*x2*yl + eta*x2*y4d + eta*x3*yl - etaxx3*y4 - eta*xxdxy2 + eta*xxdxy3 +
x1*xxi*y3 - xlxxi*yd - x1*xy2 + x1xy4 - x2*xxi*y3 + x2xxi*yd + x2xyl - x2xy3 - x3*xixyl +
x3*xi*y2 + x3*y2 - x3*xy4d + xd*xi*yl - x4*xi*y2 - xd*xyl + x4*y3) + 2x(xi/4 - 1/4)*(-eta*xl
+ eta*x2 - etaxx3 + eta*x4 + x1 - x2 - x3 + x4)/(eta*xl*xy2 - eta*xl*y3 - etaxx2x*yl +
eta*xx2*xy4 + eta*x3*yl - eta*x3*y4d - etaxxd*y2 + etaxx4*y3 + xlxxi*y3 - xl*xi*y4d - x1*y2 +
x1*xy4 - x2*xxixy3 + x2*xxi*yd + x2xyl - x2*xy3 - x3*xixyl + x3*xi*y2 + x3*xy2 - x3*xy4 +
x4xxixyl - x4*xxixy2 - x4*yl + x4%y3)

def funct_N2y(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):
return 2*(1/4 - eta/4)*(xl1*xi - x1 - x2%xi - x2 + x3%xi + x3 - x4*xi + x4)/(eta*xl*y2 -
eta*xxl*xy3 - eta*x2*yl + eta*x2*y4 + eta*x3*yl - etaxx3*y4 - eta*xdxy2 + eta*xxdxy3 +
x1*xxi*y3 - x1xxi*yd - x1*xy2 + x1xy4 - x2*xxixy3 + x2xxi*yd + x2xyl - x2xy3 - x3*xixyl +
x3*xxi*xy2 + x3*y2 - x3*y4 + x4*xi*yl - x4*xi*y2 - xd*yl + x4xy3) + 2*%(-xi/4 -
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1/4)*(-eta*xl + eta*x2 - eta*x3 + etaxx4 + x1 - x2 - x3 + x4)/(etaxxl*y2 - eta*xxl*y3 -
eta*x2*xyl + eta*x2*y4 + eta*x3*yl - etax*x3*y4 - etaxx4*y2 + eta*xxdxy3 + xlxxixy3 -
x1*xxi*xyd - x1xy2 + xlxy4d - x2*xxixy3 + x2*xxi*yd + x2xyl - x2*%xy3 - x3*xixyl + x3*xxixy2 +
x3*xy2 - x3*y4 + x4*xi*yl - x4*xi*y2 - xd*yl + x4xy3)

def funct_N3y(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(eta/4 + 1/4)*(x1*xi - x1 - x2*xi - x2 + x3%xi + x3 - x4*xi + x4)/(etaxxl*y2 -
eta*xxl*xy3 - eta*x2*yl + eta*x2*y4 + eta*x3*yl - etaxx3*y4 - eta*xdxy2 + eta*xxdxy3 +
x1*xxi*y3 - xlxxi*yd - x1*xy2 + x1xy4 - x2*xxix*y3 + x2xxi*yd + x2xyl - x2xy3 - x3*xixyl +
x3*xi*y2 + x3*%y2 - x3*xy4d + xd*xi*yl - x4*xi*y2 - xd*xyl + x4*y3) + 2x(xi/4 + 1/4)*(-eta*xl
+ eta*x2 - etaxx3 + eta*x4 + x1 - x2 - x3 + x4)/(eta*xl*xy2 - eta*xl*y3 - etaxx2x*yl +
eta*xx2*xy4 + eta*x3*yl - eta*x3*y4 - etaxxd*y2 + etaxx4*y3 + xlxxi*y3 - xl*xi*y4d - x1x*y2 +
x1*xy4 - x2*xxixy3 + x2*xxi*y4d + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 +
x4xxi*xyl - x4*xxixy2 - x4*yl + x4%y3)

def funct_N4y(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(1/4 - xi/4)*(-etaxxl + eta*x2 - eta*xx3 + eta*x4 + x1 - x2 - x3 + x4)/(eta*xlx*xy2 -
eta*xxl*xy3 - eta*x2*yl + eta*x2*y4 + eta*x3*yl - etaxx3*y4 - eta*xdxy2 + eta*xxdxy3 +
x1*xxi*y3 - xlxxi*yd - x1*xy2 + x1xy4 - x2*xxix*y3 + x2xxi*yd + x2xyl - x2xy3 - x3*xxixyl +
x3*xi*y2 + x3*%y2 - x3*xy4d + xd*xixyl - x4*xi*y2 - xd*yl + x4*y3) + 2*x(-eta/4 - 1/4)*(x1*xi
- x1 - x2%xi - x2 + x3*xi + x3 - x4*xi + x4)/(eta*xl*y2 - eta*xl*y3 - eta*x2xyl +
eta*xx2*xy4 + eta*x3*yl - eta*x3*y4 - etaxxd*y2 + etaxx4*y3 + xlxxi*y3 - xl*xi*y4d - x1*y2 +
x1*y4d - x2*xi*y3 + x2*xi*y4d + x2*yl - x2*xy3 - x3*xixyl + x3*xi*xy2 + x3%y2 - x3*y4d +
x4xxi*xyl - x4*xixy2 - x4*yl + x4%*y3)

def funct_Lix(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*(-etax(1 - xi)*(yl - y4)/8 + (1 - xi**2)*x(-y1 + y2)/16)*(eta*xyl - eta*y2 + eta*y3 -
eta*xy4d - yl + y2 + y3 - y4)/(eta*xl*y2 - eta*xlxy3 - etaxx2xyl + eta*x2*y4 + eta*x3*yl -
etaxx3*y4 - eta*xdxy2 + etaxx4d*y3 + xlxxi*y3 - xl*xxi*yd - x1*y2 + xlxyd - x2*xixy3 +
x2*xi*y4 + x2*xyl - x2%y3 - x3*xi*xyl + x3*xi*y2 + x3*xy2 - x3*y4 + x4*xxi*xyl - xd*xixy2 -
x4xyl + x4*y3) + 2*x(xi*(1 - eta)*(-yl1l + y2)/8 - (1 - eta**2)*(yl - y4)/16)*(-xi*xyl +
xixy2 - xi*xy3 + xi*y4 + yl + y2 - y3 - y4)/(etaxxl*xy2 - etaxxlxy3 - eta*xx2*yl + eta*x2x*y4
+ eta*x3*xyl - eta*x3*y4 - eta*xdxy2 + etax*x4*y3 + x1*xi*y3 - xl*xi*yd - x1*y2 + xl*xy4d -
x2%xi*y3 + x2*xi*xy4 + x2%yl - x2*%xy3 - x3*xi*yl + x3*xi*ky2 + x3*y2 - x3*xy4 + xd*xixyl -
x4*xi*y2 - x4*yl + x4*xy3)

def funct_L2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*(eta*(xi + 1)*(-y2 + y3)/8 - (1 - xi**2)*(-y1 + y2)/16)*(eta*yl - etaxy2 + etaxy3 -
eta*xyd - yl + y2 + y3 - y4)/(eta*xl*y2 - eta*xl*xy3 - etaxx2*yl + eta*x2*yd + eta*x3*yl -
eta*xx3*xy4d - eta*xxd*xy2 + eta*x4d*y3 + x1*xi*xy3 - xl*xixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl - xd*xxixy2 -
x4*yl + x4%y3) + 2x(-xi*(1 - eta)*(-yl + y2)/8 - (1 - etax*2)*(-y2 + y3)/16)*x(-xi*xyl +
xi*y2 - xi*y3 + xi*y4 + y1l + y2 - y3 - y4)/(eta*xl*xy2 - eta*xlxy3 - eta*x2*xyl + eta*x2x*y4d
+ eta*x3*yl - eta*x3*yd - eta*xxd*y2 + etaxx4*y3 + x1*xi*y3 - xl*xi*yd - x1*y2 + x1*yd -
x2*xxi*y3 + x2xxi*y4 + x2*yl - x2xy3 - x3*xix*yl + x3xxi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4*xi*xy2 - x4*yl + x4%xy3)

def funct_L3x(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2x(-eta*(xi + 1)*(-y2 + y3)/8 - (1 - xi**2)*(-y3 + y4)/16) *(eta*yl - eta*y2 + eta*y3 -
etaxyd - yl + y2 + y3 - y4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xy4 - eta*xd*y2 + eta*xd*y3 + xl*xi*xy3 - xl*xixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2%xy3 - x3*xixyl + x3*xi*y2 + x3*xy2 - x3*xy4 + x4xxixyl - x4*xxixy2 -
xd*xyl + x4xy3) + 2x(xi*(eta + 1)*(-y3 + y4)/8 + (1 - eta**2)*(-y2 + y3)/16)*(-xi*yl +
xi*y2 - xixy3 + xi*y4 + yl + y2 - y3 - y4)/(eta*xlxy2 - eta*xlxy3 - eta*x2*xyl + eta*xx2x*y4
+ eta*x3*yl - eta*x3*y4 - eta*xd*y2 + etaxx4*y3 + xl*xi*y3 - xl*xi*y4d - x1*y2 + xl*y4 -
X2*xxi*y3 + x2xxi*y4d + x2%yl - x2xy3 - x3*xix*yl + x3*xi*y2 + x3*y2 - x3*xy4 + xdxxixyl -
x4*xi*y2 - xd*yl + x4*xy3)

def funct_L4x(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):
return 2x(etax(1 - xi)*(yl - y4)/8 + (1 - xix*2)*x(-y3 + y4)/16)*(etaxyl - eta*xy2 + eta*xy3 -
eta*xyd - yl + y2 + y3 - y4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xy4d - eta*xxd*xy2 + eta*xd*y3 + xl*xi*xy3 - xlkxixyd - xl*xy2 + xl*xyd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl - xd*xxixy2 -
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x4xyl + x4xy3) + 2x(-xi*x(eta + 1)*(-y3 + y4)/8 + (1 - eta**2)*(yl - y4)/16)*(-xi*yl +
xi*y2 - xi*y3 + xi*y4 + yl + y2 - y3 - y4)/(eta*xl*xy2 - eta*xlxy3 - eta*x2*xyl + eta*x2x*y4d
+ eta*x3*yl - eta*x3*yd - eta*xxd*y2 + etaxx4*y3 + x1*xi*y3 - xl*xi*yd - x1*y2 + xl*xyd -
x2*xxi*y3 + x2xxi*y4 + x2*yl - x2xy3 - x3*xix*yl + x3xxi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4*xi*xy2 - x4*yl + x4*xy3)

def funct_Lly(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2x(-eta*(1 - xi)*(yl - y4)/8 + (1 - xi**2)*(-y1 + y2)/16)*(-eta*xl + eta*x2 - eta*x3 +
eta*x4d + x1 - x2 - x3 + x4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4 + eta*xx3*yl -
eta*xx3*xy4 - eta*x4*y2 + eta*x4d*y3 + xl*xi*xy3 - xl*xixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*%xy3 - x3*xixyl + x3*xi*y2 + x3*xy2 - x3*xy4 + x4xxixyl - x4*xxixy2 -
x4*xyl + x4%y3) + 2x(xi*(1 - eta)*(-y1 + y2)/8 - (1 - eta**2)*x(yl - y4)/16)*(xi*xxi - x1 -
x2*xxi - x2 + x3*%xi + x3 - x4x*xi + x4)/(etaxxl*xy2 - eta*xl*y3 - eta*x2*yl + eta*x2*xy4 +
eta*xx3*xyl - eta*x3*y4 - eta*xd*y2 + etaxx4*y3 + x1*xi*y3 - xl*xi*y4d - xl1*y2 + x1*y4 -
X2*xxi*y3 + x2xxi*y4 + x2%yl - x2xy3 - x3*xix*yl + x3*xi*y2 + x3*y2 - x3*xy4 + xdxxixyl -
x4*xi*y2 - xd*yl + x4*xy3)

def funct_L2y(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(eta*x(xi + 1)*(-y2 + y3)/8 - (1 - xi**2)*x(-y1 + y2)/16)*(-eta*xl + etaxx2 - eta*x3 +
eta*x4 + x1 - x2 - x3 + x4)/(eta*xl*y2 - eta*xlxy3 - etaxx2*yl + eta*x2*y4 + eta*x3*yl -
etaxx3*y4d - eta*xdxy2 + etaxxd*y3 + xlxxi*y3 - xl*xxi*yd - xl*xy2 + xlxyd - x2*xixy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3*xy2 - x3*xy4 + x4*xxixyl - xd*xxixy2 -
x4xyl + x4*xy3) + 2*x(-xi*(1 - eta)*x(-yl + y2)/8 - (1 - eta**2)*(-y2 + y3)/16)*(xl1*xi - x1
- x2*%xi - x2 + x3%xi + x3 - x4*xxi + x4)/(etaxxlxy2 - etaxxlxy3 - eta*x2*yl + eta*x2*y4d +
eta*xx3*xyl - eta*x3*y4 - eta*xd*y2 + etaxxd*y3 + xl*xi*y3 - xl*xi*yd - x1*y2 + x1*yd -
x2*xxi*y3 + x2*xxi*y4 + x2%yl - x2xy3 - x3*xix*yl + x3*xxi*y2 + x3%y2 - x3xy4 + xd*xxixyl -
x4*xi*y2 - x4*yl + x4*xy3)

def funct_L3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*(-etax*(xi + 1)*(-y2 + y3)/8 - (1 - xi**2)x(-y3 + y4)/16)*(-eta*xl + eta*x2 - eta*x3 +
eta*x4d + x1 - x2 - x3 + x4)/(eta*xl*y2 - eta*xl*xy3 - etaxx2*yl + eta*x2*y4d + eta*x3*yl -
eta*x3*y4 - etaxx4*y2 + etax*xxdxy3 + xl*xi*y3 - xlxxixyd - x1*y2 + xlxyd - x2%xi*y3 +
x2*xxi*y4 + x2xyl - x2xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl - xdxxixy2 -
x4*yl + x4xy3) + 2*(xi*(eta + 1)*x(-y3 + y4)/8 + (1 - eta**2)*x(-y2 + y3)/16) *(x1xxi - x1 -
x2*%xi - x2 + x3*xi + x3 - x4xxi + x4)/(eta*xlxy2 - eta*xl*xy3 - eta*x2*yl + etaxx2*y4 +
eta*x3*yl - eta*xx3*y4 - etax*xxdxy2 + eta*x4*y3 + xl*xxi*xy3 - xl*xixyd - xl*xy2 + xl*xyd -
x2*xxi*y3 + x2xxi*y4 + x2%yl - x2xy3 - x3*xixyl + x3xxi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4*xixy2 - x4*yl + x4%xy3)

def funct_L4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2x(etax(1 - xi)*(yl - y4)/8 + (1 - xi**2)*(-y3 + y4)/16)*(-eta*xl + eta*x2 - etaxx3 +
eta*x4d + x1 - x2 - x3 + x4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4 + eta*xx3*yl -
eta*x3*y4 - eta*x4*y2 + etax*xdxy3 + xl*xxi*y3 - xl*xi*yd - x1*y2 + xl*yd - x2*xi*y3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xi*y2 + x3*xy2 - x3*xy4 + x4xxixyl - x4*xxixy2 -
x4*yl + x4xy3) + 2x(-xi*(eta + 1)*(-y3 + y4)/8 + (1 - etax*2)*(yl - y4)/16) *(x1*xi - x1 -
x2*%xi - x2 + x3*xi + x3 - x4xxi + x4)/(eta*xlxy2 - eta*xl*xy3 - eta*x2*yl + etaxx2x*y4 +
eta*xx3*xyl - eta*x3*y4 - eta*xd*y2 + etaxxd*y3 + xl*xi*y3 - xl*xi*y4d - xl1*y2 + xl*y4 -
X2*xi*y3 + x2*xi*y4d + x2%yl - x2xy3 - x3*xi*yl + x3*xi*y2 + x3*y2 - x3*xy4 + xdxxixyl -
x4*xi*xy2 - xd*yl + x4*xy3)

