
 
 

Delft University of Technology

Mitigating Exposure Bias in Online Learning to Rank Recommendation
A Novel Reward Model for Cascading Bandits
Mansoury, Masoud; Mobasher, Bamshad; van Hoof, Herke

DOI
10.1145/3627673.3679763
Publication date
2024
Document Version
Final published version
Published in
CIKM '24

Citation (APA)
Mansoury, M., Mobasher, B., & van Hoof, H. (2024). Mitigating Exposure Bias in Online Learning to Rank
Recommendation: A Novel Reward Model for Cascading Bandits. In CIKM '24: Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management (pp. 1638-1648). Association
for Computing Machinery (ACM). https://doi.org/10.1145/3627673.3679763
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3627673.3679763
https://doi.org/10.1145/3627673.3679763


Mitigating Exposure Bias in Online Learning to Rank
Recommendation: A Novel Reward Model for Cascading Bandits

Masoud Mansoury
∗

Delft University of Technology

Delft, The Netherlands

m.mansoury@tudelft.nl

Bamshad Mobasher

DePaul University

Chicago, USA

mobasher@cs.depaul.edu

Herke van Hoof

University of Amsterdam

Amsterdam, The Netherlands

h.c.vanhoof@uva.nl

Abstract
Exposure bias is a well-known issue in recommender systemswhere

items and suppliers are not equally represented in the recommenda-

tion results. This bias becomes particularly problematic over time

as a few items are repeatedly over-represented in recommendation

lists, leading to a feedback loop that further amplifies this bias. Al-

though extensive research has addressed this issue in model-based

or neighborhood-based recommendation algorithms, less attention

has been paid to online recommendation models, such as those

based on top-𝐾 contextual bandits, where recommendation models

are dynamically updated with ongoing user feedback. In this paper,

we study exposure bias in a class of well-known contextual bandit

algorithms known as Linear Cascading Bandits. We analyze these

algorithms in their ability to handle exposure bias and provide a

fair representation of items in the recommendation results. Our

analysis reveals that these algorithms fail to mitigate exposure bias

in the long run during the course of ongoing user interactions. We

propose an Exposure-Aware reward model that updates the model

parameters based on two factors: 1) implicit user feedback and 2)

the position of the item in the recommendation list. The proposed

model mitigates exposure bias by controlling the utility assigned

to the items based on their exposure in the recommendation list.

Our experiments with two real-world datasets show that our pro-

posed reward model improves the exposure fairness of the linear

cascading bandits over time while maintaining the recommenda-

tion accuracy. It also outperforms the current baselines. Finally,

we prove a high probability upper regret bound for our proposed

model, providing theoretical guarantees for its performance.
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1 Introduction
Recommender systems utilize users’ interaction data on different

items to generate personalized recommendations [2, 7, 30, 40]. Tra-

ditionally, the success of these systems are measured based on the

degree to which the recommendations generated matches the user

preferences [16, 41]. However, this user-centric view for building

recommendation models, while captures users’ preferences, ne-

glects the item-side utilities, or what is referred to as exposure bias
[17, 31, 42].

Problem definition. Exposure bias in recommender systems refers

to the phenomenon of items not being uniformly represented in the

recommendation results: Few items are frequently shown in the rec-

ommendation lists, while the majority of other items rarely appear

in the recommendation results [10, 31]. This bias, if not addressed,

can result in a number of negative consequences for system perfor-

mance. First, it can impact economic gains for items for suppliers of

underexposed items, leading to unfair treatment and disincentiviz-

ing participation in the marketplace [37]. Secondly, it may hinder

the system’s ability to provide useful, but less popular, recommen-

dations to consumers [11, 21]. Finally, users have a greater chance

of interacting with over-exposed items, perpetuating their promi-

nence in future recommendations, and amplifying existing biases.

Amplification of exposure bias for a few items would be at the ex-

pense of the under-exposure for a majority of other items (including

some that might be of interest for some users) and consequently

may push those items out of the marketplace[33, 34, 43].

Research gap. Most existing research to study exposure bias has fo-

cused on classical recommendation models in static settings where

a single round of recommendation results is analyzed [31, 45]. Al-

though these studies reveal important aspects of exposure bias and

propose solutions to tackle it, the long-term impact of this bias

on online learning-to-rank recommendation models has yet to be

explored significantly. This is a research gap which we seek to

remedy in this paper. Filling this gap requires studying the task

of recommendation problem in dynamic and interactive settings

where users are engaged in ongoing interaction with the system

and preference models are dynamically updated over time.

In our study, we focus specifically on Cascading Bandits (CB) [23,
24, 27, 53] which provide a principled solution for online learning of

recommendation models. The ability of CB to handle position bias
[12, 20] and perform exploration [6, 8, 36] makes it an interesting

choice for developing online recommendation algorithms. Themain
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question in this research is howCB distribute exposure among items

in the system? Although these algorithms perform exploration in

the items space to collect user feedback on different items, our study

in this paper shows that this exploration does not necessarily lead

to a sufficiently fair exposure for items in the long run.

Contributions and findings. In this paper, we study exposure

bias in cascading bandits and introduce a novel reward model to

mitigate exposure bias in these algorithms. In cascading bandit

algorithms, all selected items in the recommendation lists are simi-

larly rewarded, regardless of what their position is in the list. This

means that a clicked item on top of the list (e.g., at the first posi-

tion) is equally rewarded as a clicked item at the bottom of the list

(e.g., at position K). Also, the same formulation is considered to

penalize ignored (unclicked) items. We hypothesize that consid-

ering the positional information of clicked/unclicked items when

rewarding/penalizing those items would not only lead to a better

adaptation of the model to user feedback, but also, most importantly,

lead to a significant reduction in exposure bias over time.

We propose an Exposure-Aware (EA) reward model and inte-

grate it into the existing cascading bandit algorithms. Our reward

model updates the bandit model parameters based on two factors:

1) the user feedback on recommended items, whether the item is

clicked or not, and 2) the position of the item in the list. In fact,

the proposed model rewards or penalizes the clicked or unclicked

items, respectively, based on their position in the recommendation

list. This control over the degree of reward or penalization for items

based on their exposure in the recommendation lists incentivizes

more exploration and reduces exposure bias on items. Extensive

experiments on two real-world datasets show that the proposed re-

ward model not only reduces the exposure bias in cascading bandits,

but also outperforms the state-of-the-art baselines in mitigating

exposure bias while maintaining the recommendation accuracy. We

also show theoretical guarantees for the performance of our reward

model by proving a high probability upper regret bound for it.

2 Background
In this section, we review the CB and the definitions of exposure

fairness in recommender systems. Formally,I = {1, ...,𝑚} be the set
of all items in the system. The task of generating recommendations

in each round 𝑡 ∈ {1, 2, ..., 𝑛} is delivering a recommendation list

of size 𝐾 to a target user. Let denote this recommendation list as

L𝑡 ∈ Π𝐾 (I), where Π𝐾 (I) is the set of all 𝐾-permutations of the

set I. L(𝑘) denotes the item in the 𝑘-th position of L.

