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Preface

This report is the capstone thesis for my MSc in Aerospace Engineering. It is an investigation of the in-
terior of Ceres and the mechanism behind the cryovolcanic activity hypothesized to be happening there.
Readers particularly interested in the interior models can find these in chapter 3, and the benchmarking
of isostasy-based crust models is done in chapter 4.

It feels rather strange to be finishing off this final phase of my university education. What for the longest
time seemed like an insurmountable task is now all but surmounted, and I must admit that there were
many times I felt like I would never arrive at this point. I am reminded of participating in the selection
procedure for this program, more than six years ago now, and how much has happened since then.
Though I didn’t know it at the time, I was about to start on the most difficult thing I had ever done.
Looking back, however, I am glad it was so challenging, as it allowed me to overcome my own self-
doubt, and to achieve more self-growth than I ever thought possible. I had never in my wildest dreams
imagined that it would be this difficult and that I would still be able to do it, and yet here I am.

I must express my deepest gratitude and appreciation to my supervisor, Bart Root, who has provided
me with unparalleled guidance and support throughout this project. Working with him made this thesis
project a uniquely enjoyable and positive experience, and has allowed me to produce a work that I am
truly proud of on a topic I am deeply passionate about. I would like to thank my friends and family for
their contributions to my enjoyment of the project and for allowing me to rant about why I think Ceres
is so cool. In particular, I would like to thank my mother, who has always believed in me even when I
myself couldn’t.

Jeremy Lems
Delft, September 2024
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Abstract

Ceres is a small dwarf planet in the asteroid belt between Mars and Jupiter, at 2.77 AU from the Sun.
Its position in the solar system makes it a unique body, as it makes it unclear if its interior is analogous
to a terrestrial or an icy body. Only one mission, the DAWN mission, has gone to Ceres to collect
data. One of the most puzzling of its features are the bright spots on its surface, which have long been
conjectured to be the result of cryovolcanic activity involving salt water. In this work, Ceres’ interior was
studied to investigate the mechanism by which these bright spots form. Greater understanding of this
mechanism will increase the scientific knowledge on how unique planetary interiors and cryovolcanism
can function.

Ceres’ internal density structure was found by constraining its interior using measurements of its mass
and mean mass moment of inertia. This was supplemented by using gravity measurements to develop
crust models, the parameters of which were linked to the parameters of the density structure, to provide
a final constraint to the density profile. For reasons of parsimony, a 2-layer density structure was
assumed.

Two different isostasy-based crust models were developed, using either Pratt or Airy compensation.
The Pratt model has a crust thickness of 70 km and densities varying between 1300 kg/m3 and 1800
kg/m3, whereas the Airy model has a crust density of 1310 kg/m3 and thicknesses varying between
24 km and 57 km. The corresponding mantle densities are 2520 kg/m3 and 2410 kg/m3 for the Pratt
and Airy model, respectively. The performance of isostasy-based crust models were investigated using
measurements of Moho depth on Earth, and they are expected to be able to predict crustal properties
with a mean error of 13.5%. The temperature in Ceres’ interior was modelled assuming no flow and
only radiogenic heating as a heat source.

No significant correlation was found between the observed locations of cryovolcanism and crustal prop-
erties for any of the models, implying that the brine involved in the formation of the bright spots is ho-
mogeneously distributed throughout the crust. Furthermore, it was found that the temperature at the
base of the crust is likely high enough to allow for liquid brines to be present without the need for impact
heating.

Therefore, it is hypothesized that Ceres has a muddy ocean layer between the crust and the mantle,
which is the source of the brines which form bright spots on its surface. Impacts would then form cracks
in the crust, which would allow for this brine to rise to the surface. Recommended for future work is to
investigate the process by which these brines are driven to the surface, and to include the effects of
the muddy ocean on the temperature profile in Ceres’ interior.
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Nomenclature

Abbreviations
Abbreviation Definition

RMSE Root-mean-square error

Symbols
Symbol Definition Unit

Ab Bond albedo -
Cp Heat capacity J/K
cf Freezing point depression constant K/mol
D Flexural rigidity of the elastic lithosphere Nm2

E Young’s modulus of lithosphere material Pa
Fsun Solar constant W/m2

fs Serpentinite mass fraction -
G Gravitational constant Nm2/kg2
H Volumetric radiogenic heating rate W/m3

g Gravitational acceleration m/s2
hb Deviation from reference depth (positive down-

wards)
m

ht Topography at the top of the crust m
I Planetary mass moment of inertia kg·m2

Inorm Normalized moment of inertia -
J2 Strength of the gravitational effect of the equatorial

bulge
-

i Number of particles formed when solute dissolves -
K Bulk modulus Pa
k Thermal conductivity W/mK
M Planetary mass kg
Mmolar Molar mass kg/mol
m Local mass kg
msolute Dissolved solute mass kg
n Spherical harmonic degree -
p Local pressure Pa
∆p Pressure difference Pa
qr ratio of the centrifugal acceleration to the gravita-

tional acceleration
-

R Planetary radius m
r Local radius m
rsunAU

Distance from the sun AU
S Shear modulus of lithosphere material Pa
T Local temperature K
Te Elastic lithosphere thickness m
Tref Reference thickness for Pratt model m
∆T Temperature difference K
V Planetary volume m3
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Symbol Definition Unit

αT Thermal expansion coefficient K−1

∆ρ Density contrast between crust and mantle kg/m3

∆Tf Freezing point depression K
ϵ Thermal emissivity -
κ Thermal diffusivity m2/s
µ molality of solution mol
ν Poisson ratio of lithospheric material -
ρ Local density kg/m3

ρ0 Nominal density kg/m3

ρc Density of crust material kg/m3

ρm Density of the mantle material kg/m3

ρref Reference density for Pratt model kg/m3

σ Stefan-Boltzmann constant W/m2K4

ωrot Angular velocity rad/s

Subscripts
Subscript Definition
0 Nominal value
b Relating to the bottom of the crust
bound Relating to the crust-mantle boundary
c Relating to the crust
e Relating to the elastic lithosphere
f Relating to the freezing point
i Relating to ice
m Relating to the mantle
norm Normalized value
rot Relating to rotation
s Relating to serpentinite
solute Relating to the solute of a solution
solvent Relating to the solvent of a solution
surface Relating to the surface of Ceres
t Relating to the top of the crust



1
Introduction

Ceres is a small dwarf planet in the asteroid belt between the orbits of Mars and Jupiter, at 2.77 AU
(Lissauer & de Pater, 2019). It is the largest object in the asteroid belt, and the only one rounded
by its own gravity. Its position in the solar system makes it colder than the terrestrial planets of the
inner solar system, and yet warmer than the icy moons observed in the outer solar system. Its lack
of thermally analogous bodies complicates the matter of studying its internal structure and geological
processes, but also makes them all the more interesting. It has a particularly low bulk density compared
to other terrestrial bodies, as shown in Figure 1.1. This implies that its composition is different from
other terrestrial planets. Furthermore, its mean moment of inertia is approximately 0.37 (Park et al.,
2016), implying it’s not homogeneous but also not completely differentiated. Finally, one of the most
puzzling of Ceres’ features are the bright spots visible on it’s surface, like the one in Occator crater,
shown in Figure 1.2.

Figure 1.1: Bulk density of Ceres compared to other terrestrial bodies (McDonough & Yoshizaki, 2021).

In the rest of this chapter the current most up-to-date knowledge on Ceres is summarized, a research
gap is identified, research questions are synthesized, and their relevance is discussed
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Figure 1.2: Bright spots in Occator crater. Image credits: NASA JPL.

One of the core questions about Ceres’ interior is to what degree it is differentiated. Before the DAWN
mission (2015), Thomas et al. (2005) determined that Ceres’ shape is not consistent with that expected
of a homogeneous body and must be (at least partially) differentiated. Meanwhile, McCord and Sotin
(2005) modelled the internal radiogenic heating of the dwarf planet and came up with four different
possible internal structures depending on different evolution scenarios. These models range from com-
pletely homogeneous to completely differentiated with an iron core, because this is dependent on the
amount of internal heating and the internal composition. Zolotov (2009), on the other hand, argues
that the measurements on Ceres’ shape do not exclude the possibility of a homogeneous, gradually
compacted interior. With the help of newly acquired topography and gravity data from DAWN, Neu-
mann et al. (2015) found in an accretion study that it is very unlikely for Ceres to have maintained
significant porosity until present. Castillo-Rogez and McCord (2010) then continued their research on
Ceres’ differentiation through radiogenic heating. The evolution scenarios they found are summarized
in Figure 1.3. Here it can be seen that Ceres ends up with a three-layer structure under quite a number
of evolution scenarios and that a metallic core forms in only one. Neumann et al. (2020) made a similar
chart of evolution scenarios after doing another accretion study, constrained by newly acquired grav-
ity and shape data from the DAWN mission and including a water mantle, shown in Figure 1.4. This
figure shows that there are quite a number of possibilities for Ceres’ interior structure, depending on
which processes shape it. Many of these possible structures include a water layer. Castillo-Rogez and
McCord distinguish different starting conditions, whereas Neumann distinguishes different internal pro-
cesses that lead to various outcomes. In general, there is no consensus on how differentiated Ceres is,
but most research agrees that it is unlikely that Ceres is completely differentiated and more likely that
it is a partial differentiation, where layers differ in the relative content of ice, silicates and salts. Ceres’
age is similarly not agreed upon, but usually an age of 5 million years is taken.
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Figure 1.3: Possible interior structures of Ceres for different evolution scenarios (Castillo-Rogez & McCord, 2010).

