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Summary

This thesis has been dedicated to the study of derivative properties obtained from equations 
of state. The derivative properties are dependent on first or second order temperature or 
density derivatives of the principal thermodynamic surface. This means that the inaccuracy of 
the principal surface is easily revealed by these properties. The derivative properties used in 
this study were :

- Isochoric heat capacity
- Isobaric heat capacity
- The Joule - Thomson
- The speed of sound

The reduced bulk modulus

The real behavior of pure component properties derived from high accuracy 
multiparameter equations of state fitted to a large number of experimental data has been 
studied. The objective was to find general behavior among different substances. If there is a 
general behavior this would be helpful in the development of new and better functional 
structures for the description of thermodynamic properties. The isochoric heat capacity was 
found to have a regular behavior.

Another objective of the thesis has been to investigate the representation of derivative 
properties obtained from some model equations of state. Those equations were :

- Redlich - Kwong
Soave - Redlich - Kwong

- Peng - Robinson
- SPHCT
- SAFT

The derived properties from the model equations for both pure substances and mixtures were 
compared to those from the high accuracy equations. All equations were found to give very 
poor representations of the isochoric heat capacity. In light of the poor estimation of the 
isochoric heat capacity obtained from model equations this behavior could serve as a tool in 
the further development of equations of state.

In order to obtain reference data for mixtures new thermodynamic relationships for 
derivative properties have been developed based on the Extended Corresponding States 
theory. The new relationships were found to give excellent descriptions of derivative 
properties for mixtures.
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Derivative Properties from Equations of State M. Konttorp

Introduction

An equation of state (EOS) has proved to be a valuable tool in estimating fluid 
properties. The advantage of the EOS is the great number of fluid properties that can 
be derived from one equation. If the parameters can be described by mixing rules, the 
EOS in combination with the ideal gas isobaric heat capacity is able to describe 
virtually all thermodynamic properties of interest for an infinite number of mixtures 
These advantages has triggered an intense research activity in the field of equations of 
state. (Sandler27)
The different equations of state can be put into three classes :

• Elaborate multi parameter equations of state that are essentially within 
experimental error for all properties at nearly all conditions.

• Cubic or higher order polynomials in density with two to five parameters that are 
correlated with measurable quantities such as critical temperature and pressure.

• Equations based on the statistical mechanics of fluids.

It should also be noted that recently equations combining the critical scaling laws with 
the classical behavior have been established.
The multi parameter equations are used on systems where a great number of measured 
data are known. These equations are often used in applications where high accuracy is 
required. The high complexity of these equations prohibits their use when 
computational speed is required.
The cubic equations of state are the most widely used in industiy. The strength of these 
relatively simple models are the computational speed and the low number of 
measurements required in order to estimate the parameters. These models are often 
valid only for a limited number of systems. The range of the models is also restricted. 
The mechanical statistical based models represent efforts to link the microscopic 
structure of molecules to their macroscopic behavior. These equations are often more 
complex than the cubic equations, but due to the decreasing cost of computation the 
equations are becoming increasingly important in industry.

This thesis is a part of a joint project between the Laboratory of Applied 
Thermodynamics and Phase Equilibria at the Technical University of Delft and the 
Department of Chemical Engineering at the University of Virginia. The project is 
supported financially by the North Atlantic Technical Organization (NATO). The aim 
of the project is to study the behavior of derivative properties from different equations 
of state available in the literature outside the two - phase region, and to compare the 
predicted behavior of these equations to the real befiavjorof these properties. The 
information gained from this study will give us suggestions on how to improve the 
available models. The advantage of evaluating the derived properties are that they are 
measurable, and dependent on the first or second temperature and -density derivative of 
the principal thermodynamic surface. If those properties can be modeled accurately the 
models can be transformed into a pressure surface and hopefully give more accurate 
equations of state.
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Derivative Properties from Equations of State . M. Konttorp

In this thesis five derivative properties have been studied :

• The isochoric heat capacity
• The isobaric heat capacity
• The Joule - Thomson coefficient
• The speed of sound
• The reduced bulk modulus

These properties obtained from multi parameter equations of state has served as a 
reference of comparison for pure fluids. The Extended Corresponding States principle 
has been extended to predict these derived properties for mixlures. In this work the 
real behavior of pure components has been studied. Five equations of state has been 
tested on their ability to estimate derivative properties for pure components :

Cubic equations of state :

• The Peng - Robinson equation
• The Redlich - Kwong equation
• The Soave - Redlich - Kwong equation

Statistical mechanics based equations :

• The SPHCT equation
• The SAFT equation

The real behavior of mixtures predicted with the ECS theory has also been studied.

2



Derivative Properties from Equations of State M. Konttorp

1. Derivative properties from high accuracy equations of state

1.1. Introduction

There are a great number of multi parameter equations of state available in the 
literature. The quality of those equations is largely dependent on the range and quality 
of measured data. In this project 10 substances has been chosen for evaluation. Those 
10 substances have been chosen based upon the quality of the available equations, and 
their ability to represent different classes of substances. The classes and the chosen 
substances are listed below :

Non - polar hydrocarbons:

■ Methane
■ Ethane
■ Propane
■ i-Butane
■ n-Butane

Non polar cyclic hydrocarbons :

■ Cyclohexane

Refrigerants:

■ R152a
■ Sulphurhexafluoride

Polar substances :

■ Methanol
■ Water

For some of the substances listed above there has been published several equations of 
state. The equations used in this study are listed in Table 1.1 :

3
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Table 1.1 Multiparameter equations of state

Substance Type Pressure 
to : 
(MPa)

Temperature 
range (K)

Reference

Cyclohexane SWEOS 80 Melting line- 
700

Penoncello et. al20 (1995)

Methane SWEOS 1000 Melting line- 
625

Setzmann and Wagner21 
(1991)

Water HILLEOS 1000 Triple point 
- 1273

Hill22 (1990)

Water SWEOS 25000 Melting line 
- 1273

Saul and Wagner23 (1989)

Methanol SWEOS 800 Melting line 
- 620

de Reuck and Craven24 
(1993)

Sulfurhexafluoride SWEOS 55 222 - 525 Cole and de Reuck23 
(1990)

Methane 32MB WR 0-200 Melting line 
-600

Younglove et al.4 (1987)

Ethane 32MB WR 0-70 Melting line
-600

Younglove et al.4 (1987)

Propane 32MB WR 0-100 Melting line 
- 600

Younglove et al.4 (1987)

Isobutane 32MB WR 0-35 Melting line 
- 600 "

Younglove et al.4 (1987)

N-butane 32MB WR 0-70 Melting line 
- 500 "

Younglove et al.4 (1987)

1,1-Diflouro ethane 
(R152a)

32MBWR 0-35 162-453 Outcalt and McLinden5 
(1986)

The abbreviation 32MBWR is short for the modified Benedict - Webb - Rubin 
equation with 32 parameters. The abbreviation SWEOS is short for the Schmidt - 
Wagner equation of state. The abbrevation HILLEOS is short for the Hill equation of 
state for water.

In order to test the behavior of the derivative properties obtained from model 
equations the ECS theory has been extended to analytically predict the derivative 
properties of mixtures. The advantage of the ECS procedure is the high accuracy of 
the predictions and the ability to predict the properties for an infinite number of 
mixtures.

4
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1.2. Derivation of derivative properties for pure substances

If the thermodynamic surface is given in dimensionless Helmholtz free energy as a 
function of temperature and density the basic relations giving the derivative properties 
are as follows :

The following dimensionless variables are defined :

Ideal Helmholtz energy :

0 db° =---------

RT

Residual Helmholtz energy :

A - Aid 
RT

Dimensionless temperature :

T T

Dimensionless density:

0 = -^
Pc

The derivatives of the Helmholtz energy are denoted as :

d^

o
I dr1 J 

o

The subscripts are altered to give density derivatives. The superscript is altered to yield 
the definition of derivatives of the ideal Helmholtz energy.

The isochoric heat capacity

R
(1.1)

5
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• The isobaric heat capacity

C„(ö,r) _ +
R R + 1 + 2ó®:+J24>'

o do
(1.2)

• The speed of sound

yvz {8, 
RT

— 1 + 2<5^ C +82^>gS a do +3>^) (1.3)

• The Joule-Thomson coefficient

_____________-^+8^+8^)_____________
(1+8^ - 8^ )2 - T2 ($°r + o; )(1+2^ + S2^) (1.4)

The SWEOS is always given in dimensionless Helmholtz energy. The SAFT EOS is 
given in dimensional Helmholtz energy, but can easily be manipulated to give the 
dimensionless Helmholtz energy defined here. All other equations discussed are given 
as a pressure surface as a function of temperature and density. If the thermodynamic 
surface is given in pressure as a function of density and temperature the basic 
thermodynamic relations are as follows :

• The isochoric heat capacity :

CV{P,T) = Cv°

• The isobaric heat capacity :

T PR]
Cp(.p,T) = Cv(p,T) + — — 

p p \dT)

• The speed of sound :

cp rpp} io6 
Cv I dp) T Mr

(1.5)

(1.6)

(1.7)

^(8, r^Rp =

6
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• The Joule-Thomson coefficient:

( 1 f ndPIZTl
C 2 / £ n / a \ cp Lp (dPIdp)

2 
P

(1-8)
T

These relationships are used in deriving thermodynamic properties from the 32MBWR 
equation of state.

1.3. Calculation of derivative properties for mixtures

1.3.1. The Extended Corresponding States procedure

In order to calculate the derivative properties for mixtures the ECS procedure is 
chosen. This ECS procedure allows an accurate calculation of all thermodynamic 
properties provided that there are accurate pure component surfaces available. 
The extended corresponding states method is based on the following relationships :

(P, = , TI fi0) (1.9)

and

ai(P, P) = ^o(phifi,T! fifi) (1.10)

z is defined by z = Z-l were Z is the compressibility factor, a is the dimensionless 
residual Helmholtz free energy, (a = [A-Ald]/RT) p and T are the density and 
temperature. The subscripts are denoting the reference fluid (0) and target fluid (i).
The fi,0 and h^o are transformation parameters, defined by

f.<, = (Tci^)e(Tr,pr) (1.11)

and

hi,o = (Pc IP^KTriPr) (1.12)

where Tc and pc are the critical temperature and volume for the fluids. Tr and pr are 
defined as T'/T^ and p'/p'c, respectively. The functions (|)(Tr,pr) and 0(Tr,pr) are shape 
factors. Given a state point defined by p and T plus the transformation variables $,0 and 
hij0 the equations (1.9) and (1.10) defines an exact transformation from one pure fluid

7
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surface to another. The pressure P; becomes (fi,o/hi,o)Po- The shape factors 4>(Tr,pr) and 
9(Tr,pr) can be approximated in a number of ways, but if the equation of state is known 
both for the reference fluid (0) and the target fluid (i) the exact calculation of h^o and 
fi,o is possible for each state points. This eliminates the need to approximate the 
(J)(Tr,pr) and 0(Tr,pr). In this work the transformation parameters f,o and hij0 are 
calculated exact for every state point. The extension of this procedure to mixtures is 
accomplished by the following mixing rules :

1/2

h - n +1 h1/3 13“ TliJ w '7«.0 + 2

i j

f— '^j^hXiX jf

(1-13)

(1-14)

(1-15)

(1-16)

where x; and Xj are the mole fractions of the pure components. The r]ij and the Sy are 
binary interaction parameters. The previously defined h^o and £,0 becomes h^o and fiyo. 
The only adjustable parameters are the binary interaction parameters T|ij and Sy.

