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72
This thesis has been dedicated to the study of derivative properties obtained from equations
of state. The derivative properties are dependent on first or second order temperature or
density derivatives of the principal thermodynamic surface. This means that the inaccuracy of
the principal surface is easily revealed by these properties. The derivative properties used in
this study were :

- Isochoric heat capacity

- Isobaric heat capacity

- The Joule — Thomson

- The speed of sound

- The reduced bulk modulus

The real behavior of pure component properties derived from high accuracy
multiparameter equations of state fitted to a large number of experimental data has been
studied. The objective was to find general behavior among different substances. If there is a
general behavior this would be helpful in the development of new and better functional
structures for the description of thermodynamic properties. The isochoric heat capacity was
found to have a regular behavior.

Another objective of the thesis has been to investigate the representation of derivative
properties obtained from some model equations of state. Those equations were :

- Redlich - Kwong

- Soave - Redlich - Kwong
- Peng — Robinson

- SPHCT

- SAFT

The derived properties from the model equations for both pure substances and mixtures were
compared to those from the high accuracy equations. All equations were found to give very
poor representations of the isochoric heat capacity. In light of the poor estimation of the
isochoric heat capacity obtained from model equations this behavior could serve as a tool in
the further development of equations of state.

In order to obtain reference data for mixtures new thermodynamic relationships for
derivative properties have been developed based on the Extended Corresponding States
theory. The new relationships were found to give excellent descriptions of derivative
properties for mixtures.
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Derivative Properties from Equations of State M. Konttorp

Introduction

An equation of state (EOS) has proved to be a valuable tool in estimating fluid
properties. The advantage of the EOS is the great number of fluid properties that can
be derived from one equation. If the parameters can be described by mixing rules, the
EOS in combination with the ideal gas isobaric heat capacity is able to describe
virtually all thermodynamic properties of interest for an infinite number of mixtures.
These advantages has triggered an intense research activity in the field of equations of
state. (Sandler®’)

The different equations of state can be put into three classes :

* Elaborate multi parameter equations of state that are essentially within
experimental error for all properties at nearly all conditions.

* Cubic or higher order polynomials in density with two to five parameters that are
correlated with measurable quantities such as critical temperature and pressure.

e Equations based on the statistical mechanics of fluids.

It should also be noted that recently equations combining the critical scaling laws with
the classical behavior have been established.

The multi parameter equations are used on systems where a great number of measured
data are known. These equations are often used in applications where high accuracy is
required. The high complexity of these equations prohibits their use when
computational speed is required.

The cubic equations of state are the most widely used in industry. The strength of these
relatively simple models are the computational speed and the low number of
measurements required in order to estimate the parameters. These models are often
valid only for a limited number of systems. The range of the models is also restricted.
The mechanical statistical based models represent efforts to link the microscopic
structure of molecules to their macroscopic behavior. These equations are often more
complex than the cubic equations, but due to the decreasing cost of computation the
equations are becoming increasingly important in industry.

This thesis is a part of a joint project between the Laboratory of Applied
Thermodynamics and Phase Equilibria at the Technical University of Delft and the
Department of Chemical Engineering at the University of Virginia. The project is
supported financially by the North Atlantic Technical Organization (NATO). The aim
of the project is to study the behavior of derivative properties from different equations
of state available in the literature outside the two - phase region, and to compare the
predicted behavior of these equations to the real behavior of these properties. The
information gained from this study will give us suggestions‘on how to improve the
available models. The advantage of evaluating the derived properties are that they are
measurable, and dependent on the first or second temperature and density derivative of
the principal thermodynamic surface. If those properties can be modeled accurately the
models can be transformed into a pressure surface and hopefully give more accurate
equations of state.
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In this thesis five derivative properties have been studied :

e The isochoric heat capacity

e The isobaric heat capacity

e The Joule - Thomson coefficient
e The speed of sound

e The reduced bulk modulus

These properties obtained from multi parameter equations of state has served as a
reference of comparison for pure fluids. The Extended Corresponding States principle
has been extended to predict these derived properties for mixtures. In this work the
real behavior of pure components has been studied. Five equations of state has been
tested on their ability to estimate derivative properties for pure components :

Cubic equations of state :

e The Peng - Robinson equation

e The Redlich - Kwong equation

e The Soave - Redlich - Kwong equation

Statistical mechanics based equations :

e The SPHCT equation
e The SAFT equation

The real behavior of mixtures predicted with the ECS theory has also been studied.




Derivative Properties from Equations of State: - M. Konttorp

1. Derivative properties from high accuracy equations of state

1.1. Introduction

There are a great number of multi parameter equations of state available in the
literature. The quality of those equations is largely dependent on the range and quality
of measured data. In this project 10 substances has been chosen for evaluation. Those
10 substances have been chosen based upon the quality of the available equations, and
their ability to represent different classes of substances. The classes and the chosen
substances are listed below :

Non - polar hydrocarbons :

Methane
Ethane
Propane
i-Butane
n-Butane

Non polar cyclic hydrocarbons :
W Cyclohexane
Refrigerants :

N R152a
W Sulphurhexafluoride

Polar substances :

B Methanol
M Water .

For some of the substances listed above there has been published several equations of
state. The equations used in this study are listed in Table 1.1 :
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Table 1.1 Multiparameter equations of state
Substance Type Pressure | Temperature | Reference
to : range (K)
(MPa)

Cyclohexane SWEOS |80 Melting line- | Penoncello et. al”’ (1995)
700

Methane SWEOS 1000 Melting line- | Setzmann and Wagner*!
625 (1991)

Water HILLEOS | 1000 Triple point | Hill** (1990)
- 1273

Water SWEOS | 25000 Melting line | Saul and Wagner® (1989)
- 1273

Methanol SWEOS 800 Melting line | de Reuck and Craven®*
- 620 (1993) _

Sulfurhexafluoride | SWEOS 55 222 - 525 Cole and de Reuck”

(1990)

Methane 32MBWR | 0-200 Melting line | Younglove et al.* (1987)
-600

Ethane 32MBWR | 0-70 Melting line | Younglove et al.* (1987)
-600

Propane 32MBWR | 0-100 Melting line | Younglove et al.* (1987)
- 600

Isobutane 32MBWR | 0-35 Melting line | Younglove et al.* (1987)
- 600

N-butane 32MBWR | 0-70 Melting line | Younglove et al.* (1987)
- 500

1,1-Diflouroethane | 32MBWR | 0-35 162-453 Outcalt and McLinden’

(R152a)

(1986)

The abbreviation 32MBWR is short for the modified Benedict - Webb - Rubin
equation with 32 parameters. The abbreviation SWEOS is short for the Schmidt -
Wagner equation of state. The abbrevation HILLEOS is short for the Hill equation of

state for water.

In order to test the behavior of the derivative properties obtained from model
equations the ECS theory has been extended to analytically predict the derivative
properties of mixtures. The advantage of the ECS procedure is the high accuracy of
the predictions and the ability to predict the properties for an infinite number of

mixtures.
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1.2. Derivation of derivative properties for pure substances

If the thermodynamic surface is given in dimensionless Helmholtz free energy as a
function of temperature and density the basic relations giving the derivative properties
are as follows :

The following dimensionless variables are defined :

Ideal Helmholtz energy :
Aid

Q' =—
RT

Residual Helmholtz energy :

A_Aid
RT

M

Dimensionless temperature :

The derivatives of the Helmholtz energy are denoted as :

do’ dZCD’]
P’ = o’ =
T (dfja’ 113 (dTZ

The subscripts are altered to give density derivatives. The superscript is altered to yield
the definition of derivatives of the ideal Helmholtz energy.

s

e The isochoric heat capacity

C.(5,7)
R

=—7(D° + D) (1.1)

W




Derivative Properties from Equations of State M. Konttorp

o The isobaric heat capacity

C,6,9) 6 (1+80;-50;)

1.2
R R 1428505 +5°®%, (12)
e The speed of sound
A G VP (L /et | L3
RT T PeTO Vs T (0% +07,) (13)

e The Joule-Thomson coefficient

— (5P; +52(I>;-5 + 679%.)
(1+ 805 — 6705 ) — 2 (D°, + D7 )1+ 25D + 57 DY)

u(6,7)Rp = (1.4)

The SWEOS is always given in dimensionless Helmholtz energy. The SAFT EOS is
given in dimensional Helmholtz energy, but can easily be manipulated to give the
dimensionless Helmholtz energy defined here. All other equations discussed are given
as a pressure surface as a function of temperature and density. If the thermodynamic
surface is given in pressure as a function of density and temperature the basic
thermodynamic relations are as follows :

¢ The isochoric heat capacity :

Cp.1)=Co- F(ﬁ ) }dp 1.9

. p2 é) T?.

e The isobaric heat capacity :

T(sP) [(oP
_ Lof r 1.6)
C,(p,T) cv<p,n+pz(ﬁ)p/(5pl (1.6)
e The speed of sound :
C aPJ 10° |
2 I = 1.7
w (o, T) {Cv[ﬁp TMr:| (1.7)
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e The Joule-Thomson coefficient :

1 [ T6PI8T), 1
[pZ(aP/amT'p] a9

ﬂ(P,T)=E

These relationships are used in deriving thermodynamic properties from the 32MBWR
equation of state.

1.3. Calculation of derivative properties for mixtures

1.3.1. The Extended Corresponding States procedure

In order to calculate the derivative properties for mixtures the ECS procedure is
chosen. This ECS procedure allows an accurate calculation of all thermodynamic
properties provided that there are accurate pure component surfaces available.

The extended corresponding states method is based on the following relationships

z;(p, 1) =z, (pihi,o: T!f.,.) (1.9)
and
a(p, 1) =a,(ph, T/ fi) (1.10)

z is defined by z = Z-1 were Z is the compressibility factor. a is the dimensionless

* residual Helmholtz free energy.(a = [A-A“)/RT) p and T are the density and
temperature. The subscripts are denoting the reference fluid (0) and target fluid (i).
The fip and h;o are transformation parameters, defined by

fioo = (L1 TY6(T,p,) (1.11)
and
o= (0] 1 8T, p,) (1.12)

where T. and p. are the critical temperature and volume for the fluids. T, and p, are
defined as T'/T and p¥/p',, respectively. The functions ¢(Ty,pr) and B(T,,p;) are shape
factors. Given a state point defined by p and T plus the transformation variables f;y and
hi, the equations (1.9) and (1.10) defines an exact transformation from one pure fluid
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surface to another. The pressure P; becomes (f; ¢/h; 0)Po. The shape factors ¢(T,,p;) and
6(T,,p:) can be approximated in a number of ways, but if the equation of state is known
both for the reference fluid (0) and the target fluid (i) the exact calculation of h; and
fio is possible for each state points. This eliminates the need to approximate the

o(T.,pr) and 6(T,,p;). In this work the transformation parameters f; o and h;p are
calculated exact for every state point. The extension of this procedure to mixtures is
accomplished by the following mixing rules :

Ji =& (FuoS 500" (1.13)
hy =1, (shis +1h)’ (1.14)
h,, = Z ;xixjhil.,o (1.15)
Foohey = Z ; X%, £, 0P 0 (1.16)

where x; and x; are the mole fractions of the pure components. The n;; and the €;; are
binary interaction parameters. The previously defined h; and f;o becomes h;; o and f; .
The only adjustable parameters are the binary interaction parameters 1);; and €;;.