Figure 1.4: Possible interior structures of Ceres for different evolution scenarios (Neumann et al., 2020).

Many studies on the internal densities of Ceres assume a 2-layer structure to ensure parsimony, but
the actual internal structure is not sufficiently constrained to draw conclusions about the deep interior.
The results of many of these studies are summarized in Table 1.1, together with the average of the
results obtained after the DAWN mission. Here it can be seen that in general the results are quite
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similar, especially post-DAWN. Furthermore, it is observed that the crust is expected to be almost two
times lighter than the mantle with a relatively thin crust compared to the mantle. It should be carefully
noted that the conventional meanings ascribed to words such as crust, mantle, and core in the inner
solar system’s terrestrial planets do not apply to Ceres, as its internal temperature and pressure are
so low that it’s interior is not expected to behave in the same way as those of the inner rocky planets.
In this work, the terms mantle and crust will be used for the inner and outer layers, respectively. This
decision is quite arbitrary, but it allows the reservation of the term core for a potential deeper layer in
Ceres.

Table 1.1: Thicknesses and densities of 2-layer models in literature.

Source ρmantle kg/m3 ρcrust kg/m3 tcrust km

Thomas et al. (2005) 2700-3700 918 66-124
Tricarico (2014) 2400-3100 900-950 30-90

Neveu and Desch (2015) 2900 1430 107
Park et al. (2016) 2460-2900 1680-1950 70-190

Ermakov et al. (2017) 2426-2439 1200-1357 36.3-44.2
King et al. (2018) 2341-2393 1380-1440 35-40

Konopliv et al. (2018) 2260-2470 1200-1600 27-43
Average post-DAWN 2461 1476 60.7

An important parameter for the interior processes of the Dwarf planet is how hot it is on the inside. Many
researchers have come up with temperature profiles from thermal evolution studies, and some have
deduced temperatures necessary at specific depths to allow for brine deposits to be fluid and cause
cryovolcanism. The first thermal profile was made by McCord and Sotin (2005) through their radiogenic
heating model. The thermal profiles in Figure 1.5, which include a convecting mantle, indicate different
times by line style. Usually, researchers instead display it in a 3-dimensional plot with the radius and the
time as the axes, as shown in the thermal evolution model by Castillo-Rogez et al. (2019) in Figure 1.6
made by including a convective mud layer in their internal structure. Figure 1.5 shows that the core
temperature starts at around 650 K and that it first increases to about 800 K and then decreases over
time to approximately 325 K. The vertical part of the graph close to the surface indicates a convective
layer. Because many researchers include several of these graphs for different initial conditions or
assumptions, and they generally look quite similar, they will not be explicitly included here. Many
thermal evolution models show the hottest temperatures late in Ceres’ evolution; this is caused by the
fact that Ceres is so small that the heat generated by accretion is less influential than that generated
by radiogenic heating (Castillo-Rogez & McCord, 2010; Castillo-Rogez et al., 2019).
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Figure 1.5: Thermal profiles for differentiated interior from the thermal evolution study of McCord and Sotin (2005).

Figure 1.6: A 3-dimensional thermal evolution plot of Ceres interior model with mud layer (Castillo-Rogez et al., 2019).

Data from DAWN also allows for a determination of the surface composition. In particular, the observa-
tion of the bright spots opened up opportunities for the exploration of what these bright spots were made
of. This was done by De Sanctis et al. (2016), who did an analysis of the spectral absorptance of the
bright spots in Occator crater to find that they are most likely made largely of sodium carbonates with
smaller amounts of ammonium carbonate or ammonium chloride. McCord and Zambon (2019) did a
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similar study of the entire surface and found that the surface shows a fairly uniform and widespread dis-
tribution of NH4- and Mg-phyllosilicates and carbonates. This was verified by De Angelis et al. (2021),
who found that Mg-phyllosilicates are the best candidates for the ammonium-bearing species on Ceres’
surface. These surface components could be related to the briny substance involved in the formation
of the bright spots.

The composition of the deeper interior of Ceres is more difficult to study, as there is no way to observe
it directly. However, studies on the required viscosity to match observations of relaxation on Ceres’
surface can hold clues as to what composition is expected. Bland et al. (2016) found through numerical
modelling of crater relaxation that Ceres’ shallow subsurface is made up of no more than 30% to 40%
ice by volume, with a mixture of rock, salt, and/or clathrates making up the rest. In a similar study, Fu et
al. (2017) discovered that Ceres’ crust is <25 vol.% water ice, <36 vol.% phyllosilicates or carbonates,
and >29 vol.% low-density, high-strength phases such as salts. In order for mantle material to be able
to rise to the surface in cryovolcanic activity, Ruesch et al. (2019) argue that the mantle must be made
of a convective slurry with about 30-45 vol.% of non-soluble, solid particles.

It is widely accepted that there is cryovolcanic activity on Ceres that involves brines as an explanation
for the observation of bright spots on Ceres’ surface. Neveu and Desch (2015) hypothesized that
Ceres’ bright spots are manifestations of effusion of solute-bearing liquid extruded to the surface by the
pressurization of ongoing freezing of a reservoir at the crust-mantle boundary where the temperature
is similar to the eutectic temperature of the liquid. This hypothesis was later investigated and verified
by Quick et al. (2019) by calculations on reservoir cooling. Ahuna Mons, a 4 kilometer high mountain
on Ceres, was identified by Ruesch et al. (2016) to be a cryovolcano resulting from the upwelling of
hydrated salts with a low eutectic temperature in the geologically recent past. Sori et al. (2017) argued
that cryovolcanic structures induce relaxation on Ceres’ surface that renders them unidentifiable within
geologically short timespans, explaining why not many of these structures are found on Ceres’ surface
today. By experimenting with the freezing of several compositions of brines, Vu et al. (2017) found that
to produce that material found in the bright spots, the material from which they form must be either
rich in ammonium or chloride, or both. Following from their thermal evolution models, Castillo-Rogez
et al. (2019) inferred that the preservation of a brine reservoir at the crust-mantle boundary is possible
if the crust is rich in clathrate hydrates, for which the temperature at the boundary exceeds 220 Kelvin.
Stein et al. (2019) researched the formation mechanisms of bright spots and discovered that they are
formed through impact-induced heating and upwelling of volatile-rich materials or the excavation of
heterogeneously distributed subsurface brines.

These formation mechanisms are illustrated in Figure 1.7. In mechanism A, impact heating melts brines
that are present close to the surface, whereas in mechanism B the impacts form cracks that reach
subsurface brine pockets. Due to the seemingly random presence of bright spots in craters, formation
mechanism B is considered more likely, as this explains why some craters would have bright spots and
others wouldn’t.
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Figure 1.7: Floor bright spot formation mechanisms (Stein et al., 2019).

Ceres’ gravity field has a major non-hydrostatic term in the degree 2 sectorial term, which is 3% non-
hydrostatic (Ermakov et al., 2017). Ermakov et al. posit several explanations for this observation,
among which are a relaxation-resistant viscosity increase at depth due to a compositional boundary,
the combination of a bottom buoyant loading from a (frozen in) mantle plume with a rigid lithosphere,
and/or salt tectonics (Ermakov et al., 2017). Additionally, Ceres’ measured J2 gravity term is about 10%
smaller than expected when assuming that its rotational flattening is hydrostatic, hypothesized by Mao
and McKinnon to be caused by either a faster spin rate in the past or a deep-seated uncompensated
mass anomaly (X. Mao & McKinnon, 2018).

The presence of convective mantle plumes in Ceres’ interior as the cause of the non-hydrostatic gravity
term is consistent with theories that cryovolcanic features such as Ahuna Mons are caused by man-
tle uplifts (Ruesch et al., 2019). Formisano et al. (2020) have proven that thermal convection in the
crust is unlikely to occur and will be short-lived if it does. This means that cryovolcanism is most likely
driven by diapirism, rather than thermal convection. Nonetheless, mantle uplifts and emplacement of
brine reservoirs could still be caused by mantle convection. King et al. (2022) have used a convec-
tion model to assess whether radiogenic heating could provide the energy required for the geologic
processes observed on Ceres, including the cryovolcanism. They found that for calculations consis-
tent with Ceres, transient, asymmetric convection develops, which can be the cause for the geologic
processes observed on Ceres.
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Due to the lack of extensive data, there is much that is not clear about Ceres’ interior. Much of the
research hasmade assumptions to deal with the underconstrained nature of the problem, and otherwise
they produce multiple sets of results to consider multiple possibilities. One of the puzzling features
of Ceres’ interior is the apparent geologic activity, observed through the evidence of cryovolcanism.
Several formation mechanisms of the bright spots are proposed in literature. These differ from each
other in the homogeneity of salts in Ceres’ crust and the necessity for impact heating in order to bring
salty brines to liquid state. This research attempts to determine what the most plausible formation
mechanism for the bright spots is. In order to answer this question, interior models and crustal models
are developed and verified. This leads to the following set of research questions:

1. What is the formation mechanism of the bright spots on Ceres?

(a) To what degree is Ceres differentiated?
(b) How accurate are isostasy-based crust models?
(c) What are Ceres’ crustal properties?
(d) How correlated are the locations of bright spots and the crustal properties?
(e) Under which conditions is no external energy source necessary for liquid brine to exist in

Ceres’ crust?