def funct_Milx(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2x(-eta*(1l - xi)*(-x1 + x4)/8 + (1 - xi**2)*(x1 - x2)/16) x(eta*yl - eta*y2 + etaxy3 -
eta*xyd - yl + y2 + y3 - y4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xyd - eta*xxd*xy2 + eta*xd*y3 + xl*xxi*xy3 - xlkxixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl - xd*xxixy2 -
xd*yl + x4%y3) + 2*(xi*(1 - eta)*(xl - x2)/8 - (1 - etax*2)*(-x1 + x4)/16)*(-xi*yl +
xi*y2 - xi*y3 + xi*y4 + yl + y2 - y3 - y4)/(eta*xl*xy2 - eta*xlxy3 - eta*x2*yl + eta*x2x*y4
+ eta*x3*%yl - eta*x3*yd - eta*xxd*y2 + etaxx4*y3 + x1*xxi*y3 - xl*xi*yd - x1*y2 + x1*yd -
x2*xxi*y3 + x2xxi*y4 + x2*yl - x2xy3 - x3*xixyl + x3*xi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4*xxixy2 - x4*xyl + x4*y3)

def funct_M2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
return 2*(eta*(x2 - x3)*(xi + 1)/8 - (1 - xi**2)*(x1 - x2)/16)*(etaxyl - eta*y2 + etaxy3 -
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etaxyd - yl + y2 + y3 - y4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xy4 - eta*xd*y2 + eta*xd*y3 + xl*xi*xy3 - xl*xixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xi*y2 + x3*xy2 - x3*xy4 + xdxxixyl - x4*xxixy2 -
x4d*yl + x4%y3) + 2x(-xi*(1 - eta)*(x1l - x2)/8 - (1 - eta**2)*(x2 - x3)/16)*(-xi*yl +
xi*y2 - xixy3 + xi*y4 + yl + y2 - y3 - y4)/(eta*xl*xy2 - eta*xlxy3 - eta*x2*xyl + eta*xx2x*y4
+ eta*x3*yl - eta*x3*y4d - eta*xd*y2 + etaxx4*y3 + xl*xi*y3 - xl*xi*y4d - x1*y2 + xl*y4 -
xX2*xxi*y3 + x2xxi*y4d + x2%yl - x2xy3 - x3*xix*yl + x3*xi*y2 + x3*y2 - x3*xy4 + xdxxixyl -
x4*xi*y2 - xd*yl + x4*xy3)

def funct_M3x(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2x(-eta*(x2 - x3)*(xi + 1)/8 - (1 - xi**2)*(x3 - x4)/16)*(etaxyl - eta*xy2 + eta*xy3 -
eta*xyd - yl + y2 + y3 - y4)/(etaxxl*y2 - eta*xl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xy4d - eta*xxd*xy2 + eta*xd*y3 + xl*xxi*xy3 - xlkxixyd - xl*xy2 + xl*xyd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl - xd*xxixy2 -
x4xyl + x4*xy3) + 2*x(xix(eta + 1)*(x3 - x4)/8 + (1 - etax*x2)*(x2 - x3)/16)*x(-xi*yl + xi*y2
- xi*y3 + xi*y4 + yl + y2 - y3 - y4)/(eta*xl*xy2 - etaxxlxy3 - etaxx2*yl + eta*x2x*xy4d +
eta*xx3*xyl - eta*x3*yd - eta*xd*y2 + etaxx4*y3 + x1*xi*y3 - xl*xi*yd - x1*y2 + x1*yd -
x2*xxi*y3 + x2xxi*y4 + x2%yl - x2xy3 - x3*xix*yl + x3*xi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4*xi*y2 - x4*yl + x4*xy3)

def funct_M4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*(eta*(1 - xi)*(-x1 + x4)/8 + (1 - xi**2)*(x3 - x4)/16)*(etaxyl - eta*y2 + etaxy3 -
eta*xyd - yl + y2 + y3 - y4)/(eta*xl*y2 - eta*xl*xy3 - etaxx2*xyl + eta*x2*y4d + eta*x3*yl -
eta*xx3*xy4 - eta*x4d*xy2 + eta*xd*y3 + xl*xi*xy3 - xl*xixyd - x1*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2xy3 - x3*xxixyl + x3*xixy2 + x3xy2 - x3*xy4 + xd*xxixyl - xdxxixy2 -
x4*yl + x4xy3) + 2x(-xi*(eta + 1)*(x3 - x4)/8 + (1 - eta**2)*x(-x1 + x4)/16)*(-xix*yl +
xi*y2 - xixy3 + xi*y4 + yl + y2 - y3 - y4)/(eta*xl*xy2 - eta*xlxy3 - eta*x2*xyl + eta*x2x*y4
+ eta*xx3*yl - eta*x3*xy4d - eta*xd*y2 + etaxx4*y3 + xl*xixy3 - xl*xi*y4d - xl1xy2 + xl*y4 -
X2*xxi*y3 + x2xxi*y4 + x2%yl - x2xy3 - x3*xix*yl + x3*xi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4xxi*xy2 - x4*xyl + x4*y3)

def funct_Mly(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2*(-etax(1 - xi)*(-x1 + x4)/8 + (1 - xi**2)*(x1 - x2)/16)*(-eta*xl + etaxx2 - eta*x3 +
eta*x4 + x1 - x2 - x3 + x4)/(eta*xl*y2 - eta*xlxy3 - etaxx2xyl + eta*x2*y4 + eta*x3*yl -
eta*x3*y4 - eta*x4*y2 + eta*xdxy3 + xl*xi*y3 - xl*xi*yd - x1*y2 + xl*yd - x2*xix*y3 +
x2*%xi*y4 + x2*xyl - x2%y3 - x3*xi*xyl + x3*xi*y2 + x3*%xy2 - x3*y4 + x4*xxi*xyl - xd*xixy2 -
x4xyl + x4*xy3) + 2*x(xi*(1 - eta)*(x1l - x2)/8 - (1 - etax*2)*(-x1 + x4)/16)*(x1*xi - x1 -
x2*%xi - x2 + x3*xi + x3 - x4x*xi + x4)/(eta*xlxy2 - eta*xl*xy3 - eta*x2*yl + etaxx2x*y4 +
etaxx3*yl - eta*x3*xy4 - etaxxd*y2 + eta*xdxy3 + x1*xixy3 - xl*xixyd - xl*xy2 + xlx*y4 -
X2*xxi*y3 + x2*xi*y4 + x2%yl - x2xy3 - x3*xi*yl + x3*xi*y2 + x3*y2 - x3*xy4 + xd*xxixyl -
x4*xi*y2 - x4*yl + x4*xy3)

def funct_M2y(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4):

return 2*(eta*(x2 - x3)*(xi + 1)/8 - (1 - xi**2)*(x1 - x2)/16)*(-etaxxl + eta*x2 - eta*x3 +
eta*x4d + x1 - x2 - x3 + x4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xy4d - eta*xxd*xy2 + eta*xd*y3 + x1*xi*xy3 - xl*kxixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl - xd*xxixy2 -
x4*yl + x4%y3) + 2x(-xi*(1 - eta)*(xl - x2)/8 - (1 - etax*2)*(x2 - x3)/16) *(x1*xi - x1 -
x2*%xi - x2 + x3*xi + x3 - x4xxi + x4)/(eta*xlxy2 - eta*xl*y3 - eta*x2*yl + eta*x2*y4 +
eta*xx3*xyl - eta*x3*%yd - eta*xd*y2 + etaxx4*y3 + x1*xi*y3 - xl*xi*yd - x1*y2 + x1*xyd -
x2*xxi*y3 + x2xxi*y4 + x2*yl - x2xy3 - x3*xxix*yl + x3xxi*y2 + x3*y2 - x3xy4 + xdxxixyl -
x4*xi*xy2 - x4*yl + x4*xy3)

def funct_M3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

return 2x(-eta*(x2 - x3)*(xi + 1)/8 - (1 - xi**2)*(x3 - x4)/16)*(-eta*xl + eta*x2 - eta*x3 +
eta*x4 + x1 - x2 - x3 + x4)/(etaxxl*y2 - etaxxl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -
eta*xx3*xy4 - eta*x4*y2 + eta*xd*y3 + xl*xi*xy3 - xl*xixyd - xl*xy2 + xl*yd - x2*xi*xy3 +
x2*xxi*y4 + x2xyl - x2*%xy3 - x3*xixyl + x3*xi*y2 + x3*xy2 - x3*xy4 + x4xxixyl - x4*xxixy2 -
x4d*yl + x4xy3) + 2*(xi*(eta + 1)*(x3 - x4)/8 + (1 - eta**2)*(x2 - x3)/16) *(x1*xi - x1 -
x2*xxi - x2 + x3*%xi + x3 - x4*xi + x4)/(etaxxl*xy2 - eta*xl*y3 - eta*x2*yl + eta*x2*xy4d +
eta*xx3*xyl - eta*x3*%y4 - eta*xd*y2 + etaxx4*y3 + xl*xi*y3 - xl*xi*y4d - xl1*y2 + xl*y4 -
X2*xxi*y3 + x2xxi*y4 + x2%yl - x2xy3 - x3*xixyl + x3*xi*y2 + x3*y2 - x3*xy4 + xdxxixyl -
x4*xi*y2 - xd*yl + x4*xy3)
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def funct_M4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
return 2*(eta*(1 - xi)*(-x1 + x4)/8 + (1 - x4)/16) *(-eta*xl + eta*xx2 -
eta*x4d + x1 - x2 - x3 + x4)/(eta*xl*y2 - eta*xl*y3 - etaxx2*yl + etaxx2*y4d + eta*xx3*yl -

xi**2) *(x3 - eta*x3 +
eta*xx3*xyd
x2*xxi*y4 + x2xyl - x2*xy3 - x3*xixyl + x3*xix*y2 + x3xy2 - x3*xy4 + xd*xxixyl
x4*yl + x4%y3) + 2x(-xix(eta + 1)*(x3 - x4)/8 + (1 - eta**2)*(-x1 + x4)/16) *(x1*xi - x1 -
x2*%xi - x2 + x3*xi + x3 - x4xxi + x4)/(eta*xlxy2 - eta*xl*xy3 - eta*x2*yl + etaxx2*y4 +

- etaxx4xy2 + etaxx4dxy3 + xlxxixy3 - xlxxi*xyd - x1xy2 + xlxyd - x2*xxixy3 +

- x4*xi*y2 -

eta*xx3x*xyl
x2*xxi*y3 + x2xxix*y4 + x2xyl

- etaxx3*xy4 - etaxx4dxy2 + eta*x4d*y3 + xl*xxixy3 - xl*xxixyd - xl*xy2 + xl*xyd -
- x2%y3 - x3*xi*yl + x3*xi*y2 + x3*y2 - x3*y4 + x4*xi*yl -

x4*xxixy2 - x4*xyl + x4*y3)

def B_matrices(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4):

detJ = funct_detJ(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

N1 = funct_N1(xi,eta)

N2 = funct_N2(xi,eta)

N3 = funct_N3(xi,eta)

N4 = funct_N4(xi,eta)

# ________________________________________________________
Nix = funct_Nix(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N2x = funct_N2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N3x = funct_N3x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N4x = funct_N4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

Niy = funct_Nly(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N2y = funct_N2y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N3y = funct_N3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N4y = funct_N4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

# ________________________________________________________
Lix = funct_Lix(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L2x = funct_L2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L3x = funct_L3x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L4x = funct_L4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

Lly = funct_Lly(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L2y = funct_L2y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L3y = funct_L3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L4y = funct_L4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

# ________________________________________________________
Mix = funct_Mlx(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)

M2x = funct_M2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

M3x = funct_M3x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

M4x = funct_M4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

Miy = funct_Mly(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

M2y = funct_M2y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

M3y = funct_M3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

M4y = funct_M4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

# ________________________________________________________

#Bm assembly

Bmexx = np.array([[N1x, O, O, O, O, Lix, N2x, O, O, O, O, L2x, N3x, O, O, O, O, L3x, N4x, O,
0, 0, 0, L4x]1])

Bmeyy = np.array([[0O, N1y, O, O, O, Mily, O, N2y, O, O, O, M2y, O, N3y, O, O, O, M3y, O, N4y,
0, 0, 0, M4ayll) #TODO: comapring with kefal aper swithced from Miz

Bmgxy = np.array([[N1ly, Nix, 0, O, O, Liy+Mix, N2y, N2x, O, O, O, L2y+M2x, N3y, N3x, 0, O, O,
L3y+M3x, N4y, N4x, 0, 0, 0, Ldy+Mdx]])

Bm = np.vstack ((Bmexx,Bmeyy,Bmgxy))

#Bb assembly
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def

Bbexx = np.array([[O, O, O, O, N1x, O, O, O, O, O, N2x, O, O, O, O, O, N3x, O, O, O, O, O,
N4x, 011)

Bbeyy = np.array([[O, O, O, -N1y, O, O, O, O, O,-N2y, O, O, O, O, O, -N3y, O, O, O, O, O,
-N4y, 0, 011)

Bbgxy = np.array([[O, O, O, -Nix, N1y, O, O, O, O,-N2x, N2y, O, O, O, O, -N3x, N3y, O, 0, O,
0, -N4x, N4y, 011)

#Bs assembly
Bsgxz = np.array([[0, O, Nix, -Lix, -Mix+N1, 0, O, O, N2x, -L2x, -M2x+N2, 0, O, O, N3x, -L3x,
-M3x+N3, 0, O, O, N4x, -L4x, -M4x+N4, 0]])

#gz2z
Bsgyz = np.array([[0O, O, N1y, -Liy-N1, -Miy, O, O, O, N2y, -L2y-N2, -M2y, O, O, O, N3y,
-L3y-N3, -M3y, 0, O, O, N4y, -L4y-N4, -M4y, 011)

Bs = np.vstack((Bsgxz, Bsgyz))

return detJ, Bm, Bb, Bs

PAOLO_matrices_SEA(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):

o

Function for generating the matrices required for the SEA implementation of th einverse
element IQS4.

Args:
zi (_type_): _description_
eta (_type_): _description_
z1 (_type_): _description_
z2 (_type_): _description_
z3 (_type_): _description_
z4 (_type_): _description_
yl (_type_): _description_
y2 (_type_): _description_
y3 (_type_): _description_
y4 (_type_): _description_

Returns:
_float_: detJ determinannt of the Jacobian
_array_: N_tilde, Kalfa, Kbeta Arrays of sizes (12,12). 4 nodes and 3 DOF’s of the inverse
element .

wun

detJ = funct_detJ(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

N1 = funct_N1(xi,eta)
N2 = funct_N2(xi,eta)
N3 = funct_N3(xi,eta)
N4 = funct_N4(xi,eta)

L1 = funct_L1(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
L2 = funct_L2(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
L3 = funct_L3(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
L4 = funct_L4(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

M1 = funct_M1(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
M2 = funct_M2(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
M3 = funct_M3(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
M4 = funct_M4(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
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N2x
N3x
N4x

Liy
L2y

Miy
M2y
M3y
M4y

funct_N2x(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_N3x(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_N4x (xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

funct_N1y(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_N2y (xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_N3y(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_N4y (xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

funct_Lix(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_L2x(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_L3x(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_L4x(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

funct_L1y(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_L2y (xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_L3y(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_L4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

funct_Mix(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
funct_M2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
funct_M3x(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
funct_M4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

funct_Miy(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
funct_M2y (xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
funct_M3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
funct_M4y (xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

#N tilde assembly

np.array ([[N1, N2, N3, N411)
np.array ([[L1, L2, L3, L41])
np.array ([[M1, M2, M3, M411)

N =

#Kalfa components

Nx
Lx
Mx

Ny
Ly
My

np.array ([[Nix, N2x, N3x, N4x]])
np.array ([[Lix, L2x, L3x, L4x]])
np.array ([[Mix, M2x, M3x, M4x]])

np.array ([[N1y, N2y, N3y, N4yll)
np.array ([[L1y, L2y, L3y, L4yll)
np.array ([[Mly, M2y, M3y, M4yll)

#TODO: this is in Paolo’s coordinate system ffs
Kalfa_B1 = np.hstack((Nx,-Lx,-Mx+N))
Kalfa_B2 = np.hstack ((Ny,-Ly-N,-My))

Kalfa = np

#Kbeta components
Ny = np.array([[Ni1y, N2y, N3y, N4yll)

Kbeta = np.zeros ((12,12))

Kbeta[4:8,4:8]
Kbeta[4:8,8:]
Kbeta [8:,4:8]
Kbeta[8:,8:] =

= 3/2xnp.outer (np.transpose (Ny) ,Ny)
1/2%np.outer (np.transpose (Ny) ,Nx)
1/2*np.outer (np.transpose (Ny) ,Nx)

3/2*np.outer (np.transpose (Nx) ,Nx)

.matmul (np.transpose (Kalfa_B1),Kalfa_B1l) + np.matmul (np.transpose(Kalfa_B2),Kalfa_B2)
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def

return detJ, N_tilde, Kalfa, Kbeta

matrices_SEA(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4):
Function for generating the matrices required for the SEA
element IQS4.

