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Abstract

Christoph Brendan Determan

Compressed convolutional neural networks for sewer inspection

The inspection of extensive and hard-to-access sewer systems is a challenging and
expensive task. As these networks age and need to comply with stricter health
and environmental regulations, the demand for effective inspection solutions has
increased. The introduction of technologies like CCTV (closed-circuit television)
and SSET (sewer scanner and evaluation technology) marked the initial automation
steps in sewer inspections. Initially, images from these technologies were manually
analyzed for defects, but over time, computer vision techniques have emerged as
a highly promising method for automating image processing. However, these ad-
vanced computer vision methods are computationally intensive and typically rely
on cloud-based architectures, which can be costly and sometimes impractical due to
energy or communication limitations. A proposed solution is to shift the computa-
tional processes from the cloud to edge computing, which can address issues related
to latency and scalability.

The Sewer-ML dataset, sourced from sewer inspection videos by Danish water utili-
ties, comprises 1.3 million images annotated across 18 defect categories. This exten-
sive multi-label dataset serves as a foundation for training and evaluating machine
learning models within sewer system management. Model performance is evalu-
ated using the F2CIW (class importance weight) score, which emphasizes recall and
defect severity to ensure the accurate detection of critical defects, and the F1Normal
score, which measures the model’s accuracy in identifying instances without defects,
essential for efficient resource management.

The ResNet-101 and TResNet-L models, trained on the Sewer-ML dataset, under-
went various compression methods including quantization, layer fusion, and prun-
ing. Quantization was applied only to the ResNet-101, reducing its F2CIW and F1Normal
scores by 2.52% and 0.72% respectively, while significantly boosting inference speed
by up to 95% on standard platforms and 174.50% on L4 GPUs. Layer fusion was also
implemented, further enhancing inference efficiency. Additionally, iterative pruning
was performed, showing that while the TResNet-L could maintain performance up
to an 80% pruning rate, there was a noticeable initial drop in performance for both
models.

The quantized ResNet-101, both the one with and without layer fusion, even im-
prove compared to the standard model in regards to correctly identifying the highest
CIW defect class present in pipes deemed defective in the validation dataset. This



iv

model behaviour is positive because the priority of a sewer asset manager is the dis-
covery of the defect that carry the highest risk with them if not treated in time. This
improved efficiency in defect recognition helps in optimizing repair schedules and
resource allocation, thus reducing operational costs as well.
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Chapter 1

Introduction

1.1 Sewer inspection

The significance of sewer systems in the modern world cannot be overstated. It
can even be said that sewer systems are foundational to the development of a mod-
ern society, since it is a prerequisite for harboring public health, urban functionality
and the sustainability of the environment. The role of sewer systems is becoming
even more important as cities grow and societies get more interconnected. There-
fore, these seemingly invisible networks demand thorough maintenance to ensure
present and future functionality.

The combined Dutch municipal sewage expenditure in 2022 was €1.8 billion (Geld -
Riool en raad 2023). This money, collected by the Dutch municipalities via a sewage
tax, is used to maintain and repair all parts of the sewer system in the Netherlands.
Proper maintenance of the sewer system demands it to be timed correctly, for de-
layed maintenance can result in more significant damage within the sewer system.
As a result, specific parts of the sewer piping might be damaged too severely to be
repaired, necessitating a complete replacement of said part. This, in turn, causes a
higher repair cost. It is estimated that it would cost 87 billion euros to completely
replace the current sewer system in the Netherlands (Stichting RIONED, n.d.[a]).

In conclusion, proper asset management is crucial to maintaining the uninterrupted
operation of the sewer system, while also keeping maintenance costs at a minimum.

1.2 Problem statement

The inspection of a vast and difficult-to-access sewer pipeline system is a challeng-
ing and costly endeavor. An effective response to this challenge has become increas-
ingly sought after as many networks approach the end of their designed lifetimes
and must comply with stricter health and environmental regulations (Moradi and
Zayed, 2017). Initially, the shift from traditional manual inspections to the use of
CCTV (closed-circuit television) and SSET (sewer scanner and evaluation technol-
ogy) marked the first step towards automating this process. Initially, images cap-
tured by these technologies were manually checked for defects, but later, the use
of computer vision techniques emerged as the most promising method to automate
image processing (Haurum and Moeslund, 2020).

Despite these advancements, state-of-the-art computer vision techniques entail high
computational costs, typically requiring a cloud-centric architecture for deployment
(Zaidi et al., 2022). This not only increases financial costs but also poses feasibility
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challenges in situations constrained by energy and communication limitations. The
solution to this problem has been the migration of computational tasks from the
cloud to the edge, addressing issues of latency and scalability effectively (Chen and
Ran, 2019).

Edge computing facilitates data processing close to the data source—in this case,
the sewer system itself—significantly reducing latency as data no longer needs to be
transmitted to a distant cloud server. This approach alleviates scalability problems
caused by network congestion as more devices connect and interact. However, de-
ploying computationally intensive algorithms like those used in computer vision on
small, edge devices requires innovations such as model compression techniques to
decrease both computational complexity and storage demands.

Traditional sewer inspection methods, particularly those involving closed-circuit
television (CCTV), are increasingly seen as inadequate due to their time-consuming
nature, high costs, and the subjective interpretations required by human inspectors
(Xu et al., 2022). These methods also pose safety risks to workers and often lead to
inconsistent and unreliable data regarding sewer conditions. In contrast, the intro-
duction of sewer floating capsule robots equipped with advanced computer vision
technologies offers a more effective solution (Xu et al., 2022). These robots automate
the inspection process, providing rapid and accurate assessments. This shift not only
mitigates the limitations associated with manual inspections, but also significantly
improves the efficiency and safety of sewer maintenance operations.

Mounce et al. (2021) notes that the emergence of autonomous robotics in sewer
networks is revolutionizing how these infrastructures are maintained. Advanced
robots, equipped with new sensing approaches like in-pipe robotics, are becoming
integral to water companies as they transition to smarter, more proactive practices.
This is part of the broader movement towards smart water networks, where robotic
autonomous systems (RAS), that are spread out through the sewer system, make
continuous assessment of pipe condition and operational performance possible, al-
lowing for a shift from reactive to proactive maintenance strategies (Mounce et al.,
2021).

The development of a crawling robot capable of inspecting long distances within
narrow sewer pipes is another innovative approach (Tanaka et al., 2014). These
robots address the accessibility challenges posed by narrow pipes that traditional
methods fail to inspect effectively, thus enhancing safety and efficiency in sewer
inspections. Additionally, the deployment of legged robots for the autonomous in-
spection of concrete deterioration showcases the potential for robotic systems to per-
form tasks traditionally done by human inspectors, even under challenging condi-
tions (Kolvenbach et al., 2020). Equipped with sensors that allow them to tactically
assess structural integrity, these robots can navigate through sewers, feeling the sur-
face roughness to evaluate concrete conditions where visual inspection fails. Using
advanced sensing technologies like sonar and LIDAR allows these robotic systems
to gather detailed data, which is important for understanding the condition of sewer
infrastructures. This ongoing data collection is essential for scheduling maintenance,
which helps prolong the life of these important infrastructure elements.

In conclusion, as sewer systems around the world age and the demands for effi-
cient, cost-effective maintenance increase, the role of technology, particularly the use
of edge computing and robotics in sewer inspection, becomes increasingly crucial.
These technologies not only promise to reduce costs and enhance efficiency, but also



1.3. Research questions 3

improve the safety conditions under which these inspections are carried out. There-
fore, applying existing methods to compress neural network models specifically for
sewer defect inspection on edge devices is crucial for enhancing the inspection pro-
cesses and represents a significant advancement in the field.

1.3 Research questions

The main research question that arises from the problem statement is as follows:

"Can model compression methods be exploited to facilitate computer vision
tasks at the edge for sewer system defect detection?"

The first two sub-questions are formulated to answer the main research question.
The third sub-question aims to identify how usable the model is in the context of
Dutch sewer asset management and whether specific improvements could perhaps
be made. The three sub-questions are:

1. How are the compression techniques implemented into the original models?

2. How do the compressed models perform compared to the uncompressed mod-
els?

3. How usable are the compressed models for sewer asset management?

1.4 Delimitations

In order to adapt computer vision algorithms to such an extent that it is possible to
be run on an edge device and uphold significant accuracy in regards to effectively
identifying sewer system damages, it is necessary to establish several key aspects
that contribute to realizing this practical application. These aspects are: computer
vision algorithms, model compression techniques and defining the hardware limi-
tations of the hypothetical edge device.

A plethora of algorithms exist that can be used for classifying purposes in the context
of sewer inspection. When looking at Figure 1.1, an increase in popularity of the
use of deep learning algorithms can be observed. Convolutional neural networks
(CNNs) hold the biggest share of the applied deep learning methods (Haurum and
Moeslund, 2020). Therefore, the focus of this thesis will be on the use of the CNN
architecture as a means to deploy computer vision for sewer system inspection.

When looking at model compression techniques, this thesis will be limited to the
research of effective application of the following three techniques: pruning, knowl-
edge distillation and quantization. These techniques have proven to be popular
model compression choices in recent years (Li et al., 2023) (Choudhary et al., 2020).

The dataset with which the models are trained, is the Sewer-ML dataset created by
Haurum and Moeslund (2021). This extensive, multi-label dataset has 1.3 million
images, which have been labelled by professional sewer inspectors over a period of
nine years (Haurum and Moeslund, 2021). A more in depth analysis of this dataset
will follow in a later Chapter.
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FIGURE 1.1: Pipeline methodology distribution throughout the years.
(Haurum and Moeslund, 2020)

1.5 Needs-analysis

The needs-analysis for this thesis involves understanding the current challenges in
sewer system defect detection, how the applied computer vision models work and
how to implement compression techniques. A standard computer vision algorithm
uses a neural network that is trained with labelled data (e.g. an image of a sewer
pipe with a crack in the wall) to classify an unlabelled image, therefore a high qual-
ity labelled dataset to possibly train or correct the models is also needed. Another
aspect of the needs-analysis that must be looked at are the user demands. In practice
this means that the performance of the conceived computer vision algorithm must
be compared to that of current sewer inspection performance numbers. Caradot et
al. (2018) found that the probability of correctly assessing a sewer pipe in poor con-
dition is approximately 80%. In this study, assessments by sewer system profession-
als were analysed. This implies that the 80% is representative of human inspection
prowess. A part of the needs-analysis for the yet to be developed algorithm is, there-
fore, to be able to correctly assess a sewer pipe in poor condition in at least 80% of
the cases.

1.6 Methodology & thesis outline

Chapter two will first start with an in-depth overview of sewer system asset man-
agement practices and the type of damages that occur. A comprehensive review will
provide insights into the challenges faced by asset managers and the importance of
timely maintenance for the longevity and functionality of sewer systems. Chapter
three will explain the technical aspects of the CNN and the rationale behind using
CNNs for image-based detection. Chapter four the technical aspects of the three
model compression methods that will be explored within this thesis.
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In Chapter five the Sewer-ML dataset will be introduced. The architectures of the
custom sewer models that were trained on this dataset will be explained and the
benchmark performances will be presented. In Chapter 6 the applied model com-
pression techniques will be discussed, followed by the yielded results. The two re-
maining Chapters are the discussion and conclusion. Figure 1.2 displays the flowchart
for the conceptual framework of this thesis.

FIGURE 1.2: Methodology flowchart of this thesis.
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Chapter 2

Sewer asset management

2.1 Sewer systems

Sewer systems are critical parts of urban water infrastructure, because these systems
are responsible for the collection and transport of wastewater and stormwater from
residential, commercial, and industrial sources to treatment facilities (Hahn et al.,
2002). This water is transported to water treatment facilities, which are designed to
remove pollutants and contaminants from the wastewater before safely discharging
it into natural water bodies. Therefore, sewer systems are essential for upholding
proper sanitation, mitigating the transmission of waterborne diseases and ensuring
the responsible handling of wastewater in urban areas.

Because of the critical importance of sewer systems, significant effort is demanded
to maintain these systems to guarantee functionality. This results in sewer systems
being one of the most expensive infrastructures to maintain (Wirahadikusumah et
al., 2001). In Europe, the sewer assets have a estimated collective value of €2 trillion.
If a replacement rate of once every 100 years is considered, the annual repair costs
will be a grand total of €20 billion (Langeveld and Clemens, 2015). Another estimate
states that 50% of the sewer system construction budget is used for repair works (Du
et al., 2019).

As of January 1, 2012, USEPA (2016) stated that the total capital requirements for
wastewater and stormwater treatment and collection across the United States of
America, for projects that will be completed between 2012 and 2017, will amount
to $271 billion. This encompasses the following expenses

• Capital needs for publicly owned wastewater pipes and treatment facilities
($197.8 billion).

• Correction of combined sewer overflow issues ($48.0 billion).

• Stormwater management ($19.2 billion).

• The treatment and distribution of recycled water ($6.1 billion).

In recent times, increased urbanization and excessive sewer system connections sur-
passing their original design capacity to the main sewer pipeline have caused com-
plications in regards to sewer system management. Deprecated wastewater collec-
tion systems give rise to various problems, including structural collapse, corroded
concrete, fractured tiles, and blockages. The cost of solving these issues can be high
(WWAP, 2017).
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Therefore, as these underground assets continue to age, concerns will arise regard-
ing their sustained performance and the potential risks of future failures. To guar-
antee the functionality of this aging infrastructure, it is imperative that strategies are
developed that concentrate maintenance efforts on the network components where
they can yield the most significant impact. On top of that, growing user and polit-
ical demands, coupled with stricter environmental regulations, are contributing to
the necessity for a more sustainable and holistic management approach to the main-
tenance of these systems (Fenner, 2000).

In the Netherlands, extensive sewer system development took place between 1950
and 1970 (van Riel, 2016). The average lifetime of sewer pipes is estimated to be
between 50 and 90 years, which means that many of the sewer pipes in the Nether-
lands are at or approaching the end of their respective lifespans. Therefore, both the
money spend on repairment and replacement, and the need for effective sewer asset
management increases (van Riel et al., 2012).

Dutch municipalities have the following legally mandated responsibilities with re-
gard to water management (Stichting RIONED, n.d.[b]):

• Transportation of wastewater from buildings to purification plants.

• Collecting rainwater and directing it into the ground or surface water, but only
if the land or building owner is unable to do so independently. Currently,
many municipalities still manage the runoff from gutters and gardens. How-
ever, due to climate change, cost considerations and urban and rural growth,
this may not always be feasible.

• Implementing measures in response to recurring problems caused by either
excessively high or low groundwater levels.

The municipality funds all three water management related tasks through the sewage
tax. This tax is levied on all residents and businesses within the municipality.

However, the importance of sewer asset management extends beyond just protect-
ing functionality. It also includes a comprehensive strategy for monitoring and opti-
mizing sewer assets to maximize their lifespan and minimize both operational costs
and the environmental impact. In this era of aging infrastructure and increased ur-
banization, an effective sewer asset management program is essential to safeguard
public health, protect natural resources and, by doing so, safeguard the livability of
cities and towns.

2.2 Sewer inspection

In order to improve sewer asset management, it is important to firstly define the
current reality of sewer inspection, and secondly the direction that improvement
developments are taking.

2.2.1 Current sewer inspection practice

In spite of the ongoing shift towards adopting a proactive sewer asset management
approach, managers are currently making decisions with inadequate justifications.
The methods being employed predominantly rely on intuition (van Riel et al., 2012)
and entail high uncertainty (Elachachi et al., 2006). This is the case for both the
strategies and the data that are used.
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Caradot et al. (2018) researched the likelihood of either underestimating, overes-
timating, or accurately estimating the true condition of a pipe through visual in-
spection. This approach relies on the examination of two separate inspections of
the same sewer pipes and has undergone testing using a comprehensive data set
from Braunschweig, Germany. The structural condition of the examined pipes has
been assessed by using an altered version of the French classification methodology
RERAU. This methodology assigns a grade ranging from 1 to 4 to sewer pipes, with
4 indicating the poorest condition. It was found that the probability of correctly as-
sessing a sewer pipe in poor condition 4 is nearly 80%, resulting in a corresponding
probability of approximately 20% for overestimating the pipe’s condition. Generally,
the probability of overestimating the condition of a pipe (false negative, FN) tends
to be higher than underestimating its condition (false positive, FP). Specifically, for
pipes in poor condition, the probability of a false negative is 20%, while for pipes in
good condition, the probability of a false positive is 15%.

