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Abstract. Gadolinium-based contrast agents (GBCAs) have become a
cornerstone in clinical routine for detection, characterization and mon-
itoring of several diseases. Particularly, GBCAs are clinically relevant
for the detection of blood brain barrier (BBB) damage, which is associ-
ated with an aggressive tumor behavior. However, issues such as safety
concerns related to deposition of GBCA in the brain, prolonged acquisi-
tions, and cost increase advocate against its usage. In this work, we pro-
pose a novel approach based on a cascade of deep networks for pre- and
post-contrast parametric mapping and the synthesis of post-contrast T1-
weighted images. Only a pair of pre-contrast weighted images acquired
with conventional pulse sequences are used as inputs; thus, our approach
is GBCAs-free. Results reveal the potential of this approach to obtain
T1w-enhancement information after tumor resection which is compa-
rable with another state-of-the-art prediction approach. We provide not
only the predictions, but also the pre- and post-contrast parametric maps
without the usage of GBCAs.

Keywords: GBCAs · Synthetic MRI · Parametric mapping ·
Gliomas · T1w-enhancement prediction

1 Introduction

Gadolinium-based contrast agents (GBCAs) have become a cornerstone in mag-
netic resonance imaging (MRI) routine for detection, characterization and mon-
itoring of several diseases, such as multiple sclerosis [1], Alzheimer’s disease [2],
and brain tumors [3] among others. Indeed, 40% of all MRI acquisitions in
Europe and in the United States use GBCAs [4]. Specifically, GBCAs are clini-
cally relevant for improving lesion detection and monitoring brain tumors due to
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the signal enhancement visible in the T1-weighted images after the GBCA injec-
tion, which is related with the impairment of the blood brain barrier (BBB) [5].

Although GBCAs are considered safe, 0.7–2.4% of injected patients suffer
from mild adverse reactions and a lower rate from severe complications [6]. Fur-
ther, the possible deposition of the GBCAs in the brain, especially in patients
who have to undergo several follow-up acquisitions, has recently raised safety
concerns [7]. In addition, the usage of GBCAs results in patient discomfort due
to the intravenous injection, extra cost and prolonged acquisition time, being a
bottleneck on daily MRI operation. Thus, making GBCAs unnecessary would
be a highly desirable achievement.

In this context, parametric maps (i.e., T1, T2, and PD maps) could play
a crucial role due to their quantitative nature, which makes them more robust
than weighted images against scanner imperfections [8], as well as their known
ability to detect subtle tumor changes. In particular, previous studies have shown
that enhancing regions present different pre-contrast T1 and T2 values compared
with normal white matter [9,10]. However, the acquisition of parametric maps is
not widespread in the clinical practice due to the need for lengthy relaxometry
acquisitions and/or scarcely available commercial sequences.

In addition, deep learning (DL) has shown remarkable results in a wide
range of image processing applications, such as reconstruction, synthesis, and
parametric mapping [11–13], and it constitutes a valuable tool for avoiding the
usage of GBCAs in MRI exams. Recently, a growing corpus of DL works which
aim at decreasing, or even eliminating, the need of GBCAs in MRI has been
proposed [14–17]. These works propose methods for the synthesis of full-dose
post-contrast weighted images from either low-dose or pre-contrast acquisitions,
using different network architectures. However, to the best of our knowledge,
these methods are focused on obtaining only post-contrast weighted images, and
they leave parametric maps aside.

In this work, we propose a novel approach based on a cascade of deep
networks for pre- and post-contrast parametric mapping and the synthesis of
post-contrast T1-weighted (post-T1w) images. Only a pre-contrast T1-weighted
(T1w) and a T2-weighted (T2w) acquired with conventional pulse sequences
are used as inputs of the cascade. The performance of the synthesized weighted
images for T1w-enhancement prediction after tumor resection is also evaluated
and compared favourably with the state-of-the-art [9].

2 Materials and Methods

2.1 Dataset

A dataset of 15 patients with different grades of gliomas was employed in this
study. All the acquisitions were performed with Institutional Review Board
approval and informed written consent. Acquisitions were performed with a 3T
GE Sigma Premier system (General Electric Medical Systems, Waukesha, WI
53,188 USA). All patients had undergone tumor resection before the scan.
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For each patient, the imaging protocol consisted of four weighted images—
T1w, T2w, T2w-FLAIR (fluid attenuation inversion recovery) and post-T1w—
together with a pre-contrast MAGiC [18] acquisition for T1, T2, and PD
parametric mapping. Details about sequence parameters are provided in the
Appendix. In one patient the T2w-FLAIR was not acquired due to a protocol
deviation.