3.3.2. Derivation of derivative properties using the ECS procedure

Starting with the dimensionless Helmholtz energy all thermodynamic properties can be 
derived using basic thermodynamic relationships. Equations (1.17) through (1.23) 
require only first derivatives of the Helmholtz energy a.

= a0

= (l + 77p)z0 +Fpw0

(1-17)

(1-18)

(1-19)

(1.20)

8
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hi =K+ + (Hp - Ht )z0 (1.21)

gf =g0+Hpz0 +Fpu0 (1.22)

(1.23)

The entropy is defined as :

All energies are defined as :
id

where x = a,u,h,g

S-Sid
S~ R

Thermodynamic properties denoted with a subscript 0 are properties derived from the 
reference surface using basic thermodynamic relationships.

The factors Hx and Fx contains the derivatives of the transformation parameters h; 0 and 
fi,0-

Their definitions are :

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

9
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According to equation (1.9) the compressibility factor for the reference and the target 
fluid must be equal. As a result equation (1.18) imposes a constraint:

= -u0Fp (1.30)

In order to calculate the thermodynamic properties mentioned above the factors Hx and 
Fx
(x = T,p,ni) has to be known. The derivatives of the H factor are given by Ely1 :

H _ [(r, -ro>0-(/o-W, -»o)] 

[(Ao “iX +(/o -iX]

with:

T( dP'
7 “

p

(1.31)

(1.32)

(1.33)

PI d p;
(1-34)

r

Making use of equation (1.19) and (1.30) allows calculation of the F factors. If the aim 
is to calculate the thermodynamic properties of a mixture mixing rules are utilized in 
order to calculate the factors Hx and Fx for the mixture. These mixing rules are derived 
from the equations (1.13-16):

(1.35)

with:

dhijS 

dT
(1.36)

10
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___ 1 y y . ^-.o _ , ^x.o 
dT ~_____________________________ dT)-^’0 dT, (1-37)

with:

df^
dfij^ dT^^'^dT
dT £iJ 2XfXfX (1.38)

The calculation of caloric properties is more complicated. In order to calculate the 
isochoric heat capacity the second order temperature derivative of the Helmholtz 
energy is needed. Relationships for derivative thermodynamic properties are listed 
below :

Cv,i — Wo-^7T Z^TT Ft) cv0 2Ht(1 Ft\z0 Ft)(/0 1)

- (z0 + l)fa - 0 -zoHt (1-39)

w(p, T) =

(FtQ-Yo}+Ht(y0 -1) + rX 
FplT-r^ + H^-^ + K^

(1.40)

C i \ 106XXrt^+1 w1 - ^o)+hp(k. -1)+^0)^7-

T) = 7-
(Fr^-Y^ + HT^-rj + Yo) 

p(Fp(\-y^ + Hp(k0 -1) +xr0)

(1.41)

(1.42)

The dimensionless residual isochoric and isobaric heat capacities are defined as:

C -Cid 
c =---------------------CP

R

cp^ = cv,i - 1 + (^o + 0

P

R

The factors Hit and Fit are defined as follows :

d2^^

dT2 J A,o (1.43)

11
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F =
1 TT

IL
Io (1.44)

In order to calculate the isochoric heat capacity second temperature derivatives of the 
transformation parameters fj.o and h^o are needed. Expressions for these derivatives are 
obtained by using the equation for the isochoric heat capacity (1.39) and the 
expression given below :

d2zj d2z0
It2 "It2 (1.45)

These two equations can be solved with respect to Fit and H-rr, resulting in the 
following expressions :

(y0-VA-u0B
- 1)^0 + (^0 - l)«o

(1.46)

r. (^o-lM+^o5
H — 1 ■ ■ 1 1

(Yo — 1)^0 (To — l)W0 (1.47)

with:

- (z0 + l)(/c0 -1)^ - 2(z0 + IX/O -1)(1 -

B = n.o (1 -1 )2 - Ytj + lYj - 1) - 2(r0 -1)(1 - ft )
+ (Kp.o - - DH2 + 2(a0 - Yo - Ko +1)(1 - Ft

and

pT( d2P

P \dTdp;

T d2P
/r p[dT2, 

p

d2P

r

12
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In order to calculate the caloric properties the factors Htt and Ftp must be calculated 
for every component at the given state point. In order to obtain the factors for the 
mixture the following mixing rules can be used :

dT2 (1.48)

with:

d2^
dT2

11
12

2/3 ^0. 7-2/3 d^jfi
° dT dT)

h-5'3 +h-5'3 I dT ) J-° <dT J

77- • / \/y I _L_ Iy^-.o +hj,0)
.^d\0 d2^.,

‘•° dT2 J'-° dT2 (1.49)

r dh^^

d2fx,0 _ 2 dhxfi dfxfi fx0 d2hxfi

dT2 “ hx 0 dT dT hx 0 dT2

J_vv (d2f df^dh^ d^-A 
dT2 hvfi dT dT dT2 ,

with:

2 f '•° ? C^1'° / Xi,0
d 4.° _ Ju dT1 dT dT J,-‘ dT2

- A.

(1.50)

(1.51)

The direct correlation function (1 -Cy) is a characteristic property of mixtures. The 
property can be calculated using the relationship below and the relationships given by 
the ECS theory.

(1.52)

13
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The ECS relationship for the direct correlation function is :

= 0o+1) 1 + (Ao

+ ^0(2Zf -H H +H S + uAlF +Fnn\-c QFnFn 
UI nj Zij Hj I U I fij I (1.53)

The cross derivatives of H and F are defined as follows :

d2hx I V 
dndnj h

l J y J

d2fx N‘ 
fx

If the van der Waals mixing rules are used the composition derivatives of the reducing 
parameters F and H are given by :

(1.54)

k____________ (1.55)

(h- "l
H =2 7^-1 -IH -2Hn

‘1 \hx J J
(1.56)

(1.57)

In order to calculate any of the above mentioned properties at a given state point the 
following steps should followed :

14
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■ Chose a thermodynamic surface representing the reference fluid
■ Obtain thermodynamic surfaces for all components in the mixture
■ Calculate the transformation parameters fj;o h^o at a given state point.
■ Calculate the derivatives of the transformation parameters. (Ht, Ft, Htt, Fit, ...)
■ Calculate the transformation factors for the mixture, as well as their derivatives.

(fx,o, h^o, Ht,x, Ftt,x •••)
■ Using the mixture parameters and the reference fluid surface, calculation of any of 

the above mentioned properties is possible.

15
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1.4. Analyses of the impact of the binary interaction parameters

In all ECS calculations performed in this report the van der Waals mixing rules given 
by the equations (1.13-16) were used. The thermodynamic properties are calculated 
for a mixture of methane and ethane. The molar fraction of methane is 0.5. The 
32MBWR surfaces used where given by Younglove and Ely4.Propane was used as the 
reference surface. The temperature was set to 330 K for all calculations. For each 
property two plots are given to illustrate the sensitivity to variations in the two binary 
interaction parameters. Note that the binary interaction parameter £i2 defined in 
equation (1.13) is denoted as K and the binary interaction parameter T|i2 defined in 
equation (1.14) is denoted by L. There were serious problems with convergence at 
densities lower than 3 moFL. The erroneous points have been removed, and a straight 
line has been drawn to connect the ideal gas values (zero density) to the first 
acceptable points.

• Investigation of the influence of binary interaction parameters on the isochoric heat 
capacity

0.9

o'
o

0.3

0.2

0.1

0.6

0.5

0.4

0.8

0.7
K=0.9

10

(mol/L)

15 20 25

---------K= 1.0

-------- K = 0.95

Figure 1.1 Effect of binary interaction parameters on Cv T = 330 K,
^methane Xethane 0.5, L 1.0
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Figure 1.2 Effect of binary interaction parameters on Cv T = 330 K,
^methane ^ethane 0.5j IC 1.0

Variation in the interaction parameter K has the greatest effect in the neighborhood of 
the maximum in the isochoric heat capacity (Figure 1.1). Variations in the interaction 
parameter L has greatest effect at low and high densities (Figure 1.2). It seems that 
binary interaction parameters have little effect on the position of the maximum and 
minimum of the isochoric heat capacity.

• The influence of binary interaction parameters on isobaric heat capacity

2 --

4 --

3 --

5 ■-

1 ■-

20 25

---------K= 1.0

-------K = 0.95

-...K = 0.9

10 15

o (mol/L)

Figure 1.3 Effect of binary interaction parameters on Cp T = 330 K, 
^methane ^ethane 0.5> L 1.0
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Figure 1.4 Effect of binary interaction parameters on Cp T = 330 K, 
^methane ^ethane 0.5, K 1.0

The interaction parameter K has significant effect on the value of the isobaric heat 
capacity at the maximum (Figure 1.3). The interaction parameter L has little effect on 
the isobaric heat capacity (Figure 1.4). The position of the maximum in the isobaric 
heat capacity is not affected by the varying the interaction parameters.

• The influence of binary interaction parameters on the Joule - Thomson coefficient

ra Q. 
S 
5

10

(mol/L)

15

-------K = 0.95

K=0.9

K= 1.0

25

Figure 1.5 Effect of binary interaction parameters on the Joule - Thomson 
coefficient T = 330 K, xmethane = Ethane =0.5, L = 1.0

18



Derivative Properties from Equations of State M. Konttorp
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Figure 1.6 Effect of binary interaction parameters on the Joule - Thomson 
coefficient T = 330 K, xmethane = Ethane =0.5, K = 1.0

The limit of the Joule - Thomson coefficient as the density approaches zero has not 
been calculated because deriving the necessary formulas will be extremely time 
consuming. Variation in the interaction parameter K (Figure 1.5) has more effect than 
does the variation of the interaction parameter L (Figure 1.6). The Joule - Thomson 
inversion point seems not to be influenced by variations in either parameter.
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• Influence of the binary interaction parameters on the speed of sound
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Figure 1.7 Effect of binary interaction parameters on the speed of sound
T 330 K, Xmethane Xethane 0.5, L 1.0
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Figure 1.8 Effect of binary interaction parameters on the speed of sound
T — 330 K, Xmethane ~ Xethane —0.5, K — 1.0

Variations of the interaction parameter K has little effect on the speed of sound (Figure 
1.7). The effect of the interaction parameter L is seen only at high densities (Figure 
1.8).
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1.5. Evaluation of the accuracy of the ECS calculations

The results from the ECS calculation are compared to properties derived from a 
constant composition surface given by R. D. McCarty6. The mixture contains methane 
and ethane with molar fractions :

^methane 0.68526
Xethane = 0.3 1477

All calculations are done by a temperature of 330 K. The critical density of the mixture 
is calculated as the mole fraction weighted sum of the pure component properties :

1
Pc,x Y

X —
‘ Pc,i

(1-58)

The critical density for the mixture is:

p0 = 8.8263 (mol/L)

The deviations are defined as

= reference - test^^ refemce

where X is any of the properties. The interaction parameters are set to 1.0. The 
properties from the constant composition surface are also compared to those given by 
the principle of congruence. The principle of congruence states that for non polar 
, approximately spherical molecules, the properties for the mixture are the molar 
fraction weighted sum of the pure component properties at the same density and 
temperature.
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2

2 2

6

Principle of 
congruence

Figure 1.9 Residual plot Cv

The prediction given by the principle of congruence is generally better than that of the 
ECS calculation (Figure 1.9). This could be a result of a unsatisfactory refemce 
equation of state as well as of a failure of the ECS theory.