Dirksen et al. (2013) found that the likelihood of an inspector failing to detect the
existence of a defect (FN) is considerably higher than the likelihood of reporting a
defect that is not actually present (FP). The occurrence of a false positive is within
the range of a few percent, while the probability of a false negative is approximately
25%. Furthermore, upon analyzing sewer inspector examination data using the EN
13508-2 standard, it was revealed that the probability of an inaccurate observation
(in terms of defect recognition and/or description) for all defects exceeded 50%.

The EN 13508-2 standard (Investigation and assessment of drain and sewer systems out-
side buildings - Part 2: Visual inspection coding system) is the European standard that
states how the visual inspection of sewer pipes should be performed. A coding sys-
tem is deployed to denote all the types of sewer pipe defects , which are shown in
Table 2.1. The EN 13508-2 standard that is adopted in the Netherlands and pub-
lished by the Dutch Standardization Institute NEN, is called the NEN-EN 13508-2.
The only difference between the old NEN 3399 and the current NEN-EN 13508-2 is
the addition of the BBH class of vermin.

Code Description Code Description
BAA Deformation BBA Roots
BAB Cracks BBB Attached deposit
BAC Fracture/collapse BBC Settled deposit
BAD Defective brickwork or masonry BBD Ingress of soil
BAE Missing mortar BBE Other obstacle
BAF Surface damage BBF Infiltration
BAG Intruding inlet BBG Exfiltration
BAH Defective connection BBH Vermin
BAI Intruding sealing material
BAJ Displaced joint
BAK Defective lining
BAL Defective repair
BAM Weld error
BAN Porous pipe
BAO Soil visible due to defect
BAP Void visible due to defect

TABLE 2.1: Codes and descriptions according to NEN-EN 13508-2.
(NEN-EN 13508-2, 2021)
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Currently, sewer inspection is performed via the following steps:

1. On-site collection of CCTV images by a trained inspector. Mostly done by navi-
gating a remotely controlled vehicle equipped with a movable camera through
the sewer pipes.

2. The inspector thoroughly registers his observations and provides this informa-
tion to the responsible administrator of the sewer system.

3. The administrator provides a detailed defect description, involving character-
ization, quantification of its magnitude and identification of its location.

In recent times the norm regulated process of inspecting a sewer system has under-
gone substantial changes. Even when the NEN 3399 was still the used standard,
changes were applied by issuing an updated version. The NEN 3399:2004 was re-
voked and the NEN 3399:2015 was issued. This updated NEN 3399 standard was
a simplified classification methodology, focusing on whether certain aspects were
observed rather than noting their extent. The intention was to make the inspection
process easier for inspectors, reduce the likelihood of errors and cut costs. Unfor-
tunately, the simplification did not yield positive results. Municipalities requested
contractors to inspect and record data according to NEN 3399:2015. In practice, in-
spectors documented only the classes, lacking the detailed observations in line with
the European standard. The simplified classification system provided inadequate
information for effective management, leading most sewerage managers to revert to
the outdated 2004 standard (Stichting RIONED, 2020).

Alarmed by these challenges, a group of municipalities took action. In 2017, the
Waste Water Engineering standards committee, RIONED Foundation, and stake-
holders extensively assessed and discussed the situation. Recognizing the need for
revision, a decision was made to adopt NEN-EN 13508-2 from 2011 for sewer inspec-
tions in the Netherlands, effective from 2020. Consequently, NEN 3399 was revoked
and is no longer in use. Table 2.2 shows the difference between the different stan-
dards throughout recent times and Figure 2.1 shows the change in process order and
responsibility for both the inspector and administrator.

Up to 2014 2015 - 2019 From 2020
Standard NEN

3399:2004
NEN
3399:2015

NEN-EN
13508-2+A1:2011

What is Recorded? Global classes Limited
number of
global classes

Measured or
estimated values
(details)

Standard Range Pipes only Pipes and
manholes

Pipes and manholes

Exchange Format SUF-RIB 2.1 RibX RibX 1.3.2
Who Inspects? Inspector Inspector Inspector
Who Classifies? Inspector Inspector Administrator (with

the help of software)
Contract Formation Unambiguous Disorganized Unambiguous

TABLE 2.2: Comparison of Inspection Standards. (Stichting RIONED,
2020)
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FIGURE 2.1: Difference in the sewer inspection process between the
NEN 3399 and NEN-EN 13508-2 standards. (Stichting RIONED,

2020)

The task of inspecting a sewer can be demanding since inspectors are required to
observe a video feed for an extended period of time. Inspectors are prone to inaccu-
racies under such conditions. Moreover, the diversity in visual appearance within
sewer pipes adds an additional layer of complexity to the task (Haurum and Moes-
lund, 2021). An example of this can be seen in Figure 2.2. Because of these chal-
lenges, over the last three decades, industry and academia have extensively investi-
gated the field of automated sewer inspection, involving the development of diverse
robot platforms and specialized algorithms (Haurum and Moeslund, 2020).

2.2.2 Research developments

Recent progress predominantly revolves around the use of deep learning models
to create sewer inspection systems, with a focus on capitalizing on the potential of
data-centric feature representation (Zhao et al., 2022). Yin et al. (2021) performed
a review of recent literature and concluded that it is evident that defect detection
can be automated through various methods, with deep learning techniques being
extensively explored for this purpose. Figure 1.1 shows that in recent years deep
learning algorithms have become the most popular method for classification tasks
within in the context of sewer inspection and CNNs are the lion’s share of applied
deep learning methods (Haurum and Moeslund, 2020). This phenomenon can be
explained by the fact that CNNs have shown significant potential in the tasks of
image classification and object detection (Li et al., 2019). However, as discussed in
Chapter one, running a big CNN in a cloud-centric architecture is a computational
expensive endeavour. Model compression is proposed to make a computer vision
algorithm that is suitable for edge devices.

In the next two Chapters CNNs and the three model compression techniques (quan-
tization, pruning and knowledge distillation) will be explained.
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FIGURE 2.2: Images from within sewer pipes displaying a diversity
in visual characteristics (Haurum and Moeslund, 2020).
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Chapter 3

Introduction to convolutional
neural networks

This Chapter will first give a short introduction of deep learning, which is followed
up by a more indepth introduction of CNNs.

3.1 Deep Learning

In recent years, the field of Artificial Intelligence (AI) has seen significant advance-
ments, largely driven by developments in Machine Learning (ML) and Deep Learn-
ing (DL) techniques. AI, the broader concept, aims to create systems capable of
performing tasks that would typically require human intelligence. Within this field,
Machine Learning is a subset that focuses on enabling machines to learn from data,
make predictions, and improve over time without being explicitly programmed for
each task (Jordan and Mitchell, 2015).

FIGURE 3.1: Venn diagram displaying ML as a subsets of AI and DL
as a subset of ML (Robins, 2023).

Deep Learning, a specialized subset of Machine Learning, employs Artificial Neural
Networks (ANNs) with multiple layers to model complex patterns in large datasets.
These ANNs are inspired by the biological neural networks in the human brain,
be it in a simplified manner. Figure 3.2 shows the similarities between a biologi-
cal neuron and an artificial one. In the case of an artifical neuron, synapses are more
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commonly know as weights or parameters ANNs consist of interconnected nodes or
neurons arranged in layers. The fundamental building block of an ANN is the per-
ceptron, which corresponds with a single-layer neural network. Stacking multiple
perceptrons creates a Multilayer Perceptron (MLP), which includes an input layer
to receive data, several hidden layers for processing, and an output layer to deliver
results (Géron, 2017). An example of a standard MLP Artifical Neural Network can
be seen in Figure 3.3.

FIGURE 3.2: Similarities between a biological and an artificial neuron
(Han, 2023).

This architecture allows DL models to deconstruct and understand the input data
progressively through each layer, enabling the model to be useful for complex tasks
such as image recognition or natural language processing (Jaiswal, 2024). A key
aspect of DL is its ability to automatically discover important characteristics within
the data, without the need for human intervention to pick out these features. This
ability to learn from data by itself has significantly increased DL’s use across many
fields (Gillis et al., 2023).

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 1989) are a specialized kind
of ANN designed primarily for processing data that has a grid-like structure, such
as images. A standard fully connected ANN struggles with processing entire images
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FIGURE 3.3: A MLP Artifical Neural Network with an input layer,
two so-called hidden layers and an output layer (GfG, 2023).

effectively because it treats each pixel separately, without recognizing the patterns
and structures formed by groups of pixels together. This makes it less efficient for
tasks involving complex visual data. This means that for an image with thousands
of pixels, a fully connected network would require millions of weights, leading to a
massive number of parameters that make the network prone to overfitting and com-
putationally expensive (Mishra, 2021). A CNN typically consist of several different
types of layers, those layers will be explained in the following paragraphs.

3.2.1 Data representation in CNNs

In CNNs, data is represented and manipulated as tensors, which are multi-dimensional
arrays. A color image is typically represented as a 3D tensor, with dimensions cor-
responding to the image’s height, width, and color channels (such as RGB). Beyond
just holding image data, tensors are used throughout CNNs to store weights, biases,
and the outputs from various layers. This data format allows CNNs to efficiently
process and analyze complex visual information by organizing it in a structured
manner.

3.2.2 Convolutional layer

The convolutional layer applies a mathematical operation called convolution to the
input image. This operation involves sliding a learnable filter, or kernel (a matrix
containing weights), across the image and computing the dot product of the filter
with the local patches of the input. Each dot product provides a value in a new
output matrix, known as a feature map, which represents a specific feature detected
in the input, see figure 3.4. This process allows the layer to capture patterns such
as edges, textures, or more complex shapes in the image. Different filters can em-
phasize different aspects of the input image (Géron, 2017). An example is shown in
figure 3.5

In addition to the convolution operation, each convolutional filter has a bias term
(Turing, 2022). After the filter is applied to the input through the convolution opera-
tion, the bias is added to the result before passing it through a non-linear activation
function. The bias term allows the activation function to be shifted to the left or right,
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which can help the network better fit the data. This is crucial for the learning process
because it provides the network with an additional degree of freedom, by making it
possible that even if the weighted sum of the inputs to a neuron is zero, the neuron
can still be activated if the bias allows it. This makes the model more adaptable and
capable of achieving higher performance on a variety of tasks. In Figure 3.2 the bias
is denoted as b.

FIGURE 3.4: A convolutional operation entails taking the dot product
of the kernel with selected input patch (Goodfellow et al., 2016).

In CNNs, stride and zero-padding are two important concepts that significantly af-
fect how the convolutional layers operate on the input image (Géron, 2017). Stride
refers to the number of pixels by which the filter moves across the input image. A
stride of 1 means the filter moves one pixel at a time, scanning the entire image
closely. Increasing the stride reduces the dimensions of the output feature map be-
cause the filter skips over pixels and covers the image more quickly. This can be
useful to reduce the computational load and control the level of detail captured in
the feature maps. Zero-padding involves adding layers of zeros around the border
of the input image. This serves several purposes:

• It allows the use of a convolutional filter near the edges of the image, ensuring
that every input pixel can be centered by the filter, which is especially impor-
tant for capturing information at the edges.
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FIGURE 3.5: Different filters can emphasize different aspects of the
input image (Géron, 2017).

• It helps control the dimensions of the output feature maps. Without zero-
padding, the size of the feature maps decreases with each convolutional layer,
which can be undesirable for deep networks. By applying zero-padding, you
can maintain the spatial dimensions of the input through the layers, allowing
for deeper networks.

Figure 3.6 shows the full process of a convolution. A 3x3 kernel with a stride of 1 is
applied on a 5x5 input map with zero-padding. The output is a 3x3 feauture map.
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FIGURE 3.6: A complete convolution (Dumoulin and Visin, 2016).
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3.2.3 Activation layer

After the convolution operation, the feature map goes through an activation func-
tion, typically the Rectified Linear Unit (ReLU) (Szeliski, 2011). This layer introduces
non-linearity into the model, allowing it to learn more complex patterns. The ReLU
function works by taking each value produced by the network and turning any neg-
ative number into zero. Positive values are left unchanged. This process helps the
network focus on the most important features in the image and improves its ability
to learn and make decisions based on those features. There are many other activation
functions that also see common use, two of those are displayed in Figure 3.7.

FIGURE 3.7: Three types of activation functions (Han, 2023).

3.2.4 Pooling layer

The pooling layer reduces the dimensionality of each feature map while retaining
the most essential information. Max pooling is a technique that breaks down the
input image into several small blocks without any overlap between them. For each
of these blocks, it takes the highest value and uses that as a representation for the
entire block. The process is the same for average pooling, except that the average
value is taken instead of the maximum value (Mishra, 2021). This pooling process
helps the network to recognize important features in the image, regardless of their
size or how they’re positioned. It also simplifies the network’s structure, making it
faster and more efficient in processing images.

FIGURE 3.8: Max and average pooling (Han, 2023).
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3.2.5 Fully connected layer

FIGURE 3.9: Fully connected layer (Unzueta,
2022).

Towards the end of the network, fully
connected layers are used, where every
input is connected to every output by a
learnable weight (Géron, 2017). These
layers combine features learned by the
network over the entire image to iden-
tify specific patterns. Typically, the last
fully connected layer, in combination
with a softmax activation function, is
used to assign probabilities to different
classes based on the features detected
by the network.
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Chapter 4

Compression techniques

In this Chapter the three main compression techniques are explained, namely: quan-
tization, pruning and knowledge distilation.

4.1 Quantization

Quantization compresses a neural network by decreasing the numerical precision of
its weights and activations (Li et al., 2023). This process aims to maintain the net-
work’s predictive performance while significantly reducing its computational and
storage demands. When applying quantization, continuous or high-precision nu-
merical values are transformed into discrete or lower-precision values. In the context
of deep neural networks this usually means converting 32-bit floating-point num-
bers (which are standard in training neural networks) into 8-bit integers or other
lower bit-widths for both the weights and activations of a network. The input (in
the context of CNNs: images) of a neural network is also quantized. The exam-
ple of a quantized image given in Figure 4.1 effectively illustrates the essence of the
quantization process: the data is simplified, yet the crucial details are preserved.

FIGURE 4.1: Example of the effect quantization has on an image
(Weksler, 2021).

The quantization process can be split up in two parts: the first being based on the dis-
tribution of quantization levels (uniform, non-uniform, and mixed precision quanti-
zation) and the second one based on the timing and methodology of the quantization
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process (static quantization, dynamic quantization, and quantization-aware train-
ing). Each category has its own set of methodologies, advantages, and challenges,
which we will be explained in the following sections.

4.1.1 Uniform quantization

This technique applies the same level of precision reduction across all numerical
values within a neural network (Gholami et al., 2022). By uniformly adjusting the
bit-width of the numbers representing weights and activations, uniform quantiza-
tion simplifies the network’s computational requirements. Although this method is
widely compatible with various hardware platforms, it might not fully account for
the detailed distributions of data within the model, which could affect performance.

4.1.2 Non-uniform quantization

Non-uniform quantization customizes the precision reduction to match the specific
distribution of the model’s values. It employs a more detailed quantization scale
where data values are more concentrated and a broader scale where values are
spread out. This customized approach is relatively better at preserving a models
performance. However, the complexity of this method may affect its compatibility
with certain hardware platforms and reduce efficiency (June, 2023).

FIGURE 4.2: Uniform (left) vs non-uniform quantization (right). Real
values from a continuous range (r) are mapped to discrete, lower-
precision values to a quantized domain (Q). In uniform quantization,
the spacing between these quantized values is consistent, while in
non-uniform quantization, the spacing can differ. This reflects the

variable quantization levels. (Gholami et al., 2022).

4.1.3 Mixed precision quantization

Instead of uniformly quantizing every component of the network to the same bit-
width, mixed-precision quantization strategically assigns higher precision (more bits)
to parts of the model that are crucial for maintaining model performance, and lower
precision (fewer bits) to less critical areas. This approach helps in balancing the
trade-off between model size, computational efficiency, and performance (Gholami
et al., 2022).
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4.1.4 Static quantization

Performed as a post-training step, static quantization involves a preliminary calibra-
tion phase where a representative dataset is used to analyze the model’s behavior
and establish optimal quantization parameters, such as scale and zero-point (Gho-
lami et al., 2022). These parameters are used to map the floating point to its quan-
tized value as an integer. Formula 4.1 shows how the quantized value Xq is derived
from the floating point 32 datapoint X f p32. S is the scale, z the zero-point and the
round function rounds the result to the nearest integer.

