
Design of an Electronic Speed Controller

Sub-group: Communication and Sensing

B.Sc. Thesis
by Ruben Vos and Quinten Luyten

15 June 2023

DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS
AND COMPUTER SCIENCE

ELECTRICAL ENGINEERING PROGRAMME

This thesis has been prepared with contributions from:

Student numbers 5244803 (Quinten Luyten)
5268966 (Ruben Vos)

Fusion Engineering Project proposer
Thesis comittee Dr. Jianning Dong TU Delft Supervisor

Prof. Dr. Andrea Neto
Prof. Mansureh Shahraki Moghaddam

2

Abstract

This thesis is part of a project where a 120A, 50V (12S Lithium-Polymer battery) electronic speed controller (ESC)
with Bidirectional DShot600 support is prototyped. This thesis focuses on the communication and sensing aspects
of the ESC. It discusses the implementation of the DShot communication protocol on an STM32G431KBT6
microcontroller. Also, the microcontroller senses phase currents and phase voltages from a BLDC motor and has
to provide all the necessary information and processing resources for a control algorithm to be implemented. A
PCB is designed to break out all the required interfaces of the microcontroller. Lastly, temperature management is
implemented to prevent overheating of the inverter hardware by means of throttling. The DShot implementation
has full bidirectional functionality with 3.4% package corruption. All sensor values are accurately provided to the
control algorithm, and temperature and speed information are provided as DShot telemetry. Due to time constraints
and lack of integration with the control algorithm, the behavior during anomalies such as power interrupts is not
yet thoroughly tested.

Preface

This thesis was drawn in the context of the Bachelor Electrical Engineering Graduation project (BAP) for the
graduation year 2023 at the TU Delft. The thesis was made in close collaboration with the other subgroups
working on the Electronic Speed Controller.
We would like to thank Dr. Jianning Dong for his advice and supervision of the project. We are very thankful to
Fusion Engineering for providing the project proposal, funding, and advice on the implementation of the DShot
interface. We would also like to thank Ron van Puffelen for his advice on PCB design, and the DCE&S Lab staff
for providing test fixtures.

Contents

1 Introduction 7
1.1 Problem definition . 7
1.2 System Overview . 7
1.3 Synopsis . 8
1.4 State-of-the-art Analysis . 8

1.4.1 Analog communication protocols . 8
1.4.2 DShot . 9
1.4.3 Available Controllers . 9
1.4.4 Sensor Readout . 10

2 Design Requirements 11
2.1 Electrical requirements . 11
2.2 DShot and telemetry requirements . 11
2.3 Speed requirements . 11
2.4 Fault protection requirements . 11
2.5 Financial and organizational requirements . 12
2.6 Planning requirements . 12
2.7 Interoperability requirements . 12

3 Definition of the DShot protocol 13
3.1 Bidirectional DShot . 13
3.2 Extended Telemetry . 14

4 Design Considerations 15
4.1 Choice of controller . 15
4.2 Choice of microcontroller series . 15
4.3 Choice of zero-crossing detection method . 16

4.3.1 Analog comparator . 17
4.3.2 Digital integration . 17

5 PCB design 19
5.1 First Prototype . 19

5.1.1 Summary of prototype PCB features . 19
5.1.2 Lessons learned from the first prototype . 20

5.2 Final Prototype . 20
5.2.1 Power supplies . 20
5.2.2 Digital interfaces . 21
5.2.3 Analog interfaces . 21
5.2.4 Effects of non-idealities . 22

6 Programming of the microcontroller 23
6.1 DShot front end . 23
6.2 DShot package processing . 24
6.3 Analog sensor readout . 24
6.4 Temperature sensor readout . 24
6.5 Temperature managment . 25

4 CONTENTS

7 Prototype testing and analysis 27
7.1 DShot Processing time . 27
7.2 DShot package corruption . 28
7.3 ADC Accuracy . 28

8 Conclusion, Discussion, and Outlook 31
8.1 Conclusion . 31
8.2 Discussion . 32

8.2.1 Implementation of DShot . 32
8.2.2 Alternative Communication protocols . 32
8.2.3 Choice of controller . 32
8.2.4 Measurement accuracy . 32

8.3 Recommendations and Future Work . 32

A PCB design 37

B MCU Prototype mapping 41

C C code 43
C.1 Shortened main.c file . 43
C.2 DShot.c . 46
C.3 Shortened tim.c file . 50
C.4 Shortened stm32g4xx it.c file . 51

Glossary of frequently used terms

ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
BEMF Back Electromotive Force - A voltage induced over the motor windings due to the rotation of the rotor magnets
BLDC Brushless DC motor - a synchronous three-phase motor with permanent magnets
Control The algorithm that controls the inverter bridges based on sensor data
Controller The integrated circuit(s) responsible for logic, control, and communication
CORDIC Coordinate rotation digital computer - a trigonometric algorithm
CRC Cyclic Redundancy Check
DAC Digital to analog converter
DShot Digital ESC communication protocol used on drones
DSP Digital Signal Processor, a kind of microcontroller aimed at signal processing and control
eRPM Electrical rotations per minute - 60 · felectrical
EMI Electromagnetic Interference
ESC Electronic Speed Controller - A motor controller meant for small, high speed 3-phase motors
flight controller The main processor on an aircraft that processes sensor data and user commands [1]
FOC Field-Oriented Control - motor control algorithm
FPGA Field Programmable Gate Array
GCR Group Coded Recording - A method for transmitting serial data through a bandwidth limited channel
GPIO General Purpose Input/Output pin on an MCU or FPGA
JTAG Joint Test Action Group - A programming and debugging interface for MCUs and FPGAs
IDE Integrated Development Environment
LiPo Lithium Polymer battery
MCU Microcontroller Unit - a processor (integrated circuit) for embedded applications
MSB first The Most Significant Bit is transmitted first in time
PCB Printed circuit board - fibreglass plate with circuit traces
PMSM Permenant Magnet Synchronous Motor
SPI Serial Peripheral Interface - a high speed communication interface
SMD Surface mount device - electronic components mounted on a PCB
SWD Serial Wire Debug - A programming and debugging interface for ARM Cortex MCUs
USART Universal Synchronous or Asynchronous Receiver Transmitter

6 CONTENTS

Chapter 1

Introduction

1.1 Problem definition

The bachelor graduation project topic was proposed by Fusion Engineering [2]. The company is in need of a
high-power ESC (Electronic Speed Controller), since the current high-power ESCs on the market are unreliable
or lack specific features. The following points are the main objective of the project, with only the first two being
applicable to this thesis.

• The ESC should support DShot600, which is a digital protocol designed for communication between flight
controllers and ESCs on drones.

• Since reliability is key, the ESC should transmit emerging problems such as overheating back to the flight
controller, such that appropriate action can be taken.

• The ESC must operate at a supply voltage from 36 up to 50.4 volts and draw 120A continuously.

The main constraints limiting the project are time and budget constraints. The ESC design and its respective thesis
should be completed in two months, with a limit to the cost of components for prototyping.

1.2 System Overview

Figure 1.1: Overview and division of the ESC project

The ESC consists of a communication interface, a control algorithm, and a hardware design. Figure 1.1
shows how the project is divided into modules. The first modules, shown in red, fall under the responsibility of
the communication and sensing subgroup. This module provides the interface between the flight controller and
the ESC. It also facilitates communication between the different modules within the ESC. These are the control
module, shown in blue, and the inverter module, shown in green. The control module is responsible for driving

8 Introduction

the inverter in such a way that the motor can reach the speed that is commanded by the flight controller. This
is done by sending the duty cycles to the inverter. The design and assembly of the inverter is the task of the
hardware subgroup. This subgroup needs to make sure that the inverter can operate at the required currents and
voltages. They also do current and voltage measurements that are necessary for the control algorithm. Temperature
measurement is also to be implemented by this subgroup, which is referred back to the flight controller through
the communication interface.

1.3 Synopsis

The thesis can be divided into two main parts. Firstly, it describes the design process of a high-power ESC con-
troller. Secondly, it discusses the testing of the communication algorithm and the accuracy of digitization of sensor
readings.

Design requirements are set in Chapter 2. From those, a controller is chosen that fits the requirements (Chap-
ter 4). For that controller, a PCB (Printed Circuit Board) is designed to make all the necessary features available
(Chapter 5). Next, Chapter 6 discusses the software implementation of these features. Also, Chapter 3 gives a
precise definition of DShot.

Figure 1.2 shows the breakdown of the communication and sensing submodules and how they are integrated.
The DShot line is the physical wired connection between the flight controller and the ESC. It interfaces with the
DShot transmitter and receiver on the ESC (Section 6.1). These modules provide the interface between the phys-
ical signal and the software that runs on the controller. Also, the necessary sensor values are read through ADCs
(Section 6.3) and an SPI interface (Section 6.4).

Figure 1.2: Overview of how the communication and sensing modules interface with each other

An important part of the discussion is the effectiveness of the DShot algorithm compared to more common pro-
tocols. Therefore, the error rate and CPU utilization of the DShot implementation are tested. Also, the ADCs
are tested to estimate their accuracy, since the control algorithm requires accurate data to be effective. The ADCs
have an LSE of 0.25% and a maximal integral non-linearity (INL) of 2.1% (Section 7.3).

1.4 State-of-the-art Analysis

1.4.1 Analog communication protocols

Different communication protocols are used on drones to transmit data between the flight controller of the aircraft
and the motor controllers. Of these, DShot has quickly become the most popular [3] because of reasons explained
in Section 1.4.2.
PWM, Oneshot, and Multishot are analog protocols that all use the duty cycle of a data packet as a direct measure
of the requested throttle value. These protocols are not thoroughly discussed, but can be a useful alternative to
DShot if problems occur during implementation.

1.4 State-of-the-art Analysis 9

PWM has a very low update rate. Oneshot and Multishot are defined in the same way as PWM, but with shorter
pulse lengths, which means that the maximal update rate can be higher.

Figure 1.3: PWM protocol. The protocol is often used to indicate angles for servo motors, but can also be used to
transmit throttle values.

1.4.2 DShot

DShot, short for Digital Shot, is a standard communication protocol for ESCs first introduced in the Betaflight
flight control firmware [4]. The protocol sends the throttle value calculated in the flight controller to the ESC. The
biggest difference between DShot and other protocols is that DShot is digital, which has significant benefits in
comparison to the analog counterparts. These benefits include:

• Error checking, DShot has bits reserved to guarantee to a reasonable degree that the data is or is not corrupted
in transmission.

• More accurate throttle values

• Possible two-way communication on one wire

• Precise communication requests

• Throttle values received are not noisy which ensures more stable motor control

There are also downsides to using DShot:

• When a bit is corrupted, the entire package is thrown out which can cause the ESC to be unable to be
communicated to, while in the analog version, the data just gets noisy. This means that in highly noisy
areas, communication could get difficult.

• Although DShot is fast, it does not use its available bandwidth optimally, since time is used for error check-
ing and radio-silence between packages.

• If the connection between the flight controller and the ESC is long and/or of low quality, there can be too
much capacitance on the line, which causes an increase in the slew rate. Because of the high bit rate of
DShot, bits can get corrupted if the slew rate is too large. This problem affects all digital communication
protocols.

The DShot algorithm is already implemented in many ESCs. For example, the open source BLHeli [5] and Bluejay
[6] firmware have full support for DShot. The precise definition of DShot is given in Chapter 3

1.4.3 Available Controllers

FPGA

An FPGA (Field Programmable Gate Array) consists of arrays of programmable logic gates. Their main advantage
over MCUs or DSPs is the amount of parallelism. In an FPGA, different computations can be done in parallel,
whereas single-core MCUs can only execute one function at a time [7].

