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Tom Lim1
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Abstract—This paper proposes a novel framework that com-
bines both planning and learning-based trajectory generation
methods to handle complex robotic assembly tasks. The frame-
work utilizes MoveIt! for planning large-scale reaching motions
and Dynamic Movement Primitives (DMPs) for precise grasping
and placing movements, with both methods integrated into a
single system controlled by a behavior tree. An impedance
controller is employed to ensure smooth and safe execution of
the generated trajectories, particularly in scenarios that involve
human interaction.

The proposed framework was evaluated within the context
of the European Space Agency-funded Rhizome project, which
focuses on off-earth habitat construction. The project involves
assembling habitats using custom-designed Voronoi-shaped build-
ing blocks, which were also utilized in experiments to test
the framework. The results showed that combining planning
for large-reaching motions with DMPs for detailed movements
effectively addressed the limitations of each individual method,
delivering a flexible and robust solution to the challenges of
robotic assembly.

I. INTRODUCTION

Collaborative robots are the result of significant advance-
ments in robotics. Positioned at the forefront of the fourth
industrial revolution [1], these robots enable companies to inte-
grate the strength and precision of robots with the dexterity and
decision-making capabilities of humans [2]. This collaboration
allows robots to handle complex tasks that are challenging to
fully automate and assists humans in performing physically
demanding or tedious repetitive tasks.

A major advantage of collaborative systems is their flexi-
bility; human-robot collaborations are designed such that they
can share a workspace without the need for rigid safety
systems. This flexibility allows for easier and quicker re-
allocation of robots within production plants. Consequently,
a single robot can perform a variety of tasks [3], making
robotic automation accessible and cost-effective for smaller
companies.

Assembly tasks present one of the most challenging areas to
automate, requiring consideration of both position trajectories
and task dynamics [4]. This complexity makes assembly a
prime candidate for human-robot collaboration [3], [5], [6],
resulting in various implemented methods. The main differ-
ence between these methods lies in the trajectory generation.

For example, trajectories can be generated using planning
algorithms. In [7], the authors employ computer vision to

1Cognitive Robotics, Faculty of Mechanical Engineering, Delft University
of Technology, The Netherlands.

2Robotic Building, Faculty of Architecture, Delft University of Technology,
The Netherlands.

Fig. 1. Photo of the robot executing the assembly task using a DMP-based
approach. The setup is part of the Rhizome 2.0 project, focused on off-earth
habitat construction. The task involves grasping and placing custom-designed,
Voronoi-shaped building blocks, which are used to simulate components for
modular habitat structures.

locate a part and plan a trajectory towards it, positioning the
end-effector near the grasping location. Once positioned, the
human physically guides the more intricate grasping action.
Similarly, authors of [8] use a tablet to indicate the location
of a part after which the robot plans a trajectory towards the
specified part.

Such planning-based approaches can be effectively achieved
using state-of-the-art open-source robotics manipulation plat-
forms, like MoveIt! [9], which generates high-degree of free-
dom trajectories through cluttered environments while avoid-
ing local minimums.

Another widely used approach in robotic assembly is learn-
ing from demonstration (LfD). In robotics, LfD is a method
where robots learn new skills by imitating the actions of an
expert [10]–[14]. A key advantage of LfD is that it makes
robot programming accessible to nonexperts. Through demon-
strations, robots can learn the constraints and requirements of a
task, enabling them to adapt their behavior. This means robots
are not limited to repeating predefined actions in controlled
settings, but can learn to make optimal decisions in more



complex environments. As a result, LfD has the potential to
bring significant benefits to industries like manufacturing [15].

Learning trajectories for tasks such as robotic assembly
is often done via the use of dynamical motion primitives
(DMPs) [14]. DMPs, first stated in [16], represent an elegant
mathematical formulation of the motor primitives as stable
dynamical systems and are well suited to generate motor
commands for artificial systems like robots [4]. This process
usually involves a human that demonstrates a movement, after
which a DMP can be fitted to reproduce the demonstration.

For example, authors of [17] utilize kinesthetic guiding to
demonstrate trajectories for the Cranfield assembly benchmark
[18], after which they encode the position and orientation
trajectories as DMPs. In another example, authors of [19]
recognize that assembly tasks often fail due to unforeseen
situations. In order to resolve this issue they propose a LfD
framework which models exception strategies as DMPs.

Complementary to assembly tasks, disassembly is also
challenging by solely using the demonstrated trajectories [4].
Classical DMPs repel the idea of reversibility because they
have a unique point attractor in the specified goal parameter
of the movement. In order to tackle the disassembly challenge,
authors of [20] propose a method that learns two DMPs from
a single demonstration; one forward and one backward.

Both planning and Learning from Demonstration (LfD)
frameworks have their own advantages. Planning approaches,
which rely on a predefined goal position, are only as effective
as the perception system providing the goal [14]. The inherent
complexity of assembly tasks makes it challenging to fully
automate these processes using planning methods alone. Con-
sequently, as shown in the literature, planning frameworks are
often employed to position the end-effector near a target part,
as specifying such a goal location is relatively straightforward.
Planning methods are preferred where applicable because they
generate optimal trajectories, including the effective control of
the arm’s null-space.

Conversely, LfD methods, particularly DMPs, excel in situ-
ations requiring small, precise movements that are difficult
to define through coding. Their strength lies in the ability
to replicate demonstrated movements, eliminating the need
for sophisticated perception systems or complex program-
ming. Because demonstrations typically involve recording end-
effector data, they have proven to be particularly well suited
for overactuated systems, such as redundant manipulators, for
which kinematic feasibility is relatively easier to achieve [14].
It is worth noting that there are also approaches that do teach
null-space motion [21], however, these approaches require
additional steps beyond the classical DMP framework.