2.1 Cascading bandit
The Cascade Bandit (CB) is a principled method of operationalizing

recommendation models in an online environment under the as-

sumption that users will behave according to a cascade model [23,

53]. The cascade click model [13] is a well-known click model to

interpret the click behavior of users on the recommendation list.

Given the recommendation list L, the target user examines each

recommended item in L from the first position to the last, clicks

on the first attractive item and stops examining the rest of the

items. In this way, the items above the clicked item are considered

unattractive, the clicked item is considered attractive, and the rest

of the items are considered as unobserved. The probability that a

user clicks on an item L(𝑘) is called attraction probability and we

denote it as 𝜔 (L(𝑘)). In the following, we describe the cascading

bandit formulation for a user 𝑢 interacting with the system.

Cascading bandits can be represented by a tuple (I,𝐾 ,𝑃 ), where
𝑃 is a probability distribution over a binary hypercube {0, 1}I . Also,
let w𝑡 ∈ {0, 1}I denote the preference weights for each item drawn

from 𝑃 , the degree to which 𝑢 is interested to each item where

w𝑡 (L(𝑖)) = 1 signifies that the item L(𝑖) attracts 𝑢 in round 𝑡 .

Also, assuming that the preference weights of items in the ground

set I are independently distributed as:

𝑃 (w) =
∏
𝑖∈I

Ber𝜔 (𝑖 ) (w(𝑖)) (1)

where Ber𝜔 (𝑖 ) (.) is the Bernoulli distribution with mean 𝜔 (𝑖).
In each round 𝑡 , the learning agent provides a recommendation

list of size 𝐾 , L𝑡 ∈ Π𝐾 (I), to the target user. According to the

cascade click model, the user examines L𝑡 from the first item (i.e.,

L(1)) to the last one (i.e., L(𝐾)) and clicks on the first item of

interest. We use 𝐶𝑡 ∈ {1, .., 𝐾, 𝐾 + 1} to denote the position of the

clicked item. Note that𝐶𝑡 ≤ 𝐾 holds if user clicks on an item in L𝑡 ,
otherwise𝐶𝑡 = 𝐾 + 1. Since user only clicks on the first "attractive"

item, w𝑡 (L(𝑘)) can be defined as:

w𝑡 (L(𝑘)) = 1(𝐶𝑡 = 𝑘), where 𝑘 ∈ [1, ...,min{𝐾,𝐶𝑡 }] (2)

where 1[.] is the indicator function returning zero when its argu-

ment is False and 1 otherwise. And the reward is defined as:

R(L𝑡 ,w𝑡 ) = 1 −
𝐾∏
𝑖=1

(1 −w𝑡 (L𝑡 (𝑖))) (3)

The goal of the agent is to minimize the disparity in reward

observed on the generated recommendation list by the agent and

the optimal ranker (or equivalently maximizing the number of

clicks observed on recommended items) and can be computed as:

𝑅(𝑛) = E

[
𝑛∑︁
𝑡=1

R(L∗,w𝑡 ) − R(L𝑡 ,w𝑡 )
]

(4)

where L∗ is the optimal recommendation list that maximizes the

reward at each time 𝑡 and is computed as follows.

L∗ = argmax

L∈∏𝐾 (I)
R(L, 𝜔) (5)

2.2 Measuring exposure fairness
In the existing literature, there are many metrics available to mea-

sure exposure fairness in recommender systems [18, 28, 39, 42, 51].

In this study, our focus is on assessing exposure fairness through

various dimensions within the family of exposure metrics. Specifi-

cally, we scrutinize two critical dimensions: (i) consideration or dis-

regard of the item’s position in the recommendation list (w/ or w/o

position, respectively), and (ii) allocation of exposure proportion-

ately or irrespective of items’ merit (w/ or w/o merit, respectively).

Table 1 provides an overview of four distinct notions of exposure

based on these dimensions.
1

Exposure fairness, as we define it, refers to the equitable distri-

bution of exposure among items. With an exposure distribution

1
Merit, in this context, refers to any quality measure for items, such as relevance [5].

The definition of the merit measure employed in this paper is elucidated in Section 5.
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Table 1: Four different notions of exposure for items (U is
the set of all users, L𝑢 is the recommendation list delivered
to user 𝑢, and 𝐾 is the size of the recommendation list).

w/o merit w/ merit

w
/o

po
si
ti
on

Exposure is binary without
considering item’s merit

𝐸𝐵 (𝑖) = ∑
𝑢∈U

1[𝑖 ∈ L𝑢 ]

Exposure is binary in
proportion to item’s merit

𝐸𝐵𝑀 (𝑖) = 𝐸𝐵 (𝑖 )
𝑚𝑒𝑟𝑖𝑡 (𝑖 )

w
/p

os
it
io
n Exposure depends on the position

without considering item’s merit

𝐸𝑃 (𝑖 ) = ∑
𝑢∈U

𝐾∑
𝑘=1

1[𝑖 ∈ L𝑢 ] 1

log
2
(1+𝑘 )

Exposure depends on position in
proportion to item’s merit

𝐸𝑃𝑀 (𝑖) = 𝐸𝑃 (𝑖 )
𝑚𝑒𝑟𝑖𝑡 (𝑖 )

representing the allocated exposure value for each item, our ob-

jective is to assess the extent to which this distribution achieves

uniformity, with a uniform distribution being deemed the fairest.

The Gini index [3, 48] is a well-known metric to measure the uni-

formity of a distribution. Given that the Gini index falls within the

range of [0, 1], for consistency, we report 1 minus the Gini index in

this paper. Consequently, a Gini index value of 1 signifies the fairest

outcome, while a value of 0 denotes the most unfair outcome. Cal-

culating the Gini index on the exposure distribution derived from

each definition outlined in Table 1 yields four notions of exposure

fairness:

• Equality of binary exposure (Equality(𝐵) ): This computes

the Gini Index over the exposure distribution of 𝐸𝐵 (i.e., w/o

position and w/o merit).

• Equality of position-based exposure (Equality(𝑃 ) ): This
computes the Gini Index over the exposure distribution of 𝐸𝑃

(i.e., w/ position and w/o merit).

• Equity of binary exposure (Equity(𝐵) ): This computes the

Gini Index over the exposure distribution of 𝐸𝐵𝑀 (i.e., w/o

position and w/ merit).

• Equity of position-based exposure (Equity(𝑃 ) ): This com-

putes the Gini Index over the exposure distribution of 𝐸𝑃𝑀

(i.e., w/ position and w/ merit).

3 Exposure-Aware Cascading Bandits
The previous approaches based on cascading bandits do not consider

the position of clicked or ignored (unclicked) items when assigning

rewards or penalties
2
. This means that items clicked on at the top

of the list receive the same reward as those clicked at the bottom.

Users tend to select highly exposed items, often positioned at the

top, either due to their accessibility or genuine interest [14, 29].