Xq = round
(

Xfp32

S
+ z

)
(4.1)

4.1.5 Dynamic quantization

Dynamic quantization (also applied post-training) is applied at runtime and typi-
cally only quantizes the model’s weights while leaving the activations in floating-
point (Gholami et al., 2022). This means that each layer’s activations must be quan-
tized on-the-fly during inference. The scale and zero-point values are therefore cal-
culated during inference and not ahead of time as is the case with static quantization.
This results in computational overhead and increased latency. While dynamic quan-
tization can be more flexible and potentially more accurate for models with highly
variable data or those that benefit from higher precision activations, the added com-
plexity and computation time make it less optimal for the fixed and high-throughput
operations typical of CNNs.

4.1.6 Quantization Aware Training (QAT)

Quantization Aware Training integrates quantization into the training process, al-
lowing the model to adapt to the quantization-induced noise (Novac et al., 2021).
This method simulates quantization effects during training, enabling the model to
learn with quantized parameters. While QAT is more computationally intensive
than post-training quantization due to the training requirement, it often results in
higher accuracy for the quantized model.

4.2 Pruning

Pruning is a widely used technique in model compression that aims to reduce the
size and complexity of neural networks by less important parameters. The presump-
tion of pruning is that not all parameters in a model are crucial for its performance.
The goal is to reduce the network’s complexity and memory requirements, ideally
without significantly impacting its performance. Pruning can be divided into two
main types: structured and unstructured pruning

4.2.1 Structured pruning

Structured pruning removes entire neurons, filters or layers from the network, which
leads to a reduction in the dimensionality of the network (He and Xiao, 2023). This
method retains the structure of the components of the network that are left un-
changed, which is beneficial for compatibility with standard hardware accelerators
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like GPUs and TPUs. It simplifies the model’s architecture and can lead to sub-
stantial computational speedups. However, because structured pruning removes
large portions of a network at once, there is a risk that important parts are removed,
which in turn might have a relatively significant negative impact on the model’s
performance.

4.2.2 Unstructured pruning

This form of pruning targets individual weights across the network without regard
to their organization or position within the layers (Vadera and Ameen, 2022). By
setting specific weights to zero, unstructured pruning creates a sparse model where
many of the connections between neurons are effectively removed. This can lead
to significant reductions in model size and potentially speed up computations in
systems optimized for sparse matrix operations. However, the irregularity of the
sparsity pattern can pose challenges for achieving computational speedups on con-
ventional hardware, as these systems are typically optimized for dense matrix oper-
ations.

4.2.3 Pruning strategies

Pruning deep learning models typically follows one of two main strategies: one-
shot pruning and iterative pruning. One-shot pruning involves a single pruning
process, either during or after training. This method is computationally efficient,
but might not result in the most efficient pruning . Iterative pruning, on the other
hand, consists of multiple cycles of pruning followed by fine-tuning, which allows
the model to adapt gradually to the reduced number of parameters. While iterative
pruning tends to yield better results than one-shot pruning, it comes with the trade-
off of higher computational demands.

In one-shot pruning, the model undergoes a one-time pruning process based on spe-
cific criteria, which can be efficient but might not yield the best results due to the
abrupt removal of parameters. Iterative pruning, however, adopts a more gradual
approach by repeatedly pruning and then fine-tuning the model, allowing it to bet-
ter adapt to the changes and potentially leading to improved performance, despite
requiring more computational resources.

FIGURE 4.3: Unstructured vs structured pruning (Neuralmagic and
Neuralmagic, 2023).
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4.3 Knowledge distillation

Knowledge Distillation is a technique that aims to transfer the knowledge from a
large, complex model (often referred to as the "teacher" model) to a smaller, more
compact model (known as the "student" model) (Gou et al., 2021). The core idea
behind this approach is to make the student model mimic the behavior of the teacher
model as closely as possible.

The student model is trained using a dual-input strategy. This includes the raw data,
as is used during traditional training, alongside the predictions or "soft targets" gen-
erated by the teacher model. Soft targets, which are the probabilities of each class
predicted by the teacher, provide the student with insights into the teacher’s rea-
soning process, not just the final decision. This blend of hard data and soft insights
allows more nuanced decision-making capabilities from the teacher to be "distilled"
into the student model.
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Chapter 5

Sewer-ML: data, metrics and
benchmarks

In this Chapter the Sewer-ML dataset will be introduced. First the contents and
creation of the dataset will be explained. Secondly, commonly used performance
metrics for CNNs will be discussed. And third and final part will delve into the
CNNs that were trained on the Sewer-ML dataset and used to make predictions.

5.1 Data collection

The Sewer-ML dataset, introduced by Haurum and Moeslund (2021), consists of
75,618 sewer inspection videos collected between 2011 and 2019. This was done by
three different water utilities in Denmark. Each video contains annotations by certi-
fied inspectors according to a Danish standard, which includes 18 distinct classes.

From these videos, individual frames are extracted at each annotated instance, cre-
ating a dataset that represents various conditions found within sewer systems. Each
annotation marks a precise point in the video, denoting a specific class occurrence
at a given moment and location within the sewer pipe. Annotations that are close
to each other in the pipe are combined to form a multi-label dataset. Within each
inspection video, an annotation is combined with all neighboring annotations found
up to 0.3 meters before or 1.0 meters after the specified point in the pipe. The dataset
not only identifies defects but also includes significant features like changes in pipe
structure or connections (Haurum and Moeslund, 2021).

The final dataset contains 1,300,201 images, with a subset labeled as ’normal’ indi-
cating no defects, and another as ’defective’ for those with annotations. The distri-
bution of the sewer pipe images deemed either normal or defective over the training,
validation and test datasets, are shown in Figure 5.2. The multi-label classification
problem is framed as the prediction of the class labels, presented in Figure 5.1, ex-
cept for the VA class. The absence of annotations implies a ’normal’ pipe condition.
The ’normal’ class is therefore an implicit class.

5.2 Performance metrics

For the evaluation of the performance of the applied CNNs, several metrics are com-
monly used. Each of this metrics provide insights into different aspects of the model
performance. Classification can have four possible outcomes:
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FIGURE 5.1: Class codes with description and the corresponding
class-importance weights (Haurum and Moeslund, 2021).

FIGURE 5.2: Distribution of images deemed normal or defective be-
tween the training, validation and test dataset splits. (Haurum and

Moeslund, 2021).

• True Positives (TP): Instances correctly identified by the model as positive.

• True Negatives (TN): Instances correctly identified by the model as negative.

• False Positives (FP): Instances incorrectly identified by the model as positive.

• False Negatives (FN): Instances incorrectly identified by the model as negative.

Using these four possible outcomes, the following performance metrics can be cal-
culated.
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5.2.1 Precision

Precision quantifies the proportion of true positive predictions in the set of all pos-
itive predictions made by the model. It is particularly important in contexts where
the cost of a false positive is high.

Precision =
TP

TP + FP
(5.1)

5.2.2 Recall

Recall (or Sensitivity) measures the proportion of actual positives that were correctly
identified by the model. This metric is of particular interest in situations where miss-
ing a positive instance (a false negative) is costly.

Recall =
TP

TP + FN
(5.2)

5.2.3 F1 Score

The F1 Score is the, so called, harmonic mean of precision and recall. providing a
balance between the two.

F1 = 2 × Precision × Recall
Precision + Recall

(5.3)

5.2.4 Accuracy

Accuracy is a metric that measures the proportion of true results (both true positives
and true negatives) among the total amount of predictions made.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.4)

5.2.5 F2 score

When it comes to evaluating sewer defect classifications, there is not yet a consen-
sus on which metric is ideal to apply (Haurum and Moeslund, 2020). Therefore,
Haurum and Moeslund (2021) introduced a new metric that takes the relative im-
portance per sewer inspection class into account. The classes are assigned scores
based on their economic impact, determined by experts in the field. The scores are
normalized between 0 and 1 to represent the class-importance weight (CIW). These
weights represent a quantified relative importance for every class. The CIW for each
class is shown in Figure 5.1.

The F2 score is based on the Fβ metric, shown in formula 5.5.

Fβ = (1 + β2)
Prc · Rcll

β2 · Prc + Rcll
(5.5)

Prc and Rcll represent precision and recall respectively. The β functions as a weight
for the recall metric. When β is greater than 1, the formula gives more importance
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to recall compared to precision, which means it becomes more crucial for the model
to capture all relevant instances in the dataset even at the cost of making more false
positive errors. The β is set to 2 for this case.

The per-class F2 scores are calculated and then combined into a weighted average,
via the novel F2CIW function (5.6). This function also uses the CIWs as input.

F2CIW =
∑C

c=1 F2c · CIWc

∑C
c=1 CIWc

(5.6)

5.3 Applied models and benchmarks

5.3.1 Sewer defect classification models

In recent times a variety of classification methods have been applied on the sewer
defect classification problem, with the focus on three system configurations: end-
to-end classifiers, binary classifiers working together as an ensemble and dual-stage
classifiers (Haurum and Moeslund, 2021).

Chen et al. (2018) introduced such a dual-stage structure. The model consisted
of a SqueezeNet (Iandola et al., 2016) followed by GoogleNet InceptionV3 model
(Szegedy et al., 2014). The presence of significantly more normal images (images
containing no defects) compared to any single type of abnormal sample (images
containing a defect) can result in an unbalanced data distribution if all normal im-
ages are grouped into one class and each type of defect image into separate classes.
This imbalance can negatively impact the model’s performance. To address this is-
sue, the detection process is structured in two phases: identifying abnormal images,
which is followed by the classification of the specific types of defects. The model is
initially trained using the ILSVRC2012 dataset (a large-scale dataset used for the so
called "ImageNet Large Scale Visual Recognition Challenge". It includes millions of
images across thousands of categories). Following this, the model is fine-tuned with
sewer pipe image, effectively applying the principle of transfer learning to adapt the
model to the specific task. For the data that was used to fine tune the model, ap-
proximately 10,000 normal images were selected from a detection video supplied by
a pipeline robot company, along with about 2,000 images for each type of defect. A
total of four defect classes were used in the dataset: Intrusion, blur, deposition, and
obstacles.

Another hierarchical dual-stage classifier was created by Xie et al. (2019). In the
dataset that was used to train the model, 50% of the images were classified as nor-
mal, with the rest divided among 16 distinct defect categories, creating a significant
imbalance in the data. Once again, to tackle this problem, a hierarchical classifica-
tion framework was developed, incorporating two CNNs. The first CNN is aimed at
binary classification, differentiating normal from defective images (NDCNN), and
the second is dedicated to identifying the specific defect type within the defective
images, an interdefect classifier (IDCNN). Both CNN models have identical archi-
tectures, except for the final output layer. This allowed the second model to be de-
veloped by fine-tuning the first model’s weights. For the binary classification, the
dataset is split into two groups: normal images as positive examples and defective
images as negative examples. This mitigates the data imbalance issue and facilitates
the model to be trained from the ground up. Once the NDCNN model is adequately
trained, its output layer is modified to a six dimensional vector to accommodate
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multi-class defect identification, thus creating the IDCNN model. The six dimen-
sions vector was chosen because they aimed at identifying the six most common
defect classes (barrier, high water level, stagger, fracture, deposition, disjunction). If
an image is classified as defect but not classified as one of the six defect classes, it
implies that it is one of the ten classes that is not often encountered and therefore
the implicit label becomes ’other’. After the modification of the output layer, the
IDCNN is fine-tuned using the defective images based on the pre-trained NDCNN
weights. This approach overcomes the issue of insufficient defective image samples
for training the IDCNN model from scratch by employing transfer learning, which
uses the learned parameters from NDCNN for IDCNN. This method reduces the
need for a large sample size.

Myrans et al. (2018) created a model that consists of binary classifiers working to-
gether as an ensemble. First sewer images were transformed using GIST descriptors,
which condense the images into a comprehensive representation by capturing key
spatial and textural information. This step ensures that the subsequent classification
focuses on the most relevant features of the images. Following the transformation,
the model uses Random Forest classifiers to determine the presence and type of de-
fects. There are 13 Random Forest classifiers, each dedicated to one of the defect
categories: joint, deposits, multiple faults, crack, surface, roots, infiltration, obsta-
cles, other, broken/collapsed, hole, brickwork, and deformation. Each one of the
13 Random Forest classifiers is tasked with making a binary decision regarding the
presence of its corresponding defect type. The model was trained on a dataset cre-
ated by extracting images from CCTV footage collected by Wessex Water. which
included over 2,260 labeled defects.

Hassan et al. (2019) used an AlexNet (Krizhevsky et al., 2017) to identify six differ-
ent defect classes (debris, surface damage, lateral damage, joint open, joint faulty,
and longitudinal crack). This model was created in the same manner as was done
by Chen et al. (2018) namely, it was pre-trained on the ILSVRC2012 dataset and
fine tuned with a dataset containing sewer pipe defect images. These images were
retrieved from 6,605 CCTV sewer pipelines inspection videos. These videos were
supplied by the Korea Institute of Civil Engineering and Building Technology and
the training dataset totalled 47,072 images.

5.3.2 Sewer-ML benchmarks

To compare the performance of several relevant models in the sewer defect classifi-
cation field, Haurum and Moeslund (2021) trained the models of Chen et al. (2018),
Xie et al. (2019), Myrans et al. (2018), Hassan et al. (2019) from scratch, on their own
Sewer-ML dataset. They also did this for the following general models: ResNet-101
(He et al., 2015), KSSNet (Wang et al., 2019), TResNet-M/L/XL (Ridnik et al., 2020).
The training methodology that was adopted is based on the approach outlined by
Goyal et al. (2018) for effective training of models on the ImageNet dataset.

Haurum and Moeslund (2021) start with the preparation of the images, which un-
dergo several modifications. They are resized to 224x224 pixels and have a 50%
likelihood of being flipped horizontally. Their brightness, contrast, saturation, and
hue are also adjusted, varying by up to 10% from their original levels. Addition-
ally, these images are standardized based on the mean and standard deviation of
the dataset’s channels. At the inference stage, images are merely resized to 224x224
and then standardized. In the case of using the InceptionV3 network, as referenced
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by Chen et al. (2018), the required image size is adjusted to 299x299 pixels. When
the GIST features in the model of Myrans et al. (2018) are employed, the images are
transformed into gray scale and resized to 128x128 pixels.

All deep learning models undergo training over 90 epochs, processing 256 samples
per batch through Stochastic Gradient Descent (SGD) with added momentum. The
initial learning rate is set at 0.1, with momentum at 0.9 and a weight decay factor set
to 0.0001. To adjust the training intensity, the learning rate is scaled down by a factor
of 0.1 during the 30th, 60th, and 80th epochs.

The training process utilizes the modified binary cross-entropy loss usable for multi-
label classifiers, referenced in Equation 2.

The binary cross-entropy loss in equation 5.7 is used during training. This loss func-
tion is regularly used in the field of multi-label image classification (Haurum and
Moeslund, 2021).

L(x, y) = − 1
C

C

∑
c=1

[wcyc log(σ(xc)) + (1 − yc) log(1 − σ(xc))] (5.7)

In equation 5.7, C signifies the total count of classes. yc indicates the presence of class
c in a given image, with a value of 1 if present and 0 if absent. The variable xc rep-
resents the model’s raw output for class c, and σ denotes the sigmoid function. The
weight for class c, denoted as wc, is calculated based on the proportion of negative
to positive instances for that class.

Given the imbalance in the dataset, each positive observation of a class is assigned
a weight, wc, based on the ratio of negative to positive observations for that class,
as defined in equation 5.8. This approach ensures that the contributions to the loss
from underrepresented classes are amplified, whereas those from over represented
classes are diminished. Additionally, in the case of the InceptionV3 network, an
auxiliary classifier contributes a lesser weighted loss to the overall calculation.

wc =
N − Nc

Nc
(5.8)

After training all the models were run on both the validation and test dataset. The
results can be seen in Table 5.1.