10 Introduction

MCU

MCUs or Microcontroller Unit is a CPU with volatile memory, storage, and peripheral interfaces integrated into
one chip. They are usually programmed using C(++) or assembly and come with many features found in embedded
devices such as ADCs (Analog to Digital Converters), timers, hardware modules for I2C, SPI, and UART. Some
MCUs even have multiple cores.

Hybrid approach

Both MCUs and FPGAs have their benefits. FPGAs are better at real-time calculations and performing highly
repetitive tasks [8]. MCUs are better at performing changing calculations, such as determining parameters through
complex arithmetic [8]. It is possible to split the tasks accordingly, with an FPGA functioning as the DShot
decoder and the pulse generator, and a DSP or MCU used for the control algorithm. However, the drawbacks of
this approach are a larger product size, since it needs to house two controllers, and possibly a higher cost. This
higher cost can be offset by lower individual needs of the components: a very small FPGA and MCU are sufficient
in the hybrid approach.

Trigonometric Calculations

For some control algorithms, a lot of trigonometric calculations have to be performed. To meet this requirement,
the controller must be able to perform these calculations. These trigonometric calculations require a lot of hard-
ware in both an FPGA and an MCU [9]. In an MCU, it takes many clock cycles to calculate a simple sine if there
is no hardware module for it. In an FPGA, a lot of area needs to be reserved for the operation since it requires a
large algorithm. When no precise values are needed, estimations can reduce clock cycles or area for the trigono-
metric calculations. A simple estimate is a lookup table, in which precise results for inputs of a trigonometric
operation are stored. If the controller wants to perform a trigonometric operation, it can look at the table and
linearly interpolate between the two nearest values.

1.4.4 Sensor Readout

For stable motor control, sensor readouts are needed. These include but are not limited to phase voltages and
phase currents. Besides this, it is also useful to have temperature readouts to prevent component breakdowns.

Current measurement

From the hardware subgroup, it’s determined that analog sensors are cheaper and smaller. To let the controller
interpret this, the analog signal has to be converted to DC. Various ADCs are available on the market. Certain
inverter algorithms introduce harmonic distortion in the phase currents, which introduces the need for a low-pass
filter before the ADC [10]. Errors in the current measurements, such as an offset or a scaling error, can propagate
through the control loop and cause significant torque ripple [11]. The time delay caused by the processing of the
current measurement can also impact the control loop [12].

Temperature measurement

For temperature measurement, there is no risk of errors propagating through the control loop, but the accuracy of
the measurements is still important to prevent overheating.

Chapter 2

Design Requirements

The company Fusion Engineering tasked us with designing an Electronic Speed Controller (ESC) that can supply
120 amps from a 12s Li-Po battery. It should communicate with the flight controller using the Bi-directional
DSHOT600 protocol, and work for the motors they use in their projects. Fusion Engineering prioritizes reliability
over everything else, since ESC failures can cause an aircraft to crash. Efficiency is nice to have, but not a priority.
The ESC will operate in a low airflow environment in the body of the aircraft. The ESC must function with the “T
motor mn501-s 240kv” PMSM motor.

2.1 Electrical requirements

• The ESC must operate at a supply voltage from 36V up to 50.4V.

• The ESC must be able to draw 120 A continuously from the DC bus.

2.2 DShot and telemetry requirements

• The controller must be fully compatible with the extended bidirectional DShot 600 protocol.

• The current consumption and temperature of the ESC must be successfully received by the flight controller
at least every 100 ms as DShot telemetry data.

• The telemetry data (electrical period in µs) must be successfully received by the flight controller at least
every 1 ms.

• The ESC must be able to operate at the required bandwidth when 90% of DShot packages are corrupted in
transmission.

2.3 Speed requirements

• The ESC must at least have an operating electrical frequency range from 0 up to 2333 Hz.

2.4 Fault protection requirements

• The controller must be able to detect when the temperature of the MOSFETs approaches their rated operat-
ing temperature and indicate the problem to the flight controller using DShot telemetry.

• The controller must actively prevent the temperature of the MOSFETs from exceeding their operating tem-
perature.

• The ESC must be able to restart without intervention after power interrupts of any duration.

• The ESC must be able to run continuously at its rated supply current and voltage for at least 30 minutes.

12 Design Requirements

• The communication interface should forward any of the following anomalies detected by the control algo-
rithm to the flight controller using DShot telemetry:
- Sequences of faulty measurements
- Unexpected changes in speed

2.5 Financial and organizational requirements

• The bill of materials of the final prototype must not exceed C100.

• The total cost of prototype orders, such as components and PCBs, must not exceed C500.

• The bill of materials of the final prototype hardware used by the communication subgroup should be below
C30.

2.6 Planning requirements

• The thesis must be completed by the 15th of June.

• Each subsystem must be fully working by the 30th of June

2.7 Interoperability requirements

• The controller must supply a minimum switching speed of 100 kHz.

• The controller must run on a supply of 3.3 V.

• The controller must read one temperature measurement, transmitted over SPI to the controller.

• The controller must read three-phase current measurements, transmitted as three analog signals with a range
from 0 to 3.3 V.

• The controller must read three-phase voltage measurements, transmitted as three analog signals with a range
from 0 to 3.3 V.

• The controller must supply the phase current and phase voltage measurements available to the control algo-
rithm as digital values.

• The digital values must not have more than 0.25 % full range output linearity error with respect to the best
fit straight line over the entire signal range at room temperature.

• The controller must supply the throttle requested by the flight controller to the control algorithm as a digital
value.

• The controller must supply the six switching signals from the control algorithm to the gate drivers.

Chapter 3

Definition of the DShot protocol

DShot has a 16 bits frame in the following order:

• 11 bits, for throttle values

• 1 bit, for requesting telemetry

• 4 bits, for error checking using CRC (Cyclic Redundancy Check)

With 11 bits for throttle, a total of 2048 possible values can be used. The value ’0’ is reserved for NOP and the
values ’1’ until ’47’ are used for special commands [13].

To send the bits over the line, a ’0’ and a ’1’ need to be distinguished from each other and from silence. This
is done by having different duty cycles. The duty cycle of a ’1’ is always double that of a ’0’. The numbers that
are declared after DShot equal the bit rate in kbits, so DShot300 has a bit rate of 300kbit/s. The precise timings
can be found in Table 3.1 [13].

Table 3.1: Data Timings of different DShot versions [13]

DSHOT Bit rate T1H (µs) T0H (µs) Bit (µs) Frame (µs)
150 150kbit/s 5.00 2.50 6.67 106.72
300 300kbit/s 2.50 1.25 3.33 53.28
600 600kbit/s 1.25 0.625 1.67 26.72
1200 1200kbit/s 0.625 0.313 0.83 13.28

This would mean that the maximal update rate of the ESC is capped by the frame length. However, the control
algorithm on the flight controller of a quadcopter usually has a slower update rate than the maximal speed of
DShot.

3.1 Bidirectional DShot

Bidirectional DShot lets the ESC send back an “eRPM” telemetry package between the messages sent by the
flight controller. This telemetry package contains the time of one electrical period in microseconds. It lets the
flight controller keep accurate control of the rotational speeds of the different motors. In Bidirectional mode, the
DShot signal is completely inverted, meaning that the duty cycle is considered when the signal is low. Also, the
CRC is the inverse of the CRC used for standard DShot.

Since telemetry is sent back between each message, the rate of frames that can be sent is halved. The teleme-
try bit is still used to request extra telemetry through another line. The eRPM frame that is sent back to the flight
controller has the following bit structure:

• 3 bits, Exponent, amount that the mantissa value needs to be shifted to the left.

• 9 bits, Mantissa, value for the electric period in µs.

• 4 bits, Error detection code. The CRC is the inverse of the CRC used for standard DShot.

14 Definition of the DShot protocol

Figure 3.1: Bidirectional DShot600 throttle frame. The throttle requested by the flight controller is “01101010001”
(decimal 849). The data is shown in black, the telemetry bit in red and the CRC bits in green.

Figure 3.2: DShot telemetry frame using the differential GCR (Group Coded recorded) encoding [13]. The
transmission scheme is also different from the throttle packages. The red bit is the start bit, the black bits contain
the telemetry data, and the green bits encode the CRC. The decoded package is “0x0c8b”: Exponent = 0, Mantissa
= 200, CRC = “1011”.

Telemetry type Header
Temperature 0010

Voltage 0100
Current 0110
Debug 1 1000
Debug 2 1010

Stress 1100
Status 1110

Table 3.2: The different extended telemetry types and their prefix [14]

It must be noted that this 16-bit telemetry frame is first encoded with differential GCR encoding before being
transmitted [13], making it a 21-bit long package.

3.2 Extended Telemetry

In the Extended Telemetry version of DShot, the Bidirectional DShot protocol is further expanded by replacing
some eRPM frames with other telemetry data, such as temperature or current measurements done by the ESC [14].
Every telemetry type receives its own 4-bit prefix (Table 3.2, after which a value can be appended. The packages
are then processed like normal eRPM frames as explained in Section 6.2.

Chapter 4

Design Considerations

4.1 Choice of controller

A motor controller contains an inverter that needs to be driven with precisely timed digital signals. Also, phase
currents and voltages need to be measured for the control algorithm to determine the state of the motor (Section
2.7). Chapter 1.4.3 lists the currently available devices that satisfy these requirements. The following table
summarizes the features of the different options:

FPGA Microcontroller ASIC

Main features Programmable parallel
logic Embedded CPU High-volume application

specific hardware

Parallelism [15] Easy Dependent on hardware
modules Easy

Timing precision Single clock cycle Dependent on instruc-
tion execution Single clock cycle

Analog interfaces External Built-in Flexible
Hardware Implementation Multi-Chip [16] Single-Chip Time-consuming

Hardware
Development time [15] Weeks Days Months

Trigonometric calculations Consumes lots of avail-
able space [9]

Lots of Clock Cycles or
dedicated built-in hard-
ware[17]

Consumes lots of avail-
able space [9]

Table 4.1: Comparison of FPGAs, Microcontrollers, and ASICs

Due to the prohibitively large development cost, both in time and money, an ASIC is not a viable option for the
development of the motor controller (Section 2.5 and 2.6). FPGAs offer many benefits over microcontrollers but
suffer from a more expensive and difficult hardware implementation [18]. FPGAs need an external flash chip,
since they usually do not have built-in configuration memory [15]. Also, they are more expensive than similarly
capable microcontrollers and rarely have integrated analog components such as ADCs, DACs and comparators.
Due to the severe time limitations on the project, and the previous experience of the authors with microcontrollers,
it was decided to implement a microcontroller on the ESC.

4.2 Choice of microcontroller series

The following requirements have an impact on the choice of the microcontroller:

• The ESC must be able to communicate using the extended Bidirectional DShot 600 protocol (Section 2.2).

• The controller must supply a minimum switching speed of 100 kHz (Section 2.7).

• The controller must run on a supply of 3.3 V (Section 2.7).

• The controller must read a temperature measurement, transmitted over SPI to the controller (Section 2.7).

16 Design Considerations

• The controller must read three phase current measurements, transmitted as three analog signals with a range
from 0 to 3.3 V (Section 2.7).

• The controller must read three phase voltage measurements, transmitted as three analog signals with a range
from 0 to 3.3 V (Section 2.7).

• The digital values must not have more than 0.25 % full range output linearity error with respect to the best
fit straight line over the entire signal range at room temperature (Section 2.7).

• The controller must supply the requested eRPM available to the control algorithm as a digital value (Section
2.7).

• The controller must supply the six switching signals from the control algorithm to the gate drivers (Section
2.7).

• The bill of materials of the prototype hardware used by the communication subgroup should be below C30
(Section 2.5).