Principle of congruence

1.5 5

100
80
60
40
20

ECS prediction

-20 IL
-40 --
-60 E

Figure 1.10 Residual plot CV7R

This is basically the same comparison as the one given in Figure 1.9, but the ideal heat 
capacity is subtracted to give a comparison of the residual heat capacities. It is evident 
that deviations in the residual isochoric heat capacity are large.
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Figure 1.11 Residual plot Cp

In Figure 1.11 the comparison between the isobaric heat capacities is made. The 
principle of congruence gives huge deviations in the critical region. The ECS 
calculation gives a deviation less than 5 % in the whole range of densities.
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Figure 1.12 Residual plot CP7R

In Figure 1.12 the residual isobaric heat capacities are compared. The predicted total 
isobaric heat capacity calculated with the ECS procedure resulted in deviation less than 
5 % in the whole density range. If we compare the residual isobaric heat capacities it is 
evident that the deviation is much larger. Below the critical density it reaches almost 
20 %.

-15
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Principleof congruence

ECS prediction

0.5

Pr

1.5 25

Figure 1.13 Residual plot speed of sound

In Figure 1.13 deviations in the speed of sound are given. The prediction given by the 
ECS calculation has a deviation of less than 5 % in the whole density range from 0 to 
2. Above a reduced density of 2 the pure component surfaces used in the ECS 
calculation are probably not accurate.
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Figure 1.14 Deviation in the Joule - Thomson coefficient

In Figure 1.14 the deviations in the Joule - Thomson coefficient are given. Again the 
ECS prediction proves to be superior to the principle of congruence.

In order to give a more rigorous test of the ECS procedure measured isobaric heat 
capacities are compared to the ECS prediction in Figure 1.15 and Figure 1.16. The 
measured data are taken from Yesavage7. All calculations are done on the methane 
propane system. The measurements used here are at two pressures and two 
compositions.
The pseudo critical points for the mixtures are estimated by :

xmethane = 0.23 : Pc = 6.21 MPa, Tc = 353.40 K, pc = 5.560 mol/L
Xmethane - 0.49 : Pc = 8.50 MPa, Tc = 325.17 K, pc - 7.105 mol/L

The volumetric interaction parameter L has been set to a value of one.
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Figure 1.15 Isobaric heat capacity for mixtures of methane and propane at 
P = 6.895 MPa

The estimated errors in the measurements are between 1.5 to 4 %. In Figure 1.15 error 
bars of 3 % are used. If we look at the values for the isobaric heat capacity obtained 
with the ECS procedure, setting all interaction parameters equal to one, it is evident 
that the predictions are good. There is however a systematical error in the critical 
region. An effort has been made to correct the deviations by changing the binary 
interaction parameter K. By setting this value to 0.975 we obtain a better 
representation of the data below the critical point. The systematical deviation above 
the critical point is not eliminated. This error may be due to the failure of the pure 
component surfaces to give a good representation of derived properties in the 
immediate vicinity of the critical point.
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Figure 1.16 Isobaric heat capacity for mixtures of methane and propane at 
P= 10.342 MPa

In Figure 1.16 measured isobaric heat capacities at a 10.342 MPa are compared to 
those obtained from the ECS calculation. Again it’s possible to obtain a good 
representation of the data away from the critical temperature by adjusting the binary 
interaction parameter K. In order to obtain a reasonable representation the interaction 
parameter has to be given a value of 0.95. This may seem a small adjustment, but even 
small differences in the interaction parameter are known to have profound effects on 
other properties such as phase equilibrium calculations.
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1.6. Graphical representation of the derivative properties

In order to study the accuracy of equations of state some reference is needed. In this 
study, as already noted, multiparameter equations of state have been used in order to 
produce reference data. In studying the behavior of the different substances two types 
of behavior has been discovered. The behavior of the associating substances water and 
methanol is different from the behavior of non - associating substances. In order to 
point out the differences, water and methane have been chosen.

1.6.1. Properties of methane
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Figure 1.17 Cy7R for methane from the SWEOS

In Figure 1.17 the residual isochoric heat capacity of methane is shown as a function of 
reduced density. The most apparent features of the curve are the maximum and the 
minimum that occur in the vicinity of the critical point. At high densities the value of 
the residual isochoric heat capacity seems to be a weak function of temperature.
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Figure 1.18 CP7R for methane from the SWEOS

In Figure 1.18 the residual isobaric heat capacity is plotted as a function of reduced 
density. The most apparent feature of the isobaric heat capacity is the strong maximum 
and the weak minimum that extends far from the critical region.
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Figure 1.19 Speed of Sound of methane from the SWEOS

In Figure 1.19 the speed of sound for methane is plotted as a function of reduced 
density. Compared to the heat capacities, the speed of sound is a weak function of 
temperature. The most characteristic feature of the curve is the minimum that slowly 
vanishes at high temperatures.
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Figure 1.20 The Joule - Thomson coefficient of methane from the SWEOS

In Figure 1.20 the Joule - Thomson coefficient for methane is plotted as a function of 
temperature. The most apparent feature of the curve is the maximum that occurs at 
low reduced densities. At reduced densities above 1 the curve also goes to a point 
where the value is zero. This is called the Joule - Thomson inversion point. At high 
densities, there is also a weak minimum in the curve.

1 2 3 4 5

16 T
14 --
12 ■-
10 --
8 ■■
6 --
4 --
2 •-
0 -- 

0

Tr

■ = saturated temperature

Figure 1.21 The Joule - Thomson coefficient methane with the SWEOS,
pr=0.27

In Figure 1.21 one isochore of the Joule - Thomson coefficient is plotted as a function 
of reduced temperature. It shows how the value of the Joule - Thomson coefficient 
decreases as the temperature rises. That trend can also be observed for the other 
properties except for the speed of sound which increases with temperature.
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Figure 1.22 Property extrema and the Joule - Thomson inversion curve for 
methane

In Figure 1.22 the maxima and minima of the derivative properties as well as the Joule 
- Thomson inversion curve are plotted in reduced density reduced temperature space. 
The extreme points of the isochoric heat capacity are present only in the area close to 
the critical region. The maximum of the Joule - Thomson coefficient is only seen at 
reduced temperatures near unity. The extreme points of the isobaric heat capacity, the 
minimum of the speed of sound and the Joule - Thomson inversion curve are present 
over a much wider region.
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1.6.2. Properties of water
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Figure 1.23 CV7R for water from the Hill EOS

The isochoric heat capacity for water (Figure 1.23) shows the same behavior as for 
methane (Figure 1.17) except there is a stronger temperature dependence at high 
reduced density.

25

20 ■-

io --

15 -•

o J

5 ■-

0.5 1.5

P'

2.5 3.5

-------- Tr = 0.9

-------Tr = 1.1

----Tr = 1.25

■ = saturated densities

Figure 1.24 CP7R for water from the Hill EOS
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The isobaric heat capacity for water (Figure 1.24) has no minimum at high reduced 
densities within the range of the EOS.
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Figure 1.25 Speed of Sound water with the Hill EOS

The speed of sound for water (Figure 1.25) has almost the same behavior as for 
methane except there is a decrease of the slope at high density that is absent in the case 
of methane (Figure 1.19).
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Figure 1.26 The Joule - Thomson coefficient for water from the Hill EOS
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In Figure 1.26 the Joule - Thomson curve for water is plotted as a function of reduced 
density. The most characteristic difference from methane (Figure 1.20) is the absence 
of a maximum at reduced densities below one.
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Figure 1.27 The Joule - Thomson coefficient for water from the Hill EOS

In Figure 1.27 one isochore of the Joule - Thomson coefficient is plotted as a function 
of temperature. The same decay with temperature as was the case for methane (Figure 
1.21) is observed here.
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Figure 1.28 Property extrema and the Joule - Thomson inversion curve for 
water

In Figure 1.28 the minima, maxima and the Joule - Thomson curve for water are 
plotted in the reduced density reduced temperature space. The minimum in the 
isochoric heat capacity does not touch the saturated liquid line as it does for methane. 
It is not possible to conclude that there is no minimum in the isobaric heat capacity, 
since it may be outside the range of the EOS. If so, it is at a higher reduced density for 
water than for methane.
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1.7 Discussion of results

In this chapter new analytical expressions for calculating the derivative properties with 
the ECS procedure have been developed. These derived properties were :

■ The isochoric heat capacity
■ The isobaric heat capacity
■ The speed of sound
■ The Joule - Thomson coefficient

All properties but the Joule - Thomson coefficient can be calculated in the whole range 
covered by the pure component equations of state. The Joule - Thomson coefficient 
can not be calculated in the limit where density approaches zero.

The sensitivity of the derived properties to variations of the binary energy and 
volume interaction parameters in the mixing rule was analyzed. The interaction 
parameter describing the energy interaction was found to have the larger influence on 
the values of the properties. The influence was strongest at densities close to the 
pseudo critical density for the mixture.

The accuracy of the results obtained with the ECS calculations has been 
analyzed. A comparison of ECS derived properties obtained with the principle of 
congruence, a pure component surface, and measured isobaric heat capacities shows 
that its results are of high quality. The biggest deviations were found in the region 
close to the pseudo critical point of the mixture.

The typical behavior of pure components has been studied. Differences in the 
behavior of associating and non - associating fluids have been found. Associating fluids 
does not show a maximum in the Joule - Thomson coefficient. The residual isochoric 
heat capacity of associating fluids tend to be a stronger function of temperature than 
the case is for non - associating fluids. The minimum in the isochoric heat capacity for 
associating fluids does not connect with the saturated liquid line.
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2. Model equations of state

2.1. Introduction

All the derived properties for the model equations are given in this chapter. Their form 
is intended for non - associating substances. In their simplest form there are three 
parameters describing the intermolecular interaction energy, the volume of the 
molecules and the non - spherical character of the molecules.

2.2. Deriving derivative properties for pure fluids

2.2.1. The cubic equations

The first equation of state to give a qualitative description of the vapor and liquid 
phases and phase transitions was the famous cubic equation of van der Waals, 
proposed 
in 1873 :

RTp 
0-bp)

-ap2 (2.1)

In this equation the constant b is the excluded volume, that is, that part of the molar 
volume which is not available to a molecule due to the presence of others. The first 
term to the right is the pressure resulting from the repulsion between the molecules. 
The second term to the right is the pressure resulting from the attraction between the 
molecules. In the van der Waals equation the energy parameter a is taken to be a 
constant. The constants in the van der Waals equation can be found using the critical - 
point conditions : 

(dP\ 

\dpJT

For the van der Waals equation we find :

21R2T2 RT 
a =---------— b = —-

(2.2)

(2.3)

While the van der Waals equation is of historical interest, it is not quantitatively 
correct. For example, it predicts that the critical compressibility factor,
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(2.4)

is 0.375 for all fluids, while the value for different hydrocarbons varies from 0.24 to 
0.29; the range is wider when non - hydrocarbons are considered. Also, the prediction 
of vapor pressures is inaccurate.