Conversely, less exposed items towards the bottom of the list require

more effort from users to discover, and when clicked, are likely of

higher importance. Thus, to better adjust themodel to user behavior,

clicked items at the bottom should be rewarded more than those at

the top. This also provides additional incentives for assigning more

exposure to less exposed items in the future.

2
For the rest, when an item is examined, but it is not clicked, we call it an "unclicked"

item. This is different from the unobserved items that have not even been examined.

Table 2: Weighting functions to define F𝑡,𝑘 in Eq. 6 (𝑘 is the
position of the item in the list and 𝑡 is the current round).

Function Abbreviation Formula Parameters

Logarithmic Log log(1 + 𝑘) −

Exponential RBP 𝛽𝑘−1
patience 𝛽

Linear Linear 𝛽 × 𝑘 patience 𝛽

Figure 1: Reward distribution of CB and EACB for different
weight functions when click is observed at varying positions
in the list.

Similarly, unclicked items should be penalized differently depend-

ing on their position. Unclicked items on the top should receive a

greater penalty than those at the bottom. When a highly exposed

item is not clicked, it suggests that the recommendation model

inaccurately assumed that it was of high interest. Penalizing such

items more heavily than less exposed unclicked items helps refine

the model to avoid prioritizing them in future recommendations.

This also incentives for downgrading recently over exposed items

and promoting less exposed items in the future. To address these

issues, we propose an Exposure-Aware Cascading Bandit (EACB)

that adjusts rewards based on the position of clicked items in the

recommendation list. Hence, we reformulate Eq. 2 as:

w
𝐸𝐴
𝑡 (L(𝑘)) = F𝑡,𝑘 × 1[𝐶𝑡 = 𝑘] − 𝛾F𝑡,𝑘 × 1[𝐶𝑡 < 𝑘] (6)

where 𝑘 ∈ [1, ...,min{𝐾,𝐶𝑡 }] and F𝑡,𝑘 is the exposure-aware weight
function that assigns weights to all examined items based on their

position in the recommendation list. The indicator function ensures

that the appropriate term (reward or penalty) is applied based on

whether the item is clicked or unclicked: if the examined item

is clicked, the first term (reward) applies as 1[𝐶𝑡 = 𝑘] = 1 and

1[𝐶𝑡 < 𝑘] = 0, otherwise, the second term (penalization) applies as

1[𝐶𝑡 = 𝑘] = 0 and 1[𝐶𝑡 < 𝑘] = 1. The hyperparameter 𝛾 controls

the degree of penalization for unclicked items. A small 𝛾 value

allows for slight penalization of unclicked items, with the focus

primarily on learning user preferences from clicked items.

The choice of F𝑡,𝑘 is crucial for an effective exposure-aware re-

ward model. It must meet two criteria: 1) positively weight clicked

items at the bottom more than those at the top, and 2) negatively

weight unclicked items at the top more than those at the bottom. In

this paper, we consider three different weight functions, outlined

in Table 2, which align with established browsing models [44]. For

example, the logarithmic function follows the standard exposure

drop-off [42] used in ranking metrics (e.g., nDCG), while the expo-

nential function follows Rank-Biased Precision (RBP) [38]. Figure 1

shows the reward distribution of CB and EACB for different weight

functions, showcasing the varying intensities of weighting assigned
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to observed clicked items. The logarithmic function exhibits the

highest intensity, followed by the linear and exponential functions.

According to the cascade click model and Eq. 6, the examination

probability of an item L(𝑘) in EACB would be:

𝑘−1∏
𝑖=1

(1 − (F𝑡,𝑘 × 1[𝐶𝑡 = 𝑘] − 𝛾F𝑡,𝑘 × 1[𝐶𝑡 < 𝑘])) (7)

and the expectation of reward at round 𝑡 is computed as follows:

R(L𝑡 ,w𝐸𝐴𝑡 ) = 1−
𝐾∏
𝑖=1

(1 − (F𝑡,𝑘 × 1[𝐶𝑡 = 𝑘] − 𝛾F𝑡,𝑘 × 1[𝐶𝑡 < 𝑘]))

(8)

3.1 Algorithm for learning EACB
Various algorithms have been developed within the Cascading Ban-

dit (CB) framework [19, 26, 53]. In this paper, we specifically con-

centrate on the linear cascading bandit proposed by Zong et al. [53]

and extend it to incorporate our exposure-aware reward model.

The algorithm 1 presents the algorithmic process of our EACB.

In each round, the algorithm computes the attraction probability,
𝑤 (𝑖), of a target item 𝑖 , representing the likelihood of the target user

liking the item. This probability is derived from the dot product of

the item features, 𝑥𝑖 , and the user preference vector 𝜃∗, denoted as

𝑤 (𝑖) = 𝜃∗𝑥𝑇
𝑖
. While item features are known to the algorithm, the

user preference vector 𝜃∗ is unknown and must be learned through

user interactions. Thus, in the initial step (line 4), the algorithm

estimates the user preference vector from past observations on item

features and their corresponding attraction probabilities.

This estimation process can be framed as a ridge regression

problem, where
ˆ𝜃𝑡 is computed as:

ˆ𝜃𝑡 = (𝑋𝑇𝑡 𝑋𝑡 + 𝜆𝐼 )−1𝑋𝑇𝑡 �̂�𝑡 (9)

where 𝑋𝑡 ∈ R𝑚×𝑑 is the matrix of item features, �̂�𝑡 ∈ R𝑚×1
is

the vector of items’ attraction probabilities at round 𝑡 , and 𝜆 is the

regularization term. The algorithm iteratively updates the model

parameters𝑀𝑡 = 𝑋
𝑇
𝑡 𝑋𝑡 + 𝜆𝐼 and 𝐵𝑡 = 𝑋𝑇𝑡 �̂�𝑡 .

To address uncertainty in estimating user preferences and en-

able exploration in the item space, an item selection strategy is

employed. Examples of these strategies are 𝜖-Greedy [46], Upper

Confidence Bound [4, 25], and Thompson Sampling [9, 47]. In this

paper, we focus on the Upper Confidence Bound (UCB) item se-

lection strategy and leave the investigation on other strategies as

our future work. According to UCB, the score for each item 𝑖 is

predicted by combining the estimation of attraction probability

with an upper bound (line 7), as expressed by:

𝑈𝑡 (𝑖) = ˆ𝜃𝑡𝑥
𝑇
𝑖 + 𝛼

√︃
𝑥𝑖𝑀

−1

𝑡−1
𝑥𝑇
𝑖

(10)

where𝑀𝑡−1 ∈ R𝑑×𝑑 is the co-variance matrix of item features. The

term

√︃
𝑥𝑖𝑀

−1

𝑡−1
𝑥𝑇
𝑖
is the upper bound for the estimated weight of

item 𝑖 which covers the optimal weight and is computed by norm

of 𝑥𝑖 weighted by𝑀−1

𝑡−1
(i.e., ∥𝑥𝑖 ∥𝑀−1

𝑡−1

). 𝛼 is a hyperparameter that

controls the degree of exploration. Given scores computed for each

item using Eq. 10, 𝐾 items with the largest 𝑈𝑡 (𝑖) are returned as

the recommendation list (lines 9-12).