In contrast with FPGAs, which are only manufactured by a few companies, there is a very wide selection of mi-
crocontroller manufacturers. It is impossible to compare all of them in this section, which is why we focus on
only one series. The STM32 series of microcontrollers are commonly used in the hobby quadcopter space [1],
which makes it an obvious consideration for the controller, with lots of tutorials and community support. ST Mi-
croelectronics also provides clear implementation manuals [17] and datasheets. Other microcontrollers, such as
the SiLabs EFM8 [19] or Atmel Atmega series, have relatively low performance, since they are 8-bit MCUs with
relatively simple timers and other peripherals. This means that prototype code has to be more efficiently written in
order to function properly, since timing is an important requirement of the microcontroller. Digital Signal Proces-
sors such as those supplied by Texas Instruments are very well suited for the application at hand, but are relatively
expensive [20].

Plenty of high-resolution analog pins are needed to satisfy the requirements for the microcontroller. At least 9
bits of resolution are needed to reach the linearity requirement: log2 0.25% = −8.644. The STM32 offers 2
ADCs of 12-bit resolution, with up to 12 channels for each ADC [21]. All STM32 microcontrollers operate on
a single supply voltage of 3.3 Volts and have at least 26 GPIO pins, which makes them easy to implement with
enough connectivity for all the required interfaces of the motor controller.

Two features which set the STM32G431 apart are the inclusion of a trigonometric processing unit and its low
price. The trigonometric unit uses the CORDIC algorithm [21] and operates independently of the main process-
ing core. The manufacturer’s recommended retail price ranges from $2 to $5, placing it well within the budget
constraints (Section 2.5, even when accounting for the cost of the PCB and all other required passive components.
The 32-pin variant of this chip is easier to route on a PCB and has a larger pin pitch, allowing for easier soldering
and testing. Finally, since the 32-pin package (type K) offers enough pins for the application at hand, this package
was chosen.

For the DShot protocol, the time between two edges needs to be measured. For this, the MCU must have enough
clock cycles to process every edge. Next to executing the code for the edge detection, the MCU must also run
the control algorithm. The STM32G431 has a clock frequency of up to 170MHz. DShot600 is being used, which
means that the bit rate equals 600 kHz (Chapter 3). Each bit has two edges, which means that the edge frequency
equals 1.2 MHz. This MCU has therefore 140 clock cycles available to process every signal edge. If it is assumed
that the control algorithm will take 50% of those cycles then the interrupt has 70 clock cycles to execute, which
should be sufficient.

Other 32-bit microcontrollers with sufficiently advanced peripherals which could fit the project requirements are
the NXP LPC series, which are also based on the ARM Cortex architecture [22]. However, these are used less
frequently in drone applications.

4.3 Choice of zero-crossing detection method

The control algorithm does not need the BEMF (Back Electromotive Force) voltage readings itself. Instead, phase
information should be extracted from the BEMF by detecting the zero crossings of the BEMF. There are two
possible methods to detect zero crossings in the BEMF from a brushless motor. The phase voltages can either be

4.3 Choice of zero-crossing detection method 17

Figure 4.1: Analog comparator method [24]

compared with the neutral voltage using an analog comparator, or the phase voltages are integrated. This section
does not go in depth into the mathematics or sampling and control theory, since that is covered in the control
subgroup thesis [23].

4.3.1 Analog comparator

The STM32 microcontroller contains 4 analog comparators, which can be used to detect the sign of the BEMF
with respect to the neutral voltage, as shown in Figure 4.1. The main features of this method are:

• requires few calculations, leaving the CPU free for other tasks.

• reacts very quickly, with an interrupt being triggered on a sign change.

• sensitive to noise, which can cause false triggers or requires a large hysteresis to be configured. A large
hysteresis requires a large amplitude of the BEMF, meaning that it does not work at low motor speeds.

• requires more external components (resistors and capacitors) and it requires six analog pins on the micro-
controller for the three comparators.

During testing, it is noticed that the false trigger rate is extremely large. When the input signal has an amplitude
of less than 200 mV, which is equivalent to 15% throttle, it is impossible to discern zero crossings from external
interference. This also happens when the largest possible hysteresis is configured in the comparator.

4.3.2 Digital integration

If samples of the analog signal are taken at a high enough frequency, the samples can be added to perform digital
integration. Figure 4.2 shows a simulation of how the zero crossing can be found by searching for the maximum
of the integral. In Figure 4.2, random noise is introduced with a range of (−0.25, 0.25). The main features of this
method are:

• It is very resilient to interference and does not produce multiple triggers when more than one zero crossing
occurs due to noise.

• It requires some calculations, consisting mainly of additions.

• Fewer external components are needed compared to an analog comparator.

• Only three analog pins on the microcontroller are needed for sensing the three phases.

18 Design Considerations

Figure 4.2: Using digital integration, the maximum of the integral of the BEMF is found. This simulation shows
that this method is very resilient to noise or interference.

Although this method has not yet been tested, the performance is expected to be significantly better than the
comparator-based method because of its resilience to noise. This resilience is caused by the averaging behavior
of integration. The processing cost only equates to approximately ten clock cycles every 10 µs when samples
are processed at 100kHz, which synchronizes them with the maximal switching speed. This is a CPU usage of
0.6% when the STM32 operates at its maximal frequency of 170MHz, which is why this method is chosen to be
implemented if voltage sensing is used by the control subgroup.

Chapter 5

PCB design

5.1 First Prototype

Because it is easy to make a mistake during PCB design, and because we need a development board to test our
code on, it is decided to design a small prototype PCB that is separate from the inverter. This PCB contains many
features about which it is not yet decided how they are best implemented. Figure 5.1 shows the prototype design,
with an interface header on the right side of the board. This header is meant to connect the PCB to the inverter
board designed by the hardware subgroup. Figure A.2 shows the schematic of the prototype PCB.

Figure 5.1: A render of the first Prototype PCB. It only has components on one side of the board

5.1.1 Summary of prototype PCB features

• The board has pins exposed for four different programming interfaces. However, in the end, only one was
used. The SWD (Serial Wire Debug) interface uses two pins for power and two pins for a clock and data
line. It can be used to program and debug the microcontroller [25].

• The PCB has an external oscillator crystal, which can offer a more precise clock than the internal oscillator
of the microcontroller.

• The board separates digital and analog power supplies to reduce the interference on the analog signals
caused by digital switching noise. Both have small decoupling capacitors close to the microcontroller, and
larger capacitors further away. This follows the reference design (Figure A.1) from the STM32G431 getting
started guide [26].

20 PCB design

• The pinout of the prototype can be found in appendix B. Initially, some functions were placed on arbitrary
pins, but this was changed for the final prototype.

5.1.2 Lessons learned from the first prototype

• Only the SWD interface is needed for programming and debugging.

• The external oscillator is not needed because the internal clock is precise enough for all timing-critical
features such as the DShot link. Also, the clock trace causes interference on nearby analog signals.

• Separation of power supplies is crucial for low noise analog measurements.

• ground planes need to be placed below every signal to increase signal integrity. Signals should not cross
other signals.

• the pin assignment of the microcontroller should be grouped per use. Analog and digital signals should be
on separate sides of the microcontroller to aid in reaching the previous two points.

5.2 Final Prototype

Figure 5.2: Block Diagram of the final prototype PCB

The final prototype is designed after the first prototype PCB was thoroughly tested. Certain redundant features are
removed, and some pin functions are swapped to better align with the internal logic of the STM32. For example,
the motor PWM output signals can now be connected to a single internal motor control timer. The schematic is
still largely based on the reference design (Figure A.1), but now includes a separate DShot connection. Also, every
analog signal is filtered before it is digitized. The full schematic is shown in Figure A.3. All digital interfaces are
along the left side of the board. A separation line runs through the middle of the board, which isolates the analog
and digital functionalities to reduce interference (Figure 5.3).

5.2.1 Power supplies

The final PCB is meant to receive two separate power supplies and keeps these electrically isolated from each
other. The inductive bead L1 and solder bridge R8 can be used (Figure 5.3), if necessary, for testing with a single
power supply. However, they are intended to remain open. Both the analog (3V3A) and digital (3V3D) voltages
are supplied by the inverter board through the interface header at the top of the board and have separate grounds
(GND and GNDA). The large capacitor C2 in the top left corner of the PCB has a capacitance of 220 µF (Figure
A.3). This is the largest capacitor value that is easily found in a 5 mm SMD (surface mount device) format. Any
larger footprint would take up a lot of space while providing little extra benefit. Smaller decoupling capacitors are
placed close to the microcontroller as per the getting started guide [26].

5.2 Final Prototype 21

(a) (b)

Figure 5.3: Final PCB. The separation line runs diagonally underneath the microcontroller and separates the digital
and analog domains. Ground planes cover the entire back side of the PCB.

5.2.2 Digital interfaces

Along the left edge of the board, there is a header for the DShot link to the flight controller. The trace to the pin is
kept as short as possible and completely above a ground plane to reduce noise.
The interface header is located along the top edge of the board. It still has the same functionality as in the prototype
PCB, which is to connect to the inverter PCB. However, the pinout has been changed to better separate analog and
digital signals. Below the interface header, there is a downsized SWD interface, as it became clear from testing
that we did not need any other pins for programming and debugging. The USB port has been removed since
its pinout interfered with the motor control pins and it does not provide any extra functionality. In its place, a
small 4-pin header has been placed that makes the unused pins accessible in case they are needed for debugging
purposes. To each unused pin, an LED has been attached for the same reason.

5.2.3 Analog interfaces

Since accurate measurements are needed for the control algorithm, capacitors are placed close to the analog in-
terfaces to reduce high-frequency noise. Figure 5.3A shows these capacitors in the bottom right of the board, as
close to the microcontroller as possible. All the capacitors C11 through C18 are decoupling to ground.

The analog circuitry is designed for two functionalities. These are BEMF sensing through voltage dividers, and
current sensor readout. The first is used in control algorithms such as trapezoidal control, while the latter is used
for FOC (Field Oriented Control) and other algorithms [23]. Both options are supported on the PCB because the
control subgroup of the project did not yet decide which algorithm is best implemented when the design for the
PCB was submitted.

Phase current measurement

The phase currents are measured by a Hall-effect current sensor on the inverter PCB [27]. Its analog output is
proportional to the current flowing through nearby conductors. The analog output of the current sensor is driven
by a low output impedance op amp, which means that a capacitor on the output does not significantly limit
the bandwidth of the sensor. However, the bandwidth of the sensor is limited by the reaction time of the Hall
element. The datasheet recommends a 10nF capacitor on the output for noise management [28], which is why
C11−14 = 10nF .

22 PCB design

BEMF measurement

The maximal frequency of the analog signals is 2.4 kHz (Section 2.3). To avoid too much of a delay in the BEMF
measurement, the cutoff frequency is chosen to be 20 kHz. This is one order of magnitude higher than the maximal
electrical frequency that the motor will operate at [24]. However, the cutoff frequency is low enough that it filters
out most of the switching interference caused by the inverter. Equation 5.1 gives the value for these capacitors on
the voltage measurement. The resistor value is 3kΩ, which is the resistance of the voltage divider implemented in
the inverter PCB [27]. The closest standard value is 2.7 nF.

Cfilter = C15−17 =
1

2πfR
=

1

2π · 20kHz · 3kΩ
= 2.65nF (5.1)

5.2.4 Effects of non-idealities

Although none of the signals on the PCB operate above a frequency of 1 MHz, it is still important to consider
effects such as capacitive crosstalk, signal loops, and other possible noise sources. Also, the square waves of the
DShot line and the gate drive signals introduce higher order harmonics which exceed 1 MHz.
Great care was taken to not disturb the continuous ground plane on the back of the PCB to prevent signal loops
that can act as antennas. Since none of the signals on the PCB are differential pairs, all signals have their return
signal flowing through one of the ground planes, and due to the almost undisturbed ground plane, it can be guar-
anteed that no unnecessary noise is induced because of signal loops. The only exception is the crossover between
the trace connecting the “Reset” button to the microcontroller and the trace connecting R7 and R5 to the negative
comparator inputs on the microcontroller. This was deemed acceptable since the reset line is a very low-speed
connection that is not sensitive to interference. It was later decided that these resistors do not need to be populated,
since the internal comparators connected to these resistors are not used (Section 4.3).