Model
Validation Test

F2CIW F1Normal F2CIW F1Normal
Xie et al. 48.57% 91.08% 48.34% 90.62%
Chen et al. 42.03% 3.96% 41.74% 3.59%
Hassan et al. 13.14% 0.00% 12.94% 0.00%
Myrans et al. 4.01% 26.03% 4.11% 27.48%
ResNet-101 53.26% 79.55% 53.21% 78.57%
KSSNet 54.42% 80.60% 54.55% 79.29%
TResNet-M 53.83% 81.23% 53.79% 79.91%
TResNet-L 54.63% 81.22% 54.75% 79.88%
TResNet-XL 54.42% 81.81% 54.24% 80.42%

TABLE 5.1: Performance metrics for each model on the validation and
test sets (Haurum and Moeslund, 2021).
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The F1Normal score is the F1-score for the normal pipes (pipes without a defect). This
score reflects how good a model is in discerning defect pipes and normal pipes.
Looking at the performances of the models on the validation dataset, it can be seen
that the TResNet-L performs best with regards to the F2CIW score (54.63%), and the
model of Xie et al. (2019) performs best with regards to the F1Normal score (91.08%).
When looking at the best F2CIW and F1Normal scores for the test dataset, the same
models have yet again the highest scores with 54.75% and 90.62% for the TResNet-L
and the model of Xie et al. (2019) respectively.
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Chapter 6

Methodology

This Chapter starts with a small introduction on the ResNet-101 architecture. This
is needed to understand a part of the explanation of the results in Chapter 7. After
this the applied compression methods are explained. Both the pretrained ResNet-
101 and the TResNet-L were retrieved from the database provided by Haurum and
Moeslund (2021). Coding was done on Google Colab.

6.1 ResNet-101 model architecture

A Residual Neural Network (ResNet) derives it name from the use of residual blocks.
These blocks use so-called skip connections. Within each residual block, the input
is channeled through a series of layers and then, through a skip connection, is also
directly added to the output of these layers. Skip connections effectively allow the
input to "skip over" some of the intermediate layers. This approach not only helps
in mitigating the vanishing gradient problem but also enables the training of much
deeper networks (He et al., 2015).

FIGURE 6.1: Residual block example (He et al., 2015).

ResNets also incorporate batch normalisation layers. This technique used to stan-
dardize the inputs to a layer for each mini-batch. This helps stabilize the learning
process by reducing internal covariate shift, which is the change in the distribution
of network activations due to the updating of weights (Ioffe and Szegedy, 2015). By
normalizing the output of the previous layer to have a mean of zero and a variance
of one, batch normalization allows for higher learning rates and makes the model
less sensitive to its initial parameter settings.
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6.2 Static quantization

The state_dict of the pretrained model contains the weights and in order to load
these into a quantizable ResNet-101 architecture, first the ResNet-101 model defini-
tion code must be altered to prepare it for quantization. Appendix A contains the
entire code, now only the changes will be discussed.

To specify where the quantization and dequantization should take place it the model,
two commands are added to the def __init__ method. At the beginning of the
model self.quant = torch.ao.quantization.QuantStub() is used to mark the point
where floating-point tensors should be converted to quantized tensors. At the end
of the model self.dequant = torch.ao.quantization.DeQuantStub() is added to
transition the values back to floating-point, ensuring the model’s output can be
used in applications expecting floating-point tensors. To actually initiate these de-
fined quantization and dequantization commands at there specified locations in the
model, x = self.quant(x) and x = self.dequant(x) are added to the _forward_impl
method.

Also, in the Bottleneck part of the ResNet-101 model, a new line self.skip_add =
nn.quantized.FloatFunctional() is added. This change replaces the standard ad-
dition method in skip connections. The FloatFunctional module is specifically de-
signed to enable addition operations for quantized tensors, ensuring that the summed
quantized values are a correct representation of the real values.

After these changes are applied, the state_dict of the pretrained model can now
be loaded in a quantizable ResNet-101 structure and the model can be quantized.
Calibration is performed with several datasets of different sizes. After quantization
the model is ran on the validation dataset, in order to quantify the performance. The
code used to quantize the model and run it on the validation dataset is shown in
appendix B.

6.3 Layer fusion

Layer fusion is a process where suitable sets of consecutive layers are merged into
a single, more efficient layer. This can reduce memory usage and computational
overhead, making the model faster during inference (Alwani et al., 2016).

The layer fusion process is started with fusing the first convolutional layer (conv1),
followed by batch normalization (bn1) and ReLU activation (relu). These are fused
into a single module using the torch.ao.quantization.fuse_modules function. Each
Bottleneck block in ResNet-101 consists of three sets of convolutional and batch
normalization layers. The code fuse_bottleneck_layers function iteratively fuses
these layers across all Bottleneck blocks within the model. For Bottleneck blocks
that contain a downsample module (used to match dimensions between input and
output of the block), the convolutional and batch normalization layers within down-
sample are also fused.

After the layers are fused, static quantization is performed in the same manner as
before. The entire code can be found in appendix C
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6.4 Iterative pruning

Iterative pruning is chosen over one-shot pruning, because it yields a better perfor-
mance (Min and Motani, 2022). L1 norm unstructured pruning is performed. This
entails the pruning of the weights with the lowest absolute values first, as they are
deemed less significant for the model. A pruning rate of 0.1 is chosen per iteration,
effectively pruning away 10% of the original amount of weights for each iteration.
After each pruning operation, the model is fine tuned to recover the model perfor-
mance loss. This is done with a dataset containing 10,000 randomly selected images
from the training dataset. Adam optimizer with a learning rate of 1e-4 is chosen and
for the loss function the standard binary cross entropy loss is picked. After the fine
tuning is done, the model is run on the validation dataset and the model is saved.
That model is then used for the next iteration. This is done for a total of ten iterations,
ending with all layers having zero weights. See appendix D for the full code.

6.5 Iterative pruning in combination with layer fusion and
static quantization

The model first undergoes iterative pruning up until a pruning rate that is deemed
best in regards to balancing the performance loss and pruning rate. After that, the
model undergoes layer fusion and static quantization. All processes are done in
the same manner as described in the previous paragraphs, only they are done in
sequence this time.

6.6 Work order

The above described techniques are first applied to the ResNet-101 model. After
this, the TResNet-L will be compressed. This is only done via pruning, because the
TResNet-L model needs to be ran on a GPU in order to execute the In-Place Acti-
vated BatchNorm layers. However, quantized inference currently is not supported
for GPUs (Quantization — PyTorch 2.3 documentation n.d.).
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Chapter 7

Results

In this Chapter the yielded results of the compression techniques will be discussed.

7.1 ResNet-101

7.1.1 Static quantization

The model undergoes quantization, transitioning from a 32-bit representation to an
8-bit one. This effectively reduces the model’s size by a factor of four. The perfor-
mances with regards to the F2CIW score and the F1Normal scores are plotted in Figure
7.1 and Figure 7.2 respectively. These graphs display the model’s performance rela-
tive to the size of the dataset used for calibration during the quantization procedure.
It can be seen that in both cases the calibration process reaches a plateau quickly.
This implies that the initial batch of images is enough to determine the scale factors
and zero points necessary to adequately convert the 32 -bit model to the quantized 8-
bit model. Additional calibration is therefore unnecessary. This aligns with findings
from Hubara et al. (2021). While this study primarily focuses on 4-bit quantization
using methods like AdaQuant, AdaRound, and QAT-KLD, the principle of using a
small calibration set to minimize quantization errors is similar.

FIGURE 7.1: Quantized model F2CIW score for each model based on
the size of the calibration dataset.
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FIGURE 7.2: Quantized model F1Normal score for each model based
on the size of the calibration dataset.

This phenomenon could be the result of extensive use of batch normalization layers
in a ResNet-101. Namely, every convolutional layer in the model is followed up
by a batch normalisation layer. Batch normalization normalizes the activations in
the network (Ioffe and Szegedy, 2015), which could help in stabilizing the range of
values that the observers encounter during calibration. By making the distribution
of activations more consistent across batches, it might be easier for the observers,
that were put into the model during the calibration step, to find suiting parameters
that are used to map the tensor values from floating point to integer.

The skip connections can also contribute to more stable activations across layers
by combining the outputs of convolutional blocks with the input activations. This
stability might help in maintaining a consistent range of values across the network,
allowing observers to quickly determine suitable quantization parameters.

The F2CIW and F1Normal scores for the standard ResNet-101 are 53.26 and 79.55 re-
spectively. When looking at the scores for the quantized model that uses a dataset of
50 images for calibration, slightly lesser scores are achieved , namely: a F2CIW score
of 51.92 and a F1Normal score of 78.98, which equals a decline of 2.52% and 0.72%
respectively. This slight decline in performance is as expected for a quantized model
that is four times smaller than the original model.

Quantizing the model also improved the inference speed and the corresponding im-
age throughput. Table 7.1 displays the inference speed, throughput and model size
of each version of the ResNet-101 model that has been produced within this thesis.
The inference speed and image throughput are calculated on both the CPU and L4
GPU, which is a GPU that is designed for inference acceleration of AI tasks. For in-
ference on the CPU, a throughput (images processed per second) increase of 64.50%
compared to the standard ResNet-101 model is observed and for inference on the L4
GPU the increase is 87.81%.
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CPU L4 GPU

Model Inference Time (s) Throughput (img/s) Change % Inference Time (s) Throughput (img/s) Change % Model Size (MB)

Standard ResNet-101 0.151 6.62 – 0.062 16.16 – 162.82
Quantized 0.092 10.89 +64.50% 0.033 30.34 +87.81% 42.45
Quantized & Fusion 0.077 12.92 +95.02% 0.023 44.35 +174.50% 41.68
Pruned 30% 0.137 7.32 +10.57% 0.061 16.29 +0.80% 162.82
Pruned 30%, Quantized & Fusion 0.073 13.77 +108.01% 0.022 45.60 +182.16% 41.68

TABLE 7.1: Inference speed, throughput on CPU and L4 GPU, and
size of each model with percentage change in throughput relative to

Standard ResNet-101.

7.1.2 Layer fusion

This time layer fusion was applied to ResNet-101 model before applying quantiza-
tion. This modification has not impacted the calibration process, since the calibration
plateau is reached as quickly in the case of quantization without layer fusion for both
the F2CIW and F1Normal score. These are plotted in Figure 7.3 and Figure 7.4 respec-
tively. The exact numeric values for the models calibrated with a dataset consisting
of 50 images can be found in table E.1. The model performs slightly worse than
the quantized model without layer fusion, however the difference can be considered
negligible, since the difference is less than 0.5%. The performance improvement that
layer fusion brings is realised in the improved inference speed and corresponding
throughput of the model, not only compared to the standard ResNet-101 model,
but also to the quantized model without layer fusion. Compared to the standard
ResNet-101 model the throughput increased by 95.02% and on the L4 GPU the in-
crease reached 174.50%. Compared to the quantized model without layer fusion,
this amounted to a percentage point increase of 30.52% and 86.69% for throughput
on the CPU and L4 GPU respectively. The model size was also slightly reduced by
0.77 MB. These findings demonstrate the positive impact layer fusion has on infer-
ence speed-up while maintaining near similar performance as the non layer fused
quantized model.

FIGURE 7.3: Layer fusion and quantized model F2CIW score for each
model based on the size of the calibration dataset.
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FIGURE 7.4: Layer fusion and quantized model F1Normal score for
each model based on the size of the calibration dataset.

7.1.3 Iterative pruning

After pruning at a rate of 0.1, an immediate and significant drop in the F2CIW score
can be seen, see Figure 7.5. This suggests that even minimal pruning has significant
effect on the model ability to accurately predict the defect classes, including the ones
with a high class importance weight.

As the pruning rate increases to 0.3, the F2CIW score tends to stabilize. This could
indicate that the pruning process has moved past the initial critical weights and
is now removing weights that contribute less to model performance. The plateau
suggests that the model has a degree of resilience and can tolerate some level of
pruning without further significant losses in performance. For pruning rates beyond
0.3, the F2CIW score keeps on gradually declining.

FIGURE 7.5: Pruned ResNet-101 F2CIW score for each pruning rate.
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When looking at the per-class F2 scores in Table E.2, a significant decrease can be
seen in the vast majority of classes for the 10% and 30% pruned models. The same
can be seen in the per-class recall scores in Table E.4. This is as expected, since the
F2 score prioritizes recall over precision. These declines indicate that the model’s
effectiveness in recognizing true defects has been diminished. In particular, the per-
formance drop in high-importance classes such as RB (cracks, breaks, and collapses)
and FS (displaced joint) is alarming, because overlooking such defects could result
in severe consequences for the structural integrity of the sewer piper and therefore
its functionality.

The decrease in F2 score and recall indicates that the model is now prone to missing
more actual defects than before pruning. This shift towards fewer predictions per
class reflects a change in the model’s classification behavior, prioritizing the avoid-
ance of false positives over the detection of all true positives. While this may lead to
a higher precision, as can be observed in Table E.3, the model’s usability is signifi-
cantly reduced in practical application, where the cost of false negatives is high.

Looking at Figure 7.6, an increase of the F1Normal score can be observed up until
the 70% pruning rate mark. This means that the model is better at predicting non-
defective pipes. However, this is simply the result of the model becoming more
conservative with regards to assigning defect classes, as a normal pipe is defined by
the absence of any defect classes. This conservatism of the model is also reflected
in the decline of the F2CIW score. Table F.2 displays the total amount of images
that were deemed normal by each variant of the ResNet-101 model. Comparing
the standard ResNet-101 and the 30% pruned version, an increase from 47,234 to
76,672 (increase of 62%) can be observed in the amount of normal predictions. To put
this into perspective, the actual amount of normal images in the validation dataset
is 68,681. In Table F.1 the per-class prediction count is shown. A very significant
drop for every class is observed. The three classes with the highest class importance
weight (RB, OS and FS) show a drop of 94.08%, 94.85% and 46.61% respectively. This
confirms that the model changed to be more conservative in assigning defect classes.

In Table 7.1, no change in model size can be observed. This is to be expected, because
in the applied pruning method the weights that are pruned are set to zero. Therefore,
The total amount of variables and, consequently, the model size of the network does
not change. Significant inference speed-up compared to the standard ResNet-101
can also not be observed for the same reason. Namely, the weights might be zero,
but the amount of MACs (multiply-accumulate operations) does not change. To re-
alise possible model size reduction and inference speed-up, techniques that employ
sparsity aware model saving and inference must be utilized. This is something that
can be addressed in future research.

7.1.4 Iterative pruning in combination with layer fusion and static quan-
tization

This model is performance wise similar to the pruned-only version, as can be seen
in Figure 7.7 for the F2CIW score and in Figure 7.8 for the F1Normal score . It shows
a significant decrease in the F2CIW score to 40.09, pointing to reduced effectiveness
in detecting defects, see Figure. The F1Normal score, however, rises to 87.41, which
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FIGURE 7.6: Pruned ResNet-101 F1Normal score for each pruning rate.

indicates an improved ability to identify pipes without defects. Both these phenom-
ena are similar to those that can be observed for the pruned-only model, although
these results are slightly better. The F1Normal score has a negligible improvement of
a tenth of a percent, the F2CIW score however increased by 2.2% . Han et al. (2016)
also found that model performance of a pruned-quantized model was superior over
the pruned-only version.

The trend of the model becoming more conservative in its predictions, resulting in
fewer false positives, is also present here. This can be noted by the increase in images
classified as normal, from 47,234 to 75,886, as shown in Table F.2.

Also, similar to the quantized model with layer fusion, there is an improvement in
the model’s inference speed and size compression. The inference speed on the CPU
improves to 0.073 seconds, and throughput increases to 13.77 images per second. On
the L4 GPU, the inference speed further increases to 0.022 seconds with a throughput
of 45.60 images per second, as detailed in Table 7.1. These improvements are the
most significant of all models, with an increase of 108.01% for the throughput on the
CPU, and increase of 182.16% on L4 GPU, both relative to the standard ResNet-101
model. The model is equal to the model were layer fusion and quantization at 41.68
MB.
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FIGURE 7.7: 30% pruned, layer fusion and quantized model F2CIW
score for each model based on the size of the calibration dataset.