Args:
zi (_type_): _description_
eta (_type_):
z1 (_type_): _description_

_description_
z2 (_type_): _description_
z3 (_type_): _description_
z4 (_type_):
y1 (_type_): _description_
y2 (_type_):
y3 (_type_):

_description_

_description_

_description_

y4 (_type_): _description_
Returns:
_float_: detJ determinannt of the Jacobian

_array_: N_tilde (12z1),
nodes and 3DOF

Kalfa (12x12), Kbeta (12z212),

wun

detJ = funct_detJ(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

N1 = funct_N1(xi,eta)

N2 = funct_N2(xi,eta)

N3 = funct_N3(xi,eta)

N4 = funct_N4(xi,eta)

H
L1 = funct_L1(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L2 = funct_L2(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L3 = funct_L3(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L4 = funct_L4(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

# ________________________________________________________
M1 = funct_M1(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

M2 = funct_M2(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

M3 = funct_M3(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

M4 = funct_M4(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

H o e ___
Nix = funct_Nix(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N2x = funct_N2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N3x = funct_N3x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N4x = funct_N4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

Niy = funct_Nily(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N2y = funct_N2y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N3y = funct_N3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

N4y = funct_N4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

# ________________________________________________________
Lix = funct_Lix(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L2x = funct_L2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L3x = funct_L3x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L4x = funct_L4x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

Lly = funct_Lily(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L2y = funct_L2y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L3y = funct_L3y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

L4y = funct_L4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
B
Mix = funct_Milx(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)

implementation of th einverse

Kalfa_B1 (12z1) ,

Kalfa_B2(12z1) for 4
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M2x = funct_M2x(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
M3x = funct_M3x(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)
M4x = funct_M4x(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)

Miy = funct_Mly(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)
M2y = funct_M2y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)
M3y = funct_M3y(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)
M4y = funct_M4y(xi,eta,x1,x2,x3,x4,y1,y2,y3,y4)

#N tilde assembly

N_tildel = np.array([[N1, -L1, -M1]])
N_tilde2 = np.array([[N2, -L2, -M211)
N_tilde3 = np.array([[N3, -L3, -M3]])
N_tilde4 .array ([[N4, -L4, -M41])

1
B
L]

#Kalfa components

Kalfa_B1_1 = np.array([[Nix, -Lix, -Mix+N1]])
Kalfa_B1_2 = np.array([[N2x, -L2x, -M2x+N2]])
Kalfa_B1_3 = np.array ([[N3x, -L3x, -M3x+N3]])
Kalfa_B1_4 = np.array ([[N4x, -L4x, -M4x+N4]])
Kalfa_B1 = np.hstack((Kalfa_B1_1,Kalfa_B1_2,Kalfa_B1_3,Kalfa_B1_4))

Kalfa_B2_1 = np.array([[Nly, -Liy-N1, -Miy]l])
Kalfa_B2_2 = np.array ([[N2y, -L2y-N2, -M2yl]l)
Kalfa_B2_3 = np.array([[N3y, -L3y-N3, -M3yll)
Kalfa_B2_4 = np.array ([[N4y, -L4y-N4, -M4yll)
Kalfa_B2 = np.hstack((Kalfa_B2_1,Kalfa_B2_2,Kalfa_B2_3,Kalfa_B2_4))

Kalfa = np.matmul (np.transpose(Kalfa_B1),Kalfa_B1l) + np.matmul (np.transpose(Kalfa_B2),Kalfa_B2)

#Kbeta components
Nx = np.array([[Nix, N2x, N3x, N4x]1)
Ny = np.array([[Ni1y, N2y, N3y, N4yll)

Kbeta = np.zeros((8,8))

Kbeta[0:4,0:4] = 3/2*np.outer(np.transpose (Ny),Ny)
Kbeta[0:4,4:] = 1/2*np.outer(np.transpose(Ny),Nx)
Kbeta[4:,0:4] = 1/2*np.outer (np.transpose (Ny) ,bNx)
Kbeta[4:,4:] = 3/2*np.outer(np.transpose (Nx),Nx)

Kbetal = np.zeros((8,8))
ind_dict = {"0":0,"1":4,"2":1,"3":5,"4":2,"5":6,"6":3,"7":7}
for row in range(0,8): #T0DO:Very wugly way of doing it.try to fiz it
for col in range(0,8):
0ld_row=ind_dict [str(row)]
0ld_col=ind_dict[str(col)]
Kbetal [row,col] = Kbetal[old_row,o0ld_col]

Kbeta = Kbetal

DOF=3 #before adding artifical drilling

for i in range(0,4):
Kbeta = np.insert (Kbeta,i*DOF,0,axis=0)
Kbeta = np.insert(Kbeta,i*DOF,0,axis=1)

return detJ, N_tilde, Kalfa, Kbeta, Kalfa_B1l, Kalfa_B2

def NLM_matrices(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4):
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N1 = funct_N1(xi,eta)
N2 = funct_N2(xi,eta)
N3 = funct_N3(xi,eta)
N4 = funct_N4(xi,eta)

L1 = funct_L1(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
L2 = funct_L2(xi,eta,x1,x2,x3,x4,yl1,y2,y3,y4)
L3 = funct_L3(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
L4 = funct_L4(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

M1 = funct_M1(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
M2 = funct_M2(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
M3 = funct_M3(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)
M4 = funct_M4(xi,eta,x1,x2,x3,x4,yl,y2,y3,y4)

N = np.array([[N1, N2, N3, N41])
L = np.array([[L1, L2, L3, L411)
M = np.array([[M1, M2, M3, M4]1])

return N, L, M

Listing C.5: igsd_equations.py

#cython: boundscheck=False
#cython: wraparound=False
#cython: cdivision=True
#cython: nonecheck=False
#cython: overflowcheck=False
#cython: embedsignature=True
#cython: infer_types=False

rhnn

currentmodule:: pyife3d.iqs4

from libc.math cimport fabs

import numpy as np

from .shellprop cimport ShellProp

cdef int DOF = 6
cdef int NUM_NODES = 4

cdef class IQS4Probe:
pnn

Probe used for local coordinates, local displacements, local stresses etc

Attributes

xe, : array-like
Array of size ‘‘NUM_NODES%*3=12°¢°‘ containing the nodal coordinates
global coordinate system, in the following order ‘{x_e}_1,
{y_eX_1, {z_e}_1, ‘{x_e}_2, {y_e}_2, {z_e}_2°¢, ‘{x_e}_3, {y_el}_3,
{z_e}_ 3¢, ‘{x_e}_4, {y_e}_4, {z_e}_4°.

ue, : array-like
Array of size ‘‘NUM_NODES*DOF ‘¢ containing the element displacements

in the following order ‘{s}_1, {s_x}_1, {s_y}_1, {s_z}_1,
{s}_2, {s_x}_2, {s_y}_2, {s_z}_2,
{s}_3, {s_x}_3, {s_y}_ 3, {s_z}_3,
{s}_4, {s_x}_4, {s_y}_4, {s_z}_4°.
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epsilon, array-like
Array of the size 8 containing the element strains.
The strains are defined based on the developer file of quad4r and are defined in the
following order
‘e_{xx} e_{yy} g_{xy} k_{xx} k_{yy} k_{zz} g_{yz} g_{xz}°
epsilontopSEA/epsilonbotSEA,
Array of the size 3 containing the element strains for the top and botoom surfaces

array-like

respectively.
The strains are defined based on the developer file of quad4r and are defined in the
following order
‘e_{xx} e_{yy} g_{xyl}¢
centroid, array-like
Array contains the coordinates of the midpoint of the element in the following order
‘x_{c} y_{c} z_{c}°*
array-like
¢ “NUM_NODES*3=12° ¢

x_nat,

Array of size containing the nodal coordinates

natural coordinate system, in the following order ‘{x_el}_1,
{y_e}_1, {z_e}_1, ‘{x_e}_2, {y_e}_2, {z_e}_2°, ‘{x_e}_3, {y_el}_3,
{z_e}_ 3¢, ‘{x_e}_4, {y_e}_4, {z_e}_4°.

W

cdef public xe

cdef public ue

cdef public epsilon

cdef public epsilontop, epsilontopSEA

cdef public epsilonbot, epsilonbotSEA

cdef public centroid

cdef public stresses

cdef public x_nat

def __cinit__(IQS4Probe self):
self.xe = np.zeros ((NUM_NODES#*3,1), dtype=np.float64)
self.ue = np.zeros ((NUM_NODES*DOF,1), dtype=np.float64)

self.epsilon = np.zeros((8,1), dtype=np.float64)
self.epsilontop = np.zeros((3,1), dtype=np.float64)
self .epsilontopSEA = np.zeros((3,1), dtype=np.float64)
self.epsilonbot = np.zeros((3,1), dtype=np.float64)
self.epsilonbotSEA = np.zeros((3,1), dtype=np.float64)
self.centroid = np.zeros((3,1), dtype=np.float64)
self.stresses = np.zeros((3,1), dtype=np.float64)

self.x_nat = np.zeros ((NUM_NODES#*3,1), dtype=np.float64)

cdef class IQS4:
o

Nodal connectivity for the plate element similar to Nastran’s IQS4::

The element coordinate system is determined identically what is explained
in Nastran’s quick reference guide for the CQUAD4 element, as illustrated
below.

image:: ../figures/nastran_cquad4.svg

Attributes
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eid, : int
Element identification number.

area, : double
Element area.

alphat, : double
Element drilling penalty factor for the plate drilling stiffness,
defined according to Eq. 2.20 in the reference below. The default value
of ‘‘alphat = 1.¢¢ comes from the same reference::

Adam, A.E. Mohamed, A.E. Hassaballa, Degenerated Four Nodes Shell
Element with Drilling Degree of Freedom, IOSR J. Eng. 3 (2013)
10-20. www.iosrjen.org (accessed April 20, 2020).

For those familiar with NASTRAN, ¢‘alphat ‘‘ can be calculated based on
NASTRAN’s ¢ ‘K6ROT ‘¢ parameters as ‘‘alphat = 1.e-6*xK6ROT‘‘. The default
value according to AUTODESK NASTRAN’s quick reference guide is ¢‘K6ROT
= 100.‘‘ for static analysis and ‘‘K6R0T=1.e4‘‘ for modal solutions.
MSC NASTRAN’s quick reference guide states that ‘‘K6ROT > 100.°¢‘ should
not be used, but this is controversion, already being controversial to
what AUTODESK NASTRAN’s manual says.

ri1, r12, r13, r21, r22, r23, r31, r32, r33 : double
Rotation matrix to the global coordinate system.

mll, m12, m21, m22 : double
Rotation matrix only for the constitutive relations. Used when a
material direction is used instead of the element local coordinates.

cl, c2, c3, c4 : int
Position of each node in the global stiffness matrix.

nl, n2, n3, n4 : int
Node identification number.

init_k_KCO, init_k_KG, init_k_M : int
Position in the arrays storing the sparse data for the structural
matrices.

probe, : :class:‘.Quad4RProbe‘ object
Pointer to the probe.

cdef public int eid

cdef public int nl, n2, n3, n4

cdef public int cl, c2, c3, c4

cdef public int init_k_KCO, init_k_KG, init_k_M

cdef public double area

cdef public double riil, ri12, r13, r21, r22, r23, r31, r32, r33
cdef public double mil, mi2, m21, m22

cdef public IQS4Probe probe

cdef public Tet, Te

cdef public ke, fe

def __cinit__(IQS4 self, IQS4Probe p):
self .probe = p

self.eid = -1

self .n1 = -1

self .n2 = -1

self .n3 = -1

self .n4 = -1

self.cl = -1

self.c2 = -1

self.c3 = -1

self.c4 = -1

self.area = 0

self.r1l = self.r12 = self.r13 = 0.
self . r21 = self.r22 = self.r23 = 0.
self . r31 = self.r32 = self.r33 = 0.
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self .ml1 =
self .mi12 =
self .m21 =
self .m22 =
self.Tet = np.zeros((3,3))

self .Te = np.zeros((3,3))

self .ke = np.zeros ((DOF*NUM_NODES ,DOF*NUM_NODES))
self .fe = np.zeros ((DOF*NUM_NODES ,1))

= O O ¥

cpdef void update_probe_ue(IQS4 self, double [::1] u):
r"""Update the local displacement vector of the probe of the element

note:: The ¢‘probe‘‘ attribute object :class:‘.Quad4RProbe ¢ is
updated, not the element object.

Parameters

u : array-like
Array with global displacements, for a total of ‘M‘ nodes in
the model, this array will be arranged as: ‘u_1l, v_1, w_1, {r_x}_1,
{r_y¥_1, {r_z}_1, w2, v_2, w_2, {r_x}_2, {r_y}_2, {r_z}_2, ...,

u_M, v_.M, w.M, {r_x}_M, {r_y}_M, {r_z}_ M°.

cdef int i, j
cdef int c[4]
cdef double s1[3]
cdef double s2[3]
cdef double s3[3]

# positions in the global stiffness matriz
c[0] = self.ct
c[1] = self.c2
c[2] = self.c3
c[3] = self.c4

# global to local transformation of displacements
s1[0] = self.riil
s1[1] = self.r21
s1[2] = self.r31
s2[0] = self.ri12
s2[1] = self.r22
s2[2] = self.r32
s3[0] = self.r13
s3[1] = self.r23
s3[2] = self.r33

for j in range (NUM_NODES):
for i in range (DOF):
self .probe.ue[j*DOF + i] = 0

for j in range (NUM_NODES):
for i in range (DOF//2):

# transforming translations

self .probe.ue[j*DOF + 0] += si[il*ulc[j]l] + 0 + il
self .probe.ue[j*DOF + 1] += s2[il*ulc[j]l + 0 + i]
self .probe.ue[j*DOF + 2] += s3[il*ulc[j]l + 0 + il
# transforming rotations

self.probe.ue[j*DOF + 3] += si[il*ulc[j]l + 3 + i]
self .probe.ue[j*DOF + 4] += s2[ilxulc[j] + 3 + i]
self .probe.ue[j*DOF + 5] += s3[il*ulc[j]l + 3 + i]
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cpdef void update_probe_xe(IQS4 self, double [::1] x):
r"""Update the 3D coordinates of the probe of the element
note:: The ‘‘probe‘‘ attribute object :class:‘.Quad4RProbe ¢ is
updated, not the element object.

Parameters

x : array-like
Array with global nodal coordinates, for a total of ‘M‘ nodes in
the model, this array will be arranged as: ‘x_1, y_1, z_1, x_2,

y_2, z_2, ..., x_M, y_M, z_M‘.

cdef int i, j
cdef int c[4]
cdef double s1[3]
cdef double s2[3]
cdef double s3[3]

# positions in the global stiffness matriz
c[0] = self.cl
c[1] = self.c2
c[2] = self.c3
c[3] self.c4

# global to local transformation of displacements
s1[0] = self.ri1
s1[1] = self.r21
s1[2] = self.r31
s2[0] = self.ri2
s2[1] = self.r22
s2[2] = self.r32
s3[0] = self.r13
s3[1] = self.r23
s3[2] = self.r33

for j in range (NUM_NODES):
for i in range(DOF//2):
self .probe.xe[j*D0OF//2 + il = O

for j in range (NUM_NODES):
for i in range(DOF//2):
self .probe.xe[j*DOF//2 + 0] += si[ilx*x[c[jl//2 + il
self .probe.xe[j*DOF//2 + 1] += s2[ilx*x[c[jl//2 + il
self.probe.xe[j*DOF//2 + 2] += s3[ilx*x[c[jl//2 + il

self .update_area ()
self.update_centroid ()
self.update_T_matrix ()
self.update_nat_coord()

cpdef void update_area(IQS4 self):
rrun

Update element area

cdef double x1, x2, x3, x4, yl, y2, y3, y4
# NOTE ignoring z in local coordinates

x1 = self.probe.xe[0]

yl = self.probe.xe[1]

# z1 = self.probe.ze[2]

x2 = self.probe.xe[3]
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y2 = self.probe.xe[4]

# 22 = self.probe.ze[5]

x3 = self.probe.xe[6]

y3 = self.probe.xel[7]

# 23 = self.probe.ze[8]

x4 = self.probe.xe[9]

y4 = self.probe.xe[10]

# z4 = self.probe.ze[11]

self.area = 1/2.*xfabs((xl1*y2 + x2*y3 + x3xy4 + x4*yl) - (x2%yl + x3*y2 + x4xy3 + xlx*y4))

cpdef void update_centroid (IQS4 self):
self .probe.centroid [0] = np.sum(self.probe.xe[0::3])/4

self .probe.centroid[1] np.sum(self.probe.xe[1::3])/4

self .probe.centroid[2] np.sum(self.probe.xe[2::3])/4
cpdef void update_T_matrix(IQS4 self):
r"""Update the rotation matrix of the element

Attributes ‘‘ri11,r12,r13,r21,r22,r23,r31,r32,r33¢‘ are updated,

corresponding to the rotation matrix from local to global coordinates.