2.2 Preprocessing

First, all image modalities were reoriented to match the orientation of the stan-
dard MNI152 template [19]. Second, all of them were skull-stripped using HD-
BET [20] and linearly registered to the T1w images using FLIRT of FSL [21].
The pre-processed T1w, T2w, T2w-FLAIR, and post-T1w images were employed
as input of the HD-GLIO segmentation tool [22,23], which performs tumor seg-
mentation in two different regions: (a) contrast-enhancing tumor (T1e), and
(b) non-enhancing T2w/T2w-FLAIR signal abnormality (T2h). Hereinafter, the
union of these two regions is referred to as abnormal tissue (ABN). Finally,
weighted images were normalized by dividing each of them by its average inten-
sity, background excluded, prior to entering the network.

2.3 Proposed Approach: Cascade CNNs

The pipeline we propose (Fig. 1) consists of a cascade of two convolutional neural
networks (CNNs), namely, an extraction network and a prediction network. The
first network extracts the quantitative T1, T2, and PD parametric maps, whose
information is embedded in the weighted images. The second network takes these
T1 and T2 maps and predicts the corresponding post-contrast T1 and T2 maps
(i.e., post-T1 and post-T2). Note that post-contrast refers to as the maps that
would be obtained after the GBCA administration. Both networks share the
same architecture described in [12] except for the number of inputs.

The training of the cascade of CNNs is performed in two steps. First, the
extraction network is trained in a supervised way with MAGiC maps as ground-
truth (step 1 in Fig. 1). The loss function used is defined as:

Lstep1 = ||(T1c − T1gt)||�1 + ||(T2c − T2gt)||�1 + ||(PDc − PDgt)||�1, (1)

where subscript c stands for computed and gt for ground-truth MAGiC maps.
Second, keeping the weights of the extraction network fixed, the prediction

network is trained in a self-supervised way [24] by synthesizing weighted images
from the post-contrast parametric maps (step 2 in Fig. 1). This way, we over-
come the lack of post-contrast parametric maps to train the prediction network
in a supervised way. To ensure that post-contrast maps are numerically and
physically coherent, more than one weighted image should be synthesized. It is
known that GBCAs reduce both T1 and T2 values of tissues, but due to the
considerably longer T1 values compared to T2, their primary impact at low
doses consists of T1 shortheing [5]. For this reason, T2w images can be consider
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virtually invariant to contrast administration [10,25], making them the perfect
candidates to guarantee the coherence of the maps. Thus, we synthesize the
post-T1w and T2w images from the post-T1, post-T2 and PD maps using the
following theoretical equations:

postT1wsyn(x) = PD(x)
1 − 2e− TI

post-T1(x) + e− TR
post-T1(x)

1 + cos(α)e− TR
post-T1(x)

sin(α)e− TE
post-T2(x) (2)

T2wsyn(x) = PD(x)
[
1 − e− TR

post-T1(x)

]
e− TE

post-T2(x) , (3)

where TE is the echo time, TR is the repetition time, TI is the inversion time
and α is the flip angle.

The loss function employed for the training of the prediction network is
intended not only to achieve visual resemblance between the synthesized and
the acquired weighted images but also to capture local characteristics within the
tumor. Consequently, it consists of three terms:

Lstep2 = ||(postT1wsyn − postT1wacq)||�1 + ||(T2wsyn − T2wacq)||�1
+ λ||M � (ΔT1wsyn − ΔT1wacq)||�1, (4)

where postT1wsyn and postT1wacq are the synthesized and acquired post-T1w
images, respectively. Similar distinction is applied to T2wsyn and T2wacq. M
is a binary mask with positive values in the T1e regions within the tumor,
ΔT1wsyn and ΔT1wacq are the GBCA intakes (i.e., postT1wsyn − T1wacq and
postT1wacq−T1wacq, respectively), and � refers to Hadamard product. Finally,
λ is a trade-off parameter to balance the contribution of the local loss. We stress
that the post-T1w images and the masks are only needed at the training stage.

2.4 Implementation Details

Cross-validation was carried out via leave-one-out. For each data split, one
patient was used for testing and the remaining patients were randomly split
between training (11 patients) and early-stopping validation (2 patients). Both
networks share the same patient split with the exception of the patient with-
out the T2w-FLAIR, which was additionally included in the training set for the
extraction network but not for the prediction one.