3.3.2. Derivation of derivative properties using the ECS procedure

Starting with the dimensionless Helmholtz energy all thermodynamic properties can be
derived using basic thermodynamic relationships. Equations (1.17) through (1.23)
require only first derivatives of the Helmholtz energy a.

a =a, (1.17)
z; =(1+ H, )z, + Fu, (1.18)
i, = (1 =5, Jit, = Hyz, (1.19)
S, =8, —Fou,—H,z, (1.20)
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ho=hy+(F, - Fp)u, +(H, - Hp )z, (1.21)

8 =8 +H,z, + Fu, _ (1.22)

Ing =g, +u,F, +z,H, (1.23)

All energies are defined as : x = X};fu , Wwhere x =a,u,h g

The entropy is defined as : s = S_RSM

Thermodynamic properties denoted with a subscript 0 are properties derived from the
reference surface using basic thermodynamic relationships.

The factors Hy and F; contains the derivatives of the transformation parameters h;y and

’%geir definitions are :

3 %iﬂfi (1:24)
H, = (i,h;fj h—TO— (1.25)
F, = (%) L (1.26)

P Jio

H, = ( a;;) ;% (1.27)
(22 aa
F, = (%j ]}/—t (1.29)




Derivative Properties from Equations of State . M. Konttorp

According to equation (1.9) the compressibility factor for the reference and the target
fluid must be equal. As a result equation (1.18) imposes a constraint :

zoH, = —u,F, (1.30)

In order to calculate the thermodynamic properties mentioned above the factors Hy and
Fyx
(x = T,p,m;) has to be known. The derivatives of the H factor are given by Ely" :

" = [(Ki —Ko)uO] 7 (1.31)

i [(Ko —Duy +(y, - l)zo]

s, < L0 7o)t = G =D~ )] (132)

[(Ko =Dy + (7o — l)zo]

with :
T(oP |
y = F('g‘f) (1.33)
Y]
Yo, é’P)
_plef 34
K P(ﬁp ] (1.34)

Making use of equation (1.19) and (1.30) allows calculation of the F factors. If the aim
is to calculate the thermodynamic properties of a mixture mixing rules are utilized in
order to calculate the factors Hy and Fy for the mixture. These mixing rules are derived
from the equations (1.13-16) :

dh, ah;,
dT,O = ZZx,.x}.( d}’o) (1.35)
i
with :
dh, 1 dh, dh.
=, g(h}f +h5) (hi]? P —d’T—OJ (1.36)

10
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df., 1 (df;'jo dhijoj dhxoj
0L 0 [ S . 37
ar (2;""‘1 ar "o us g ) " Fxo gy (1.37)
with :
4o %o

Wy Twoar *Jiogr

dr ’ 2‘\/.fi,0 7.0

(1.38)

The calculation of caloric properties is more complicated. In order to calculate the
1sochoric heat capacity the second order temperature derivative of the Helmholtz
energy is needed. Relationships for derivative thermodynamic properties are listed
below :

C,; = Ul —z,Hy —2,H, +(1—Fr)zcv,o ~2H (1-Fr)(zo -~ F7)(7o = 1)
—Hﬁ(zo + (&, - D) -z,H,(1- H;) (1.39)

(FT(1_70)+HT(K0 _1)'*'70)2

c,; =C,; —1+(z,+1) F =7+ H, (e D+, (1.40)
Cp 106 172
w(p, T) = {C—RT(ZO +D(F,(1-7,) + H, (5, ~ 1) +K‘0)'A7} (1.41)
FT 1- 0 HT 0 -1 0
ﬂ(p,77=51‘ Py e il =D o)1 (1.42)

o | (= 7) + H, (5, =D +,) P

The dimensionless residual isochoric and isobaric heat capacities are defined as :

__G-c 6

Y R ? R

The factors Hyr and F 'I‘T. are defined as follows :

d*h ) T?
H_ =|——0| 2 1.43
& ( dr’ ] g (143)

11
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d’ fio) T?
Fn =( a7 j?o (1.44)

In order to calculate the isochoric heat capacity second temperature derivatives of the
transformation parameters fio and h; o are needed. Expressions for these derivatives are
obtained by using the equation for the isochoric heat capacity (1.39) and the
expression given below :

d*z. _ dzz0

i

dT* — dT*?

(1.45)

These two equations can be solved with respect to Frr and Hrr, resulting in the
following expressions :

(ro—DA-u,B

(1.46)

H_ =
™ (ro = Dzo + (o — D,
—-DA+z,B
F, = DAYz (1.47)
(7o = Dz, + (x, — Dy,
with :

4= —Cy; +Cv,o(1_Fr)2 —zoH, —z,H (1- Hy)
= (z, + D(x, _I)H; —2(zo + Dy, ~DA-F;)H;

BZ}’T,O(I'"FT)2 —Vr.j +2(}’j -D=2(y, ~)(1-F7)
+(Kp,0 - 2(x, —l))H; +2(ay =¥, — %, + V1~ F1)H;

and
2]
P \dTdp
_T_Z(dzpj
1= 5\ )
e
£ P\dp?

12
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In order to calculate the caloric properties the factors Hyr and Fr must be calculated
for every component at the given state point. In order to obtain the factors for the
mixture the following mixing rules can be used :

d*h d*h,

de —ZZx,xJ( dTUZOJ (1.48)

with :

d’h iy dh, dh,
—H0 i(h,.l,{f + hjl/g)( h:?om W h—2/3 )

art 12 ar dT
2
77’1 173 1/3 —5/3(dhi-0) -5/3 (dh J
Ll v R s
-t +h3) ( w Car) e Uar
771.]. p p iy th Y, dzh_] 0
+?(h,.{03 +ns) [h,g Pt (1.49)

dzfx,o 2 dhx,O dfx,o fx,O dzhx,o

dI* ~ h, dT dT h,, dI*

X,

d’ fy " a.’fg 0 ij dzhijo
— ’ " . 1.50
+ x o szx ]( dTZ 1},0 + 2 dT dT +‘fx],0 dTZ ( )

R . Y. TN
d" fio 00 g7t dT_dr__ 7™ dr?

dr’ ’ 2\/fi,o j.0

dfj,0+f dfi,0]2
2dr 0 dr

_ %(fw ,-,o)_m (f,- (1.51)

The direct correlation function (1-Cy) is a characteristic property of mixtures. The

property can be calculated using the relationship below and the relationships given by
the ECS theory.

+[d%? )) (1.52)

7 TV' Ny,

13
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The ECS relationship for the direct correlation function is :

1-C; =(z, +1)

14+ (k, - 1)(2H,,j +H, H, ) (7, - 1)(2111 +F H, +F, H,,J)]

+2z, (ZH,,J -H.H, + HM}) +u, (2}7;1 + F"‘,,/) =¢,oF, F, (1.53)

The cross derivatives of H and F are defined as follows :

d2 h 12
e e bl
iy dnidnj h

X

d‘.! t2
A
"o \dndn;) f,

If the van der Waals mixing rules are used the composition derivatives of the reducing
parameters F and H are given by :

H, =2~ P (1.54)
;xkfkihh
F =2 I -1|-4, (1.55)
i B <
- 2( - 1) ~2H, -2H, (1.56)
Foooo| L (H 1)(H F)H(H 'F) g 1.57
may frhx -4 ny + m Ay | T4, n — Any + nyny ( 57)

In order to calculate any of the above mentioned properties at a given state point the
following steps should followed :

14



Derivative Properties from Equations of State M. Konttorp

Chose a thermodynamic surface representing the reference fluid

Obtain thermodynamic surfaces for all components in the mixture

Calculate the transformation parameters fi h; at a given state point.

Calculate the derivatives of the transformation parameters. (Hr, Fr, Hrr, FrT, )
Calculate the transformation factors for the mixture, as well as their derivatives.
(fco0, heo, Hrx, Frrx ...)

Using the mixture parameters and the reference fluid surface, calculation of any of
the above mentioned properties is possible.
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1.4. Analyses of the impact of the binary interaction parameters

In all ECS calculations performed in this report the van der Waals mixing rules given
by the equations (1.13-16) were used. The thermodynamic properties are calculated
for a mixture of methane and ethane. The molar fraction of methane is 0.5. The
32MBWR surfaces used where given by Younglove and Ely* Propane was used as the
reference surface. The temperature was set to 330 K for all calculations. For each
property two plots are given to illustrate the sensitivity to variations in the two binary
interaction parameters. Note that the binary interaction parameter €, defined in
equation (1.13) is denoted as K and the binary interaction parameter 7, defined in
equation (1.14) is denoted by L. There were serious problems with convergence at
densities lower than 3 mol/L. The erroneous points have been removed, and a straight
line has been drawn to connect the ideal gas values (zero density) to the first
acceptable points.

e Investigation of the influence of binary interaction parameters on the isochoric heat
capacity

0.9
08 1 K= 10
—— —K=095
0.7 + K
------ K=09
061
¢ 05%
S o04d Jer T
/A ’
034 Ve
024 7
0.1 +
0 ;
0 5 10 15 20 25

p (moliL)

Figure 1.1  Effect of binary interaction parameters on C, T=330 K,
Xmethane — Xethane =O-5, L = 1-0
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0.9

0.8 ¢
07 1+
0.6
05 ¢+

C,//lR

03 ¢+
02+
0.1+

Figure 1.2

P (mol/L)

Effect of binary interaction parameters on C, T = 330 K,
Xmethane — Xethane =O.5, K=1.0 ’

Variation in the interaction parameter K has the greatest effect in the neighborhood of
the maximum in the isochoric heat capacity (Figure 1.1). Variations in the interaction
parameter L has greatest effect at low and high densities (Figure 1.2). It seems that
binary interaction parameters have little effect on the position of the maximum and
minimum of the isochoric heat capacity.

¢ The influence of binary interaction parameters on isobaric heat capacity

6
54 K=1.0
77T ———K=0%
1 2 NN\ LR K=0.9
4 3 /.’ \\\\\
?n i /;' RN
) /2 ‘\\\‘\
2} 7 :
11
0 :
0 5 10 15 20 25
p (moliL)
Figure 1.3  Effect of binary interaction parameters on C, T =330 K,

Xniethane = Xethane =0-5, L =1.0
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25

6
54 S L=1.0
AN ———1=0%
41 X
\\\ """ L=09
o X
2 3 \\\\\‘
o N
21
11
0 ; :
0 5 10 15 20
P {moli/L)
Figure 1.4  Effect of binary interaction parameters on C, T =330 K,

Xmethane — Xethane =O-5) K= 1.0

The interaction parameter K has significant effect on the value of the isobaric heat
capacity at the maximum (Figure 1.3). The interaction parameter L has little effect on
the isobaric heat capacity (Figure 1.4). The position of the maximum in the isobaric
heat capacity is not affected by the varying the interaction parameters.

e The influence of binary interaction parameters on the Joule - Thomson coefficient

7
6 4+
K=1.0
51 —— —K=095
4+ YN e K=0.9
g
s 37
¥
24
14
0 "
4 5 10 15 0 y.
p {mol/L)
Figure 1.5 Effect of binary interaction parameters on the Joule - Thomson
g ry

coefficient T = 330 K, Xnethane = Xethane =0.5, L = 1.0
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KiMPa

p (moliL)

Figure 1.6  Effect of binary interaction parameters on the Joule - Thomson
coefficient T =330 K, Xpethane = Xethane =0.5, K = 1.0

The limit of the Joule - Thomson coefficient as the density approaches zero has not
been calculated because deriving the necessary formulas will be extremely time
consuming. Variation in the interaction parameter K (Figure 1.5) has more effect than
does the variation of the interaction parameter L (Figure 1.6). The Joule - Thomson
inversion point seems not to be influenced by variations in either parameter.