The element coordinate system is determined, identifying the ‘ijk°
components of each axis: ‘{x_e}_i, {x_e}_j, {x_e}_k; ‘{y_e}_i,
{y_e}_j, {y_e}Y_k*; ‘{z_e}_i, {z_e}_j, {z_e}_k*.

The rotation matrix terms are calculated after solving 9 equations.

Parameters

x : array-like
Array with global nodal coordinates, for a total of ‘M‘ nodes in
the model, this array will be arranged as: ‘x_1, y_1, z_1, x_2,

y_2, z_2, ..., x_M, y_M, z_ M.

cdef x

cdef double xi, xj, xk, yi, yj, yk, zi, zj, zk

cdef double x1i, x1j, x1k, x2i, x2j, x2k, x3i, x3j, x3k, x4i, x4j, x4k
cdef double v13i, v13j, vi13k, v42i, v42j, vé42k

cdef double tmp, xmatnorm, ymati, ymatj, ymatk

cdef double tol

x = self.probe.xe #instead of feeding z separately we just open it up form our quad element

#The mnotation with = is very misleading. essentially for each wvertiz of the quad we
establish the %,j,k which is just the z,y,z coordinate. it %is more of a mnaming
convention to show that we are going to wvector operations

x1i = x[0]
x1j = x[1]
x1lk = x[2]
x2i = x[3]
x2j = x[4]
x2k = x[5]
x3i = x[6]
x3j = x[7]
x3k = x[8]
x4i = x[9]

x4j = x[10]
x4k = x[11]

#establishing the wvectors of the two diagonals
v13i = x3i - x1i

v13j = x3j - x1j
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vi3k = x3k - x1k
v42i = x2i - x4i
v42j = x2j - x4j
v42k = x2k - x4k

#Getting the mormal wector coordinates
zi = v42j*v13k - v42kx*v13j

zj = -v42i*xv13k + v42kx*v13i

zk = v42i*v13j - v42j*v13i

#And mormalizing it

tmp = (zi**2 + zj**2 + zk**2)**0.5
zi /= tmp
zj /= tmp
zk /= tmp

# NOTE defining tolerance to be 1/1el10 of mnormal vector norm
tol = tmp/1el0

xi = (v13i + v42i)/2.
xj = (v13j + v42j)/2.
xk = (v13k + v42k)/2.

tmp = (xi**2 + xj**2 + xk**2)**0.5
xi /= tmp
xj /= tmp
xk /= tmp

#y =2z Xz

yi = zj*xk - zkx*xj

yj = zk*xi - zi*xxk

yk = zi*xj - zj*xi

tmp = (yi**2 + yj**2 + yk**2)**0.5
yi /= tmp

yj /= tmp

yk /= tmp

#rotation matriz attributes
self . r11 = xi
self.r21 = xj
self . r31 = xk
self.r12 = yi
self.r22 = yj
self.r32 = yk
self . r13 = zi
self.r23 = zj
self .r33 = zk

self .Tet = np.array([[self.r11, self.r12, self.r13],
[self.r21, self.r22, self.r23],

[self.r31,self.r32, self.r33]1])

self.Te = np.transpose(self.Tet)

cpdef void update_nat_coord(IQS4 self):

self.update_area ()
self.update_centroid ()
self .update_T_matrix ()

X_nat =
np.matmul (self.Te,(np.transpose(np.reshape(self.probe.xe,(4,3)))-self.probe.centroid*np

self .probe.x_nat = np.reshape(x_nat,(12,1),order="F")

Listing C.6: igs4.pyx adapted from [Castro, 2023]

ones ((3,4))))
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#cython: boundscheck=False
#cython: wraparound=False
#cython: cdivision=True
#cython: nonecheck=False
#cython: overflowcheck=False
#cython: embedsignature=True
#cython: infer_types=False

rhunn

currentmodule:: pyife3d.iqgs4

from libc.math cimport fabs

import numpy as np

from .shellprop cimport ShellProp

cdef int DOF = 4 #we include the driling also
cdef int NUM_NODES = 4

cdef class IQS4ProbeSEA:
rn

Probe used for local coordinates, local displacements, local stresses etc

Attributes
xe, : array-like
Array of size ‘‘NUM_NODES#*3=12°¢°‘ containing the nodal coordinates

global coordinate system, in the following order ‘{x_el}_1,

{y_e}_1, {z_e}_1, ‘{x_e}_2, {y_e}_2, {z_e}_2¢, ‘{x_e}_3, {y_e}_3,
{z_e}_ 3¢, ‘{x_e}_4, {y_e}_4, {z_e}_4°.

ue, : array-like
Array of size ¢‘NUM_NODES*DOF ‘¢ containing the element displacements

in the following order ‘{s}_1, {s_x}_1, {s_y}_1, {s_z}_1,
{s}_2, {s_x}_2, {s_y}_2, {s_z}_2,
{s}_3, {s_x}_3, {s_y}_3, {s_z}_3,
{s}_4, {s_x}_4, {s_y}_4, {s_z}_4°.
epsilon, : array-like
Array of the size 8 containing the element strains.
The strains are defined based on the developer file of quad4r and are defined in the
following order
‘e_{xx} e_{yy} g_{xy} k_{xx} k_{yy} k_{zz} g_{yz} g_{xz}°
epsilontopSEA/epsilonbotSEA, : array-like
Array of the size 3 containing the element strains for the top and botoom surfaces
respectively.
The strains are defined based on the developer file of quad4r and are defined in the
following order
‘e_{xx} e_{yy} g_{xyl}¢
centroid, : array-like
Array contains the coordinates of the midpoint of the element in the following order
‘x_{c} y_{c} z_{c}*
Xx_nat, : array-like
Array of size ‘‘NUM_NODES#*3=12°¢¢ containing the nodal coordinates
natural coordinate system, in the following order ‘{x_el}_1,
{y_e}_1, {z_e}_1, ‘{x_e}_2, {y_e}_2, {z_e}_ 2, ‘{x_e}_3, {y_e}_3,
{z_e}_3°, ‘{x_e}_4, {y_e}_4, {z_e}_4°.

cdef public xe
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cdef public ue

cdef public epsilon

cdef public epsilontopSEA
cdef public epsilonbotSEA
cdef public centroid

cdef public stresses

cdef public x_nat

def __cinit__(IQS4ProbeSEA self):
self.xe = np.zeros ((NUM_NODES#*3,1), dtype=np.float64)
self.ue = np.zeros ((NUM_NODES*DOF,1), dtype=np.float64)
self.epsilon = np.zeros((8,1), dtype=np.float64)
self.epsilontopSEA = np.zeros((3,1), dtype=np.float64)
self.epsilonbotSEA = np.zeros((3,1), dtype=np.float64)
self.centroid = np.zeros((3,1), dtype=np.floaté4)
self.stresses = np.zeros((3,1), dtype=np.float64)
self.x_nat = np.zeros ((NUM_NODES#*3,1), dtype=np.float64)

cdef class IQS4SEA:
#TODO: change documentation references
rnn

Nodal connectivity for the plate element similar to Nastran’s IQS4::

The element coordinate system is determined identically what is explained
in Nastran’s quick reference guide for the CQUAD4 element, as illustrated
below.

image:: ../figures/nastran_cquad4.svg

Attributes
eid, : int
Element identification number.
area, : double
Element area.
alphat, : double
Element drilling penalty factor for the plate drilling stiffness,

defined according to Eq. 2.20 in the reference below. The default value

of ‘‘alphat = 1.¢‘ comes from the same reference::

Adam, A.E. Mohamed, A.E. Hassaballa, Degenerated Four Nodes Shell
Element with Drilling Degree of Freedom, IOSR J. Eng. 3 (2013)
10-20. www.iosrjen.org (accessed April 20, 2020).

For those familiar with NASTRAN, ‘‘alphat‘‘ can be calculated based on
NASTRAN’s ¢ ‘K6ROT ‘¢ parameters as ‘‘alphat = 1.e-6*K6ROT‘‘. The default
value according to AUTODESK NASTRAN’s quick reference guide is ‘‘K6ROT

= 100. ‘¢ for static analysis and ‘‘K6R0OT=1.e4‘‘ for modal solutions.

MSC NASTRAN’s quick reference guide states that ¢‘K6ROT > 100. ‘¢ should
not be used, but this is controversion, already being controversial to

what AUTODESK NASTRAN’s manual says.
ri1, r12, r13, r21, r22, r23, r31, r32, r33 : double

Rotation matrix to the global coordinate system.
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mill,

cl,

nl,

init

prob

mi2, m21, m22 : double
Rotation matrix only for the constitutive relations. Used when a
material direction is used instead of the element local coordinates.
c2, c3, c4 : int
Position of each node in the global stiffness matrix.
n2, n3, n4 : int
Node identification number.
_k_KCO, init_k_KG, init_k_M : int
Position in the arrays storing the sparse data for the structural
matrices.
e, : :class:‘.Quad4RProbe ‘ object
Pointer to the probe.

#TODO: complete the docstring

cdef
cdef
cdef
cdef
cdef

public int eid

public int nl, n2, n3, n4

public int cl, c2, c3, c4

public int init_k_KCO, init_k_KG, init_k_M

public double area

# cdef public double alphat # drilling penalty factor for stiffness matriz, see Eq. 2.20 1in

cdef
cdef
cdef
cdef
cdef

def

cpde

F.M. Adam, A.E. Mohamed, A.E. Hassaballa, Degenerated Four Nodes Shell Element with
Drilling Degree of Freedom, IOSR J. Eng. 3 (2013) 10-20. www.iosrjen.org (accessed April
20, 2020).

public double ri1, ri12, r13, r21, r22, r23, r31, r32, r33

public double mill, mi12, m21, m22

public IQS4ProbeSEA probe

public Tet, Te

public ke, fe

__cinit__(IQS4SEA self, IQS4ProbeSEA p):
self .probe = p

self.eid = -1
self .n1 = -1
self .n2 = -1
self .n3 = -1
self.n4 = -1
self.cl = -1
self.c2 = -1
self.c3 = -1
self.c4 = -1
self .area = 0

# self.alphat = 1. # based on recommended wvalue of reference F.M. Adam, A.E. Mohamed, A.E.
Hassaballa

self.r11l = self.r12 = self.r13 = 0.

self . r21 = self.r22 = self.r23

self .r31 = self.r32 = self.r33

self .m11 = 1.

self .m12 = 0.

self .m21 = 0.

self .m22 = 1.

self.Tet = np.zeros((3,3))

self .Te = np.zeros((3,3))

self .ke = np.zeros ((DOF*NUM_NODES ,DOF*NUM_NODES))

self .fe = np.zeros ((DOF*NUM_NODES ,1))

n
o

n
o

f void update_centroid (IQS4SEA self):

#Method from Shape Sensing of a Complex Aeronautical Structure with Inverse Finite Element
Method

cdef list alpha, beta

cdef double c_nom

cdef c,d, c_den
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alpha = [1, 2, 3, 4]
beta = [2, 3, 4, 1]
¢ = np.zeros((4,3))
d = np.zeros((4,1))

for i in range(0,4):

d[i,0] =
np.linalg.norm(self.probe.xe[(alphal[i]-1)*3:alphal[i]l*3]-self.probe.xe[(betal[i]-1)*3
cli,:] = (self.probe.xel[(alphalil-1)*3:alphal[i]l*3,0] +
self .probe.xe[(betal[i]-1)*3:beta[i]*3,0])/2

c_den = np.zeros((3,1))

c_nom = O

for i in range(0,4):
c_den = c_den + np.reshape(cl[i,:]1*d[i,0],np.shape(c_den))
c_nom += d[i,0]

(c_den/c_nom) [0,0]
(c_den/c_nom) [1,0]
(c_den/c_nom) [2,0]

self .probe.centroid [0]

self.probe.centroid[1]

self .probe.centroid[2]

cpdef void update_T_matrix (IQS4SEA self):

r"""Update the rotation matrix of the element

Attributes ‘‘r11,r12,r13,r21,r22,r23,r31,r32,r33‘¢ are updated,
corresponding to the rotation matrix from local to global coordinates.

The element coordinate system is determined, identifying the ‘ijk°
components of each axis: ‘{x_e}_i, {x_e}_j, {x_e}_k‘; ‘{y_e}_i,
{y_e}_j, {y_eX_k¢; ‘{z_e}_i, {z_e}_j, {z_e}_k*.

The rotation matrix terms are calculated after solving 9 equations.

Parameters

x : array-like
Array with global nodal coordinates, for a total of ‘M‘ nodes in
the model, this array will be arranged as: ‘x_1, y_1, z_1, x_2,
y.2, z_2, ..., x_ M, y_M, z_ M.

cdef x

cdef double xi, xj, xk, yi, yj, yk, zi, zj, zk

cdef double x1i, x1j, x1k, x2i, x2j, x2k, x3i, x3j, x3k, x4i, x4j, x4k
cdef double v13i, v13j, vi13k, v42i, v42j, v42k

cdef double tmp, xmatnorm, ymati, ymatj, ymatk

cdef double tol

x = self.probe.xe #instead of feeding z separately we just open it up form our quad element
#The notation with = is very misleading. essentially for each wvertiz of the quad we
establish the 4,35,k which is just the z,y,z coordinate. it is more of a naming

convention to show that we are going to wector operations

x1i = x[0]
x1j = x[1]
x1k = x[2]
x2i = x[3]
x2j = x[4]
x2k = x[5]
x3i = x[6]
x3j = x[7]

x3k = x[8]

betal[i]*3])
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x [9]
x4j x[10]
x4k = x[11]

x4i

#establishing the wvectors of the two diagonals
v13i = x3i - x1i
v13j = x3j - x1j
vi3k = x3k - x1k
v42i = x2i - x4i
v42j = x2j - x4j
v42k = x2k - x4k

#Getting the mormal wvector coordinates
zi = v42j*v13k - v42k*v13j

zj = -v42i*v13k + v42k*v13i

zk = v42ix*v13j - v42j*xv13i

#And normalizing 1t

tmp = (zi**2 + zj**2 + zk**2)**0.5
zi /= tmp
zj /= tmp
zk /= tmp

# NOTE defining tolerance to be 1/1el10 of normal wvector mnorm
tol = tmp/1lel0

xi = (v13i + v42i)/2.
xj = (v13j + v42j)/2.
xk = (v13k + v42k)/2.

tmp = (xi**2 + xj**2 + xk**2)**0.5
xi /= tmp
xj /= tmp
xk /= tmp

#y =2z Xz
yi = zj*xk - zkx*xj

yj = zk*xi - zixxk

yk = zi*xj - zj*xi

tmp = (yix*2 + yj**2 + yk**2)**0.5
yi /= tmp

vj /= tmp

yk /= tmp

#rotation matrixz attributes
self.r11 = xi
self.r21 = xj
self . r31 = xk
self.r12 = yi
self.r22 = yj
self .r32 = yk
self . r13 = zi
self .r23 = zj
self . r33 = zk

#Assembled rTotation matric

self .Tet = np.array([[self.r11, self.r12, self.r13],
[self.r21, self.r22, self.r23],
[self.r31,self.r32, self.r33]1])

self.Te = np.transpose(self.Tet)
cpdef void update_area(IQS4SEA self):

cdef double x1, x2, x3, x4, yl, y2, y3, y4
x1 = self.probe.xe[0]
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y1l = self.probe.xel[1]
x2 = self.probe.xe[3]
y2 = self.probe.xe[4]
x3 = self.probe.xe[6]
y3 = self.probe.xel[7]
x4 = self.probe.xe[9]
y4 = self.probe.xe[10]
self.area = 1/2%((x1*xy2+x2%y3+x3*yd+x4*yl) -(x2%yl+x3*y2+x4*y3+x1%y4d))

cpdef void update_nat_coord (IQS4SEA self):
self.update_area ()
self.update_centroid ()
self .update_T_matrix ()

X_nat =
np.matmul (self.Te,(np.transpose(np.reshape(self.probe.xe,(4,3)))-self.probe.centroid*np
self .probe.x_nat = np.reshape(x_nat,(12,1),order="F")

Listing C.7: igsdSEA.pyx adapted from [Castro, 2023]

import numpy as np

import pyvista as pv

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from matplotlib.colors import LinearSegmentedColormap
import pandas as pd

import matplotlib.patches as mpatches

import os

from matplotlib.patches import Polygon

def undeformed_SD(quads, show_opt, save_opt, save_path):

wun

Function for plotting the undeformed 3D structure.