The insights gleaned from this research will allow for the further establishment of which geologic pro-
cesses are happening in Ceres’ interior. As Ceres is such a unique planetary body, understanding
its interior allows us to better understand the nuances of geologic processes in bodies that simultane-
ously exhibit properties of asteroids, terrestrial planets and icy moons. This would in turn extend our
understanding of how planetary bodies form and evolve.



2
Theoretical Framework

This chapter aims to give the reader an overview of the theory and techniques upon which the rest of
the work is based, so as to facilitate their understanding of the work.

2.1. Planetary Interiors
The interiors of rocky bodies can be broadly divided into two categories: differentiated and undifferenti-
ated. Rocky bodies are formed from undifferentiated material, in which its constituent components are
distributed homogeneously. As a result of internal heating of the body, it can undergo a process called
differentiation. In differentiation, components separate based on their density when they are molten.
The heavier materials will sink to the bottom, whereas the lighter materials will float to the surface. This
process is shown in Figure 2.1. The layers formed in this way are conventionally named the core,
mantle and crust. Because this process is heavily dependent on internal heating, and internal heating
scales strongly with the size of the body, large bodies are usually at least partially differentiated while
smaller bodies have a relatively higher chance to be undifferentiated.

Figure 2.1: Differentiation of a rocky body. Image credits: Smithsonian National Museum of Natural History.

A higher degree of differentiation is usually associated with more flexibility in the material in the upper
layers, which leads to a stronger gravitational effect of the equatorial bulge. The Radau-Darwin approx-
imation, which relates the normalized mean moment of inertia Inorm to the gravitational effect of the
equatorial bulge, J2 (more on this in the following section), and the ratio of the centrifugal acceleration
to the gravitational acceleration qr, is shown in Equation 2.1. The value of qr is given by Equation 2.2,
in which ωrot is the angular velocity of the body. The Radau-Darwin approximation is valid for bodies
that are in hydrostatic equilibrium and are rotating ellipsoids.

Inorm =
I

MR2
≈

2
3J2

J2 +
1
3qr

(2.1)

qr =
ω2
rotR

3

GM
(2.2)

9



2.2. Spherical Harmonics 10

The moment of inertia of a body is a good measure for the degree of differentiation of a body, because
it is essentially a measure of how much mass of the body is situated far away from its center, as evident
from its definition (Equation 2.3). Additionally, the more differentiated a body is, the more its mass is
concentrated at its center.

I =

∫
m

r2dm (2.3)

Given a density profile of the interior of a planet, the internal pressure can be calculated using the
system of equations given by Equation 2.4, 2.5 and 2.6, where r is the distance from the center of
Ceres, G is the gravitational constant,M is the mass, g is the gravitational acceleration, ρ is the density
and p is the pressure.

dp = −ρ(r)g(r)dr (2.4)

dM = 4πρ(r)r2dr (2.5)

g(r) =
GM(r)

r2
(2.6)

In order to calculate a profile from these equations, the first two must be numerically integrated. In this
work, this is done using an Euler integrator with a step size ∆r of 1 m, for which the resulting iterative
equations, moving from one point to the next, are given in Equation 2.7 and 2.8.

pn+1 = pn +
dp

dr
|
n
∆r (2.7)

Mn+1 = Mn +
dM

dr
|
n
∆r (2.8)

It is important to note that first the mass of the planet is integrated upwards, starting from 0 at the center
of the body to the planetary mass M at the surface. Then, the pressure is integrated downwards, from
0 at the surface of the body to the maximum pressure at its center.

2.2. Spherical Harmonics
Spherical harmonics are a widely used way to represent gravity potential fields of planets, but they can
also be used to represent other types of fields on the surfaces of spheres, such as the terrain height,
crust thickness or crust density of a planet. For the gravitational potential U of a planet, the spherical
harmonic representation is given by Equation 2.9. In this equation, r is the distance from the center of
the planet, θ is the latitude, λ is the longitude, G is the gravitational constant, M is the planetary mass
and R is the planetary radius. The variable n is called the degree, and m the order. Each combination
of degree and order has an associated fully normalized Legendre polynomial P̄nm and two (normalized)
coefficients, C̄nm and S̄nm.

U(r, θ, λ) =
GM

R

∞∑
n=0

(R
r

)n+1 n∑
m=0

P̄nm(sin θ)(C̄nm cosmλ+ S̄nm sinmλ) (2.9)

The combination of degree and order determine the shape, projected on a sphere of radius R, of a
term in the summation, and the coefficients determine the strength of that shape. By summing each
combination, the full potential field of the planet is found, and so the complete field can be represented
by the combination of all the coefficients. The shapes of the first few degrees and orders are shown in
Figure 2.2. The terms where the order is zero are called zonal terms, as they form horizontal bands
across the planet. The terms where the order is equal to the degree are called sectorial terms, and
they form vertical bands across the planet. The remaining terms are called tesseral. The degree zero
term is special in that it represents the point mass gravity of the planet, and when the coefficients are
normalized to this value, the coefficient C̄00 is always equal to 1.
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Relevant to this work are the hydrostatic zonal coefficients C̄20 and C̄40, because they are related to
the deformation of a planet due to its rotation. Analogous coefficients for a different representation
of spherical harmonics are often used, and are called J2 and J4, respectively, where J2 = −C20 and
J4 = −C40.

Figure 2.2: Visualization of the shape of the first few spherical harmonics terms (Hollebon & Fazi, 2020).

2.3. Crust Modelling
In a homogeneous body, the gravity signal is highly correlated with the topography. To investigate this
correlation, one can subtract the expected gravity field from topography with a constant density from the
measured gravity field. This process is called a Bouguer correction, and the remaining gravity anomaly
is called the Bouguer anomaly. Since gravitational acceleration is proportional to the attracting mass, it
is expected that a stronger acceleration would be experienced when overhead of higher terrain (more
mass), and a weaker acceleration when overhead of lower terrain (less mass). Therefore, a simple
Bouguer correction is given by Equation 2.10, in which δgB is the expected gravity from the topography,
ρc is the density of the crust material, and h is the terrain height.

δgB = 2πGρch (2.10)

A significant Bouguer anomaly indicates that a crust with constant depth and density is too simplistic of
a model. More sophisticated models are based on the concept of isostasy, in which it is assumed the
crust essentially floats on top of the mantle. Isostatic equilibrium implies that the crust has had time to
settle and that there are no lateral gradients in pressure, so that there is no flow taking place and the
interior is in equilibrium. For a crust with surface topography, isostatic equilibrium can only be achieved
if the topography is compensated for in the interior.

Two models for isostatic compensation are Pratt compensation and Airy compensation, in which the to-
pography is compensated by the density of the crust layer, and the depth of the crust layer, respectively.
These models are shown diagrammatically in Figure 2.3. In the Pratt model, the crust underneath high
topography is lighter than that underneath low topography, so that the pressure underneath both re-
mains the same. In the Airy model, the crust is thicker underneath high topography than underneath
low topography, so that more of the heavier mantle material is displaced, meaning that there is more
buoyancy force to support the topography.
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(a) Pratt compensation.

(b) Airy compensation.

Figure 2.3: Different kinds of local isostatic compensation (Heiskanen & Vening Meinesz, 1959).

The density at an arbitrary location of the crust in the Pratt model is given by Equation 2.11, where ρc is
the local crust density, ρref is the reference density, Tref is the reference thickness, and ht is the local
topography height. The reference values are chosen to correspond with a topography height of zero.

ρc = ρref
Tref

Tref + ht
(2.11)

For Airy compensation, there are multiple ways to calculate the crust thickness. Traditionally, the devi-
ation of the lower boundary of the crust from the reference depth is calculated using the equal masses
approach, which assumes a uniform gravitational field. This assumption leads to a small error if the
crust thickness is a very small fraction of the radius of the body, such as in the case of the Earth. How-
ever, for smaller bodies, such as Ceres, this can lead to a significant error, in which case one would
like to opt for the equal pressures approach. This approach does not use the assumption on the gravity
field, but is therefore a bit more complicated. The formulas used to calculate the deviation from the
reference depth are taken from Hemingway and Matsuyama (2017), and are shown in Equation 2.12
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and Equation 2.13 for the equal masses and equal pressures method, respectively. In these equations,
hb is the deviation from the reference depth (positive downwards), ht is the topography of the surface
of the crust, ρc is the density of the crustal material, ∆ρ is the density contrast between the crust and
mantle, gt is the gravitational acceleration at the top of the crust, and gb is the gravitational acceleration
at the bottom of the crust.

hb = ht
ρc
∆ρ

(2.12)

hb = ht
ρc
∆ρ

gt
gb

(2.13)

These models implicitly assume local isostasy, where every feature of topography is compensated only
by the crust directly underneath it. An extension of these models are flexure models, which assume
that topography features are supported by an elastic lithosphere, which deflects to support the weight
of the feature. This is called regional isostasy, and the difference between local and regional isostasy
is visualized in Figure 2.4.