Algorithm 1 Exposure-aware cascading bandit algorithm

Input: Number of rounds𝑛, size of recommendation list𝐾 , number

of feature 𝑑 , learning rate 𝜎

1: // Initialization

2: M← 𝜆𝐼𝑑×𝑑 , B← 0
𝑑

3: for 𝑡 = 1, ..., 𝑛 do
4:

ˆ𝜃𝑡 ← 𝜎−2𝑀−1

𝑡−1
𝐵𝑡−1

5: // Recommend a list of 𝐾 items

6: for 𝑖 ∈ I do
7: Compute𝑈𝑡 (𝑖) using Eq. 10
8: end for
9: for 𝑘 = 1, ...𝐾 do
10: i𝑘 ← argmax𝑒∈I\{i1,...,i𝑘−1 } S𝑡 (𝑒)
11: end for
12: L𝑡 ← (i1, ..., i𝐾 )
13: // Collect user’s feedback on L
14: Display L𝑡 and observe click feedback𝐶𝑡 ∈ {1, ..., 𝐾, 𝐾 + 1}
15: //Update model parameters

16: for 𝑘 = 1, ...,min{𝐾,𝐶𝑡 } do
17: 𝑀𝑡 ← 𝑀𝑡−1 + 𝜎−2𝑥𝑇L(𝑘 )𝑥L(𝑘 )
18: if 𝐶𝑡 == 𝑘 then
19: 𝐵𝑡 ← 𝐵𝑡−1 + F𝑡,𝑘𝑥L(𝑘 )
20: else
21: 𝐵𝑡 ← 𝐵𝑡−1 − 𝛾F𝑡,𝑘𝑥L(𝑘 )
22: end if
23: end for
24: end for

Upon receiving feedback from the user for the recommendation

list L𝑡 (line 14), the agent updates the model parameters (lines 16-

23) based on the user’s feedback. Specifically, if an examined item

is clicked, the parameter 𝐵𝑡 is rewarded; otherwise, it is penalized.

It should be noted that our proposed EACB algorithm involves

several tunable hyperparameters, including 𝛼 for exploration con-

trol, 𝜎 for the growth rate of𝑀𝑡 , 𝜆 for regularization and 𝛾 for the

degree of penalization on unclicked items. Adjusting these hyper-

parameters enables fine-tuning of the algorithm’s performance.

4 Analysis of regret upper-bound
In this section, we present the upper bound of 𝑛-step-regret for our

proposed exposure-aware cascading bandits. Our analysis shows

that with an extra condition (the choice of 𝛾 ), our exposure-aware

cascading bandit has the same upper bound for 𝑛-step-regret as the

original cascading bandits [53] as follows:

Theorem 1. For any 𝜎 > 0, ∥𝜃∗∥
2
≤ 1, and

𝛼 ≥ 1

𝜎

√︄
𝑑 log

(
1 + 𝑛𝐾

𝑑𝜎2

)
+ 2 log (𝑛) +

𝜃∗
2

(11)

𝛾 ≤ 1

F𝑡,𝑘
− 1 , ∀𝑘 ∈ {1, ..., 𝐾} (12)

we have,

𝑅(𝑛) ≤ 2𝛼𝐾

√√√√√√𝑑𝑛 log

[
1 + 𝑛𝐾

𝑑𝜎2

]
log

(
1 + 1

𝜎2

) + 1. (13)
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This theorem implies that for sufficiently optimistic 𝛼 and 𝛾 ,

combining the equations 11, 12, and 13, we have 𝑅(𝑛) = O(𝑑𝐾
√
𝑛)

where O ignores logarithmic factors. This is also the same upper

bound for the original linear cascading bandits [53]. Moreover, this

bound signifies two properties: (1) it states a near optimal bound

with factor

√
𝑛, (2) the bound is linear in the size of the recom-

mendation lists and the number of features, which is a common

dependence in learning bandit algorithms [1].

4.1 Proof of Theorem 1
Let Π(I) = ⋃𝑚

𝑖=1
Π𝑖 (L) be all possible recommendation lists in

the item catalog I and 𝑂 : Π(I) ← [0, 1] be an arbitrary weight

function for the lists. According to the reward model in Eq. 8, the

expected reward of a recommendation list can be computed as:

𝑓 (L,𝑂) = 1 −
𝐾∏
𝑖=1

(
1 − F𝑡,𝑖 ×𝑂 (L(𝑖)) + 𝛾 × F𝑡,𝑖 × (1 −𝑂 (L(𝑖))

)
(14)

For each item inL we define𝑂 , its high probability upper-bound

𝐻𝑡 , and its high probability lower-bound 𝐿𝑡 as:

𝑂 (L(𝑖)) = 𝜃∗𝑥𝑇L(𝑖 )

𝐻𝑡 (L(𝑖)) = Func[0,1]
(

ˆ𝜃𝑡𝑥
𝑇
L(𝑖 ) + 𝛼

√︃
𝑥L(𝑖 )𝑀

−1

𝑡 𝑥𝑇L(𝑖 )

)
𝐿𝑡 (L(𝑖)) = Func[0,1]

(
ˆ𝜃𝑡𝑥

𝑇
L(𝑖 ) − 𝛼

√︃
𝑥L(𝑖 )𝑀

−1

𝑡 𝑥𝑇L(𝑖 )

) (15)

where Func[0,1] (.) = 𝑚𝑎𝑥 (0,𝑚𝑖𝑛(1, 0)), projecting the estimated

value onto range [0, 1]. We also define the following notation:

𝜓X𝑡,𝑖 = F𝑡,𝑖 × X(L(𝑖)), 𝜓 ′X𝑡,𝑖 = F𝑡,𝑖 × (1 − X(L(𝑖)) (16)

where X refers to one of the functions (𝑂 , 𝐻𝑡 , or 𝐿𝑡 ) in Eq. 15. Now,

we start our proof by defining event

E𝑡 = {𝐿𝑡 (L(𝑖)) ≤ 𝑂 (L(𝑖)) ≤ 𝐻𝑡 (L(𝑖)),∀𝑖 ∈ [1, 𝐾],∀L ∈ Π(I)}

and
¯E𝑡 as its complement. E𝑡 contains all the lists that the attraction

probability estimation of its items falls into the upper and lower

confidence bound which is the main ingredient of the UCB item

selection strategy. We derive the regret bound for a single time step

𝑡 and then extend it to the upper bound of cumulative regret of 𝑛

time steps. Hence, we have,

E
[
R(L∗, 𝜔) − R(L𝑡 ,w𝑡 )

]
= E

[
𝑓 (L∗,𝑂) − 𝑓 (L𝑡 ,𝑂)

]
𝑎
≤ 𝑃 (E𝑡 ) E

[
𝑓 (L∗,𝑂) − 𝑓 (L𝑡 ,𝑂)

]
+ 𝑃 ( ¯E𝑡 )

𝑏
≤ 𝑃 (E𝑡 ) E

[
𝑓 (L∗, 𝐻𝑡 ) − 𝑓 (L𝑡 ,𝑂)