Args:
quads (list): List of quad objects
show_opt (bool): Determines if the figure is shown or not
save_opt (bool): Determines if the figure %s saved or not
save_path (str): Determines where the figure is saved. Required if save_opt is set to true.

wun

plt.clf )

#https://stackoverflow.com/questions/4622057/plotting-3d-polygons
fig = plt.figure()
ax = Axes3D(fig)

fig.add_axes (ax)
xmin, xmax, ymin , ymax, zmin, zmax = (0, 0, O, O, O, 0)

for quad in quads:
x = quad.probe.xe[0::3].reshape(4).tolist ()
y = quad.probe.xe[1::3].reshape(4).tolist ()
z = quad.probe.xe[2::3].reshape(4).tolist ()

verts = [list(zip(x,y,z))]
ax.add_collection3d (Poly3DCollection(verts))

if xmin >= min(x):
xmin = min(x)
if xmax <= max(x):

xmax = max (x)

ones ((3,4))))
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def

if ymin >= min(y):
ymin = min(y)
if ymax <= max(y):

ymax = max(y)

if zmin >= min(z):
zmin = min(z)
if zmax <= max(z):
zmax = max(z)

# az.set_zlim ([0.9%zmin, 1.1%zmaz])
# az.set_ylim ([0.9%ymin, 1.1%ymaz])

# az.set_zlim([0.9%zmin, 1.1%zmaz])

#Nicer for scaling
ax.set_x1im ([0.9*min(xmin,ymin), 1.1%max(xmax,ymax)])
ax.set_ylim ([0.9%min(xmin,ymin), 1.1*max(xmax,ymax)])

ax.set_zlim([0.9*zmin, 1.1%*zmax])

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
fig.savefig(save_path+f"\\undeformed.png")
plt.close(fig)

if show_opt:
plt.show ()

undeformed_3D_loc_coord(quads, show_opt, save_opt, save_path):

wun

Function for plotting the undeformed 3D structure.

Args:
quads (list): List of quad objects
show_opt (bool): Determines if the figure %s shown or not
save_opt (bool): Determines if the figure %is saved or not
save_path (str): Determines where the figure is saved. Required if save_opt is set to true.

wun

plt.clf ()

#https://stackoverflow.com/questions/4622057/plotting -3d-polygons
fig = plt.figure()

ax = Axes3D(fig)

fig.add_axes (ax)

xmin, xmax, ymin , ymax, zmin, zmax = (0, O, O, O, O, 0)

for quad in quads:
x = quad.probe.xe[0::3].reshape (4).tolist ()
y = quad.probe.xe[1::3].reshape(4).tolist ()
z = quad.probe.xe[2::3].reshape (4).tolist ()

verts = [list(zip(x,y,z))]

collection = Poly3DCollection(verts)
collection.set_facecolor ("#F8FFD2")

centroid = quad.probe.centroid
factor = 10

ax.plot3D([centroid [0],centroid [0]l+quad.r11/factor],[centroid[1],centroid[1]l+quad.r21/factor
#T
ax.plot3D([centroid [0],centroid [0]+quad.r12/factor],[centroid[1],centroid[1]l+quad.r22/factor

],[centroid[2],«

],[centroid[2],«
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def

#y
ax.plot3D([centroid [0],centroid [0]l+quad.r13/factor],[centroid[1],centroid[1]l+quad.r23/factor

if xmin >= min(x):
xmin = min(x)
if xmax <= max(x):
xmax = max(x)

if ymin >= min(y):
ymin = min(y)
if ymax <= max(y):

ymax = max(y)

if zmin >= min(z):
zmin = min(z)
if zmax <= max(z):
zmax = max(z)

#Nicer for scaling in some cases
# az.set_zlim ([0.9%min (zmin,ymin), 1.1*maz (zmaz,ymaz)])
# az.set_ylim ([0.9%min (zmin,ymin), 1.1*maz (zmaz,ymaz)])

# az.set_zlim ([0.9%min (zmin,ymin), 1.1*maz (zmaz,ymaz)])

ax.set_xlim(xmin, xmax)

ax.set_ylim(-2, 8)

ax.set_zlim (-4, 4)

ax.view_init(elev=32, azim=-132, roll=0)

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
fig.savefig(save_path+f"\\undeformed.png")
plt.close(fig)

if show_opt:
plt.show ()

undeformed_3D_instrumented(quads, strain_elements, show_opt, save_opt, save_path):

i

Function for plotting the wundeformed 3D structure in which the instrumented elements are
highlighted.

Args:

quads (list): List of quad objects

strain_elements (dict): Dictionary containing arrays of the elements where strain is
recorded for each strain component. Eg. for strain exxz we know which elements record
strain. The keys are "ezz", "eyy" and "exy"

show_opt (bool): Determines if the figure is shown or not

save_opt (bool): Determines if the figure %is saved or not

save_path (str): Determines where the figure is saved. Required if save_opt is set to true.

wun

plt.clf ()

#https://stackoverflow.com/questions/4622057/plotting-3d-polygons
fig = plt.figure(figsize=(14, 8))
ax = Axes3D(fig)

fig.add_axes (ax)

color_map = {"inactive": "#dOcece",
"exx": "#ffadad",
"eyy": "#ffd6ab",
"exy": "#fdffbé",

"exxeyy": "#caffbf",

],[centroid[2],«
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"exxexy": "#9bfe6ff",
"eyyexy": "#aOc4ff",
"exxeyyexy": "#bdb2ff"}

xmin, xmax, ymin , ymax, zmin, zmax = (0, O, O, O, O, 0)
for quad in quads:

x = quad.probe.xe[0::3].reshape(4).tolist ()

y = quad.probe.xe[1::3].reshape(4).tolist ()

z = quad.probe.xe[2::3].reshape(4).tolist ()

verts = [list(zip(x,y,z))]
element = Poly3DCollection(verts)

#We start from the most restrictive conditions to the least restrictive

#Depending on which strain components are insturmented, the element is highlighted in a
specifc color

if (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["eyy"]) and

(quad.eid in strain_elements["exy"]):

el_color = color_mapl["exxeyyexy"]

elif (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["eyy"]):
el_color = color_map["exxeyy"]

elif (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["exy"]):
el_color = color_mapl["exxexy"]

elif (quad.eid in strain_elements["eyy"]) and (quad.eid in strain_elements["exy"]):
el_color = color_map["eyyexy"]

elif quad.eid in strain_elements["exx"
el_color = color_map["exx"]

elif quad.eid in strain_elements["eyy"]:
el_color = color_mapl["eyy"]

elif quad.eid in strain_elements["exy"]:
el_color = color_mapl["exy"]

else:
el_color = color_map["inactive"]

#Setting the appropriate color for the elements
element.set_color(el_color)
element.set_edgecolor (’#000000’)
ax.add_collection3d(element)

#Legend https://stackoverflow.com/questions/39500265/how-to-manually-create-a-legend

inactive_patch = mpatches.Patch(color=color_map["inactive"] , label=’Not instrumented’)

exx_patch = mpatches.Patch(color=color_map["exx"], label=’$\\epsilon_{xx}$’)

eyy_patch = mpatches.Patch(color=color_map["eyy"]l, label=’$\\epsilon_{yyl}$’)

exy_patch = mpatches.Patch(color=color_map["exy"], label=’$\\gamma_{xy}$’)

exxeyy_patch = mpatches.Patch(color=color_map["exxeyy"]l, label=’$\\epsilon_{xx},
\\epsilon_{yy}$’)

exxexy_patch = mpatches.Patch(color=color_map["exxexy"], label=’$\\epsilon_{xx},
\\gamma_{xy}$’)

eyyexy_patch = mpatches.Patch(color=color_map["eyyexy"]l, label=’$\\epsilon_{yy},
\\gamma_{xy}$’)

exxeyyexy_patch = mpatches.Patch(color=color_map["exxeyyexy"], label=’$\\epsilon_{xx},
\\epsilon_{yy}, \\gamma_{xy}$’)

plt.legend(handles=[inactive_patch, exx_patch, eyy_patch, exy_patch, exxeyy_patch,
exxexy_patch, eyyexy_patch,exxeyyexy_patch],loc=’center left’, bbox_to_anchor=(1.07,
0.5))

#Scaling purposes
if xmin >= min(x):

xmin = min(x)
if xmax <= max(x):

xmax = max(x)

if ymin >= min(y):
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ymin = min(y)
if ymax <= max(y):
ymax = max(y)

if zmin >= min(z):
zmin = min(z)
if zmax <= max(z):

zmax = max(z)

#Nicer for scaling

ax.set_x1im ([0.9%min(xmin,ymin), 1.1*max(xmax,ymax)])
ax.set_ylim([0.9*min(xmin,ymin), 1.1%max(xmax,ymax)])
ax.set_zlim([0.9*zmin, 1.1%*zmax])

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)

fig.savefig(save_path+f"\\instrumented.png")

#Add element nodes

if len(quads) <=100: #do this only if it 4is wisible

for quad in quads:
centroid_ar = np.asarray(quad.probe.centroid)
ax.text (x=centroid_ar[0,0], y=centroid_ar[1,0],
z=centroid_ar [2,0] ,s=f"{quad.eid}",zorder=2*1len(quads))

fig.savefig(save_path+f"\\instrumented_elements.png")

else:

pass

if show_opt:
plt.show ()

deformed_3D (quads ,U,DOF,show_opt, save_opt, save_path,location):

wun

Function for plotting the deformed 3D structure.

Args:
quads (list): List of quad objects

U (array): Array of size N_DOF,1 represesnting the containing the node displacements

in the following order ‘{u_el}_1, {v_e}_ 1, {w_ e} 1, {{r_z}_e}_ 1, {{r_ylr_e}l_1,

DOF (int): number of DOF’s per node

show_opt (bool): Determines if the figure %s shown or not

save_opt (bool): Determines if the figure %is saved or not

save_path (str): Determines where the figure %is saved.

Required if save_opt is set to true.

location (str): Location for running the <FEM algorithm. Can be "top","mid"

wun

plt.clf ()

#https://stackoverflow.com/questions/4622057/plotting -3d-polygons
fig = plt.figure()

ax = Axes3D(fig)

fig.add_axes (ax)

xmin, xmax, ymin , ymax, zmin, zmax = (0, O, O, O, O, 0)
for quad in quads:

x = quad.probe.xe[0::3].reshape (4)

y = quad.probe.xe[1::3].reshape (4)

z = quad.probe.xe[2::3].reshape (4)

ul = np.array([U[(quad.n1-1)*DOF],

{{r_z}_e}_1°

or "bot"
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Ul[(quad.n2-1) *DOF]
U[(quad.n3-1) *DOF]

>

U[(quad.n4-1)*DOF]]) .reshape (4)

u2 = np.array ([U[(quad.n1-1)*DOF+1],
Ul(quad.n2-1) *DOF+1],
U[(quad.n3-1)*DOF+1] ,
U[(quad.n4-1)*DOF+1]]) . reshape (4)

u3 = np.array([U[(quad.n1-1)*DOF+2],
Ul(quad.n2-1)*DOF+2] ,
U[(quad.n3-1) *DOF+2] ,
U[(quad.n4-1)*DOF+2]]) .reshape (4)

x_plt = x+ul.tolist ()
y_plt = y+u2.tolist ()
z_plt = z+u3.tolist ()

verts = [list(zip(x_plt,y_plt,z_plt))]
ax.add_collection3d(Poly3DCollection(verts))

if xmin >= min(x_plt):
xmin = min(x_plt)
if xmax <= max(x_plt):

xmax = max (x_plt)

if ymin >= min(y_plt):
ymin = min(y_plt)
if ymax <= max(y_plt):
ymax = max(y_plt)

if zmin >= min(z_plt):
zmin = min(z_plt)
if zmax <= max(z_plt):

zmax = max(z_plt)

# az.set_zlim([0.9*%zmin, 1.1*zmaz])

z_lim = max(abs(zmin) ,abs (zmax))

#Nicer for scaling

ax.set_x1im ([0.9%min(xmin,ymin), 1.1*max(xmax,ymax)])

ax.set_ylim([0.9*min(xmin,ymin), 1.1%max(xmax,ymax)])

ax.set_zlim([-z_lim, z_lim])

if save_opt:
if not os.path.exists(save_path):

os.makedirs (save_path)

fig.savefig(save_path+f"\\deformed_{location}.png")

plt.close(fig)

if show_opt:
plt.show ()

nodal_contour2D (node_coord, U, DOF, plot_var,

wun

Function for plotting the 2D contour of one wvariable along the plate.

of T1, T2, T3 along the plate.

Args:
node_coord (array): Array of size
following format: ID [ X | Y

(N_nodes , 4)

Iz

show_opt,

save_opt, save_path,location):

It can plot the contour

storing the coordinate of the mnodes in the

U (array): Array of size N_DOF,1 represesnting the containing the node displacements

in the following order ‘{u_e}_1,

{v_e}_1,

{w_e}_1,

{{r_z}_e}_1,

{{r_y}_e}_1,

{{r_z}_e}_1°
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DOF (int): number of used DOF’s
plot_var (str): choose between T1, T2 and T3
show_opt (bool): Determines if the figure %s shown or not
save_opt (bool): Determines if the figure is saved or not
save_path (str): Determines where the figure s saved. Required if save_opt %is set to true.
location (str): Location for running the 4<FEM algorithm. Can be "top","mid" or "bot"
plt.clf )
x = node_coord[:,1]
y = node_coord[:,2]

if plot_var=="T1":

z=np.reshape (U[0::DOF],np.shape(x))
elif plot_var=="T2":

z=np.reshape (U[1::DOF],np.shape(x))
elif plot_var=="T3":

z=np.reshape (U[2::DOF],np.shape(x))

colors_from_img = np.load("pyife3d\supporting_files\colors_from_img.npy")
N_entries,_ = np.shape(colors_from_img)

my_cmap = LinearSegmentedColormap.from_list(’my_cmap’, colors_from_img, N=N_entries)

fig = plt.figure(figsize=(12, 8))

plt.tricontourf(x, y, z, levels=100,cmap=my_cmap)

plt.xlabel ("x[m]l")

plt.ylabel ("y[m]")

plt.title(£"Nodal contour: {plot_var} [m] at {location} plate")
v = np.linspace(np.min(z), np.max(z), 9, endpoint=True)
plt.colorbar(ticks=v)

fig.tight_layout ()

plt.gca().set_aspect("equal")

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
fig.savefig(save_path+f"\{plot_var}_{location}.png")
plt.close(fig)

if show_opt:
plt.show ()

nodal_contour2D_Ushape (node_coord, U, DOF, plot_var, show_opt, save_opt, save_path,location):
Function for plotting the 2D contour of one wvariable along the plate. It can plot the contour
of T1, T2, T3 along the plate.

