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A B S T R A C T

Accurate short-term traffic forecasting is the cornerstone for Intelligent Transportation Systems.
In the past several decades, many models have been proposed to continuously improve the
predictive accuracy. A key but unsolved question is whether there is a theoretical bound
to the accuracy with which traffic can be predicted and whether that limit can be directly
estimated from data. To answer this question, we use core concepts in information theory to
derive the limit of predictability in short-term traffic forecasting. Theoretical analysis proves
that conditional differential entropy poses a rigorous lower bound of negative-log-likelihood
(NLL) for probabilistic models. And the continuous form of Fano’s theorem further gives a
loose lower bound of mean-square-error (MSE) for deterministic models. Based on the special
properties of traffic dynamics, two assumptions are made in the estimate of entropy metrics:
cyclostationarity (traffic phenomena show strong periodicity) and localized spatial correlation
(due to kinematic wave propagation). They allow formulating the limit of predictability as
a function of longitudinal space and time-of-day which finds the most uncertain locations
and periods solely from data. Experiments on univariate traffic accumulation forecasting and
network-level speed forecasting show that the selected models, including some state-of-the-art
deep learning models, indeed cannot outperform the estimated lower bounds but just approach
them. The limit of predictability depends on time-of-day, network locations, observation range,
and prediction horizon. The results reveal that the stochastic nature of traffic dynamics and
improper assumptions on the prior distribution of output are two major factors that restrict the
predictive performance. In summary, the proposed method estimates a trustworthy performance
boundary for most traffic forecasting models. These conclusions are helpful for further studies
in this domain.

1. Introduction

Short-term traffic forecasting is critically important for many key applications in traffic and transportation domain. Reliable
and accurate short-term predictions of traffic quantities can help traffic managers to rapidly react and make trustworthy decisions
to mitigate congestion proactively. For example, Yuan et al. (2011) and Liebig et al. (2017) show that in case urban traffic flows
are dynamically guided and re-routed based on predicted traffic states, congestion can be effectively reduced during evening peak
hours. Attracted by its great value in applications, researchers have proposed a wide category of methods to give more and more
precise traffic predictions, e.g. Van Lint (2008), Ma et al. (2017) and Fusco et al. (2016). Although great progress has been made to
improve the predictive performance in this active research field, an important question remains open: What is the theoretical boundary
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of predictive accuracy for short-term traffic forecasting? The answer can tell how far we have gone in this domain and what could be the
most valuable research direction in the future. Practically, it can put the results from comparing state-of-the-art predictive models
into perspective.

We argue that the predictability of traffic variables is mainly governed by two factors: observability and uncertainty. In a
rigorous theoretical sense, a state-space system (like traffic networks) is perfectly observable only if we can completely construct
all the current state variables from the available measurements by using whatever assumptions on the system dynamics and how
the measurements relate to those dynamics. That a system is perfectly-observable is a sufficient but not necessary condition for this
system to be perfectly predictable. The necessity does not hold because the system may be not deterministic. The corresponding
negative proposition is: if a system is not fully-observable, then it is not fully-predictable. Strict determinism and perfect observability
together in principle imply perfect predictability.

However, both strict determinism and perfect observability cannot be satisfied in the traffic domain. From experience, traffic
ystems apparently are not fully-observable. Many latent variables, such as demand and route choice patterns, cannot be completely
econstructed from the limited information collected by sensors. It is almost impossible to get all the demand and supply information
eeded to predict the short-term evolution of traffic states, especially in large networks. Because of this limitation, most data-driven
raffic forecasting problems (e.g. using deep learning techniques Ermagun and Levinson, 2018; Lana et al., 2018) are formulated
s sequence-to-sequence regression tasks that only involve easily-observable quantities (e.g. speed and travel time), rather than as
n classic state estimation and prediction tasks that explicitly estimate many underlying state variables (e.g. density Wang et al.,
006; van Hinsbergen et al., 2012). The second fact is that traffic phenomena are not deterministic but naturally stochastic due to all
ossible randomness in both supply and demand dynamics. For example, many driving and traveling behaviors, like lane-changing
hoices, are highly random and they could have significant impact on macroscopic traffic states (Schakel et al., 2012).

Therefore, the output of a traffic forecasting model should always be considered as an input-dependent random variable obeying
probability density distribution (PDF). In this sense, most predictive models in literature fall into one of the two categories, that is,
eterministic or probabilistic. Deterministic models aim to build a point-to-point mapping. By minimizing mean-square-error (MSE)
r determinant of covariance matrix (DCM), it predicts the mean of the output’s PDF. In contract, probabilistic models describe the
oint PDF of input and output random variables and learn to directly give output’s PDF by minimizing negative-log-likelihood (NLL).

e specify that this classification only depends on input–output formulation. Taking the example of a deterministic model, one
ay use explicit traffic modeling (Ben-Akiva et al., 1998), Kalman-filter-based methods (Wang et al., 2006; van Hinsbergen et al.,
012), or black-box deep neural networks (Ma et al., 2017). There may exist random variables inside the model (such as Bayesian
etworks van Hinsbergen et al., 2009)—whatever is used within such a model, if the final output is an estimate of mean value, it
s a deterministic model.

NLL and MSE describe predictive uncertainty from different aspects so it is necessary to consider two corresponding metrics of
redictability. Thus, we come up with the following research question central to this paper:

If traffic forecasting is formulated as a self-regressive task, given a dataset, what are the model-free, theoretical lower bounds of predictive
erformance for probabilistic models and deterministic models respectively?

The answer to this question is highly relevant to researchers. It gives a more objective assessment of data-driven models and
uts bench-marking more and more complex models into perspective. In this paper, we use key concepts in information theory to
stimate the limit of predictability in short-term traffic forecasting. Theoretically, conditional differential entropy gives the rigorous
imit of the expectation of NLL. Then extended continuous form of Fano’s theorem further gives a soft lower bound of the expectation
f MSE/DCM. Here both metrics are indices of model-independent average limit of predictability. Whatever model is run on a large
nough dataset, the expectation of NLL/MSE/DCM cannot reach the lower bound.

Another concern is that the uncertainty during some time slots and at some locations in a road network could be much higher
nd causes much higher predictive errors. For instance, when an on-ramp will be saturated and when a new congestion bottleneck
ill start is highly uncertain. Congestion propagation in a road network also largely depends on whether queues spill over some

pecific intersections and off-ramps (Van Lint et al., 2012; Knoop et al., 2015). Identifying the most uncertain (the least predictable)
ime-of-day and network locations from data is valuable for traffic managers. In this study, two special properties, cyclostationarity
nd localized spatial correlations, are considered in the entropy estimation scheme. So the limit of predictability can be formulated
s a function of space and time-of-day. The key contributions of this paper are:

• Estimate the theoretical spatio-temporal lower bound of predictive error for both deterministic and probabilistic traffic
forecasting models.

• Quantify how observation range and prediction horizon influence the limit of predictability.
• Identify the most unpredictable time slots and locations in a road network directly from data.
• Illustrate that the stochasticity of traffic dynamics and improper assumptions on output distribution are two major bottlenecks

for further improving predictive accuracy.