So far we have only discussed trajectory generation methods
used in assembly tasks. However, the execution method of
such trajectories is just as important to consider. Classically
trajectories were executed using (possibly dangerous) position-
controlled rigid robots [22]. However, in the context of human-
robot interaction such methods are inadequate because the
unavoidable modeling errors and uncertainties may cause a
rise of the contact force, ultimately leading to an unstable
behavior during the interaction, especially in the presence of
rigid environments [23].

In the context of safe human-robot interaction, impedance
and the related admittance control, defined by [24], form a
paradigm to treat robotic systems from an energetic point
of view such that motion and force can be controlled in a
unified manner [22]. The impedance has flow (i.e., motion)
input and effort (i.e., force) output, while admittance is the
opposite, having effort input and flow output. This means that
in a physical interaction, one must physically complement the
other. It means if one system is regarded as admittance, the
other must be treated as impedance and vice versa [25].

Especially impedance control has proven effective for ma-
nipulation tasks. The reason being that the fact that the
environment can always accept force input, but sometimes
cannot be moved, admittance is a proper role for environment.
Based on the complementary theory, the manipulator should
be regarded as impedance, allowing it to safely interact with
its environment (i.e. human worker).

To summarize, it can thus be concluded that planning-
based approaches generally excel in scenarios requiring sim-
pler movements, whereas learning-based approaches are more
effective for complex movements. Given that assembly tasks
often require both types of movements, it is beneficial to
consider integrating both planning and learning into a single
framework. However, based on the extensive DMP survey [4],
such a combination has not yet been implemented.

This paper proposes a novel assembly framework that
incorporates both planning and learning trajectory genera-
tion methods in combination with an impedance controller.
The hypothesis is that combining trajectory planning for
large reaching movements with trajectory learning for precise,
small-scale movements will result in an effective assembly
framework. This proposed framework will be tested within the
context of the Rhizome 2.0 project1, which aims to provide a
proof of concept for assembling habitats in empty lava tubes
on Mars using Voronoi-shaped building blocks.

The following sections describe the methods used in the
proposed framework. After which, the experiments conducted
to test the framework are described in the experiments section.
Finally, the results are analyzed and discussed in the discussion
section.

II. METHODS

The aim of this paper is to integrate planning and learning-
based trajectory generation into a unified assembly framework.
Figure 2 provides a system overview with the main software
blocks, signals and apparatus. Assembly tasks can usually be
broken down into two types of movements: the first is moving
the parts between grasping and assembly locations and the
second is the more precise grasping and placing of the parts
themselves. As described in section I, a planning approach is
a suitable option for the first type of movement and a learning
approach suits the second type of movement. For the second,
more precise sub-task, a learning approach based on Dynamic
Movement Primitives (DMPs) is proposed. Both methods are
implemented as ROS packages allowing smooth integration
within a single framework.

1http://cs.roboticbuilding.eu/index.php/Rhizome2
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Fig. 2. System overview depicting core software blocks, signals and appara-
tus. The human operator (blue) interacts with the robot (green) to provide it
with both a set of predefined configurations as well as a demonstration that is
used to create the initial DMP. After the initial setup, the software components
(yellow) provide the robot with commanded torques in a feedback loop. The
behavior tree component manages the use of the MoveIt! and DMP trajectory.

To manage the assembly task at a high level a behavior tree
is utilized. Behavior trees provide a method for describing
a policy for an agent such as a robot. In this context, the
behavior tree mainly coordinates when to use MoveIt! for the
larger movements and when to switch to DMPs for the finer
grasping and placing tasks. This ensures that the appropriate
method is used at the right time during the assembly process.
For a more detailed explanation of behavior trees and their
theoretical foundations, refer to Appendix A.

Trajectory execution will be handled by an impedance
controller. As described in section I, such a controller en-
sures smooth trajectory execution and enhances safety during
human-robot interactions, which is crucial for assembly tasks
involving precise movements and contact with objects.

A custom gripper was designed for physically manipulating
the building blocks. As this design falls outside the primary
scope of this paper, it will not be detailed here. For a
more comprehensive description of the gripper, please refer
to Appendix B.

A. State Management using Behavior Trees

As mentioned, the behavior tree is used to control the task
at a high level. The behavior tree implementation used in this
work is based on the BehaviorTree.CPP library2. This library
is well-maintained, thoroughly documented, written in C++,
and supports ROS integration, making it an ideal choice for
this work.

Figure 3 illustrates the behavior tree utilized in this work.
The tree operates by assigning robot functionalities to various
nodes, within the framework provided by the selected library.
For details regarding the implementation, please refer to the
iiwa bt package in the associated Git repository3. For a more
in-depth, theoretical discussion of behavior trees, refer to
Appendix B.

2https://github.com/BehaviorTree/BehaviorTree.CPP
3https://github.com/TomLim210/thesis
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Fig. 3. Visual representation of the behavior tree used to describe the assembly
task.

B. Trajectory Planning using MoveIt!

MoveIt! will be used for the planning part of the framework.
MoveIt! is an good fit for this framework due to its advanced
motion planning capabilities and ease of implementation. As
one of the most widely used and powerful planning tools in
the robotics community, MoveIt! allows for the generation of
highly efficient trajectories, making it well-suited for tasks
involving large, reaching motions. Given that MoveIt! is
integrated with the Robot Operating System (ROS), makes
for a relatively easy development process.