There are a lot of parallel traces on the board. The closest of these are s = 0.5mm apart. Equation 5.2 gives
an estimate of the capacitance between adjacent traces [29].

C(pf/cm) = 0.12
t

w
+ 0.09(1 + k)log10(1 + 2

w

s
+

w2

s2
) (5.2)

For a PCB with a dielectric constant k = 4.2, a trace thickness t = 0.035mm, and trace widths w = 0.254mm,
this results in a capacitance of 0.24pF/cm. With the longest parallel traces having a length of 54 mm, the maximal
capacitance is 1.3pF , which is negligible compared to the filtering capacitors C11 through C18 (Section 5.2.3).

Chapter 6

Programming of the microcontroller

ST Microelectronics offers an all-in-one IDE (Integrated Development Environment) for the STM32 series of
microcontrollers. It allows configuring, writing code, programming, and debugging in one piece of software,
called STM32CubeIDE. This was used during the entire project. Appendix C contains shortened versions of
the program files for the project. The complete codebase can be found on the github page for the project:
github.com/Quintenluyten/BAP-ESC-Releases [30]. As explained in Chapter 5, the microcontroller has an SWD
interface that can be used with an ST-Link programmer to program and debug the device. This chapter covers all
the blocks from the block diagram in the introduction (Figure 1.2).

6.1 DShot front end

On the STM32, a pin cannot be active as an input and an output pin simultaneously. That is why the pin configu-
ration of the DShot pin needs to be changed after every packet of data.
When the pin is configured as an input pin, it is connected to timer 3 as an input capture pin. When the logic level
on the pin changes, this generates an interrupt in the program and it captures the time since the last logic level
change. The interrupt routine uses this time to measure the pulse length of an incoming signal, which can later be
compared to a threshold time to determine whether a ‘1’ bit was received or a ‘0’ bit. The edge detection interrupt
routine does not directly calculate the bit value to minimize the calculation time.
When the pin is configured as an output pin, it is connected to the GPIO (General Purpose Input/Output) B regis-
ter. Timer 4 is configured to give a pulse every 1.33 µs. When this pulse occurs, a DMA (Direct Memory Access)
request moves a value from the telemetry array to the GPIO B registers to set the pin high or low. The last entry
of the telemetry array is always a ‘1’ to set the DShot line back to its idle logic high level.

Figure 6.1: Overview of the DShot transmit-and-receive interface. The pulse length and telemetry arrays can be
accessed from memory. The pin configuration is switched after every transmission and receive cycle.

The implementation of this algorithm in practice takes a lot of testing. Due to the high speed of the signal, care
must be taken to guarantee the signal integrity. Also, if the interrupt routine is disturbed by other processes running
on the microcontroller, it can produce incorrect pulse length measurements. And if the interrupt routine takes more
than 420 ns to be executed, another edge in the signal can occur before the previous edge is processed (Table 3.1).

https://github.com/Quintenluyten/BAP-ESC-Releases/tree/main/Firmware

24 Programming of the microcontroller

Figure 6.2: Data flow through the ADCs. The Direct Memory Access (DMA) routine automatically updates the
digital value in memory.

6.2 DShot package processing

The packets that are received by the MCU are processed and interpreted in the following steps:

1. Confirm if the CRC is correct, if not then the package is discarded

2. Convert the value in the packet to a command or a throttle amount

3. Rescale the throttle with the factor from the temperature management system (Section 6.5)

4. Prepare and send telemetry to the flight-controller

To send back information to the flight controller, packages have to be prepared according to the specifications in
Chapter 3. It is implemented by using the following steps:

1. Check if extended telemetry data or an eRPM package must be sent

(a) If an eRPM package must be sent: get the value from the control algorithm and convert it to the
exponential format.

(b) For the extended telemetry: get the values from the sensor readout and append the correct prefix (Table
3.2. It cycles between temperature, voltage, current, and a status frame indicating the stress-level.

2. Add the CRC to the package

3. Encode the package with GCR

4. Apply differential encoding to the package

5. Set the package in the DMA registers

6. Enable the transmission

6.3 Analog sensor readout

As discussed in Section 4.3, the control algorithm can be supplied with phase voltage readings. However, if the
algorithm requires phase currents instead, these can also be provided. The principle for both kinds of values is
the same: the ADCs of the microcontroller continuously convert analog signals to digital values using a DMA
routine, and when requested, the control algorithm can immediately read the most recent sample from memory.
The advantage of this method compared to request-based sampling is that the sampling occurs in the background,
and there is no need to wait for a sample to be taken. Also, the sample can be read exactly in the middle of the
PWM (Pulse Width Modulation) on-period for maximal reduction of interference caused by the PWM switching
events on the BEMF. The filtering and interpretation of the digitized phase currents and voltages is not further
discussed here, as this is part of the control algorithm [23].

6.4 Temperature sensor readout

The Inverter subgroup decided to use the TMP127 digital temperature sensor for its large input sensing range
and accuracy. The accuracy of a sensor is easier to guarantee on digital sensors since they are delivered already
calibrated and the accuracy is independent of the routing or the conversion method used. The sensor uses half-
duplex SPI, but if only a temperature value is needed, it can also be used in slave read-only SPI mode [31]. In this

6.5 Temperature managment 25

Figure 6.3: Temperature reading package. At every rising edge of the SPI Clock, indicated with blue dots, the SPI
data line is read. Here, the value “000011001” is read, which is 25 °C.

mode, the data line of the sensor is connected to the MISO pin of the STM32. The STM32 acts as the SPI master
and controls the SPI clock. When a temperature value is requested, the master activates the CS line and the clock.
The temperature sensor outputs the temperature, MSB first, as visible in Figure 6.3. When the desired precision
is received (up to 14 bits), the master turns off the clock and deactivates the CS line. In Figure 6.3, and in the
code, only 9 bits are captured since this gives a precision of 1°C. The first bit is a sign bit that is ignored since the
operating conditions are above freezing temperature. The 8 remaining bits give the temperature of the inverter in
degrees Celsius. This one-byte value has a range from 0 to 255 degrees. The STM32 has full hardware support
for SPI, so this process requires very little CPU usage and can run in the background.

6.5 Temperature managment

To comply with the requirement that the controller must actively prevent overheating (Section 2.4), a throttle lim-
iter was implemented. When the temperature exceeds 80°C, the controller lowers the throttle sent to the control
algorithm according to the curve shown in Figure 6.4. The exact shape of the curve is not very important, as
long as the amount of heat being generated decreases as temperature increases. For this, the heat generated is
assumed to be proportional to the square of the power delivered. This is because the loss increases quadratically
with increasing current. The power limiter works by dividing the requested throttle by a factor that increases with
temperature.

The controller also prioritizes sending temperature telemetry to the flight controller and sets the stress level to
the maximum to indicate that overheating is occurring. This not only gives an indication to the flight controller
and the pilot that the ESC is overheating, but it also prevents the flight controller from trying to compensate the
loss in power by increasing the throttle. Without the indication, the motor speed control loop from the flight
controller would fight the temperature management logic in the ESC.

26 Programming of the microcontroller

Figure 6.4: The throttle value which is forwarded to the control algorithm is a fraction of the value requested by
the flight controller if the temperature of the inverter exceeds 80°C. The power loss in the inverter is thus also
reduced to prevent overheating.

Chapter 7

Prototype testing and analysis

7.1 DShot Processing time

To compare DShot with other protocols, a good understanding of the properties of DShot is required. Since DShot
does not have built-in hardware support on MCUs, it uses the CPU core of the MCU to process packets of data.
To measure the processing time of this data, a GPIO output pin was turned on before the operation and turned
off after the operation. The GPIO output pin was then measured on the oscilloscope to determine the length of
execution. The results are shown in Table 7.1 and 7.2. The DShot implementation can be split into two parts.
The first is the part that handles the bit detection, which uses interrupts. When 16 bits are detected, the package
is then processed and a telemetry response is prepared. The CPU core is thereby occupied during a burst of
smaller periods when a DShot packet is arriving, and during a longer period when the package is being processed.

Figure 7.1: DShot package and response captured by an oscilloscope.

28 Prototype testing and analysis

According to the protocol definition, the ESC needs to wait for 25 µs after the DShot throttle package is received,
before the telemetry package can be transmitted (Figure 7.1).

Table 7.1: DShot time in CPU with a 2kHz
package frequency

Section Time Clock Cycles
Packet Processor and
telemetry

76 µs 13000

Wait between packet
processing (Core is
Free)

420 µs 71400

1 Edge interrupt 380 ns 65

Table 7.2: Partial Package Processing and
telemetry time in CPU

Section Time Clock Cycles
Packet decoding 1.36 µs 231

CRC check 299 ns 50
Packet interpreter 327 ns 56

Telemetry preparation 5.4 µs 918
Delay 1

(Core can be interrupted) 21 µs 3570

Transmission start 3.1 µs 527
Delay 2

(Core can be interrupted) 44 µs 7480

Listening start 2.36 µs 401

The processes described in Tables 7.1 and 7.2 can be halted by an interrupt at any time, except during the
edge detection interrupts. Section 6.1 explains the edge detection interrupt routine. None of the processes, except
for the edge detection interrupts, are time-sensitive. The core is also available during delay periods, or when the
DShot interface is waiting for the next package.
One edge interrupt takes 380 ns, and two interrupts happen for every bit, one for the falling and one for the rising
edge (Section 6.1). Since the bit rate of DShot600 is 600kHz, a bit has a period of 1.67 µs. Equation 7.1 describes
the percentage of time that the core is occupied when receiving data from the DShot line. As a result, the fraction
of the time that the core is free equals 54%.

CPUfree(%) = 100 · BitT ime− 2 · tinterupt
BitT ime

= 54% (7.1)

7.2 DShot package corruption

Another measure of the quality of the DShot protocol is how many packages are lost in transmission. To test this
a short connection to the flight controller was used, the flight controller was configured to only send the same
data constantly. Knowing what data the MCU is supposed to receive is compared to the actually received data.
Wrong data is then classified into two categories. The first is corrupted data that failed the CRC, and the second is
corrupted data that passed the CRC. The result can be found in table 7.3.

Table 7.3: DShot package corruption measurements. The test lasted 5 mins (2kHz update rate) and the physical
connection was kept relatively short to maintain signal integrity

Total packages Corrupted Package Incorrect CRC Correct CRC
596899 20214 18882 1332
100% 3.386% 3.163% 0.223%

7.3 ADC Accuracy

As per the interoperability requirements (Section 2.7), the ADCs should have a linearity error of less than 0.25%.
In order to verify whether the design satisfies this requirement, steady-state ADC measurements were made.
Steady-state measurements are easier to produce and more accurate to verify with a multimeter, but do not guar-
antee that the accuracy will be maintained at higher frequencies of the input signal that has to be measured.
However, the maximal frequency of the signals that has to be measured is less than 2.4 kHz (Section 2.3. The
ADCs on the STM32 are able to operate at frequencies over 3 MHz [21]. With careful implementation of the
design recommendations [32] as explained in Section 5.2.3, the accuracy should be maintainable, even at the max-
imal input frequency.
The current sensors on the inverter PCB produce their output relative to the analog power supply. The program

7.3 ADC Accuracy 29

Figure 7.2: ADC accuracy measurement test setup, using a potentiometer to change the analog voltage.

