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SUMMARY

Since Galileo Galilei’s first discovery of natural satellites orbiting around other planets,
observing and reconstructing their dynamics has been at the core of our efforts to un-
derstand and characterise these distant worlds. Far from following perfect, frozen in
time Keplerian orbits, the dynamics of these satellites keep evolving, with tides as driv-
ing mechanism. The dissipation of energy in natural bodies due to their visco-elastic
response to tidal forcing both heats up the moons’ interiors and causes their orbits to
expand or shrink, as well as to become more circular or elliptical. Refining the moons’
ephemerides (i.e., tabulated solutions of their motion as a function of time) is thus key
to studying not only their present-day dynamics, but also the long-term thermal-orbital
evolution of planetary systems.

The progressive improvement of our ephemerides solutions, initially based on ground-
based astrometric observations only, has made it possible to plan direct flybys around
some of Jupiter and Saturn’s moons by the Galileo and Cassini spacecraft, respectively. In
addition to initiating a new phase in our exploration of the outer system’s natural satel-
lites, both missions brought back evidence of the presence of subsurface liquid water
oceans on some Jovian and Saturnian icy moons. This has sparked our interest in these
fascinating objects, now known not to be dead icy bodies, but active ocean worlds. How-
ever, the subsistence of liquid water on these satellites - some of them very small - at
such great distances from the Sun remains challenging to explain. For some of these icy
moons, tidal heating is actually expected to be a key contributor to the heat budget. This
places the improvement of the moons’ ephemerides at the centre of our investigations of
these internal oceans’ stability and potential habitability: a more accurate and detailed
characterisation of the tidal dissipation parameters driving the system’s long-term evo-
lution - primarily achievable via a refined solution of the moons’ current orbits - indeed
becomes essential.

In the coming decade, two dedicated missions will visit the three outermost of Jupiter’s
four Galilean satellites (Io, Europa, Ganymede, and Callisto in increasing distance to
Jupiter). The Galilean moons form a fascinating system and a promising mission tar-
get to advance our understanding of planetary evolution processes. The three outer icy
Galilean satellites are indeed all putative or confirmed ocean worlds, exhibiting different
levels of differentiation and tidal heating intensity. On the other hand, the extreme tidal
heating experienced by the innermost satellite, Io, makes it the most volcanically active
object of the Solar System and places this moon at the other end of the moons’ diver-
sity spectrum. ESA’s JUpiter ICy moons Explorer (JUICE) is already on its eight year-long
journey to the Jovian system, and will arrive shortly after NASA’s Europa Clipper space-
craft, to be launched in August 2024. Both missions will specifically study the Galilean
moons: Europa Clipper will mostly focus on Europa, while JUICE will perform a series of
flybys around the three icy moons before entering into orbit around Ganymede. A better
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XII SUMMARY

characterisation of the Galilean system’s origin and history, including a refined under-
standing of the formation and stability of the moons’ internal oceans, lies at the core of
both missions’ main scientific objectives.

Both JUICE and Europa Clipper radio-science tracking measurements will be instru-
mental in this respect, and can bring the quality of the moons’ ephemerides solution
to unprecedented accuracy levels (see below). Nonetheless, this ground-breaking im-
provement is contingent upon resolving a number of challenges arising in this new era
of natural satellites’ ephemerides determination. In particular, it requires exploiting syn-
ergies between extremely diverse data sets (i.e., long-term astrometry vs. very accurate,
but spacecraft-focussed, radio-science) and developing adapted estimation strategies.
In this context, this research investigates the quality of the ephemerides solution attain-
able after the JUICE and Europa Clipper missions, as part of the ongoing preparation for
these two missions and, more generally, our continued exploration of other Solar Sys-
tem’s moons. In addition to quantifying the expected contribution of JUICE and Europa
Clipper radio-science, we examine the influence of the adopted estimation method, and
explore promising observation synergies to further improve and stabilise the solution.