19



Derivative Properties from Equations of State M. Konttorp

o Influence of the binary interaction parameters on the speed of sound

1600

1400
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p (moliL)

Figure 1.7  Effect of binary interaction parameters on the speed of sound
T =330 Ka Xmethane = Xethane = 0-5) L=1.0
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0 5 10 15 20 25
P (mol/L)

Figure 1.8  Effect of binary interaction parameters on the speed of sound
T =330 Ka Xniethane = Xethane =0-5’ K=1.0

Variations of the interaction parameter X has little effect on the speed of sound (Figure
1.7). The effect of the interaction parameter L is seen only at high densities (Figure
1.8). ’
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1.5. Evaluation of the accuracy of the ECS calculations

The results from the ECS calculation are compared to properties derived from a
constant composition surface given by R. D. McCarty®. The mixture contains methane
and ethane with molar fractions :

Xmethane = 0.68526
Xethane = 0.31477

All calculations are done by a temperature of 330 K. The critical density of the mixture
is calculated as the mole fraction weighted sum of the pure component properties :

(1.58)

The critical density for the mixture s :
p. = 8.8263 (mol/L)
The deviations are defined as

A=(X

reference

- X,,)100/ X

refernce

where X is any of the properties. The interaction parameters are set to 1.0. The
properties from the constant composition surface are also compared to those given by
the principle of congruence. The principle of congruence states that for non polar
,approximately spherical molecules, the properties for the mixture are the molar
fraction weighted sum of the pure component properties at the same density and
temperature.

21
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%

------ ECS Prediction

pr

Principle of
congruence

Figure 1.9  Residual plot C,

The prediction given by the principle of congruence is generally better than that of the
ECS calculation (Figure 1.9). This could be a result of a unsatisfactory refernce
equation of state as well as of a failure of the ECS theory.

100
80 | &~
60 £ %
40 4
20 ¢

0 ' ; + LT
20 2 \e+/ 1 1.5 2\ 2|5

-40 +
-60

%

------ ECS prediction pr

Principle of congruence

Figure 1.10  Residual plot C,/R |

This is basically the same comparison as the one given in Figure 1.9, but the ideal heat
capacity is subtracted to give a comparison of the residual heat capacities. It is evident
that deviations in the residual isochoric heat capacity are large.
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......... ECS prediction pr

Principle of congruence

Figure 1.11  Residual plot C,

In Figure 1.11 the comparison between the isobaric heat capacities is made. The
principle of congruence gives huge deviations in the critical region. The ECS
calculation gives a deviation less than 5 % in the whole range of densities.
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Figure 1.12 Residual plot C,"/R

In Figure 1.12 the residual isobaric heat capacities are compared. The predicted total
isobaric heat capacity calculated with the ECS procedure resulted in deviation less than
5 % in the whole density range. If we compare the residual isobaric heat capacities it is
evident that the deviation is much larger. Below the critical density it reaches almost
20 %.

15

10 +

......... ECS prediction pr

Principle of congruence

Figure 1.13  Residual plot speed of sound

In Figure 1.13 deviations in the speed of sound are given. The prediction given by the
ECS calculation has a deviation of less than 5 % in the whole density range from 0 to
2. Above a reduced density of 2 the pure component surfaces used in the ECS
calculation are probably not accurate.
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Figure 1.14 Deviation in the Joule - Thomson coefficient

In Figure 1.14 the deviations in the Joule - Thomson coefficient are given. Again the
ECS prediction proves to be superior to the principle of congruence.

In order to give a more rigorous test of the ECS procedure measured isobaric heat
capacities are compared to the ECS prediction in Figure 1.15 and Figure 1.16. The
measured data are taken from Yesavage’. All calculations are done on the methane
propane system. The measurements used here are at two pressures and two
compositions.

The pseudo critical points for the mixtures are estimated by :

Xmethane = 0.23 : P.=6.21 MPa, T. =353.40 K, p. = 5.560 mol/L
Xmethane = 0.49 : P.=8.50 MPa, T, =325.17 K, p. = 7.105 mol/L

The volumetric interaction parameter L has been set to a value of one.
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300
------ ECS prediction, K = 1
201 = Measurements, x methane = 0.49 .'-_
+ Measurements, x methane = 0.23
200 +
ECS prediction, K = 0.975

JIK.mol

50 ; : : : ;
160 210 260 310 360 410 460

T(K)

M = saturation temperatures

Figure 1.15 Isobaric heat capacity for mixtures of methane and propane at
P =6.895 MPa

The estimated errors in the measurements are between 1.5 to 4 %. In Figure 1.15 error
bars of 3 % are used. If we look at the values for the isobaric heat capacity obtained
with the ECS procedure, setting all interaction parameters equal to one, it is evident
that the predictions are good. There is however a systematical error in the critical
region. An effort has been made to correct the deviations by changing the binary
interaction parameter K. By setting this value to 0.975 we obtain a better
representation of the data below the critical point. The systematical deviation above
the critical point is not eliminated. This error may be due to the failure of the pure
component surfaces to give a good representation of derived properties in the
immediate vicinity of the critical point.
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Figure 1.16  Isobaric heat capacity for mixtures of methane and propane at
P =10.342 MPa

In Figure 1.16 measured isobaric heat capacities at a 10.342 MPa are compared to
those obtained from the ECS calculation. Again it’s possible to obtain a good
representation of the data away from the critical temperature by adjusting the binary
interaction parameter K. In order to obtain a reasonable representation the interaction
parameter has to be given a value of 0.95. This may seem a small adjustment, but even
small differences in the interaction parameter are known to have profound effects on
other properties such as phase equilibrium calculations.
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1.6. Graphical representation of the derivative properties

In order to study the accuracy of equations of state some reference is needed. In this
study, as already noted, multiparameter equations of state have been used in order to
produce reference data. In studying the behavior of the different substances two types
of behavior has been discovered. The behavior of the associating substances water and
methanol is different from the behavior of non - associating substances. In order to
point out the differences, water and methane have been chosen.

1.6.1. Properties of methane

25
Tr=029
24— —=—=Tr=1.1
------ Tr=1.25
1.5+
x
o)
1 4
//’_“\\\

~
Il N

pr

W = saturated densities
Figure 1.17 C,/R for methane from the SWEOS

In Figure 1.17 the residual isochoric heat capacity of methane is shown as a function of
reduced density. The most apparent features of the curve are the maximum and the
minimum that occur in the vicinity of the critical point. At high densities the value of
the residual isochoric heat capacity seems to be a weak function of temperature.
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Figure 1.18 C,"/R for methane from the SWEOS

In Figure 1.18 the residual isobaric heat capacity is plotted as a function of reduced
density. The most apparent feature of the isobaric heat capacity is the strong maximum
and the weak minimum that extends far from the critical region.
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Figure 1.19 Speed of Sound of methane from the SWEOS

In Figure 1.19 the speed of sound for methane is plotted as a function of reduced
density. Compared to the heat capacities, the speed of sound is a weak function of
temperature. The most characteristic feature of the curve is the minimum that slowly
vanishes at high temperatures.
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Figure 1.20 The Joule - Thomson coefficient of methane from the SWEOS

In Figure 1.20 the Joule - Thomson coefficient for methane is plotted as a function of
temperature. The most apparent feature of the curve is the maximum that occurs at
low reduced densities. At reduced densities above 1 the curve also goes to a point
where the value is zero. This is called the Joule - Thomson inversion point. At high
densities, there is also a weak minimum in the curve.
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Figure 1.21 The Joule - Thomson coefficient methane with the SWEOS,
pr=10.27

In Figure 1.21 one isochore of the Joule - Thomson coefficient is plotted as a function
of reduced temperature. It shows how the value of the Joule - Thomson coefficient
decreases as the temperature rises. That trend can also be observed for the other
properties except for the speed of sound which increases with temperature.
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Figure 1.22  Property extrema and the Joule - Thomson inversion curve for
methane

In Figure 1.22 the maxima and minima of the derivative properties as well as the Joule
- Thomson inversion curve are plotted in reduced density reduced temperature space.
The extreme points of the isochoric heat capacity are present only in the area close to
the critical region. The maximum of the Joule - Thomson coefficient is only seen at
reduced temperatures near unity. The extreme points of the isobaric heat capacity, the
minimum of the speed of sound and the Joule - Thomson inversion curve are present
over a much wider region.
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1.6.2. Properties of water
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Figure 1.23  C,/R for water from the Hill EOS

The isochoric heat capacity for water (Figure 1.23) shows the same behavior as for
methane (Figure 1.17) except there is a stronger temperature dependence at high
reduced density.
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Figure 1.24  C,"/R for water from the Hill EOS
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The isobaric heat capacity for water (Figure 1.24) has no minimum at high reduced
densities within the range of the EOS.
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Figure 1.25 Speed of Sound water with the Hill EOS

The speed of sound for water (Figure 1.25) has almost the same behavior as for
methane except there is a decrease of the slope at high density that is absent in the case
of methane (Figure 1.19).
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Figure 1.26 The Joule - Thomson coefficient for water from the Hill EOS
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In Figure 1.26 the Joule - Thomson curve for water is plotted as a function of reduced
density. The most characteristic difference from methane (Figure 1.20) is the absence
of a maximum at reduced densities below one.
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Figure 1.27 The Joule - Thomson coefficient for water from the Hill EOS

In Figure 1.27 one isochore of the Joule - Thomson coefficient is plotted as a function
of temperature. The same decay with temperature as was the case for methane (Figure

1.21) is observed here.
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Figure 1.28  Property extrema and the Joule - Thomson inversion curve for
water

In Figure 1.28 the minima, maxima and the Joule - Thomson curve for water are
plotted in the reduced density reduced temperature space. The minimum in the
1sochoric heat capacity does not touch the saturated liquid line as it does for methane.
[t is not possible to conclude that there is no minimum in the isobaric heat capacity,
since it may be outside the range of the EOS. If so, it is at a higher reduced density for
water than for methane.
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1.7 Discussion of results

In this chapter new analytical expressions for calculating the derivative properties with
the ECS procedure have been developed. These derived properties were :

M The isochoric heat capacity

B The isobaric heat capacity

B The speed of sound

M The Joule - Thomson coefficient

All properties but the Joule - Thomson coefficient can be calculated in the whole range
covered by the pure component equations of state. The Joule - Thomson coefficient
can not be calculated in the limit where density approaches zero.

The sensitivity of the derived properties to variations of the binary energy and
volume interaction parameters in the mixing rule was analyzed. The interaction
parameter describing the energy interaction was found to have the larger influence on
the values of the properties. The influence was strongest at densities close to the
pseudo critical density for the mixture.

The accuracy of the results obtained with the ECS calculations has been
analyzed. A comparison of ECS derived properties obtained with the principle of
congruence, a pure component surface, and measured isobaric heat capacities shows
that its results are of high quality. The biggest deviations were found in the region
close to the pseudo critical point of the mixture.

The typical behavior of pure components has been studied. Differences in the
behavior of associating and non - associating fluids have been found. Associating fluids
does not show a maximum in the Joule - Thomson coefficient. The residual isochoric
heat capacity of associating fluids tend to be a stronger function of temperature than
the case is for non - associating fluids. The minimum in the isochoric heat capacity for
associating fluids does not connect with the saturated liquid line. :
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2. Model equations of state

2.1. Introduction

All the derived properties for the model equations are given in this chapter. Their form
is intended for non - associating substances. In their simplest form there are three
parameters describing the intermolecular interaction energy, the volume of the
molecules and the non - spherical character of the molecules.