FIGURE 7.8: 30% pruned, layer fusion and quantized model F1Normal
score for each model based on the size of the calibration dataset.
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7.2 TResNet-L

7.2.1 Iterative pruning

In examining the performance of the TResNet-L model in response to iterative prun-
ing, as depicted in Figure 7.9, a similar initial drop in the F2CIW score at a pruning
rate of 0.1 is observed, comparable to the ResNet-101 model. This initial decline sug-
gests a notable impact on the model’s ability to accurately classify defects, especially
those carrying a high class importance weight. However, unlike the trend seen in
the ResNet-101 model, the TResNet-L F2CIW score stabilizes and remains relatively
consistent until a pruning rate of 0.8 is reached. This suggests that the TResNet-L
model has a higher tolerance for weight removal without substantial loss in its abil-
ity to identify defects. The per-class metrics in Table G.1 also see a initial decline in
similar fashion as the for the pruning of the ResNet-101 model.

FIGURE 7.9: TResNet-L F2CIW score for each score for each pruning
rate.

The F1Normal score also goes up, comparable with the Resnet-101 model, but this time
stays above the baseline score of the standard TResNet-L model up until a pruning
rate of 0.9, see Figure 7.10. The same conservative prediction behaviour as in the
ResNet-101 model can be observed for per-class prediction counts in Table G.1. This
results in a higher total count for predicted normal images, see Table G.2.



7.3. Practical implications 47

FIGURE 7.10: TResNet-L F1Normal score for each score for each prun-
ing rate.

7.3 Practical implications

In sewer asset management, the use of predictive models can be useful for sup-
porting decision making regarding maintenance and repairs. Accurate detection of
severe defects allows sewer asset managers to prioritize repairs effectively, focusing
resources on the most urgent issues to maintain the structural integrity and func-
tionality of sewer systems. This implies that a sewer asset manager might judge the
usability of a model by its ability to correctly identify the most critical defect per
image, as this typically dictates the urgency of possible repair interventions. The
most urgent defect for a given image is determined by the defect with the highest
CIW score among all identified defects. This ranking directly influences the prior-
ity of potential interventions compared to other defective sections within the sewer
system. In Table 7.2 a count of images with correctly identified highest CIW score
defects for all the versions of the ResNet-101 model that were created in this thesis
is presented.

Model Images with Correct Highest CIW Defect Recall Score (%)
Standard ResNet-101 56,289 91.70%
Quantized 56,720 92.43%
Quantized & fusion 56,572 92.19%
Pruned 30% 36,042 58.74%
Pruned 30%, quantized & fusion 36,662 59.75%

TABLE 7.2: Count of images with correctly identified highest CIW
defect and recall scores for various model configurations, based on

the ground truth total of 61,365 defective images.

The standard ResNet-101, quantized model, and layer fused & quantized model
show high effectivenes with recall scores of 91.70%, 92.43%, and 92.19% respectively.
These scores suggest that a significant majority of the most critical defects are cor-
rectly identified, ensuring that necessary repair actions can be informed accurately.
In contrast, the 30% pruned model and the 30% pruned, in combination with layer



48 Chapter 7. Results

fusion and quantization model, exhibit lower recall scores at 58.74% and 59.75%.
This decline in performance indicates a higher likelihood of missing critical defects,
which could delay or prevent essential maintenance actions.

An interesting phenomenon is that both the quantized and the layer fusion in combi-
nation with quantization models have a higher recall score than the standard ResNet-
101 model. This is the result of those models being more likely to assign defects to
images, as per table F.1. However, these models maintain highly usable compared
to the standard model, because they also maintain a significant F1Normal scores.
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Discussion

8.1 Compressed models

Several compressed models have been created of the pre-trained ResNet-101 model
provided by Haurum and Moeslund (2021). The reduction of the ResNet-101 model
from a 32-bit to an 8-bit representation not only achieved a significant reduction in
model size but also improved inference speed as a result of a lowered computational
load when processing input. This acceleration is crucial for edge devices, since these
devices are often constrained by limited computational power.

Model size reduction was also realized with the use of pruning. Although both the
ResNet-101 and TResNet-L models saw a significant initially drop in performance,
for both a plateau followed. For the TResNet-L this plateau lasted up until a pruning
rate of 80%. This stabilization suggests that, at least after the initial performance
drop, the networks can maintain some predictive capabilities despite the reduction
of redundant parameters. In this thesis sparsity aware saving and inference was
not realised due to the relative practical difficulty of this and therefore the potential
size reduction and inference speed improvement are not reported. However, this
is possible and when pruning away 80% of a models variables away, a significant
compression and speed-up is to be expected.

The combination of pruning with layer fusion and quantization for the ResNet-101
has demonstrated that the impact of quantization on the performance of the pruned
model is minimal. This once again demonstrates the effectiveness of quantization.
This combination is promising, but with the current results a the ResNet-101 that is
compressed using layer fusion and quantization is the feasible model for edge de-
ployment due to the combination of potential significant inference speed-up, model
size reduction and performance preservation. The 92.19% recall score for the high-
est CIW score defect detection is also a strength of this model that is used for a task
where false negatives could have grave consequences.

8.2 Future studies

The observation that the current pruning method leads to an initial decline in model
performance underscores a critical area for future research. The aim should be to
develop a more refined pruning approach that is more effective at minimizing per-
formance losses with the current strategy. Different pruning strategies should also be
explored. The pruning method introduced by Frankle and Carbin (2019) has proven
to be an effect method and has the potential to be effective for the models in this the-
sis as well. In this method, the techniques used to decide which parts to prune and
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how to fine-tune the network are different compared to the techniques applied in this
thesis. Realising sparsity aware saving of the model and model inference should also
be researched in order to achieve the potential compression benefits of the pruning
technique. Furthermore, a significant difference between inference speed of a model
ran on either the CPU or L4 GPU has been observed. This phenomenon empha-
sizes the importance of hardware optimization to achieve the highest possible per-
formance of a given model. Therefore, research that focuses on the implementations
of compressed sewer defect inspection models on optimal hardware is advisable.
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Conclusion

9.1 Implementation

Research question 1 : How are the compression techniques implemented into the
original models?

The ResNet-101 model underwent a static quantization process. Initially, a calibra-
tion step was performed using a subset of the training dataset to accurately deter-
mine scale factors and zero points for the conversion from 32-bit floating-point to
8-bit integers. This step ensured that the quantized model would not have severely
diminished performance. In the implementation of layer fusion, the first three lay-
ers were merged (convolutional, batch normalization and ReLU layers) and in the
Bottleneck blocks the convolutional layers were merged with batch normalization
layers. For the pruning step L1 norm unstructured pruning is performed. A prun-
ing rate of 0.1 is chosen per iteration, effectively pruning away 10% of the original
amount of weights for each iteration. After each pruning operation, the model is fine
tuned to recover the model performance loss. This is done with a dataset containing
10,000 randomly selected images from the training dataset. Adam optimizer with
a learning rate of 1e-4 is chosen and for the loss function the standard binary cross
entropy loss is picked.

9.2 Performance

Research question 2: How do the compressed models perform compared to the
uncompressed models?

The F2CIW and F1Normal scores for the standard ResNet-101 are 53.26 and 79.55, re-
spectively. For the quantized model, calibrated with a dataset of 50 images, the
scores slightly decrease to 51.92 and 78.98 for F2CIW and F1Normal , representing de-
clines of 2.52% and 0.72%, respectively. In terms of throughput on the CPU, there is
a 64.50% increase over the standard ResNet-101, and for the L4 GPU, the increase is
87.81%. Quantization reduces the model’s size by fourfold. Layer fusion contributes
to enhanced inference speed and throughput, not only compared to the standard
ResNet-101 but also to the quantized model without layer fusion, with throughput
improvements of 95.02% and 174.50% on the CPU and L4 GPU, respectively.

Iterative pruning was applied to both the ResNet-101 and TResNet-L models. Af-
ter the first pruning iteration at a rate of 0.1, there is a noticeable drop in the F2CIW
score. Subsequently, the ResNet-101 maintains a stable performance up to a pruning
rate of 0.3 (F2CIW score of 39.23 and F1Normal score of 87.30), while the TResNet-L
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does so up to a rate of 0.8 (F2CIW score of 39.13 and F1Normal score of 87.68). The
increased F1Normal score indicates that the models have become more conservative
in classifying defects, leading to more pipes being classified as normal. The 30%
pruned ResNet-101 model, which also underwent layer fusion and static quantiza-
tion, matches the performance of the model pruned at a rate of 0.3. For this model,
throughput on the CPU improved by 108.01% and on the L4 GPU by 182.16%, rela-
tive to the unmodified ResNet-101 model.

These results underscore the trade-offs and benefits of compressing the models. The
slight decreases in F2CIW and F1Normal scores for the quantized ResNet-101 reflect a
minor impact on defect detection performance, which is an acceptable trade-off con-
sidering the substantial gains in computational efficiency. The significant increases
in throughput on both the CPU and L4 GPU indicate that quantization and layer
fusion techniques effectively enhance the model’s inference speed, making it more
suitable for real-time applications on resource-constrained devices. Iterative prun-
ing results show an initial performance drop, but the models stabilize and maintain
reasonable defect detection capabilities up to certain pruning rates.

9.3 Usability

Research question 3: How usable are the compressed models for sewer asset man-
agement?

Compressed models can enhance Dutch sewer asset management by accurately de-
tecting critical defects, while using minimal hardware resources. Accurate detection
of severe defects is necessary for timely decision-making in regards to maintenance
and repair. This in term is crucial for upholding the sewer systems’ structural in-
tegrity. The quantized ResNet-101, both the one with and without layer fusion,
even improve compared to the standard model in regards to correctly identifying
the highest CIW defect class present in pipes deemed defective in the validation
dataset. This model behaviour is positive because the priority of a sewer asset man-
ager is the discovery of the defect that carry the highest risk with them if not treated
in time. This improved efficiency in defect recognition helps in optimizing repair
schedules and resource allocation, thus reducing operational costs as well.

The findings of this thesis demonstrate that sewer defect detection models can be
compressed while maintaining good performance. This indicates that accurate de-
fect detection is achievable with reduced hardware requirements. Additionally, it
highlights that advanced compression techniques can enhance the efficiency of sewer
maintenance and repair, making it feasible for future implementation on edge de-
vices that perform sewer inspections.

9.4 Recommendations

The following recommendations can be made:

• Exploration of different pruning parameters with the current pruning strategy
and also trying different pruning strategies to try and minimise performance
loss when pruning the models.

• Training a model from scratch using quantization aware training.
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• Combining a multi-label model with a binary model to create a two-stage clas-
sifier. The combination of Xie et al. (2019) binary model with the ResNet-101
or TResNet-L showed a performance increase (Haurum and Moeslund, 2021).

• Static quantization below 8-bit.

• Application of a compression technique not used in this thesis, namely knowl-
edge distillation.

• Sewer asset managers should consider investing in compressed model technol-
ogy to enable sewer inspection at the edge. This approach reduces reliance on
cloud-based systems and has the potential to lower operational costs. Man-
agers can start by implementing pilot programs to test the effectiveness of
compressed models in field conditions and conducting a cost-benefit analysis
to understand the financial implications and potential savings. Collaborating
with technology providers will be crucial for integrating these models into ex-
isting inspection workflows and staying updated on advancements in model
compression techniques.
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Appendix A

Static quantization: preparation of
the ResNet-101 architecture

1

2 import torch
3 from torch import Tensor
4 import torch.nn as nn
5 import torch.quantization
6 from typing import Type, Any, Callable, Union, List, Optional
7 from torch.quantization import QuantStub, DeQuantStub
8

9 try:
10 from torch.hub import load_state_dict_from_url
11 except ImportError:
12 from torch.utils.model_zoo import load_url as

load_state_dict_from_url↪→

13

14

15 model_urls = {
16 'resnet101':

'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'↪→

17 }
18

19 def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups:
int = 1, dilation: int = 1) -> nn.Conv2d:↪→

20 """3x3 convolution with padding"""
21 return nn.Conv2d(in_planes, out_planes, kernel_size=3,

stride=stride,↪→

22 padding=dilation, groups=groups, bias=False,
dilation=dilation)↪→

23

24 def conv1x1(in_planes: int, out_planes: int, stride: int = 1) ->
nn.Conv2d:↪→

25 """1x1 convolution"""
26 return nn.Conv2d(in_planes, out_planes, kernel_size=1,

stride=stride, bias=False)↪→

27

28 class BasicBlock(nn.Module):
29 expansion: int = 1
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30

31 def __init__(
32 self,
33 inplanes: int,
34 planes: int,
35 stride: int = 1,
36 downsample: Optional[nn.Module] = None,
37 groups: int = 1,
38 base_width: int = 64,
39 dilation: int = 1,
40 norm_layer: Optional[Callable[..., nn.Module]] = None
41 ) -> None:
42 super(BasicBlock, self).__init__()
43 if norm_layer is None:
44 norm_layer = nn.BatchNorm2d
45 if groups != 1 or base_width != 64:
46 raise ValueError('BasicBlock only supports groups=1 and

base_width=64')↪→

47 if dilation > 1:
48 raise NotImplementedError("Dilation > 1 not supported in

BasicBlock")↪→

49 self.conv1 = conv3x3(inplanes, planes, stride)
50 self.bn1 = norm_layer(planes)
51 self.relu = nn.ReLU(inplace=True)
52 self.conv2 = conv3x3(planes, planes)
53 self.bn2 = norm_layer(planes)
54 self.downsample = downsample
55 self.stride = stride
56 self.skip_add = nn.quantized.FloatFunctional()
57

58 def forward(self, x: Tensor) -> Tensor:
59 identity = x
60

61 out = self.conv1(x)
62 out = self.bn1(out)
63 out = self.relu(out)
64

65 out = self.conv2(out)
66 out = self.bn2(out)
67

68 if self.downsample is not None:
69 identity = self.downsample(x)
70

71 out = self.skip_add.add(out, identity)
72 out = self.relu(out)
73

74 return out
75

76 class Bottleneck(nn.Module):
77 expansion: int = 4
78
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79 def __init__(
80 self,
81 inplanes: int,
82 planes: int,
83 stride: int = 1,
84 downsample: Optional[nn.Module] = None,
85 groups: int = 1,
86 base_width: int = 64,
87 dilation: int = 1,
88 norm_layer: Optional[Callable[..., nn.Module]] = None
89 ) -> None:
90 super(Bottleneck, self).__init__()
91 if norm_layer is None:
92 norm_layer = nn.BatchNorm2d
93 width = int(planes * (base_width / 64.)) * groups
94 self.conv1 = conv1x1(inplanes, width)
95 self.bn1 = norm_layer(width)
96 self.conv2 = conv3x3(width, width, stride, groups, dilation)
97 self.bn2 = norm_layer(width)
98 self.conv3 = conv1x1(width, planes * self.expansion)
99 self.bn3 = norm_layer(planes * self.expansion)

100 self.relu = nn.ReLU(inplace=True)
101 self.downsample = downsample
102 self.stride = stride
103 self.skip_add = nn.quantized.FloatFunctional()
104

105 def forward(self, x: Tensor) -> Tensor:
106 identity = x
107

108 out = self.conv1(x)
109 out = self.bn1(out)
110 out = self.relu(out)
111

112 out = self.conv2(out)
113 out = self.bn2(out)
114 out = self.relu(out)
115

116 out = self.conv3(out)
117 out = self.bn3(out)
118

119 if self.downsample is not None:
120 identity = self.downsample(x)
121

122 out = self.skip_add.add(out, identity)
123 out = self.relu(out)
124

125 return out
126

127

128 class ResNet(nn.Module):
129 def __init__(
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130 self,
131 block: Type[Union[BasicBlock, Bottleneck]],
132 layers: List[int],
133 num_classes: int = 1000,
134 zero_init_residual: bool = False,
135 groups: int = 1,
136 width_per_group: int = 64,
137 replace_stride_with_dilation: Optional[List[bool]] = None,
138 norm_layer: Optional[Callable[..., nn.Module]] = None
139 ) -> None:
140 super(ResNet, self).__init__()
141 if norm_layer is None:
142 norm_layer = nn.BatchNorm2d
143 self._norm_layer = norm_layer
144

145 self.inplanes = 64
146 self.dilation = 1
147 if replace_stride_with_dilation is None:
148 replace_stride_with_dilation = [False, False, False]
149 if len(replace_stride_with_dilation) != 3:
150 raise ValueError("replace_stride_with_dilation should be