Transfer learning techniques were employed in both networks. In the extrac-
tion network layers weights were initialized by training with a purely synthetic
dataset [12]. In the prediction network weights were initialized by pretraining
with a larger public dataset [26] of glioblastoma patients with no resection. Only
the decoders were re-trained in the prediction network. Additionally, data aug-
mentation with horizontal flips was included for the training of the prediction
network. Both networks were trained with Adam optimizer (learning rate =
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Fig. 1. Overview of the proposed approach. The cascade of CNNs is composed of an
extraction and a prediction network. In step 2 only the prediction network is trained
and the color of the arrows represents the computations related to each loss term. Loss
term 1 (red arrows) focuses on achieving visual and structural resemblance between the
acquired and synthesized post-T1w, loss term 2 (green arrows) ensures the obtaining of
physical coherent post-contrast parametric maps values, and loss 3 (blue arrows) tries
to capture local characteristics within the tumor. (Color figure online)

1e−4) and early-stopping. Batchsize of 4 (in both networks) and λ=100 were
empirically set. The experiments were conducted on a GPU NVIDIA Quadro
RTX 6000 with 24 GB of memory.

2.5 Evaluation

The impact that the synthesized post-T1w images could have in clinical practice
should be assessed with quantitative algorithms for improving clinical decision-
making.The main role of post-T1w images is assessment of the presence/absence
of tumor T1w-enhancement. In what follows, the segmentations of HD-GLIO
[22,23] when fed with the four acquired weighted images (i.e., pre-contrast T1w,
T2w and T2w-FLAIR as well as post-T1w) is considered the ground-truth. For
the validation of our method, we used the three pre-contrast acquired weighted
images, as well as the synthesized post-T1w to segment T1e and T2h regions
also with HD-GLIO (recall Sect. 2.2 for definitions). The results obtained were
compared with another recently proposed approach for T1w-enhancement pre-
diction without GBCAs [9]. This approach (hereafter referred to as Voxelwise
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MAGiC ) carries out a voxel-wise classification using pre-contrast maps obtained
with MAGiC. In this work, Voxelwise MAGiC was computed with the best met-
ric and threshold reported in [9] for classification problems C-I) ABN vs. normal
tissue, and C-II) T1e vs non T1e. Note that the output of these two classifications
are equivalent to the T1e and T2h segmentations reported by HD-GLIO.

Thus, our evaluation consists in comparing closeness of both our method
Cascade CNNs and Voxelwise MAGiC to the ground-truth. The accuracy of
both segmentations with respect to the ground-truth is separately measured
voxel-wise and lesion-wise as we now describe:

Voxel-Wise Evaluation. We voxel-wise measured the sensitivity and speci-
ficity of classification problems C-I and C-II for both Voxelwise MAGiC and our
method Cascade CNNs.

Lesion-Wise Evaluation. Images that show the presence of T1w-enhancement
in the surroundings of the tumor area, even though the T1w-enhancement they
show does not cover the whole tumor, could be valuable for decision making.
To reflect this idea, we have designed a lesion-wise performance measurement
consisting in: 1) the computation of clusters of voxels whose sizes are larger than
10% of the total volume of T1e in the ground-truth mask; and 2) the computation
of the sensitivity considering a true positive when any of these clusters are, totally
or partially, included within the ground-truth T1e segmentation. This metric is
computed for both the Voxelwise MAGiC and our method Cascade CNNs.

3 Results and Discussion

Figure 2 shows the pre-contrast ground-truth maps and also the pre- and post-
contrast computed maps for different test patients. Interestingly, a shortening in
the post-T1 values can be noticed within the T1w-enhancement region, which is
in agreement with the literature [5,10,25].

Figure 3 shows both the synthesized and the actually acquired post-T1w
images for different test patients. The corresponding ground-truth and syn-
thetic HD-GLIO segmentations are also shown overlaid on the acquired post-
T1w and synthesized post-T1w, respectively. Note that the post-T1w images are
synthesized from the computed post-contrast parametric maps shown in Fig. 2.
The synthesized post-T1w images can be visually compared with their actually
acquired counterparts and visual resemblance is noticeable.

Results of voxel-wise and lesion-wise evaluations are shown in Tables 1 and 2,
respectively. Table 1 shows a superiority of Voxelwise MAGiC in terms of sensi-
tivity, although lower specificity values are reported with this method. As for our
method, we have observed that the enhanced areas in the synthesized images do
not show a by-point coincidence with ground-truth despite these images indeed
show the presence of T1w-enhancement, as required by clinical practice. This
fact can be appraised in the metrics of Table 2 where Cascade CNN achieves
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comparable performance with Voxelwise MAGIC. Cascade CNN, in addition,
provides the post-contrast parametric maps as a byproduct.