Another benefit of MoveIt! is its support for custom con-
trollers using the ROS control framework. As mentioned, the
impedance controller used in this work, also has a ROS control
integration on top of it. This allows us to launch MoveIt! using
the specified impedance controller. The benefit of this setup
is that after configuration, MoveIt! will execute any given
commands with the provided impedance controller.

Given that MoveIt! is so widely used, many robotics ma-
nipulators already have existing MoveIt! configurations as part
of their public repository. The KUKA iiwa is no exception
and it also comes with out of the box MoveIt! functionality.
However, the default setup can not be used for much more
than manually showcasing it’s capabilities. In order to use it
in the proposed framework, custom code was implemented via
the MoveIt! API (Application programming interface) which
allows users to access MoveIt! functionalities via Python or
C++ code.

Going back to the proposed framework, MoveIt! will be
responsible to generate trajectories between known configura-
tions. The first objective is thus to create a method for storing
those configurations. The second objective is to provide the
user with an interface that allows them to command the robot
to move into these configurations. These functionalities are
located in the iiwa planning package in the associated Git
repository3

A python script starts a ROS node and allows the user to
store different robot configurations in a yaml file. After moving
the robot into a desired configuration, the user enters a name
for that configuration and the node checks if there already
exists a configuration with that name and if so, overwrites it
and if not adds a new configuration to the list.

The same package also provides a ROS node,
iiwa planning node, that provides the user with an interface



to select a configuration. After the user has entered a valid
configuration name, the node uses the MoveIt! API to
command the robot accordingly.

C. Dynamical Movement Primitives

As outlined in the literature, Dynamical Movement Prim-
itives (DMPs) are one of the most commonly used methods
for learning trajectories [14]. They are especially effective for
tasks that are difficult to program manually or require frequent
adaptation, making them an ideal solution for handling the in-
tricate grasping and placing movements involved in assembly
tasks.

The basic concept behind dynamical movement primitives
(DMPs) is to model movement as a combination of dynam-
ical systems. The state variables of these systems represent
trajectories for controlling elements such as the 7 joints of a
robot arm or the position and orientation of its end-effector.
The goal of the movement is captured by an attractor state,
which is the endpoint of the trajectory.

One of the main benefits of DMPs is that they retain
the desirable features of linear dynamical systems, such as
guaranteed convergence to the goal, robustness against dis-
turbances, and independence from time. At the same time,
DMPs can represent more complex and smooth movements
by introducing a non-linear forcing term. This forcing term
is typically learned from demonstrations and can be further
refined using reinforcement learning.

The DMPs notation follows that of a spring-damper model,
as shown in [26] they can be described as:

τ ÿ = α(β(g − y)− ẏ) + f, (1)

which has first-order notation:

τ ż = αz(βz(g − y)− z) + f, (2)
τ ẏ = z, (3)

where τ is a time constant and αz and βz are positive con-
stants. If the forcing term f = 0, these equations represent a
globally stable second-order linear system with (z, y) = (0, g)
as a unique point attractor. With appropriate values of αz

and βz , the system can be made critically damped (with
βz = αz/4) in order for y to monotonically converge toward
g [26].

Since the goal is to replicate a demonstrated trajectory,
the forcing term is non-zero. This makes that it is no longer
guaranteed that the system will converge towards the goal state
g. In order to solve this, a gating term is added to the forcing
function, which is 1 at the beginning of the movement and
0 at the end. Authors of [27] suggest to use an exponential
system to formulate the gating system.

While solving the converging issue, adding the gating term
makes the forcing function depended on time. When the
system depends on time, the movement is tied to a fixed
timeline, making it less adaptable to variations. For example,
if the movement needs to be executed faster or slower, a
time-dependent system would require significant adjustments
to maintain the quality of the motion.

By making the system autonomous, the movement’s pro-
gression is determined by the internal state of a dynamical
system, often referred to as the phase variable. This phase
variable governs the progression of the movement from start
to finish, regardless of how fast or slow the movement needs
to be. Authors of [27] suggested to use the same dynamical
system for the gating and phase. Thus the phase of the
movement starts at 1, and converges to 0 towards the end
of the movement, just like the gating system. This allows
the same motion to be scaled in time without altering the
underlying dynamics, making the system more adaptable to
different conditions.

1) ROS Implementation: Given the DMPs popularity, there
are many public repositories that implement them. However, to
the best of our knowledge, there is not one that has integrated
DMPs with ROS. In order to solve this, another ROS package
is created that is basically a ROS wrapper around the DMP
repository described in [28].

This repository implements DMPs as described in section
II-C based on the work [26]. Besides providing a method for
implementing DMPs, the authors also provide a framework to
optimize the DMP for a given task. Their workflow, which is
adopted in this work is as follows:

1) Train the DMP with a demonstration.
2) Define the task and implement executing DMPs on the

robot.
3) Tune the exploration noise for the optimization.
4) Prepare the optimization.
5) Run the optimization update-per-update.

a) Executing the DMPs.
b) Update the distribution.
c) Plotting intermediate results.

Important to note is that the first step consists of learning the
forcing function. The optimization itself refers to further fine
tuning the weights of the DMP based on a secondary defined
task. During the execution of a given DMP, a cost variables
file is created which is used to asses the performance of that
iteration. The reason for this extra optimization is that an initial
human demonstration might not be the optimal solution, in fact
it most likely is not. Instead the demonstration provides the
robot with a solid starting point which immediately points the
robot towards the optimal solution, thus saving a lot of time.

Integrating this into ROS meant creating a method for
recording and saving trajectories and a method for executing
DMP iterations. The rest of the process can be done offline
and thus does not require changing. As for recording the
demonstrated trajectories it is important to consider what data
to record. For a robotic manipulator this usually comes down
to either recording the end-effector states or the joint states.