None "↪→

151 "or a 3-element tuple, got
{}".format(replace_stride_with_dilation))↪→

152 self.groups = groups
153 self.base_width = width_per_group
154 self.quant = torch.ao.quantization.QuantStub()
155 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7,

stride=2, padding=3,↪→

156 bias=False)
157 self.bn1 = norm_layer(self.inplanes)
158 self.relu = nn.ReLU(inplace=True)
159 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
160 self.layer1 = self._make_layer(block, 64, layers[0])
161 self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
162

dilate=replace_stride_with_dilation[0])↪→

163 self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
164

dilate=replace_stride_with_dilation[1])↪→

165 self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
166

dilate=replace_stride_with_dilation[2])↪→

167 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
168 self.fc = nn.Linear(512 * block.expansion, num_classes)
169 self.dequant = torch.ao.quantization.DeQuantStub()
170 for m in self.modules():
171 if isinstance(m, nn.Conv2d):
172 nn.init.kaiming_normal_(m.weight, mode='fan_out',

nonlinearity='relu')↪→

173 elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
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174 nn.init.constant_(m.weight, 1)
175 nn.init.constant_(m.bias, 0)
176

177

178

179 def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]],
planes: int, blocks: int,↪→

180 stride: int = 1, dilate: bool = False) ->
nn.Sequential:↪→

181 norm_layer = self._norm_layer
182 downsample = None
183 previous_dilation = self.dilation
184 if dilate:
185 self.dilation *= stride
186 stride = 1
187 if stride != 1 or self.inplanes != planes * block.expansion:
188 downsample = nn.Sequential(
189 conv1x1(self.inplanes, planes * block.expansion,

stride),↪→

190 norm_layer(planes * block.expansion),
191 )
192

193 layers = []
194 layers.append(block(self.inplanes, planes, stride, downsample,

self.groups,↪→

195 self.base_width, previous_dilation,
norm_layer))↪→

196 self.inplanes = planes * block.expansion
197 for _ in range(1, blocks):
198 layers.append(block(self.inplanes, planes,

groups=self.groups,↪→

199 base_width=self.base_width,
dilation=self.dilation,↪→

200 norm_layer=norm_layer))
201

202 return nn.Sequential(*layers)
203

204 def _forward_impl(self, x: Tensor) -> Tensor:
205 # Quantize the input
206 x = self.quant(x)
207

208 x = self.conv1(x)
209 x = self.bn1(x)
210 x = self.relu(x)
211 x = self.maxpool(x)
212

213 x = self.layer1(x)
214 x = self.layer2(x)
215 x = self.layer3(x)
216 x = self.layer4(x)
217
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218 x = self.avgpool(x)
219 x = torch.flatten(x, 1)
220 x = self.fc(x)
221

222 # Dequantize the output
223 x = self.dequant(x)
224

225 return x
226

227 def forward(self, x: Tensor) -> Tensor:
228 return self._forward_impl(x)
229

230 def resnet101_quantizable(pretrained=False, progress=True, **kwargs):
231 model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
232

233 return model
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Static quantization ResNet-101

1 from google.colab import drive
2 drive.mount('/content/drive')
3

4

5 %run /content/xxCHANGEDQR101TEST.py
6

7 import torch
8 import torchvision.models as models
9 import os

10 from PIL import Image
11 import csv
12 from torchvision import transforms
13 import time
14 from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score↪→

15 from torch.utils.data import DataLoader, Dataset
16 import numpy as np
17 import pandas as pd
18 import zipfile
19

20

21 model_path = '/content/drive/My Drive/Msc
thesis/SewerML/Models/resnet101-e2e-version_1.pth'↪→

22

23 Qmodel = resnet101_quantizable(num_classes=17,
pretrained=False).to('cpu')↪→

24

25 # Load the state dictionary from the .pth file
26 state_dict = torch.load(model_path)
27

28 # Load the state dictionary into the modified model
29 Qmodel.load_state_dict(state_dict['state_dict'], strict=False)
30

31 # Set the model to evaluation mode
32 Qmodel.eval()
33

34

35
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36 def load_labels(path):
37 img2label = {}
38 with open(path, newline='') as csv_file:
39 csv_reader = csv.reader(csv_file, delimiter=',')
40

41 header = next(csv_reader, None)
42

43 for row in csv_reader:
44 filename = row[0]
45 labels = [int(val) for i, val in enumerate(row[1:]) if

header[i + 1] not in ['WaterLevel', 'VA', 'ND',
'Defect']]

↪→

↪→

46 img2label[filename] = labels
47

48 return img2label
49

50 def load_data(data_path, labels_path):
51 images = []
52 labels = []
53 img2label = load_labels(labels_path)
54 for filename in os.listdir(data_path):
55 img_path = os.path.join(data_path, filename)
56 img = Image.open(img_path).convert('RGB')
57 if img is not None and filename in img2label:
58 images.append(img)
59 labels.append(img2label[filename])
60

61 return images, labels
62

63 data_path = "/content/drive/My Drive/Msc
thesis/SewerML/Data/Valduizend"↪→

64 labels_path = "/content/SewerML_Val.csv"
65 test_data, test_labels = load_data(data_path, labels_path)
66

67 data_path = "/content/drive/My Drive/Msc thesis/SewerML/Data/Quant250"
68 labels_path = "/content/SewerML_Train.csv"
69 train_data, train_labels = load_data(data_path, labels_path)
70

71

72

73 mean_values = [0.523, 0.453, 0.345]
74 std_dev_values = [0.210, 0.199, 0.154]
75

76 def transform_data(data):
77 for index, img in enumerate(data):
78 preprocess = transforms.Compose([
79 transforms.Resize(256),
80 transforms.CenterCrop(224),
81 transforms.ToTensor(),
82 transforms.Normalize(mean=mean_values, std=std_dev_values),
83 ])
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84 input_tensor = preprocess(img)
85 input_batch = input_tensor.unsqueeze(0)
86 data[index] = input_batch
87 return data
88

89 # Apply the transformation to the test_data and train_data
90 test_data = transform_data(test_data)
91 train_data = transform_data(train_data)
92

93

94

95 def evaluate(model, data, target, threshold=0.5):
96 model.eval()
97 total_time, correct = 0, 0
98

99 with torch.no_grad():
100 for img, target_labels in zip(data, target):
101 start = time.time()
102 output = model(img)
103 end = time.time()
104 delta = end - start
105 total_time += delta
106

107 # Apply sigmoid activation to the output to obtain class
probabilities↪→

108 probabilities = torch.sigmoid(output).squeeze().tolist()
109

110 # Convert probabilities to binary predictions based on a
threshold↪→

111 pred_labels = [1 if p >= threshold else 0 for p in
probabilities]↪→

112

113 # Compare predicted labels with ground truth labels
114 if pred_labels == target_labels:
115 correct += 1
116

117 inference_time = total_time / len(data)
118 accuracy = accuracy_score(target_labels, pred_labels)
119 overall_f1 = f1_score(target_labels, pred_labels,

average='weighted')↪→

120

121 return inference_time, accuracy, overall_f1
122

123 float_model = Qmodel.to('cpu')
124

125

126 inference_time, accuracy, overall_f1= evaluate(float_model, test_data,
test_labels)↪→

127

128 print("Baseline Inference Time: ", inference_time)
129 print("Baseline Accuracy: ", accuracy, '%')
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130 print("Overall F1 Score: ", overall_f1)
131

132 ## Initial baseline model which is FP32
133 model_fp32 = float_model
134 model_fp32.eval()
135

136 # Sets the backend for x86
137 model_fp32.qconfig = torch.quantization.get_default_qconfig('fbgemm')
138

139 # Prepares the model for calibration.
140 # Inserts observers in the model that will observe the activation

tensors during calibration↪→

141 model_fp32_prepared = torch.quantization.prepare(model_fp32, inplace =
False)↪→

142

143 # Calibrate over the train dataset. This determines the quantization
params for activation.↪→

144 evaluate(model_fp32_prepared, train_data, train_labels)
145

146 # Converts the model to a quantized model(int8)
147 model_quantized = torch.quantization.convert(model_fp32_prepared) #

Quantize the model↪→

148

149 # Evaluates the quantized model on the test dataset
150 inference_time, accuracy, overall_f1 = evaluate(model_quantized,

test_data, test_labels)↪→

151

152 print("Baseline Inference Time: ", inference_time)
153 print("Baseline Accuracy: ", accuracy, '%')
154 print("Overall F1 Score: ", overall_f1)
155

156 torch.save(model_quantized.state_dict(), '250TrainQuantized_model.pth')
157

158

159

160 # Instantiate your custom model
161 model = resnet101_quantizable(num_classes=17)
162

163 # Prepare the model for quantization if it's not already
164 model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
165 torch.quantization.prepare(model, inplace=True)
166 torch.quantization.convert(model, inplace=True)
167

168 # Load the quantized state dictionary
169 model.load_state_dict(torch.load('/content/250TrainQuantized_model.pth'))
170

171 # Set the model to evaluation mode
172 model.eval()
173

174 # Import the validation dataset
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175 !cp '/content/drive/My Drive/Msc thesis/SewerML/Data/valid00.zip'
'/content/valid00.zip'↪→

176

177 !cp '/content/drive/My Drive/Msc thesis/SewerML/Data/valid01.zip'
'/content/valid01.zip'↪→

178

179

180 # Define the path to your zip files
181 zip_files = ['valid00.zip', 'valid01.zip'] # Add more zip files if

needed↪→

182

183 # Define the destination folder within Colab
184 destination_folder = '/content/Validationset'
185

186 # Unzip each zip file
187 for zip_file in zip_files:
188 with zipfile.ZipFile(zip_file, 'r') as zip_ref:
189 zip_ref.extractall(destination_folder)
190

191 # Check if the images are successfully unzipped
192 unzipped_files = os.listdir(destination_folder)
193 print(f"Images successfully unzipped to: {destination_folder}")
194 print(f"Unzipped {len(unzipped_files)} files.")
195

196

197

198 # Define the path to the folder containing test images
199 test_image_folder = '/content/Validationset'
200

201 # Define mean and standard deviation values for normalization
202 mean_values = [0.523, 0.453, 0.345]
203 std_dev_values = [0.210, 0.199, 0.154]
204

205 # Create a transform to preprocess the images (resize and
normalization)↪→

206 transform = transforms.Compose([
207 transforms.Resize((224, 224)),
208 transforms.ToTensor(),
209 transforms.Normalize(mean=mean_values, std=std_dev_values),
210 ])
211

212 class ImageDataset(Dataset):
213 def __init__(self, image_folder, transform=None):
214 self.image_folder = image_folder
215 self.transform = transform
216 self.image_files = os.listdir(image_folder)
217

218 def __len__(self):
219 return len(self.image_files)
220

221 def __getitem__(self, idx):
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222 image_file = self.image_files[idx]
223 image_path = os.path.join(self.image_folder, image_file)
224 image = Image.open(image_path).convert("RGB")
225 if self.transform:
226 image = self.transform(image)
227 return image, image_file
228

229 # Create the dataset and data loader
230 dataset = ImageDataset(test_image_folder, transform=transform)
231 batch_size = 32
232 data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False,

num_workers=2)↪→

233

234 # Set model to evaluation mode
235 model.eval()
236

237 all_predictions = []
238 all_filenames = []
239

240 # Perform batched inference
241 for images, filenames in data_loader:
242 # Perform prediction
243 with torch.no_grad():
244 outputs = model(images)
245

246 # Apply sigmoid activation to obtain probabilities
247 probabilities = torch.sigmoid(outputs).cpu().numpy()
248

249 all_predictions.extend(probabilities)
250 all_filenames.extend(filenames)
251

252 # Convert predictions and filenames into numpy arrays
253 all_predictions = np.array(all_predictions)
254 all_filenames = np.array(all_filenames)
255

256 # Creation of DataFrame with the data
257 data = {
258 'Filename': all_filenames,
259 }
260

261 # Definition of the classes
262 for i, category in enumerate(['RB', 'OB', 'PF', 'DE', 'FS', 'IS', 'RO',

'IN', 'AF', 'BE', 'FO', 'GR', 'PH', 'PB', 'OS', 'OP', 'OK']):↪→

263 data[category] = all_predictions[:, i]
264

265 df = pd.DataFrame(data)
266

267 # Extract the numeric portion from the 'Filename' column for sorting
268 df['Numeric_Filename'] =

df['Filename'].str.extract(r'(\d+)').astype(int)↪→

269
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270 # Sort the DataFrame by the 'Numeric_Filename' column and drop the
helper column↪→

271 df_sorted = df.sort_values(by='Numeric_Filename',
ascending=True).drop(columns=['Numeric_Filename'])↪→

272

273 # Save the sorted DataFrame to a CSV file
274 output_csv_path = '/content/drive/My Drive/Msc

thesis/SewerML/Data/Predictions/ResNet101/Quant/Quant250Resnet_Entire_Val.csv'↪→

275 df_sorted.to_csv(output_csv_path, index=False)
276
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Layer fusion ResNet-101

1 from google.colab import drive
2 drive.mount('/content/drive')
3

4

5 %run /content/xxCHANGEDQR101TEST.py
6

7 import torch
8 import torch.nn as nn
9 import torch.ao.quantization

10 import os
11 from PIL import Image
12 import csv
13 import time
14 from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score↪→

15 import zipfile
16 from torchvision import transforms
17 from torch.utils.data import DataLoader, Dataset
18 import numpy as np
19 import pandas as pd
20

21 model_path = '/content/drive/My Drive/Msc
thesis/SewerML/Models/resnet101-e2e-version_1.pth'↪→

22

23 model = resnet101_quantizable(num_classes=17,
pretrained=False).to('cpu')↪→

24

25 # Load the state dictionary from the .pth file
26 state_dict = torch.load(model_path)
27

28 # Load the state dictionary into the modified model, excluding the
final classification layer↪→

29 model.load_state_dict(state_dict['state_dict'], strict=False)
30

31 # Set the model to evaluation mode
32 model.eval()
33

34 model_fp32=model
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35

36 model_fp32.qconfig = torch.quantization.get_default_qconfig('fbgemm')
37

38 model_fp32_fused = torch.ao.quantization.fuse_modules(model_fp32,
[['conv1', 'bn1', 'relu']])↪→

39

40

41 def fuse_bottleneck_layers(layer):
42 for name, bottleneck_module in layer.named_children():
43 # Fuse layers within the Bottleneck blocks
44 torch.ao.quantization.fuse_modules(bottleneck_module,

[['conv1', 'bn1'], ['conv2', 'bn2'], ['conv3', 'bn3']],
inplace=True)

↪→

↪→

45

46 # Check if the 'downsample' module exists in the Bottleneck
block↪→

47 if hasattr(bottleneck_module, 'downsample') and
isinstance(bottleneck_module.downsample, nn.Sequential):↪→

48 # Print the 'downsample' structure before fusion
49 print(f"Before fusion in Bottleneck {name} downsample:")
50 print(bottleneck_module.downsample)
51

52 # Attempt to fuse Conv2d and BatchNorm2d layers within
'downsample'↪→

53 fused =
torch.ao.quantization.fuse_modules(bottleneck_module.downsample,
[['0', '1']], inplace=True)

↪→

↪→

54

55 # Check if fusion was successful (fused is not None)
56 if fused:
57 print(f"After fusion in Bottleneck {name} downsample:")
58 print(bottleneck_module.downsample)
59 else:
60 print(f"No fusion applied in Bottleneck {name}

downsample.")↪→

61

62 # Assuming 'model_fp32_fused' is your model prepared for layer fusion
63 # Apply the fusion process to layers 1, 2, 3, and 4
64 fuse_bottleneck_layers(model_fp32_fused.layer1)
65 fuse_bottleneck_layers(model_fp32_fused.layer2)
66 fuse_bottleneck_layers(model_fp32_fused.layer3)
67 fuse_bottleneck_layers(model_fp32_fused.layer4)
68

69 print(model_fp32_fused)
70

71

72

73 def load_labels(path):
74 img2label = {}
75 with open(path, newline='') as csv_file:
76 csv_reader = csv.reader(csv_file, delimiter=',')
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77

78 # Skip the header row
79 header = next(csv_reader, None)
80

81 for row in csv_reader:
82 filename = row[0]
83 labels = [int(val) for i, val in enumerate(row[1:]) if

header[i + 1] not in ['WaterLevel', 'VA', 'ND',
'Defect']]