The remainder of this paper is organized as follows. Section 2 presents the background knowledge and related works in literature.
ection 3 describes the proposed method, including theoretical basis, implementation of spatio-temporal dependencies, and the
umerical scheme to estimate the limit. Section 4 shows the results and gives analysis of numerical experiments. Section 5 finally
2

raws conclusions and proposes several related research directions.
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2. Background

2.1. Preliminaries

This subsection introduces the entropy measures in information theory and some basic concepts of discrete-time stochastic
rocesses. In information theory, the central concept of entropy was first-time induced by Shannon to quantify the information
ontent of a discrete random variable (Shannon, 1948). Theoretically the Shannon entropy of continuous random variables is infinity.
o extend this concept, differential entropy of a continuous random variable 𝑉 with probability distribution function 𝑝𝑉 (𝑣) supported
n  is proposed and defined as follows:

𝐻(𝑉 ) = −∫
𝑝𝑉 (𝑣) ln 𝑝𝑉 (𝑣)𝑑𝑣 (1)

Higher entropy means higher uncertainty. For two continuous random variables, the conditional (differential) entropy of 𝑋 given
is defined as:

𝐻(𝑋|𝑌 ) = 𝐻(𝑋, 𝑌 ) −𝐻(𝑌 ) = −∫ ,
𝑝𝑋,𝑌 (𝑥, 𝑦) ln 𝑝𝑋|𝑌 (𝑥|𝑦) 𝑑𝑥𝑑𝑦 (2)

here  , denote the support sets of 𝑋 and 𝑌 . Conditional entropy measures how much additional information is carried by 𝑋
hen side information 𝑌 is known. It represents the average additional uncertainty of output. 𝐻(𝑋|𝑌 ) = 𝐻(𝑋) if and only if 𝑋 and
are independent.
For a state-space system with 𝑛 observable variables, the evolution of system state can be written as a 𝑛-dimensional time series

𝑿𝑡}, or a so-called multivariate stochastic process. Herein 𝑿𝑡 ∈ R𝑛 represents the 𝑛-dimension system state observed at time 𝑡. When
his system transits from old states to a new state, new information (uncertainty) is produced in addition to the old information
arried by the historical observations. For stochastic processes, stationarity is one of the most important properties. A stationary
rocess is defined as a stochastic process whose unconditional joint probability distribution of sub-sequences of any length does not
hange with time shifting:

𝑝(𝑿𝑡1 ,… ,𝑿𝑡𝑛 ) = 𝑝(𝑿𝑡1+𝜏 ,… ,𝑿𝑡𝑛+𝜏 ), ∀𝜏, 𝑡1,… , 𝑡𝑛 ∈ R, ∀𝑛 ∈ N (3)

t means that statistical properties do not change with time. To facilitate the narrative, from now on we denote 𝑿𝑡−𝑚∶𝑡 =
𝑿𝑡−𝑚,… ,𝑿𝑡−1} as the past 𝑚 step observations from 𝑡; 𝑿𝑡∶𝑡+𝑝 = {𝑿𝑡,… ,𝑿𝑡+𝑝−1} as the next 𝑝 step states. 𝑚 is called observation
indow and 𝑝 is prediction horizon. When predicting 𝑿𝑡∶𝑡+𝑝 from given side information 𝑿𝑡−𝑚∶𝑡, predictive uncertainty can be
easured by conditional entropy 𝐻(𝑿𝑡∶𝑡+𝑝|𝑿𝑡−𝑚∶𝑡). If 𝑝 = 1 (1-step prediction), we have the so-called entropy rate:

𝑆(𝑿𝑡) = lim
𝑚→∞

𝐻(𝑿𝑡|𝑿𝑡−𝑚∶𝑡) (4)

or stationary processes, or at least asymptotically stationary processes, both conditional entropy and entropy rate are time-
ndependent. Information is statistically generated at a constant rate. And thus predictability is a constant.

.2. Related works

Predictability quantification is always an important topic. For a complex system with unknown undergoing data generation
rocess, such as traffic networks, this limit has to be estimated from collected observations (dataset). We observe three major
pproaches in literature.

One of the most widely-used metrics of predictability is Lyapunov exponent (Wolf et al., 1985) in chaos analysis. It characterizes
ow sensitive a deterministic process is to disturbed initial conditions or measures the stability of a stochastic process. Estimating
yapunov exponents from time series firstly requires phase space reconstruction (PSR) through certain techniques like delayed
mbedding (Packard et al., 1980; Rosenstein et al., 1993). Specific to traffic time series, Nair et al. (2001) and Shang et al. (2005)
se this method to analyze the chaos of scalar traffic time series and show that both univariate speed and flow series have positive
aximum Lyapunov exponent, which is a signature of chaos. Some papers combine chaos analysis with other methods to predict

raffic states. For example, Li et al. (2016) uses a two-level framework. Different sources of data (speed, flow, occupancy) are firstly
rocessed in lower dimensional space, and then PSR embeds and fuses initial flow series and processed flow series into a higher
imensional space with the assistance of Bayesian estimation theory. The embedded data are then fed into a radial-basis-function
RBF) neural networks to give predictions. However, Lyapunov exponent has several shortcomings. First, in most cases extending
his scheme to correlated multivariate time series is challenging. The studies mentioned above only consider univariate time series.
he difficulty mainly originates from PSR. Embedding usually maps the original multivariate time series into an unnecessarily
igh-dimensional phase space (Lan et al., 2008), which is numerically challenging. Second, Lyapunov exponents cannot be directly
elated to predictive errors in state-space. Instead it gives an average separation rate. These drawbacks limit its applications.

The second strategy is maximum likelihood learning. With the development of deep neural networks (DNN) techniques, this
ethod is becoming mainstream. It assumes that the output obeys an input-dependent prior distribution (such as Gaussian).
arameters of this distribution (like mean and variance) are learnt by a DNN through minimizing NLL. This approach enjoys
any advantages. First, it allows estimating the inherent randomness of each prediction. Second, NLL minimization is easy to be
3

mplemented in an end-to-end training process so the power of DNN can be released. Specific to traffic forecasting, most papers in
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literature consider traffic time series as a Gaussian process (Idé and Kato, 2009; Yuan et al., 2021). The major drawback is that we
have to use distributions ‘‘a prior’’ to approximate the true but unknown distribution. The true distribution might be complex, such
s a mixture, or even multi-modal. If we use a simple uni-modal distribution to approximate it, NLL may not reach a desired low
alue.

The third solution is entropy-based approach. One of the earliest attempts to analyze the predictability of univariate time series
ased on conditional entropy was proposed by Song et al. (2010), in a discrete form. The authors studied one-step predictability of
uman mobility based-on the mobile phone call position database. The limit of one-step predictability is defined as the maximum
robability of predicting a user’s correct position area in the next moment given the observations of the past trace. The Upper Bound
f Predictability (UBP) is given from entropy rate by the famous Fano’s theorem (Cover, 1999). The entropy rate of finite stationary
ime series can be estimated by Lempel–Ziv coding algorithm (Kontoyiannis et al., 1998).

This method has been widely applied in many domains to estimate the UBP of stationary univariate time series, including traffic
nd transportation. These studies basically use a similar strategy to process continuous variables: continuous univariate time series
re discretized into several ‘‘states’’ to compute UBP. UBP here can be interpreted as the maximum probability of giving a prediction

whose MSE is smaller than the square of discrete size. For example, Wang et al. (2015) investigates the UBP of traffic speed on a ring
freeway. Each sensor on the network is assumed to be independent from each other and speed is discretized into a few ranges. Li
et al. (2019) extends this method to continuous univariate series by measuring the similarity of two sequences. If the distance
between them is smaller than a pre-defined tolerance, then they are counted as ‘‘the same’’. So the concept of Lempel–Ziv entropy
can be extended and it can be regarded as a new metric of predictability. Li et al. (2019) uses this method to measure the UBP of
travel time, etc. Some papers also try to avoid discretization by using differential entropy. For example, Darmon (2016) directly
estimates differential entropy rate from stationary time series to represent the inherent unpredictability. Amigó et al. (2017) proposed
an ignorance score based on differential conditional entropy to represent models’ prediction quality. However, this approach has
several drawbacks.