In our case, the demonstrations are done via kinesthetic
guiding of the end-effector. During such demonstrations the
individual joints simply follow the end-effector, in other words
they are not actively controlled. Therefore a recording in joint
space might cause the resulting DMP to try to reproduce cer-
tain joint configurations that are not intended at all. It is more
logical to record in the end-effector space. Another reason
for recording end-effector data is that the used impedance



controller provides functionality to control the end-effector
state, making it more straightforward to execute DMPs that
generate trajectories in this same end-effector space.

For the execution of the DMPs, a straightforward ROS node
is implemented. This node integrates a given DMP within a
feedback loop, using robot state information to generate the
desired state, which is then directly published to the ROS-
integrated impedance controller.

D. Impedance Control

As mentioned, an impedance controller is essential for
ensuring safe human-robot interaction. This control mecha-
nism works by simulating a virtual spring between the end-
effector and the reference position, effectively creating a
spring-damper-mass system. The behavior of this system can
be described by the following equation:

Fext = K(xr − x)−Dẋ, (4)

where Fext represents the force applied to move the end-
effector towards the reference position, K is the spring
stiffness, xr and x are the reference and actual positions,
respectively, and D is the damping term that stabilizes the
system.

The impedance controller used in this paper is described in
[29]. From their Git repository: ”The controller is developed
using the seven degree-of-freedom (DoF) robot arm LBR iiwa
by KUKA AG .... This controller is used and tested with ROS
1 melodic and noetic. ... a ROS control integration on top of
it.”

These properties in combination with clear documentation
make it relatively straightforward to use the same setup for
executing both MoveIt!- and DMP-generated trajectories.

III. EXPERIMENTS & ANALYSIS

This section details experiments conducted to assess the
proposed framework. Initial experiments evaluate the plan-
ning and learning methods independently in assembly tasks,
emphasizing their respective limitations. The final experiment
then demonstrates the complete framework, showcasing how
combining both methods addresses these limitations. All ex-
periments are performed using both KUKA iiwa 7 and iiwa
14 robots equipped with a custom 3D-printed gripper.

These experiments are designed within the context of the
Rhizome 2.0 project, aimed at developing methods for robotic
habitat construction on Mars. Given the project’s focus on
efficiency and resource constraints, the experiments evaluate
the proposed framework’s ability to handle assembly tasks
effectively in a simulated remote environment.

A. Planning-Based Trajectory Generation

This experiment aims to evaluate the planning framework’s
effectiveness in quickly positioning the robot’s end effector
near grasping and assembly points, while identifying limita-
tions in handling complex orientation requirements which are
essential for precise assembly tasks. The hypothesis is that
the planning framework can achieve efficient and accurate

movements to predefined configurations but may struggle with
orientation adjustments when provided with simplified goal
data.

To examine this, the experiment will first involve setting
the robot in gravity compensation mode, enabling manual
placement in two key configurations: “grasp” and “assembly.”
These configurations will be defined to match exact positions
and orientations necessary to pick up and place blocks located
at known positions. After defining and storing these configu-
rations, the planning framework will be used to command the
robot to move between them. The initial trajectory will be
recorded to showcase the planning framework’s accuracy in
reaching stored configurations with minimal error, even over
multiple executions.

To simulate a more limited perception system, an offset
“perceived goal” will then be provided, which includes only
x, y, and z coordinates, excluding orientation data. This choice
of a simple perception model reflects the resource limitations
common in many real-world applications, where high-end,
orientation-detecting perception systems may not be feasible.
Particularly in the context of this paper, which involves the
Rhizome 2.0 project and the goal of building habitats on Mars,
minimizing equipment requirements is crucial. With fewer
resources required, the system could be more resilient and
practical in such a remote, resource-constrained environment.

This setup will allow us to observe how the end-effector
orientation deviates from the exact “grasp” and “assembly”
configurations. The hypothesis is that the end effector will
reach the desired position but not the correct orientation, thus
highlighting a key limitation in using only a planning-based
framework with limited perception systems for assembly.

The main metrics for this experiment are the ability to
handle goal variations and the efficiency of setup. Specifically,
we will measure the deviation in end-effector orientation when
the robot is provided with an offset goal compared to the
original configuration, as well as the time required to set
up the planning framework. These metrics will help evaluate
how well the planning approach can achieve accurate position-
ing under simplified perception constraints and highlight any
limitations in assembly tasks that lack advanced orientation
detection capabilities.

B. DMP-Based Trajectory Generation and Optimization

This experiment evaluates the effectiveness of Dynamic
Movement Primitives (DMPs) in performing a full assembly
movement, which includes both precise orientation for grasp-
ing and larger, reaching motions between grasp and assembly
points. The hypothesis is that, while DMPs can accurately
replicate demonstrated movements, setting up a DMP for a
complex, large-scale assembly task will be cumbersome and
time-intensive due to the challenge of demonstrating an entire
assembly motion manually. Given the extensive workspace,
initial demonstrations may include unintended deviations and
oscillations.

The experiment begins by placing the robot in gravity
compensation mode, which allows for kinesthetic guidance
of the end-effector. A complex movement that encompasses



both grasping and placing actions will be demonstrated and
recorded, providing a baseline trajectory for the DMP. The
number of basis functions for the DMP will be tuned to
achieve a balance between accuracy and computational effi-
ciency, and the trained DMP will be saved as the initial model
for evaluation.