Args:
node_coord (array): Array of size (N_nodes,4) storing the coordinate of the nodes in the
following format: ID | X | Y | Z
U (array): Array of size N_DOF,1 represesnting the containing the node displacements
in the following order ‘{u_e}_1, {v_e}_1, {w_e}_ 1, {{r_z}_ e} 1, {{r_yt_e}_1, {{r_z}_ e} _1°

DOF (int): number of wused DOF’s

plot_var (str): choose between T1, T2, T3 and T total

show_opt (bool): Determines if the figure is shown or not

save_opt (bool): Determines if the figure %is saved or not

save_path (str): Determines where the figure is saved. Required if save_opt is set to true.
location (str): Location for running the <FEM algorithm. Can be "top","mid" or "bot"

nwun

plt.clf ()

#Creating subplots
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colors_from_img = np.load("pyife3d\supporting_files\colors_from_img.npy")

N_entries,_ = np.shape(colors_from_img)
my_cmap = LinearSegmentedColormap.from_list(’my_cmap’, colors_from_img, N=N_entries)
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12, 8),layout="constrained")

#Select the correct displacement component
if plot_var=="T1":
U_cor= U[0::DOF]
elif plot_var=="T2":
U_cor= U[1::DOF]
elif plot_var=="T3":
U_cor= U[2::DOF]
elif plot_var=="T total":
U_cor = np.sqrt(np.power (U[0::DOF],2)+np.power(U[1::DOF],2)+np.power (U[2::DOF],2))

#Bottom Plate

check = np.isclose(node_coord[:,3], 0.) #z is 0
axl = node_coord[check,1] #z coord

ax2 = node_coord[check,2] #y coord

z = np.reshape(U_cor [check],np.shape (ax1))

bot_csf = axes[0].tricontourf (axl, ax2, z,
levels=100, cmap=my_cmap ,vmin=np.min(U_cor) ,vmax=np.max (U_cor))
axes [0].set_title(f"Nodal contour: {plot_var} [m] Top View")
axes [0] .set_xlabel ("x[m]")
axes [0].set_ylabel("y[m]l")

total_z = z

#Front Plate

check = np.isclose(node_coord[:,2], 0.) #y is 0
axl = node_coord[check,1] #z coord

ax2 = node_coord[check,3] #z coord

z = np.reshape(U_cor[check],np.shape(axl))

front_csf = axes[1].tricontourf (axl, ax2, z,

levels=100, cmap=my_cmap ,vmin=np.min(U_cor) ,vmax=np.max (U_cor))
axes [1].set_title(f"Nodal contour: {plot_var} [m] Front View")
axes [1].set_xlabel ("x[m]")
axes [1].set_ylabel("z[m]")

total_z = np.append(total_z,z)

#Back Plate

check = np.isclose(node_coord[:,2], np.max(node_coord[:,2])) #y is maz
axl = node_coord[check,1] #z coord
ax2 = node_coord[check,3] #z coord

z = np.reshape(U_cor [check],np.shape(ax1))

back_csf = axes[2].tricontourf (axl, ax2, z,
levels=100, cmap=my_cmap ,vmin=np.min(U_cor) ,vmax=np.max (U_cor))
axes [2] .set_title (f"Nodal contour: {plot_var} [m] Back View")
axes [2] .set_xlabel ("x[m]")
axes [2].set_ylabel ("z[m]")

total_z = np.append(total_z,z)
z = total_z

v = np.linspace(np.min(z), np.max(z), 9, endpoint=True)

complete_disp = plt.tricontourf (node_coord[:,1], node_coord[:,3],U_cor[:,0],
levels=100, cmap=my_cmap ,vmin=np.min(U_cor [:]) ,vmax=np.max(U_cor[:]))
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plt.colorbar (complete_disp,ax=axes,ticks=v)

axes [0].set_aspect ("equal")
axes [1].set_aspect("equal")
axes [2] .set_aspect ("equal")

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
fig.savefig(save_path+f"\{plot_var}_{location} _usection.png")
plt.close(fig)

if show_opt:
plt.show()

perc_error (node_coord,calculated_var ,N_nodes,strain_elements ,reference_path ,name_var,
show_opt, save_opt, save_path,location):

Function for plotting the percentage error at each node in the FEM model. 2d view.
When the reference wvalue %s 0, to avoid Nan the error is eplaced by 0. Might not be a

representative error handling in all cases

Args:

node_coord (array): Array of size (N_nodes,4) storing the coordinate of the nodes in the

following format: ID | X | Y | Z

calculated_var (array): Array of size (N_nodes,1) with the values of a calculated array

N_nodes (int): Number of nodes in the i1FEM mesh

strain_elements (int): Dictionary containing arrays of the elements where strain is

recorded for each strain component. Eg. for strain exxz we know whic elemebnts record

strain. The keys are "ezz", "eyy" and "exzy".
reference_path (str): Path to the file where the reference measurements (FEM outputs)
stored.

are

name_var (str): Name of the wvariable for which error is computed. Used for saving the value

show_opt (bool): Determines if the figure %s shown or not
save_opt (bool): Determines if the figure %is saved or not
save_path (str): Determines where the figure is saved. Required if save_opt %is set to
location (str): Location for running the <FEM algorithm. Can be "top","mid" or "bot"

wun

plt.clf ()

MPD = 0 #mean percentage difference
MAPD = O #mean absolute percentage difference

RMSD = 0 #root mean square difference

if reference_path[-3:] == "csv":

referenece_var = pd.read_csv(reference_path,delimiter=’,’)
elif reference_path([-4:] == "xlsx":

referenece_var = pd.read_excel(reference_path)

referenece_var = referenece_var.to_numpy ()

error = np.zeros(np.shape(referenece_var))
error[:,0] = referenece_var[:,0]

error[:,1] = (calculated_var([:,0]-referenece_varl[:,1]) #simplle difference

RMSD = np.sqrt(np.sum(error[:,1]l*error[:,1])/N_nodes)

a = error[:,11*100

b = referenece_var[:,1]

error[:,1] = np.divide(a, b, out=np.zeros_like(a), where=b!=0) #substitute nan by 0. PD
obtained

MPD = np.sum(error[:,1])/N_nodes

MAPD = np.sum(np.absolute(error[:,1]))/N_nodes

true.
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x = node_coord[:,1]
y = node_coord[:,2]
z = error[:,1]
PD_max_def =

(np.max(np.absolute(calculated_var[:,0]))-np.max(np.absolute(b)))/np.max(np.absolute(b))*10

fig = plt.figure(figsize=(12, 8))

plt.tricontourf(x, y, z, levels=100)

plt.xlabel ("x[m]l")

plt.ylabel ("y[m]")

plt.title(f"Percentage error [%] of {name_var} at {location} plate.MAPD={round(MAPD,2)}")

#If branch to ensure that the color bar is consistent and always reaches to 0
if np.min(z) >=0 and np.max(z) >=0:

v = np.linspace(0, np.max(z), 9, endpoint=True)
elif np.min(z) <=0 and np.max(z) <=0:
v = np.linspace(np.min(z),0, 9, endpoint=True)
else:
v = np.linspace(np.min(z), np.max(z), 9, endpoint=True)

plt.colorbar (ticks=v)
fig.tight_layout ()

plt.gca().set_aspect("equal") #fixzing up the ratio of the plate

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
#Saving graph
fig.savefig(save_path+f"\\error_{name_var}_{location}.png")
plt.close(fig)

#Saving text file with extra info

(N_sens_xx,) = np.shape(strain_elements["exx"])

(N_sens_yy,) = np.shape(strain_elements["eyy"])

(N_sens_xy,) = np.shape(strain_elements["exy"])

f= open(save_path+f"\\error_{name_var}_{locationl}.txt","w+")

f.write(f"{N_sens_xx} sensing points in x.\n {N_sens_yy} sensing points in y.\n
{N_sens_xy} sensing points in xy.\n MAPD={MAPD} \n MPD={MPD}\n RMSD={RMSD} \n PD
maximum deflection {PD_max_def}")

f.close ()

if show_opt:
plt.show ()

perc_error_Ushape (node_coord,calculated_var ,N_nodes,strain_elements ,reference_path,name_var,

show_opt, save_opt, save_path,location):

i

Function for plotting the percentage error at each node in the FEM model. 2d view.

When the reference wvalue %s 0, to avoid Nan the error is eplaced by 0. Might not be a
representative error handling in all cases

Args:

node_coord (array): Array of size (N_nodes,4) storing the coordinate of the nodes in the
following format: ID | X | Y | Z

calculated_var (array): Array of size (N_nodes,1) with the values of a calculated array

N_nodes (int): Number of nodes in the iFEM mesh

strain_elements (int): Dictionary containing arrays of the elements where strain is
recorded for each strain component. Eg. for strain exxz we know whic elemebnts record
strain. The keys are "exz", "eyy" and "ezy"

reference_path (str): Path to the file where the reference measurements (FEM outputs) are
stored.

name_var (str): Name of the wvariable for which error is computed. Used for saving the value

show_opt (bool): Determines if the figure %s shown or not
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save_opt (bool): Determines if the figure %is saved or not
save_path (str): Determines where the figure is saved. Required if save_opt is set to true.
location (str): Location for running the <FEM algorithm. Can be "top","mid" or "bot"

wun

plt.clf )

#Calculation side
MPD = 0 #mean percentage difference
MAPD = O #mean absolute percentage difference

RMSD = 0 #root mean square difference

if reference_path[-3:] == "csv":

referenece_var = pd.read_csv(reference_path,delimiter=’,’)
elif reference_path[-4:] == "xlsx":

referenece_var = pd.read_excel(reference_path)

referenece_var = referenece_var.to_numpy ()

error = np.zeros(np.shape(referenece_var))
error[:,0] = referenece_var[:,0]

error[:,1] = (calculated_var([:,0]-referenece_var[:,1]) #simple difference

RMSD = np.sqrt(np.sum(error[:,1]*error[:,1])/N_nodes)

a = error[:,1]1*100
b = referenece_var[:,1]
error[:,1] = np.divide(a, b, out=np.zeros_like(a), where=b!=0) #substitute nan by 0. PD

obtained
MPD = np.sum(error[:,1])/N_nodes
MAPD = np.sum(np.absolute(error[:,1]))/N_nodes

PD_max_def =
(np.max(np.absolute(calculated_var[:,0]))-np.max(np.absolute(b)))/np.max(np.absolute(b))*10

#Plotting side
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12, 8),layout="constrained")

#Bottom

check = np.isclose(node_coord[:,3], 0.) #z is 0

axl = node_coord[check,1] #z coord

ax2 = node_coord[check,2] #y coord

z = error[check,1]

bot_csf = axes[0].tricontourf (axl, ax2, z, levels=100)
loc_n, = np.shape(error[check,1])

MAPDloc = np.sum(np.absolute(error[check,1]))/loc_n

axes [0] .set_title(f"Percentage error [%] of {name_var} Top View. MAPD={round (MAPDloc,2)}")
axes [0].set_xlabel ("x[m]")
axes [0].set_ylabel ("y[m]")

total_z = z #for the colorbar limits

#Front

check = np.isclose(node_coord[:,2], 0.) #y is 0
axl = node_coord[check,1] #z coord

ax2 = node_coord[check,3] #z coord

z = error [check,1]

front_csf = axes[1].tricontourf (axl, ax2, z, levels=100)

loc_n, = np.shape(error[check,1])

MAPDloc = np.sum(np.absolute (error[check,1]))/loc_n

axes [1].set_title(f"Percentage error [%] of {name_var} Front View. MAPD={round (MAPDloc,2)1}")
axes [1] .set_xlabel ("x[m]")

axes [1].set_ylabel("z[m]")
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total_z = np.append(total_z,z)

#Back

check = np.isclose(node_coord[:,2], np.max(node_coord[:,2])) #y is 0
axl = node_coord[check,1] #z coord

ax2 = node_coord[check,3] #z coord

z = error[check,1]

back_csf = axes[2].tricontourf (axl, ax2, z, levels=100)

loc_n, = np.shape(error[check,1])

MAPDloc = np.sum(np.absolute(error [check,1]))/loc_n

axes [2] .set_title(f"Percentage error [%] of {name_var} Back View. MAPD={round (MAPDloc,2)}")
axes [2].set_xlabel ("x[m]")

axes [2] .set_ylabel("z[m]")

total_z = np.append(total_z,z)
z = total_z
#If branch to ensure that the color bar is consistent and always reaches to 0
if np.min(z) >=0 and np.max(z) >=0:
v = np.linspace (0, np.max(z), 9, endpoint=True)
elif np.min(z) <=0 and np.max(z) <=0:
v = np.linspace(np.min(z),0, 9, endpoint=True)
else:

v = np.linspace(np.min(z), np.max(z), 9, endpoint=True)

plt.colorbar(back_csf ,ax=axes,ticks=v)
# plt.gca().set_aspect ("equal"”) #fizing up the ratio of the plate

axes [0] .set_aspect ("equal")
axes [1].set_aspect ("equal")
axes [2] .set_aspect ("equal")

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
#Saving graph
fig.savefig(save_path+f"\\error_{name_var}_Ushape.png")
plt.close(fig)

#Saving text file with extra info

(N_sens_xx,) = np.shape(strain_elements["exx"])

(N_sens_yy,) = np.shape(strain_elements["eyy"])

(N_sens_xy,) = np.shape(strain_elements["exy"])

f= open(save_path+f"\\error_{name_var}_Ushape.txt","w+")

f.write(f"{N_sens_xx} sensing points in x.\n {N_sens_yy} sensing points in y.\n
{N_sens_xy} sensing points in xy.\n MAPD={MAPD} \n MPD={MPD}\n RMSD={RMSD} \n PD
maximum deflection {PD_max_def}")

f.close ()

if show_opt:
plt.show ()

iteration_RMSD_MPD (RMSD_lst, MPD_lst, MAPD_lst, parameterSEA_lst,bsave_path,location,parameter):

wun

Plots and finds the best parameter for an <FEM reconstruction.

Args:
RMSD_1lst (array): List of RMSF error in [-]
MPD_1lst (array): List of MPD error in [}]
MAPD_1st (array): List of MAPD error in [}]
parameterSEA (array): List of parameter that was used for iteration
save_path (str):

location (str): Location along the plate: mid, top, bot
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parameter (str): Name of the parameter: alpha/ beta/ w

wun

RMSD_ar = np.array (RMSD_lst)

MPD_ar = np.array(MPD_lst)/100

MAPD _ar = np.array (MAPD_1lst)/100
parameterSEA_ar = np.array(parameterSEA_1lst)

best_MPD = np.min(np.abs(MPD_ar))
best_MAPD = np.min(np.abs (MAPD_ar))
best _RMSD = np.min(np.abs(RMSD_ar))

best_MPD_parameter = parameterSEA_ar [np.abs(MPD_ar)==best_MPD]
best_MAPD_parameter = parameterSEA_ar [np.abs(MAPD_ar)==best_MAPD]
best_RMSD_parameter = parameterSEA_ar [np.abs(RMSD_ar)==best_RMSD]

if not os.path.exists(save_path+f"\\{parameter} iteration RMSD-MPD errors"):

os.makedirs (save_path+f"\\{parameter} iteration RMSD-MPD errors")

#RMSD loglog

fig = plt.figure()

ax = plt.gca()

ax.plot (parameterSEA_ar ,RMSD_ar, ’-o’, c=’blue’)
ax.set_xscale(’log’)

ax.set_yscale(’log’)
ax.set_xlabel(fr"logl0($\{parameter}$[-1)")
ax.set_ylabel ("loglO0(RMSD[-1)")
ax.set_title(fr"Variation of RMSD with $\{parameter}$")
plt.grid(True, which="both", alpha=0.4)
fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD errors\\RMSDloglog_{locationl}.png")
plt.close(fig)

#RMSD log

fig = plt.figure()

ax = plt.gca()

ax.plot (parameterSEA_ar ,RMSD_ar, ’-o’, c=’blue’)
ax.set_xscale(’log’)
ax.set_xlabel(fr"logl0($\{parameter}$[-1)")
ax.set_ylabel ("RMSD[-1")

ax.set_title(fr"Variation of RMSD with $\{parameter}$")
plt.grid(True, which="both", alpha=0.4)
fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD errors\\RMSDlog_{location}.png")
plt.close(fig)

#MPD loglog

fig = plt.figure()

ax = plt.gca()

ax.plot (parameterSEA_ar ,MPD_ar, ’-o’, c=’blue’)
ax.set_xscale(’log’)

ax.set_yscale(’symlog’)
ax.set_xlabel(fr"logl0($\{parameter}$[-1)")
ax.set_ylabel("logl10(MPD[-])")
ax.set_title(fr"Variation of MPD with $\{parameterl}$")
plt.grid(True, which="both", alpha=0.4)
fig.savefig(save_path+f"\\{parameter} iteration RMSD-MPD errors\\MPDloglog_{location}.png")
plt.close(fig)

#MPD log

fig = plt.figure()

ax = plt.gca()

ax.plot(parameterSEA_ar ,MPD_ar, ’-o’, c=’blue’)
ax.set_xscale(’log’)

ax.set_xlabel(fr"logl0 ($\{parameter}$[-1)")
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ax.set_ylabel("logl10(MPD[-])")

ax.set_title(fr"Variation of MPD with $\{parameterl}$")

plt.grid(True, which="both", alpha=0.4)

fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD errors\\MPDlog_{locationl}.png")
plt.close(fig)