V supply V meas. Count
3.329 0 0
3.332 0.06 80
3.331 0.28 340
3.329 0.49 593
3.331 0.76 911
3.332 0.87 1041
3.331 1.15 1366
3.332 1.32 1574
3.330 1.36 1619
3.333 1.56 1850
3.330 1.63 1935
3.333 1.85 2199
3.333 1.91 2275
3.331 2.15 2559
3.333 2.32 2770
3.332 2.44 2915
3.332 2.62 3144
3.332 2.87 3466
3.332 3.17 3895
3.329 3.32 4094

Table 7.4: ADC accuracy measurements. The ADC Count is a 12-bit variable with a range from 0 to 4095.

and PCB are built to also use the relative voltage reading compared to the analog power supply rail. The ADCs in
the STM32 use the VDDA pin as the reference voltage for digitization. This ensures there is no dependency of the
ADC output to the analog power supply voltage. The STM32 includes a self-calibration routine to remove errors
and offsets from the measurements by using internal reference voltages [32]. This removes most non-idealities
found inside the ADC, leaving only external noise sources to influence the measurements.
Figure 7.2 shows how the measurements were made. A potentiometer varies the analog voltage supplied to the
ADC, with a multimeter measuring this voltage. Also, the VDDA measurement is made, which is necessary be-
cause the required reading is a relative voltage. During the processing of the data, the multimeter measurements
are first normalized with respect to the VDDA voltage.
Table 7.4 shows the measurements, with R2 = 0.9975 for N = 20 samples. The biggest deviation is 71 mV or
2.1%. This deviation is most pronounced in the range from 2.0 to 3.0 Volts, and is probably caused by integral
non-linearity error (INL) in the ADC [32]. This is consistent across multiple tests.

30 Prototype testing and analysis

Figure 7.3: Ideal ADC transfer curve (blue) and actual measured points (orange)

Chapter 8

Conclusion, Discussion, and Outlook

8.1 Conclusion

The required features are implemented. The DShot interface is able to send and receive data. Also, the sensors
can be read. This data is transmitted as extended DShot packets. Integration with the hardware for sensor readout
is already tested to be working. However, integration of these features with the control algorithm can uncover
errors in the code that have not been discovered so far. The control algorithm will directly control the gate signals
through a peripheral timer on the microcontroller, but this functionality is not yet tested.
Table 8.1 shows the design requirements that the current design does not fulfill.

Table 8.1: Failed design requirements

Requirement Explanation

1.
The ESC must be able to satisfy the telemetry re-
quirements when 90% of DShot packages are cor-
rupted in transmission.

This is not possible within the DShot600
specification, since the maximal update
rate of 8kHz does not allow a package to
be received every 1 ms when 90% of pack-
ages are corrupted.

2.
The communication interface should forward any
anomalies detected by the control algorithm to the
flight controller using DShot telemetry

This could not be tested without the inte-
gration of all modules of the project.

3. The ESC must be able to restart without interven-
tion after power interrupts of any duration.

This could not be tested without the inte-
gration of all modules of the project. How-
ever, the communication interface is auto-
matically restarted after a loss of power.

4.
The ESC must be able to run continuously at its
rated supply current and voltage for at least 30
minutes.

This could not be tested without the inte-
gration of all modules of the project. How-
ever, the controller has no problem operat-
ing for 30 minutes on its own.

5.

The digital values must not have more than 0.25%
full range output linearity error with respect to the
best fit straight line over the entire signal range at
room temperature.

The ADC inside the microcontroller has a
deviation of up to 2% of the full range.

The first requirement is not achievable with the DShot600 protocol. However, with the measured corruption rate
of 3.4% and an update rate of 2 kHz, the telemetry requirements are met.

The testing also showed that the ADCs could satisfy the accuracy requirement, except for the range from 2 to
3 Volts input signals, where the maximal non-linearity is 2.1%.

32 Conclusion, Discussion, and Outlook

8.2 Discussion

8.2.1 Implementation of DShot

As discussed in Chapter 7, DShot has some disadvantages. The first of which is that there are a lot of packages
being rejected because they are corrupted in transmission. The DShot CRC is not an error-correcting check, but
only an error-detecting check. As shown in Table 7.3, around 3% of the packages sent from the flight controller
are not received by the ESC, even in a low-noise environment with short cabling.

Another issue with the DShot protocol is its low-quality CRC, as shown in Table 7.3. 0.2% of packages are
still accepted by the CRC algorithm, even when they have the wrong value. The CRC algorithm only detects 93%
of corrupted packages. This is because the CRC is not able to protect against data shifting. If the data is shifted
to the right or left and the dropped bit is collected on the other side, the packet still has a valid CRC. However,
even a perfect 4 bit CRC algorithm still has a 1

24 = 6.25% probability of giving a correct CRC for a corrupted
package, purely by chance. Packages with corrupted data can have serious effects on the motor. If zero throttle is
constantly sent by the flight controller to the ESC and a shift corruption occurs, then the throttle value read by the
ESC can be equal to half the total throttle, causing serious damage. A fix for the shift corruption is to have the bits
time out if they take too long. This would however require extra clock cycles on the CPU that are limited.
The protocol also uses a lot of CPU time, since the data reception and transmission needs to be handled by the
CPU core. The STM32 microcontroller contains certain peripherals, such as timers and DMA channels. These
take much of the load off the CPU, but are not as autonomous as a communication peripheral, as those available
for SPI or I2C.
Also, the documentation and precise definition of the communication standard is vague and sometimes even in
conflict with common implementations. The question can be raised why one would use DShot for communication
between ESCs and flight controllers. One argument is that digital communication protocols allow error checking
and can be more resilient to EMI than analog protocols (Section 1.4.1), but this also applies to CAN, SPI, or I2C.

8.2.2 Alternative Communication protocols

However, many standardized digital communication protocols already exist. Many of these are designed for com-
munication between microcontrollers and work with a single wire. For example, single-wire USART is available
on the STM32. Alternatively, the CAN bus protocol is used very often in vehicles and aviation and has a bit rate
of up to 1 Mbit/s for the standard high-speed CAN protocol [33]. The STM32 also supports SPI, which is already
used for the temperature sensor readout. The SPI interface on the STM32 has been tested to work flawlessly up
to 5Mbit/s, which could allow four or six motors to be connected to one SPI bus, while still offering a larger
bandwidth than the DShot600 protocol, and reducing the CPU usage. The only drawback would be the increase
in wiring, as a clock line, two data lines, and multiple chip-select lines would be necessary.

8.2.3 Choice of controller

During the design of the communication, it became clear that with many processes running in parallel, a controller
that is able to execute more tasks in parallel could perform more efficiently. The current MCU is still able to
execute all the tasks with the help of interrupts and hardware modules, but some of its capabilities like the clock
frequency could be reduced if more was done in parallel. If this optimization allows for a lower performance
microcontroller to be used, it can reduce the cost of the ESC.

8.2.4 Measurement accuracy

Although the maximal deviation of the ADCs exceeds the accuracy requirement set in Section 2.7, the maximal
error of 2.1% is not expected to give problems during integration if the input signals use the full range of the ADC.
However, if a signal that deviates between 1 Volt and 2.3 Volts, such as a bidirectional current sensor with lower
than ideal sensitivity, is used as an input signal, the error becomes larger with respect to the full range of the input
signal. The maximal error of 71 mV is then 5.5% of the full range of the input signal, which could influence the
controllability of the ESC.

8.3 Recommendations and Future Work

The design can still be improved in various ways. The current implementation of DShot uses a lot of time in the
core. It can be investigated if more of the hardware modules can be used to run DShot and make it less core re-

8.3 Recommendations and Future Work 33

liant. Another way to reduce time in the core is to switch to a different communication algorithm that has suitable
built-in hardware modules. For example, most MCUs have hardware support for SPI.

It would also be valuable to design the ESC around a different controller type, like an FPGA. The challenges
that arise during FPGA design, such as logic size limitations, ask for different solutions than those that exist for a
microcontroller-based design, where processing time is the limiting factor.

With the current division of the project, the inverter hardware is completely separate from the microcontroller.
ST Microelectronics offers the STSPIN32G4 motor controller with embedded MCU [34], which integrates the
microcontroller with the power supplies and gate drivers which are currently placed on the inverter PCB. Work
can also be done to merge the inverter PCB and the communication PCB, making the complete ESC more compact
and easier to use.

34 Conclusion, Discussion, and Outlook

Appendices

Appendix A

PCB design

38 PCB design

Figure A.1: Reference design for the STM32G4 microcontroller, from the STM32G4 series getting started guide
[26]

39

Figure A.2: First Prototype Schematic

40 PCB design

Figure A.3: Final Logic Board Schematic

Appendix B

MCU Prototype mapping

Table B.1: Mapping of the MCU on the prototype PCBs

Package pin number
(LQFP32 package) Pin name Mapping on the

first prototype
Mapping on the

final design
STM32 peripheral used

on the final design
1 and 17 VDD Digital Supply Voltage Digital Supply Voltage VDD

2 PF0 Voltage DC bus Gate C Low TIM1 CH3 neg. output
3 PF1 Voltage B Neutral voltage COMP3 neg. input
4 PG10 Reset Reset NRST
5 PA0 phase A Current phase C voltage COMP3 pos. input
6 PA1 phase B Current phase A voltage COMP1 pos. input
7 PA2 phase C Current DC current ADC1 CH3
8 PA3 DC Current phase B voltage COMP2 pos. input
9 PA4 phase A Voltage Neutral Voltage COMP1 neg. input
10 PA5 SPI SCK Neutral Voltage COMP2 neg. input
11 PA6 SPI MISO phase A current ADC2 CH3
12 PA7 SPI MOSI phase B current ADC2 CH4
13 PB0 Voltage C phase C current ADC1 CH15
14 VSSA Analog Ground Analog Ground VSSA
15 VDDA Analog Supply Voltage Analog Supply Voltage VDDA

16 and 32 VSS Digital Ground Digital Ground VSS
18 PA8 Gate A High Gate A High TIM1 CH1 pos. output
19 PA9 Gate A Low Gate B High TIM1 CH2 pos. output
20 PA10 Gate B High Gate C High TIM1 CH3 pos. output
21 PA11 USB DM Gate A Low TIM1 CH1 neg. output
22 PA12 USB DP Gate B Low TIM1 CH2 neg. output
23 PA13 SWDIO SWDIO SWDIO
24 PA14 SWCLK SWCLK SWCLK
25 PA15 SPI CS SPI CS SPI CS
26 PB3 SWO SPI SCK SPI SCK
27 PB4 Gate B Low SPI SIO SPI MISO
28 PB5 Gate C High Debug led 3 GPIO B
29 PB6 Gate C Low Debug led 2 GPIO B
30 PB7 DShot DShot TIM3 CH4 - GPIO B
31 PB8/BOOT0 boot Debug led 1 GPIO B

42 MCU Prototype mapping

Appendix C

C code

The standard file formatting created by the STM32CubeIDE causes files with lots of empty or sparsely pop-
ulated lines. This is why only the most relevant lines of code from the most relevant files are included in
this appendix. This will not compile to a useable binary. The full code can be found on the Release GitHub:
github.com/Quintenluyten/BAP-ESC-Releases [30]