Figure 2.4: Difference between local and regional isostasy (Heiskanen & Vening Meinesz, 1959).

Regional isostasy is modelled by the flexural response function, which calculates for each spherical
harmonic degree of the crust thickness by which value between 0 and 1 it should be multiplied, de-
pending on the mechanical properties of the elastic lithosphere. The low degrees are always kept at
100%, and the very highest degrees are always set to 0, but where and how fast this transition occurs is
what is calculated by the flexural response function. Therefore, what the flexure model essentially does
is smooth out the changes in crust depth by keeping only the low degrees of the spherical harmonics
of the crust thickness. The flexural response function of an infinite plate is given by Equation 2.14,
where n is the spherical harmonic degree, D is the flexural rigidity of the lithosphere, ρm is the density
of the mantle, and R is the radius of the planet. The flexural rigidity is given by Equation 2.15, where
E is the Young’s modulus of the lithosphere material, Te is the elastic lithosphere thickness, and ν is
the lithosphere material’s Poisson ratio. For small planets, the approximation of the crust as an infinite
plate leads to significant errors. For those, the flexural response function is calculated for a thin shell,
as given in Equation 2.16.

Φ(n) =

(
1 +

D

(ρm − ρc)gt

(2(n+ 1)

2R

)4)−1

(2.14)

D =
ET 3

e

12(1− ν2)
(2.15)
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Φ(n) =

(
1 +

D

(ρm − ρc)gt

(
1

R4

(
n(n+ 1)− 2

)2
1− 1−ν

n(n+1)

+
12(1− ν2)

T 2
eR

2

1− 2
n(n+1)

1− 1−ν
n(n+1)

))−1

(2.16)

These are all the equations necessary for the creation of crust models.



3
Interior Modelling

The first step to understanding Ceres’ interior is to develop models of its structure, crust and temper-
ature. The structure and temperature of the entire interior of the dwarf planet are described using
spherically symmetric density and temperature profiles, respectively. Crust models can produce later-
ally varying models for the top layer, on the other hand. This chapter describes the methods used to
obtain these models.

3.1. Data
Measurements of Ceres that are useful to constrain its structure are limited to its mass, moment of
inertia, shape, and gravity field. Ceres’ mass is taken to be 9.3834 · 1020 kg (Konopliv et al., 2018), and
its normalized moment of inertia is taken to be 0.375 (X. Mao & McKinnon, 2018).

The topography dataset used is from a digital terrain model resulting from a stereo photogrammetry
study by the German Aerospace Center 1, and it is shown in Figure 3.1. This figure shows the topogra-
phy of Ceres with respect to the reference ellipsoid (which is obtained by setting C00 and C20 to zero).
The topography ranges from -6 km to 8 km with notable high points in the north pole and notable low
points in the east.

The gravity field is obtained by using the spherical harmonics coefficients in the Ceres18C dataset
developed by Konopliv et al. (2018). The gravity field, with the major hydrostatic terms J2 and J4 set
to 0, is shown in Figure 3.2. Here it is shown that the residual acceleration is between -230 and 220
mGal.

1https://astrogeology.usgs.gov/search/map/ceres_dawn_fc2_hamo_global_dtm_137m, retrieved June 5th 2024

15
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Figure 3.1: Ceres’ topography (DLR, n.d.).

Figure 3.2: Ceres’ gravity field (Konopliv et al., 2018). The major hydrostatic terms J2 and J4 are set to 0.

Figure 3.1 and Figure 3.2 both show a vertical banded pattern that is almost inverted, but not quite. This
lack of correlation is especially clear when looking at the area around longitude 0, where the topography
is part of the highlands slightly east, but the gravity is part of the stronger are slightly west.

3.2. Spherically Symmetric Density Profiles
The normalized moment of inertia of a planet is calculated using Equation 3.1, where I is the measured
moment of inertia, M is the mass of the planet, and R is the radius of the planet. For a homogeneous
sphere, as its moment of inertia is given by I = 0.4MR2, the normalized moment of inertia is 0.4. Ceres’
normalized moment of inertia being smaller than this value implies a mass concentration closer to the
center.
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Inorm =
I

MR2
(3.1)

A density profile that would explain this mass concentration can be constrained using the mass and
moment of inertia. For an arbitrary density profile, as a function of the distance r from the center of the
body, ρ(r), the mass and moment of inertia of the body are given by Equation 3.2 and Equation 3.3,
respectively. Setting the incremental change in volume dV equal to the volume of a plate with incre-
mental thickness dr and area equal to the surface area of a sphere with radius r yields Equation 3.4.
Substituting this equation into Equation 3.2 and Equation 3.3 yields Equation 3.5 and Equation 3.6,
respectively. These equations can be validated by substituting a constant value ρ for ρ(r) and per-
forming the integration to obtain the familiar formulas for the mass and mass moment of inertia for a
homogeneous sphere.

M =

∫
m

dm =

∫
V

ρ(r)dV (3.2)

I =

∫
m

r2dm =

∫
V

r2ρ(r)dV (3.3)

dV = 4πr2dr (3.4)

M = 4π

∫ R

0

r2ρ(r)dr (3.5)

I = 4π

∫ R

0

r4ρ(r)dr (3.6)

The simplest density profile that can explain the mass concentration is a linear one, given by ρ(r) =
c0 + c1r, where c0 and c1 are arbitrary constants. Substituting this into Equation 3.5 and Equation 3.6
and evaluating the integrals results in a system of equations given by Equation 3.7. This system can
be solved uniquely, because the linear density profile has two unknowns and there are 2 constraints.
A quadratic profile, given by ρ(r) = c0 + c1r + c2r

2, has one additional constraint, and so results in
a family of solutions. If c0 (effectively the core density) is taken as the free variable, the remaining
two constants can be calculated using Equation 3.8. The same thing can be done for a cubic profile,
ρ(r) = c0 + c1r + c2r

2 + c3r
3, by assuming that the first derivative of the profile is 0 at the core of the

planet, which leads to c1 = 0. The remaining two constants can then be calculated using Equation 3.9.

 M
4πR3

I
4πR5
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Figure 3.3: Polynomial density profiles constrained my the mass and moment of inertia.

The density profiles that follow from these calculations are shown in Figure 3.3, in which it is clear that
these solutions are not realistic, as they contain negative densities, and higher densities on top of lower
densities. Finally, to investigate the suitability of polynomial density profiles, a 7th order polynomial
model (ρ(r) = c0 + c1r + c2r

2 + c3r
3 + c4r

4 + c5r
5 + c6r

6 + c7r
7) is created by assuming the first and

second derivatives of the profile are 0 at the domain boundaries (r = 0 and r = R), and that the core
density is that of iron (ρ(0) = c0 = 7900 kg/m3) and the outermost density is that of ice (ρ(R) = c8 = 910
kg/m3), corresponding to the most extreme case. This leads to the system in Equation 3.10, where the
first two rows correspond to the requirements of the derivatives at r = R, the third row corresponds
to the requirement on the outer density, and the last two rows correspond to the mass and moment of
inertia constraints. This leads to the model shown in Figure 3.4, where it is visible that there is still some
unrealistic overshoot at the boundaries. The conclusion that can be drawn from this is that the change
in density happens more suddenly than the smooth polynomial models can accommodate. Therefore,
models with more sudden, or even discontinuous, density changes must be considered.
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Figure 3.4: 7th order polynomial density profile.

Models with discontinuous density changes are those with discrete layers of different densities. The
most parsimonious layered model is one with two layers, called the mantle and the crust in this work.
This model has three unknowns, the mantle density ρm, the crust density ρc and the boundary radius
rbound. Given the formulas for the mass of a homogeneous sphere (Equation 3.11) and the moment of
inertia of a homogeneous sphere (Equation 3.12), the mass and moment of inertia of a two-layer planet
are given by Equation 3.13 and Equation 3.14, respectively.

M = ρV =
4

3
πρR3 (3.11)

I =
2

5
MR2 =

8

15
πρR5 (3.12)

M =
4

3
π
(
r3boundρm + (R3 − r3bound)ρc

)
(3.13)

I =
8

15
π
(
r5boundρm + (R5 − r5bound)ρc

)
(3.14)

When rbound is taken as the free variable, Equation 3.13 and Equation 3.14 form a system of equations
that is linear in ρm and ρc, shown in Equation 3.15. This system forms a family of solutions where every
value of the boundary radius corresponds to a combination of mantle and crust density that meet both
the mass and the moment of inertia requirements. This family of solutions is shown in Figure 3.5.

3M4π
15I
8π

 =

r3bound R3 − r3bound

r5bound R5 − r5bound


ρm
ρc

 (3.15)
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Figure 3.5: 2 layer solutions for the interior structure that meet the mass and moment of inertia requirements. The maximum
internal pressure (which is found at the core) is shown for every solution. Only the solutions that satisfy ρc > 900 kg/m3 and

ρm < 4000 kg/m3 are considered, leading to a maximum bound 1989 kg/m3 on ρc and a minimum bound of 2396 kg/m3 on ρm.