An important modification of the van der Waals equation was made by Redlich 
and Kwong8, who introduced a temperature dependence and a slightly different volume 
dependence in the attractive term :

RTp P1
(2-5)

with:

ÄX 1a(T) = 0.42748 (2.6)

This equation is referred to as the Redlich Kwong equation or RK equation. The 
equation gives a somewhat better critical compressibility factor (Ze=l/3), but it is still 
not very accurate for the phase boundaiy (vapor pressure) and the liquid density.

Soave9 proposed a different temperature dependence for the energy parameter

R K r - I— P a(T) = 0.42748-^[1 + z«(1-7^)] (2-7)

m= 0.480+ 1.57m -0.176o2 (2.8)

resulting in more accurate vapor pressure predictions (especially above 1 bar) for light 
hydro carbons, leading to cubic equations of state becoming an important tool for the 
prediction of vapor - liquid equilibria at moderate to high pressures for non - polar 
fluids. This modification is referred to as the Soave - Redlich - Kwong equation or 
SRK equation.

Peng and Robinson10 used a different volume dependence to give slightly 
improved liquid volumes (and, Zc = 0.307) and changed the temperature dependence 
of a(T) to give :

RTp 
\-bp

p2
-a(T\--------------- 5—rk )\ + 2bp-b2p2 (2.9)

with:

and :
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a(T)= O/^-^l+mtl-Vr))

and :

m = 0.37464 +1.54226® - 0.26992®2

(2.10)

(2.11)

This equation is referred to as the Peng - Robinson equation or the PR equation.
The PR and the SRK equations are widely used in industry, especially for 

refinery and reservoir simulation. The advantages of these equations are that they 
require little input information, little computer time, and, for hydrocarbons, lead to 
good results for process design. However, these equations do have some important 
shortcomings :

■ Liquid densities are not well predicted
■ The generalized parameters are not well predicted for non - hydrocarbons
■ Predictions for long - chain molecules are inaccurate.
■ Critical region properties are unreliable
■ Vapor pressure predictions are not very accurate at low pressures

Using the equations ... in chapter 1 the derivative properties can be derived :

• Isochoric heat capacity with the RK and SRK equation :

T = ^ê’ln(1+Z’p) (2.12)

In the case of the RK equation the second temperature derivative of the energy 
parameter is given by :

(^a 3R2T2 r- ...
= 0.42748-^-7^^ P-13)

For the SRK equation the relationship is :

d2a R2T2 r312
= 0.42748 -^-/tt(l + rri) (2.14)

• Isochoric heat capacity with the PR equation

c; T r(^-i-7?)(-i + V2)l
R dT2 “ (ép-l + V2)(-l-V2)J ’

with:
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d2a R2T2 f x r3/2
—7 = 0.45724 —-—m(1 + m) —7=dT2 Pc K 2^ (2.16)

• Pressure derivative with regard to temperature from the RK and SRK equations :

dP / Rp\ 1 1 da p
dT Jp \-bp RdTI + bp

(2.17)

For the RK equation the temperature derivative of the energy parameter a(T) is given 
by:

da 0.42748 J?2?2 r- ...____ _ ___________ C I rrt rp-3l2

dT~ 2 P. c
(2.18)

In the case of the SRK equation the temperature derivative is given by :

da RT 1 / r~\
— = -0.42748 —^^-=1 + m(l - JT)] dT P„ JÏT' r 1 (2.19)

• Pressure derivative with regard to temperature from the PR equation :

dP / Rp^ 1 1 da p
. dT )p ~ ï-bp ~~RdT\ + 2bp-b2p2 (2.20)

with :

^ = -0.45724-^-m-^(l+m(l-1/^)) (2.21)

• Pressure derivative with regard to density from the RK and SRK equations :

'dP/RTy 1 a{Dp(l+bp)
I dp )T (X-bp)2 RT (Mpy

• Pressure derivative with regard to density from the PR equation :

'dPIRfy 1 a{T) 2p(\ + bp)
< dp JT~(l-bp)2 RT (l + 2bp-b2p2)2 (2.23)
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2.2.2. The SPHCT Eos

The SPHCT equation is a simplification of the PHCT equation. The PHCT equation is 
designed to give a description of polymeric fluids as originally proposed by Beret and 
Prausnitz11. The following assumptions were made :

1. The density dependence of all external degrees of freedom is the same as those of 
the translational degrees of freedom.

2. The density dependence of translational degrees of freedom is given by the 
Carnahan - Starling equation. (Carnahan and Starling12)

3. A chain molecule behaves like a chain of spherical segments, each of which 
interacts with its neighbors with the square well potential.

4. An adjustable parameter c is defined so that 3 c is the total number of external 
degrees of freedom of a molecule.

The PHCT theory defined three substancespecific parameters :

■ The effective chain length c, describing the number of segments in chain like 
molecules.

■ The closest packing volume (mv°), describing the volume of the molecules.
■ The segment energy sq, describing the interaction energy between two segments.

The basic form of both the SPHCT and the PHCT equation is :

Z = l + c(Z,.,-Z„) (2.24)

For both equations the repulsion term is given by :

~ 477-2t72 

(I-77)3
(2-25)

The density variable is given by :

77 = Tpmv° (2.26)

T has a constant value of 0.74048. The symbol m denotes the number of segments in 
one molecule. v° is given by :

6t
(2.27)

where g is the temperature independent segment diameter and Nav is the avogadro 
number.
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According to the PHCT theory the attraction forces are modeled using the double 
power series expansion of Alder et al.13:

(2.28)

where s is the intermolecular potential per unit surface area and q is the surface area 
per molecule. The constants Dy were adjusted to better fit data for alkanes. The 
quanteties 8 and q always appears as a product eq so this equation has three 
parameters :

8q, mv° and c

A shortcoming of the original HPCT equation is the complexity caused by its attraction 
term. In order to reduce the complexity Lee et al.14 suggested replacing the summation 
terms with one single term :

with:

Y = exp
2ckT

-1 (2.30)

The factor Zm is the coordination number of one site on the chain, which has been 
determined empirically by Kim et al.15. This simplified equation is called the SPHCT 
equation.

The SPHCT equation has proved to give good liquid volumes, as well as 
accurate equilibrium properties for mixtures of molecules which differ greatly in size. 
(Peters et al.16) The SPHCT equation has two advantages over the cubic equations. 
First, its foundation in statistical thermodynamics makes the assumptions used in its 
development clear in terms of molecular behavior. Second, species are modeled as 
segment - segment type rather than the cruder molecule - molecule interactions of the 
cubic equations. However, the SPHCT equation has several limitations which hinder 
its use in engineering calculations. Although the parameters represent specific 
molecular behavior they are not related to macroscopic physical properties. This makes 
it necessary to use regression analyses in order to obtain their values. The values are 
dependent on the regression procedure and the experimental data. The equation is not 
constrained to give correct critical pressures and temperatures. Because of the fifth 
order dependence of density the equation requires more computational time than the 
cubic equations.
The derivative properties can be derived using equations (1.5-8) in chapter 1.

• The isochoric heat capacity is given by :
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— = cTZatl 
R

dY ^d2— +7’-----
dT dT2

T_ MY" 
Zm Ka\dT) J (2.31)

• The temperature derivative of the pressure is given by :

= 1 + cT, - cZatt - cT rep ait
ZyTl dY 

(I + t/T)2 dT
(2.32)

• The density derivative of the pressure is given by :

fdP!RT\ _ 4/7 377(477-2t72) 77^(2 +
I dp }T-ï+a^+c(\-^+c (1-^ ~cz-(l+^ (2.33)

with:

dY eq ( eq 
dT “ ~2ckT2 ^\Q.ckTJ (2.34)

and :

d2Y 
dT2

( r \2\
g? j eg [ 

^ckT3 \2ckT2)
eq

(2.35)
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2.2.3. The SAFT equation of state

The SAFT equation is designed to model effects that come from association of 
molecules and shape effects from non - spherically molecules. For non - associating 
molecules the equation needs three substance specific parameters. Those are :

■ The segment molar volume in a closest packed arrangement at zero temperature 
v00, describing the volume of the molecules.

■ The interaction energy of segments at infinite temperature u0/k, describing the 
interaction energy between segments

■ The effective chain length m, describing the number of segments in chain like 
molecules.

If the substance is self associating two additional parameters are defined :

■ The associating energy e^, describing the energy of the association bonding 
between two bonding segments.

■ The associating volume describing the volume of the bonding segments.

The reduced fluid density T| (segment packing fraction) is defined as

r) = Tpmva

where t = 0.74048, v° is the segment molar volume at the closest packing and m is the 
number of segments per molecule. The closest packing volume is related to 
temperature as follows :

u0 = D00 1 - C exp] - 3u
kT ,

-13

(2.36)

The constant C has the value of 0.12. In this expression there are two compound 
specific parameters. Those are the closest packing volume at zero temperature u00 and 
the interaction energy between segments at infinite temperature u°. The interaction 
energy between segments is given by

u u° e
'k=~k 1 + ÄF (2-37)
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The value for e/k is set to 10 with exception of some small molecules given in 
table 2.1 :

Table 2.1 Values of e/k

Substance e/k (K)
Argon 1
Methane 1
Ammonia 1
Water 1
Nitrogen 3
CO 4.2
Cl2 18
cs2 38
co2 40
so2 88

The advantage of the SAFT equation is the ability to model specific molecular 
behavior. It also models association of molecules. The. volume and interaction energy 
parameter are temperature dependent. The temperature dependence of the volume 
parameter is a special feature of the SAFT equation. The models’s disadvantages are 
also many. The complexity of the equation prohibits its use in application where 
computational speed is needed. It also suffers from the same weaknesses as the 
SPHCT equation with regard to fitting procedure and the representation of 
thermodynamic properties in the near critical region.

The general form of the SAFT equation is the Helmholz energy given by :

Ares = Aseg + Achain + mmA™00 (2.38)

The segment Helmholz energy per mole of molecules Ases can be calculated from

Ases = mAsoeg (2.39)

where Aoses, per mole of segments, is the residual Helmholz energy of nonassociating 
spherical segments and m is the segment number. It is composed of hard sphere and 
dispersion parts,

AŜ =A^+A^ (2.40)
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The hard sphere contribution can be calculated by as proposed by Carnahan and 
Starling12 :

^=47-3£
ÄT (I-77)2 (2.41)

The dispersion term is a power series fitted to molecular dynamics data for a square 
well fluid. The equation is given by Alder et al.13:

(2.42)

Rather than the parameters of Alder et al.13 as in the PHCT model, the SAFT model 
uses Dy’s fitted to experimental data for argon by Chen and Kreglewski17.

The increment in the Helmholz energy due covalent bonding of several 
segments can be calculated from

chain 1 — TJ
-^- = (l-7rt)ln(i_^3 (2.43)

The increment in the Helmholz energy due to association is calculated for pure 
fluids from

(2-44)

where M is the number of associating sites on each molecule, XA is the mole fraction 
of molecules not bonded at site A, and ZA represents a sum over all associating site on 
the molecule. The mole fraction of molecules not bonded can be determined as follows

B

(Summation over all sites A,B,C,...)