In a moons’ ephemerides determination context, radio-science measurements are in-
direct observations: they constrain the spacecraft’s orbits which, during close encoun-
ters such as flybys, also provide information on the moons’ dynamics. The incorporation
of such data in the moons’ state estimation thus requires solving for both the spacecraft’s
and moons’ orbits. This is traditionally achieved by first solving for the spacecraft’s and
flyby moon’s dynamics in an arc-wise manner, determining an independent solution for
each flyby. A global solution for the moons’ dynamics can then be reconstructed, by
reconciling the local state estimates obtained in the first step. This two-step, decoupled
estimation facilitates the state determination by handling the spacecraft’s and moons’
dynamics separately. An alternative approach, however, consists in concurrently solving
for both the moons and spacecraft’s dynamics in a single inversion. We advocate that
such a coupled model, by automatically accounting for all spacecraft-moons dynamical
couplings, should yield the most statistically realistic representation of the estimation
solution. We moreover compare the Galilean moons’ ephemerides obtained from JUICE
radio-science with both decoupled and coupled models, and show that adopting a cou-
pled approach can indeed improve the solution, most notably in the radial direction.

A coupled estimation philosophy nonetheless imposes a tighter requirement on the
consistency and exactitude of our dynamical models. Any mismodelled effect in either
the spacecraft or moons’ dynamics, as well as possible errors in noise modelling, can
eventually affect both the spacecraft and moons’ state solutions. Moreover, concurrently
solving for two types of dynamics (i.e., spacecraft’s states estimated locally, moons’ states
determined globally over the entire mission timeline) requires our models to be consis-
tent over different timescales. This enhances the sensitivity of the coupled estimation to
dynamical mismodelling, strengthening the need for additional, independent data sets.

In this perspective, we therefore examine the contribution of PRIDE (Planetary Ra-
dio Interferometry and Doppler Experiment) to the joint JUICE-Europa Clipper classical
radio-science solution. The latter is based on range and Doppler data (i.e., measure-
ments of the spacecraft relative position and velocity with respect to telescopes on Earth,
in the line-of-sight direction). In particular, we quantify the moons’ ephemerides im-
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provement achievable with JUICE PRIDE VLBI (Very Long Baseline Interferometry) mea-
surements of the spacecraft’s lateral position in the plane-of-the-sky. We show that this
improvement will be limited if a coupled state estimation can be successfully completed:
the solution achievable with only Doppler and range already achieves such accuracy lev-
els that adding VLBI cannot bring any significant improvement. However, PRIDE VLBI
data can noticeably reduce the uncertainties of the moons’ arc-wise state solutions. VLBI
can therefore be exploited to progressively validate the radio-science solution, starting
from local, per-flyby state estimation to gradually reconstruct a global solution. We ex-
plore this possibility further, by proposing a validation strategy successively capitalising
on VLBI’s role as an independent data set and on the refined local state solutions it can
help achieve for the flyby moons.

In parallel to the critical importance of fostering promising validation opportunities
for the radio-science solution, significant development efforts will still be essential to
improve the consistency of our dynamical model. In particular, we demonstrate that the
coherent modelling of tidal effects and rotational dynamics strongly affects the evolution
of the moons’ orbits caused by tidal dissipation. It will therefore be critical to upgrade
our current models to ensure the robust determination of tidal dissipation and libration
parameters. These are indeed crucial for our characterisation of the moons’ present inte-
rior and orbital migration rate, holding the key to the system’s long-term thermal-orbital
evolution.

Finally, the aforementioned analyses, once combined, provide an indication of the
ephemerides accuracy attainable from JUICE and Europa Clipper radio-science. The ra-
dial position of all four Galilean satellites can be determined at the meter or sub-meter
level, Ganymede’s formal position uncertainties even reaching down to a few centime-
tres during JUICE’s orbital phase. The tangential errors are larger and comprised in the
1-10 m range for all moons but Io (few tens of metres). The satellites’ out-of-plane posi-
tions, on the other hand, are slightly less tightly constrained (10-100 m).

An important challenge of a radio-science-only inversion lies in the stability of the
ephemerides solution. JUICE and Clipper radio-science data sets spread over a limited
time span, inherently bound by the missions’ timelines (about 5 years). Furthermore, the
lack of direct constraints on Io’s orbit from radio-science yields a less robust determina-
tion of its dynamics, combined with a poor characterisation of the tidal quality factors
of Io and of Jupiter, due to the entanglement of these two parameters. Given the key role
of Io in the other moons’ dynamics via the resonance Laplace, this has repercussions for
the evolution of the entire Galilean system.