The primary metrics for this experiment are the DMP’s
ability to adapt to variations in goal positions and the ease
of setup. To evaluate adaptability, a “perceived goal” will be
introduced as a new target, simulating a perception system
capable of specifying an approximate position but lacking pre-
cise orientation data. It is expected that the DMP will adjust its
trajectory to accommodate the new goal while maintaining the
learned orientation from the original demonstration. This test
will reveal whether the DMP framework can handle position
variations effectively, addressing a key challenge identified in
the planning-based experiment.

In terms of expected results, the system should show ro-
bustness by maintaining proper end-effector orientation even
when adapting to altered goal positions. The experiment will
highlight how well the learning-based method can handle goal
variations and provide insight into the overall efficiency of
setting up the DMP framework.

C. Framework Demonstration in Rhizome 2.0 project
The purpose of this experiment is to demonstrate the in-

tegrated functionality of both the planning and DMP-based
trajectory generation frameworks in the context of an assembly
task. The hypothesis is that combining planning for large-scale
motions with DMP for fine, precise manipulation will result
in a flexible and effective framework that uses the strengths
of both the planning and learning frameworks to address each
others limitations.

Two key functionalities will be demonstrated. First, the hy-
brid trajectory generation will show how planning is used for
large-reaching motions, while the DMP framework is applied
to handle the precise grasping and placing movements. Second,
the completion of the assembly task will validate the system’s
ability to execute both types of movements seamlessly in a
single workflow.

The experiment protocol involves equipping the KUKA iiwa
arm with the custom designed gripper and storing the re-
quired configurations for the assembly task using the planning
framework. A demonstration of the grasping and placing tasks
will then be recorded using the learning framework. Once
both configurations are set, the behavior tree will execute
the task in several stages: it will first use planning to move
into the grasping position, then use the DMP to perform the
actual grasp. Afterward, the robot will move the block to the
assembly position using planning, and finally, the DMP will
control the precise placement of the block. This sequence will
be repeated multiple times to evaluate repeatability.

To evaluate the complete system, the experiment will focus
on assessing how the integrated framework addresses scenarios
that highlight the limitations of using planning and learning
methods independently. Specifically, the system will be tested
for its ability to adapt to variations in goal positions, ad-
dressing a known constraint in planning-only approaches that

require precise goal definitions and orientations. Additionally,
the setup time and complexity of large demonstrations, chal-
lenges often associated with learning-based methods, will be
examined. By observing the system’s performance under these
conditions, we aim to confirm that the combined approach
mitigates these individual limitations, providing a more robust
and adaptable solution for complex assembly tasks.

D. Analysis

This section presents the analysis of the planning and
learning methods for robotic assembly, focusing on the main
metrics: the ability to handle goal variations and the time
required for setup.

The planning framework was efficient in setting up pre-
defined grasping and assembly configurations, requiring only
around five minutes to establish endpoint positions. This min-
imal setup time highlights the ease and convenience of using
a planning-based approach for large-scale, reaching motions.
However, the framework struggled with goal variations that
lacked orientation data. When presented with altered goal po-
sitions that only included x, y, and z coordinates, the planning
method accurately reached the designated position but failed to
achieve the necessary orientation. This limitation emphasizes
the framework’s dependence on advanced perception systems
to ensure precise end-effector orientation.

In contrast, the learning-based approach, using Dynamic
Movement Primitives (DMPs), showed a strong ability to
adapt to variations in goal positions. The DMP framework
maintained the correct end-effector orientation even when
the goal position was modified, demonstrating its robustness
and flexibility in handling positional offsets. However, this
adaptability came at the cost of a more time-consuming
and labor-intensive setup process. Manually demonstrating
and recording complex assembly movements, especially those
spanning a large workspace, proved to be inconvenient and
physically demanding, requiring significant effort to ensure
accurate trajectories.

The final experiment evaluated the integrated framework,
combining both planning and learning methods using a behav-
ior tree. This hybrid approach successfully addressed the lim-
itations observed when each method was used independently.
The planning framework managed large, reaching motions effi-
ciently, while the DMPs handled the intricate grasping and as-
sembly tasks with precise orientation control. The integration
allowed for seamless transitions between methods, resulting
in a robust assembly process that did not require advanced
perception systems. The combined approach demonstrated the
benefits of leveraging the strengths of both methods to achieve
efficient and adaptable robotic assembly.

1) Dealing with Goal Variations: The ability to adjust to
changes in goal positions is crucial for assembly tasks, espe-
cially in environments where resources for advanced percep-
tion systems are limited. The planning framework performed
well when tasked with moving the end-effector to predefined
configurations, as it efficiently reached target positions with
minimal error. However, a limitation emerged when goal
variations were introduced. As shown in Figure 4, the planning



Fig. 4. Images of the robot in the original demonstrated grasp configuration
(left) and in a configuration with the goal position modified by an offset of
16 cm along the x-axis (right) and no orientation data.
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Fig. 5. End-effector trajectory when moving to the original grasp configura-
tion and to the configuration with a 16 cm offset along the x-axis. Red arrows
indicate the end-effector orientation at the end of each movement.

approach could not properly handle changes to the goal’s
orientation when only x, y, and z coordinates were provided.
The end-effector maintained a default upright orientation,
demonstrating the method’s dependency on having complete
orientation data for accurate performance. Figure 5 makes
this dependency even more clear by plotting the end-effector
orientation at the end of a trajectory.

Although one might suggest augmenting the planning ap-
proach by extracting end-effector orientation from an initial
configuration, it’s important to note that the stored configu-
rations in this framework are managed in joint space. This
is intentional, as controlling the robot’s null space during
configuration storage ensures smooth transitions between pre-
set configurations and allows operators to manage these transi-
tions more effectively. The planning method benefits from this
setup for large-scale, efficient movements but struggles with
orientation control in scenarios lacking precise perception data.