2.2. Deriving derivative properties for pure fluids

2.2.1. The cubic equations

The first equation of state to give a qualitative description of the vapor and liquid
phases and phase transitions was the famous cubic equation of van der Waals,

proposed
in 1873 :

__RIp ,
T(-bp) ¥

P 2.1)

In this equation the constant b is the excluded volume, that is, that part of the molar
volume which is not available to a molecule due to the presence of others. The first
term to the right is the pressure resulting from the repulsion between the molecules.
The second term to the right is the pressure resulting from the attraction between the
molecules. In the van der Waals equation the energy parameter a is taken to be a
constant. The constants in the van der Waals equation can be found using the critical -
point conditions :

dP d*P
(EJT = (dpzjr =0 (2.2)

For the van der Waals equation we find :

27R*T? RT
_ e B 2.3
=Tsar T3P (23)

While the van der Waals equation is of historical interest, it is not quantitatively
correct. For example, it predicts that the critical compressibility factor,
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Z = £ 2.4
c—'RZ:pc (‘)

is 0.375 for all fluids, while the value for different hydrocarbons varies from 0.24 to
0.29; the range is wider when non - hydrocarbons are considered. Also, the prediction
of vapor pressures is inaccurate.

An important modification of the van der Waals equation was made by Redlich
and Kwong®, who introduced a temperature dependence and a slightly different volume
dependence in the attractive term : '

RTp P’
P—l_bp—a(T)H_bp (2.5)
with :
(T) = 042748 Rz 1 | 2.6
a = VU e .
E T )

This equation is referred to as the Redlich Kwong equation or RK equation. The

equation gives a somewhat better critical compressibility factor (Z.=1/3), but it is still

not very accurate for the phase boundary (vapor pressure) and the liquid density.
Soave’ proposed a different temperature dependence for the energy parameter

R*T

a(T) = 042748 [1+m-JT)] @2.7)
and :
m=0480+157w — 0176> (2.8)

resulting in more accurate vapor pressure predictions (especially above 1 bar) for light
hydro carbons, leading to cubic equations of state becoming an important tool for the
prediction of vapor - liquid equilibria at moderate to high pressures for non - polar
fluids. This modification is referred to as the Soave - Redlich - Kwong equation or
SRK equation.

Peng and Robinson'® used a different volume dependence to give slightly
improved liquid volumes (and, Z. = 0.307) and changed the temperature dependence
of a(T) to give :

_ RIp P

P —_—
1-bp (D) 1+2bp-b*p?

(2.9)

with :
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R2 2
a(T) = 045724 (1+m1-JT)) (2.10)
and :
m= 037464 +154226w — 0.269920* (2.11)

This equation is referred to as the Peng - Robinson equation or the PR equation.

The PR and the SRK equations are widely used in industry, especially for
refinery and reservoir simulation. The advantages of these equations are that they
require little input information, little computer time, and, for hydrocarbons, lead to
good results for process design. However, these equations do have some important
shortcomings :

Liquid densities are not well predicted

The generalized parameters are not well predicted for non - hydrocarbons
Predictions for long - chain molecules are inaccurate.

Critical region properties are unreliable

Vapor pressure predictions are not very accurate at low pressures

Using the equations ... in chapter 1 the derivative properties can be derived :

e Isochoric heat capacity with the RK and SRK equation :

C' T d*a

v

R ~ RbdT’

In(1+5p) (2.12)

In the case of the RK equation the second temperature derivative of the energy
parameter is given by :

2 272

4a _ oarrag-Rle
ar* ~ = 4P,

JL.T? (2.13)

For the SRK equation the relationship is :

2 22 -3/2

d*a
=042748 ~m(1 2.14

c

e Isochoric heat capacity with the PR equation

C, T da nl:(bp—l—\/:’)j)(—l+~/5):| 2.15)

R ™ BRBAT* | (bp-1+2)(-1-2)

with:
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d2a RZ ]';2 -3/2

= 045724 1+

(2.16)

e Pressure derivative with regard to temperature from the RK and SRK equations :

dP/R 1 1d
( / p) 1P (2.17)
dr 1-bp RdT 1+bp

P

For the RK equation the temperature derivative of the energy parameter a(T) is given
by :

da 042748 R’T} ST

F7 P (2.18)
In the case of the SRK equation the temperature derivative is given by :
@ oarras R, (1+ma- 1) (2.19)
—=-0. m(l— .
dr p. "I g
o Pressure derivative with regard to temperature from the PR equation :

d d
( P/Rp) N S . N R— (2.20)

ar /, 1-bp RdT1+2bp-b"p

with :
da RT? 1
— = 0. Em——I1+ — 2.21
ar = AT (14+-m(1-T) 2.21)

e Pressure derivative with regard to density from the RK and SRK equations :

(dP/RTj 1 a()p@+bp) (222)
do ). (1-bp)® RT (1+bp)’ '

o Pressure derivative with regard to density from the PR equation :

(dP/RT) 1 al)  2p(1+bp) (223)
dp ). (1-bp)* RT (1+2bp-bp*)’ '
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2.2.2. The SPHCT Eos

The SPHCT equation is a simplification of the PHCT equation. The PHCT equation is
designed to give a description of polymeric fluids as originally proposed by Beret and
Prausnitz''. The following assumptions were made :

1. The density dependence of all external degrees of freedom is the same as those of
the translational degrees of freedom. '

2. The density dependence of translational degrees of freedom is given by the
Carnahan - Starling equation. (Carnahan and Starling'®)

3. A chain molecule behaves like a chain of spherical segments, each of which
interacts with its neighbors with the square well potential.

4. An adjustable parameter c is defined so that 3¢ is the total number of external
degrees of freedom of a molecule.

The PHCT theory defined three substancespecific parameters :

M The effective chain length c, describing the number of segments in chain like
molecules.

B The closest packing volume (mv®), describing the volume of the molecules.

M The segment energy €q, describing the interaction energy between two segments.

The basic form of both the SPHCT and the PHCT equation is :

Z=1+¢(Z,, — Zi) (2.24)

For both equations the repulsion term is given by :

4n-2n
= L (2.25)
(1-n)

The density variable is given by :

= tpmv° (2.26)

7 has a constant value of 0.74048. The symbol m denotes the number of segments in
one moiecule. v° is-given by :

N
po = o3 2.27)
67

where © is the temperature independent segment diameter and N,y is the avogadro
number.
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According to the PHCT theory the attraction forces are modeled using the double
power series expansion of Alder etal.” :

-ZX o[ 22][2] 223)

where € is the intermolecular potential per unit surface area and q is the surface area
per molecule. The constants Dy were adjusted to better fit data for alkanes. The
quanteties € and q always appears as a product €q so this equation has three
parameters :

eq, mv° and ¢
A shortcoming of the original HPCT equation is the complexity caused by its attraction

term. In order to reduce the complexity Lee et al.* suggested replacing the summation
terms with one single term :

ZA\/{UY
ar =7, n? (2.29)
with :
_ €9 |_
Y= exp{zcij| 1 (2.30)

The factor Zy is the coordination number of one site on the chain, which has been
determined empirically by Kim et al.”’. This simplified equation is called the SPHCT
equation.

The SPHCT equation has proved to give good liquid volumes, as well as
accurate equilibrium properties for mixtures of molecules which differ greatly in size.
(Peters et al.'®) The SPHCT equation has two advantages over the cubic equations.
First, its foundation in statistical thermodynamics makes the assumptions used in its
development clear in terms of molecular behavior. Second, species are modeled as
segment - segment type rather than the cruder molecule - molecule interactions of the
cubic equations. However, the SPHCT equation has several limitations which hinder
its use in engineering calculations. Although the parameters represent specific
molecular behavior they are not related to macroscopic physical properties. This makes
it necessary to use regression analyses in order to obtain their values. The values are
dependent on the regression procedure and the experimental data. The equation is not
constrained to give correct critical pressures and temperatures. Because of the fifth
order dependence of density the equation requires more computational time than the
cubic equations.

The derivative properties can be derived using equations (1.5-8) in chapter 1.

e The isochoric heat capacity is given by :
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C, vy . dY T (dY
~=clZ |2—+T—-—2Z | — 2.31
R ¢ ( ar "t art "z “e\ar @31)
o The temperature derivative of the pressure is given by :
dpP/ Rp) Z,m dr
=1+cZ -cZ , -cl[—"—=— .3
( ar Ty T L T AT @32
¢ The density derivative of the pressure is given by :
dP/ RT 4 3nldn -2 Y(2+
( ) =1+cZ,, +c 7 > 77( T =h ) cZ, 7 771;) (2.33)
dp J, (- (1+7Y)
with :
day £q ( £q )
ar = 207 P 2ar @39
and :
d’Y [ eq ( £q )2 ( aq)
— = n 2.35
ar’ (ckT3 "art) )TN\ oar (2.35)
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2.2.3. The SAFT equation of state

The SAFT equation is designed to model effects that come from association of
molecules and shape effects from non - spherically molecules. For non - associating
molecules the equation needs three substance specific parameters. Those are :

B The segment molar volume in a closest packed arrangement at zero temperature
v, describing the volume of the molecules.

B The interaction energy of segments at infinite temperature uy/k, describing the
interaction energy between segments

B The effective chain length m, describing the number of segments in chain like
molecules.

If the substance is self associating two additional parameters are defined :

B The associating energy €, describing the energy of the association bonding
between two bonding segments.
W The associating volume k™, describing the volume of the bonding segments.

The reduced fluid density n (segment packing fraction) is defined as
n = omv°

where 1 = 0.74048, v° is the segment molar volume at the closest packing and m 1s the
number of segments per molecule. The closest packing volume is related to
temperature as follows :

0° = uoolil— Cexp( ]:Ylf ﬂ (2.36)

The constant C has the value of 0.12. In this expression there are two compound
specific parameters. Those are the closest packing volume at zero temperature v and
the interaction energy between segments at infinite temperature u’. The interaction
energy between segments is given by

= "—{1 + i} 2.37)

e
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The value for e/k is set to 10 with exception of some small molecules given in
table 2.1 : '

Table 2.1 Values of e/k

Substance | e’k (K)
Argon 1
Methane 1
Ammonia | 1
Water 1
Nitrogen | 3
CO 4.2
Cl, 18
CS, 38
CO, 40
SO, 88

The advantage of the SAFT equation is the ability to model specific molecular
behavior. It also models association of molecules. The.volume and interaction energy
parameter are temperature dependent. The temperature dependence of the volume
parameter is a special feature of the SAFT equation. The models’s disadvantages are
also many. The complexity of the equation prohibits its use in application where
computational speed is needed. It also suffers from the same weaknesses as the
SPHCT equation with regard to fitting procedure and the representation of
thermodynamic properties in the near critical region.

The general form of the SAFT equation is the Helmholz energy given by :

Ares — A:eg + Achain +mmAa.ssnc (2.38)
The segment Helmholz energy per mole of molecules A*® can be calculated from

A% = mAe (2.39)

0

where Ag**%, per mole of segments, is the residual Helmholz energy of nonassociating
spherical segments and m is the segment number. It is composed of hard sphere and
dispersion parts,

A8 = 4P 1 g (2.40)
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The hard sphere contribution can be calculated by as proposed by Carnahan and

Starling™
AF _ 4n-37n° 2.41)
RT (1-n)° )

The dispersion term is a power series fitted to molecular dynamics data for a square
well fluid. The equation is given by Alder et al.”® :

A disp

RT —,ZZ [ M }j 242

Rather than the parameters of Alder et al.”® as in the PHCT model, the SAFT model
uses Dj’s fitted to experimental data for argon by Chen and Kreglewski'’.