Future moons’ ephemerides will, however, not only rely on upcoming radio-science
from planetary missions. Recent developments in the field of astrometry also offer new
opportunities to push the boundaries of ground-based measurement techniques. First,
mutual approximations overcome an important limitation of the observations of mutual
events (i.e., occultations and eclipses), which play a key role in current ephemerides so-
lutions: the former indeed occur much more frequently, as they do not require a perfect
alignment of the two moons with the Sun (eclipses) or Earth (occultations). We develop
the missing analytical framework required to exploit mutual approximations for moons’
state estimations. Moreover, we show that this analytical formulation can be used to
extract additional information on the moons’ relative dynamics from mutual approxi-
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mation observations, and would be equally applicable to mutual events. This therefore
also augments the information content accessible via past mutual event observations,
with possible benefits for ephemerides determination.

Nonetheless, stellar occultations currently represent the most promising and accurate
ground-based astrometric observations for natural satellites. In particular, the unprece-
dented accuracy of such observations (a few milliarcseconds), if combined with track-
ing of in-situ spacecraft, offers unique opportunities. First, radio-science enhances the
effective accuracy of the moon’s position measurement derived from the occultation by
reducing the contribution of the planet ephemeris to the observation’s error budget. Sec-
ond, this strategy would help us test and possibly characterise the planetary ephemeris
error, and disentangle it from moons’ ephemerides uncertainties. While we investigate
this synergistic experiment in the context of the Juno mission, such a unique combi-
nation of ground- and space-based observations can furthermore also be implemented
during the course of the JUICE and Europa Clipper missions.

After investigating the aforementioned data sets separately, we finally quantify the po-
tential synergy between JUICE and Europa Clipper radio-science and existing astromet-
ric observations. The combined analysis of both data sets confirms that old astrometric
measurements and direct observations of Io offer the most promising opportunities to
improve the robustness of the radio-science solution, along with the determination of
the tidal quality factors of Io and Jupiter at Io’s frequency. This clearly demonstrates the
importance of exploiting inter-data set synergies in a global inversion framework to at-
tain the best ephemerides for the Galilean moons, and eventually reconstruct a robust
picture of the system’s current state and thermal orbital evolution.

In the upcoming decade, the extremely accurate JUICE and Europa Clipper radio-
science measurements, enhanced by the complementarity of the missions’ Jovian tour
and research foci, will revolutionise the quality of the ephemerides solution for the Galilean
satellites. Fully exploiting the potential of this unique data set will however require us to
significantly improve the consistency and realism of our dynamical models, to match the
accuracy levels predicted by the radio-science analyses presented in this dissertation,
as well as to capitalise on promising existing and future synergies with other data sets
and data types. Overcoming these challenges has the potential to provide a robust and
ground-breaking picture of the present-day dynamics and dissipation in the Galilean
system. We specifically reflect on how a refined state estimation for the Galilean satel-
lites will contribute to advancing our understanding of the system’s dynamical history
and characterisation of the moons’ present and past interiors. We moreover argue that
the methods we developed and the resulting insights gained into moons’ ephemerides
determination are directly relevant for other planetary systems. The implications of the
conducted research are not limited to the scope of JUICE and Europa Clipper’s visit to
the Galilean moons, and expand to the upcoming exploration of the Uranian system
and next phases of our investigation of Jupiter and Saturn’s icy satellites.
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Sinds Galileo Galilei voor het eerst manen ontdekte die rond andere planeten draaien,
vormt het observeren en reconstrueren van hun dynamica de kern van onze inspan-
ningen om deze verre werelden te begrijpen en te karakteriseren. Deze satellieten vol-
gen geen perfecte Keplerbanen, maar hun banen evolueren in de tijd, met getijden als
drijvend mechanisme. De dissipatie van energie in hemellichamen als gevolg van hun
visco-elastische reactie op getijdekrachten zorgt ervoor dat het binnenste van de manen
opwarmt, en dat hun banen uitzetten of krimpen, en cirkelvormiger of ellipsvormiger
worden. Het verfijnen van de efemeriden van de manen (d.w.z. getabelleerde oplossin-
gen van hun beweging als functie van de tijd) is dus essentieel om niet alleen hun huidige
dynamica te bestuderen, maar ook voor het begrijpen can de thermisch-orbitale evolutie
van planetenstelsels op de lange termijn.