In contrast, the learning-based approach, using Dynamic
Movement Primitives (DMPs), excelled in adapting to goal
variations. As shown in Figure 6, when presented with a new
“perceived” goal with a 40 cm offset, the DMPs preserved
the correct end-effector orientation. The DMP framework
proved capable of maintaining learned orientation details while
adjusting to positional changes, making it more adaptable
and flexible than planning methods for tasks requiring pre-
cise orientation. Figure 7 further illustrates this adaptability,

Fig. 6. End-effector configurations at the goal with the original demonstration
goal (left) and the x-offset “perceived” goal (right), showing maintained
orientation.
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Fig. 7. Comparison of end-effector trajectories for the original and x-offset
goals, with red arrows indicating consistent orientation across both trajectories.

highlighting the consistency of end-effector orientation even
when goal positions were modified.

2) Ease of Setup: The ease and speed of setup are critical
in resource-constrained environments, where minimizing time
and effort is essential. The planning framework demonstrated
significant advantages in this regard. Setting up the system
with pre-set “grasp” and “assembly” configurations took only
about five minutes. This simplicity comes from the fact that
only endpoint positions need to be defined; MoveIt! then
calculates the trajectories automatically, making it efficient for
large-scale movements. Figure 8 illustrates the trajectories into
these pre-set configurations, with the end-effector orientations
appropriately oriented for grasping on one side and assembly
on the other. This setup efficiency is particularly valuable in
off-earth scenarios, where astronauts may have limited time
and need to minimize exposure outside safe habitats.

On the other hand, the learning framework posed significant
challenges during setup. Demonstrating and recording the en-
tire assembly movement required manual kinesthetic guidance,
which forced the operator into awkward and non-ergonomic
positions to control all seven joints of the robot. As depicted
in Figure 9, this process was both physically demanding and
prone to inconsistencies, even after five repeated attempts. The
full setup for DMPs averaged around 20 minutes, highlighting
the method’s time-consuming nature. Although the learning
framework can generalize from a noisy demonstration, Figure
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Fig. 9. Images capturing some of the awkward operator positions during the
DMP demonstration process.

10 illustrates the noticeable differences between the original
demonstration and the learned DMP trajectory. This deviation
is problematic, as the DMP should closely replicate the
demonstration, particularly at critical points like grasping or
assembly. Moreover, the DMP does not inherently account for
workspace or joint limits, meaning that if the learned trajectory
diverges too much from the original demonstration, it could
result in joint limit errors, even if the initial demonstration
adhered to those constraints.

3) Sub-Conclusion: In summary, the comparison between
planning and learning frameworks reveals a clear trade-off be-
tween setup efficiency and adaptability. The planning method
offers quick and straightforward setup for large, reaching
movements but struggles with goal variations, particularly in
orientation. In contrast, the DMP-based learning approach,
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Fig. 10. Initial demonstration trajectory vs. the smoothed initial DMP
trajectory after fitting.

while more time-consuming to set up, provides the flexibility
needed to adapt to positional changes without losing precision
in orientation. This analysis highlights the complementary
nature of these methods, which justifies the need for an
integrated approach in scenarios requiring both efficient setup
and adaptability.

4) Framework Demonstration: The last experiment in-
volved testing the complete framework in the context of
the Rhizome 2.0 project, more specifically the assembly of
the Vonroi-shaped building blocks. The first steps involved
configuring both the planning and learning frameworks similar
to the previously described experiments. After configuration
the behavior tree is used to execute the complete assembly
task. It must be noted that due to the current limitations of
the used gripper, a human operator was needed to actuate the
gripper during grasping and placing.

Figure 11 shows the complete assembly process, starting
with the robot grasping a block on its left side, followed
by moving into the assembly configuration. At that point the
assembly DMP is executed to perform the final step of the
process. For a video of the complete assembly please refer to:
https://youtu.be/XIbV7j7TgrY.

Figure 12 illustrates the 3D end-effector trajectory during
the execution of the complete assembly task. The red-marked
path represents the movement generated by the planning
framework. A primary limitation of using the planning frame-
work alone is that it requires an advanced perception system to
manage changing goal positions effectively. In this integrated
setup, however, the planning framework only needs two pre-
set configurations, ’grasp’ and ’assembly,’ which are used
as starting points for the learning framework. By keeping
these configurations constant, the robot can efficiently and
accurately navigate between them from any initial position,
leveraging the strengths of the planning approach. The initial
part of the trajectory in Figure 12 demonstrates the robot
moving into its starting configuration from an upright position.

For the finer grasping and assembly tasks, the learning
framework was implemented. In Figure 12, these movements
are marked by yellow trajectories. The main limitation with
the learning framework is that demonstrating and fitting DMPs
to large reaching movements can be cumbersome and time-
consuming. In this combined approach, however, the learning
framework only manages two small complex motions: grasp-
ing and assembly.

Figure 13 further highlights the difference between demon-
strating the full assembly movement and only the grasping
motion. By focusing the learning framework on these specific
actions, demonstrations became more ergonomic and efficient,
reducing the time required. Additionally, this approach pre-
served the benefits of the learning framework’s adaptability to
goal variations, making the combined framework particularly
robust.

Overall, the experiment proceeded smoothly, with no signifi-
cant issues observed. Both the planning and learning methods
were executed sequentially using the same impedance con-
troller without conflicts, and the system demonstrated robust-
ness in handling variations in starting positions without per-
formance degradation. Consequently, the complete framework



Fig. 11. Figures showing the different stages of the assembly task. Grasping is done on the left and assembly is done on the right. For a video of the complete
assembly please refer to https://youtu.be/XIbV7j7TgrY.