The increment in the Helmholz energy due covalent bonding of several
segments can be calculated from

Achain 1—_77
R (l—m)ln(l_ e

(2.43)

The increment in the Helmholz energy due to association is calculated for pure
fluids from

AGJSUC X. 1
= Z[ln){" —} +oM (2.44)

where M is the number of associating sites on each molecule, X* is the mole fraction
of molecules not bonded at site A, and X4 represents a sum over all associating site on
the molecule. The mole fraction of molecules not bonded can be determined as follows

-1
X* = {1 +N, D pXBAAB} (2.45)
B
(Summation over all sites AB,C, ...)

where N,y is the Avogadro’s number and p is the molar density of molecules. The
factor A*? is the association strength that is approximated as

= g(d)*= [exp(gw | kT) - 1](03 42 (2.46)
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with :

1/3
6T 4
= v
¢ l:ﬂ'NAv :'

The segment radial distribution function g(d)™® is approximated as the hard sphere
radial distribution function (Carnahan and Starling)

1—%n
gd)™ = g(d)” = =y

(2.47)

In order to avoid the great complexity introduced by the associating term in equation
(2.38) only non - associating compounds will be studied. The derivative properties
from the SAFT equation of state can be derived using the equations (1.1-4) in chapter
1. The compressibility factor is given by :

Z-1=Z°% +Z%" (2.48)

7% = {477— T +ZZ DU[;;][ ” (2.49)

2n-n
2% = (1 - mi)—2 1 (2.50)
0—@@—50

The properties are given by :

e The isochoric heat capacity

C: _ C‘:',seg . C:,chain
R R R

Cr,seg ( Cr,h.sj (Cr,disp)
v — \d \d 2. 2
R -"UrRJ R, (252)

Y]

(2.51)
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Cvr'hs _ 3u, 2 47’ 1077) 3u, 2 (4,7_2772) i
( R J - g(kT) F( (1-n)* 3(k7~) FQ2F-1) ESE (2.53)

0

(CWJ =—ZZD( ) (uT)i[(F1+F2)(2+F1+F2)+F3+F4] (2.54)

with :
-3
Cexp %o
F kT
B 1-C {— 3u
exp
and
1+ 2
Fl=-i kT
14—
kT
I _‘{ 3110)
=k

de i(1+2—ej
_I.”ﬁ KT\ AT

14— e’
kT (”ﬁ)

2

3u,

kT

F4—j6( )F JJ( )F(1+F)
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M. Konttorp

Cr,chain) (3u0) 2 , 3772 ’ 772
. = —(1-m)9 F -

- mﬁ(%j Far- (13—7777) ) 2(1 _nl 77)
2

e The pressure derivative with respect to density

(dP/RTj _(dP/RTJ“ng(dP/RT)m
dp J, dp J, dp /.,

dp 1-n? ey

T

e The pressure derivative with respect to temperature

(dP/Rp) _ (dP/Rp) = +(dP/Rp) e

dT dr dar

(dP/Rpj " (dP/Rp)'“ +(dP/Rp) ""‘1’
dT N\ dT dr

P P P

[dP/Rpjhs _ g —m3(3u°)F 4n+4n* -27°
ar J, kT -n)’

dP/RT\™ dn+4n* -21°
( j =Z“g+m[ i M— + 2.0 j*D.| —

(2.55)

(2.56)

(2.58)

(2.59)

(2.60)

(2.61)
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‘ 2e
s 11+
—] =z%r_ mZZ ) i— 453 F (2.62)
dr J, i kT 1+i% kT
dP | Rp) " 3 2 -2t ey
( p) =z _ (] _ m)3( "°)F 2 4 (2.63)
ar J, kT of 1
(1-7) 1-27

~ 2.3. Derivative properties for mixtures

2.3.1. Mixing rules for cubic equations of state

All the cubic equations of state evaluated in this study uses the same mixing rules,
called the van der Waals mixing rules. All the cubic equations have two parameters.
One parameter b describes the covolume between the molecules. The mixing rule for
this parameter is as follows :

b= xb, (2.64)

The second parameter is the interaction parameter a. This parameter describes the
interaction forces between the molecules. The mixing rule for this parameter is as
follows :

a, = szixjaij’ i =a;, =g (2.65)
i

The cross terms are given by :

a; = ‘/aiaj (1-k;) (2.66)

The factor k; is an empirical factor used to increase the quality of the results. It’s
usually fit to phase equilibrium data. '

The third parameter is the acentric factor ®. This parameter describes the
deviations from the behavior of spherical molecules. (Non - sphericity) This parameter
is used only in the PR and the SRK EOS. Its mixing rule is given by :
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0, =D %0, (2.67)

2.3.2. Mixing rules for the SPHCT EQOS

The mixing rules used with the SPHCT EOS are those proposed by Kim et al.?® The
SPHCT EOS has three mixturedependent parameters. The mixing rule for the close -
packing volume mv° is :

(mv°), = x,(mv°), (2.68)

i

The mixing rule for the ¢ parameter is :

g = inci (2.69)

Zzwc,x c,(mv° )R 4

Y. = 2:70
, . ), (2.70)
where
( &4, )

= —— | 2.71
Y” exPLZcikT : ( )
and :

(mv°) ;= mv), (2.72)

0 .
The cross terms v';; and g;; are given by

(2.73)
3

i

o 1 ol/3 /3
Ve = v +V.
/A

and

& =\ae,(1-k,) (2.74)
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The factor ky is an adjustable binary interaction parameter. Equation (2.70) may be
cast in the form :

q,\/—e?(l

“E ek (.79

In the case of mixtures, besides the pure component parameters, one requires
knowledge of m; and g;. K1m et al.” suggested that m; and q; may be obtained from the
slopes of the graphs of mv® and eq/k versus the number of carbon atoms. As a result
the volume of one segment, and the energy per surface unit can be estimated :

f: 625 [K/m?] (2.76)
v° = 0008667 [L/mol] | 2.77)

This allows calculation of the number of segments on basis of the knowledge of the
pure component parameter (mv');. The surface area per segment can be calculated
based on knowledge of the pure component parameter (eq/k);.

2.3.3. Mixing rules for the SAFT equation

Mixing rules for the SAFT equation are given by Chapman et al.'®, For the other
equations of state mentioned in this chapter the pure component equations of state are
transformed into equations for mixtures by combining the pure component parameters
to obtain mixture parameters. In the case of the SAFT equation the functional
structure changes from the one given in paragraph (2.2.3). The radial hard sphere
distribution function g(d)™ for pure components changes into :

hs _ 1 3dii ;2 | ﬂ : 4;.2
with
V= % pZ x,m,d’ (2.79)

This expression was derived for mixtures of hard spheres by Reed and Gubbins®.
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The mixture parameters can be derived by combination of pure mixture parameters, as
described earlier :

ZZx,.xjm,.mjv;
_ .t

Ve = z (2.80)
(Zum )
ZZx,.xjmim}.v;ug. _
uvd=—~ > (2.81)
(Z ximij
The cross terms are given by :
2.82

u..=¢..(u.u ..)]‘/2 (2.82)

y y uy

, VitV
V=T (2.83)
The effective length of the molecules in the fluid can be approximated by :
m, = Zx,.m,. (2.84)

Using the mixture parameters the different parts of the equation can be expressed as :

A];h;jn = Z x;(1=m)In(g; (d,)") (2.85)

A assoc

e Z X, {; (m[xf*f - %) %M'ﬂ (2.86)

A% =m A4S (2.87)
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2.4. Concluding comments

In this chapter we have briefly discussed some of the model equations available in
literature. Only the most widely used equations, or equations presenting important
concepts have been chosen. The cubic equations have been chosen because of their
importance in reservoir simulation and process design for the oil industry. The SPHCT
equation has been chosen because it represents an important concept. The molecules
are seen as chains of segments rather than spherical balls as is the case for the cubic
equations. The SPHCT equation also uses the more complex CS term to describe the
inter segmental repulsion though the attraction term has a density dependence that is
very similar to the RK and SRK equations of state. The SAFT equation of state also
describes molecules as chains of segments. The SAFT equation also uses a CS term to
describe segment - segment repulsion. In the SAFT equation there is an extra term for
the increment of the residual Helmholz energy resulting from the chain character of
molecules. Another difference from the other equations is the temperature dependence
of the segment - segment energy and the effective segment volume. However, the
attraction term used in the SAFT equation is similar to the one used in the original
PHCT equation.
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3. Evaluation of theoretical equations of state

3.1. Introduction

In order to reveal the weaknesses of equations of state they are compared with the
multi parameter equations of state. The equations of state are of chapter 2 were
considered : '

Cubic equations :

M Redlich - Kwong
B Soave - Redlich - Kwong
M Peng Robinson

Statistical mechanics based equations :

B The SPHCT equation
M The SAFT equation

The cubic equations are well known and widely used in engineering practice. The
advantage of the cubic equations are the simplicity and therefore low requirements of
computational power. The parameters in those equations can be estimated solely on
basis of the saturation pressure curve and critical properties.

The statistical mechanical based equations have a higher complexity and
therefore are less valuable in applications requiring computational speed. The
parameters of the equations are usually fitted to liquid density data and saturated
pressures. This leads to an overestimation of critical pressures and temperatures. The
SPHCT equation has been selected because of its simplicity.

The equations will be evaluated for methane and n-butane. All the equations
are valid for methane. When it comes to n-butane different methods have been
introduced in order to correct for the deviation from hard sphere behavior. The cubic
equations use the acentric factor to account for the effects. The SPHCT equation uses
the ¢ parameter and the SAFT equation uses the m parameter for those purposes. Both
the ¢ and m parameters can be viewed as measures of effective chain length. The SAFT
equation also has a specific increment in the Helmholz energy as function of the chain
length. By evaluating the derived properties for both methane and n-butane the success
or failure in describing chain - like behavior can be exposed.
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3.2. Basis of evaluation

In order to analyze the deviations some special measures has been taken. The
deviations in the isochoric heat capacity are revealed by comparing the residual heat
capacity. The residual heat capacity is given by equation (3.1)

cr 1 T(dzP)
e d 3.
R R£p2 alTZ , ,0 ( 1)

The advantage of comparing the residual heat capacities is that the dependence on the
ideal heat capacity is removed.

In order to study the isobaric heat capacity without the influence of the isochoric heat
capacity following property is used :

GG _T(E) )8 62
R Rp’\dT/,[ \dp), |

The advantage of comparing this property is that the deviations in the C, and the ideal
isobaric heat capacity is not influencing the comparison. In order to study the total
isobaric heat capacity the residual isobaric heat capacity is included. Note that this
quantity is not dependent on the ideal isobaric heat capacity.

C, C T (dP\* /(dP
L —l=] /|=] -1 (3.3)
R~ R Rp’\dr/,[ \dp),

In order to compare the Joule - Thomson coefficient the dependence on the isobaric
heat capacity is discarded yielding the following expression :

%),

Cp=——<
dp/ .

-1 (3.4)
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Instead of comparing the speed of sound the reduced bulk modulus will be used as a
basis for comparison. The reduced bulk modulus is given by :

w? C,M, (dP/RTJ
= (3.5)

B. = — =
" RTC,10° dp ).
3.3. Graphical evaluation of the equations of state for pure fluids

In order to expose the characteristic behavior of the derivative properties the all
properties are evaluated at a reduced temperature of 1.1. At this temperature all the
derivative properties are showing their characteristic minima and maxima.