De geleidelijke verbetering van onze efemeriden, die aanvankelijk alleen gebaseerd
waren op astrometrische waarnemingen vanaf de grond, heeft het mogelijk gemaakt om
ruimtemissies te plannen rond een aantal manen van Jupiter en Saturnus door respec-
tievelijk de Galileo en Cassini satelliet. Niet alleen startten beide missies een nieuwe fase
in onze verkenning van de natuurlijke satellieten aan de rand van ons zonnestelsel, maar
ze leverden ook bewijs voor de aanwezigheid van oceanen met vloeibaar water onder het
oppervlak van sommige ijzige manen van Jupiter en Saturnus. Dit heeft onze interesse
in deze fascinerende objecten verder opgewekt, doordat we nu weten dat het geen dode
ijzige hemellichamen zijn, maar actieve oceaanwerelden. Het bestaan van vloeibaar wa-
ter op al deze satellieten - waarvan sommige heel klein zijn - op zo’n grote afstand van de
zon blijft echter moeilijk te verklaren. Voor sommige van deze ijzige manen wordt zelfs
verwacht dat getijde opwarming een belangrijke bijdrage levert aan het warmtebudget.
Dit plaatst de verbetering van de efemeriden van de manen in het middelpunt van ons
onderzoek naar de stabiliteit en potentiële bewoonbaarheid van deze interne oceanen.
Een nauwkeurigere en gedetailleerdere karakterisering van de dissipatie parameters die
de evolutie van het systeem op de lange termijn bepalen – die voornamelijk te bepalen
zijn met betere schattingen van de huidige banen van de manen – is essentieel

In het komende decennium zullen twee missies de drie buitenste van Jupiters vier Ga-
lileïsche satellieten (Io, Europa, Ganymedes en Callisto in toenemende afstand tot Jupi-
ter) bezoeken. De Galileïsche manen vormen een fascinerend systeem en een veelbelo-
vend missiedoel om ons begrip van planetaire evolutieprocessen te vergroten. De drie
buitenste, ijzige Galileïsche satellieten zijn allemaal vermoedelijke of bevestigde oceaan-
werelden, die verschillende niveaus van differentiatie en mate van getijdeverwarming
vertonen. Tegelijkertijd is de binnenste satelliet, Io, door zijn extreme getijdenverwar-
ming het meest vulkanisch actieve object van het zonnestelsel. ESA’s JUpiter ICy moons
Explorer (JUICE) is al begonnen aan zijn acht jaar durende reis naar het Joviaanse stelsel
en zal kort na NASA’s Europa Clipper satelliet aankomen. Die laatste zal in augustus 2024
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worden gelanceerd. Beide missies zullen specifiek de Galileïsche manen bestuderen: Eu-
ropa Clipper zal zich voornamelijk richten op Europa, terwijl JUICE een reeks vluchten
rond de drie ijzige manen zal uitvoeren voordat het in een baan rond Ganymedes komt.
Een betere karakterisering van de oorsprong en geschiedenis van het Galileïsche sys-
teem, inclusief een verfijnd begrip van de vorming en stabiliteit van de interne oceanen
van de manen, vormt de kern van de belangrijkste wetenschappelijke doelstellingen van
beide missies.

Metingen met het radiosysteem van zowel JUICE als Europa Clipper zullen in dit op-
zicht van groot belang zijn. De kwaliteit van de efemeriden van de manen zal er mee tot
ongekende nauwkeurigheid worden gebracht (zie hieronder). Om deze baanbrekende
verbetering te behalen, is het echter van cruciaal belang omossingen voor een aantal uit
grotedagingen diet vereist in het bijzonder het benutten van synergiën tussen extreem
verschillende datasets (d.w.z. astrometrie op lange termijn versus zeer nauwkeurige,
maar op kunstsatellieten gerichte, radiometingen) en het ontwikkelen van verbeterde
strategieën om het statistische schattingsprobleem op te lossen. In deze studie de kwa-
liteit van de efemeriden die haalbaar is na de JUICE- en Europa Clipper-missies, als on-
derdeel van de lopende voorbereiding voor deze twee missies en, meer algemeen, onze
voortdurende verkenning van andere manen van het Zonnestelsel. Naast het kwantifi-
ceren van de verwachte bijdrage van de radiometingen van JUICE en Europa Clipper,
onderzoeken we de invloed van de gekozen schattingsmethode en verkennen we veel-
belovende observatiesynergieën om de oplossing verder te verbeteren en te stabiliseren.