(2-45)

where N3V is the Avogadro’s number and p is the molar density of molecules. The 
factor A^ is the association strength that is approximated as

A-45 = g(6/)^[exp(^'4S / kT) - 1](ctVb) (2.46)
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with :

< 11/36r 00
------------o
^AV

The segment radial distribution function g(d)seg is approximated as the hard sphere 
radial distribution function (Carnahan and Starling)

1
1 — —7/2 1gWT « g^ (2-47)

In order to avoid the great complexity introduced by the associating term in equation 
(2.38) only non - associating compounds will be studied. The derivative properties 
from the SAFT equation of state can be derived using the equations (1.1-4) in chapter 
1. The compressibility factor is given by :

Z -1 = Z5eg + zchain (2.48)

Z^g = m
(1-7)3

u
kT

7 (2.49)

— tj-iT
Zchain = (1 - m)---------------p

The properties are given by :

The isochoric heat capacity

/^r,seg /~^r,chain

R “ R R

(2.50)

(2.51)

C22 
R

m
R >0 (2.52)
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I 7? Jo \.kTJ I (I-??)4 J
I 3uo 3 — 
\kT

F(2F-1)
2

Ar)-2t]2''
(2.53)

0

/ \ j / \ ’
ƒ 77 I I 2/ I= - 77 [(^1 + ^2X2 + ^1 + F2) + F3 + F4]

t f x X / \ K1 ✓
(2-54)

with:

-3m0 
kT

1 - C exp
-3^o 
kT

Fl = -i

2e 
If 
e 

~kT

and :

e ( 2e^
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r,chain

-R-;

0

3?72 ƒ
X 1 V
4 1---- 77

k 2

/

( 3wn V 3/7 7

( 1 'ï 
2 1 --77 I
I 2 '))

(2.55)

(3W V= -M9k F2 
\ Kl J

• The pressure derivative with respect to density

'dP/RT'
I dp )T

r dP! RT^seg T dP!RT\chai"
\ dp J T \ dp )T (2.56)

f d̂ \eS = + J 477 + 4 ƒ -27^ MW
\ dp )T |_ (I-77)4 Y / (2.57)

dP/RTXhain 

dp )T
__ r^chain

5 2 1 3
— 77- 277 +—77

(2.58)

• The pressure derivative with respect to temperature

dPIRpy (dPIRp^8 fdPlRp\chain 
. dT ) dT ) k dT J 
ppp

(2-59)

dPIRpV'8 (dPlRp^ CdPIRpY^ 
. dT J “I dT J +l dT )n 

p p p
(2.60)

(dPIRp^ ( 3z/ I= Zses - mi-^-ÏF 
\kT)

4ri + 4p2
(1W (2.61)
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dP! Rp\hain .. <3^J = zcha.n _

2e
1 + 

i—-
1 +

kT 
e

5 2 1 3

-Tj-lr] +-i]

ƒ 1

2.3. Derivative properties for mixtures

(2.62)

(2.63)

2.3.1. Mixing rules for cubic equations of state

All the cubic equations of state evaluated in this study uses the same mixing rules, 
called the van der Waals mixing rules. All the cubic equations have two parameters. 
One parameter b describes the covolume between the molecules. The mixing rule for 
this parameter is as follows :

bx=TJXibi (2.64)

The second parameter is the interaction parameter a. This parameter describes the 
interaction forces between the molecules. The mixing rule for this parameter is as 
follows:

= S Z XiXjaij y aü = ai, aii = aj
' j

(2.65)

The cross terms are given by :

(2.66)

The factor ky is an empirical factor used to increase the quality of the results. It’s 
usually fit to phase equilibrium data.

The third parameter is the acentric factor ®. This parameter describes the 
deviations from the behavior of spherical molecules. (Non - sphericity) This parameter 
is used only in the PR and the SRK EOS. Its mixing rule is given by :
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(2.67)

2.3.2. Mixing rules for the SPHCT EOS

The mixing rules used with the SPHCT EOS are those proposed by Kim et al.28 The 
SPHCT EOS has three mixturedependent parameters. The mixing rule for the close - 
packing volume mv° is :

(wv0)x =YJxi(mv°\ (2.68)

The mixing rule for the c parameter is : 

cx (2-69)

Y =-—L-------
X Cx(WV°)x

where

v I £i^
Y<=
and :

The cross terms v°ij and Sy are given by

oi’..v
tf 01/3 

v.
0t/3 

j

3

(2.70)

(2.71)

(2.72)

(2-73)

and

(2-74)
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The factor ky is an adjustable binary interaction parameter. Equation (2.70) may be 
cast in the form :

(2-75)

In the case of mixtures, besides the pure component parameters, one requires 
knowledge of m; and q;. Kim et al.2 suggested that m; and q, may be obtained from the 
slopes of the graphs of mv° and sq/k versus the number of carbon atoms. As a result 
the volume of one segment, and the energy per surface unit can be estimated :

- = 625 [K/m2] (2.76)

v° = 0.008667 [L/mol] (2.77)

This allows calculation of the number of segments on basis of the knowledge of the 
pure component parameter (mv0). The surface area per segment can be calculated 
based on knowledge of the pure component parameter (eq/k);.

2.3.3. Mixing rules for the SAFT equation

Mixing rules for the SAFT equation are given by Chapman et al.18. For the other 
equations of state mentioned in this chapter the pure component equations of state are 
transformed into equations for mixtures by combining the pure component parameters 
to obtain mixture parameters. In the case of the SAFT equation the functional 
structure changes from the one given in paragraph (2.2.3). The radial hard sphere 
distribution function g(d)hs for pure components changes into :

i 3^,- <2 m2
l-<3 2 (l-£)2 UJ (l-^)3 (2.78)

with

^AV

6 (2.79)

This expression was derived for mixtures of hard spheres by Reed and Gubbins19.
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The mixture parameters can be derived by combination of pure mixture parameters, as 
described earlier :

(2.80)

z/v° (2.81)

The cross terms are given by :

U.. =£..(u..U 
y y 11 jj

(2.82)

v0+v°
v0 =—---------£

’ 2 (2.83)

The effective length of the molecules in the fluid can be approximated by :

(2.84)

Using the mixture parameters the different parts of the equation can be expressed as :

chain

(2.85)

(2.86)

24^ =mxAsoes (2.87)
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2.4. Concluding comments

In this chapter we have briefly discussed some of the model equations available in 
literature. Only the most widely used equations, or equations presenting important 
concepts have been chosen. The cubic equations have been chosen because of their 
importance in reservoir simulation and process design for the oil industry. The SPHCT 
equation has been chosen because it represents an important concept. The molecules 
are seen as chains of segments rather than spherical balls as is the case for the cubic 
equations. The SPHCT equation also uses the more complex CS term to describe the 
inter segmental repulsion though the attraction term has a density dependence that is 
very similar to the RK and SRK equations of state. The SAFT equation of state also 
describes molecules as chains of segments. The SAFT equation also uses a CS term to 
describe segment - segment repulsion. In the SAFT equation there is an extra term for 
the increment of the residual Helmholz energy resulting from the chain character of 
molecules. Another difference from the other equations is the temperature dependence 
of the segment - segment energy and the effective segment volume. However, the 
attraction term used in the SAFT equation is similar to the one used in the original 
PHCT equation.
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3. Evaluation of theoretical equations of state

3.1. Introduction

In order to reveal the weaknesses of equations of state they are compared with the 
multi parameter equations of state. The equations of state are of chapter 2 were 
considered :

Cubic equations :

■ Redlich - Kwon»
■ So ave - Redlich - Kwong
■ Peng Robinson

Statistical mechanics based equations:

■ The SPHCT equation
■ The SAFT equation

The cubic equations are well known and widely used in engineering practice. The 
advantage of the cubic equations are the simplicity and therefore low requirements of 
computational power. The parameters in those equations can be estimated solely on 
basis of the saturation pressure curve and critical properties.

The statistical mechanical based equations have a higher complexity and 
therefore are less valuable in applications requiring computational speed. The 
parameters of the equations are usually fitted to liquid density data and saturated 
pressures. This leads to an overestimation of critical pressures and temperatures. The 
SPHCT equation has been selected because of its simplicity.

The equations will be evaluated for methane and n-butane. All the equations 
are valid for methane. When it comes to n-butane different methods have been 
introduced in order to correct for the deviation from hard sphere behavior. The cubic 
equations use the acentric factor to account for the effects. The SPHCT equation uses 
the.c parameter and the SAFT equation uses the m parameter for those purposes. Both 
the c and m parameters can be viewed as measures of effective chain length. The SAFT 
equation also has a specific increment in the Helmholz energy as function of the chain 
length. By evaluating the derived properties for both methane and n-butane the success 
or failure in describing chain - like behavior can be exposed.
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3.2. Basis of evaluation

In order to analyze the deviations some special measures has been taken. The 
deviations in the isochoric heat capacity are revealed by comparing the residual heat 
capacity. The residual heat capacity is given by equation (3.1)

C; 1 r T f d2P}
R ~^Rlp\dT1J/P (3.1)

The advantage of comparing the residual heat capacities is that the dependence on the 
ideal heat capacity is removed.

In order to study the isobaric heat capacity without the influence of the isochoric heat 
capacity following property is used :

T
R Rp2

(3-2)

The advantage of comparing this property is that the deviations in the Cy and the ideal 
isobaric heat capacity is not influencing the comparison. In order to study the total 
isobaric heat capacity the residual isobaric heat capacity is included. Note that this 
quantity is not dependent on the ideal isobaric heat capacity.

crp _c^ T (dpy Kdpy 
R~ R + RpAdT) J [dp) T (3.3)

In order to compare the Joule - Thomson coefficient the dependence on the isobaric 
heat capacity is discarded yielding the following expression :

w-1 (3.4)
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Instead of comparing the speed of sound the reduced bulk modulus will be used as a 
basis for comparison. The reduced bulk modulus is given by :

w2 CvMr (dP/RT^
T~RTCpW6~[ dp Jr (3.5)

3.3. Graphical evaluation of the equations of state for pure fluids

In order to expose the characteristic behavior of the derivative properties the all 
properties are evaluated at a reduced temperature of 1.1. At this temperature all the 
derivative properties are showing their characteristic minima and maxima.