#MAPD loglog

fig = plt.figure()

ax = plt.gca()

ax.plot(parameterSEA_ar ,MAPD_ar, ’-o’, c=’blue’)
ax.set_xscale(’log’)

ax.set_yscale(’symlog’)
ax.set_xlabel(fr"logl0($\{parameter}$[-1)")
ax.set_ylabel("logl10(MAPD[-]1)")
ax.set_title(fr"Variation of MAPD with $\{parameter}$")
plt.grid(True, which="both", alpha=0.4)
fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD errors\\MAPDloglog_{locationl}.png")
plt.close(fig)

#MAPD log
fig = plt.figure()

ax = plt.gca()

ax.plot (parameterSEA_ar ,MAPD_ar, ’-o’, c=’blue’)

ax.set_xscale(’log’)

ax.set_xlabel (fr"logl10 ($\{parameter}$[-1)")

ax.set_ylabel ("MAPD[-1")

ax.set_title(fr"Variation of MAPD with $\{parameter}$")

plt.grid(True, which="both", alpha=0.4)

fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD errors\\MAPDlog_{locationl}.png")
plt.close(fig)

#RMSD -MPD -MAPD loglog

fig = plt.figure()

ax = plt.gca()

ax.scatter (parameterSEA_ar ,MPD_ar, c=’blue’, edgecolors=’none’,label="MPD")
ax.scatter (parameterSEA_ar ,RMSD_ar, c=’green’, edgecolors=’none’,label="RMSD")
ax.scatter (parameterSEA_ar ,MAPD_ar, c=’red’, edgecolors=’none’,label="MAPD")
ax.set_xscale(’log’)

ax.set_yscale(’log’)

ax.set_xlabel(fr"logl0($\{parameter}$[-1)")
ax.set_ylabel("log10(MAPD[-]1)/10og10(MPD[-])/1log10(RMSD[-1)")
ax.set_title(fr"Variation of MPD/MAPD/RMSD with $\{parameter}$")
plt.grid(True, which="both", alpha=0.4)

fig.savefig(save_path+f"\\{parameter} iteration RMSD-MPD errors\\RMSDMPDloglog_{locationl}.png")
plt.close(fig)

#RMSD -MPD logsymlog

fig = plt.figure()

ax = plt.gca()

ax.scatter (parameterSEA_ar ,MPD_ar, c=’blue’, edgecolors=’none’,label="MPD")

ax.scatter (parameterSEA_ar ,RMSD_ar, c=’green’, edgecolors=’none’,label="RMSD")

ax.scatter (parameterSEA_ar ,MAPD_ar, c=’red’, edgecolors=’none’,label="MAPD")

ax.set_xscale(’log’)

ax.set_yscale(’symlog’)

ax.set_xlabel(fr"logl0($\{parameter}$[-1)")

ax.set_ylabel("logl10(MAPD[-]1)/10g10(MPD[-])/1og10(RMSD[-1)")

ax.set_title(fr"Variation of MPD/MAPD/RMSD with $\{parameter}$")

plt.legend ()

plt.grid(True, which="both", alpha=0.4)

fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD
errors\\RMSDMPDlogsymlog_{location}.png")

plt.close(fig)
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817 #RMSD -MPD logsymlog zoomed

818 fig = plt.figure()

819 ax = plt.gca()

820 ax.scatter (parameterSEA_ar ,MPD_ar, c=’blue’, edgecolors=’none’,label="MPD")

821 ax.scatter (parameterSEA_ar ,RMSD_ar, c=’green’, edgecolors=’none’,label="RMSD")

822 ax.scatter (parameterSEA_ar ,MAPD_ar, c=’red’, edgecolors=’none’,label="MAPD")

823 ax.set_xscale(’log’)

824 ax.set_yscale(’symlog’)

825 ax.set_xlabel(fr"logl0($\{parameter}$[-1)")

826 ax.set_ylabel("1logl10(MAPD[-])/1og10(MPD[-])/1log10(RMSD[-]1)")

827 ax.set_title(fr"Variation of MPD/MAPD/RMSD with $\{parameter}$")

828 ax.set_ylim(bottom=-1,top=1)

829 plt.legend ()

830 plt.grid(True, which="both", alpha=0.4)

831 fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD
errors\\RMSDMPDlogsymlogzoomed_{location}.png")

832 plt.close(fig)

833

834 #RMSD -MPD log

835 fig = plt.figure()

836 ax = plt.gca()

837 ax.scatter (parameterSEA_ar ,MPD_ar, c=’blue’, edgecolors=’none’,label="MPD")

838 ax.scatter (parameterSEA_ar ,RMSD_ar, c=’green’, edgecolors=’none’,label="RMSD")

839 ax.scatter (parameterSEA_ar ,MAPD_ar, c=’red’, edgecolors=’none’,label="MAPD")

840 ax.set_xscale(’log’)

841 ax.set_xlabel(fr"logl0($\{parameter}$[-1)")

842 ax.set_ylabel ("MPD[-]/RMSD[-1")

843 ax.set_title(fr"Variation of MPD/MAPD/RMSD with $\{parameter}$")

844 plt.grid(True, which="both", alpha=0.4)

845 plt.legend ()

846 fig.savefig(save_path+fr"\\{parameter} iteration RMSD-MPD errors\\RMSDMPDlog_{locationl}.png")

847 plt.close(fig)

848

849 f= open(save_path+fr"\\{parameter} iteration RMSD-MPD

errors\\{parameter}_iteration_output.txt","w+")

850 f.write(£"RMSD error [-] {RMSD_ar}.\n MPD error [-] {MPD_ar}.\n MSPD error [-] {MAPD_ar}.\n

best {parameter} MPD { best_MPD_parameter } at MPD {best_MPD}\n best {parameter} MAPD {

best_MAPD_parameter } at MAPD {best_MAPD} \n best {parameter} RMSD {best_RMSD_parameter}
at RMSD{best_RMSD}")

851 f.close()

852

853 def alpha_iteration_RMSD_MPD_component (RMSD_1st, MPD_lst, MAPD_lst,
alfaSEA_lst ,save_path,location, component):

854 " summary_

855

856 Args:

857 RMSD_lst (_type_): _description_

858 MPD_1lst (_type_): _description_

859 alfaSEA_lst (_type_): _description_

860 save_path (_type_): _description_

861 location (_type_): _description_

862 component (_type_): _description_

863 e

864 RMSD_ar = np.array (RMSD_1lst)

865 MPD_ar = np.array(MPD_lst)

866 MAPD_ar = np.array (MAPD_lst)

867 alfaSEA_ar = np.array(alfaSEA_lst)

868

869 if not os.path.exists(save_path+f"\\Alpha Iteration Components\\{componentl}"):

870 os.makedirs (save_path+f"\\Alpha Iteration Components\\{componentl}")

871

872 #RMSD Plot log

873 fig = plt.figure()
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874 ax = plt.gca()
875 ax.plot(alfaSEA_ar ,RMSD_ar, ’-o’, c=’blue’)
876 ax.set_xlabel(r"$\alpha$[-]")
877 ax.set_xscale(’log’)
878 ax.set_ylabel ("RMSD[-1")
879 ax.set_title(fr"Variation of RMSD with $\alpha$ for {component}")
880 plt.grid(True, which="both", alpha=0.4, axis="both")
881 fig.savefig(save_path+f"\\Alpha Iteration
Components\\{component }\\RMSDvsalpha_{component}_{location}.png")
882 plt.close(fig)
883
884 #MPD Plot log
885 fig = plt.figure()
886 ax = plt.gca()
887 ax.plot(alfaSEA_ar ,MPD_ar, ’-o’, c=’blue’)
888 ax.set_xlabel(r"$\alpha$[-1")
889 ax.set_xscale(’log’)
890 ax.set_ylabel ("MPD[%]")
891 ax.set_title(fr"Variation of MPD with $\alpha$ for {componentl}")
892 plt.grid(True, which="both", alpha=0.4)
893 fig.savefig(save_path+f"\\Alpha Iteration
Components\\{component }\\MPDvsalpha_{component}_{location}.png")
894 plt.close(fig)
895
896 #MADP Plotlog
897 fig = plt.figure()
898 ax = plt.gca()
899 ax.plot(alfaSEA_ar ,MAPD_ar, ’-o’, c=’blue’)
900 ax.set_xlabel(r"$\alpha$[-1")
901 ax.set_xscale(’log’)
902 ax.set_ylabel ("MAPD [%]1")
903 ax.set_title(fr"Variation of MAPD with $\alpha$ for {componentl}")
904 plt.grid(True, which="both", alpha=0.4)
905 fig.savefig(save_path+f"\\Alpha Iteration

Components\\{component}\\MAPDvsalpha_{component}_{location}.png")
906 plt.close(fig)
907

908 best_MPD = np.min(np.abs(MPD_ar))

909 best_MAPD = np.min(np.abs (MAPD_ar))

910 best_RMSD = np.min(np.abs (RMSD_ar))

911

912 best_MPD_alpha = alfaSEA_ar [np.abs(MPD_ar)==best_MPD]
913 best_MAPD_alpha = alfaSEA_ar [np.abs(MAPD_ar)==best_MAPD]
914 best_RMSD_alpha = alfaSEA_ar [np.abs(RMSD_ar)==best_RMSD]
915

916 f= open(save_path+f"\\Alpha Iteration

Components\\{component}\\alpha_iteration_{component}_output.txt","w+")

917 f.write (f"RMSD error [-] {RMSD_ar}.\n MPD error [-] {MPD_ar}. \n MAPD error [-] {MAPD_ar}. \n
best alfa MPD { best_MPD_alpha } at MPD {best_MPD} \n best alfa MAPD { best_MAPD_alpha }
at MAPD {best_MAPD}\n best alfa RMSD { best_RMSD_alpha } at RMSD{best_RMSD}")

918 f.close ()

920 def strain_Ushape (quads,plot_var,location,save_opt,show_opt,save_path,option, strain_elements):

921 "t summary_

922

923 Args:

924 quads (_type_): _description_
925 plot_var (_type_): _description_
926 location (_type_): "top" "bot"
927 option(str): "SEA","FEM"

928 e

929 plt.clf ()
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#Creating subplots
colors_from_img = np.load("pyife3d\supporting files\colors_from_img.npy")

N_entries,_ = np.shape(colors_from_img)
my_cmap = LinearSegmentedColormap.from_list(’my_cmap’, colors_from_img, N=N_entries)
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12, 8), layout="constrained")

#Select the correct displacement component

if plot_var=="exx":
ind = 0
elif plot_var=="eyy":
ind = 1
elif plot_var=="exy":
ind = 2
strain_els = np.array(strain_elements[plot_varl])
x_coord, y_coord, z_coord, contour_var = [], [1, [1, []

for element in quads:
x_coord.append(float (element.probe.centroid [0]))
y_coord.append(float (element.probe.centroid[1]))
z_coord.append(float (element.probe.centroid[2]))

if location=="top" and option=="SEA":
contour_var.append (float (element.probe.epsilontopSEA[ind]))
elif location=="top" and option=="FEM":
contour_var.append (float (element.probe.epsilontop[ind]))
elif location=="bot" and option=="SEA":
contour_var.append (float (element.probe.epsilonbotSEA[ind]))
elif location=="bot" and option=="FEM":

contour_var.append(float(element.probe.epsilonbot[ind]))

quad_ids = np.arange(1,len(quads)+1)

xvals = np.vstack((quad_ids ,np.array(x_coord)))
yvals = np.vstack((quad_ids ,np.array(y_coord)))
zvals = np.vstack((quad_ids ,np.array(z_coord)))

strains = np.vstack((quad_ids,np.array(contour_var)))
instr_check = np.inld(xvals[0,:], strain_els) #check which elements are instrumented

#Bottom Plate

check = np.isclose(zvals[1,:], np.min(zvals[1,:])) #z is 0
axl = xvals[1,check] #z coord

ax2 = yvals[1,check] #y coord

z = np.reshape(strains[1,check],np.shape(axl))

bot_csf = axes[0].tricontourf (axl, ax2, z,
levels=100, cmap=my_cmap ,vmin=np.min(contour_var) ,vmax=np.max (contour_var) ,zorder=1)
axes [0].set_title(f"Nodal contour: {plot_var} [-] Deck")
axes [0].set_xlabel ("x[m]")
axes [0].set_ylabel("y[ml")

if option=="SEA":
final_check = np.logical_and(instr_check , check) #intersection between instrumentation
and location
axes [0] .scatter (x=xvals[1,final_check], y=yvals[1,final_check],c="#FFFFFF",6 zorder=2)

total_z = z

#Front Plate
check = np.isclose(yvals[1,:]1, np.min(yvals[1,:1)) #y is min
axl = xvals[1,check] #z coord

ax2 = zvals[1,check] #z coord
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def

z = np.reshape(strains[1,check],np.shape(axl))

front_csf = axes[1].tricontourf (axl, ax2, z,
levels=100, cmap=my_cmap ,vmin=np.min(contour_var) ,vmax=np.max (contour_var),zorder=1)
axes [1].set_title(f"Nodal contour: {plot_var} [-] Side Wall Right")
axes [1].set_xlabel ("x[m]")
axes [1].set_ylabel("z[m]")

if option=="SEA":
final_check = np.logical_and(instr_check , check) #intersection between instrumentation
and location
axes [1] . scatter (x=xvals[1,final_check], y=zvals[1,final_check],c="#FFFFFF",6zorder=2)
axes [2] .scatter (x=xvals[1,final_check], y=zvals[1,final_check],c="#FFFFFF",6 zorder=2)

total_z = np.append(total_z,z)

#Back Plate

check = np.isclose(yvals[1,:], np.max(yvals[1,:1)) #y is maz
axl = xvals[1,check] #z coord

ax2 = zvals[1,check] #z coord

z = np.reshape(strains[1,check],np.shape(axl))

back_csf = axes[2].tricontourf (axl, ax2, z,
levels=100, cmap=my_cmap ,vmin=np.min(contour_var),vmax=np.max (contour_var) ,bzorder=1)
axes [2] .set_title(f"Nodal contour: {plot_var} [-] Side Wall Left")
axes [2].set_xlabel ("x[m]")
axes [2] .set_ylabel("z[m]")

total_z = np.append(total_z,z)

complete_strain = plt.tricontourf (xvals[1,:], total_z, contour_var,
levels=100, cmap=my_cmap ,vmin=np.min(contour_var) ,vmax=np.max (contour_var))

v = np.linspace(np.min(strains[1,:]), np.max(strains[1,:]), 9, endpoint=True)
plt.colorbar (complete_strain,ax=axes,ticks=v)

axes [0] .set_aspect ("equal")
axes [1].set_aspect ("equal")
axes [2] .set_aspect ("equal")

if save_opt:
if not os.path.exists(save_path+f"\\{option}_strains"):
os.makedirs (save_path+f"\\{option}_strains")
fig.savefig(save_path+f"\\{option}_strains"+£f"\{plot_var}_{location} _usection.png")
plt.close(fig)

if show_opt:
plt.show ()

undeformed_2d_instrumented_Ushape(quads, node_coord, strain_elements, show_opt, save_opt,

save_path):

plt.clf ()

color_map = {"inactive": "#dOcece",
"exx": "#ffadad",
"eyy": "#ffd6ab",
"exy": "#fdffbé6",
"exxeyy": "#caffbf",
"exxexy": "#9bfe6ff",
"eyyexy": "#aOc4ff",

"exxeyyexy": "#bdb2ff"}
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fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12, 8),layout="constrained")

for quad in quads:

#We start from the most restrictive conditions to the least restrictive

#Depending on which strain components are insturmented, the element is highlighted 1in
specifc color

if (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["eyy"]) and
(quad.eid in strain_elements["exy"]):

el_color = color_map["exxeyyexy"]

elif (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["eyy"]):
el_color = color_mapl["exxeyy"]

elif (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["exy"]):
el_color = color_mapl["exxexy"]

elif (quad.eid in strain_elements["eyy"]) and (quad.eid in strain_elements["exy"]):
el_color = color_map["eyyexy"]

elif quad.eid in strain_elements["exx"
el_color = color_map["exx"

elif quad.eid in strain_elements["eyy"]:
el_color = color_mapl["eyy"]

elif quad.eid in strain_elements["exy"]:
el_color = color_mapl["exy"]

else:
el_color = color_map["inactive"]

x = quad.probe.xe[0::3].reshape (4)

quad.probe.xe[1::3].reshape (4)