The first is the stationarity assumption. All studies above assume that traffic quantities form a stationary time series. But this
does NOT hold for many traffic series. Many traffic phenomena show strong time-of-day-related periodicity. If Lempel–Ziv coding
algorithm, or other entropy estimators such as non-linear embedding estimator, are directly applied to non-stationary time series, the
entropy rate, and thus UBP, would be overestimated. Xiong et al. (2017) gives a systematic study on this topic. We refer the readers
to this paper for more details. Second, sensors and links cannot be considered independent for network-level traffic forecasting. In
many phenomena, like the spreading of congestion, the traffic state of a link is strongly correlated with its topological neighbors.
We emphasize that time index and spatial correlations must be included in the estimation of limit of predictability.

To address these issues, our approach explicitly formulates conditional differential entropy as a time- and space-related quantity.
Two special properties of traffic network dynamics, temporal cyclostationarity and localized spatial correlations, are used to split
all data into subsets. Based on estimated conditional entropy, we derive the lower bound of NLL for probabilistic models and the
lower bound of MSE for deterministic models.

3. Methodology

This section presents details of the proposed entropy-based approach. First we give theoretical analysis. Next, we show how to
implement spatiotemporal correlations into a network-level predictability estimation scheme. The last subsection further introduces
the used entropy estimator, the so-called kp-Nearest neighbors (kpN) estimator.

3.1. Theory

Consider two random variables 𝑿 ∈ R𝑚 (input) and 𝒀 ∈ R𝑛 (output). Their joint PDF can be written as:

𝑝𝑿,𝒀 (𝒙, 𝒚) = 𝑝𝒀 |𝑿=𝒙(𝒚)𝑝𝑿 (𝒙) (5)

If we precisely know the conditional density function 𝑝𝒀 |𝑿=𝒙(𝒚) for every input, then the problem is solved. We can directly use
its differential entropy or covariance matrix to quantify predictive uncertainty. Unfortunately, this is infeasible in practice. When
collecting data, one cannot know output distribution but just observe a series of input–output pairs. For one specific input, we have
to find other input samples that are close enough in phase-space, and use their corresponding observed outputs to estimate the true
output distribution. However, as explained in the discussion on Lyapunov exponent and PSR in Section 2.2, this is a challenging
and unsolved topic. So we come up with a compromise solution. Instead of constructing a continuous PDF in probability space, the
input range is relaxed according to some external evidence (prior knowledge) and a scalar average entropy measure is computed.
This approach avoids mapping inputs into phase space and also results in sufficient samples to support entropy estimation.

Because 𝑝𝒀 |𝑿=𝒙(𝒚) is unknown, a probabilistic model uses a prior distribution, noted as 𝑞𝒀 |𝑿=𝒙(𝒚), to approximate it. We have
the following theorem:

Theorem 1 (Limit of NLL). Consider two multivariate random variables 𝑿 ∈ R𝑚 and 𝒀 ∈ R𝑛. A model estimates 𝑝𝒀 |𝑿=𝒙(𝒚) by an
approximated prior 𝑞𝒀 |𝑿=𝒙(𝒚), then the expectation value of NLL for any probabilistic model obeys the following inequality:

E𝑝𝑿,𝒀 (𝒙,𝒚)[NLL] ≥ 𝐻(𝒀 |𝑿) (6)

Equality holds (the lower bound is reached) if and only if that ∀𝒙, 𝑝𝒀 |𝑿=𝒙(𝒚) = 𝑞𝒀 |𝑿=𝒙(𝒚) almost everywhere (‘‘almost everywhere’’ means
hat 𝑝 − 𝑞 has measure 0).
4
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Proof. The expectation of NLL for one given 𝒙 is:

−E𝒀 ∼𝑝𝒀 |𝑿=𝒙(𝒚)[ln 𝑞𝒀 |𝑿=𝒙(𝒀 )] = −E𝒀 ∼𝑝𝒀 |𝑿=𝒙(𝒚)[ln 𝑝𝒀 |𝑿=𝒙(𝒀 )] + E𝒀 ∼𝑝𝒀 |𝑿=𝒙(𝒚)[ln
𝑞𝒀 |𝑿=𝒙(𝒀 )
𝑝𝒀 |𝑿=𝒙(𝒀 )

] (7)

The first term on the right is the entropy of 𝒀 at given 𝑿 = 𝒙, the second term is Kullback–Leibler (KL) divergence, noted as 𝐷𝐾𝐿(𝑞 | 𝑝),
which is non-negative because of Gibbs’ inequality. 𝐷𝐾𝐿(𝑞 | 𝑝) = 0 if and only if 𝑝𝒀 |𝑿=𝒙(𝒚) = 𝑞𝒀 |𝑿=𝒙(𝒚) almost everywhere. Now we
apply expectation over input space 𝑝𝑿 (𝒙) on both side:

E𝑝𝑿,𝒀 (𝒙,𝒚)[NLL] = −∫
𝑝𝑿 (𝒙)[∫

𝑝𝒀 |𝑿=𝒙(𝒚) ln 𝑝𝒀 |𝑿=𝒙(𝒚)𝑑𝒚]𝑑𝒙 + E𝑝𝑿 (𝒙)[𝐷𝐾𝐿(𝑞 | 𝑝)]

= −∫ ,
[𝑝𝒀 |𝑿=𝒙(𝒚)𝑝𝑿 (𝒙)] ln 𝑝𝒀 |𝑿=𝒙(𝒚)𝑑𝒚𝑑𝒙 + E𝑝𝑿 (𝒙)[𝐷𝐾𝐿(𝑞 | 𝑝)]

= 𝐻(𝒀 |𝑿) + E𝑝𝑿 (𝒙)[𝐷𝐾𝐿(𝑞 | 𝑝)]

(8)

Because of the non-negativity of KL divergence, Theorem 1 is proved. □

As the theorem says, the lower bound can be reached if and only if the output distribution of every input is perfectly modeled,
no matter what the distribution is. 𝐻(𝒀 |𝑿) is a measure of data uncertainty. It describes the inherent randomness of data generation
process. Higher data uncertainty means lower predictability. The distance between the NLL of a model and 𝐻(𝒀 |𝑿) is the model
uncertainty, which is the additional uncertainty caused by model abstraction (Lee et al., 2017). This gap is mainly determined by how
well the prior distribution can represent the true distribution. Bigger gaps imply that this probabilistic model cannot give reliable
estimates of input-dependent data uncertainty. Theorem 1 gives the optimal lower bound for probabilistic models.