C.1 Shortened main.c file

/ * USER CODE BEGIN Header * /
/ * W r i t t e n by Ruben Vos and Quin t en Lu y t e n
/ * TU D e l f t BSc E l e c t r i c a l E n g i n e e r i n g Gradua t ion p r o j e c t 2023
/ * USER CODE END Header * /

i n c l u d e ” main . h ”
i n c l u d e ” adc . h ”
i n c l u d e ”dma . h ”
i n c l u d e ” s p i . h ”
i n c l u d e ” t im . h ”
i n c l u d e ” gp io . h ”
i n c l u d e ”DSHOT. h ”

d e f i n e ADCSIZE 64
d e f i n e TelemSize 21
d e f i n e MaxTemp 80

v o l a t i l e u i n t 8 t armed = 0 ; / / Can t h e r e be s i g n a l s t o t h e g a t e d r i v e r s
v o l a t i l e u i n t 8 t EDT Enabled = 0 ; / / I s t h e Ex tended d s h o t e n a b l e d ?
v o l a t i l e u i n t 3 2 t c o u n t e r v a l u e ;
u i n t 1 6 t l a s t r e c e i v e d D S h o t p a c k e t [1 6] = {0} ;
u i n t 8 t D S h o t b i t c o u n t = 0 ;
u i n t 1 6 t d s h o t p a c k e t = 0 ;
u i n t 1 6 t t h r o t t l e = 0 ;

v o l a t i l e u i n t 1 6 t MeasuredERPM = 0 ; / / Measured ERPM from c o n t r o l group
u i n t 1 6 t ADC1 BUFFER[ADCSIZE] ;
u i n t 1 6 t ADC2 BUFFER[ADCSIZE] ;
u i n t 8 t TempScalar =4 ;

u i n t 3 2 t T e l e m e t r y A r r a y [TelemSize] = {0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0} ;

v o l a t i l e u i n t 3 2 t C r o s s C o u n t e r =0;
u i n t 8 t temp [1] = {0} ;
u i n t 1 6 t t e m p c o u n t e r = 0 ;

https://github.com/Quintenluyten/BAP-ESC-Releases/tree/main/Firmware

44 C code

u i n t 8 t T e l e m e t r y C y c l e r =0 ;
u i n t 1 6 t ERPMCycler =0;
u i n t 8 t S t r e s s L e v e l = 0 ;

void Sys t emClock Conf ig (void) ;

i n t main (void)
{

/ * R e s e t o f a l l p e r i p h e r a l s , I n i t i a l i z e s t h e F lash i n t e r f a c e and t h e S y s t i c k . * /
HAL Ini t () ;

/ * I n i t i a l i z e a l l c o n f i g u r e d p e r i p h e r a l s * /
MX GPIO Init () ;
MX DMA Init () ;
MX TIM3 Init () ;
MX TIM4 Init () ;
MX ADC2 Init () ;
MX ADC1 Init () ;
MX TIM1 Init () ;
MX SPI1 In i t () ;

/ * Enable ADC DMA and d i s a b l e t h e DMA I n t e r r u p t , which was e n a b l e d i n MX DMA Init () * /
HAL ADC Start DMA(&hadc1 , (u i n t 3 2 t *)ADC1 BUFFER , ADCSIZE) ;
HAL ADC Start DMA(&hadc2 , (u i n t 3 2 t *)ADC2 BUFFER , ADCSIZE) ;
NVIC DisableIRQ (DMA1 Channel2 IRQn) ;
NVIC DisableIRQ (DMA1 Channel3 IRQn) ;

/ / S t a r t Comparators
HAL COMP Start(&hcomp1) ;
HAL COMP Start(&hcomp2) ;
HAL COMP Start(&hcomp3) ;

/ * S t a r t TIM3 f o r I n p u t c a p t u r e * /
HAL TIM IC Star t IT (&htim3 , TIM CHANNEL 4) ;
HAL TIM Base Star t (& ht im3) ;

/ * S t a r t TIM4 f o r o u t p u t DMA g e n e r a t i o n * /
HAL TIM Base Star t (& ht im4) ;
TIM4 −> DIER |= (1 << 8) ; / / Update DMA r e q u e s t Enable (UDE)
DMA1 Channel1−>CCR |= (1<<1); / / Enable T r a n s f e r Comple te I n t e r r u p t
DMA1 Channel1 −> CCR |= (1 << 5) ; / / C i r c u l a r mode
HAL TIM OC Start (&htim4 , TIM CHANNEL 1) ;
HAL DMA Start(& hdma tim4 up , (u i n t 3 2 t) Te leme t ryAr ray , (u i n t 3 2 t)&(GPIOB−>BSRR) , 2 2) ;
DMA1 Channel1−>CCR &= ˜ 1 ; / / D i s a b l e DMA r o u t i n e f o r now

whi le (1)
{

i f (D S h o t b i t c o u n t == 16){
d s h o t p a c k e t = decodeDShot ((u i n t 1 6 t *)& l a s t r e c e i v e d D S h o t p a c k e t) ;

i f (CRC Check (d s h o t p a c k e t)) {

P a c k e t I n t e r p r e t e r (d s h o t p a c k e t) ;
t h r o t t l e = (t h r o t t l e <<2)/ TempScalar ; / / Tempera ture Management
D i f f G R C t e l e m e t r y p a c k a g e ((u i n t 1 6 t) 2 0 0) ;

C.1 Shortened main.c file 45

/ * Delay * /
f o r (i n t i = 0 ; i < 450 ; i ++){

v o l a t i l e i n t a = i * i ;
}

S t a r t t r a n s m i s s i o n () ;

/ * Delay b e f o r e D S h o t b i t c o u n t can be s e t t o 0 * /
f o r (i n t i = 0 ; i < 1000 ; i ++){

v o l a t i l e i n t a = i * i ;
}

}
D S h o t b i t c o u n t = 0 ;

/ * Tempera ture s e n s o r r e a d o u t * /
i f (t e m p c o u n t e r == 100){

t e m p c o u n t e r = 0 ;
HAL SPI Receive (& hsp i1 , temp , 1 , 1 0 0 0) ;
i f (temp [0]>MaxTemp){

TempScalar = temp [0] − MaxTemp + 4 ;
T e l e m e t r y C y c l e r = 0 ; / / Send Tempera ture i m m e d i a t e l y
S t r e s s L e v e l = 1 5 ;

}
e l s e {

S t r e s s L e v e l = 0 ;
TempScalar = 4 ;

}

}
e l s e {

t e m p c o u n t e r ++;
}

}
}

}

void TIM3 IRQHandler (void)
{

i f ((TIM3−>DIER >> 4) && (TIM3−>SR >> 4)){
/ / I f t h e i n t e r r u p t i s caused by TIM3 c a p t u r e compare e v e n t :
/ / DIER >> 4: CC4 I n t e r r u p t e n a b l e d SR >> 4: CC4 Flag s e t

i f (! (READ REG(DSHOT GPIO Port−>IDR)>>7)){
WRITE REG(TIM3−>CNT, 0) ;
SET BIT (TIM3−>CR1 , 1) ;

}
e l s e i f (D S h o t b i t c o u n t < 16){

l a s t r e c e i v e d D S h o t p a c k e t [D S h o t b i t c o u n t] = READ REG(TIM3−>CCR4) ;
D S h o t b i t c o u n t ++;

}
TIM3−>SR = ˜ (TIM IT CC4) ; / / c l e a r t h e f l a g

}
}

46 C code

C.2 DShot.c

/ * USER CODE BEGIN Header * /
/ * W r i t t e n by Ruben Vos and Quin t en Lu y t e n
/ * TU D e l f t BSc E l e c t r i c a l E n g i n e e r i n g Gradua t ion p r o j e c t 2023
/ * USER CODE END Header * /

i n c l u d e <s t d i o . h>
i n c l u d e <s t d b o o l . h>
i n c l u d e < s t d i n t . h>
i n c l u d e ” gp io . h ”
i n c l u d e ” main . h ”

d e f i n e ADCSIZE 64
d e f i n e TelemSize 22

e x t er n v o l a t i l e u i n t 8 t armed ; / / Can t h e r e be s i g n a l s t o t h e g a t e d r i v e r s
e x t er n v o l a t i l e u i n t 8 t EDT Enabled ; / / I s t h e Ex tended d s h o t e n a b l e d ?
e x t er n v o l a t i l e u i n t 3 2 t c o u n t e r v a l u e ;
e x t er n u i n t 1 6 t t h r o t t l e ;
e x t er n u i n t 1 6 t MeasuredERPM ; / / Measured ERPM from c o n t r o l g r o u p s
e x t er n u i n t 3 2 t T e l e m e t r y A r r a y [] ;
e x t er n u i n t 1 6 t ADC1 BUFFER [] ;
e x t er n u i n t 1 6 t ADC2 BUFFER [] ;
e x t er n u i n t 8 t temp [1] ;
v o l a t i l e u i n t 3 2 t s t e p 3 ;
v o l a t i l e u i n t 3 2 t s t e p 2 ;
v o l a t i l e u i n t 3 2 t s t e p 1 ;
v o l a t i l e u i n t 3 2 t s t e p 0 ;
v o l a t i l e u i n t 3 2 t t e s t 1 ;
v o l a t i l e u i n t 3 2 t C o r r u p t e d P a c k e t s =0;
v o l a t i l e u i n t 3 2 t T o t a l P a c k e t s =0 ;
v o l a t i l e u i n t 3 2 t C h e c k F a i l =0 ;

boo l CRC Check (u i n t 1 6 t d a t a)
{

/ / Per forms CRC check on incoming b i d i r e c t i o n a l DSHOT t h r o t t l e packages
i f ((d a t a & 0x0F) == (˜ (da t a >>4 ˆ (d a t a >> 8) ˆ (d a t a >> 1 2)) & 0x0F)) {

re turn t r u e ;
}
re turn f a l s e ;

}

/ / T h i s f u n c t i o n was s t o l e n from t h e B e t a f l i g h t open g i t h u b
u i n t 1 6 t CRC Calc (u i n t 1 6 t p a c k e t)
{

/ / compute checksum
u i n t 1 6 t csum = 0 ;
u i n t 1 6 t c s u m d a t a = p a c k e t ;

f o r (i n t i = 0 ; i < 3 ; i ++) {
csum ˆ= c s u m d a t a ; / / xor da ta by n i b b l e s
c s u m d a t a >>= 4 ;

}
/ / append checksum
csum = ˜ csum ; / / No i n v e r s i o n because t e l e m e t r y i s u n i n v e r t e d

C.2 DShot.c 47

csum &= 0 xf ;
p a c k e t = (p a c k e t << 4) | csum ;

re turn p a c k e t ;
}

u i n t 3 2 t GRC encoder (u i n t 1 6 t p a c k e t)
{

u i n t 8 t chunk ;
u i n t 3 2 t GRC encoded =0;
u i n t 8 t n i b b l e ;
f o r (i n t i =0 ; i <4; i ++){

chunk = (p a c k e t >> (i * 4)) & 0x0F ;
sw i t ch (chunk){

case 0x0 : n i b b l e = 0x19 ; break ;
case 0x1 : n i b b l e = 0x1B ; break ;
case 0x2 : n i b b l e = 0x12 ; break ;
case 0x3 : n i b b l e = 0x13 ; break ;
case 0x4 : n i b b l e = 0x1D ; break ;
case 0x5 : n i b b l e = 0x15 ; break ;
case 0x6 : n i b b l e = 0x16 ; break ;
case 0x7 : n i b b l e = 0x17 ; break ;
case 0x8 : n i b b l e = 0x1A ; break ;
case 0x9 : n i b b l e = 0x09 ; break ;
case 0xA : n i b b l e = 0x0A ; break ;
case 0xB : n i b b l e = 0x0B ; break ;
case 0xC : n i b b l e = 0x1E ; break ;
case 0xD : n i b b l e = 0x0D ; break ;
case 0xE : n i b b l e = 0x0E ; break ;
case 0xF : n i b b l e = 0x0F ; break ;
d e f a u l t :

n i b b l e = 1 ;
break ;

}
GRC encoded |= n i b b l e << (i * 5) ;

}
re turn GRC encoded ;

}

u i n t 3 2 t D i f f e n c o d e r (u i n t 3 2 t p a c k e t){
u i n t 3 2 t D i f f e n c o d e d = 0 ;
f o r (i n t i =20; i >0; i − −){

i n t l a s t n e w b i t = D i f f e n c o d e d&0x01 ;
i n t p a c k e t b i t = (packe t >>(i −1))&0 x01 ;
D i f f e n c o d e d = D i f f e n c o d e d <<1;
i f (p a c k e t b i t ˆ l a s t n e w b i t){