This work also presents some limitations. Computed maps show some blur-
ring, especially in the interfaces between tissues. This fact may be caused by mis-
registrations of the input weighted images. Additionally, the comparison of the
computed post-contrast parametric maps with those obtained with other well-
accepted techniques should be performed for a thorough validation. In addition,
a validation with a larger cohort is desirable.

Fig. 2. A representative axial slice of the pre- and post-contrast parametric maps
on different test patients. a) Pre-contrast T1 ground-truth maps. b) Pre-contrast T1
computed maps. c) Post-contrast T1 computed maps. d) Pre-contrast T2 ground-truth
maps. e) Pre-contrast T2 computed maps. f) Post-contrast T2 computed maps. g)
PD ground-truth maps. h) PD computed maps. T1 and T2 values are measured in
seconds [s]. Blue arrows indicates the shortening in the post-T1 values within the T1w-
enhancement region. Note that PD is not affected by the GBCA. (Color figure online)

Table 1. Sensitivity and specificity of the voxel-wise predictions for both classification
problems (i.e., C-I) ABN vs. Normal Tissue and C-II) T1e vs. non T1e) and both
methods—Voxelwise MAGIC and Cascade CNNs —.

Method C-I) ABN vs. Normal Tissue C-II) T1e vs. non T1e
Sensitivity Specificity Sensitivity Specificity

Voxelwise MAGIC 89.35% 93.61% 87.29% 94.95%
Cascade CNNs 77.92% 99.95% 50.20% 99.40%
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Table 2. Sensitivity of the lesion-wise T1w-enhancement prediction for each patient
and both methods. Note that only the patients with T1w-enhancing lesions are con-
sidered. Bold text represents the superiority of the Cascade CNN method, whereas
inferiority is represented with underlined text.

Patient ID 00 01 02 03 04 05 07 08 09 12 13

Voxelwise MAGiC 33% 40% 100% 100% 75% 33% 100% 100% 100% 100% 50%
Cascade CNN 100%50% 100% 50% 50%100% 100% 100% 100% 100% 0%

Fig. 3. A representative axial slice of the synthesized post-T1w images for different test
patients. a) Acquired post-T1w. b) Synthesized post-T1w. c) Ground-truth segmenta-
tion masks of HD-GLIO. d) Corresponding segmentation masks of HD-GLIO using the
synthesized post-T1w instead of the acquired one. Red label represents T2h, whereas
the yellow label represents T1e. (Color figure online)
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4 Conclusion

A novel approach for pre- and post-contrast parametric mapping and the syn-
thesis of post-contrast T1w images is proposed. The computation is based on
a cascade of CNNs and only needs a pair of pre-contrast conventional weighted
image as input; these images turn out to be those customarily used in clinical
practice. Our results suggest the potential of this approach for replacing GBCAs
in T1w-enhancement assessment.
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Cáncer, the Ministerio de Ciencia e Innovación of Spain (grants PID2020-115339RB-
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Appendix

Table 3 includes the sequence parameters used for the acquisition of the different
image modalities, namely, T1w, T2w, T2w-FLAIR, post-T1w, and pre-contrast
MAGiC for T1, T2 and PD parametric mapping.

Table 3. Details about the sequence parameters used for the acquisition of the different
image modalities. These parameters are field-of-view (FOV), echo time (TE), repetition
time (TR), inversion time (TI), and flip angle (α).

Scan parameters T1w T2w T2w-FLAIR post-T1w MAGiC

Acquisition type 3D 2D 3D 3D 2D
Plane Axial Axial Sagittal Axial Axial
Voxel size 1.0× 1.0 mm 0.6× 0.6 mm 1.1× 1.1 mm 1.0× 1.0 mm 1.0x1.0 mm
Slice Thickness 1.0 mm 3.0 mm 1.6 mm 1.0 mm 3.0 mm
Slice Spacing - 3.0 mm - - 3.0 mm
# Slices 352 49 224 352 49
FOV 240× 240 mm 233× 233 mm 246× 246 mm 240× 240 mm 240× 240 mm
TE 3.3 ms 97 ms 89 ms 3.3 ms 6114 ms
TR 7.9 ms 9837ms 5000 ms 7.9 ms 15.7 ms
TI 450 ms - 1588 ms 450 ms 11 ms
α 12◦ 90◦ 90◦ 12◦ 90◦
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