3.3.1. The isochoric heat capacity

35
=< T O PR i
-
......... SRK A
251 =
e RK Pt
2l et - SPHCT - e
g —_SWEOCS -
2§54 T i
11 = . e
051 e oDl Tmmm s i _
0 "’.;:’/,./ - +
0 05 1 15 2 25 3 35 4

Figure 3.1 C,/R methane with model equations of state at T, = 1.1

In Figure 3.1 the isochoric heat capacity of methane is shown. None of the equations
studied are able to give a qualitatively correct picture of the isochoric heat capacity.
The SPHCT equation is the only one to give a maximum, but at a much to high
reduced density. At low density only the RK equation is gives a good initial slope of
the heat capacity.
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Figure 3.2  C,'/R methane with the SAFT equation at T, = 1.1

In Figure 3.2 the isochoric heat capacity from the SAFT equation is compared to the
heat capacity from the SWEOS. The SAFT equation is able to give a qualitatively
correct picture of the isochoric heat capacity, with both a maximum and a minimum in
the curve. At high densities the curve diverges. This happens because of the singularity
in the denominator of the CS repulsion term in the SAFT equation.
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Figure 3.3 C,’/R n-butane with model equations

By examining Figure 3.3 it is evident that all the model equations are giving false
values for the isochoric heat capacity for n-butane. The SAFT equation gave a good
representation of the isochoric heat capacity for methane, but fails to give even
qualitatively correct values for n-butane. This indicates that the equation is not able to
handle the chainlike behavior of molecules, even though it works for molecules that
can be approximated as hard spheres. The constants in the equation are fitted to energ
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and PVT data for argon. According to the principle of corresponding states,
transformation by critical parameters would give a good representation of the
thermodynamic properties for small spherical non - polar molecules.
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3.3.2. The isobaric heat capacity
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Figure 3.4  C,/R methane with model equations at T, = 1.1

All the model equations give a maximum in the isobaric heat capacity (Figure 3.4), but
only the SPHCT equation is gives a minimum. Up to approximately a reduced density
of 0.7 all model equations but the PR EOS gives correct values for the C,. At near
critical densities the equations underestimates the isobaric heat capacity.
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Figure 3.5  C,'/R methane with the SAFT equation at T, = 1.1

As seen from Figure 3.5 the SAFT equation gives an excellent representation of the
isobaric heat capacity. Its overestimation of the isobaric heat capacity at high densities
is probably due to the divergence of the CS repulsion term.
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Figure3.6  C,/R n-butane with model equations
For n-butane Figure 3.6 shows that the SAFT equation is not able to give results with

the same quality as it did for methane. The other equations are not very accurate since
only the SRK equation is correct up to a reduced density of 0.7.
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Figure 3.7  (C,-C,)/R methane with model equations at T, = 1.1

In Figure 3.7 the contribution of the isochoric heat capacity is subtracted from the
isobaric heat capacity to show equation of state contributions to any deviations. This is
done in order to identify the origin of the deviations in the isobaric heat capacity.
Because of the relative low value of the isochoric heat capacity the deviations are in
the same order as those seen for the isobaric heat capacity.
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Figure 3.8  (C,-C,")/R methane with the SAFT equation at T, = 1.1

In Figure 3.8 the difference in the residual heat capacities for methane with the SAFT
equation is analyzed. As before the SAFT equation gives good results.
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Figure3.9  (C,/R-C,/R) n-butane with model equations

In Figure 3.9 the difference in the residual heat capacity for n - butane is plotted.
Figure 3.9 suggest that the most important deviation in the isobaric heat capacity stems
from the contribution of the equation of state term heat capacity.
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3.3.3. The reduced bulk modulus
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Figure 3.10 Reduced bulk modulus of methane with model equations at
T, =1.1

In Figure 3.10 the reduced bulk modulus for the model equations are plotted. At low
densities all the model equations gives reasonable results. All the cubic equations
diverge at high densities. This is a result of the singularity in the van der Waals
repulsion term. The model equations give a minimum in the reduced bulk modulus at a
too low reduced density. The failure of the model equations to give correct critical
densities probably contributes to this effect. The PR equation is closest to giving a
good prediction of the minimum.
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Figure 3.11 Reduced bulk modulus of methane with the SAFT equation at
T,=1.1
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In Figure 3.11 the reduced bulk modulus for methane with the SAFT equation is
plotted. As expected from earlier discussion, the results from the SAFT equation are

excellent.

pf
Figure 3.12 The reduced bulk modulus n-butane at T, = 1.1

For n-butane all the model equations also give reasonable results at low densities
(Figure 3.12). The SAFT equation is gives a minimum closest to the real density, but
its value is too low. Considering that this is a logarithmic plot the deviation is expected
to result in a overestimation of the C,.

3.3.4. The Joule - Thomson coefficient
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Figure 3.13 The Joule — Tomson coefficient methane with model equations at
T,=1.1
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All but the PR EOS give qualitatively good estimates ofr the Joule - Thomson
coefficient (Figure 3.13). It is interesting to see that only the PR EOS fails to give a
good estimation of the Joule - Thomson inversion point.
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Figure 3.14 The Joule - Thomson coefficient methane with the SAFT equation

at Tr=1.1

As for the other derived properties, the SAFT equation is gives excellent predictions of
the Joule - Thomson coefficient for methane (Figure 3.14).
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Figure 3.15

Joule - Thomson coefficient for n-butane with model equations at

Tr=1.1
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Unlike the rest of the derived properties where all models gave good approximations at
low densities, for the Joule Thomson coefficient for n-butane the cubic equations are
not accurate at low density. (Figure 3.15) Further, the SAFT and SPHCT equations
miss the maximum.
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Figure 3.16 Joule - Thomson coefficient methane with model equations at zero
density

In Figure 3.16 the Joule — Thomson coefficient at zero density for methane for some
model equations of state is plotted. The value of the Joule - Thomson coefficient at
zero density is only a function of the temperature dependencies of the linear density
term of an equation of state. For methane the SAFT equation gives very good values
for most derived properties, but its initial Joule - Thomson coefficient overestimate the:
values at high reduced temperatures. The same goes for all the other models. This
indicates that the temperature dependencies of all the equations is wrong. The real
behavior of this quantity, as given by the SWEOS, is interesting. At temperatures
above the critical the curve is approximates a straight line. At temperatures below the
critical there is a curvature.

3.3.5. Contributions to the isochoric heat capacity from the SAFT EOS

The SAFT equation is the only equation that can be analyzed for different
contributions to the isochoric heat capacity. When deriving the isochoric heat capacity
from all the other model equation the only term left is the contribution from the
attraction term. However, because of the temperature dependence of the volume
parameter in the SAFT equation, all of the terms in the equation give contributions to
the isochoric heat capacity.
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Figure 3.17 Residual isochoric heat capacities for alkanes at T, = 1.1

In Figure 3.17 the residual isochoric heat capacity for the lower alkanes are plotted.
This is done in order to get an idea of the trends as the chain length increases. In
general, the isochoric heat capacity increases with increasing chain length. This is
logical because the number of degrees of freedom increases with chain length. With
higher degrees of freedom a molecule is able to absorb more heat. Note that at low
densities the isochoric heat capacity can be approximated by a straight line.

67




Derivative Properties from Equations of State M. Konttorp

3.5
s §CEEELE Cvr/R SAFT !
(Cvr/R chain = 0) /
o5l |——= Cvr/R repulsion / ,
s Cvr/R dispersion // g
Cvr/R SWEOS ’ g
1.5+ d
7
o z
= 14 -
J =i
05 T
0 L : ' ’ : ’
0.5 1 15 2 : 3 35 !
-0.5
11
-1.5

pr

Figure 3.18 Individual contributions to the residual isochoric heat capacity
from the SAFT EOS for methane at T, = 1.1

In Figure 3.18 the different contributions to the isochoric heat capacity from the SAFT
EOS for methane are plotted. In the case of methane there is no chain term. The
maximum in the isochoric heat capacity is a result of the dispersion term. The initial
slope of the heat capacity is primary dictated by the dispersion term while the minimum
is where repulsion begins to dominate.
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Figure 3.19 Individual contributions to the residual isochoric heat capacity
from the SAFT EOS for methane at T, = 1.5

In Figure 3.19 the same quantities as in Figure 3.18 are plotted, but at a higher reduced
temperature. There is no maximum in the curve. At this high temperature the SAFT
equation gives excellent predictions of the isochoric heat capacity for methane except
at the highest densities.
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Figure 3.20 Individual contributions to the residual isochoric heat capacity
with the SAFT EOS for n-butane at T, = 1.1

In Figure 3.20 the individual contributions to the isochoric heat capacity for n-butane is
plotted. The chain term is negative over the whole density range. The isochoric heat
capacity increases with chainlength (Figure 3.17). Based on that knowledge the
chainterm should be positive. However, the failure could also be a result of a wrongly
behaving dispersion term. The maximum caused by the dispersion term in the case of
methane is absent. In the case of methane the dispersion term has negative values at
high densities. This is not the case for n-butane. If the corresponding states principle
had been used there would have been a maximum in the dispersion term. The reducing
parameters in the SAFT dispersion term are :

vk  : reducing temperature
I/mv® : reducing density

If the corresponding states principle is valid the fraction of the critical temperature to
the reducing temperature for both fluid would be approximately the same. The same
would be valid for the densities. Those fractions are at this temperature :

Methane : T/(u/k) =0.96 pc*mv0 =0.21
n-Butane:  TJ/(u/k)=2.13 p*mv’ =0.17

The reason there is no maximum in the isochoric heat capacity for methane is that the
reducing parameter for the temperature is far from its corresponding states value. The
reducing parameters for the density are closer to obeying the corresponding states
principle.
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3.3.6. Contributions to the reduced bulk modulus from the SAFT EOQS

Just as the case is with the isochoric heat capacity the reduced bulk modulus can be
analyzed with regard to the contributions from the different terms in the equation of
state. In the case of no associating molecules the reduced bulk modulus from the
SAFT equation can be written as :

B.=1= (Z + p(g@ ]’” + (Z +p(%j J"”" -{Z + p(j—i) JC”""” (3.6)

In this paragraph the different contributions to the variable (Br-1) and their sum are
evaluated. The symbol SAFT, SWEOS, and 32MBWR denotes the variable (Br-1)
from the respective equations of state. The factors HS, DISP, and CHAIN denote the
individual contributions to the reduced bulk modulus from the SAFT equation.
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Figure 3.21 Reduced bulk modulus for the alkenes at T, = 1.1

In Figure 3.21 the reduced bulk modulus for the lower alkanes are plotted as a function
of reduced density. The variations with molecular structure are small.
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Figure 3.22 Individual contributions to the reduced bulk modulus from the
SAFT EOS with methane at T, = 1.1

In Figure 3.22 the contributions of the reduced bulk modulus from the individual terms
in the SAFT EOS are plotted as function of reduced density for methane at a reduced
temperature of 1.1. The chain term in the SAFT EOS is zero. As mentioned earlier the
prediction from the SAFT EOS is good. There seem to be small deviations at high
densities, though this occurs because of competing divergences.
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Figure 3.23 Individual contributions to the reduced bulk modulus from the
SAFT EOS for n-butane at T, = 1.1
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In Figure 3.23 the contributions to the bulk modulus for n-butane are plotted as a
function of reduced density at a reduced temperature of 1.1. The contribution from the
chain term is negative. At reduced densities higher than 2 the reduced bulk modulus is
underestimated.
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Figure 3.24 Individual contribution to the reduced bulk modulus from the
SAFT EOS for methane at T, = 1.5

In Figure 3.24 the different contributions to the reduced bulk modulus for methane are
plotted as function of reduced density at a reduced temperature of 1.5. At reduced
densities higher than 2.5 the SAFT equation overestimates the reduced bulk modulus.
Thus as temperature increases the SAFT equation shows too strong a variation at fixed
high densities.