Fig. 12. 3D end-effector position during the execution of the complete
assembly task starting in an upright position. Red marked trajectory is
executed using the planning framework and yellow marked trajectory is the
result of the learning framework.
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Fig. 13. Comparison between demonstrations of the complete assembly
movement and a focused grasping motion.

successfully carried out the entire assembly task, underscoring
its effectiveness in this complex scenario.

The key takeaway is that by combining planning and learn-
ing frameworks, the strengths of each approach compensate for
the limitations of the other. The planning framework efficiently
handles large, reaching motions, which would be challeng-
ing to set up with learning-based methods. Meanwhile, the
learning framework addresses intricate grasping and assembly
tasks, which would otherwise require an advanced perception
system if only the planning approach were used.

IV. DISCUSSION

The experiments demonstrated that the proposed framework,
combining planning and learning-based trajectory generation,
was capable of successfully performing a complex assembly
task. One of the key challenges discussed in robotic assembly
is the need to address both large-scale movements and fine,
precise motions. The integration of planning for larger reach-
ing motions and learning-based methods for more intricate
tasks provided a flexible solution. The planning framework
handled the large motions well, producing smooth and repeat-
able trajectories.

The learning-based component of the framework, specif-
ically Dynamical Movement Primitives (DMPs), performed
effectively in replicating precise grasping and placing move-
ments. This approach demonstrated the ability of learning-
based systems to adapt to complex tasks without the need
for extensive programming. However, optimizing the DMPs
to minimize acceleration did not result in significant change
beyond the initial demonstration, suggesting that optimization
might not be necessary for movements in which the main goal
is simply achieving the goal configuration. While the learning
approach worked well for detailed motions, future work could
explore whether incorporating additional optimization param-
eters would result in further improvements.

Another challenge encountered was the performance of the
custom gripper. While it functioned adequately during the
experiments, there were moments when the blocks shifted
during transportation, which affected the accuracy of the
assembly. This suggests that task-specific hardware, such as
grippers, plays a critical role in the overall performance of
robotic assembly tasks. Improving the design of the gripper
or incorporating additional control measures could enhance
reliability in future applications.

A key factor in the framework’s success was the use of
the impedance controller, which enabled smooth trajectory
execution and safe human-robot interaction. This flexibility
allowed for manual adjustments, especially important with the
custom gripper, which required manual actuation during the
assembly process. The ability to interact safely with the robot
while maintaining precise control of the task proved to be an
essential aspect of this framework, particularly in the context
of human-robot collaboration.

A broader question arises as to whether combining planning
and learning truly provides a significant advantage over using



either method alone. While this integrated framework allowed
for flexible handling of both large and small-scale motions,
it is worth considering if the added complexity of a hybrid
approach is always justified. In this work, the combination
was essential to address specific limitations of each method
within the given scenario. However, in contexts where these
limitations are less pronounced, relying on just one of the
frameworks may prove sufficient and more efficient.

Looking forward, a key improvement to consider is imple-
menting the framework on a mobile manipulator. In scenarios
where objects need to be transported between locations, such
as in the Rhizome 2.0 project, mobility is essential for the
system to function autonomously. A mobile platform would
enable the robot to navigate its environment and perform
tasks without human intervention, making the framework more
applicable to real-world scenarios where flexibility and move-
ment are required. This addition would significantly enhance
the capabilities of the system and broaden its applicability in
dynamic environments.

V. CONCLUSION

This paper presented a novel assembly framework that inte-
grates both planning and learning-based trajectory generation
methods to handle complex assembly tasks. The planning
approach, utilizing MoveIt!, was employed for large-scale
movements between predefined locations, while Dynamic
Movement Primitives (DMPs) were applied to manage fine,
precise movements such as grasping and placing. The entire
system was controlled by a behavior tree and executed using
an impedance controller to ensure smooth and safe robot
operation, particularly during manual interventions.

Through a series of experiments, the framework was eval-
uated in terms of its ability to perform an assembly task
involving the manipulation of custom Voronoi-shaped building
blocks. The results demonstrated that both the planning and
learning methods functioned effectively in their respective
roles, with the impedance controller proving essential in ensur-
ing safe operation and adaptability. The combination of plan-
ning for large movements and learning for fine manipulation
allowed the system to handle the full assembly process without
errors, confirming the validity of the proposed approach.

In answering the research question, this work demonstrates
that the integration of planning and learning into a single
framework offers a flexible and efficient method for handling
complex assembly tasks. The hybrid approach, while poten-
tially more complex than using either planning or learning
alone, provided notable advantages in terms of adaptability
to different sub-tasks. However, further exploration could be
conducted to determine the specific contexts in which this
combination significantly outperforms single-method systems.

Future work could improve the framework’s versatility
by incorporating a perception system to dynamically detect
goal positions, thus reducing the need for manual configura-
tion. Additionally, implementing the framework on a mobile
manipulator would enhance its applicability, particularly in
scenarios such as the Rhizome 2.0 project, where parts must
be moved between different locations. Overall, the proposed

framework has shown promise as an efficient and adaptable
solution for robotic assembly tasks in both static and dynamic
environments.
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A
Appendix - Behavior Trees

This information is based on the work [1], which is an extensive survey of behavior trees in robotics.

A BT is a directed tree where we apply the standard meanings of root, child, parent, and leaf nodes.
The leaf nodes are called execution nodes and the non-leaf nodes are called control flow nodes.

The execution of a BT starts from the root node, that generates signals called Ticks with a given fre-
quency. These signals enable the execution of a node and are then propagated to one or several of
the children of the ticked node. A node is executed if, and only if, it receives Ticks. The child immedi-
ately returns Running to the parent, if its execution is under way, Success if it has achieved its goal, or
Failure otherwise.