3.3.1. The isochoric heat capacity

a

3.5

0.5

25

0.5

...SPHCT
SWEOS

SRK
PR

RK

1.5 25 3.5

° 1.5

Figure 3.1 CV7R methane with model equations of state at Tr = 1.1

In Figure 3.1 the isochoric heat capacity of methane is shown. None of the equations 
studied are able to give a qualitatively correct picture of the isochoric heat capacity. 
The SPHCT equation is the only one to give a maximum, but at a much to high 
reduced density. At low density only the RK equation is gives a good initial slope of 
the heat capacity.
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0.5
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Figure 3.2 CV7R methane with the SAFT equation at Tr = 1.1

In Figure 3.2 the isochoric heat capacity from the SAFT equation is compared to the 
heat capacity from the SWEOS. The SAFT equation is able to give a qualitatively 
correct picture of the isochoric heat capacity, with both a maximum and a minimum in 
the curve. At high densities the curve diverges. This happens because of the singularity 
in the denominator of the CS repulsion term in the SAFT equation.

or
Q

0.5

3.5

25

1.5

SRK
.RK
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SPHCT

0.5 1.5

Pr

25

Figure 3.3 CV7R n-butane with model equations

By examining Figure 3.3 it is evident that all the model equations are giving false 
values for the isochoric heat capacity for n-butane. The SAFT equation gave a good 
representation of the isochoric heat capacity for methane, but fails to give even 
qualitatively correct values for n-butane. This indicates that the equation is not able to 
handle the chainlike behavior of molecules, even though it works for molecules that 
can be approximated as hard spheres. The constants in the equation are fitted to energy 
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and PVT data for argon. According to the principle of corresponding states, 
transformation by critical parameters would give a good representation of the 
thermodynamic properties for small spherical non - polar molecules.
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3.3.2. The isobaric heat capacity
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Figure 3.4 CP7R methane with model equations at Tr = 1.1

All the model equations give a maximum in the isobaric heat capacity (Figure 3.4), but 
only the SPHCT equation is gives a minimum. Up to approximately a reduced density 
of 0.7 all model equations but the PR EOS gives correct values for the Cp. At near 
critical densities the equations underestimates the isobaric heat capacity.
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Figure 3.5 CP7R methane with the SAFT equation at Tr = 1.1

As seen from Figure 3.5 the SAFT equation gives an excellent representation of the 
isobaric heat capacity. Its overestimation of the isobaric heat capacity at high densities 
is probably due to the divergence of the CS repulsion term.
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Figure 3.6 CP7R n-butane with model equations

For n-butane Figure 3.6 shows that the SAFT equation is not able to give results with 
the same quality as it did for methane. The other equations are not very accurate since 
only the SRK equation is correct up to a reduced density of 0.7.
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Figure 3.7 (Cp^Cv^/R methane with model equations at Tr = 1.1

In Figure 3.7 the contribution of the isochoric heat capacity is subtracted from the 
isobaric heat capacity to show equation of state contributions to any deviations. This is 
done in order to identify the origin of the deviations in the isobaric heat capacity.
Because of the relative low value of the isochoric heat capacity the deviations are in 
the same order as those seen for the isobaric heat capacity.
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Figure 3.8 (Cpr-Cv,)/R methane with the SAFT equation at Tr = 1.1

In Figure 3.8 the difference in the residual heat capacities for methane with the SAFT 
equation is analyzed. As before the SAFT equation gives good results.
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Figure 3.9 (Cp7R-Cv7R) n-butane with model equations

In Figure 3.9 the difference in the residual heat capacity for n - butane is plotted.
Figure 3.9 suggest that the most important deviation in the isobaric heat capacity stems 
from the contribution of the equation of state term heat capacity.
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3.3.3. The reduced bulk modulus
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Figure 3.10 Reduced bulk modulus of methane with model equations at 
Tr= 1.1

In Figure 3.10 the reduced bulk modulus for the model equations are plotted. At low 
densities all the model equations gives reasonable results. All the cubic equations 
diverge at high densities. This is a result of the singularity in the van der Waals 
repulsion term. The model equations give a minimum in the reduced bulk modulus at a 
too low reduced density. The failure of the model equations to give correct critical 
densities probably contributes to this effect. The PR equation is closest to giving a 
good prediction of the minimum.
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Figure 3.11 Reduced bulk modulus of methane with the SAFT equation at 
Tr= 1.1
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In Figure 3.11 the reduced bulk modulus for methane with the SAFT equation is 
plotted. As expected from earlier discussion, the results from the SAFT equation are 
excellent.
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Figure 3.12 The reduced bulk modulus n-butane at Tr = 1.1

For n-butane all the model equations also give reasonable results at low densities 
(Figure 3.12). The SAFT equation is gives a minimum closest to the real density, but 
its value is too low. Considering that this is a logarithmic plot the deviation is expected 
to result in a overestimation of the Cp.

3.3.4. The Joule - Thomson coefficient
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Figure 3.13 The Joule - Tomson coefficient methane with model equations at 
Tr=l.l
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All but the PR EOS give qualitatively good estimates ofr the Joule - Thomson 
coefficient (Figure 3.13). It is interesting to see that only the PR EOS fails to give a 
good estimation of the Joule - Thomson inversion point.
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Figure 3.14 The Joule - Thomson coefiicient methane with the SAFT equation 
at Tr= 1.1

As for the other derived properties, the SAFT equation is gives excellent predictions of 
the Joule - Thomson coefficient for methane (Figure 3.14).
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Figure 3.15 Joule - Thomson coefficient for n-butane with model equations at 
Tr= 1.1
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Unlike the rest of the derived properties where all models gave good approximations at 
low densities, for the Joule Thomson coefficient for n-butane the cubic equations are 
not accurate at low density. (Figure 3.15) Further, the SAFT and SPHCT equations 
miss the maximum.
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Figure 3.16 Joule - Thomson coefficient methane with model equations at zero 
density

In Figure 3.16 the Joule - Thomson coefficient at zero density for methane for some 
model equations of state is plotted. The value of the Joule - Thomson coefficient at 
zero density is only a function of the temperature dependencies of the linear density 
term of an equation of state. For methane the SAFT equation gives very good values 
for most derived properties, but its initial Joule - Thomson coefficient overestimate the 
values at high reduced temperatures. The same goes for all the other models. This 
indicates that the temperature dependencies of all the equations is wrong. The real 
behavior of this quantity, as given by the SWEOS, is interesting. At temperatures 
above the critical the curve is approximates a straight line. At temperatures below the 
critical there is a curvature.

3.3.5. Contributions to the isochoric heat capacity from the SAFT EOS

The SAFT equation is the only equation that can be analyzed for different 
contributions to the isochoric heat capacity. When deriving the isochoric heat capacity 
from all the other model equation the only term left is the contribution from the 
attraction term. However, because of the temperature dependence of the volume 
parameter in the SAFT equation, all of the terms in the equation give contributions to 
the isochoric heat capacity.
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Figure 3.17 Residual isochoric heat capacities for alkanes at Tr = 1.1

In Figure 3.17 the residual isochoricheat capacity for the lower alkanes are plotted. 
This is done in order to get an idea of the trends as the chain length increases. In 
general, the isochoric heat capacity increases with increasing chain length. This is 
logical because the number of degrees of freedom increases with chain length. With 
higher degrees of freedom a molecule is able to absorb more heat. Note that at low 
densities the isochoric heat capacity can be approximated by a straight line.
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Figure 3.18 Individual contributions to the residual isochoric heat capacity 
from the SAFT EOS for methane at Tr = 1.1

In Figure 3.18 the different contributions to the isochoric heat capacity from the SAFT 
EOS for methane are plotted. In the case of methane there is no chain term. The 
maximum in the isochoric heat capacity is a result of the dispersion term. The initial 
slope of the heat capacity is primary dictated by the dispersion term while the minimum 
is where repulsion begins to dominate.
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Figure 3.19 Individual contributions to the residual isochoric heat capacity 
from the SAFT EOS for methane at Tr = 1.5

In Figure 3.19 the same quantities as in Figure 3.18 are plotted, but at a higher reduced 
temperature. There is no maximum in the curve. At this high temperature the SAFT 
equation gives excellent predictions of the isochoric heat capacity for methane except 
at the highest densities.
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Figure 3.20 Individual contributions to the residual isochoric heat capacity 
with the SAFT EOS for n-butane at Tr = 1.1

In Figure 3.20 the individual contributions to the isochoric heat capacity for n-butane is 
plotted. The chain term is negative over the whole density range. The isochoric heat 
capacity increases with chainlength (Figure 3.17). Based on that knowledge the 
chainterm should be positive. However, the failure could also be a result of a wrongly 
behaving dispersion term. The maximum caused by the dispersion term in the case of 
methane is absent. In the case of methane the dispersion term has negative values at 
high densities. This is not the case for n-butane. If the corresponding states principle 
had been used there would have been a maximum in the dispersion term. The reducing 
parameters in the SAFT dispersion term are : 

u/k : reducing temperature 
l/mv° : reducing density

If the corresponding states principle is valid the fraction of the critical temperature to 
the reducing temperature for both fluid would be approximately the same. The same 
would be valid for the densities. Those fractions are at this temperature :

Methane : Tc/(u/k) = 0.96 
n-Butane : Tc/(u/k) = 2.13

pc*mv° = 0.21
pc*mv° = 0.17

The reason there is no maximum in the isochoric heat capacity for methane is that the 
reducing parameter for the temperature is far from its corresponding states value. The 
reducing parameters for the density are closer to obeying the corresponding states 
principle.
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3.3.6. Contributions to the reduced bulk modulus from the SAFT EOS

Just as the case is with the isochoric heat capacity the reduced bulk modulus can be 
analyzed with regard to the contributions from the different terms in the equation of 
state. In the case of no associating molecules the reduced bulk modulus from the 
SAFT equation can be written as :

Bt -1 =
dZ

X disp

+ < \dp)T)
dZ

\ chain

+ + p\
I <dp A)

(3-6)

In this paragraph the different contributions to the variable (BT-1) and their sum are 
evaluated. The symbol SAFT, SWEOS, and 32MBWR denotes the variable (Br-1) 
from the respective equations of state. The factors HS, DISP, and CHAIN denote the 
individual contributions to the reduced bulk modulus from the SAFT equation.
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Figure 3.21 Reduced bulk modulus for the alkenes at Tr = 1.1

In Figure 3.21 the reduced bulk modulus for the lower alkanes are plotted as a function 
of reduced density. The variations with molecular structure are small.
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Figure 3.22 Individual contributions to the reduced bulk modulus from the
SAFT EOS with methane at Tr = 1.1

In Figure 3.22 the contributions of the reduced bulk modulus from the individual terms 
in the SAFT EOS are plotted as function of reduced density for methane at a reduced 
temperature of 1.1. The chain term in the SAFT EOS is zero. As mentioned earlier the 
prediction from the SAFT EOS is good. There seem to be small deviations at high 
densities, though this occurs because of competing divergences.
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Figure 3.23 Individual contributions to the reduced bulk modulus from the
SAFT EOS for n-butane at Tr = 1.1
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In Figure 3.23 the contributions to the bulk modulus for n-butane are plotted as a 
function of reduced density at a reduced temperature of 1.1. The contribution from the 
chain term is negative. At reduced densities higher than 2 the reduced bulk modulus is 
underestimated.
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Figure 3.24 Individual contribution to the reduced bulk modulus from the
SAFT EOS for methane at Tr = 1.5

In Figure 3.24 the different contributions to the reduced bulk modulus for methane are 
plotted as function of reduced density at a reduced temperature of 1.5. At reduced 
densities higher than 2.5 the SAFT equation overestimates the reduced bulk modulus. 
Thus as temperature increases the SAFT equation shows too strong a variation at fixed 
high densities.