3.3.7. The initial slope of the isochoric heat capacity from cubic equations

For cubic equations of state the initial slope of the isochoric heat is a function of
acentric factor. In this case the relationship for the initial slope is :

P, dC;/R TP d%a
RT. dp ~ R® dI’

- (3.7)

For the PR and the SRK equations this quantity is a function of the acentric factor. For
the RK equation this quantity is a constant. By studying the initial slopes from the
multi parameter equations of state the effectiveness of the acentric factor in the
supercritical region can be studied.

73




Derivative Properties from Equations of State M. Konttorp

1.4

o 1211 X  Substances X Water

/}a. —— —SRK X R152a

g 1tp=---- PR

S RK

] 0.8 +

@ X n-Butane .

“g -  i-Butane X Sulfur-hexafluoride

k4 % Propane

P 044 X Ethane I

x X Methane e TR TETET

£ 02} _ _ _ommm T

0 . X
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

®

Figure 3.25 Initial slope of (C,/R) as a function of acentric factor at T, = 1.1

In Figure 3.25 the dimensionless initial slopes of the isochoric heat capacities resulting
from the cubic equations of state are plotted against acentric factor. The PR and the
SRX equations give approximately the right slope, but the wrong intercept. The RK
equation give a better intercept, but is fixed with chain length.
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Figure 3.26 Initial slope of (C,'/R) as a function of acentric factor at T, = 1.25

Figure 3.26 shows that this behavior is less obvious at T, = 1.25 but still present.
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3.4 Graphical evaluation of the equations of state for mixtures

The methane/ethane mixture is used as a reference to describe mixture behavior. The
range of the 32MBWR surfaces covering ethane and methane makes evaluation
possible for all mole fractions over many state points. The Peng - Robinson equations
is used to calculate the derived properties from a model equation. All properties are
calculated at a temperature of 330 K. All properties are dependent on the reduced
mixture density. The mixture critical density is calculated with the following
relationship :

1
p ¢,mix = X.

All binary interaction parameters both for the PR EOS and for the ECS calculations
are set equal to unity. Since the focus of this study primarily has been on pure
substances this paragraph will serve as a reference for future work.

(3.8)
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3.4.1. The behavior of the isochoric heat capacity

CNtR

Figure 3.1  Isochoric heat capacity with the ECS principle for methane/ethane
mixtures at T=330K

In the limit of pure methane non - physical behavior is calculated at low densities. This is
believed to be a result of convergence problems of the theory. In Figure 3.2 this region has
been plotted to give a closer look at the non - physical behavior. The value should go
smoothly and uniformly to zero at zero density.

0.1 0.2 03 0.4 0.5 0.6

pe

Figure 3.2  C,"/R methane with the ECS principle at T =330 K
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Isochoric heat capacity for methane/ethane mixtures with PR-EOS at T

330K

Derivative Properties from Equations of State

mixtures. Judging from the results of the pure component, analysis all the model equations

substances (Figure 3.1) the Peng Robinson equation also gives wrong values in the case of
will fail to give good results for mixtures as well.

Because of its failure to give correct values for the isochoric heat capacities for pure

Figure 3.3
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CoptR

Figure 3.4  Isobaric heat capacity calculated with the ECS principle for
methane/ethane mixtures at T=330 K

In Figure 3.4 the isobaric heat capacity calculated with the ECS principle is plotted as a

function of reduced density and mole fraction methane. The ECS principle predicts a smooth
behavior in all directions of the surface.
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CopdR

Figure 3.5  Isobaric heat capacity calculated with the PR - EOS methane/ethane
mixtures at T =300 K '

The PR equation gives quantitatively correct dependencies for the isobaric heat capacity. The
ECS calculation (Figure 3.4) is predicting a smooth curves all over the surface. However, it

has irregular curves in the limit of pure ethane. This could also be a result of the mixing rule
used for the critical density.
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The Joue - Thomson coett. (KINP a)
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#o00  2.800

Figure 3.6  Joule - Thomson coefficient with the ECS principle for methane/ethane
mixtures at T =300 K

Figure 3.6 shows the Joule - Thomson coefficient in the reduced density range 0.23 - 2.3 from
the ECS principle.
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Figure 3.7  Joule - Thomson coefficient with the PR - EOS for methane/ethane

mixtures at T=300 K

Figure 3.7 shows the Joule - Thomson coefficient calculated with the PR EOS. It has irregular

and non - physical behavior in almost in the entire plotted range below high mole fractions of
methane.
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Speed of sound (Mie)
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\ 1 \ Y

Figure 3.8  Speed of sound from the ECS principle for methane/ethane mixtures at T

=300 K

In Figure 3.35 the speed of sound for mixtures of methane and ethane is plotted. The speed of
sound is not very dependent on mixture.
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Figure 3.9  Speed of sound with the PR - EOS for methane /ethane mixtures at T =
300 K

The speed of sound for methane/ethane mixtures calculated with the PR EOS seems to give
good qualitative results as shown by comparing Figures 3.35 and 3.36.
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3.5. Discussion of results

The analysis of the model equations has revealed some weaknesses in their ability to
describe the derivative properties for pure components. In this evaluation the
substances methane and n-butane have been chosen for evaluation in order to study the
ability of the equations to describe both spherical and chain - like molecules.

The residual isochoric heat capacity is poorly predicted by all the model
equations, except for the SAFT equation with methane. The equations fail to give both
a maximum and a minimum. The SPHCT equation gives a maximum for methane, but
at too high densities. In the case of the cubic equations and the SPHCT equation the
failure is partly a result of having no temperature dependence in the repulsion terms.
Without any temperature dependence, the whole term disappears in the isochoric heat
capacity. In the case of the SAFT equation the repulsion term is a function of
temperature, so intermolecular repulsion gives a contribution to the isochoric heat
capacity. By studying the SAFT equation we see that the maximum in the isochoric
heat capacity for methane stems from a maximum in the attraction term. This leads us
* to believe that the attraction contribution in the cubic equations and the SPHCT
equation must be modified to give a maximum in order to improve the estimations of
the 1sochoric heat capacity. Another interesting result of the analysis is the failure of
the SAFT equation to give a correct isochoric heat capacity for n-butane. The
attraction term behaves different from methane. According to the principle of the
corresponding states the attraction term should have approximately the same behavior,
but the characteristic temperature for the SAFT model does not vary with molecular
size.

The isobaric heat capacity is qualitatively correct from all equations and
substances, though the cubic equations do not give minima in the isobaric heat
capacity. Again the prediction from the SAFT equation for methane is excellent, but its
prediction for n-butane is too high at densities close to the critical. All other equations
are underestimate the isobaric heat capacity at the critical density.

The reduced bulk modulus is predicted qualitatively correct for both methane
and n-butane with all the equations. The SAFT equation gives the best predictions,
especially for methane.

The Joule - Thomson coefficient is well predicted from all the equations for
methane, though the PR equation fails to give the correct inversion point. The cubic
equations do not yield good predictions for n-butane. In all cases the initial slope of the
curve is far to low.

For the cubic equations the initial slope of the residual isochoric heat capacity
was studied as a function of acentric factor. It is expected to be roughly a linear
function of acentric factor for the lower alkanes The SRK and the PR equation, do
yield appropriate slopes but the intercepts are too low. The RK equation has a better
intercept, but its initial slope is not a function of acentric factor.
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4. General behavior

4.1. Introduction

In order to reduce the number of unknown parameters in a equation of state, it is
useful to make use of behavior that are common to classes of substances. An example
of this is using mathematical constraints valid at the critical point in order to connect
the parameters of the cubic equations to critical temperature and pressure. Here we use
variables of temperature and density reduced by their critical values to explore
similarities and differences among substances and states.
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4.2. Comparisons of extreme points

In this paragraph the extreme points of the different derivative properties and the Joule
- Thomson inversion curve for water and ethane are compared to the same quantities
for methane. This is similar to the work of Grogorowicz et al.*

4.2 1. Extrema water and methane

45

pl

Extrema methane, -- Extrema water

Figure 4.1 Extrema water and methane

In Figure 4.1 we see that the behavior of water is differs from the behavior of methane,
especially in the liquid region. This is expected because water is a self associating
compound and methane is not. Major differences are associated with the C, and C,
extrema. Water does not have a minimum in the C,. The C, is not entering the
saturated liquid curve.
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4.2.2. Extrema ethane and methane
4.5
38
T,
— Extrema methane, -- Extrema ethane

Figure 4.2  Extreme points ethane and methane

In Figure 4.2 the extreme points and the Joule - Thomson inversion curve for ethane
are compared to the same properties for methane. Both components are approximately
spherical and should have a similar behavior when the properties are plotted in reduced

coordinates. However there are differences, mainly because the triple point of ethane is
at a lower temperature than methane.
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4.3. The Joule - Thomson curve

The Joule - Thomson inversion curve seems to have a simple form for all substances

studied.

pr

1.5 ]

13 ¢

1.4 4

09 1

0.7

The Joule - Thomson inversion curve

M-

— - — - Ethane
Methane
— =+ — Water
------ Propane

— — — |-Butane
— - - — n-Butane

—3¢—R152a

0.7

Figure 4.3

2.2
T,

The Joule — Thomson inversion curve

27

Within the normal alkanes there is a regular behavior. The curves should be relatively
easy to model as a function of the acentric factor.

Table 4.1 Intercept of the Joule Thomson inversion
curve with the saturated liquid line

Substance Pr T:

Methane 2.207 0.805
Ethane 2.15¢ 0.806
Propane 2.260 0.801
[-Butane 2.266 0.798
n-Butane 2.366 0.807
R152a 2482 0.800
Water 2.246 0.824

Another intriguing fact is that the inversion curves are touching the saturated liquid
curve at approximately the same reduced temperature. (Table 4.1) The value of this
information is limited in light of the good representations of the inversion points given
by all model equations accept the PR - EOS. (Chapter 3.)
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4.4. The minimum in the speed of sound

1.4
121 Methane
— — — Ethane
------ Propane
11 — = — - n-Butane
-; — - - — |-Butane
X3 A . ———Water
. N -
. . —t—R1{52a
0.6 4 -
0.4 1
024
0 :
1 1.2 1.4 1.6 1.8 2

Figure 4.4  Minimum of speed of sound

In Figure 4.4 the minima of the speed of sound are plotted in reduced density and
temperature coordinates. Again there is a regular behavior within the normal akenes.
The accuracy of the surfaces used may be uncertain as shown by the non - smooth
behavior of the curves.
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4.5. The maximum in the Joule - Thomson curve

0.8

071 Methane
— — — Ethane

06+ NN feeeeae Propane
~ = — - |-Butane
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= 0.4 — --—R152a
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0.1

0 — ;
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Figure 4.5  Maximum in the Joule - Thomson coefficient

In Figure 4.5 the maximums in the Joule - Thomson coefficient are plotted in the
reduced temperature and reduced density plane. Only the the lower alkanes (C,-Cs)
shows some regularity in their behavior. Again the accuracy of the pure component
surfaces has to be questioned.

Table 4.2 Points of intercept of the maximum in the Joule — Thomson
inversion curve with the saturated vapor line

Substances T, P

Methane 0.956 0.340
Ethane 0.976 0.510
Propane : 1.000 0.637
[-Butane 0.998 0.711
n-Butane 0.997 0.698
R152a 1.000 0.531

Among the three first alkanes (C, - C;) there seems to be a approximately lineair
relationship between in the reduced temperatures at saturated vapor line. The bigger
molecules have a starting point close to the critical point. Water is the only compound
studied with no maximum in the Joule - Thomson coefficient.
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4.5. Extreme points isochoric heat capacity
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Figure 4.6

Extreme points C,
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In Figure 4.6 the extreme points of the C, are plotted in the reduced temperature and
reduced density plane. Water shows a different behavior from the rest of the
compounds. The minimum is at higher densities and the transition to a maximum at
lower temperatures than the others.