Sequences are used when some actions, or condition checks, are meant to be carried out in sequence,
and when the success of one action is needed for the execution of the next. The Sequence node routes
the ticks to its children from the left until it finds a child that returns either Failure or Running, then it
returns Failure or Running accordingly to its own parent. It returns Success if and only if all its children
return Success.

Fallbacks are used when a set of actions represent alternative ways of achieving a similar goal. Thus,
the Fallback node routes the ticks to its children from the left until it finds a child that returns either
Success or Running, then it returns Success or Running accordingly to its own parent. It returns Failure
if and only if all its children return Failure.

Parallel nodes tick all the children simultaneously. Then, if out of the children return Success, then
so does the parallel node. If more than return Failure, thus rendering success impossible, it returns
Failure. If none of the conditions above are met, it returns running.

Action nodes typically execute a command when receiving ticks, such as e.g. moving the agent. If
the action is successfully completed, it returns Success, and if the action has failed, it returns Failure.
While the action is ongoing it returns Running.

Condition nodes check a proposition upon receiving ticks. It returns Success or Failure depending on
if the proposition holds or not. Note that a Condition node never returns a status of Running. Conditions
are thus technically a subset of the Actions, but are given a separate category and graphical symbol to
improve readability of the BT and emphasize the fact that they never return running and do not change
the world or any internal states/variables of the BT.
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B
Appendix - Custom Gripper

To accommodate the unique shape of the building blocks used for demonstrating the assembly capa-
bilities of the framework, a custom gripper was designed. Since the focus of this work lies more in the
development of the robotics framework rather than the gripper design, a fixed amount of time was allo-
cated for its development. Although the gripper could benefit from further improvements, it functioned
adequately for the purposes of the current experiments.

The gripper consists of a main body and three separate fingers. The main body is designed to be
mounted onto the end plate of the KUKA iiwa robots. Two static fingers are press-fitted into the main
body, while the third finger is movable, sliding within a dovetail channel. Due to the time constraints,
the gripper was manually actuated.

Figure B.1 provides a close-up view of the designed gripper on the left. The holes in the body allow
access to the mounting screws. The movable finger is attached to the static fingers using elastic bands
to apply sufficient pressure when holding the building blocks. A foam layer is added to the fingers to
increase the contact area, ensuring a more secure grip.

On the right, the figure shows the gripper holding a Voronoi-shaped block in a horizontal position. This
position was the most stable, although the gripper was also able to hold the blocks vertically, occasional
slipping occurred in this position.

Figure B.1: Closeups of the gripper.
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C
Appendix - DMP Setup

The implementation of DMPs in this work uses the publicly available DMP repository described in [2].

Before analyzing the performance of the DMPs, it was necessary to make some decisions about its
configuration. The first decision involved selecting the number of basis functions to use for generating
the forcing function. As the number of basis functions increases, the DMP’s ability to follow the demon-
strated trajectory improves significantly. This is confirmed in figure C.1a, which plots the mean error
against the number of basis functions.

Choosing the appropriate number of basis functions is important. While a higher number of basis
functions requires more computational resources, the increase in accuracy outweighs this cost. Since
the DMP execution is implemented in C++ code, the additional computational load is negligible. Based
on these findings, using 13 to 15 basis functions was found to provide sufficient accuracy for both the
grasping and assembly DMPs.

The next step in the experiment was to optimize the chosen initial DMP based on a defined task. The
idea behind this is that a human demonstration might not be optimal for a given start but can be used
as a very good starting point. For example, authors of the used DMP library, use this to optimize the
DMP for throwing a ball towards a certain location. During the execution of the DMP the position of the
ball is recorded and saved as a cost variable which can then be used to asses the performance of a
given DMP.

This work differs in that case because while the human input does contain unwanted jerky movements,
in general it is considered as the actual desired trajectory and the robot should not deviate toomuch from
it. Therefore the optimization process in this work only minimizes acceleration during the execution.
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Figure C.2: Plotted exploration rollouts with sigma 1.0 on the left and 20.0 on the right.

During the stochastic optimization process, the parameters of the DMP are sampled from a Gaussian
distribution. The mean of this distribution corresponds to the parameters obtained from training the
DMP on the initial demonstration.

The covariance matrix of the sampling distribution controls the exploration magnitude, which is defined
by sigma. The diagonal of the covariance matrix is initialized with sigma2. If sigma is set too low, the
exploration will be limited, potentially less than the inherent variability in the robot’s movements, making
learning ineffective. Conversely, if sigma is set too high, it could lead to unsafe behavior, such as the
robot exceeding acceleration or joint limits, or colliding with its surroundings. Figure C.2 illustrates the
results of exploration using sigma values of 1.0 and 20.0.

In this experiment, it is important that the DMP does not deviate significantly from the demonstrated
trajectory. As shown in figure C.2, a sigma value of 20.0 leads to the exploration of highly different
trajectories. While this is expected in general optimization, for the purposes of this work, we aim to
maintain close adherence to the initial demonstration with only limited exploration. Therefore, a sigma
value of 1.0 was chosen.

In the final step of the DMP experiment, the optimization process aimed to minimize joint accelerations.
Interestingly, as shown in figure C.1b, the optimized DMP closely resembled the initial DMP obtained
from training. This could be due to the relatively low sigma value used during the optimization, which
restricted the exploration of alternative trajectories. Another possible reason is that the optimization
was focused solely on minimizing accelerations, without incorporating a secondary task beyond sim-
ply reaching the goal configuration. As a result, the DMP did not significantly deviate from the initial
demonstration.
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