D i f f e n c o d e d ++;
}

}
re turn D i f f e n c o d e d ;

}

void S e t P a c k a g e I n R e g i s t e r s (u i n t 3 2 t p a c k e t){
f o r (i n t i =0 ; i<TelemSize −2; i ++){

/ / i f (i >21){
/ / T e l e m e t r y A r r a y [Te l emS i ze −1− i] = 0 x800000 ; / / 0
/ / }

48 C code

i f ((packe t>>i) & 1){
T e l e m e t r y A r r a y [TelemSize −2− i] = 0x80 ; / / 1

}
e l s e {

T e l e m e t r y A r r a y [TelemSize −2− i] = 0 x800000 ; / / 0
}

}
T e l e m e t r y A r r a y [0] = 0 x800000 ; / / 0

T e l e m e t r y A r r a y [2 1] = 0x80 ; / / 1
/ / 0 x800000 = 0
re turn ;

}

e x t er n u i n t 8 t T e l e m e t r y C y c l e r ;
e x t er n u i n t 1 6 t ERPMCycler ;
e x t er n u i n t 8 t S t r e s s L e v e l ;

void D i f f G R C t e l e m e t r y p a c k a g e (u i n t 1 6 t p e r i o d u s)
{

u i n t 3 2 t Di f f GCR packe t ;

i f (ERPMCycler<1000){ / / C a l c u l a t e an eRPM t e l e m e t r y package
ERPMCycler ++;
i f (p e r i o d u s == 0 | | p e r i o d u s > 0x7FC0){

re turn ;
}
/ / Make i t E x p o n e n t i o n a l
u i n t 8 t e x p o n e n t = 0 ;
whi le (p e r i o d u s > 511){

p e r i o d u s = p e r i o d u s >> 1 ;
e x p o n e n t += 1 ;

}
Dif f GCR packe t = (e x p o n e n t << 9 | p e r i o d u s) ; / / t h i s i s t h e 12− b i t da ta t h a t has t o be encoded

}
e l s e { / / C a l c u l a t e an e x t e n d e d t e l e m e t r y t y p e

ERPMCycler =0;
u i n t 8 t code ;
u i n t 8 t v a l u e ;
sw i t ch (T e l e m e t r y C y c l e r){

case 0 : / / Tempera ture
T e l e m e t r y C y c l e r ++;
code = 0 b0010 ;
/ / TODO READ TEMPERATURE
v a l u e = temp [0] ;
break ;

case 1 : / / V o l t a g e
T e l e m e t r y C y c l e r ++;
code = 0 b0100 ;
/ / TODO READ VOLTAGE
v a l u e = 178 ; / / 4 4 . 5V
break ;

case 2 : / / C u r r e n t
T e l e m e t r y C y c l e r ++;
code = 0 b0110 ;
v a l u e = ADC1 BUFFER [0] ; / / 120 A

C.2 DShot.c 49

/ / TODO RESCALE VALUE WITH CORRECT FACTOR
v a l u e *= 1 ;
break ;

case 3 :
T e l e m e t r y C y c l e r =0 ;

code = 0 b1110 ;
v a l u e = S t r e s s L e v e l <<1; / / No th ing wrong
break ;

d e f a u l t : / / Weird ERROR? ? ! ? ! ?
re turn ;
break ;

}
Dif f GCR packe t = (code << 8) | v a l u e ;

}
/ / i f (ERPMCycler < 8096){
/ / D i f f G C R p a c k e t = ERPMCycler ;
/ / ERPMCycler++;
/ / }

/ / Add t h e CRC
Dif f GCR packe t = CRC Calc (Di f f GCR packe t) ;
/ / GRC e n c o d i n g
Dif f GCR packe t = GRC encoder (Di f f GCR packe t) ;

/ / D i f f e n c o d i n g
/ / D i f f G C R p a c k e t = 699050;
Dif f GCR packe t = D i f f e n c o d e r (Di f f GCR packe t) ;

S e t P a c k a g e I n R e g i s t e r s (Di f f GCR packe t) ;
re turn ;

}

u i n t 1 6 t decodeDShot (u i n t 1 6 t * a r r a y){
u i n t 1 6 t p a c k e t = 0 ;
f o r (i n t i = 0 ; i <16; i ++){

i f (a r r a y [i]>80){
p a c k e t = (p a c k e t << 1) | 1 ;

}
e l s e {

p a c k e t = p a c k e t << 1 ;
}

}
re turn p a c k e t ;

}

u i n t 8 t ExtendedTelemToggleCount =0;

void P a c k e t I n t e r p r e t e r (u i n t 1 6 t p a c k e t){
u i n t 1 6 t v a l u e = packe t >>5;

sw i t ch (v a l u e){
case 0 : armed = 0 ; t h r o t t l e =0; ExtendedTelemToggleCount =0; break ; / / Motor o f f

case 1 3 : / / E n a b l i ng e x t e n d e d t e l e m e t r y
ExtendedTelemToggleCount ++;
i f (ExtendedTelemToggleCount ==6){

EDT Enabled = 1 ;
/ / TODOO : : SENT ANSWER MESSAGE
ERPMCycler = 1000 ;

50 C code

T e l e m e t r y C y c l e r = 3 ;
}
break ;

case 1 4 : / / D i s a b l i n g e x t e n d e d t e l e m e t r y
ExtendedTelemToggleCount ++;
i f (ExtendedTelemToggleCount ==6){

EDT Enabled = 0 ;
/ / TODOOO: SEN ANSWER MESSAGE

}
break ;

d e f a u l t :
ExtendedTelemToggleCount =0;
i f (va lue >47){ / / Normal t h r o t t l e v a l u e

armed = 1 ;
t h r o t t l e = v a l u e − 4 7 ;

}
break ;

}
}

C.3 Shortened tim.c file

/ * USER CODE BEGIN Header * /
/ * W r i t t e n by Ruben Vos and Quin t en Lu y t e n
/ * TU D e l f t BSc E l e c t r i c a l E n g i n e e r i n g Gradua t ion p r o j e c t 2023
/ * USER CODE END Header * /
/ * I n c l u d e s −−* /
i n c l u d e ” t im . h ”

TIM HandleTypeDef ht im3 ;

void SET TO IC (void){

/ * S e t s GPIO p i n B7 t o I n p u t Capture mode * /
SET BIT (GPIOB−>AFR [0] , 0 xa0000000) ;
TIM IC In i tTypeDef sConf ig IC = {0} ;
sConf ig IC . I C P o l a r i t y = TIM INPUTCHANNELPOLARITY BOTHEDGE ;
sConf ig IC . I C S e l e c t i o n = TIM ICSELECTION DIRECTTI ;
sConf ig IC . I C P r e s c a l e r = TIM ICPSC DIV1 ;
sConf ig IC . I C F i l t e r = 0 ;
i f (HAL TIM IC ConfigChannel (&htim3 , &sConf igIC , TIM CHANNEL 4) != HAL OK)
{

E r r o r H a n d l e r () ;
}
SET BIT (TIM3−>CCER, 0 xb000) ;
SET BIT (GPIOB−>PUPDR, (1 << 1 4)) ;
SET BIT (GPIOB−>MODER, (1<<15));
CLEAR BIT (GPIOB−>MODER, (1<<14));

}

void SET TO GPIO OUT (void){

/ * S e t s GPIO p i n B7 t o GPIO Out mode * /
GPIO In i tTypeDef G P I O I n i t S t r u c t = {0} ;
G P I O I n i t S t r u c t . P in = GPIO PIN 7 ;

C.4 Shortened stm32g4xx it.c file 51

G P I O I n i t S t r u c t . Mode = GPIO MODE OUTPUT PP ;
G P I O I n i t S t r u c t . P u l l = GPIO NOPULL ;
G P I O I n i t S t r u c t . Speed = GPIO SPEED FREQ VERY HIGH ;
HAL GPIO Init (GPIOB , &G P I O I n i t S t r u c t) ;

/ * * /
HAL SYSCFG FASTMODEPLUS ENABLE (SYSCFG FASTMODEPLUS PB7) ;

SET BIT (GPIOB−>ODR, (1 << 7)) ;

}

void S t a r t t r a n s m i s s i o n (void){
/ * T h i s f u n c t i o n s e t s PB7 t o o u t p u t mode and

* t r a n s m i t s t h e c o n t e n t s o f t h e T e l e m e t r y A r r a y
*
* Leave a t l e a s t 30 m i c r o s e c o n d s f o r t r a n s m i s s i o n
* t o c o m p l e t e b e f o r e e x e c u t i n g s t a r t l i s t e n i n g
* /

SET TO GPIO OUT () ;
WRITE REG(TIM4−>CNT, 0) ;

/ * Enable DMA r o u t i n e : s t a r t s e n d i n g b i t s * /
DMA1 Channel1−>CCR |= 1 ;

}

C.4 Shortened stm32g4xx it.c file

/ * USER CODE BEGIN Header * /
/ * W r i t t e n by Ruben Vos and Quin t en Lu y t e n
/ * TU D e l f t BSc E l e c t r i c a l E n g i n e e r i n g Gradua t ion p r o j e c t 2023
/ * USER CODE END Header * /

/ * I n c l u d e s −−* /
i n c l u d e ” main . h ”
i n c l u d e ” s t m 3 2 g 4 x x i t . h ”
i n c l u d e ” t im . h ”

d e f i n e enable DMA ADC inte r rup t 0

e x t er n DMA HandleTypeDef hdma adc1 ;
e x t er n DMA HandleTypeDef hdma adc2 ;
e x t er n COMP HandleTypeDef hcomp1 ;
e x t er n COMP HandleTypeDef hcomp2 ;
e x t er n COMP HandleTypeDef hcomp3 ;
e x t er n DMA HandleTypeDef hdma t im4 up ;
e x t er n TIM HandleTypeDef ht im3 ;

/ * T h i s f u n c t i o n h a n d l e s t h e t e l e m e t r y t r a n s m i s s i o n DMA c h a n n e l * /
void DMA1 Channel1 IRQHandler (void)
{

i f (READ BIT (DMA1−>ISR , (u i n t 3 2 t)DMA FLAG TC1)) { / / I f T r a n s f e r Comple te i n t e r r u p t
DMA1−>IFCR |= 7 ; / / C lear TCI , HTI , GI f l a g
DMA1 Channel1−>CCR &= ˜ 1 ; / / D i s a b l e DMA r o u t i n e
SET TO IC () ; / / S t a r t l i s t e n i n g

}
}

52 C code

Bibliography

[1] O. Liang, Flight controller explained: The ultimate guide to understanding fpv drone control systems, 2023.
[Online]. Available: https://oscarliang.com/flight-controller-explained/.

[2] “Fusion engineering, experts in flight control technology.” (2023), [Online]. Available: fusion.engineering.

[3] mikeller. “Dshot telemetry #7264.” (2020), [Online]. Available: https://github.com/betaflight/
betaflight/pull/7264.

[4] The betaflight open source flight controller firmware project, 2023. [Online]. Available: https : / /
github.com/betaflight.

[5] S. Skaug. “Blheli for brushless esc firmware.” (2023), [Online]. Available: https://github.com/
bitdump/BLHeli.

[6] M. Rasmussen and D. Manajipet. “Digital esc firmware for controlling brushless motors in multirotors.”
(2022), [Online]. Available: https://github.com/mathiasvr/bluejay/tree/main.

[7] Y. Chen, B. Xie, and E. Mao, “Electric tractor motor drive control based on fpga,” IFAC-PapersOnLine,
vol. 49, no. 16, pp. 271–276, 2016, 5th IFAC Conference on Sensing, Control and Automation Technologies
for Agriculture AGRICONTROL 2016, ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.
ifacol.2016.10.050. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896316316135.