On the left side of Figure 3.5, the mantle and crust densities are shown as a function of the boundary
radius. Only the solutions where the crust density is more than that of water ice and the mantle density
is less than 4000 kg/m3 are considered, roughly consistent with the maximum density of silicates. This
constraint leads to a maximum crust density of 1989 kg/m3 and a minimum mantle density of 2396
kg/m3. The right side of the figure shows the maximum pressure of each of these solutions, where it
can be seen that the maximum pressure does not exceed 200 MPa.

In order to assess whether amodel with a constant density in each layer is realistic, the equation of state,
given in Equation 3.16, is considered. In the equation of state, ρ0 signifies the nominal density of the
material, before its temperature is changed or it’s pressurized, αT is the thermal expansion coefficient
of the material, ∆T is the difference in temperature from the nominal case, K is the bulk modulus of
the material, and ∆p is the difference in pressure from the nominal case.

ρ = ρ0(1− αT∆T +
1

K
∆p) (3.16)

The worst-case-scenario is considered, so that there can be high confidence that the effect of temper-
ature and pressure on the density is negligible. The highest expected thermal expansion coefficient
corresponds to a metal or ceramic and is less than 10−4 K−1 (Ashby et al., 2014), and the highest
expected temperature in Ceres’ interior is 500 K (Neumann et al., 2020), leading to a change in density
of 5%. The lowest expected bulk modulus corresponds to water ice and is 8.4 GPa (Neumeier, 2018),
using the previously found maximum expected pressure of 200 MPa leads to a change in density of
2.38%.

Two conclusions can be drawn from this. The first is that the change in density due to temperature and
pressure are small enough that ignoring them will not introduce significant error. The second is that
any significant change in density in Ceres’ material, which must exist considering its moment of inertia,
is purely due to a change in composition.

An unsuccessful attempt was made to constrain the composition of Ceres to the known atomic propor-
tions of terrestrial bodies from McDonough and Yoshizaki (2021), shown in Figure 3.6. The attempt
was not successful due to the high amount of water (and therefore hydrogen) on Ceres, which is not
consistent with other terrestrial bodies. This problem seemingly supports theories that Ceres formed
further out in the solar system.
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Figure 3.6: Atomic proportions of terrestrial bodies (McDonough & Yoshizaki, 2021).

The structure is further constrained by using the gravity field, coupling the inputs to the 1D structure
model and crust models to find the inputs that formed the best performing crust models.

3.3. Crust Models
Two crust models are considered: an Airy compensated crust and a Pratt compensated crust. The
inputs to the Airy crust are the reference depth, the mantle density and the crust density. The reference
depth, the thickness of the crust when there is no topography, is analogous to the planetary radius
minus the boundary radius in the 1D structure model and so can be related one-to-one to the boundary
radius. This means the 1D structure model and the Airy crust model have the same inputs. The Pratt
model has two inputs, the compensation depth and the reference density. If the compensation depth
is interpreted as the crust thickness, that is, the crust is interpreted to be the part of the planet that
supports the topography, and the reference density is interpreted as the nominal crust density, the
inputs to the Pratt model can also be related to the inputs of the 1D structure model.

The values of the inputs that lead to the best performing model are determined by calculating the root-
mean-square-error of the resulting model’s degree variance spectrum to that of the measured gravity
field. The degree variance of the measured gravity field is shown in Figure 3.7.
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Figure 3.7: Degree variance spectrum of the measured gravity field (Konopliv et al., 2018).

By visual inspection, it is determined that the greatest correlation between the shapes of the gravity
fields from measurments and models is found for the spherical harmonic degrees 5-14, as shown in
Figure 3.8. Therefore, the models are only optimized to fit the degree variance for degrees 5-14.
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(a) Measured gravity field.

(b) Modelled gravity field.

Figure 3.8: Gravity fields from measurements and crust modelling for spherical harmonic degrees 5-14. The modelled crust is
from a Pratt model, but the shape is the same for an Airy model.

Sensitivity analyses are performed for the input variables of the Airy and Pratt models. The results
for the Airy model are shown in Figure 3.9. In Figure 3.9a, it is seen that the difference in power
between the degrees become more pronounced with a higher value of the reference depth, and the
effect of increasing the reference depth decreases the higher it is. Figure 3.9b shows that the mantle
density doesn’t affect the low degrees as strongly as the high degrees, and that the power spectrum
quite quickly converges with increasing mantle density. The effect of the crust density, as shown in
Figure 3.9c, is seen to become unstable for high values because it gets close to the mantle density,
which invalidates the model.
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(a) Sensitivity analysis of the reference depth. Values were varied between 10 km and 70 km in steps of 5 km.

(b) Sensitivity analysis of the mantle density. Values were varied between 1500 kg/m3 and 4000 kg/m3 in steps of 100 kg/m3.

(c) Sensitivity analysis of the crust density. Values were varied between 900 kg/m3 and 2200 kg/m3 in steps of 100 kg/m3.

Figure 3.9: Sensitivity analysis for input variables of the Airy model, showing the degree variance spectrum of the modelled
gravity field normalized by the degree variance of the measured gravity field. The green line indicates the lowest value for the
variable, whereas the red line indicates the nominal model. The nominal model has a reference depth of 39 km, a crust density

of 1310 kg/m3 and a mantle density of 2410 kg/m3.
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The sensitivity analysis for the Pratt model is shown in Figure 3.10. Figure 3.10a indicates that the
lower degrees are more affected by the compensation depth than the higher degrees, and the effect
of increasing the compensation depth decreases with increasing the compensation depth. It can be
noted from Figure 3.10b that the higher degrees are more affected by the reference density than the
low degrees, and that the effect of increasing the reference density actually increases with increasing
reference density.

(a) Sensitivity analysis of the compensation depth. Values were varied between 40 km and 200 km in steps of 10 km.

(b) Sensitivity analysis of the reference density. Values were varied between 1000 kg/m3 and 3000 kg/m3 in steps of 100 kg/m3.

Figure 3.10: Sensitivity analysis for input variables of the Pratt model, showing the degree variance spectrum of the modelled
gravity field normalized by the degree variance of the measured gravity field. The green line indicates the lowest value for the
variable, whereas the red line indicates the nominal model. The nominal model has a compensation depth of 70 km and a

reference density of 1570 kg/m3.

To find the optimal Airymodel, every reference depth between 30 km and 50 km is evaluated in steps of 1
km. For each of these reference depths, the corresponding mantle and crust densities are determined
using Equation 3.15. The Airy crust model is then created and its degree variance calculated. Its
performance is measured using the root-mean-square-error of this degree variance spectrum to that
of the measured gravity field. The results of this procedure are shown in Figure 3.11, and there is
clearly a minimum between 39 km and 40 km. Out of the tried values, 39 km had the absolute lowest
root-mean-square-error, where the mantle density is 2410 kg/m3 and the crust density is 1310 kg/m3.
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Figure 3.11: Root-mean-square-error of Airy models with different reference depths. The mantle and crust densities for the
models are determined using Equation 3.15.

A simple grid search is performed to determine the optimal Pratt model, where the compensation depth
is varied between 50 km and 80 km in steps of 1 km, and the reference density is changed between
1500 kg/m3 and 1800 kg/m3 in steps of 10 kg/m3. The results are shown in Figure 3.12. In Figure 3.12a
it is visible that there are many combinations where the inputs are adjusted to each other to produce
a low error. This is even more clear in Figure 3.12b, where the yellow squares indicate solutions that
perform only a couple of percents worse than the best solution. Therefore, a solution in this area can
be chosen where the compensation depth and reference density correspond to a combination of layer
boundary radius and crust density that meets the mass and moment of inertia requirements. This
solution is found to be at a compensation depth of 70 km and a reference density of 1570 kg/m3, which
leads to a mantle density of 2520 kg/m3.

The selected crust models are shown in Figure 3.13. Of course, the shape of these models in directly
related to the topography. In the Airy model shown in Figure 3.13a, the crust thickness varies between
24 km and 57 km, whereas in the Pratt model shown in Figure 3.13b, the crust density varies between
1400 kg/m3 and 1750 kg/m3. These densities indicate significant rock content in the crust, because
they are all much higher than the density of ice.
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(a) The root-mean-square-error of the grid search.

(b) The difference of the root-mean-square-error of each model with respect to the lowest value, normalized by the same value.

Figure 3.12: Results of the grid search for the optimal Pratt inputs values.
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(a) Crust thickness of the selected Airy model.

(b) Crust density of the selected Pratt model.

Figure 3.13: Crust models of the selected models.

The gravity residuals of the selected Airy and Pratt models are shown in Figure 3.14. It is visible that
the residuals are practically the same, indicating that both models perform similarly in explaining the
observed gravity signal. Although the range of the gravity residual (-70 to +80 mGal) is smaller than
that of the original signal (-150 to +100 mGal), the positions of the extremes are different. Both models
have a mean residual of approximately -4.45 mGal. Ceres’ north pole has a much weaker gravity
than is expected from its high topography, and similarly, there are a number of areas in the eastern
hemisphere that exhibit a much stronger gravity than expected. Overall, except for a few places where
the residual is very high, the gravity signal is much closer to 0 than in the original signal. The crust
models therefore perform better than might be concluded from the range of the signal.
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(a) Gravity residual of the selected Airy model.