N <
n

quad .probe.xe[2::3].reshape (4)

if np.all(z==0):
ax=0
zipped = list(zip(x, y))
elif np.all(y==0):
ax=1
zipped = list(zip(x, z))
elif np.all(y==np.max(node_coordl[:,2])):
ax=2
zipped = list(zip(x, z))
zipped.append (zipped [0]) #close the polygon

axes[ax].add_patch(Polygon(zipped,
edgecolor="black",

facecolor=el_color))

axes [0].set_aspect ("equal")
axes [1].set_aspect ("equal")

axes [2] .set_aspect ("equal")

axes [0].set_xlabel ("x[m]")
axes [0].set_ylabel("y[ml")

axes [1] .set_xlabel ("x[m]")
axes [1].set_ylabel("z[m]")

axes [2].set_xlabel ("x[m]")
axes [2] .set_ylabel("z[m]")

axes [0].set_x1im ([0,np.max(node_coord[:,1]1)])
axes [0].set_ylim ([0,np.max(node_coord[:,2]1)1])

axes [1].set_x1im ([0,np.max(node_coord[:,11)1])
axes [1].set_ylim ([0,np.max(node_coord[:,3]1)])

a
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axes [2] .set_x1im ([0,np.max(node_coord[:,1]1)])
axes [2].set_ylim ([0,np.max(node_coord[:,31)])

axes [0].set_title("Instrumented Elements-Deck")
axes [1].set_title("Instrumented Elements-Side Wall Right")
axes [2] .set_title("Instrumented Elements-Side Wall Left")

inactive_patch = mpatches.Patch(color=color_mapl["inactive"] , label=’Not instrumented’)

exx_patch = mpatches.Patch(color=color_map["exx"], label=’$\\epsilon_{xx}$’)

eyy_patch = mpatches.Patch(color=color_map["eyy"], label=’$\\epsilon_{yyl}$’)

exy_patch = mpatches.Patch(color=color_mapl["exy"], label=’$\\gamma_{xyl}$’)

exxeyy_patch = mpatches.Patch(color=color_mapl["exxeyy"]l, label=’$\\epsilon_{xx},
\\epsilon_{yy}$’)

exxexy_patch = mpatches.Patch(color=color_mapl["exxexy"], label=’$\\epsilon_{xx},
\\gamma_{xy}$’)

eyyexy_patch = mpatches.Patch(color=color_mapl["eyyexy"]l, label=’$\\epsilon_{yy},
\\gamma_{xy}$’)

exxeyyexy_patch = mpatches.Patch(color=color_map["exxeyyexy"], label=’$\\epsilon_{xx},
\\epsilon_{yy}, \\gamma_{xy}$’)

# plt.legend (handles=[inactive_patch, ezz_patch, eyy_patch, exy_patch, exzeyy_patch,
exzezy_patch, eyyezy_patch, exzeyyexy_patch],loc=’center left’, bbox_to_anchor=(1.07,
0.5), fontsize="20")

plt.legend (handles=[inactive_patch, exx_patch],loc=’center left’, bbox_to_anchor=(1.07, 0.5),
fontsize="15")

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
fig.savefig(save_path+f"\\2d_instrumented_usection.png")
plt.close(fig)

if show_opt:
plt.show ()

undeformed_2d_instrumented_plate (quads, node_coord, strain_elements, show_opt, save_opt,
save_path)

color_map = {"inactive": "#dOcece",
"exx": "#ffadad",
"eyy": "#ffd6ab",
"exy": "#fdffbe6",
"exxeyy": "#caffbf",
"exxexy": "#9bf6ff",
"eyyexy": "#alOc4ff",
"exxeyyexy": "#bdb2ff"}
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(12, 8),layout="constrained")

for quad in quads:

#We start from the most restrictive conditions to the least restrictive

#Depending on which strain components are insturmented, the element is highlighted in a
specifc color

if (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["eyy"]) and
(quad.eid in strain_elements["exy"]):
el_color = color_map["exxeyyexy"]

elif (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["eyy"]l):
el_color = color_map["exxeyy"]

elif (quad.eid in strain_elements["exx"]) and (quad.eid in strain_elements["exy"]):
el_color = color_map["exxexy"]

elif (quad.eid in strain_elements["eyy"]) and (quad.eid in strain_elements["exy"]):
el_color = color_map["eyyexy"]

elif quad.eid in strain_elements["exx"
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el_color = color_map["exx"

elif quad.eid in strain_elements["eyy"]:
el_color = color_map["eyy"]

elif quad.eid in strain_elements["exy"]:
el_color = color_map["exy"]

else:
el_color = color_map["inactive"]

x = quad.probe.xe[0::3].reshape (4)
y = quad.probe.xe[1::3].reshape (4)
z = quad.probe.xe[2::3].reshape (4)

zipped = list(zip(x, y))

zipped.append (zipped [0]) #close the polygon

axes.add_patch(Polygon (zipped,
edgecolor="black",
facecolor=el_color))

axes.set_aspect ("equal")

axes.set_xlabel ("x[m]")

axes.set_ylabel("y[m]")

axes.set_x1im([0,np.max(node_coord[:,1]1)1)
axes.set_ylim ([0,np.max(node_coord[:,2])])

inactive_patch = mpatches.Patch(color=color_map["inactive"] , label=’Not instrumented’)

exx_patch = mpatches.Patch(color=color_map["exx"], label=’$\\epsilon_{xx}$’)

eyy_patch = mpatches.Patch(color=color_mapl["eyy"], label=’$\\epsilon_{yy}$’)

exy_patch = mpatches.Patch(color=color_map["exy"], label=’$\\gamma_{xy}$’)

exxeyy_patch = mpatches.Patch(color=color_map["exxeyy"], label=’$\\epsilon_{xx},
\\epsilon_{yy}$’)

exxexy_patch = mpatches.Patch(color=color_map["exxexy"], label=’$\\epsilon_{xx},
\\gamma_{xy}$’)

eyyexy_patch = mpatches.Patch(color=color_map["eyyexy"]l, label=’$\\epsilon_{yy},
\\gamma_{xy}$°’)

exxeyyexy_patch = mpatches.Patch(color=color_map["exxeyyexy"]l, label=’$\\epsilon_{xx},
\\epsilon_{yyl}, \\gamma_{xyl}$’)

# plt.legend(handles=[inactive_patch, ezz_patch, eyy_patch, exzy_patch, ezzeyy_patch,

exzezy_patch, eyyexzy_patch, exzeyyexy_patch],loc=’center left’, bbox_to_anchor=(1.07,
plt.legend (handles=[inactive_patch, exx_patch],loc=’center left’, bbox_to_anchor=(1.07,

fontsize="20")
plt.show()

if save_opt:
if not os.path.exists(save_path):
os.makedirs (save_path)
fig.savefig(save_path+f"\\2d_instrumented_plate.png")
plt.close(fig)

if show_opt:
plt.show ()

0.5))
0.5),

Listing C.8: plotters.py

wun

Solwing 41FEM for a plate.

Input files:
- Node_coordinates.zlsz : mesh node coordinates
- Element_Nodes.zlsz: correspondence of nodes to each element

- StrainResults.zlsz: the input strain
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- w_fact_dict.json: dictionary containing optimum w for each strain configuration

- alfa_fact_dict. json: dictionary containing optimum alfa for each strain configuration

Make sure to change:
- t depending on plate thickness (unit of t determines wunit of obtained displacements)

- bk depending on desired BC’s

Processing Options:
- Gauss_points_weights: type of integration
- SEA (Smoothed Element Analysis) strain pre-exztrapolation
- isotropic material
- location of strain calculation: top/mid or bottom of the plate.
- betaSEA. Beta coefficient for curvature control in SEA.
- drllingfact. Artificial stiffness added to SEA.

Post -processing options:

The analysis case, subcase and strain configuration are used for creating folder architecture.
They are used to retrieve input data and to save the output inm a mirrored folder which 1is
also created by the code. An analysis case uses the same geometry and mesh. An analysis
subcase can wary in terms of loading or BC. The strain configuration refers to different

sensing networks.

nwun

#IMPORTS

#Python Libraries
import sys
sys.path.append(’..?)

import numpy as np
import scipy

import pandas as pd
import json

#Developed Libraries

from pyife3d.plotters import deformed_3D, undeformed_3D, undeformed_3D_instrumented,
nodal_contour2D, perc_error

from pyife3d.helpers import Gaussian_option, form_global_matrices, format_strain_data,
read_iFEM_files, assemble_strain_elements, K_conditioning_number

from pyife3d.iFEM_main import iFEM

from pyife3d.iFEM_main_SEA import strain_extrapolation, iFEM_SEA

# ___________________________________________________________________________________________________
#0PTIONs

SEA_opt = False

Gauss_points_weights = np.asarray(Gaussian_option(Gauss_type="3-point"))

isotropic = True

location = "mid" #"top" "mid" "bot"

#INPUT DATA
t = #[m] plate thickness

h = t/2 #[m] half thickness

analysis_case = "Insert Name of Analysis Case"
analysis_subcase = "Insert Name of Analysis Subcase"
strain_configurations = [

# "Configuration 1",

# "Configuration 2",

"Configuration 3",

#Composite
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mat_direction = np.array([[1],
fol,

[01]1) #For ezample, principal direction is aligned with global X azis

input_file_root = f"iFEM examples\{analysis_case}\Macro Input\{analysis_subcasel}\\"

#For mnon-SEA
with open(input_file_root+"w_fact_dict.json", ’r’) as json_file:
w_fact_dict= json.load(json_file)

#for SEA
if SEA_opt:
with open(input_file_root+"alfaSEA_dict.json", ’r’) as json_file:
alfaSEA_dict= json.load(json_file)
alfa_dict = alfaSEA_dict

betaSEA = le-4
drllingfact = 1le-5

#0ptions for saving and siplaying the generated graphs
show_opt = False

save_opt = True

cond_number_bool = False

component_dict = {"exx":1,"eyy":2,"exy":3}

for strain_configuration in strain_configurations:

w_fact = w_fact_dict[strain_configuration]
if SEA_opt:
alfaSEA = {"exx":alfa_dict[strain_configuration],

"eyy":alfa_dict[strain_configuration],

"exy":alfa_dict[strain_configurationl}

#READ FILES
#These files will stay the same for a strain configuration no matter which component is
extrapolated
input_file_root = f"iFEM examples\{analysis_case}\Macro Input\{analysis_subcasel}\\"
node_coord, element_nodes, strain_data = read_iFEM_files(
path_node_coord=input_file_root+’Node_coordinates.xlsx’,

path_element_nodes=input_file_root+’Element_Nodes.xlsx’,

path_strain_data=input_file_root+f"{strain_configuration}\StrainResults

#FORMAT DATA
#Extracting number of nodes and elements
(N_elements, _) =np.shape(element_nodes)

(N_nodes, _) =np.shape(node_coord)

strain_gauge_top,strain_gauge_bot = format_strain_data(N_elements,strain_data)
strain_elements = assemble_strain_elements(strain_gauge_top)
# _______________________________________________________________________________________________

#ELEMENT ITERATION
if SEA_opt:

SEA_U_dict_top = {} #dictionary to store our SEA results
SEA_U_dict_bot = {}

#Bending only shortcut

# component_dict = {"exzz":1}

xlsx")
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#Top Plate interpolation
for component in component_dict:
#Reformat the strain measurements for SEA
strain_elementsSEA = strain_elements[component]
strain_gauge = np.zeros((len(strain_elementsSEA) ,2)) #format of this 4s ELEMENT ID
strain measurements

strain_gauge[:,0] = strain_elementsSEA

strain_gauge [:,1]

strain_gauge_top [(strain_gauge[:,0]-1).astype(int),component_dict[component]]

#Strain extrapolation

quads, probes = strain_extrapolation(alfaSEA[component], betaSEA, drllingfact,
N_elements ,element_nodes ,node_coord,strain_gauge, strain_elementsSEA,
Gauss_points_weights)

DOF=4

#Asssembling global matrices using generated local matrices
K, F = form_global_matrices (quads=quads,N_nodes=N_nodes ,DOF=DOF)

U = scipy.linalg.solve(K,F)
SEA_U_dict_top[component] = U

#Bottom Plate interpolation
for component in component_dict:
#Reformat the strain measurements for SEA
strain_elementsSEA = strain_elements[component]
strain_gauge = np.zeros((len(strain_elementsSEA) ,2)) #format of this 4s ELEMENT ID
strain measurements
strain_gauge[:,0] = strain_elementsSEA
strain_gauge[:,1] =
strain_gauge_bot [(strain_gauge[:,0]-1).astype(int),component_dict[component]]

#Strain extrapolation

quads , probes = strain_extrapolation(alfaSEA[component], betaSEA, drllingfact,
N_elements ,element_nodes ,node_coord,strain_gauge, strain_elementsSEA,
Gauss_points_weights)

DOF=4

#Asssembling global matrices using genmerated local matrices

K, F = form_global_matrices(quads=quads,N_nodes=N_nodes,DOF=DOF)
U = scipy.linalg.solve(K,F)
SEA_U_dict_bot [component] = U

#Bending only shortcut

SEA_U_dict_top["eyy"] = np.zeros(np.shape(SEA_U_dict_top["ezz"]))
SEA_U_dict_top["exy"] = np.zeros(np.shape(SEA_U_dict_top["exz"]))
SEA_U_dict_bot["eyy"] = np.zeros(np.shape (SEA_U_dict_bot["exz"]))
SEA_U_dict_bot["exy"] = np.zeros(np.shape(SEA_U_dict_bot["exz"]))

®* W R R W

#Using the pre-extrapolated strains, run now <FEM

quads, probes = iFEM_SEA(N_elements,element_nodes ,node_coord, strain_gauge_top,
strain_gauge_bot, strain_elements, h, Gauss_points_weights,w_fact, isotropic,
mat_direction, SEA_U_dict_top, SEA_U_dict_bot, location)

DOF=6

else:
#No pre-extrapolation %is Run
quads , probes = iFEM(N_elements,element_nodes ,node_coord, strain_gauge_top,

strain_gauge_bot, strain_elements, h, Gauss_points_weights ,w_fact, isotropic,

/

/
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df

df .to_excel(saving_path+f’\\ResultsU_{location}.xlsx’, index=False)

mat_direction, location)
DOF=6

#Asssembling global matrices using generated local matrices
K, F = form_global_matrices(quads=quads,N_nodes=N_nodes ,DOF=DOF)

#BOUNDARY CONDITIONS
bk = np.zeros(N_nodes*DOF, dtype=bool) #constrained DOF’s

#Here you can hard code your boundary conditions.
#The exzample contains a cantilevered BC at z=0
check = np.isclose(node_coord[:,1], 0.)

bk [0::DOF] = check

bk [1::DOF] = check

bk [2::DOF] = check

bk [3::DOF] = check

bk [4::DOF] = check

bk [5::DOF] = check

#SOLVING THE SYSTEM

Ku = K[:,bul [bu,:]

Fu F[bu]

Uu = scipy.linalg.solve(Ku,Fu)
U = np.zeros ((N_nodes*DOF,1))
Ulbul = Uu

#PLOTTING
if SEA_opt:
saving_path = f"iFEM examples\{analysis_case}\Results\{analysis_subcase}\iFEM
SEA\{strain_configurationl}"
else:
saving_path = f"iFEM

examples\{analysis_case}\Results\{analysis_subcase}\iFEM\{strain_configuration}"
undeformed_3D (quads=quads ,show_opt=show_opt, save_opt=save_opt, save_path=saving_path)

deformed_3D (quads=quads ,U=U,DOF=DOF, show_opt=show_opt, save_opt=save_opt,

save_path=saving_path, location=location)

undeformed_3D_instrumented (quads=quads, strain_elements=strain_elements, show_opt=show_opt,

save_opt=save_opt, save_path=saving_path)
interest_vars = ["T3"]

for interest_var in interest_vars:
nodal_contour2D (node_coord=node_coord, U=U, DOF=DOF, plot_var=interest_var,
show_opt=show_opt, save_opt=save_opt, save_path=saving_path, location=location)

# COMPUTE ERROR
if interest_var == "T3":
perc_error (node_coord=node_coord,calculated_var=U[2::D0OF], N_nodes=N_nodes,
strain_elements=strain_elements,
reference_path=input_file_root+"Reference_U3.xlsx", name_var=interest_var,
show_opt=show_opt, save_opt=save_opt, save_path=saving_path, location=location)

pd.DataFrame (U)
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Listing C.9: template.py
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