]
+ 𝑃 ( ¯E𝑡 )

𝑐
≤ 𝑃 (E𝑡 ) E [𝑓 (L𝑡 , 𝐻𝑡 ) − 𝑓 (L𝑡 ,𝑂)] + 𝑃 ( ¯E𝑡 )

(17)

where (a) holds because E [𝑓 (L∗,𝑂) − 𝑓 (L𝑡 ,𝑂)] ≤ 1; (b) holds

because given the inequality

𝑓 (L∗, 𝐻𝑡 ) ≤ max

L∈∏𝐾 (I)
𝑓 (L, 𝐻𝑡 ) ≤ 𝑓 (L𝑡 , 𝐻𝑡 ) (18)

and event E𝑡 , we have 𝑓 (L∗,𝑂) ≤ 𝑓 (L∗, 𝐻𝑡 ); (c) holds because
𝑓 (L∗, 𝐻𝑡 ) − 𝑓 (L𝑡 ,𝑂) ≤ [𝑓 (L𝑡 , 𝐻𝑡 ) − 𝑓 (L𝑡 ,𝑂)] from Eq. 18.

Let H𝑡 be the history of data collected up to time 𝑡 . Then, for

anyH𝑡 such that E𝑡 holds, together with Eq. 14 and 15, we have,

𝑓 (L𝑡 , 𝐻𝑡 ) − 𝑓 (L𝑡 ,𝑂 ) =
𝐾∏
𝑖=1

(
1 −𝜓𝑂𝑡,𝑖 + (𝛾 ×𝜓 ′𝑂𝑡,𝑖 )

)
−

𝐾∏
𝑖=1

(
1 −𝜓𝐻𝑡,𝑖 + (𝛾 ×𝜓 ′𝐻𝑡,𝑖 )

)
𝑎
=

𝐾∑︁
𝑖=1

[
𝑖−1∏
𝑗=1

(
1 −𝜓𝑂𝑡,𝑗 + (𝛾 ×𝜓 ′𝑂𝑡,𝑗 )

)] (
𝜓𝐻𝑡,𝑖 − (𝛾 ×𝜓 ′𝐻𝑡,𝑖 ) −𝜓𝑂𝑡,𝑖 + (𝛾 ×𝜓 ′𝑂𝑡,𝑖 )

)
[
𝐾∏

𝑘=𝑖+1
(1 −𝜓𝐻

𝑡,𝑘
+ (𝛾 ×𝜓 ′𝐻

𝑡,𝑘
) )
]

𝑏
≤

𝐾∑︁
𝑖=1

[
𝑖−1∏
𝑗=1

(1 −𝜓𝑂𝑡,𝑗 + (𝛾 ×𝜓 ′𝑂𝑡,𝑗 ) )
] (
𝜓𝐻𝑡,𝑖 − (𝛾 ×𝜓 ′𝐻𝑡,𝑖 ) −𝜓𝑂𝑡,𝑖 + (𝛾 ×𝜓 ′𝑂𝑡,𝑖 )

)
where (a) follows Lemma 1 in [53]; and (b) holds because𝜓𝐻

𝑡,𝑘
+𝛾 ×

𝜓 ′𝐻
𝑡,𝑘
≤ 1. Now,we define the eventG𝑡,𝑖 = {item L𝑡 (𝑖) is examined}

where we have E
[
1(G𝑡,𝑖 )

]
=
∏𝑖−1

𝑗=1
(1 −𝜓𝑂

𝑡,𝑗
+ 𝛾 ×𝜓 ′𝑂

𝑡,𝑗
). Then, for

anyH𝑡 under E𝑡 , we have,

E [𝑓 (L𝑡 , 𝐻𝑡 ) − 𝑓 (L𝑡 ,𝑂) | H𝑡 ]

≤
𝐾∑︁
𝑖=1

E
[
1[G𝑡,𝑖 ]

�� H𝑡 ] (𝜓𝐻𝑡,𝑖 − (𝛾 ×𝜓 ′𝐻𝑡,𝑖 ) −𝜓𝐿𝑡,𝑖 + (𝛾 ×𝜓 ′𝐿𝑡,𝑖 ))
𝑎
≤ 2𝛼 E

[
1[G𝑡,𝑖 ]

𝐾∑︁
𝑖=1

[√︃
𝑥L(𝑖 )𝑀

−1

𝑡 𝑥𝑇L(𝑖 )

]
.
[
F𝑡,𝑖 × (1 + 𝛾)

] ����� H𝑡
]

𝑏
≤ 2𝛼 E


𝑚𝑖𝑛{𝐾,𝐶𝑡 }∑︁

𝑖=1

[√︃
𝑥L(𝑖 )𝑀

−1

𝑡 𝑥𝑇L(𝑖 )

]
.
[
F𝑡,𝑖 × (1 + 𝛾)

] ������ H𝑡


where (a) follows the definition of𝐻𝑡 and 𝐿𝑡 from Eq. 15; and (b) fol-

lows the definition of G𝑡,𝑖 . Thus, with 𝜙𝑡,L(𝑖 ) =
√︃
𝑥L(𝑖 )𝑀

−1

𝑡 𝑥𝑇L(𝑖 ) ,

the cumulative regret of 𝑛 rounds can be defined as:

𝑅 (𝑛) =
𝑛∑︁
𝑡=1

E [R (L∗, 𝜔 ) − R (L𝑡 ,w𝑡 ) ]

≤
𝑛∑︁
𝑡=1

2𝛼 E


𝑚𝑖𝑛{𝐾,𝐶𝑡 }∑︁

𝑖=1

𝜙𝑡,L(𝑖 ) × F𝑡,𝑖 × (1 + 𝛾 )

������ E𝑡
 𝑃 (E𝑡 ) + 𝑃 ( ¯E𝑡 )


≤ 2𝛼 E


𝑛∑︁
𝑡=1

𝑚𝑖𝑛{𝐾,𝐶𝑡 }∑︁
𝑖=1

𝜙𝑡,L(𝑖 ) × F𝑡,𝑖 × (1 + 𝛾 )
 +

𝑛∑︁
𝑡=1

𝑃 ( ¯E𝑡 )

(19)

The regret bound can be derived by finding the worst-case bound

on

∑𝑛
𝑡=1

∑𝑚𝑖𝑛{𝐾,𝐶𝑡 }
𝑖=1

[
𝜙𝑡,L(𝑖 ) × F𝑡,𝑖 × (1 + 𝛾)

]
and

∑𝑛
𝑡=1

𝑃 ( ¯E𝑡 ) terms

in Eq. 19. It should be noted that this is the same problem as in the

original cascading bandits in [19, 26, 53] except for the first term

that contains an additional

[
F𝑡,𝑖 × (1 + 𝛾)

]
term. This is the main

advantage of our proposed EACB which guarantees a lower
upper-bound for the n-step-regret compared to CB. The rea-
son is that with a proper choice for the value of 0 < 𝛾 < 1

F𝑡,𝑖 −1,

we have
[
F𝑡,𝑖 × (1 + 𝛾)

]
< 1 which leads to a smaller value for

the first term (compared to CB):

E


𝑛∑︁
𝑡=1

𝑚𝑖𝑛{𝐾,𝐶𝑡 }∑︁
𝑖=1

𝜙𝑡,L(𝑖 ) × F𝑡,𝑖 × (1 + 𝛾)
 ≤ E


𝑛∑︁
𝑡=1

𝑚𝑖𝑛{𝐾,𝐶𝑡 }∑︁
𝑖=1

𝜙𝑡,L(𝑖 )
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where this inequality makes the first term in Eq. 19 similar to CB.