(b) Gravity residual of the selected Pratt model.

Figure 3.14: Gravity residuals of the crust model. Only spherical harmonic degrees 5-14 are included.

The density, gravity and pressure in Ceres’ interior for the two models are shown in Figure 3.15. Here,
it is observed that there is hardly any difference between the models in terms of the core pressure.
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(a) Interior properties of the Airy model.

(b) Interior properties of the Pratt model.

Figure 3.15: 1D density, gravity and pressure in Ceres’ interior as a function of radius for the two different models.

When comparing the values of the 1D structure associated with these crust models (summarized in
Table 3.1), with those from literature, given in Table 1.1, it is found that in general the Airy model is
more in line with the results of recent research. Furthermore, it is possible to interpret the composition
of the layers based on their densities. The mantle densities are quite close to the density of serpentinite,
2600 kg/m3. That the densities are a bit lower indicates that there are lighter materials in there, such
as water (ice) or salts. The crust densities are significantly higher than that of water ice, indicating a
high rock and/or salt content, as stated earlier.

Finally, the residual of the gravity field including all spherical harmonic degrees after taking into account
the crust model is shown in Figure 3.16. It reveals a banded pattern of regions with stronger and weaker
gravity, possibly indicative of a degree 2 convection cell. This residual field of the entire spectrum can
be inverted back into changes in density in the isostasy models, assuming that the entire gravity field
is due to the crust. This way, the lowest degrees of gravity field are included despite not being used to
fit the isostasy models. The inverted density distributions are shown in Figure 3.17.
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Table 3.1: Summary of the values of the 1D structure for the selected crust models.

Input Variable Airy Pratt

Crust Thickness km 39 70
Crust Density kg/m3 1310 1570
Mantle Density kg/m3 2410 2520

Figure 3.16: The residual of the gravity field of the Pratt model (which is approximately the same as that of the Airy model),
including all spherical harmonic degrees.
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(a) Density distribution found by inverting the Pratt model.

(b) Density distribution found by inverting the Airy model.

Figure 3.17: Density distributions obtained by inverted gravity residuals for density.

In Figure 3.17a, the banded pattern is now visible in the density distribution, because it is not solely
dependent on the topography anymore. The densities of the Pratt crust model after inversion are
between 1300 kg/m3 and 1800 kg/m3. The disparity in the density is smaller in Figure 3.17b, as most
of the gravity field is explained by the crust thickness. Additionally, there appears to be quite a bit of
noise in the otherwise familiar banded pattern, suggesting that this result is not particularly valid. The
densities after inversion of the Airy model range from 1150 kg/m3 to 1550 kg/m3.

3.4. Thermal Profile
The thermal profile is a solution of the equation of conservation of energy. If a steady-state where
there is no flow and only radiogenic heating is assumed this equation reduces to Equation 3.17. In
this equation, κ is the thermal diffusivity and H is the volumetric radiogenic heating rate. The thermal
diffusivity, in turn, is given by Equation 3.18, where k is the material’s conductivity, ρ is its density, and
Cp is its heat capacity, assumed to be constant across the material. The volumetric radiogenic heating
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rate H is considered a free variable.

−H = ∇ · (κ∇T ) (3.17)

κ =
k

ρCp
(3.18)

Taking only the radial component of Equation 3.17 in spherical coordinates results in Equation 3.19.

−H =
1

r2
∂

∂r

(
κr2

∂T

∂r

)
(3.19)

Rearranging the equation results in:

−Hr2 =
∂

∂r

(
κr2

∂T

∂r

)
. (3.20)

Integrating both sides of the equation yields:

−1

3
Hr2 + c1 = κr2

∂T

∂r
. (3.21)

This equation can be rearranged to isolate ∂T
∂r and then integrated again to get:

T (r) = −Hr2

6κ
− c1

κr
+ c2. (3.22)

Equation 3.22 can be used to calculate the temperature of the Ceres’ interior as long as the material
properties remain the same, meaning that separate solutions are necessary for the crust and themantle.
Therefore, 4 boundary conditions are necessary to specify the values of the 4 integration constants c1,m,
c2,m, c1,c, and c2,c, where the subscripts c and m signify the crust and mantle, respectively.

As no heat can be transferred out of the system at r = 0, from assuming that ∂T
∂r = 0 there it can be

readily deduced that c1,m = 0.

Assuming continuity of the derivative of the temperature across the crust-mantle interface (r = rbound)
then leads to:

−Hmrbound
3κm

= −Hcrbound
3κc

+
c1,c

κcr2bound
. (3.23)

Rearranging this equation leads to Equation 3.24, which can be used to determine the value of c1,c.

c1,c =
r3bound

3

(
Hc −

κc

κm
Hm

)
(3.24)

The surface temperature Tsurface is found by using Equation 3.25 (Lissauer & de Pater, 2019), in which
Fsun is the solar constant, raunAU

is the distance from the sun to the body in question in astronomical
units, Ab is the albedo, ϵ is the emissivity of the body and σ is the Stefan-Boltzmann constant.

Tsurface =

(
Fsun

r2sunAU

(1−Ab)

4ϵσ

)1/4

(3.25)

Imposing this boundary condition on the temperature profile leads to the following:
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Tsurface = −HcR
2

6κc
− c1,c

κcR
+ c2,c, (3.26)

which can be rearranged into an expression for the c2,c:

c2,c = Tsurface +
HcR

2

6κc
+

c1,c
κcR

. (3.27)

The temperature at the mantle-crust boundary, Tbound, can then be found using the coefficients for the
crust:

Tbound = −Hcr
2
bound

6κc
− c1,c

κcrbound
+ c2,c, (3.28)

and used to constrain the temperature profile of the mantle:

Tbound = −Hmr2bound
6κm

+ c2,m, (3.29)

leading to:

c2,m = Tbound +
Hmr2bound

6κm
. (3.30)

The values for the variables used in the thermal profile are given in Table 3.2. The thermal properties
of the mantle are chosen based on the assumption that it consists of serpentinite for such a large part
that its properties are approximately the same as that of pure serpentinite. The fraction of serpentinite
in the crust, fs, is calculated using its density under the assumption that the crust is made up only of
ice (subscript i) and serpentinite (subscript s), shown in Equation 3.31. This fraction is then used to
calculate the thermal diffusivity of the crust using the rule of mixtures (Equation 3.32).

fs =
ρc − ρi
ρs − ρi

(3.31)

κc = fsκs + (1− fs)κi (3.32)

Table 3.2: Input values for the thermal profiles.

Variable Symbol Value

Albedo Ab 0.09 (Li et al., 2006)
Heat capacity of the mantle Cp,m 1000 J/K (Osako et al., 2010)

Heat capacity of ice Cp,i 1389 J/K (“Ice - Thermal Properties”, n.d.)
Solar constant Fsun 1.37·103 W/m2 (Lissauer & de Pater, 2019)

Thermal conductivity of the mantle km 2.7 W/mK (Osako et al., 2010)
Thermal conductivity of ice ki 3.48 W/mK (“Ice - Thermal Properties”, n.d.)
Distance from the sun rsunAU

2.77 AU (Lissauer & de Pater, 2019)
Thermal emissivity ϵ 1 - Ab

Density of ice ρi 917 kg/m3

Density of serpentinite ρs 2600 kg/m3

Stefan-Boltzmann constant σ 5.67·10−8 W/m2K (Lissauer & de Pater, 2019)

Finally, it is assumed that all of the radioactive elements are contained within the serpentinite, so that
the heating in the crust is proportional to the serpentinite fraction:
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Hc = fsHs = fsHm. (3.33)

Therefore, the only free variable left isHm, which can be varied to analyse the plausibility and likeliness
of a liquid (muddy) ocean on Ceres.



4
Verification and Validation

In order to gain insight into the performance of isostasy-based crust models, different models of the
Earth’s crust thickness are compared against the measured thickness. These measured thicknesses
are obtained by adding the Earth’s topography (Hirt & Rexer, 2015) to its seismic moho depth (Szwillus
et al., 2019).

As Earth’s crust is more suitable for Airy compensation, Pratt compensation is not considered. To
compare the relative performance of different Airy-based approaches, models of the entire crust of the
Earth are made using the input values given in Table 4.1. The young’s modulus E and Poisson ratio
ν of the lithosphere material are determined from the bulk and shear moduli by solving the system of
equations given by Equation 4.1 and Equation 4.2.

Table 4.1: Input values for the models comparing the different modelling approaches.

Variable Symbol Value

Reference Depth - 24 km
Mantle Density ρm 3320 kg/m3 (“Olivine Mineral Data”, n.d.)
Crust Density ρc 2835 kg/m3 (Christensen & Mooney, 1995)

Elastic Thickness Te 34 km (Watts & Moore, 2017)
Bulk Modulus K 128.8 GPa (Z. Mao et al., 2015)
Shear Modulus S 81.6 GPa (Z. Mao et al., 2015)

K =
E

3(1− 2ν)
(4.1)

S =
E

2(1 + ν)
(4.2)

To find out how strongly the input variables affected the model, each of them was varied around the
starting value to find how the root-mean-square-error was affected. The results showed that the bulk
and shear modulus have a much weaker effect than the other variables, in fact being almost negligible.
Therefore, it was not included in further investigations on optimal input values.