↪→

↪→

84 img2label[filename] = labels
85

86 return img2label
87

88 def load_data(data_path, labels_path):
89 images = []
90 labels = []
91 img2label = load_labels(labels_path)
92 for filename in os.listdir(data_path):
93 img_path = os.path.join(data_path, filename)
94 img = Image.open(img_path).convert('RGB')
95 if img is not None and filename in img2label:
96 images.append(img)
97 labels.append(img2label[filename])
98

99 return images, labels
100

101 data_path = "/content/drive/My Drive/Msc
thesis/SewerML/Data/Valduizend"↪→

102 labels_path = "/content/SewerML_Val.csv"
103 test_data, test_labels = load_data(data_path, labels_path)
104

105 data_path = "/content/drive/My Drive/Msc thesis/SewerML/Data/Quant250"
106 labels_path = "/content/SewerML_Train.csv"
107 train_data, train_labels = load_data(data_path, labels_path)
108

109 from torchvision import transforms
110

111 mean_values = [0.523, 0.453, 0.345]
112 std_dev_values = [0.210, 0.199, 0.154]
113

114 def transform_data(data):
115 for index, img in enumerate(data):
116 preprocess = transforms.Compose([
117 transforms.Resize(256),
118 transforms.CenterCrop(224),
119 transforms.ToTensor(),
120 transforms.Normalize(mean=mean_values, std=std_dev_values),
121 ])
122 input_tensor = preprocess(img)
123 input_batch = input_tensor.unsqueeze(0)
124 data[index] = input_batch
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125 return data
126

127 # Apply the transformation to the test_data and train_data
128 test_data = transform_data(test_data)
129 train_data = transform_data(train_data)
130

131

132

133 def evaluate(model, data, target, threshold=0.5):
134 model.eval()
135 total_time, correct = 0, 0
136

137 with torch.no_grad():
138 for img, target_labels in zip(data, target):
139 start = time.time()
140 output = model(img)
141 end = time.time()
142 delta = end - start
143 total_time += delta
144

145 # Apply sigmoid activation to the output to obtain class
probabilities↪→

146 probabilities = torch.sigmoid(output).squeeze().tolist()
147

148 # Convert probabilities to binary predictions based on a
threshold↪→

149 pred_labels = [1 if p >= threshold else 0 for p in
probabilities]↪→

150

151 # Compare predicted labels with ground truth labels
152 if pred_labels == target_labels:
153 correct += 1
154

155 inference_time = total_time / len(data)
156 accuracy = accuracy_score(target_labels, pred_labels)
157 overall_f1 = f1_score(target_labels, pred_labels,

average='weighted')↪→

158

159 return inference_time, accuracy, overall_f1
160

161 model_fp32_prepared = torch.quantization.prepare(model_fp32_fused,
inplace=False)↪→

162

163 evaluate(model_fp32_prepared, train_data, train_labels)
164

165 model_int8 = torch.quantization.convert(model_fp32_prepared,
inplace=False)↪→

166

167 torch.save(model_int8.state_dict(),
'250FullyQuantFuse_250FineTune_model.pth')↪→

168
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169 # Import the validation dataset
170 !cp '/content/drive/My Drive/Msc thesis/SewerML/Data/valid00.zip'

'/content/valid00.zip'↪→

171

172 !cp '/content/drive/My Drive/Msc thesis/SewerML/Data/valid01.zip'
'/content/valid01.zip'↪→

173

174

175

176 # Define the path to your zip files
177 zip_files = ['valid00.zip', 'valid01.zip']
178

179 # Define the destination folder within Colab
180 destination_folder = '/content/Validationset'
181

182 # Unzip each zip file
183 for zip_file in zip_files:
184 with zipfile.ZipFile(zip_file, 'r') as zip_ref:
185 zip_ref.extractall(destination_folder)
186

187 # Check if the images are successfully unzipped
188 unzipped_files = os.listdir(destination_folder)
189 print(f"Images successfully unzipped to: {destination_folder}")
190 print(f"Unzipped {len(unzipped_files)} files.")
191

192

193 # Loading the quantized model with the fused layers
194 model_fp32_fused = resnet101_quantizable(num_classes=17,

pretrained=False).to('cpu')↪→

195 model_fp32_fused.eval()
196

197 model_fp32_fused.qconfig =
torch.quantization.get_default_qconfig('fbgemm')↪→

198 model_fp32_fused = torch.ao.quantization.fuse_modules(model_fp32_fused,
[['conv1', 'bn1', 'relu']])↪→

199

200

201

202 def fuse_bottleneck_layers(layer):
203 for name, bottleneck_module in layer.named_children():
204 # Fuse layers within the Bottleneck blocks as before
205 torch.ao.quantization.fuse_modules(bottleneck_module,

[['conv1', 'bn1'], ['conv2', 'bn2'], ['conv3', 'bn3']],
inplace=True)

↪→

↪→

206

207 # Check if the 'downsample' module exists in the Bottleneck
block↪→

208 if hasattr(bottleneck_module, 'downsample') and
isinstance(bottleneck_module.downsample, nn.Sequential):↪→

209 # Print the 'downsample' structure before fusion
210 print(f"Before fusion in Bottleneck {name} downsample:")
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211 print(bottleneck_module.downsample)
212

213 # Attempt to fuse Conv2d and BatchNorm2d layers within
'downsample'↪→

214 fused =
torch.ao.quantization.fuse_modules(bottleneck_module.downsample,
[['0', '1']], inplace=True)

↪→

↪→

215

216 # Check if fusion was successful (fused is not None)
217 if fused:
218 print(f"After fusion in Bottleneck {name} downsample:")
219 print(bottleneck_module.downsample)
220 else:
221 print(f"No fusion applied in Bottleneck {name}

downsample.")↪→

222

223 # Assuming 'model_fp32_fused' is your model prepared for layer fusion
224 # Apply the fusion process to layers 1, 2, 3, and 4
225 fuse_bottleneck_layers(model_fp32_fused.layer1)
226 fuse_bottleneck_layers(model_fp32_fused.layer2)
227 fuse_bottleneck_layers(model_fp32_fused.layer3)
228 fuse_bottleneck_layers(model_fp32_fused.layer4)
229

230 torch.quantization.prepare(model_fp32_fused, inplace=True)
231 torch.quantization.convert(model_fp32_fused, inplace=True)
232

233 model_int8_fused = model_fp32_fused
234

235 model_int8_fused.load_state_dict(torch.load('/content/250FullyQuantFuse_250FineTune_model.pth'))
236

237 # Set the model to evaluation mode
238 model_int8_fused.eval()
239

240

241 # Define the path to the folder containing test images
242 test_image_folder = '/content/Validationset'
243

244 # Define mean and standard deviation values for normalization
245 mean_values = [0.523, 0.453, 0.345]
246 std_dev_values = [0.210, 0.199, 0.154]
247

248 # Create a transform to preprocess the images (resize and
normalization)↪→

249 transform = transforms.Compose([
250 transforms.Resize((224, 224)),
251 transforms.ToTensor(),
252 transforms.Normalize(mean=mean_values, std=std_dev_values),
253 ])
254

255 class ImageDataset(Dataset):
256 def __init__(self, image_folder, transform=None):



Appendix C. Layer fusion ResNet-101 75

257 self.image_folder = image_folder
258 self.transform = transform
259 self.image_files = os.listdir(image_folder)
260

261 def __len__(self):
262 return len(self.image_files)
263

264 def __getitem__(self, idx):
265 image_file = self.image_files[idx]
266 image_path = os.path.join(self.image_folder, image_file)
267 image = Image.open(image_path).convert("RGB")
268 if self.transform:
269 image = self.transform(image)
270 return image, image_file
271

272 # Create the dataset and data loader
273 dataset = ImageDataset(test_image_folder, transform=transform)
274 batch_size = 32 # You can adjust the batch size
275 data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False,

num_workers=4)↪→

276

277 # Ensure the model is in evaluation mode and on CPU
278 model_int8_fused.eval()
279

280 all_predictions = []
281 all_filenames = []
282

283 # Perform batched inference
284 for images, filenames in data_loader:
285 # Perform prediction
286 with torch.no_grad():
287 outputs = model_int8_fused(images)
288

289 # Apply softmax to obtain probabilities
290 probabilities = torch.sigmoid(outputs).cpu().numpy()
291

292 all_predictions.extend(probabilities)
293 all_filenames.extend(filenames)
294

295 # Convert predictions and filenames into numpy arrays (if not already
in this format)↪→

296 all_predictions = np.array(all_predictions)
297 all_filenames = np.array(all_filenames)
298

299 # Create a DataFrame with the data
300 data = {
301 'Filename': all_filenames,
302 # Add your prediction categories here
303 }
304
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305 for i, category in enumerate(['RB', 'OB', 'PF', 'DE', 'FS', 'IS', 'RO',
'IN', 'AF', 'BE', 'FO', 'GR', 'PH', 'PB', 'OS', 'OP', 'OK']):↪→

306 data[category] = all_predictions[:, i]
307

308 df = pd.DataFrame(data)
309

310 # Extract the numeric portion from the 'Filename' column for sorting
311 df['Numeric_Filename'] =

df['Filename'].str.extract(r'(\d+)').astype(int)↪→

312

313 # Sort the DataFrame by the 'Numeric_Filename' column and drop the
helper column↪→

314 df_sorted = df.sort_values(by='Numeric_Filename',
ascending=True).drop(columns=['Numeric_Filename'])↪→

315

316 # Save the sorted DataFrame to a CSV file
317 output_csv_path = '/content/drive/My Drive/Msc

thesis/SewerML/Data/Predictions/ResNet101/QuantFuse/250FullyQuantFuse_250FineTune_Resnet101_Entire_Val.csv'↪→

318 df_sorted.to_csv(output_csv_path, index=False)
319

320
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ResNet-101 iterative pruning

1 from google.colab import drive
2 drive.mount('/content/drive')
3

4 import torch
5 import torchvision.models as models
6 import torch.nn.utils.prune as prune
7 import zipfile
8 import os
9 from PIL import Image

10 import csv
11 import os
12 from torchvision import transforms
13 from torch.utils.data import DataLoader, Dataset
14 import numpy as np
15 import pandas as pd
16 import torch.optim as optim
17 import torch.nn as nn
18 import torch.nn.functional as F
19

20 model_path = '/content/drive/My Drive/Msc
thesis/SewerML/Models/resnet101-e2e-version_1.pth'↪→

21

22 model = resnet101_quantizable(num_classes=17,
pretrained=False).to('cpu')↪→

23

24 # Load the state dictionary from the .pth file
25 state_dict = torch.load(model_path)
26

27 # Load the state dictionary into the modified model, excluding the
final classification layer↪→

28 model.load_state_dict(state_dict['state_dict'], strict=False)
29

30 # Set the model to evaluation mode
31 model.eval()
32

33 # Importing the validation dataset
34 !cp '/content/drive/My Drive/Msc thesis/SewerML/Data/valid00.zip'

'/content/valid00.zip'↪→
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35

36 !cp '/content/drive/My Drive/Msc thesis/SewerML/Data/valid01.zip'
'/content/valid01.zip'↪→

37

38

39

40 # Define the path to your zip files
41 zip_files = ['valid00.zip', 'valid01.zip'] # Add more zip files if

needed↪→

42

43 # Define the destination folder within Colab
44 destination_folder = '/content/Validationset'
45

46 # Unzip each zip file
47 for zip_file in zip_files:
48 with zipfile.ZipFile(zip_file, 'r') as zip_ref:
49 zip_ref.extractall(destination_folder)
50

51 # Check if the images are successfully unzipped
52 unzipped_files = os.listdir(destination_folder)
53 print(f"Images successfully unzipped to: {destination_folder}")
54 print(f"Unzipped {len(unzipped_files)} files.")
55

56

57

58 class MultiLabelDataset(Dataset):
59 def __init__(self, data_path, labels_path, transform=None):
60 self.data_path = data_path
61 self.transform = transform
62 self.img_labels = self.load_labels(labels_path)
63

64 def load_labels(self, labels_path):
65 img2labels = {}
66 available_files = set(os.listdir(self.data_path))
67 excluded_columns = ['WaterLevel', 'VA', 'ND', 'Defect']
68

69 with open(labels_path, newline='') as csv_file:
70 csv_reader = csv.reader(csv_file, delimiter=',')
71 header = next(csv_reader) # Header row with column names
72

73 # Determine the indices of columns to exclude
74 excluded_indices = [header.index(col) for col in

excluded_columns if col in header]↪→

75

76 for row in csv_reader:
77 filename = row[0]
78 if filename in available_files:
79 # Include only columns not in excluded_indices
80 labels = torch.tensor([int(row[i]) for i in

range(1, len(row)) if i not in
excluded_indices], dtype=torch.float32)

↪→

↪→
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81 img2labels[filename] = labels
82

83 return img2labels
84

85 def __len__(self):
86 return len(self.img_labels)
87

88 def __getitem__(self, idx):
89 img_name = list(self.img_labels.keys())[idx]
90 img_path = os.path.join(self.data_path, img_name)
91 image = Image.open(img_path).convert('RGB')
92 label = self.img_labels[img_name]
93 if self.transform:
94 image = self.transform(image)
95 return image, label
96

97 from torch.utils.data import DataLoader
98

99

100 # Define transformations
101 transform = transforms.Compose([
102 transforms.Resize((224, 224)),
103 transforms.ToTensor(),
104 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225]),↪→

105 ])
106

107 # Create the dataset and data loader
108 train_dataset = MultiLabelDataset(
109 data_path="/content/drive/My Drive/Msc

thesis/SewerML/Data/Quant10k",↪→

110 labels_path="/content/SewerML_Train.csv",
111 transform=transform
112 )
113

114 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True,
num_workers=4)↪→

115

116 device = torch.device("cuda")
117 model.to(device)
118

119

120

121 def prune_model(model, amount):
122 for name, module in model.named_modules():
123 if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear,

torch.nn.BatchNorm2d)):↪→

124 # Save the original state of the module for comparison
125 original_weight = None
126 original_bias = None
127 if hasattr(module, 'weight'):
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128 original_weight = module.weight.detach().clone()
129 if hasattr(module, 'bias') and module.bias is not None:
130 original_bias = module.bias.detach().clone()
131

132 # Count nonzero elements before pruning
133 original_nonzeros =

torch.count_nonzero(original_weight).item() if
original_weight is not None else 0

↪→

↪→

134 original_bias_nonzeros =
torch.count_nonzero(original_bias).item() if
original_bias is not None else 0

↪→

↪→

135

136 # Apply pruning
137 prune.l1_unstructured(module, name='weight', amount=amount)
138 if module.bias is not None:
139 prune.l1_unstructured(module, name='bias',

amount=amount)↪→

140

141 # Count nonzero elements after pruning
142 pruned_nonzeros = torch.count_nonzero(module.weight).item()
143 pruned_bias_nonzeros =

torch.count_nonzero(module.bias).item() if
hasattr(module, 'bias') and module.bias is not None
else 0

↪→

↪→

↪→

144

145 # Calculate and display the percentage change for weights
146 percentage_change_weights = 100 * (1 - pruned_nonzeros /

original_nonzeros) if original_nonzeros > 0 else 0↪→

147 print(f'Pruning {name}... Weight nonzeros:
{original_nonzeros} -> {pruned_nonzeros}
({percentage_change_weights:.2f}% change)')

↪→

↪→

148

149 # Calculate and display the percentage change for bias, if
applicable↪→

150 if original_bias is not None:
151 percentage_change_bias = 100 * (1 -

pruned_bias_nonzeros / original_bias_nonzeros) if
original_bias_nonzeros > 0 else 0

↪→

↪→

152 print(f' Bias nonzeros: {original_bias_nonzeros} ->
{pruned_bias_nonzeros}
({percentage_change_bias:.2f}% change)')

↪→

↪→

153

154

155

156 # Function to apply the mask hook
157 def apply_mask_hook(module, input):
158 if hasattr(module, 'weight_mask'):
159 module.weight.data.mul_(module.weight_mask)
160 if hasattr(module, 'bias_mask') and module.bias is not None:
161 module.bias.data.mul_(module.bias_mask)
162
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163 # Function to fine-tune the model
164 def fine_tune_model(model, train_loader, num_epochs=10):
165 # Register the hook for each pruned layer
166 for name, module in model.named_modules():
167 if isinstance(module, (nn.Conv2d, nn.Linear, nn.BatchNorm2d)):
168 if hasattr(module, 'weight_mask') or (hasattr(module,