Therefore, according to Lemma 2 in [53], we have,

𝑛∑︁
𝑡=1

𝑚𝑖𝑛{𝐾,𝐶𝑡 }∑︁
𝑖=1

√︃
𝑥L(𝑖 )𝑀

−1

𝑡 𝑥𝑇L(𝑖 ) ≤ 𝐾

√√√√√√𝑑𝑛 log

[
1 + 𝑛𝐾

𝑑𝜎2

]
log

(
1 + 1

𝜎2

) (20)

which is the worst-case bound for the first term in 19. Also, for

the second term in Eq. 19, according to Lemma 3 in [53], we have

𝑃 ( ¯E𝑡 ) ≤ 1/𝑛 for any 𝛼 that satisfies Eq. 11. Therefore, together

with Eq. 20 and 19, we have,

𝑅(𝑛) ≤ 2𝛼𝐾

√√√√√√𝑑𝑇 log

[
1 + 𝑇𝐾

𝑑𝜎2

]
log

(
1 + 1

𝜎2

) + 1. (21)

which proves the Theorem 1.

5 Experiments
Our experimental analysis on real-world datasets is designed to

address the following research questions: (RQ1) What impact does

adjusting the degree of exploration in the original linear cascading

bandit have on exposure bias? (RQ2) Does our exposure-aware cas-
cading bandit algorithm better mitigate the effect of exposure bias

than existing exposure bias mitigation methods? (RQ3) How does

varying the penalization parameter (𝛾 ) influence the performance

of our exposure-aware cascading bandit algorithm?

5.1 Datasets
Our experiments are conducted on two publicly-available datasets:

MovieLens 1M [15] and Yahoo Music
3
. The MovieLens dataset

comprises 6K users who provided 1M ratings for 4K items. On the

other hand, the Yahoo Music dataset contains ratings from 1.8M

users for 136K songs, totaling 700M ratings. In both datasets, ratings

fall within the range of [1, 5].
We follow the data preprocessing approach in [19, 26]. First, we

map the ratings onto a binary scale: rating 4 and 5 are converted to

1 and other ratings to 0. Then, on MovieLens dataset, we create a

sample of the data by extracting the 1000 most active users from the

interaction data. On Yahoo Music dataset, we extract the 1000 most

active users and the 1000 most rated songs from the interaction data.

After this preprocessing, approximately 9% and 1% of the original

ratings are retained for MovieLens and Yahoo Music, respectively.

5.2 Evaluation metrics and baselines
In our experimental evaluation, we investigate the impact of inte-

grating our exposure-aware reward model into the linear cascading

bandit algorithm [53].We compare the performance of this modified

algorithm, termed EALinUCB, with the original linear cascading

bandit algorithm (LinUCB), where our reward model is not em-

ployed. For brevity, we omit the term "Cascade" in the names of the

algorithms. Additionally, we consider three variations of EALinUCB,
each utilizing a different weight function for training, as detailed in

Table 2. We also compare EALinUCB with the following baselines:

3
R2- Yahoo! Music, https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

• Exposure-Aware aRm Selection (EARSLinUCB) [22]: This
method adopts a post-processing approach to improve expo-

sure fairness. It reranks the generated recommendations by

shuffling less relevant items to the bottom of the list, thus

enhancing exposure fairness through randomization.

• Fairness RegretMinimization (FRMLinUCB) [49]: This base-
line addresses exposure bias by formulating the bandit problem

to minimize both reward regret and fairness regret. It assigns

exposure to items proportionally to their merit, thereby pro-

moting exposure fairness. Our implementation of fairness re-

gret is based on the Equity
𝑃
notion, where each item’s exposure

is proportional to its true relevancy score (see Section 5.3).

The key distinction between EARSLinUCB and FRMLinUCB com-

pared to our proposed approach lies in their intervention strategy.

Although these baselines intervene during the recommendation

generation step, our exposure-aware cascading bandit algorithm

intervenes during the reward/penalization step. This allows our

approach to be more generalizable in various cascading bandit

algorithms [19, 26], as its effectiveness is not contingent on the per-

formance of the underlying bandit algorithm. We leave the research

on the generalizability of our EACB as our future work.

To measure the degree of exposure bias in each bandit algorithm,

we utilize four metrics introduced in Section 2.2. Higher values

for these metrics indicate less exposure bias or a fairer exposure

distribution among items. In addition, we evaluate the accuracy of

the model using the following metrics:

• Average number of clicks (𝑐𝑙𝑖𝑐𝑘𝑠): This metric measures the

total number of clicks (#clicks) normalized by the number of

users and number of rounds, providing insight into the model’s

performance in generating relevant recommendations:

𝑐𝑙𝑖𝑐𝑘𝑠 =
#𝑐𝑙𝑖𝑐𝑘𝑠

|U| × 𝑛 (22)

where 0 ≤ 𝑐𝑙𝑖𝑐𝑘𝑠 ≤ 1, 0 signifies no click and 1 indicates that

all users clicked at least on one item at each round which is

more desirable.

• 𝑛-step-regret: This metric measures cumulative regret, the dif-

ference in the observed number of clicks between the optimal

ranker and the online ranker in 𝑛 rounds as defined in Eq. 4. To

ensure fair comparison, we use the original reward model (i.e.,

Eq. 3) for computing the 𝑛-step-regret for all algorithms, even

though EALinUCB employs a different reward model during

the training process (i.e., Eq. 8).

5.3 Simulation and experimental setup
The evaluation of interactive recommendation algorithms is usually

done using off-policy evaluation approaches [50, 52]. However, be-

cause in our problem the action space is too large (i.e. exponential

in 𝐾 ), we utilize a simulated interaction environment for our evalu-

ation where the simulator is built based on offline datasets. This is

the evaluation setup used in similar research involving cascading

bandits [19, 26, 53], which we also follow for our experiments.

We randomly divide the user profiles into training and test sets,

with 50% assigned to each. The training set is used to derive known

variables and generate recommendations for users. The test set is
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(a) #clicks per round (b) 𝑛-step-regret (c) Equality(𝐵) per round

(d) Equality(𝑃 ) per round (e) Equity(𝐵) per round (f) Equity𝑃 per round

Figure 2: The effect of varying the degree of exploration with 𝛼 ∈ {0.25, 0.75, 1, 2, 5} on the performance of LinUCB in terms of
clicks and exposure bias on MovieLens dataset for 𝑑 = 10 and 𝐾 = 10. Left plot shows the average exploration across all users at
each round, exploration is computed using the second term in Eq. 10. Right plots: (a) number of observed clicks in each round,
b) 𝑛-step-regret as in Eq. 4, c-f) fairness metrics computed on accumulated exposure values at each round.

used to model user feedback on recommendations and generate the

optimal recommendation list to evaluate model performance.