The root-mean-square-error of the different modelling approaches, using the input values given in Ta-
ble 4.1, are given in Table 4.2. The error of the best performing model, the thin shell flexure model
based on the equal pressures airy model, is shown in Figure 4.1.
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Table 4.2: root-mean-square-error of the different modelling approaching using the input values in Table 4.1.

Model RMSE km

Equal Masses 6.6833
Equal Pressures 6.6683

Infinite Plate (Equal Masses) 6.4946
Infinite Plate (Equal Pressures) 6.4826
Thin Shell (Equal Masses) 6.3682
Thin Shell (Equal Pressures) 6.359

(a) Error in kilometers with respect to the measured crust thickness.

(b) Error in percentages of the measured crust thickness (capped at 100%).

Figure 4.1: Error of the thin shell flexure model based on the equal pressures airy model.

From Table 4.2, it can be clearly seen that the more complicated models perform better than the simpler
ones, which include more assumptions. This is to be expected, but the increase in accuracy is rather
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small because the simplifying assumptions for the simpler models are quite valid for the Earth. For
smaller bodies, where the crust thickness is a more significant fraction of the radius, the error introduced
by these assumptions will be more significant. Therefore, the more complex models will be more
appropriate for modelling Ceres’ crust. Furthermore, when examining the difference in root-mean-
square-error between the flexure models, it can be noted that the effect of changing between infinite
plate and thin shell modelling is greater than changing between equal masses and equal pressures.

An interesting feature to be noted from Figure 4.1a is that themodel greatly overestimates that thickness
of the crust at the mid-ocean ridges. That the crust would be thinner than expected from the model
at these locations can be attributed to the non-isostatic nature of the tectonic processes by which
the plate material forms at the mid-ocean ridges. Figure 4.1b shows that the error as a percentage
of the crust thickness is reasonably low and constant for continental crust, and more variable and at
some places very high for oceanic crust. This indicates that isostasy models are more appropriate for
modelling continental crust than oceanic crust. Due to the absence of plate tectonics on Ceres, its crust
is expected to behave more like continental crust than oceanic crust, adding credence to the suitability
of isostasy models for modelling Ceres’ crust.

Because of the large observed disparity of the performance of the model between the continental and
oceanic crust, the difference in performance between models made for different continental crust types
is investigated. To do this, a thin shell flexure model based on an equal pressures airy compensated
crust is made for crust of four thermo-tectonic ages. These thermo-tectonic ages, in order from oldest
to youngest, are the Archean, the Proterozoic, the Paleozoic, and the Meso- and Cenozoic. A map
of where crust of each of these ages can be found is taken from Goutorbe et al. (2011) (shown in
Figure 4.2), and a model is optimized for each of these data sets. The optimization process is suc-
cessive in order to minimize computational effort, and it prioritizes the variables with the largest effect.
First, the reference depth that leads to the lowest root-mean-square-error is selected, after which a grid
search is performed to find the optimal combination of mantle and crust densities. Finally, the elastic
thickness that minimizes the root-mean-square-error is taken. The starting values, search range and
search resolution are summarized in Table 4.3. The starting values of the variables are based on the
optimal values found for a single model of the entire continental crust, found by the same optimization
procedure. The resulting models are used to characterize the error associated with each of the crust
ages.

Figure 4.2: Thermo-tectonic ages of the Earth’s crust (Szwillus et al., 2019).

Table 4.3: Parameters for the optimization of the models for different crust types.

Variable Starting Value Range Resolution
Reference Depth 32 km 25-40 km 1 km
Mantle Density 2700 kg/m3 1200-5200 kg/m3 100 kg/m3

Crust Density 1900 kg/m3 700-3400 kg/m3 100 kg/m3

Elastic Thickness 80 km 20-120 km 1 km
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For the composite model that combines seperate models for different thermo-tectonic ages, the root-
mean-square-error and average percentage error for each crust type and the total root-mean-square-
error are given in Table 4.4. The error of the full model is shown in Figure 4.3.

Table 4.4: root-mean-square-error and average percentage error of the different thermo-tectonic ages of the crust.

Crust Age RMSE km Average Percentage Error

Meso- and Cenozoic 6.7294 18.1%
Paleozoic 4.3471 8.2%
Proterozoic 4.7151 9.2%
Archean 3.7582 6.9%
Total 5.7612 13.5%

(a) Error in kilometers with respect to the measured crust thickness.

(b) Error in percentages of the measured crust thickness.

Figure 4.3: Error of the composite crust model.
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In Table 4.4, a general trend can be observed where isostasy models perform better for older crust.
This is advantageous, because the absence of plate tectonics make Ceres’ crust likely to behave more
like Earth’s older crust. Furthermore, the complete composite model makes an average error of 13.5%,
but when viewing Figure 4.3b, it is clear that this number is significantly affected by a number of outliers,
and that for the majority of the crust, the error is below 10%. Nevertheless, the average percentage
error can be used a useful metric to characterize the expected error of an isostasy model of Ceres’
crust.

Furthermore, the validity of the developed models can be investigated by comparison of its results
to those from literature. In Figure 4.4, the crust thickness of the Airy model in this work is shown
alongside the crust thickness of an isostatic model from Ermakov et al. (2017). From the range of the
crust thicknesses, it is already visible that the found thicknesses are very comparable. Furthermore,
upon further inspection, it is clear that the features of the maps are very similar, differing only slightly
in the extremes in some areas, such as the poles. The large degree of similarity between the model in
this work and that of the previous work implies that the model in this work is valid.

(a) Crust thickness of the Airy model in this work.

(b) Crust thickness from Ermakov et al. (2017).

Figure 4.4: Crust thicknesses from this work and from literature for the purpose of comparison.
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Results

To reiterate, the Pratt model after inversion has crust densities between 1300 kg/m3 and 1800 kg/m3,
while the Airy model has crust thicknesses between 24 km and 57 km and crust densities from 1150
kg/m3 to 1550 kg/m3.

To assess the correlation between the crustal properties and observations of cryovolcanism, a dataset
of locations of bright spots on Ceres’ surface (Stein et al., 2019) is used to find the crustal properties that
correspond to the locations of cryovolcanic observation. This dataset is the result of a global bright spot
mapping study between the latitudes of -60◦ and 60◦. When these properties are found, a histogram
is made to visualize the distribution of the data. The maps of the bright spots over crustal properties
are shown in Figure 5.1. Judging from these maps, there does not seem to be a particular correlation
with these crust properties.

The histograms showing the distribution of these observations are shown in Figure 5.2. In these figures,
the blue bars represent the amount of bright spots associated with that particular value of the crustal
property. The red line indicates how the distribution would look if it followed a normal distribution,
consistent with a random error around a mean value. The green line indicates how the distribution of
the entire crust, not just those points associated with cryovolcanism, would look like if it were a normal
distribution.

All of these histograms show that the distribution of the observations is fairly in accordance with a
normal distribution and that the mean values of the observations do not differ significantly from those
of the entire crust at large. This indicates that there is not a strong correlation between the crustal
properties and the bright spots.

Interestingly, the crust density in the Airy model shows extremely little difference between the full crust
and only cryovolcanic observations compared to the other crust properties. The densities in this model
are obtained through inverting the gravity signal and are therefore only dependent on gravity and not
topography, suggesting that the gravity data is not very useful for modelling the interior.
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(a) Cryovolcanic locations overlaid over map of crust densities obtained by inverting the Pratt model.

(b) Cryovolcanic locations overlaid over map of crust densities obtained by inverting the Airy model.

(c) Cryovolcanic locations overlaid over map of crust thicknesses from the Airy model.

Figure 5.1: Cryovolcanic observation maps.
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(a) Histogram of crust density from inverting Pratt model.

(b) Histogram of crust density from inverting Airy model.

(c) Histogram of crust thickness from Airy model.

Figure 5.2: Histograms of crustal properties corresponding to observations of cryovolcanism. The red curves are the gaussian
curves based on the datasets mean and standard deviation, indicating the expectation of the distribution if there was random
error about the mean value. The green curves are the gaussian curves based on the entire dataset of the crust, signifying the

distribution if there is no correlation between the crustal property and the cryovolcanism.
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Next, the possibility of liquid water in the crust must be investigated. Figure 5.3 shows the effect of
the volumetric heat generation rate H on the 1D temperature profile of the planet. The values of H
are chosen to demonstrate the amount of internal heating necessary for the possibility of liquid water
to exist in the crust without the necessity of impact heating for different levels of dissolved salt. The
melting temperatures of ice were calculated using a dataset on the melting temperature at different
pressures 1, and the simple relation in Equation 5.1 2, in which∆Tf is the amount by which the melting
temperature decreases, cf is the melting temperature depression constant of the solvent (1.86 K/mol
for water), µ is the molality of the solution, and i is the number of particles formed when the solute
dissolves. The molality is calculated using Equation 5.2, in which msolute is the mass of solute in the
solution, Mmolar is the molar mass of the solute (58.443 g/mol for NaCl), and ρsolvent is the density of
the solvent.