In de context van de bepaling van de efemeriden van manen zijn radiometingen in-
directe waarnemingen: ze leggen de banen van de kunstmaan vast die, bijvoorbeeld
tijdens flybys, ook informatie geven over de dynamica van de manen. Het opnemen
van zulke gegevens in de schatting van de banen van de manen vereist dus het oplos-
sen van zowel de banen van de kunstsatelliet als die van de manen. Dit wordt traditi-
oneel gedaan door eerst de dynamica van de kunstsatelliet en de desbetreffende maan
per arc op te lossen, waarbij voor elke flyby een onafhankelijke oplossing wordt bepaald.
Vervolgens kan een globale oplossing voor de dynamica van de manen worden gere-
construeerd door de lokale baanschattingen die in de eerste stap zijn verkregen met el-
kaar in overeenstemming te brengen. Deze ontkoppelde schatting vergemakkelijkt de
baanbepaling door de dynamica van de kunstsatelliet en de manen apart te behande-
len. Een alternatieve benadering is om tegelijkertijd de dynamica van zowel de manen
als de kunstsatelliet in een enkele inversie op te lossen. Een dergelijk gekoppeld model
geeft, door automatisch rekening te houden met alle dynamische koppelingen tussen
de kunstsatelliet en de manen, de statistisch meest realistische oplossing van het schat-
tingsprobleem. We vergelijken de efemeriden van de Galileïsche manen verkregen uit de
metingen van het radiosysteem van JUICE met zowel ontkoppelde als gekoppelde mo-
dellen, en laten zien dat een gekoppelde aanpak de oplossing inderdaad kan verbeteren,
met name in de radiale richting.

Een gekoppelde schattingsfilosofie stelt echter hogere eisen aan de consistentie en
nauwkeurigheid van onze dynamische modellen. Elk verkeerd gemodelleerd effect in
de dynamica van de kunstsatelliet of de manen, evenals mogelijke fouten in het model-
leren van ruis op de data, kunnen uiteindelijk zowel de oplossingen van de kunstsatelliet
als die van de manen beïnvloeden. Bovendien vereist het gelijktijdig oplossen van twee
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soorten dynamica (d.w.z. de toestanden van de kunstsatelliet die lokaal worden geschat
en de toestanden van de manen die globaal worden bepaald over de hele tijdlijn van de
missie) dat onze modellen consistent zijn over verschillende tijdschalen. Dit verhoogt
de gevoeligheid van de gekoppelde schatting voor fouten in de dynamische modellen,
wat de behoefte aan extra, onafhankelijke datasets versterkt.

Vanuit dit perspectief onderzoeken we de bijdrage van PRIDE (Planetary Radio Interfe-
rometry and Doppler Experiment) aan de gezamenlijke JUICE-Europa Clipper oplossing
voor de metingen van het radiosysteem. Dit laatste is gebaseerd op afstands- en doppler-
gegevens (d.w.z. metingen van de relatieve afstand en snelheid van de kunstsatelliet ten
opzichte van telescopen op aarde, in de zichtlijnen). In het bijzonder kwantificeren we
de verbetering van de efemeriden van de manen die haalbaar is met JUICE PRIDE VLBI
(Very Long Baseline Interferometry) metingen van de laterale positie van de kunstsa-
telliet in het hemelvlak. We laten zien dat deze verbetering beperkt zal zijn als een ge-
koppelde toestandsschatting volledig succesvol kan worden voltooid: de oplossing die
haalbaar is met alleen Doppler en afstandsmetingen bereikt al een dergelijke mate van
nauwkeurigheid dat de toevoeging van VLBI geen significante verbetering oplevert. De
PRIDE VLBI-gegevens kunnen echter de onzekerheden van de lokale (per arc) baanbe-
palingen van de manen aanzienlijk verkleinen. VLBI kan daarom worden gebruikt om
de oplossing voor metingen door het radiovysteem stapsgewijs te valideren, te beginnen
met lokale toestandsschattingen per flyby om geleidelijk een globale oplossing te recon-
strueren. We onderzoeken deze mogelijkheid verder door een validatiestrategie voor te
stellen die achtereenvolgens gebruikt maakt van de rol van VLBI als onafhankelijke da-
taset en van de verfijnde lokale toestandsoplossingen die het kan helpen bereiken voor
de flyby-manen.