To define the merits of the items, we adhere to definitions estab-

lished in the existing literature [5, 28, 39], where the relevancy of

an item to users serves as its merit. To determine this, we employ

a matrix factorization model on the user-item interaction data to

learn the embeddings for users and items. Subsequently, we com-

pute the relevance score between each user-item pair by taking the

dot product of their embeddings. Finally, we compute the average

relevance score across all users for each item, representing its merit.

We performed experiments with different dimensions of item

embeddings 𝑑 ∈ {10, 20} and different recommendation sizes 𝐾 ∈
{5, 10}. We tune each bandit algorithm with varying degrees of

exploration 𝛼 ∈ {0.25, 0.75, 1, 2, 5}. Our EALinUCB involves a hyper-
parameter, the penalization coefficient 𝛾 , for which we performed a

sensitivity analysis with values 𝛾 ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}.
We set the patient parameter 𝛽 involved in the weight functions

to 𝛽 = 0.05 for Linear and 𝛽 = 0.9 for RBP. The experiments were

carried out over 𝑛 = 50, 000 rounds.

6 Results
In this section, we provide evidence and observations from our

experimental results to address our three research questions
4
.

6.1 (RQ1) The effect of exploration degree on
exposure bias in LinUCB

RQ1 explores the relationship between the degree of exploration in

the UCB item selection strategy, controlled by the hyperparameter

𝛼 (Eq. 10), and its impact on exposure bias and performance of

LinUCB. We examine this relationship using experimental results

obtained from the MovieLens dataset for 𝑑 = 10 and 𝐾 = 10.

Figure 2 (left) shows the average degree of exploration among

all users in each round for varying values of 𝛼 . Here, exploration

4
We report partial results in this paper. The full results are available at https://github.

com/masoudmansoury/ealinucb.

refers to the second term in Eq. 10, which is computed for each

recommended item for each user in each round. In particular, the

average exploration value is derived by averaging exploration val-

ues across all recommended items for each user, and then averaging

these values across all users at each round.

Several patterns emerge from Figure 2 (left). Increasing the value

of 𝛼 leads to a higher degree of exploration. Secondly, the degree

of exploration rapidly decreases after several rounds. For example,

with 𝛼 = 2, exploration substantially decreases after approximately

1000 rounds, reaching 0 around 10,000 rounds. This behavior aligns

with the exploration/exploitation trade-off in bandit algorithms

[6, 8]: as the algorithm accumulates more information over time,

exploration decreases and exploitation increases.

Figures 2a-2f depict the performance of on LinUCB’ with varying
𝛼 values. It can be observed that exploration negatively affects

the accuracy of the model. Looking at Figure 2a, lower clicks are

observed for LinUCB with higher 𝛼 values (e.g., 𝛼 = 5) compared

to lower values (e.g., 𝛼 = 1). Furthermore, in Figure 2b, LinUCB
consistently exhibits a better 𝑛 step-regret with lower 𝛼 values (e.g.,

𝛼 = 1) compared to higher values (e.g., 𝛼 = 5).

It is also evident from Figures 2c-2f that only during the explo-

ration phase is exposure fairness improving. However, after the

model stops exploring the item space, the exposure bias does not

decrease any further. Although this is the normal behavior of bandit

algorithms, our aim is to achieve a higher degree of fairness before

the algorithm stops the exploration. In addition, the plots show

that for various values of 𝛼 , the degree to which the exposure bias

decreases is different. Surprisingly, a higher 𝛼 value does not result

in a higher exposure fairness for items. Hence, this confirms the

necessity of an intervention in LinUCB, as its built-in exploration

component does not adequately mitigate exposure bias. These re-

sults are consistent with findings in [32, 35]. Since LinUCB with

𝛼 = 0.25 yields the best performance across all the metrics, for the

rest of the analysis in this paper, we set 𝛼 = 0.25.

1644

https://github.com/masoudmansoury/ealinucb
https://github.com/masoudmansoury/ealinucb


CIKM ’24, October 21–25, 2024, Boise, ID, USA Masoud Mansoury, Bamshad Mobasher, and Herke van Hoof

Table 3: Performance of our EALinUCB with three different weight functions on MovieLens and Yahoo Music datasets for 𝑑 = 10

and 𝐾 = 5. For all metrics, higher value is more desired. † indicates that the result is significant with 𝑝 < 0.01.

Method F
ML Yahoo Music

𝑐𝑙𝑖𝑐𝑘𝑠 Equality
𝐵

Equality
𝑃

Equity
𝐵

Equity
𝑃 𝑐𝑙𝑖𝑐𝑘𝑠 Equality

𝐵
Equality

𝑃
Equity

𝐵
Equity

𝑃

LinUCB - 0.2166 0.329 0.3081 0.0506 0.0476 0.1802 0.3602 0.3316 0.3559 0.3278

EARSLinUCB - 0.2165 0.3257 0.3257 0.0495 0.0495 0.1807 0.3591 0.3591 0.3556 0.3556

FRMLinUCB - 0.2005 0.3334 0.4586 0.0504 0.0505 0.1721 0.3514 0.42 0.3514 0.3501

EALinUCB (ours) Log 0.2105 0.3799 0.524† 0.055 0.0546 0.1772 0.3662 0.5396 0.3599 0.3641
EALinUCB (ours) RBP 0.2166 0.329 0.472 0.0506 0.0515 0.1814 0.365 0.5812 0.358 0.362

EALinUCB (ours) Linear 0.2069 0.392† 0.5142 0.0545 0.0535 0.1706 0.3661 0.5879† 0.3563 0.3582

Table 4: Performance of our EALinUCB with three different weight functions on MovieLens and Yahoo Music datasets for 𝑑 = 10

and 𝐾 = 10. For all metrics, higher value is more desired. † indicates that the result is significant with 𝑝 < 0.01.