[8] L. Diao, J. Tang, P. C. Loh, S. Yin, L. Wang, and Z. Liu, “An efficient dsp–fpga-based implementation of
hybrid pwm for electric rail traction induction motor control,” IEEE Transactions on Power Electronics,
vol. 33, no. 4, pp. 3276–3288, 2018. DOI: 10.1109/TPEL.2017.2707639.

[9] X. Liu, Y. Xie, H. Chen, and B. Li, “Implementation on fpga for cordic-based computation of arcsine and
arccosine,” in IET International Radar Conference 2015, 2015, pp. 1–4. DOI: 10.1049/cp.2015.
1306.

[10] S.-H. Song, J.-W. Choi, and S.-K. Sul, “Current measurements in digitally controlled ac drives,” IEEE
Industry Applications Magazine, vol. 6, no. 4, pp. 51–62, 2000. DOI: 10.1109/2943.847916.

[11] D.-W. Chung and S.-K. Sul, “Analysis and compensation of current measurement error in vector-controlled
ac motor drives,” IEEE Transactions on Industry Applications, vol. 34, no. 2, pp. 340–345, 1998. DOI:
10.1109/28.663477.

[12] E. Persson, “A new approach to motor drive current measurement,” in 4th IEEE International Conference
on Power Electronics and Drive Systems. IEEE PEDS 2001 - Indonesia. Proceedings (Cat. No.01TH8594),
vol. 1, 2001, 231–234 vol.1. DOI: 10.1109/PEDS.2001.975317.

[13] C. Landa. “Dshot - the missing handbook.” (2021), [Online]. Available: https://brushlesswhoop.
com/dshot-and-bidirectional-dshot.

[14] Chris and D. Mosquera. “Extended dshot telemetry (edt) specification.” (2023), [Online]. Available: https:
//github.com/bird-sanctuary/extended-dshot-telemetry.

[15] M. ILASLAN and T. AKINCI, “Fpga based reprogrammable main circuit board and auxiliary circuit board
design,” Journal of Engineering Science and Technology, vol. 15, no. 6, pp. 3955–3970, 2020.

[16] Lattice Semiconductor, Pcb layout recommendations for bga packages, 2022. [Online]. Available: http:
//www.latticesemi.com/view_document?document_id=671.

[17] ST Microelectronics. “Stm32 32-bit arm-cortex mcus.” (), [Online]. Available: https://www.st.com/
en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html.

https://oscarliang.com/flight-controller-explained/
fusion.engineering
https://github.com/betaflight/betaflight/pull/7264
https://github.com/betaflight/betaflight/pull/7264
https://github.com/betaflight
https://github.com/betaflight
https://github.com/bitdump/BLHeli
https://github.com/bitdump/BLHeli
https://github.com/mathiasvr/bluejay/tree/main
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.050
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.050
https://www.sciencedirect.com/science/article/pii/S2405896316316135
https://www.sciencedirect.com/science/article/pii/S2405896316316135
https://doi.org/10.1109/TPEL.2017.2707639
https://doi.org/10.1049/cp.2015.1306
https://doi.org/10.1049/cp.2015.1306
https://doi.org/10.1109/2943.847916
https://doi.org/10.1109/28.663477
https://doi.org/10.1109/PEDS.2001.975317
https://brushlesswhoop.com/dshot-and-bidirectional-dshot
https://brushlesswhoop.com/dshot-and-bidirectional-dshot
https://github.com/bird-sanctuary/extended-dshot-telemetry
https://github.com/bird-sanctuary/extended-dshot-telemetry
http://www.latticesemi.com/view_document?document_id=671
http://www.latticesemi.com/view_document?document_id=671
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

54 BIBLIOGRAPHY

[18] A. Drumea and M. Pantazică, “Aspects of using low layer count pcbs for embedded systems with fpga
devices in bga packages,” in 2016 IEEE 22nd International Symposium for Design and Technology in
Electronic Packaging (SIITME), 2016, pp. 74–77. DOI: 10.1109/SIITME.2016.7777247.

[19] Silabs. “8-bit microcontrollers.” (2023), [Online]. Available: https://www.silabs.com/mcu/8-
bit-microcontrollers.

[20] Mouser Nederland, Texas instruments digitale signaal-processoren & controllers - dsp, dsc, 2023. [Online].
Available: https://nl.mouser.com/c/semiconductors/integrated-circuits-ics/
embedded-processors-controllers/digital-signal-processors-controllers-
dsp-dsc/?m=Texas+Instruments&product=DSPs%5C&sort=pricing.

[21] ST Microelectronics, Arm ® cortex ® -m4 32-bit mcu+fpu, 170 mhz /213 dmips, up to 128 kb flash, 32
kb sram, rich analog, math accelerator, 2021. [Online]. Available: https://nl.mouser.com/
datasheet/2/389/stm32g431c6-1600866.pdf.

[22] NXP. “General purpose microcontrollers (mcus).” (2023), [Online]. Available: https://www.nxp.
com/products/processors-and-microcontrollers/arm-microcontrollers/general-
purpose-mcus:GENERAL-PURPOSE-MCUS.

[23] Y. Brodskaya and M. E. van Schagen, Control Algorithm for a High Power Electronic Speed Controller.
2023.

[24] ST Microelectronics, Sensorless bldc motor control and bemf sampling methods with st7mc, 2007. [On-
line]. Available: https://www.st.com/resource/en/application_note/an1946-
sensorless-bldc-motor-control-and-bemf-sampling-methods-with--st7mc-
stmicroelectronics.pdf.

[25] T. Cedro, M. Kuzia, and A. Grzanka, “Libswd serial wire debug open framework for low-level embedded
systems access,” in 2012 Federated Conference on Computer Science and Information Systems (FedCSIS),
2012, pp. 615–620.

[26] ST Microelectronics, Getting started with stm32g4 series hardware development boards, 2019. [Online].
Available: https://www.st.com/resource/en/application_note/dm00442716-
getting-started-with-stm32g4-series--hardware-development-boards-stmicroelectronics.
pdf.

[27] E. D. B. De Galembert and M. Simonart, Design of an Electronic Speed Controller. 2023.

[28] Allegro microsystems, Coreless, high precision, hall-effect current sensor ic with common-mode field re-
jection and high bandwidth (240 khz), Dec. 2021. [Online]. Available: https://nl.mouser.com/
pdfDocs/ACS37612-Datasheet.pdf.

[29] V. Armijo et al., “Lanl report on the r&d program for cathode strip readout chambers for the phenix muon
tracking system,” 1999. [Online]. Available: https://p25ext.lanl.gov/phenix/muon/
phnotes/PN125/node1.html.

[30] R. Vos, M. E. van Schagen, Y. Brodskaya, M. Simonart, Q. Luyten, and E. D. B. De Galembert. “Bap-
esc-releases.” (2023), [Online]. Available: https://github.com/Quintenluyten/BAP-ESC-
Releases/tree/main/Firmware.

[31] Texas Instruments, Tmp127-q1 automotive grade, 0.8 °c spi temperature sensor with 175 °c operation,
2022. [Online]. Available: https://www.ti.com/lit/ds/symlink/tmp127-q1.pdf.

[32] ST Microelectronics, How to get the best adc accuracy in stm32 microcontrollers, 2022. [Online]. Avail-
able: https://www.st.com/content/ccc/resource/technical/document/application_
note/group0/3f/4c/a4/82/bd/63/4e/92/CD00211314/files/CD00211314.pdf/
jcr:content/translations/en.CD00211314.pdf.

[33] ISO Standard, 11898-1. road vehicles-controller area network (can), 2015.

[34] ST Microelectronics. “High performance 3-phase motor controller with embedded stm32g4 mcu.” (2022),
[Online]. Available: https://www.st.com/en/motor-drivers/stspin32g4.html.

https://doi.org/10.1109/SIITME.2016.7777247
https://www.silabs.com/mcu/8-bit-microcontrollers
https://www.silabs.com/mcu/8-bit-microcontrollers
https://nl.mouser.com/c/semiconductors/integrated-circuits-ics/embedded-processors-controllers/digital-signal-processors-controllers-dsp-dsc/?m=Texas+Instruments&product=DSPs%5C&sort=pricing
https://nl.mouser.com/c/semiconductors/integrated-circuits-ics/embedded-processors-controllers/digital-signal-processors-controllers-dsp-dsc/?m=Texas+Instruments&product=DSPs%5C&sort=pricing
https://nl.mouser.com/c/semiconductors/integrated-circuits-ics/embedded-processors-controllers/digital-signal-processors-controllers-dsp-dsc/?m=Texas+Instruments&product=DSPs%5C&sort=pricing
https://nl.mouser.com/datasheet/2/389/stm32g431c6-1600866.pdf
https://nl.mouser.com/datasheet/2/389/stm32g431c6-1600866.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus:GENERAL-PURPOSE-MCUS
https://www.st.com/resource/en/application_note/an1946-sensorless-bldc-motor-control-and-bemf-sampling-methods-with--st7mc-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an1946-sensorless-bldc-motor-control-and-bemf-sampling-methods-with--st7mc-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an1946-sensorless-bldc-motor-control-and-bemf-sampling-methods-with--st7mc-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00442716-getting-started-with-stm32g4-series--hardware-development-boards-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00442716-getting-started-with-stm32g4-series--hardware-development-boards-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00442716-getting-started-with-stm32g4-series--hardware-development-boards-stmicroelectronics.pdf
https://nl.mouser.com/pdfDocs/ACS37612-Datasheet.pdf
https://nl.mouser.com/pdfDocs/ACS37612-Datasheet.pdf
https://p25ext.lanl.gov/phenix/muon/phnotes/PN125/node1.html
https://p25ext.lanl.gov/phenix/muon/phnotes/PN125/node1.html
https://github.com/Quintenluyten/BAP-ESC-Releases/tree/main/Firmware
https://github.com/Quintenluyten/BAP-ESC-Releases/tree/main/Firmware
https://www.ti.com/lit/ds/symlink/tmp127-q1.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/3f/4c/a4/82/bd/63/4e/92/CD00211314/files/CD00211314.pdf/jcr:content/translations/en.CD00211314.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/3f/4c/a4/82/bd/63/4e/92/CD00211314/files/CD00211314.pdf/jcr:content/translations/en.CD00211314.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/3f/4c/a4/82/bd/63/4e/92/CD00211314/files/CD00211314.pdf/jcr:content/translations/en.CD00211314.pdf
https://www.st.com/en/motor-drivers/stspin32g4.html

	Introduction
	Problem definition
	System Overview
	Synopsis
	State-of-the-art Analysis
	Analog communication protocols
	DShot
	Available Controllers
	Sensor Readout

	Design Requirements
	Electrical requirements
	DShot and telemetry requirements
	Speed requirements
	Fault protection requirements
	Financial and organizational requirements
	Planning requirements
	Interoperability requirements

	Definition of the DShot protocol
	Bidirectional DShot
	Extended Telemetry

	Design Considerations
	Choice of controller
	Choice of microcontroller series
	Choice of zero-crossing detection method
	Analog comparator
	Digital integration

	PCB design
	First Prototype
	Summary of prototype PCB features
	Lessons learned from the first prototype

	Final Prototype
	Power supplies
	Digital interfaces
	Analog interfaces
	Effects of non-idealities

	Programming of the microcontroller
	DShot front end
	DShot package processing
	Analog sensor readout
	Temperature sensor readout
	Temperature managment

	Prototype testing and analysis
	DShot Processing time
	DShot package corruption
	ADC Accuracy

	Conclusion, Discussion, and Outlook
	Conclusion
	Discussion
	Implementation of DShot
	Alternative Communication protocols
	Choice of controller
	Measurement accuracy

	Recommendations and Future Work

	PCB design
	MCU Prototype mapping
	C code
	Shortened main.c file
	DShot.c
	Shortened tim.c file
	Shortened stm32g4xx_it.c file