Entropy is not the only metric of uncertainty. We also want to derive a lower bound of MSE/DCM for deterministic models. We
show the following theorem:

Theorem 2 (Multivariate Fano’s Theorem). Consider two multivariate random variables 𝑿 ∈ R𝑚 and 𝒀 ∈ R𝑛. If 𝒀 is predicted based on
side information 𝑿, then there exists a lower bound of the determinant of the expectation of covariance matrix for any point-estimate model:

det E𝑝𝑿,𝒀 (𝒙,𝒚)[(𝒀 − 𝒀̂ )(𝒀 − 𝒀̂ )𝑇 ] ≥ 1
(2𝜋𝑒)𝑛

𝑒2𝐻(𝒀 |𝑿) (9)

he lower bound is reached if and only if the error (𝒀 − 𝒀̂ ) is 0-mean Gaussian and independent from 𝑿.

roof. Given an input 𝒙, the point-estimate of output is 𝒚̂, the predictive error 𝒆 = 𝒚 − 𝒚̂ is a random variable in R𝑛. Because
entropy is translation invariant (𝒚̂ is a constant), we can always assume that the mean of 𝒆 is 0 (un-biased estimator). If we note the
covariance matrix of 𝒆 as 𝑲 = E𝒀 ∼𝑝𝒀 |𝒀 =𝒙(𝒚)[𝒆 𝒆𝑇 ], Cover (1999, pg.254) shows that the following inequality holds for all distributions
(if det𝑲 exists):

1
2
ln det(2𝜋𝑒𝑲) ≥ 𝐻(𝒆|𝑿 = 𝒙), 𝐻(𝒆|𝑿 = 𝒙) = 𝐻(𝒀 |𝑿 = 𝒙) (10)

Equality holds if and only if 𝒆 is Gaussian. Again, we apply expectation over input space on both side:
1
2 ∫

𝑝𝑿 (𝒙) ln det(2𝜋𝑒𝑲)𝑑𝒙 ≥ 𝐻(𝒀 |𝑿) (11)

As shown in (8), the right side is conditional entropy. Because ln ◦ det is concave, Jensen’s inequality gives:
1
2
ln[(2𝜋𝑒)𝑛 det(∫

𝑝𝑿 (𝒙)𝑲𝑑𝒙)] ≥ 1
2 ∫

𝑝𝑿 (𝒙) ln det(2𝜋𝑒𝑲)𝑑𝒙 (12)

where equality holds if and only if 𝑲 is independent from 𝑿. The integral on the left is actually the expectation of determinant of
covariance matrix (DCM). By combining (11) and (12), Theorem 2 is proved. □

Fang et al. (2019) provides an alternative proof of this theorem. When the lower bound is reached, the relationship between
input and output can be written as 𝒀 = 𝑓 (𝑿) + 𝜖, 𝜖 ∼  (0,𝑲). 𝒀̂ = 𝑓 (𝑿) theoretically can be precisely modeled by an un-biased
estimator and  (0,𝑲) is the inherent randomness that cannot be explained out or reduced. This lower bound is not as tight as the
one in Theorem 1 because MSE and DCM measures ignore the structural information of output distribution. But it still gives a limit
of any models’ capability. The room of improvement for modeling can only be smaller than the gap to this limit.

Another point is that the 𝑛 × 𝑛 covariance matrix of 𝒀 = (𝑦1, 𝑦2, ... 𝑦𝑛) is hard to learn. A probabilistic model generally assumes
the prior form of each marginal distribution 𝑝(𝑦𝑖). So a better choice is estimating 𝐻(𝑦𝑖|𝑿) for each component and obtain a series
of variance limits, (𝜎21 , 𝜎

2
2 , ... , 𝜎

2
𝑛 ). Their relationship is given by the following formula:

det𝑲 = det 𝑺
𝑛
∏

𝑖=1
𝜎2𝑖 ≤

𝑛
∏

𝑖=1
𝜎2𝑖 (13)

here 𝑺 is the correlation matrix. det 𝑺 ≤ 1 and det 𝑺 = 1 if and only if all components of (𝑦1, 𝑦2, ... , 𝑦𝑛) are independent. Most
eterministic models use MSE as loss function, the corresponding lower bound is:

E[𝑀𝑆𝐸] ≥ 1
𝑛
∑

𝜎2𝑖 (14)
5

𝑛 𝑖=1
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To quantify the correlation in a multistep prediction, we can use the concept of conditional mutual information:

𝐼(𝑦1, 𝑦2,… , 𝑦𝑛 | 𝑿) =
𝑛
∑

𝑖=1
𝐻(𝑦𝑖|𝑿) −𝐻(𝒀 |𝑿) (15)

This is a non-negative quantity. It equals to 0 if and only if all components (𝑦1, 𝑦2,… , 𝑦𝑛) are independent.
In summary, we have theoretically shown the lower bound of the expectation of NLL for probabilistic models and the expectation

f MSE/DCM for deterministic models. If we do not consider the numerical difficulties in entropy estimation, these two limits are
n-principle applicable for all traffic scenarios described by a set of observable quantities without any prerequisites. Conditional
ntropy is the core concept bridging them. Estimating conditional entropy requires applying expectation in a subset of input space.
ext we will describe how to split the entire dataset into subsets and how to formulate conditional entropy as a function of space
nd time.

.2. Spatio-temporal correlations

The spatio-temporal evolution of a traffic quantity on a road network with 𝑁 links or sensors can be written as a 𝑁-dimensional
time series. Assume that we collected 𝐷 days of data, the dataset is noted as {𝑿𝑑,𝑡}. Here 𝑑 is day index and 𝑡 is time-of-day. 𝑋𝑖

𝑑,𝑡 is the
bserved value on day 𝑑, time of day 𝑡, and link 𝑖. Considering the quasi-periodical tendency of traffic phenomena, we assume that
his multivariate time series has cyclostationarity, which means: (1) For any 𝑚 and 𝑝, the conditional entropy 𝐻(𝑿𝑑,𝑡∶𝑡+𝑝 |𝑿𝑑,𝑡−𝑚∶𝑡)
hanges periodically every 24 h; (2) and it is Lipschitz continuous. The first point says that conditional entropy is time-of-day-
ependent. And the second point allows inducing a hyperparameter called smoothing window 𝛿. We estimate a conditional entropy
rom all samples in the interval [𝑡− 𝛿, 𝑡+ 𝛿) (from all days) to represent the condition entropy at 𝑡. This smoothing window increases
stimation accuracy by including more samples and it also smooths the resulted curve. For example, we prepare the following
nput–output set to estimate 𝐻(𝑿𝑡∶𝑡+𝑝 |𝑿𝑡−𝑚∶𝑡):

{(𝑿𝑑,𝜏−𝑚∶𝜏 ,𝑿𝑑,𝜏∶𝜏+𝑝) | 𝑑 ∈ 𝐷 and 𝜏 ∈ [𝑡 − 𝛿, 𝑡 + 𝛿)} (16)

owever, directly estimating 𝐻(𝑿𝑡∶𝑡+𝑝 |𝑿𝑡−𝑚∶𝑡) is difficult when 𝑁 is large. So the strategy of ‘‘divide and conquer’’ is used to further
ecompose the subset. We induce the assumption of localized spatial correlation. Notice the fact that any kinetic waves can only move
idirectionally along the road with a speed lower than a maximum positive value 𝑐𝑟. Not all components in 𝑿𝑡−𝑚∶𝑡 can influence the
rediction of one sensor 𝑿𝑖

𝑡∶𝑡+𝑝. We can therefore draw a spreading cone from the latest vertex 𝑋𝑖
𝑡+𝑝−1 in the spatio-temporal graph.

he semi-vertex angle satisfies tan 𝜃 = 𝑑𝑙∕𝑑𝑡 = 𝑐𝑟. All points outside this cone are independent from 𝑿𝑖
𝑡∶𝑡+𝑝 because their impact

annot reach location 𝑖 in the next 𝑝 steps. By combining cyclostationarity and localized spatial correlations, the subset for location
is:

{(𝑿𝑖,input
𝑑,𝜏−𝑚∶𝜏 ,𝑿

𝑖
𝑑,𝜏∶𝜏+𝑝) | 𝑑 ∈ 𝐷 and 𝜏 ∈ [𝑡 − 𝛿, 𝑡 + 𝛿)} (17)

𝑿𝑖,input
𝑑,𝜏−𝑚∶𝜏 = {𝑋𝑗

𝑑,𝑠 | |𝑟(𝑗, 𝑖)| ≤ 𝑐𝑟(𝜏 + 𝑝 − 𝑠)𝛥𝑡 and 𝑠 ∈ [𝜏 − 𝑚, 𝜏)} (18)

here 𝑟(𝑗, 𝑖) is the directional spatial distance between two positions. 𝑟(𝑗, 𝑖) is positive if 𝑗 locates at the upstream of 𝑖. 𝛥𝑡 is time
interval. 𝑿𝑖,input

𝑑,𝜏−𝑚∶𝜏 is a collection of all points in the spreading cone.
In practice not all points in a spreading cone contain effective information. For further simplification, a spreading cone can be

divided into several sub-areas (Fig. 1):

(1) self: only the past traffic states of the target position itself.
(2) upstream cone: self plus the data points that locate upstream of the target location in the spreading cone.
(3) downstream cone: self plus the downstream data points in the cone.
(4) up/downstream edge: self plus the data points that are close enough to the up/downstream surface of the cone.

Theoretically the predictability of self should be the lowest while the others are all higher because self considers all links
independently. By comparing the limits of upstream cone and downstream cone, we can determine that this quantity is dominated
by the information from upstream, downstream, both, or neither. If results show that the prediction mainly depends on, for
instance, upstream traffic states, we next compare the limits of upstream cone and upstream edge to check the possibility of further
simplification. Notice that we do not try to carefully tune 𝑐𝑟 because this is hard in practice. But choosing an estimated upper bound
of propagation speed is much easier.

For univariate traffic series forecasting, which is a simpler case without spatial correlations, only cyclostationarity needs to be
considered. (16) can be directly used.

In summary, given a time-of-day 𝑡, a location index 𝑖 (only for multivariate series), time interval 𝛥𝑡, observation range 𝑚,
prediction horizon 𝑝, smoothing window 𝛿, then this input–output sample set can be prepared by the procedure above. Therefore,
conditional entropy estimated from this set represents the predictability at time-of-day 𝑡 and location 𝑖. Now we need a proper
entropy estimator.
6
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Fig. 1. Illustration of localized spatial correlation: an example of input–output pairs. The dash–dot line triangle is the spreading cone; Sub-areas are marked by
different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.3. k-p nearest neighbors entropy estimator

Estimating differential entropy from given finite numbers of samples is a challenging topic. Entropy estimators can be roughly
categorized into two groups: parametric and non-parametric approaches. For parametric estimators, the PDF’s form is assumed to
be known so its parameters can be learnt from the samples. However, this assumption is too strong. In most real-world cases an ‘‘a
priori’’ known form is impractical. Consequently, non-parametric approaches have been proposed, such as embedding/non-uniform
embedding estimator (Faes et al., 2011) and 𝑘-nearest neighbors estimator (Wang et al., 2009). In this study we choose the k-p
nearest neighbors estimator proposed by Lombardi and Pant (2016). Compared to k-nearest-neighbors (kNN) estimator, the core
innovation of kpN is that the uniform distribution for 𝑘-nearest samples is replaced by a fast decaying normal distribution whose
parameters are determined by larger 𝑝-nearest neighbors. We emphasize one fact: most traffic patterns tend to fall into several clusters
and there are few rare patterns locating between them. This property has been shown by some studies on congestion patterns recognition
and classification (Lopez et al., 2017; Krishnakumari et al., 2017; Nguyen et al., 2019). So the PDF should have several peaks for
these clusters and its value should be low between them. In this case, kNN estimator will overestimate the entropy. kpN can mitigate
this structural error.

The algorithm is given in Algo. 1. This estimator needs to calculate one Gaussian distribution and one corresponding integral:

𝑔(𝒙) = exp [−1
2
(𝒙 − 𝝁)𝑇𝜮−1(𝒙 − 𝝁)] (19)

𝐺(𝒙) = ∫(𝒙,𝜖)
𝑔(𝒙)𝑑𝒙 (20)

The major drawback of kpN estimator is the relatively higher computational complexity to calculate (20). As pointed in Lombardi
and Pant (2016), this process can be accelerated by using the method proposed in Cunningham et al. (2011). The kpN estimator
is naturally parallel. Using GPU and multi cores can significantly reduce the running time. For an input–output set, kpN estimator
gives the entropy of input and the joint entropy of input–output, their difference is the estimated conditional entropy (see (2)).

In summary, this section explains the theoretical basis of the proposed method. Both spatial and temporal factors are considered
to split the entire dataset into a series of subsets. Conditional entropy is estimated from these subsets by kpN estimator. Then
Theorems 1 and 2 gives two different metrics of predictability that depends on locations and time-of-day.

4. Experiment

The proposed method will be tested by using real-world datasets in this section. All data used in this paper are provided by
National Data Warehouse for Traffic Information (NDW, Netherlands).

4.1. Data description

The major counter-clockwise ring freeway around Rotterdam (The Netherlands) is selected as a case study (shown in Fig. 2).
Average speed 𝑉 and vehicular flow 𝑄 per lane are recorded by 201 loop detectors that are not uniformly distributed. Carriageway
averaging and the Adaptive Smoothing Methods (ASM) (Kawata and Minami, 1984; Treiber and Helbing, 2003) is used to estimate
7
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Algorithm 1: kpN entropy estimator (Lombardi and Pant, 2016)
Input;

𝑿𝑁×𝑑 , 𝑁 observation samples of dimension 𝑑 random variables;
𝑘, number of nearest neighbors to calculate local probability mass;
𝑝, number of nearest neighbors to calculate statistical quantities;

Output;
𝐻̂(𝑋), estimation of entropy;

Calculate 𝐶 = 𝜑(𝑁) − 𝜑(𝑘) (𝜑 is digamma function);
for each sample 𝑿𝑖 do

Find 𝑝 nearest neighbors {𝑿}𝑝𝑖 based-on chebyshev distance;
Find the distance between 𝑿𝑖 and its 𝑘-th nearest neighbor, noted as 𝜖𝑖;
Calculate mean 𝝁𝑖, covariance matrix 𝜮𝑖, and det(𝜮𝑖) from {𝑿}𝑝𝑖 ;
Calculate the neighborhood containing 𝑘 − 1 nearest neighbors (𝑿𝑖) = 𝑿𝑖 ± 𝜖𝑖𝒆;
Calculate 𝑔𝑖 in Eq. (19);
Calculate the integral 𝐺𝑖 in Eq. (20);

end
Calculate 𝐻̂(𝑋) = 𝐶 + E[ln𝐺𝑖] − E[ln 𝑔𝑖];

Fig. 2. The counter-clockwise ring freeway around Rotterdam. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

a continuous smoothed spatiotemporal maps of carriageway averaged speeds and flows. The calculation process explicitly considers
kinematic wave theory and a wave speed estimator is employed to estimate critical parameters. The ASM is used to fill the missing
data (about 3%) and to project 𝑉 and 𝑄 onto uniform spatial–temporal grids. The implementation details can be found in Schreiter
et al. (2010a). In this section we study the limit of predictability of the processed dataset. Data stream starts from 5:00 AM and
ends at 24:00 PM every day. Considering that holidays and weekends have very different traffic patterns, we only prepared 233
workdays of data from the year of 2018. Two representative traffic forecasting tasks are formulated:

• Univariate accumulation forecasting: We aim to predict the total number of vehicles running on the target network (the
so-called accumulation, noted as 𝑁𝑡). 𝑁𝑡 can represent averagely how busy the highway is. It is an index of traffic demand. This
is a typical univariate time series forecasting task. The ASM firstly maps non-uniform speed and flow data onto a 0.1 km× 30 s
uniform grid, accumulation is estimated by:

𝑁𝑡 = 𝑙
𝐿
∑

𝑖=1
𝑛𝑖 ×

𝑄𝑖
𝑡

𝑉 𝑖
𝑡

(21)

where 𝐿 is the number of uniform links; 𝑙 = 0.1 km is the length of link (spatial resolution); 𝑛𝑖 is the number of lanes on each
link. Then 𝑁𝑡 is aggregated every 5min by averaging to form a time series.

• Multivariate speed forecasting: We aim to predict speed evolution on the ring freeway in the near future. Speed describes
when and where congestion emerges, evolves, and dissipates. Similarly, ASM firstly maps 𝑉 onto a 0.1 km× 30 s uniform grid,
then the processed data is aggregated every 1.2 km and 4min by averaging. So the entire ring freeway is divided into 35 uniform
links. The processed dataset forms a 35-D time series. This is a typical network-level traffic forecasting task.
8
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4.2. Predictive models

For accumulation forecasting, we select three baseline deterministic models: (1) k-nearest neighbors (KNN): the similarity
etric is Euclidean distance and the weight of averaging is inverse of distance. The optimal number of neighbors is chosen by

ross validation. (2) FCNN: a fully-connected feed-forward neural networks with 5 hidden layers activated by sigmoid function. The
umbers of hidden units are sequentially 64, 128, 256, 128, 64. (3) LSTM (Gers et al., 1999): a long–short term memory (LSTM)
ncoder–decoder model with 128 hidden units is used for multistep forecasting. We also construct a simple FCNN probabilistic
odel with 3 hidden layers. Each hidden layer contains 128 units.

For multivariate speed forecasting, three baseline deterministic models are selected: (1) KNN: the similarity metric is Euclidean
istance and the weight of averaging is the inverse of it. Optimal number of neighbors is searched by cross validation. (2) DCRNN: Li
t al. (2018) is one of state-of-the-art network-level traffic forecasting models that employs diffusion convolution and GRU cells
o capture spatio-temporal features. (3) STGCN: Yu et al. (2017) is another state-of-the-art speed prediction model that has a
ully convolutional structure. Here we use the variant, STGCN(cheb), proposed in the paper. Similarly, we propose a STGCN-like
robabilistic model with U-Net-like skip connections (Ronneberger et al., 2015). The model details can be found in Appendix.

For probabilistic models, we pose 3 different uni-modal prior distributions:

• Gaussian: We assume that the marginal distribution of each component of output is Gaussian. The joint distribution is a
multivariate Normal distribution. The last layer outputs mean and variance (𝜇, 𝜎2) of each component.

• Beta distribution: The marginal distribution of each component of output is a beta distribution (𝛼, 𝛽) with 𝛼 > 1 and 𝛽 > 1.
So the joint distribution is a Dirichlet distribution. The last layer outputs the mode 𝜔 = (𝛼 − 1)∕(𝛼 + 𝛽 − 2), 𝜔 ∈ (0, 1) and the
concentration 𝜅 = 𝛼 + 𝛽, 𝜅 ∈ (2,+∞). By this way the distribution is uni-modal with finite mode.

• Inverse-Gamma distribution: The marginal distribution of each component is an Inverse-Gamma distribution 𝛤−1(𝛼, 𝛽) with
𝛼 > 2 and 𝛽 > 0 (to ensure that variance exists). The joint distribution is an Inverse-Wishart distribution. The last layer outputs
mean 𝜇 = 𝛽∕(𝛼 − 1) and 𝛽 of each component.

MSE is chosen as the loss function to train deterministic models and NLL is used to train probabilistic models. The dataset is split
nto a training set (70%), a validation set (10%), and a test set (20%). Early-stopping on validation set is used to mitigate over-fitting.
or those models using recurrent encoder–decoder structure, teacher forcing (Lamb et al., 2016) method is used. Because NLL is
cale-relevant, for better comparing its lower bound, all data are normalized between 0 and 1 by min–max normalization. To get
he limit of MSE with true unit, one simply needs to re-scale the results.

Restricted by the limited number of samples, we cannot guarantee that the training set and the test set are drawn from the same
ndependent identical distribution (i.i.d). The predictive performance in some moments and at some locations MAY occasionally
utperform the estimated lower bound. To avoid this contradiction induced by dataset shift, we use multi-fold strategy. For each
old, all samples are firstly shuffled and then re-partitioned into new training/test sets. The training set is used to train the models
nd estimate the theoretical lower bounds; the test set is used to compute predictive errors of baseline models. This process repeats
times and their average predictive accuracy is used to validate the proposed predictability metric. 𝑘-fold method is equivalent to

reating a compound model that is trained on a dataset that highly-possibly contains all samples. Meanwhile, it can guarantee that
stimated predictability does not use any sample in the test set and the sub-model in each fold has not seen any sample in the test
et neither. Therefore, dataset shift can be effectively reduced. For example, if the split ratio of training set is 0.7 and 𝑘 = 10, our
peed dataset contains 66 405 observations (233 days, 19 h and 4 min interval everyday) for each location, then the expectation of
amples that are not included in all 𝑘-folds is 66 405 × (1 − 0.7)10 ≈ 0.39, which is negligible. The estimated lower bound is reliable.

Throughout this section, we choose a fixed smoothing window 𝛿 = 20min.

.3. Accumulation forecasting

Fig. 3 presents the evolution of 𝑁(𝑡) from Monday to Friday in a randomly selected week. It shows clear daily quasi-periodicity.
here are two peaks that represent morning and evening peak hours respectively, but the time and the height of these two peaks
re not exactly the same everyday.

Now we consider a specific accumulation forecasting task with 𝑚 = 6 and 𝑝 = 4 (observe what happened in the past 30min and
redict the accumulation in the next 20min). In Fig. 4a, the estimated (average) lower bound of NLL for each prediction step is
ompared with those probabilistic models using different priors. Inverse-Gamma distribution is slightly better than the others. In
ig. 4b, we further compare the temporal curve of estimated limit with the best Inverse-Gamma approximation for each prediction
tep. This probabilistic model’s NLL is indeed above the estimated limit almost everywhere. The similar temporal tendencies validate
he cyclostationarity assumption. Generally speaking, accumulation time series is more uncertain during peak hours, especially
uring evening peak hours. The gap between the model’s curve and the limit curve is the additional model uncertainty induced by
nverse-Gamma prior and model abstraction. The gap is significantly bigger for longer-term prediction. But for short-term prediction
ike 5min-10min horizon, Inverse-Gamma distribution is an acceptable prior.