∆Tf = cfµi (5.1)

µ =
msolute

Mmolarρsolvent
(5.2)

The different values of the salinity in Figure 5.3 correspond to 0%, 50% and 100% of the solubility of
NaCl.

In Figure 5.3a, showing the thermal profile for the Pratt-based density profile, it is visible that for a
heating rate of 1.3 · 10−14 W/m3 or higher, the temperature is certainly high enough for liquid water to
exist in the crust.

For the Airy-based model a higher value for the heating rate is necessary to allow for liquid water in the
crust, shown in Figure 5.3b. This is largely due to the smaller crust thickness, meaning that a higher
temperature is necessary further from the planetary center. Additionally, as the crust material is lighter,
the crust is under less pressure, raising the melting temperature of the ice. The lighter material also
implies a lower fraction of serpentinite and therefore less radiogenic heating in the crust.

The value of the volumetric heating rate can be compared to the expected volumetric heating rate in
other terrestrial bodies, such as in the models for Mars made by Breuer et al. (2022), where it is found
to be of the order of 10−12 W/m3. The heating rate necessary for liquid water in the crust, then, is
significantly smaller than a typical value.

1https://www.engineeringtoolbox.com/water-melting-temperature-point-pressure-d_2005.html, retrieved August 29th 2024
2https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry/13%3A_Solutions/13.09%3A

_Freezing_Point_Depression_and_Boiling_Point_Elevation, retrieved August 29th 2024
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(a) Temperature profile and PT diagram for the density profile corresponding to the Pratt model.

(b) Temperature profile and PT diagram for the density profile corresponding to the Airy model.

Figure 5.3: Temperature profiles and PT diagrams for different values of the serpentinite volumetric heat generation rate H in
W/m3. The PT diagrams also show the melting temperature for ice with different amounts of dissolved salt. The dashed line

represents the mantle-crust boundary.

The temperature profiles found are reasonably close to those found in literature in terms of the surface
and core temperatures, as seen for example in Figure 1.6. This confirms the validity of the profile to
some extent.
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Discussion

The weak correlation between bright spots and crustal properties implies that the brines necessarily
present for the formation of the bright spots are not heterogeneously distributed. Therefore, this result
contradicts the hypothesis that the bright spots are formed from sub-surface brine reservoirs that are
hit by impacts. Rather, the brines would likely be more homogeneously distributed, such as in a sub-
surface ocean or frozen into the ice.

From the thermal profiles, it is found that the temperature at the base of the crust is certainly high
enough for the existence of liquid brine if the volumetric heating rate is higher than 2 · 10−14 W/m3.
This value can be compared to the expected volumetric heating rate in other terrestrial bodies, such as
in the models for Mars made by Breuer et al. (2022), where it is found to be of the order of 10−12 W/m3.
Therefore, if Ceres’ interior is similar to that of the terrestrial planets, it is expected that the temperature
inside the planet would be high enough that liquid brine would be present in Ceres’ crust even without
the need for impact heating.

Combining these two findings, the interpretation of the results of this work is that Ceres likely has a
sub-surface ocean at the base of its crust. Due to the non-trivial rock content of its crust, this would
be a very muddy ocean, with many suspended rock particles. The expected formation mechanism
following from this information is shown diagrammatically in Figure 6.1. Here, impacts cause cracks in
the crust, which allow for the already liquid brine to rise to the surface. The brine could be driven to rise
to the surface due to some form of capillary action caused by the evaporation of impact-heated ice at
the top of the crust or through pressurization of the ocean through successive refreezing of the ice at
the bottom of the crust due to the interaction with the dissolved salts.
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Figure 6.1: Diagram of the formation mechanism of the bright spots on Ceres’ surface.

In this model, the entire inner layer is made of serpentinite, a hydrated silicate. This is due to the
parsimony of a 2-layer model. However, it is very possible, and indeed maybe even likely, that there
exists an even deeper layer of unhydrated silicate, such as olivine. The existence of a metal core,
though less likely, is similarly possible, as the mass and moment of inertia requirements can be satisfied
with any number of layers.

The thermal profile developed in this work assumes that there is no flow in the interior and that all
heat transfer is conductive. Clearly, the existence of a muddy ocean in between the mantle and crust
contradicts this assumption. Furthermore, it is possible that Ceres has a lower internal heating rate
than other terrestrial bodies. This could be consistent with hypotheses that Ceres formed further out
in the solar system and the fact that it has an uncharacteristically high amount of water for a terrestrial
planet. Finally, this work assumes that a steady-state has been reached for the temperature in the
interior, while there exists the possibility that the interior has not yet reached this steady state. This
would lead to a higher temperature profile and more possibility for convection.

A similar assumption is present in the crust models, because they assume that every part of the crust
is in isostatic equilibrium. Some parts of the crust, such as impact craters, could be young enough that
isostatic equilibrium has not yet formed underneath. This might cause a bias in the crust properties
associated with bright spots. Furthermore, the conclusion that brine is not heterogeneously distributed
in Ceres’ crust does not offer an explanation for why floor bright spots are formed inconsistently in
impact craters.

The final model suggested by this work is very similar to the one proposed by Castillo-Rogez et al.
(2019). This model also includes a mud layer between the crust and mantle and includes a similar final
temperature profile, as shown in Figure 1.6. It differs, however, in where the boundary between the
crust and mantle would be. In this work, it would be close to the depths of 70 km or 39 km, wheres
in that of Castillo-Rogez et al. (2019) the mud layer is between 50 km and 90 km. Compared to the
thermal models of Neumann et al. (2020), the final temperature profiles in this work are higher by 100
K to 200 K, and the formation mechanism for the bright spots are not consistent. In that study, the
bright spots are hypothesized to be formed by heterogeneously distributed upwellings of brine, but this
is contradicted by the low correlation between cyovolcanism and crustal properties found in this work.

A mud layer is consistent with findings by Ruesch et al. (2019), which indicate that cryovolcanism in
Ahuna Mons and bright spots require a material that is essentially a convective slurry, with a significant
amount of non-soluble solid particles. A mud layer would satisfy the requirements found in that work.
Of course, the formation mechanism proposed here is not consistent with either of the ones proposed
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by Stein et al. (2019), because there are no subsurface brine reservoirs and impact heating is not
necessary to melt the cryovolcanic material. However, the hypotheses agree on the idea that impacts
form cracks through which cryovolcanic material can rise to the surface of the planet.

The results of this work imply that future research may be more relevant if they include a mud layer in
their models and investigate the process by which the muddy ocean material rises to the surface, as
well as why floor bright spots form inconsistently.



7
Conclusions

The goal of this work was to investigate the formation mechanism of the bright spots on Ceres’ surface.
In order to do so, interior models were developed and analyzed. Specifically, the following questions
were answered:

1. What is the formation mechanism of the bright spots on Ceres?

(a) To what degree is Ceres differentiated?
(b) How accurate are isostasy-based crust models?
(c) What are Ceres’ crustal properties?
(d) How correlated are the locations of bright spots and the crustal properties?
(e) Under which conditions is no external energy source necessary for liquid brine to exist in

Ceres’ crust?

The answers to these questions are summarized here.

Ceres is most likely partially differentiated, with a silicate inner layer and an outer layer made of water
ice mixed with silicates and dissolved salts and/or clathrates. These layers are also likely seperated by
a muddy ocean layer, where the temperature is high enough to support liquid brines without external
heat sources. This muddy ocean layer would have a significant amount of non-soluble solid particles
suspended in it and would be similar to a slurry.

Isostasy-based crust models have been shown in this work to be able to predict crustal properties of
Earth with an average error of 13.5%, as shown in Figure 4.3b. Their performance is observed to be
related to the age of the crust, with the general trend being that it performs better for older types of
crust. This is advantageous for modelling Ceres’ crust, as Ceres lacks the tectonics that would make
parts of the Earth’s crust younger.

Ceres’ crust densities vary between 1300 kg/m3 and 1800 kg/m3, with a mean value of 1560 kg/m3,
when using a Pratt model and inverting the gravity anomaly for density. This is shown in Figure 3.17a.
When using an Airy model, shown in Figure 3.13a, the crustal thickness varies between 24 km and 57
km, with a mean value of 30 km.

No significant correlation is found between any of the crustal properties and the locations of bright spots
on Ceres’ surface. The distributions are very similar to normal distributions, and the means are very
close to the means of the crust as a whole. This is shown in Figure 5.2.

Liquid brine can exist in Ceres’ crust without external energy source when the internal heating rate is
more than 2 · 10−14 W/m3, which is a low value for a terrestrial planet.

Taking all these results into account, the proposed formation mechanism of the bright spots (summa-
rized in Figure 1.7) is that impacts forms cracks in the crust from the surface to a muddy sub-surface
ocean, allowing the brine from this ocean to rise to the surface.
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As the thermal modelling in this work does not take into account the effects of the muddy ocean hy-
pothesized to exist based on the results of this work, this would be primarily recommended for future
work to investigate. Furthermore, as it is not clear what drives brines to the surface of the planet from
the muddy ocean, research into what could drive this phenomenon will be invaluable.
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