3.3.7. The initial slope of the isochoric heat capacity from cubic equations

For cubic equations of state the initial slope of the isochoric heat is a function of 
acentric factor. In this case the relationship for the initial slope is :

Pc dC'/R TrPcd2a
RTC dp “ R2 dT2

(3-7)

For the PR and the SRK equations this quantity is a function of the acentric factor. For 
the RK. equation this quantity is a constant. By studying the initial slopes from the 
multi parameter equations of state the effectiveness of the acentric factor in the 
supercritical region can be studied.
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Figure 3.25 Initial slope of (CY7R) as a function of acentric factor at Tr = 1.1

In Figure 3.25 the dimensionless initial slopes of the isochoric heat capacities resulting 
from the cubic equations of state are plotted against acentric factor. The PR and the 
SRK equations give approximately the right slope, but the wrong intercept. The RK 
equation give a better intercept, but is fixed with chain length.
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Figure 3.26 Initial slope of (Cvr/R) as a function of acentric factor at Tr = 1.25

Figure 3.26 shows that this behavior is less obvious at Tr = 1.25 but still present.
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3.4 Graphical evaluation of the equations of state for mixtures

The methane/ethane mixture is used as a reference to describe mixture behavior. The 
range of the .3 2MB WR surfaces covering ethane and methane makes evaluation 
possible for all mole fractions over many state points. The Peng - Robinson equations 
is used to calculate the derived properties from a model equation. All properties are 
calculated at a temperature of 330 K. All properties are dependent on the reduced 
mixture density. The mixture critical density is calculated with the following 
relationship :

Pc.mix (3-8)

All binary interaction parameters both for the PR EOS and for the ECS calculations 
are set equal to unity. Since the focus of this study primarily has been on pure 
substances this paragraph will serve as a reference for future work.
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3.4.1. The behavior of the isochoric heat capacity

£
3

Figure 3.1 Isochoric heat capacity with the ECS principle for methane/ethane 
mixtures at T = 330 K

In the limit of pure methane non - physical behavior is calculated at low densities. This is 
believed to be a result of convergence problems of the theory. In Figure 3.2 this region has 
been plotted to give a closer look at the non - physical behavior. The value should go 
smoothly and uniformly to zero at zero density.
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Figure 3.2 Cvr/R methane with the ECS principle at T = 330 K
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Figure 3.3 Isochoric heat capacity for methane/ethane mixtures with PR - EOS at T = 
330 K

Because of its failure to give conect values for the isochoric heat capacities for pure 
substances (Figure 3.1) the Peng Robinson equation also gives wrong values in the case of 
mixtures. Judging from the results of the pure component, analysis all the model equations 
will fail to give good results for mixtures as well.
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0

Figure 3.4 Isobaric heat capacity calculated with the ECS principle for 
methane/ethane mixtures at T = 330 K

In Figure 3.4 the isobaric heat capacity calculated with the ECS principle is plotted as a 
function of reduced density and mole fraction methane. The ECS principle predicts a smooth 
behavior in all directions of the surface.
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Figure 3.5 Isobaric heat capacity calculated with the PR - EOS methane/ethane 
mixtures at T = 300 K

The PR equation gives quantitatively correct dependencies for the isobaric heat capacity. The 
ECS calculation (Figure 3.4) is predicting a smooth curves all over the surface. However, it 
has irregular curves in the limit of pure ethane. This could also be a result of the mixing rule 
used for the critical density.
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Figure 3.6 Joule - Thomson coefficient with the ECS principle for methane/ethane 
mixtures at T = 300 K

Figure 3.6 shows the Joule - Thomson coefficient in the reduced density range 0.23 - 2.3 from 
the ECS principle.
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Figure 3.7 Joule - Thomson coefficient with the PR - EOS for methane/ethane 
mixtures at T = 300 K

Figure 3.7 shows the Joule - Thomson coefficient calculated with the PR EOS. It has irregular 
and non - physical behavior in almost in the entire plotted range below high mole fractions of 
methane.
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Figure 3.8 Speed of sound from the ECS principle for methane/ethane mixtures at T 
= 300 K

In Figure 3.35 the speed of sound for mixtures of methane and ethane is plotted. The speed of 
sound is not very dependent on mixture.
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Figure 3.9 Speed of sound with the PR - EOS for methane /ethane mixtures at T = 
300 K

The speed of sound for methane/ethane mixtures calculated with the PR EOS seems to give 
good qualitative results as shown by comparing Figures 3.35 and 3.36.
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3.5. Discussion of results

The analysis of the model equations has revealed some weaknesses in their ability to 
describe the derivative properties for pure components. In this evaluation the 
substances methane and n-butane have been chosen for evaluation in order to study the 
ability of the equations to describe both spherical and chain - like molecules.

The residual isochoric heat capacity is poorly predicted by all the model 
equations, except for the SAFT equation with methane. The equations fail to give both 
a maximum and a minimum. The SPHCT equation gives a maximum for methane, but 
at too high densities. In the case of the cubic equations and the SPHCT equation the 
failure is partly a result of having no temperature dependence in the repulsion terms. 
Without any temperature dependence, the whole term disappears in the isochoric heat 
capacity. In the case of the SAFT equation the repulsion term is a function of 
temperature, so intermolecular repulsion gives a contribution to the isochoric heat 
capacity. By studying the SAFT equation we see that the maximum in the isochoric 
heat capacity for methane stems from a maximum in the attraction term. This leads us 
to believe that the attraction contribution in the cubic equations and the SPHCT 
equation must be modified to give a maximum in order to improve the estimations of 
the isochoric heat capacity. Another interesting result of the analysis is the failure of 
the SAFT equation to give a correct isochoric heat capacity for n-butane. The 
attraction term behaves different from methane. According to the principle of the 
corresponding states the attraction term should have approximately the same behavior, 
but the characteristic temperature for the SAFT model does not vary with molecular 
size.

The isobaric heat capacity is qualitatively correct from all equations and 
substances, though the cubic equations do not give minima in the isobaric heat 
capacity. Again the prediction from the SAFT equation for methane is excellent, but its 
prediction for n-butane is too high at densities close to the critical. All other equations 
are underestimate the isobaric heat capacity at the critical density.

The reduced bulk modulus is predicted qualitatively correct for both methane 
and n-butane with all the equations. The SAFT equation gives the best predictions, 
especially for methane.

The Joule - Thomson coefficient is well predicted from all the equations for 
methane, though the PR equation fails to give the correct inversion point. The cubic 
equations do not yield good predictions for n-butane. In all cases the initial slope of the 
curve is far to low.

For the cubic equations the initial slope of the residual isochoric heat capacity 
was studied as a function of acentric factor. It is expected to be roughly a linear 
function of acentric factor for the lower alkanes The SRK and the PR equation, do 
yield appropriate slopes but the intercepts are too low. The RK equation has a better 
intercept, but its initial slope is not a function of acentric factor.
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4. General behavior

4.1. Introduction

In order to reduce the number of unknown parameters in a equation of state, it is 
useful to make use of behavior that are common to classes of substances. An example 
of this is using mathematical constraints valid at the critical point in order to connect 
the parameters of the cubic equations to critical temperature and pressure. Here we use 
variables of temperature and density reduced by their critical values to explore 
similarities and differencès among substances and states.
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4.2. Comparisons of extreme points

In this paragraph the extreme points of the different derivative properties and the Joule 
- Thomson inversion curve for water and ethane are compared to the same quantities 
for methane. This is similar to the work of Grogorowicz et al.26

4.2.1. Extrema water and methane
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Figure 4.1 Extrema water and methane

In Figure 4.1 we see that the behavior of water is differs from the behavior of methane, 
especially in the liquid region. This is expected because water is a self associating 
compound and methane is not. Major differences are associated with the Cv and Cp 
extrema. Water dóes not have a minimum in the Cp. The Cv is not entering the 
saturated liquid curve.
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4.2.2. Extrema ethane and methane
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Figure 4.2 Extreme points ethane and methane

In Figure 4.2 the extreme points and the Joule - Thomson inversion curve for ethane 
are compared to the same properties for methane. Both components are approximately 
spherical and should have a similar behavior when the properties are plotted in reduced 
coordinates. However there are differences, mainly because the triple point of ethane is 
at a lower temperature than methane.
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4.3. The Joule - Thomson curve

The Joule - Thomson inversion curve seems to have a simple form for all substances 
studied.

The Joule - Thomson inversion curve
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Figure 4.3 The Joule - Thomson inversion curve

Within the normal alkanes there is a regular behavior. The curves should be relatively 
easy to model as a function of the acentric factor.

Table 4.1 Intercept of the Joule Thomson inversion 
curve with the saturated liquid line

Substance Pr Tr
Methane 2.207 0.805
Ethane 2.157 0.806
Propane 2.260 0.801
I-Butane 2.265 0.798
n-Butane 2.366 0.807
R152a 2.482 0.800
Water 2.246 0.824

Another intriguing fact is that the inversion curves are touching the saturated liquid 
curve at approximately the same reduced temperature. (Table 4.1) The value of this 
information is limited in light of the good representations of the inversion points given 
by all model equations accept the PR - EOS. (Chapter 3.)
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4.4. The minimum in the speed of sound
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Figure 4.4 Minimum of speed of sound

In Figure 4.4 the minima of the speed of sound are plotted in reduced density and 
temperature coordinates. Again there is a regular behavior within the normal akenes. 
The accuracy of the surfaces used may be uncertain as shown by the non - smooth 
behavior of the curves.
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4.5. The maximum in the Joule - Thomson curve
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Figure 4.5 Maximum in the Joule - Thomson coefficient

In Figure 4.5 the maximums in the Joule - Thomson coefficient are plotted in the 
reduced temperature and reduced density plane. Only the the lower alkanes (C1-C3) 
shows some regularity in their behavior. Again the accuracy of the pure component 
surfaces has to be questioned.

Table 4.2 Points of intercept of the maximum in the Joule - Thomson
inversion curve with the saturated vapor line

Substances Tr Pr
Methane 0.956 0.340
Ethane 0.976 0.510
Propane 1.000 0.637
I-Butane 0.998 0.711
n-Butane 0.997 0.698
R152a 1.000 0.531
Among the three first alkanes (Ci - C3) there seems to be a approximately lineair 
relationship between in the reduced temperatures at saturated vapor line. The bigger 
molecules have a starting point close to the critical point. Water is the only compound 
studied with no maximum in the Joule - Thomson coefficient.
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4.5. Extreme points isochoric heat capacity
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In Figure 4.6 the extreme points of the Cv are plotted in the reduced temperature and 
reduced density plane. Water shows a different behavior from the rest of the 
compounds. The minimum is at higher densities and the transition to a maximum at 
lower temperatures than the others.

Table 4.3 Intercept of the Cv with the saturated liquid line
Substances T, Pr
Methane 0.806 2.155
Ethane 0.856 2.069
Propane 0.791 2.271
I-Butane 0.598 2.730
n-Butane 0.757 2.386
R152a 0.760 2.475

91



Derivative Properties from Equations of State M. Konttorp

Table 4.4 Points where : (d2Cv/dp2)T = 0
Substance Tr Pr
Methane 1.378 1.217
Ethane 1.471 1.209
Propane 1.415 1.188
R152a 1.397 1.113
Water 1.278 1.419

4.6. The phase - envelope
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Figure 4.7 The phase envelope

In Figure 4.7 the phase envelopes the pure components are plotted in the reduced 
temperature and the reduced density plane. The liquid densities are larger for larger 
molecules. This may be a regular variation with acentric factor.
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4.7. Discussion of results

It is evident that the behavior of water is different from the behavior of the alkanes. 
This is probably a result of the association of the water molecules.

The Joule - Thomson inversion curve is the property that behaves in the most 
regular fashion. The value of this knowledge is lowered by the fact that most of the 
model equations studied here are able to predict the Joule - Thomson inversion curve.