Fig. 5 quantifies the influence of observation range and prediction horizon. In Fig. 5a, the prediction horizon is fixed as 20min
nd input range changes from 10min to 80min. With the increasing of observation range, the joint conditional entropy of multistep
rediction (𝐻(𝒀 |𝑿)) goes down, which means predictability increases because more effective information is given. Fig. 5b shows
9

hat the RMSE limit of each step increases fast with prediction horizon. The difference is more significant during peak hours. For
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Fig. 3. The evolution of accumulation from Monday to Friday in a randomly selected week.

Fig. 4. (a) Comparison between the average lower bound of NLL and the performances of probabilistic models for each prediction step; (b) Comparison between
the lower bound of NLL and the performances of the probabilistic model using Inverse-Gamma prior for each prediction step, along time axis. Averaging the
lower bound curves in (b) gives the corresponding 4 points (black-square) in (a). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. (a) relationship between observation range and multistep NLL limit, 𝑝 = 4; (b) Relationship between prediction horizon and RMSE limit of each prediction
step, 𝑚 = 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
10



Transportation Research Part C 138 (2022) 103607G. Li et al.

t

s
a
t
o
e
s

N

4

t

Fig. 6. (a) comparison between the lower bound of DCM and deterministic models’ performances; (b) conditional mutual information for 4-step predictions.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

example, at around 17:30 PM, the RMSE limit increases from 60 vehicles to maximum 160 vehicles in 20min. This result implies
hat accurate long-term prediction is theoretically impossible without inducing more data.

Fig. 6 presents more analysis. 6a compares the estimated lower bound of DCM and the DCMs of deterministic models. Here we
how the 2𝑛-th root of DCM so the unit is consistent with original data. DCMs of the three models are indeed above the estimated limit
nd their forms are also similar to the lower bound curve. Averagely speaking, LSTM has the best predictive accuracy. According
o Theorem 2, the room of improvement for modeling cannot be larger than the gap. 6b shows the conditional mutual information
f four-step predictions. The positive value proves that multistep predictions are temporally strongly-correlated. This correlation is
ven stronger during peak hours. Temporal correlation also makes longer-term prediction more difficult. The errors made on early
teps may severely enlarge long-term predictive errors, especially in peak hours. This phenomena is consistent with Fig. 5b.

In summary, we have shown that the proposed metrics of predictability are reasonable for univariate accumulation forecasting.
ext we will analyze multivariate speed prediction.

.4. Multivariate speed forecasting

Different from univariate accumulation prediction, to implement spatial correlations in network-level speed forecasting, we need
o induce a hyper-parameter, the upper bound of kinetic wave spreading speed 𝑐𝑟. Low-speed congestion prediction is the core of

speed forecasting. Traffic flow theory tells that the maximum back-propagation speed of stop-and-go waves on highways is lower
than 20 kmh−1 (Schreiter et al., 2010b). This value is quite stable and almost the same everywhere. To explore the minimum input
set in the spreading cone, we select a short segment that is frequently congested on the west of the ring freeway and test 4 sub-areas,
self, upstream cone, downstream cone, downstream edge. For simplification, we fix the observation window 𝑚 = 6 (24min) and only
calculate the lower bound of RMSE for 1-step prediction. The results are presented in Fig. 7. The curve of self is the highest because
inputs contain the least effective information. All sensors are considered independent from each other in self. The upstream cone
curve is slightly lower than self but the downstream cone curve is significantly lower than self. This means that the past traffic states
of upstream links contain very little effective information. But downstream links have much more useful information for accurate
predictions. Because the back-propagation of stop-and-go kinetic waves is important in congestion forecasting. Further, by comparing
downstream cone and downstream edge, we conclude that all upstream links in spreading cone contain effective information, since
the downstream edge curve locates between self and downstream cone. It indicates that the back-propagation speed of information
may not be a constant, or it is not a constant close to 𝑐𝑟.

The analysis above points out that the minimum effective input for speed forecasting is downstream semi-cone. All the following
results are calculated based on this input set.

We firstly consider a forecasting task with 𝑚 = 6 and 𝑝 = 1. The result is shown in Fig. 8. The lower bounds for other 𝑚 and 𝑝
have similar spatio-temporal distributions but different magnitudes (similar to what has been shown in Fig. 5). Temporally, there
exist two less predictable peak hours: morning (7:00 AM–9:00 AM) and evening (16:00 PM–19:00 PM). Evening peak hour is even
more uncertain. Spatially, there are two less predictable segments, one locates between 0 km-5 km and the other one is between
25 km-35 km. Between 35 km-40 km there is a highly predictable band (the deep blue areas). Because the speed limit is lower there
(shown in Fig. 2).

Similar to accumulation forecasting, here we consider a specific speed forecasting task with 𝑚 = 6 and 𝑝 = 4 (observation range
is 24min and prediction horizon is 16min). In Fig. 9, the average lower bound of NLL (over all locations and time-of-day) for each
prediction step is compared with those probabilistic models using different prior distributions. Their gaps to the limit show that
Beta distribution is the best approximation among the three priors while Gaussian is the worst. Speed is supported between 0 and a
maximum limit. In congested areas speed is low so the Gaussian prior may cause probability leakage: the PDF on negative axis has no
11
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Fig. 7. The lower bound of RMSE for different input sets: 𝑚 = 6 and 𝑝 = 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. The spatio-temporal lower bound of NLL (left) and RMSE (right) for speed forecasting, 𝑚 = 6 and 𝑝 = 1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison between average lower bound of NLL and the performances of probabilistic models for each prediction step in speed forecasting.

meaning. So the result implies that the true distribution of speed may be highly skewed. Different from accumulation forecasting,
the model uncertainty here almost does not change with prediction horizon. It implies that the true distribution of speed is complex.

Next we study this spatio-temporal limit of predictability by slicing. We will select some representative examples. For temporal
predictability, we select the link with the lowest average speed (link-8) and the link with the highest standard variance of speed
(link-32). Their positions are marked in Fig. 2. For spatial predictability, similarly we select the time with the lowest average speed
and the highest variance of speed. They are the same time stamp, 17:30 PM, during evening peak hours. The following conclusions
also hold for most other positions and time-of-day in this case study.

4.4.1. Temporal predictability
Most conclusions obtained from accumulation prediction also hold for network-level speed forecasting, such as the influence of

observation range and prediction horizon. In this subsection we will not re-show all of them.
12
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p

Fig. 10. (a) the lower bound of NLL for each prediction step on link-8; (b) comparison between the NLL lower bounds and the performances of Beta-prior
robabilistic model on link-8. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Link-8: (a) Comparison between the 4-step RMSE lower bound and the RMSE of deterministic models; (b) Conditional mutual information. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10a shows the limit of NLL for each prediction step on link-8. Speed is significantly more uncertain during morning
and evening peak hours, but highly predictable at noon and in night. The lower bound increases with prediction horizon and
the variation is more significant during peak hours than uncrowded time. The result means that higher uncertainty will expand
quickly with the increasing of prediction horizon — long-term accurate point-estimate prediction in highly-uncertain situations
is theoretically impossible, if no additional data is provided. In Fig. 10b the lower bounds are compared with the NLL of Beta-
prior probabilistic model. Again we observe similar forms and uniform gaps (model uncertainty). Cyclostationarity is also a good
assumption in multivariate speed forecasting. The gaps are significant, even in short-horizon forecasting. This result implies that
the output distribution of this frequently congested link is complex, cannot be well approximated by a simple uni-modal prior. In
Appendix another example of link-32 is presented.