Behalve het stimuleren van veelbelovende validatiemogelijkheden voor baanoplos-
singen van radio data, blijft het belangrijk dat aanzienlijke ontwikkelingsinspanningen
worden gestopt in het verbeteren van de consistentie van ons dynamische model. In
het bijzonder tonen we aan dat he coherente modelleren van getijde-effecten en rota-
tiedynamica de evolutie van de banen van de manen ten gevolge van getijdendissipatie
sterk beïnvloedt. Het zal daarom van cruciaal belang zijn om onze huidige modellen te
verbeteren om een robuuste bepaling van getijdendissipatie en libratieparameters te ga-
randeren. Deze zijn namelijk cruciaal voor onze karakterisering van de huidige interne
structuur van de manen en de evolution van de baanparameters, en vormen de sleutel
tot de thermisch-orbitale evolutie van het systeem op de lange termijn.

Tot slot geven de bovengenoemde analyses gecombineerd een indicatie van de nauw-
keurigheid van efemeriden die haalbaar is met de radiometingen van JUICE en Europa
Clipper. De radiale positie van alle vier Galileïsche satellieten kan op meter- of sub-
meterniveau worden bepaald, waarbij de formele positieonzekerheid van Ganymedes
tijdens de omloopfase van JUICE zelfs enkele centimeters bereikt. De tangentiële fouten
zijn groter en liggen in het bereik van 1-10 m voor alle manen behalve Io (enkele tiental-
len meters). De posities van de satellieten loodrecht op hun baanvlak zijn daarentegen
iets minder nauwkeurig begrensd (10-100 m).

Een belangrijke uitdaging van een inversie die alleen gebaseerd is op radiometingen
ligt in de stabiliteit van de efemeridenoplossing. De metingen van het radiosysteem van
JUICE en Clipper strekken zich uit over een beperkt tijdsinterval, inherent gebonden
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aan de tijdlijnen van de missies (ongeveer 5 jaar). Bovendien leidt het gebrek aan directe
metingen van Io’s baan door radiometingen tot een minder robuuste bepaling van zijn
dynamica, gecombineerd met een slechtere karakterisering van de getijdedissipatie van
Io en Jupiter, vanwege de verstrengeling van deze twee parameters. Gezien de sleutelrol
van Io in de dynamica van de andere manen via de Laplace resonantie, heeft dit gevolgen
voor de evolutie van het hele Galileïsche stelsel.

De efemeriden van toekomstige manen zullen echter niet alleen afhankelijk zijn van
radiometing van de komende planetaire missies. Recente ontwikkelingen op het ge-
bied van astrometrie bieden ook nieuwe mogelijkheden om de meettechnieken vanaf de
grond te verbeteren. Ten eerste ondervangen ‘mutual approximations’ een belangrijke
beperking van de waarnemingen van ‘mutual events’ (d.w.z. occultaties en verduiste-
ringen), die een sleutelrol spelen in de huidige oplossingen van efemeriden: de eerstge-
noemde komen veel vaker voor, omdat ze geen perfecte uitlijning van de twee manen
met de Zon (verduisteringen) of Aarde (occultaties) vereisen. We ontwikkelen het ont-
brekende analytische raamwerk dat nodig is om deze metingen te gebruiken voor het
schatten van de toestand van manen. Bovendien laten we zien dat deze analytische for-
mulering kan worden gebruikt om aanvullende informatie over de relatieve dynamica
van de manen te extraheren uit de data, en evenzeer van toepassing zou zijn op weder-
zijdse gebeurtenissen. Dit vergroot dus ook de informatiedichtheid uit mutual events in
het verleden, met mogelijke voordelen voor de bepaling van efemeriden.