The extrema of the isochoric heat capacity behave in a regular fashion. The 
behavior of the curves is sensitive to the accuracy of the equations used. As earlier 
pointed out most of the model equations studied are not able to give a qualitatively 
correct behavior of the isochoric heat capacity. Using the information gained from the 
plot of the extrema for the different pure components would probably allow us to 
improve the predictions of the isochoric heat capacities given by the model equations.
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Conclusions

The object of this thesis was to study the real behavior of derivative propertries for 
pure substances and mixtures and to compare this behavior to the predictions obtained 
from model equations of state. The primary focus has been on pure components. In 
order to be able to avaluate the behavior of mixtures the extended corresponding states 
principle (ECS) has been studied on its ability to produce reference data. Analytical 
relationships were derived for isochoric heat capacity, isobaric heat capacity, the Joule 
- Thomson coefficient, and the speed of sound.. The ECS calculations were compared 
to experimental isobaric heat capaciy data for the methane/propane mixture. All 
derived properties were evaluated against a pure component surface for the 
methane/ethane mixturte and the principle of congruence for the same mixtnre The 
ECS principle was found to generate data of a high quality. Deviations were found in 
the vicinity of the pseudo critical point for the mixture. Also the sensitivity of the 
derived priperties to binary interaction parameters in the mixingrule was studied. The 
sensitivity was found to be small.

The study of the behavior of pure components showed two types of behavior. 
The properties of pure components were evaluated as a function of density at a 
reduced temperature of 1.1. At this temperature the non - associating components 
were showing some common behavior :

- The isochoric heat capacity has both a minimum and a maximum 
- The isobaric heat capacity has both a maximum and a weak minimum 
- The Joule - Thomson coefficient has a maximum and a weak minimum 
- The speed of sound has a minimum

The associating substances lacked the maximum in the Joule - Thomson coefficient. 
The isochoric heat capacity had a highly irregular behavior. A minimum in the isobaric 
heat capacity was at a high density, or absent depending on the range of the equations 
used.

Expressions for the derived properties from five model equations were 
derived :

- The RK - EoS
- The SRK - EoS
- The PR - EoS
- The SPHCT - EoS
- The SAFT - EoS

All the equations are in the simplest form dependent on three parameters; a parameter 
describing the volume of molecules, a parameter describing the interaction energy 
between molecules, and a parameter describing the chain length of molecules.

The model equations mentioned above were studied on their ability to predict 
derivative properties. Methane and n-butane were used as a reference in order to 
explore the ability to describe effects stemming from the chainlength of molecules. In 
all cases but methane with the SAFT equation the isochoric heat capacity was not well 
predicted. All equations were able to give a maximum in the isobaric heat capacity. All 
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equations were able to give a maximum in the Joule - Thomson coefficient as well as a 
minimum in the speed of sound. The SAFT equation was found to give excellent 
predictions for methane, but was not able to predict properties for n-butane with the 
same accuracy.

The extreme points of pure components were compared in the reduced density 
- temperature plane. This was done in order to explore regular behavior as a function 
of molecular structure. This behavior can be used to improve the model equations 
available. The extrema in the isochoric heat capacity were found to serve as a good 
tool for improvement of model equations. This conclusion is drawn from the fact that 
most equations of state have trouble in predicting them, and that there is a certain 
regularity in the behavior among different substances.
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Recommendations

In this study the ECS principle has only been tested on mixtures of lower alkanes. This 
class of molecules can generally be described well with the van der Waals mixing rules. 
In order to use the ECS principle on more complex mixtures, other mixing rules should 
be tested. Hopefully, the ECS principle can produce good results for more complex 
mixtures as well. If so, this will allow us to calculate reference data for complex 
mixtures and test equations of state for mixtures.

The equations tested in this study should also be tested on their ability to 
produce accurate derivative properties for mixtures. Even now testing is possible for 
the lower alkanes based on reference data produced from the ECS calculations.

The full PHCT equation should be tested and compared to the results obtained 
with the SAFT equation since both equations have a similar theoretical basis. The 
difference is that there are extra temperature dependencies in the SAFT equations, and 
the treatment of chain - like molecules is different; the effect of this is not known.

In future work, models for pure components could be designed using the 
behavior of the multiparameter equations as a reference. Based on experience so far, a 
strategy of design can be suggested. In order to capture the temperature dependence of 
the equation of state the isochoric heat capacity should be modeled first. The residual 
isochoric heat capacity has some advantages over the other properties :

• The property links the microscopic structure of the molecules with the 
macroscopic behavior. The isochoric heat capacity is proportional to the degrees of 
freedom of the molecules. If the influence of density on the internal degree of 
freedom of the molecules can be understood, it should be possible to link the 
structure of the molecules to the macroscopic behavior of a fluid.

• In terms of different contributions the property seems to be additive. This means 
that the property is the sum of contributions from different effects on the 
thermodynamic surface.

• The property is very sensitive to the temperature dependence of the 
thermodynamic surface.

In order to give the equation the right volumetric behavior one other property should 
be used in the development of the equation. The reduced bulk modulus is not very 
temperature dependent, but has a strong density dependence which provides 
complementary information to the heat capacity. The different contributions to this 
property are also additive.
If the residual isochoric heat capacity is modeled, it can be transformed into the 
residual Helmholtz energy according to :

Ar =K(p,T) + TL(p) + M(p) (5.1)

with:
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dTdT (5.2)

The next step would be to derive the reduced bulk modulus from residual Helmholtz 
energy :

+ P1 (5-3)

We see that from transforming the residual isochoric heat capacity into the residual 
Helmholtz energy two functions of density (L,M in equation (5.2)) appear that give us 
an extra degree of freedom in modeling the reduced bulk modulus. This scheme can 
also be used the other way around. Starting with a model of the reduced bulk modulus, 
this model can be transformed into the residual Helmholtz energy according to :

= K{T) + - ln(p) + ƒ ^-(J BTdpjdp
(5-4)

If this relationship is transformed into the isochoric heat capacity according to

T(d2Ar> 
äI dT2 , (5-5)

"d^^RT}

< dp1 4

we have two temperature functions (K and L in equation (5.4)) that can be modeled to 
give the right behavior of the isochoric heat capacity. These steps should be 
undertaken in addition to the modeling of saturation properties.

The dispersion term in the SAFT equation does not show the same qualitative 
behavior for methane and n-butane. Probably should this term be critically reviewed 
and remodeled in order to improve the ability of the SAFT equation to estimate correct 
values for the isochoric heat capacity.
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List of symbols

A
a = [A-Aid]/RT 
b 
Bt
c 
CP
Cpr = [Cp-Cpld]/R

cj = [Cv-Cvid]/R 
d
Dij
G
g = [G-G‘d]/RT 
H
h = [H-Hid]/RT 
h 
f 
k
Mr 
m 
N‘ 
NAv
Hi 
P 
R 
S
s = [S-Sid]/R
T
Xi 
Z 
Zm 
z = Z-l 
u 
u = [U-Uid]/RT 
u/k 
u°/k 
v° 
v00
w
1-Cij

Helmholtz energy (J/mol)
Dimensionless residual Helmholtz energy (-)

Co - volume in cubic equations of state (L/mol)
Reduced bulk modulus (-)
Number of segments (SPHCT EOS) (-)
Isobaric heat capacity (J/K.mol)
Dimensionless residual isobaric heat capacity (-) 
Isochoric heat capacity (J/K.mol)
Dimensionless residual isochoric heat capacity (-)
Diameter of segment (SAFT EOS) (dm)
Constants in dispersion term (SAFT EOS) (-)
Gibbs energy (J/mol)
Dimensionless residual Gibbs energy (-)
Enthalpy (J/mol)
Dimensionless reduced enthalpy (-)
Transformation parameter (ECS) (-)
Transformation parameter (ECS) (-)
Bolzman’s constant (FK)
Molar mass (g/mol)
Chain length of molecules (-)
Total numb er of moles (-)
Avogadro’s number (l/mol)
Number of moles of component I (-)
Pressure (MPa)
Gas constant (J/K.mpl)
Entropy (J/K.mol)
Reduced residual entropy (-)
Absolute temperature (K)
Mole fraction of component i (-)
Compressibility factor (-)
Coordination number (SPHCT EOS) (-)
Residual compressibility factor (-)
Energy (J/mol)
Dimensionless energy (-)
Segment - segment interaction energy (K)
Segment - segment interaction energy at T -> co (K) 
S egment volume (L/mol)
Segment volume at zero temperature (L/mol)
Speed of sound (m/s)
The direct correlation function (-)
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Greek :

5 Dimensionless density (p/pe) (-)
co Pitzers acentric factor (-)
Pr Reduced density (-)
P Density (mol/L)
T Dimensionless temperature (Tc/T) (-)
T Geometrical constant (= 0.74048) (-)
d>° Dimensionless ideal gas Helmholtz energy (Ald/RT) (-)
<Dr Dimensionless residual Helmholtz energy (A-Ald)/RT (-)
p The Joule - Thomson coefficient (K/Pa)
e Shapefactor (ECS) (-)

Shapefactor (ECS) (-)
eq Segment energy (SPHCT EOS) (J)
Sij Binary interaction parameter (ECS) (-)
nu Binary interaction parameter (ECS) (-)
<1); Fugacity (-)

Indices :

r Reduces properties
c Critical properties
id Ideal gas state
X Mixture property
i Target fluid
0 Reference fluid
hs Carnahan - Starling contribution SAFT EOS
seg Segment contribution SAFT EOS
chain Chain contribution SAFT EOS
assoc Association contribution SAFT EOS
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Appendices

Appendix 1. Derivative properties methane

C//R for methane with the Wagner EOS
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Speed of Sound methane with the wagner EOS
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Appendix 2. Derivative properties ethane

CV7R ethane with the 32-MBWR EOS
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Speed of sound ethane with the 32-MBWR EOS
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Appendix 3. Derivative properties propane

C//R propane with the 32-MBWR EOS
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Speed of Sound propane with the 32-MBWR EOS
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Appendix 4. Derivative properties i-butane

CV7R i-butane with the 32-MBWR EOS
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Speed of Sound i-butane with the 32-MBWR EOS
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Appendix 5. Dèrivative properties n-butane

CV7R n-butane with the 32-MBWR EOS
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Speed of Sound n-butane with the 32-MBWR EOS
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Appendix 6. Derivative properties cyclohexane

Cvr/R cyclohexane with the Wagner EOS
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Speed of Sound cyclohexane with the wagner EOS
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Appendix 7. Derivative properties R152a

CV7R R152a with the 32-MBWR EOS
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Appendix 8. Derivative properties sulfurhexafluoride
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Speed of Sound F6S with the wagner EOS
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Appendix 9. Derivative properties methanol

CV7R methanol with the Wagner EOS
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Speed of Sound methanol with the wagner EOS
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Appendix 10. Derivative properties water

Cvr/R water with the Wagner EOS
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Speed of Sound water with the wagner EOS
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Appendix 11. Extreme points propane

Extreme points and the Joule - Thomson inversion curve 
propane

4.5

2.5 .

0.5 .

3.5 ..

1.5 ..

3 ..

2 ..

0.4

Sat. vap.

0.6 0.8

T,

Cv max

1.2 1.4

Cpinax

1.6
o

0.2 1.8

122



Derivative Properties from Equations of State M. Konttorp

Appendix 12. Extreme points i-butane

Extreme points and the Joule - Thomson curve i-butane
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Appendix 13. Extreme points n-butane

Extreme points and the Joule - Thomson inversion curve n- 
butane
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Appendix 14. Extreme points R152a

Extreme points and the Joule - Thomson inversion curve R152a
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