Fig. 11a shows the lower bound of RMSE and the predictive errors of different deterministic models on link-8. Here the lower
bound equals to the square of the arithmetic average of marginal variance (see (14)). STGCN has the best accuracy among the three
baseline models. Its gap to the lower bound is relatively larger during peak hours. The gap is even considerable (about 2 kmh−1)
during free-flowing time slots (after 19:30 PM), which is very different from accumulation forecasting. Combining this result with
Fig. 9 and Theorem 2, we infer that approximating speed time series by a Gaussian process is unreliable. The room of improvement
for modeling is much smaller than the gap shows. Fig. 11b presents the conditional mutual information. We see that multistep
13
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Fig. 12. Top: Comparison between the spatial predictability, NLL of Beta prior model, and the speed evolution ground-truth; Bottom: identify the most
unpredictable positions on the ring freeway. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

4.4.2. Spatial predictability
In terms of spatial predictability, we are particularly interested in where the most uncertain locations are and why. In this

subsection we do not repeatedly show the same influence of observation range or prediction horizon, but focus on analyzing the
spatial distribution of predictability. The observation window is fixed as 𝑚 = 6 (24min) and we only consider one-step prediction.
The top left figure in Fig. 12 presents the NLL limit (and thus RMSE lower bound) of different locations on the ring freeway at
17:30 PM. This limit is compared with the NLL of Beta prior model. They show similar spatial distributions. It proves that localized
spatial correlation is a valid assumption in this speed forecasting task. Some positions are highly predictable (like the segment
between 10 km and 18 km) meanwhile the predictability of other positions are relatively lower (like the two high peaks locate at
5 km and 30 km). The difference is significant. The spatial distribution of predictability is further compared with a representative
speed evolution. The corresponding RMSE lower bound is also projected on the map to identify what are those highly unpredictable
locations.

Fig. 12 shows that there are three major peaks of the predictability curve and they represent three different types of uncertain
cases: (1) the highest peak on the north (at 32.4 km) corresponds to one important on-ramp connecting the ring freeway and the
busy urban area around Rotterdam north station. The lack of demand data is the main reason for low predictability. How many
vehicles will enter the ring freeway and when the on-ramp will be saturated is highly uncertain. (2) The peak on the west (at 4 km)
is the exit of an underwater tunnel, which is also one of the major bottlenecks. The unstable driving behaviors when vehicles leave
the tunnel probably cause low predictability. (3) The other one on the southeast (at 22.4 km) is an off-ramp. Stop-and-go waves tend
to stop spreading here (see the top figure). Predicting how many vehicles will leave the ring freeway and how long the congestion
will last is indeed highly uncertain. The analysis above identifies the most uncertain locations on this beltway. These three critical
positions determine the macroscopic spreading of traffic congestion.

In many applications, studying spatial predictability is usually more important than temporal predictability, especially for data
collection and highway traffic control. The distribution of predictability can help optimizing where to install sensors to maximize
performance-cost ratio (Gentili and Mirchandani, 2012; Eisenman et al., 2006). There are 38 on/off-ramps that connect urban roads
or other highways to this target ring freeway. But we only need to collect more data around the three critical locations mentioned
above. Possible methods include installing more loop detectors, inducing more types of data (like flow), or adding speed data on
the adjacent urban roads. For traffic managers, extra attention should be payed at these highly uncertain locations because they
largely determine the congestion evolution of the entire beltway.

4.5. Summary of main findings

In summary, by comparing the estimated lower bound of NLL/MSE/DCM and the real performances of selected baseline models,
the proposed predictability (uncertainty) metric is validated for both univariate traffic accumulation forecasting and network-level
speed forecasting. Our main findings are summarized as follows:
14
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• In accumulation prediction, Inverse-Gamma distribution is a good prior for short-term prediction. For speed forecasting, the
Beta distribution offers better results. But there is still considerable distance to the NLL limit. Specifically, it turns out that
approximating speed evolution as a Gaussian process is unreliable.

• In speed forecasting, the information from downstream dominates the prediction. Traffic states on upstream links have little
influence on the predicted results. Since we utilize speed data only, this makes sense from a traffic flow perspective. This
correlation is due to queue spill-back.

• Longer observation range and shorter prediction horizon can increase predictability. The proposed approach can quantify this
relationship.

• Multistep predictions are temporally correlated. The correlation is stronger during peak hours.
• For probabilistic models, the predictive performance is mainly restricted by improper priors; for deterministic models, the

maximum potential room of improvement for modeling can be quantified.

5. Conclusions and perspectives

In this paper we proposed an entropy-based method to estimate the limit of predictability for both univariate and network-level
raffic forecasting. Conditional entropy gives the optimal lower bound of NLL for probabilistic model and a lower bound of MSE/DCM
or deterministic models. By considering the spatio-temporal characteristics of traffic streams, both lower bounds are formulated
s functions of space and day-of-time. Experiments show that cyclostationarity and localized spatial correlations are reasonable
ssumptions. Selected models can only approach estimated theoretical limit but cannot cross it in most cases. The influence of
bservation range and prediction horizon is also clarified and quantified. Longer observation windows can increase the predictability
nd longer prediction horizons decrease predictability. The most important contribution of this paper is that this approach gives an
stimate of the boundary for a wide range of traffic forecasting models. By comparing real performances of models and the lower
ound, we can infer what is the major bottleneck in modeling and estimate how much potential room remains for modeling. This
pproach potentially brings more than the discussion above. Here we suggest several relevant research directions.

First, the major obstacle in probabilistic forecasting is how to model the prior distribution. Currently most papers use a simple,
ni-modal distribution. But these priors are not good enough in speed forecasting. To approach the estimated lower bound, exploring
ore complex priors, such as mixture models, is necessary and important. Second, how to formulate macroscopic traffic forecasting
roblem should be re-considered. Currently researchers perhaps focus too much on developing new sequence-to-sequence models
especially deep learning models) that push predictive accuracy little by little. But the remaining room of improvement by modeling
ay be less than expected. Our results showed that the limit of predictability of one single traffic quantity (such as speed) drops

apidly with prediction horizon during peak hours. To further improve mid-term or long-term predictive accuracy, investing more
n collecting diverse, multi-scale data sources (such as trajectories, OD data, etc.) and studying how to fuse them in one model are
ore promising. A third highly interesting research topic is the possibility of using the spatial distribution of predictability to guide

ensor installation. This sensor location problem still needs more investigation.
Finally, we emphasize that the proposed approach can still be improved. Our method uses k-fold strategy to mitigate dataset

hift and avoid the failure of i.i.d assumption. However, this is not feasible in practice. There always exist new patterns and
ut-of-distribution samples in data streams. How to disentangle this factor and how to overcome this difficulty needs more research.
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ppendix A. Details about the speed forecasting probabilistic model

We built one DNN-based probabilistic speed forecasting model based-on STGCN and U-net (Ronneberger et al., 2015). U-net
hows competitive performances in many computer vision tasks and it is state-of-the-art in some pixel-wise uncertainty estimation
ataset, such as NYU-depth.1 The model is composed of similar spatio-temporal convolutional module proposed in STGCN (Yu
t al., 2017) and skip connections. The last layer output parameters of the assumed prior distributions. The model structure is
hown Fig. A.1.
15
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Fig. A.1. Structure of the speed forecasting probabilistic model. Here 𝑚 is the observation length and 𝑁 is the number of road links.

Fig. B.1. (a) the lower bound of NLL for each prediction step on link-32; (b) comparison between the NLL lower bounds and the performances of Beta-prior
probabilistic model.

Appendix B. Another example: link-32

See Fig. B.1.
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