'bias_mask') and module.bias is not None):↪→

169 module.register_forward_pre_hook(apply_mask_hook)
170

171 # Define the optimizer and loss function
172 optimizer = optim.Adam(model.parameters(), lr=1e-4)
173 criterion = nn.BCEWithLogitsLoss()
174

175 # Fine-tuning loop
176 model.train()
177 for epoch in range(num_epochs):
178 total_loss = 0
179 for images, labels in train_loader:
180 images, labels = images.to(device), labels.to(device)
181

182 optimizer.zero_grad(set_to_none=True)
183 outputs = model(images)
184 loss = criterion(outputs, labels)
185 loss.backward()
186 optimizer.step()
187

188 total_loss += loss.item()
189

190 print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss /
len(train_loader):.4f}")↪→

191

192

193

194 def remove_pruning_reparameterization(model):
195 for module in model.modules():
196 if isinstance(module, (nn.Conv2d, nn.Linear, nn.BatchNorm2d)):
197 prune.remove(module, 'weight')
198 if module.bias is not None:
199 prune.remove(module, 'bias')
200

201

202 def validate_and_save_predictions(model, iteration,
predictions_save_dir):↪→

203 test_image_folder = '/content/Validationset'
204

205 # Define mean and standard deviation values for normalization
206 mean_values = [0.523, 0.453, 0.345]
207 std_dev_values = [0.210, 0.199, 0.154]
208

209 # Create a transform to preprocess the images (resize and
normalization)↪→
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210 transform = transforms.Compose([
211 transforms.Resize((224, 224)),
212 transforms.ToTensor(),
213 transforms.Normalize(mean=mean_values, std=std_dev_values),
214 ])
215

216 class ImageDataset(Dataset):
217 def __init__(self, image_folder, transform=None):
218 self.image_folder = image_folder
219 self.transform = transform
220 self.image_files = os.listdir(image_folder)
221

222 def __len__(self):
223 return len(self.image_files)
224

225 def __getitem__(self, idx):
226 image_file = self.image_files[idx]
227 image_path = os.path.join(self.image_folder, image_file)
228 image = Image.open(image_path).convert("RGB")
229 if self.transform:
230 image = self.transform(image)
231 return image, image_file
232

233 # Create the dataset and data loader
234 dataset = ImageDataset(test_image_folder, transform=transform)
235 batch_size = 32 # Adjust the batch size as needed
236 data_loader = DataLoader(dataset, batch_size=batch_size,

shuffle=False, num_workers=4)↪→

237

238 # Move the model to the CUDA device
239 device = torch.device("cuda" if torch.cuda.is_available() else

"cpu")↪→

240 model.to(device)
241 model.eval()
242

243 all_filenames = []
244 all_predictions = []
245

246 for images, filenames in data_loader:
247 images = images.to(device)
248 with torch.no_grad():
249 outputs = model(images)
250 probabilities = torch.sigmoid(outputs).cpu().numpy() #

Adjust for your model's output↪→

251 all_filenames.extend(filenames)
252 all_predictions.extend(probabilities)
253

254 all_predictions_array = np.vstack(all_predictions)
255

256 data = {'Filename': all_filenames}
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257 for i, category in enumerate(['RB', 'OB', 'PF', 'DE', 'FS', 'IS',
'RO', 'IN', 'AF', 'BE', 'FO', 'GR', 'PH', 'PB', 'OS', 'OP',
'OK']):

↪→

↪→

258 data[category] = all_predictions_array[:, i]
259

260 df = pd.DataFrame(data)
261

262 # Extract the numeric portion from the 'Filename' column for
sorting↪→

263 df['Numeric_Filename'] =
df['Filename'].str.extract(r'(\d+)').astype(int)↪→

264

265 # Sort the DataFrame by the 'Numeric_Filename' column and drop the
helper column↪→

266 df_sorted = df.sort_values(by='Numeric_Filename',
ascending=True).drop(columns=['Numeric_Filename'])↪→

267

268 # Save the sorted DataFrame to a CSV file
269 output_csv_path = os.path.join(predictions_save_dir,

f'predictions_iteration_{iteration}.csv')↪→

270 df_sorted.to_csv(output_csv_path, index=False)
271

272

273

274

275

276 # Define the directory for saving models and predictions
277 model_save_dir = '/content/drive/My Drive/Msc

thesis/SewerML/Models/Pruned Resnet101'↪→

278 predictions_save_dir = '/content/drive/My Drive/Msc
thesis/SewerML/Data/Predictions/ResNet101/Pruned'↪→

279

280 # Define the number of pruning iterations
281 num_iterations = 10
282

283 for iteration in range(1, num_iterations + 1):
284 # Step 1: Pruning
285 print(f"--- Iteration {iteration} ---")
286 print("Pruning...")
287 prune_model(model, amount=0.1 *iteration) # Increase pruning

amount in each iteration↪→

288

289 # Step 2: Fine-tuning
290 print("Fine-tuning...")
291 fine_tune_model(model, train_loader)
292

293 # Step 3: Make pruning permanent
294 print("Making pruning permanent...")
295 remove_pruning_reparameterization(model)
296

297 # Step 4: Save the model
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298 model_save_path = os.path.join(model_save_dir,
f'pruned_resnet101_iteration_{iteration}.pth')↪→

299 torch.save(model.state_dict(), model_save_path)
300 print(f"Model saved to {model_save_path}")
301

302 # Step 5 & 6: Validate and save predictions
303 print("Validating and saving predictions...")
304 validate_and_save_predictions(model, iteration,

predictions_save_dir)↪→

305

306 print("Iterative pruning completed.")
307

308

309

310

311

312

313

314

315
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Appendix E

Performance metrics ResNet-101
models

Model F2CIW F1Normal
Standard ResNet-101 53.26 79.55
Quantized 51.92 78.98
Quantized & fusion 51.70 78.81
Pruned 10% 38.56 86.28
Pruned 30% 39.23 87.30
Pruned 30%, quantized & fusion 40.09 87.41

TABLE E.1: Overall F2CIW and F1Normal scores for all variants of the
ResNet-101 model.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK
Standard ResNet-101 42.45 84.34 51.08 35.34 87.49 19.98 37.81 47.47 59.18 59.87 10.39 64.78 61.24 44.03 34.81 54.23 71.60
Quantized 41.26 84.10 49.56 34.47 87.53 18.73 35.05 46.91 57.95 59.30 9.59 63.26 60.13 42.15 31.68 51.54 82.87
Quantized & fusion 41.68 84.20 48.65 33.74 87.47 18.84 36.05 45.86 58.29 58.97 9.64 63.18 59.42 41.14 31.08 50.67 82.89
Pruned 10% 16.94 58.85 49.80 21.15 64.48 9.56 25.21 25.36 23.63 27.00 21.24 51.18 43.10 50.05 30.38 51.37 62.23
Pruned 30% 12.43 60.27 49.26 24.76 73.13 12.27 28.59 31.74 23.75 28.74 19.73 58.12 41.84 47.24 30.26 49.20 63.30
Pruned 30%, quantized & fusion 13.34 62.18 50.54 24.73 73.21 12.28 30.70 33.09 23.89 29.74 19.47 57.78 42.92 47.25 29.84 52.43 90.11

TABLE E.2: Class F2 scores for all variants of the ResNet-101 model.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK
Standard ResNet-101 13.99 59.82 18.21 10.29 68.89 5.05 11.56 16.44 25.88 26.96 2.32 32.76 26.02 14.23 10.04 19.80 97.61
Quantized 13.13 58.15 17.21 9.89 67.89 4.65 10.15 16.07 24.30 26.23 2.11 30.21 24.90 13.22 8.73 18.03 60.09
Quantized & fusion 13.35 58.95 16.68 9.60 68.46 4.68 10.63 15.41 24.76 25.77 2.12 30.03 24.25 12.69 8.50 17.51 60.07
Pruned 10% 40.48 74.15 83.70 67.15 83.84 50.36 69.82 50.68 66.33 71.01 17.90 82.11 82.16 51.07 58.22 72.52 79.75
Pruned 30% 34.88 73.50 80.21 59.95 78.35 30.72 66.48 45.07 63.15 66.77 22.75 74.25 81.63 53.59 56.11 73.74 82.75
Pruned 30%, quantized & fusion 33.01 72.59 78.43 59.14 78.31 30.92 62.87 43.74 62.40 64.63 20.32 74.49 81.06 52.93 52.79 72.64 83.26

TABLE E.3: Class precision scores for all variants of the ResNet-101
model.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK
Standard ResNet101 86.38 93.96 93.07 90.28 93.82 76.50 87.42 89.83 87.25 86.16 80.90 85.73 92.57 92.42 90.81 95.92 67.13
Quantized 88.82 94.66 93.47 90.97 94.36 77.30 90.54 90.15 88.64 86.59 83.25 87.08 93.04 93.07 92.34 96.24 66.25
Quantized & fusion 88.75 94.30 93.42 90.92 94.00 77.30 89.58 90.61 88.12 87.01 83.08 87.26 93.24 93.59 92.56 96.24 66.07
Pruned 10% 14.79 55.96 45.23 18.06 60.96 7.95 21.73 22.55 20.36 23.38 22.28 46.77 38.52 49.80 27.13 47.88 93.98
Pruned 30% 10.71 57.68 44.93 21.59 71.93 10.67 25.03 29.55 20.54 25.16 19.10 55.13 37.30 45.88 27.13 45.42 92.38
Pruned 30%, quantized & fusion 11.61 60.03 46.41 21.59 72.04 10.67 27.22 31.19 20.70 26.21 19.26 54.71 38.40 46.01 26.91 49.02 92.00

TABLE E.4: Class recall scores for all variants of the ResNet-101
model.
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Appendix F

Predicted class count

Model Images with No Defects Predicted

Standard ResNet-101 47,234
Quantized 46,545
Quantized & Fusion 46,470
Pruned 10% 80,929
Pruned 30% 76,672
Pruned 30%, Quantized & Fusion 75,886

TABLE F.2: Number of images with no defects predicted by all vari-
ants of the ResNet-101 model.
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Class Groundtruth Counts ResNet-101 Quantized Quantized & Fusion

Counts Counts % Chg Counts % Chg

RB 5538 34198 37454 +9.52% 36809 +7.63%
OB 23624 37110 38457 +3.63% 37788 +1.83%
PF 2021 10328 10973 +6.25% 11319 +9.60%
DE 2038 17884 18739 +4.78% 19306 +7.95%
FS 36218 49324 50343 +2.07% 49726 +0.82%
IS 881 13339 14659 +9.90% 14550 +9.08%
RO 2917 22050 26008 +17.95% 24572 +11.44%
IN 2812 15361 15770 +2.66% 16534 +7.64%
AF 9059 30539 33049 +8.22% 32239 +5.57%
BE 7929 25339 26179 +3.32% 26776 +5.67%
FO 597 20858 23521 +12.77% 23349 +11.94%
GR 6889 18026 19857 +10.16% 20014 +11.03%
PH 3432 12211 12824 +5.02% 13198 +8.08%
PB 765 4968 5387 +8.43% 5642 +13.57%
OS 457 4133 4833 +16.94% 4978 +20.45%
OP 612 2964 3266 +10.19% 3364 +13.50%
OK 19655 28883 29944 +3.67% 29969 +3.76%

Class Pruned 10% Pruned 30% Pruned 30%, Quantized & Fusion

Counts % Chg Counts % Chg Counts % Chg

RB 2023 -94.08% 1700 -95.03% 2035 -94.05%
OB 17828 -51.96% 18540 -50.04% 18405 -50.40%
PF 1092 -89.43% 1132 -89.04% 1161 -88.76%
DE 548 -96.94% 734 -95.90% 798 -95.54%
FS 26333 -46.61% 33249 -32.59% 34206 -30.65%
IS 139 -98.96% 306 -97.71% 323 -97.58%
RO 908 -95.88% 1098 -95.02% 1251 -94.33%
IN 1251 -91.86% 1844 -88.00% 1907 -87.59%
AF 2780 -90.90% 2947 -90.35% 3107 -89.83%
BE 2611 -89.70% 2988 -88.21% 2899 -88.56%
FO 743 -96.44% 501 -97.60% 600 -97.12%
GR 3924 -78.23% 5115 -71.62% 5189 -71.21%
PH 1609 -86.82% 1568 -87.16% 1586 -87.01%
PB 746 -84.98% 655 -86.82% 667 -86.57%
OS 213 -94.85% 221 -94.65% 213 -94.85%
OP 404 -86.37% 377 -87.28% 409 -86.20%
OK 13934 -51.76% 14747 -48.94% 15037 -47.94%

TABLE F.1: Model prediction counts and percentage changes relative
to the standard ResNet-101 model.
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Performance metrics TResNet-L
models

Class Groundtruth Counts Standard TResNet-L Pruned 10% Pruned 80%

Counts Counts % Chg Counts % Chg

RB 5538 33790 2256 -93.32% 730 -97.84%
OB 23624 37130 19292 -48.04% 17336 -53.31%
PF 2021 10321 1455 -85.90% 1366 -86.76%
DE 2038 17080 563 -96.70% 750 -95.61%
FS 36218 48939 29878 -38.95% 30897 -36.87%
IS 881 10562 277 -97.38% 130 -98.77%
RO 2917 23299 752 -96.77% 1330 -94.29%
IN 2812 14107 1947 -86.20% 1596 -88.69%
AF 9059 28919 5361 -81.46% 2847 -90.16%
BE 7929 25499 4816 -81.11% 2976 -88.33%
FO 597 20339 245 -98.80% 202 -99.01%
GR 6889 16709 4740 -71.63% 4614 -72.39%
PH 3432 9960 1702 -82.91% 1694 -82.99%
PB 765 4320 561 -87.01% 502 -88.38%
OS 457 4196 225 -94.64% 238 -94.33%
OP 612 2351 412 -82.48% 377 -83.96%
OK 19655 29762 14666 -50.72% 17549 -41.04%

TABLE G.1: Model prediction counts and percentage changes relative
to the standard TResNet-L model.

Model Images with No Defects Predicted

Standard TResNet-L 48,686
10% Pruned 77,837
80% Pruned 77,543

TABLE G.2: Number of images with no defects predicted by selected
variants of the TResNet-L model.
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Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK
Standard TResNet-L 42.45 84.34 51.08 35.34 87.49 19.98 37.81 47.47 59.18 59.87 10.39 64.78 61.24 44.03 34.81 54.23 71.60
10% Pruned TResNet-L 18.38 64.05 59.55 23.47 70.82 15.65 23.75 35.16 36.70 40.81 18.42 59.60 48.02 45.43 34.34 54.37 91.53
80% Pruned TResNet-L 14.53 53.67 48.22 19.95 68.47 11.97 21.33 28.49 32.85 35.09 14.77 53.64 41.83 39.58 28.12 50.24 88.32

TABLE G.3: Per-class F2 scores for the TResNet-L model variants.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK
Standard TResNet-L 40.98 82.64 49.85 34.19 86.77 18.91 36.73 46.55 58.20 58.92 9.98 63.71 60.28 43.27 33.84 53.21 70.53
10% Pruned TResNet-L 39.76 75.56 78.08 72.65 82.84 42.96 78.46 47.66 56.95 61.92 39.59 81.22 87.07 58.65 62.67 75.49 83.58
80% Pruned TResNet-L 36.89 69.83 74.21 67.48 80.91 39.20 74.56 42.85 53.41 56.13 36.28 78.15 84.34 55.60 60.28 72.98 81.45

TABLE G.4: Per-class precision scores for the TResNet-L model vari-
ants.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK
Standard TResNet-L 41.07 83.21 50.17 35.70 87.12 19.30 38.01 47.80 59.50 59.51 10.87 64.22 61.53 44.78 35.20 54.45 71.85
10% Pruned TResNet-L 25.43 64.88 56.42 33.85 71.12 17.03 35.70 46.72 55.42 56.38 21.90 62.57 59.88 44.02 34.99 52.88 90.19
80% Pruned TResNet-L 21.98 57.65 52.33 30.45 69.03 14.77 33.97 43.84 52.28 53.14 19.53 58.74 57.18 41.47 33.22 51.62 87.99

TABLE G.5: Per-class recall scores for the TResNet-L model variants.
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