Table 4.3 Intercept of the C, with the saturated liquid line
Substances T, pr

Methane 0.806 2.155
Ethane 0.856 2.069
Propane 0.791 2.271
[-Butane 0.598 2.730
n-Butane 0.757 2.386
R152a 0.760 2.475
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Table 4.4 Points where : (d*C,/dp’)r =0
Substance T Pr

Methane 1.378 1.217
Ethane 1.471 1.209
Propane 1415 1.188
R152a 1.397 1.113
Water 1.278 1.419

4.6. The phase - envelope

35

25 ¢+

pl’

1.5 4

05 +

Methane
— — — Ethane
------ Propane
— - — - {-Butane
— - - — n-Butane
R152a
—t—\Vater

0.2

0.3

M = triple point

Figure 4.7
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The phase envelope
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In Figure 4.7 the phase envelopes the pure components are plotted in the reduced
temperature and the reduced density plane. The liquid densities are larger for larger
molecules. This may be a regular variation with acentric factor.
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4.7. Discussion of results

It is evident that the behavior of water is different from the behavior of the alkanes.
This is probably a result of the association of the water molecules.

The Joule - Thomson inversion curve is the property that behaves in the most
regular fashion. The value of this knowledge is lowered by the fact that most of the
model equations studied here are able to predict the Joule - Thomson inversion curve.

The extrema of the isochoric heat capacity behave in a regular fashion. The
behavior of the curves is sensitive to the accuracy of the equations used. As earlier
pointed out most of the model equations studied are not able to give a qualitatively
correct behavior of the isochoric heat capacity. Using the information gained from the
plot of the extrema for the different pure components would probably allow us to
improve the predictions of the isochoric heat capacities given by the model equations.
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Conclusions

The object of this thesis was to study the real behavior of derivative propertries for
pure substances and mixtures and to compare this behavior to the predictions obtained
from model equations of state. The primary focus has been on pure components. In
order to be able to avaluate the behavior of mixtures the extended corresponding states
principle (ECS) has been studied on its ability to produce reference data. Analytical
relationships were derived for isochoric heat capacity, isobaric heat capacity, the Joule
- Thomson coefficient, and the speed of sound.. The ECS calculations were compared
to experimental isobaric heat capaciy data for the methane/propane mixture. All
derived properties were evaluated against a pure component surface for the
methane/ethane mixturte and the principle of congruence for the same mixture. The
ECS principle was found to generate data of a high quality. Deviations were found in
the vicinity of the pseudo critical point for the mixture. Also the sensitivity of the
derived priperties to binary interaction parameters in the mixingrule was studied. The
sensitivity was found to be small.

The study of the behavior of pure components showed two types of behavior.
The properties of pure components were evaluated as a function of density at a
reduced temperature of 1.1. At this temperature the non - associating components
were showing some common behavior :

- The isochoric heat capacity has both a minimum and a maximum.

- The isobaric heat capacity has both a maximum and a weak minimum.
- The Joule - Thomson coefficient has a maximum and a weak minimum.
- The speed of sound has a minimum.

The associating substances lacked the maximum in the Joule - Thomson coefficient.
The isochoric heat capacity had a highly irregular behavior. A minimum in the isobaric
heat capacity was at a high density, or absent depending on the range of the equations
used.

Expressions for the derived properties from five model equations were
derived :

- The RK - EoS

- The SRK - EoS

- The PR - EoS

- The SPHCT - EoS
- The SAFT - EoS

All the equations are in the simplest form dependent on three parameters; a parameter
describing the volume of molecules, a parameter describing the interaction energy
between molecules, and a parameter describing the chain length of molecules.

The model equations mentioned above were studied on their ability to predict
derivative properties. Methane and n-butane were used as a reference in order to
explore the ability to describe effects stemming from the chainlength of molecules. In
all cases but methane with the SAFT equation the isochoric heat capacity was not well
predicted. All equations were able to give a maximum in the isobaric heat capacity. All
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equations were able to give a maximum in the Joule - Thomson coefficient as well as a
minimum in the speed of sound. The SAFT equation was found to give excellent
predictions for methane, but was not able to predict properties for n-butane with the
same accuracy.

The extreme points of pure components were compared in the reduced density
- temperature plane. This was done in order to explore regular behavior as a function
of molecular structure. This behavior can be used to improve the model equations
available. The extrema in the isochoric heat capacity were found to serve as a good
tool for improvement of model equations. This conclusion is drawn from the fact that
most equations of state have trouble in predicting them, and that there is a certain
regularity in the behavior among different substances.
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Recommendations

In this study the ECS principle has only been tested on mixtures of lower alkanes. This
class of molecules can generally be described well with the van der Waals mixing rules.
In order to use the ECS principle on more complex mixtures, other mixing rules should
be tested. Hopefully, the ECS principle can produce good results for more complex
mixtures as well. If so, this will allow us to calculate reference data for complex
mixtures and test equations of state for mixtures.

The equations tested in this study should also be tested on their ability to
produce accurate derivative properties for mixtures. Even now testing is possible for
the lower alkanes based on reference data produced from the ECS calculations.

The full PHCT equation should be tested and compared to the results obtained
with the SAFT equation since both equations have a similar theoretical basis. The
difference is that there are extra temperature dependencies in the SAFT equations, and
the treatment of chain - like molecules is different; the effect of this is not known.

In future work, models for pure components could be designed using the
behavior of the multiparameter equations as a reference. Based on experience so far, a
strategy of design can be suggested. In order to capture the temperature dependence of
the equation of state the isochoric heat capacity should be modeled first. The residual
isochoric heat capacity has some advantages over the other properties :

e The property links the microscopic structure of the molecules with the
macroscopic behavior. The isochoric heat capacity is proportional to the degrees of
freedom of the molecules. If the influence of density on the internal degree of
freedom of the molecules can be understood, it should be possible to link the
structure of the molecules to the macroscopic behavior of a fluid.

» Interms of different contributions the property seems to be additive. This means
that the property is the sum of contributions from different effects on the
thermodynamic surface.

e The property is very sensitive to the temperature dependence of the
thermodynamic surface.

In order to give the equation the right volumetric behavior one other property should"
be used in the development of the equation. The reduced bulk modulus is not very
temperature dependent, but has a strong density dependence which provides
complementary information to the heat capacity. The different contributions to this
property are also additive.

If the residual isochoric heat capacity is modeled, it can be transformed into the
residual Helmholtz energy according to :

A" = K(p,T)+ TL(p) + M(p) (5.1)
with :
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K(p,Ty=-] [ (p D) tar (5.2)

The next step would be to derive the reduced bulk modulus from residual Helmholtz
energy :

dA’ IRT\  (d*4" IRT
Pl = (53)

B, =1+2 'D(—dp + 0’
T

T

We see that from transforming the residual isochoric heat capacity into the residual
Helmholtz energy two functions of density (L,M in equation (5.2)) appear that give us
an extra degree of freedom in modeling the reduced bulk modulus. This scheme can
also be used the other way around. Starting with a model of the reduced bulk modulus,
this model can be transformed into the residual Helmholtz energy according to :

;;=K(7) (pT)-ln( )+j -/ Brdp)do (5.4)

If this relationship is transformed into the isochoric heat capacity according to

C’ T(d*4" _
R~ "R\ ar. :3)
P

we have two temperature functions (K and L in equation (5.4)) that can be modeled to
give the right behavior of the isochoric heat capacity. These steps should be
undertaken in addition to the modeling of saturation properties.

The dispersion term in the SAFT equation does not show the same qualitative
behavior for methane and n-butane. Probably should this term be critically reviewed
and remodeled in order to improve the ability of the SAFT equation to estimate correct
values for the isochoric heat capacity.
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List of symbols

A .
a=[A-A")JRT
b

Br

C

C, _

¢y = [Cp-C, IR

o

£.0

r_ [Cv_cvid]/R

QC)SjCL

[G-GY)/RT

[H-H*}/RT

oh oo To

iy

zB K

u=[U-U“/RT
uw'k

Wk

VOO

w

].‘Cij

Helmbholtz energy
Dimensionless residual Helmholtz energy
Co — volume in cubic equations of state
Reduced bulk modulus
Number of segments (SPHCT EOS)
Isobaric heat capacity
Dimensionless residual isobaric heat capacity (-)
Isochoric heat capacity
Dimensionless residual isochoric heat capacity
Diameter of segment (SAFT EOS)
Constants in dispersion term (SAFT EOS)
Gibbs energy
Dimensionless residual Gibbs energy
Enthalpy
Dimensionless reduced enthalpy
Transformation parameter (ECS)
Transformation parameter (ECS)
Bolzman’s constant
Molar mass
Chain length of molecules
Total number of moles
Avogadro’s number
Number of moles of component I
Pressure
Gas constant
Entropy
Reduced residual entropy
Absolute temperature
Mole fraction of component i
Compressibility factor
Coordination number (SPHCT EOS)
Residual compressibility factor
Energy
Dimensionless energy
Segment — segment interaction energy
Segment — segment interaction energy at T > oo
Segment volume
Segment volume at zero temperature
Speed of sound
The direct correlation function

(J/mol)
¢)

(L/mol)

)

Q)

(J/K.mol)

(J/K.mol)

(L/mol)
(L/mol)

(m/s)
)
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Greek ;

Nij
ol

Indices :

c
id

hs
seg
chain
assoc

Dimensionless density (p/p.)

Pitzers acentric factor

Reduced density

Density

Dimensionless temperature (T./T)

Geometrical constant (= 0.74048)

Dimensionless ideal gas Helmholtz energy (A™/RT)
Dimensionless residual Helmholtz energy (A-A™Y/RT
The Joule — Thomson coefficient

Shapefactor (ECS)

Shapefactor (ECS)

Segment energy (SPHCT EOS)

Binary interaction parameter (ECS)

Binary interaction parameter (ECS)

Fugacity

Reduces properties

Critical properties

Ideal gas state

Mixture property

Target fluid

Reference fluid

Carnahan — Starling contribution SAFT EOS
Segment contribution SAFT EOS

Chain contribution SAFT EOS

Association contribution SAFT EOS
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Appendices

Appendix 1. Derivative properties methane
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Speed of Sound methane with the wagner EOS
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Appendix 2. Derivative properties ethane
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Appendix 3. Derivative properties propane
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Speed of Sound propane with the 32-MBWR EOS
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Appendix 4. Derivative properties i-butane
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Appendix 5. Dérivative properties n-butane
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Speed of Sound n-butane with the 32-MBWR EOS
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Appendix 6. Derivative properties cyclohexane
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Speed of Sound cyclohexane with the wagner EOS
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Appendix 7. Derivative properties R152a
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Appendix 8. Derivative properties sulfurhexafluoride
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Appendix 9. Derivative properties methanol
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Speed of Sound methanol with the wagner EOS
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Appendix 10. Derivative properties water
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Speed of Sound water with the wagner EOS
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Appendix 11. Extreme points propane

Extreme points and the Joule - Thomson inversion curve
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Appendix 12. Extreme points i-butane
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Appendix 13. Extreme points n-butane

Extreme points and the Joule - Thomson inversion curve n-
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Appendix 14. Extreme points R152a

Extreme points and the Joule - Thomson inversion curve R152a
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