Method F
ML Yahoo

𝑐𝑙𝑖𝑐𝑘𝑠 Equality
𝐵

Equality
𝑃

Equity
𝐵

Equity
𝑃 𝑐𝑙𝑖𝑐𝑘𝑠 Equality

𝐵
Equality

𝑃
Equity

𝐵
Equity

𝑃

LinUCB - 0.3722 0.3974 0.3656 0.0555 0.0507 0.3154 0.4469 0.404 0.4429 0.4002

EARSLinUCB - 0.3721 0.3974 0.3848 0.0562 0.0541 0.3157 0.4467 0.4467 0.4429 0.4429

FRMLinUCB - 0.3574 0.4029 0.4157 0.0572 0.055 0.3085 0.4517 0.4596 0.4517 0.4498

EALinUCB (ours) Log 0.3605 0.494 0.514† 0.065† 0.065† 0.3073 0.495† 0.5174 0.485† 0.473†

EALinUCB (ours) RBP 0.3722 0.4074 0.434 0.0555 0.0557 0.3171 0.4489 0.553† 0.4614 0.4585

EALinUCB (ours) Linear 0.3585 0.498† 0.5062 0.0601 0.0604 0.3008 0.4552 0.5312 0.461 0.4542

6.2 (RQ2) Comparison to baselines
To address RQ2, we compare the performance of our EALinUCB
with other baselines using different exposure bias metrics. We set

𝛼 = 0.25 and 𝛾 = 0 for all experiments. Tables 3 and 4 present

the results for 𝑑 = 10 and 𝐾 ∈ {5, 10}. These results indicate

that EALinUCB outperforms other algorithms consistently across

all exposure bias metrics. This improvement is often significant,

demonstrating its effectiveness in mitigating exposure bias. Fig-

ure 3 compares the Equality
(𝑃 )

per round between EALinUCB and

LinUCB for 𝑑 = 10, 𝐾 = 10, 𝛼 = 0.25, and 𝛾 = 0. The plot reveals

that EALinUCB significantly enhances the exposure fairness in the

long run, particularly with logarithmic and linear weight functions.

Improving exposure fairness involves balancing the exposure for

items by downgrading over-exposed items that are often ignored

by users and promoting under-exposed items that are clicked more

often. To examine the ability of EALinUCB to balance exposure com-

pared to LinUCB, we calculate the percentage change in exposure

for each item assigned by EALinUCB compared to LinUCB as:

Δ𝐸 (𝑖) = 𝐸𝐸𝐴𝐿𝑖𝑛𝑈𝐶𝐵 (𝑖) − 𝐸𝐿𝑖𝑛𝑈𝐶𝐵 (𝑖)
𝐸𝐸𝐴𝐿𝑖𝑛𝑈𝐶𝐵 (𝑖 )+𝐸𝐿𝑖𝑛𝑈𝐶𝐵 (𝑖 )

2

× 100 (23)

where 𝐸𝐸𝐴𝐿𝑖𝑛𝑈𝐶𝐵 (𝑖) and 𝐸𝐿𝑖𝑛𝑈𝐶𝐵 (𝑖) are the exposure given to

item 𝑖 by EALinUCB and LinUCB, respectively. Analogously, we
compute the percentage change in 𝑐𝑙𝑖𝑐𝑘𝑠 observed in each element

by EALinUCB and LinUCB. Figure 4 shows how our EALinUCB as-

signs exposure to each item compared to LinUCB for 𝐸 (𝑃 ) exposure
definition. The x-axis displays items sorted by 𝐸 (𝑃 ) by LinUCB in

descending order, the y-axis shows Δ𝐸 (𝑃 ) computed by Eq. 23. The

color bar also shows Δ𝑐𝑙𝑖𝑐𝑘𝑠 .
Figure 4 indicates that EALinUCB promotes under-exposed items

in LinUCB while downgrading over-exposed ones, effectively bal-

ancing exposure for different items. In addition, the red points on

Figure 3: Comparison of LinUCB and EALinUCB with three
weight functions in terms of Equality(𝑃 ) per round for 𝑑 = 10,
𝐾 = 10, 𝛼 = 0.25, and 𝛾 = 0. At each round 𝑡 , Equality(𝑃 ) is
computed over the accumulated exposure up to round 𝑡 .

the upper right indicate that EALinUCB predominantly promotes

relevant items, as most of the promoted items also receive more

clicks. These patterns are consistent across all datasets and weight

functions. Similar patterns are observed for other exposure notions

(reported in this website).

6.3 (RQ3) The impact of varying penalization
degree (𝛾 )

Our exposure-aware reward model, as defined in Eq. 8, involves

a hyperparameter 𝛾 that regulates the extent of penalization for

unclicked items. To explore the sensitivity of EALinUCB to differ-

ent values of 𝛾 , we conducted a sensitivity analysis on the Movie-

Lens dataset for 𝑑 = 10 and 𝐾 = 10, varying 𝛾 within the range

{0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2}. Figure 5 presents the results of
this analysis. Each plot corresponds to a specific exposure bias

metric, with the 𝐶𝑙𝑖𝑐𝑘𝑠 values plotted on the x axis and the met-

ric values on the y-axis. The points on the right side of the plots

represent the results for 𝛾 = 0, while the points on the left show
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(a) MovieLens

(b) Yahoo Music

Figure 4: Exposure analysis of our EALinUCB with three different weight functions for 𝑑 = 10 and 𝐾 = 10. Colorbar shows the
percentage increase/decrease in 𝑐𝑙𝑖𝑐𝑘𝑠. Items are sorted based on their exposure (𝐸 (𝑃 ) ) by LinUCB in descending order from left
to right where items in the left-side are the over-exposure ones and items in the right-side are under-exposed ones.

Figure 5: Performance of our EALinUCB with three different weight functions in terms of 𝑐𝑙𝑖𝑐𝑘𝑠 and fairness metrics for varying
𝛾 ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2} on MovieLens dataset for 𝑑 = 10 and 𝐾 = 10. The cross shows the performance of LinUCB.

the results for 𝛾 = 0.2. The crosses represent the performance of

LinUCB as the base algorithm.

The results show that with a proper choice of 𝛾 value, the penal-

ization term can have a positive impact on mitigating exposure bias.

For example, in all plots corresponding to the exponential weight

function, increasing the value of 𝛾 from 0 to 0.005 leads to improve-

ments in all exposure metrics. However, further increasing the value

of this hyperparameter results in a decrease in performance. When

𝛾 = 0.2, for example, 𝑐𝑙𝑖𝑐𝑘𝑠 approaches 0, indicating deteriorating

performance, along with reductions in exposure metrics, which

means increased exposure bias.

The observed trend can be attributed to the dominance of the

penalization term in the learning process, especially with higher

values of 𝛾 . When 𝛾 is large, the algorithm predominantly learns

negative preferences due to the abundance of unclicked items com-

pared to clicked items. Consequently, the performance of EALinUCB
declines. Hence, careful tuning of this hyperparameter is essential

to optimize the algorithm performance.

7 Conclusion and Future Work
In this paper, we studied the problem of exposure bias in linear

cascading bandits. Although these algorithms partially mitigate

exposure bias during the initial exploration phase, we show their

limitations in balancing item exposure over the recommendation

lifecycle. To improve exposure fairness throughout the recommen-

dation process, we introduced an exposure-aware reward model and
integrated it into the linear cascading bandit. This model lever-

ages user feedback and item position in the recommendation list to

reward clicked items and penalize unclicked ones. Our extensive ex-

periments demonstrated the effectiveness of the proposed exposure-

aware reward model in mitigating exposure bias while preserving

recommendation accuracy. Additionally, we theoretically derived a

gap-free bound on the 𝑛-step-regret for our exposure-aware cas-

cading bandit. In future work, we plan to extend our analysis to

other cascading bandits [19, 26] as well as broader classes of bandit

algorithms like those based on Thompson Sampling.
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