Sterbedekkingen vormen momenteel de meest veelbelovende en nauwkeurige astro-
metrische waarnemingen vanaf de grond voor natuurlijke satellieten. Met name de on-
gekende nauwkeurigheid van dergelijke waarnemingen (enkele milliboogseconden), in-
dien gecombineerd met het volgen van in-situ kunstsatellieten, biedt unieke mogelijk-
heden. Ten eerste verbeteren radiometingen de effectieve nauwkeurigheid van de door
sterbedekkingen afgeleide positiemeting van de maan door de bijdrage van de efemeri-
den van de planeet aan het foutenbudget van de observatie te verminderen. Ten tweede
zou deze strategie ons helpen om de fout in de planetaire efemeriden te testen en moge-
lijk te karakteriseren, en deze los te koppelen van de onzekerheden in de efemeriden van
de manen. Hoewel we dit synergetische experiment onderzoeken in de context van de
Juno-missie, kan zo’n unieke combinatie van waarnemingen vanaf de grond en vanuit de
ruimte bovendien ook worden geïmplementeerd tijdens de JUICE- en Europa Clipper-
missies.

Na de bovengenoemde datasets afzonderlijk te hebben onderzocht, kwantificeren we
tenslotte de potentiële synergie tussen de radiometingen van JUICE en Europa Clipper
en bestaande astrometrische waarnemingen. De gecombineerde analyse van beide da-
tasets bevestigt dat oude astrometrische metingen, en directe waarnemingen van Io in
het bijzonder, de meest veelbelovende mogelijkheden biedt om de robuustheid van de
oplossing van de metingen door het radiosysteem te verbeteren. Hetzelfde geldt voor
de bepaling van de getijdedissipatie van Io en Jupiter op Io’s frequentie. Dit toont dui-
delijk het belang aan van het benutten van de synergie tussen datasets in een globaal
inversiekader om de beste efemeriden voor de Galileïsche manen te verkrijgen en uit-
eindelijk een robuust beeld te reconstrueren van de huidige toestand van het systeem
en de thermische- en baanevolutie.

In het komende decennium zullen de extreem nauwkeurige metingen van JUICE en
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Europa Clipper’s radiosysteem, versterkt door de gelijkenissen in de onderzoeksdoelen
en profielen van de missies, een revolutie bewerkstelligen in de kwaliteit van de efemeri-
denoplossing voor de Galileïsche satellieten. Om het potentieel van deze unieke dataset
volledig te benutten, moeten we echter de consistentie en het realisme van onze dynami-
sche modellen aanzienlijk verbeteren. Dit zal essentieel zijn om de nauwkeurigheidsni-
veaus te evenaren die voorspeld worden door de in dit proefschrift gepresenteerde ana-
lyses, en om te profiteren van veelbelovende bestaande en toekomstige synergieën met
andere datasets en datatypes. Het overwinnen van deze uitdagingen heeft de potentie
om een robuust en baanbrekend beeld te geven van de huidige dynamica en dissipa-
tie in het Galileïsche systeem. We gaan specifiek in op hoe een verfijnde baanbepaling
voor de Galileïsche satellieten zal bijdragen aan een beter begrip van de dynamische
geschiedenis van het systeem en de karakterisering van het inwendige van de manen,
zowel tegenwoordig als in het verre verleden. We stellen bovendien dat de methoden die
we hebben ontwikkeld en de inzichten die we hebben opgedaan in de bepaling van de
efemeriden van manen direct relevant zijn voor andere planetenstelsels. De implicaties
van het uitgevoerde onderzoek beperken zich niet tot het bezoek van JUICE en Europa
Clipper aan de Galileïsche manen, maar breiden zich uit naar de komende verkenning
van het Uranische stelsel en de volgende fasen in ons onderzoek van de ijzige satellieten
van Jupiter en Saturnus.





1
INTRODUCTION

When Galileo Galilei looked up to the night sky through his homemade telescope
back in 1610, he noticed three bright dots next to Jupiter in the sky, and soon spotted
a fourth one (Fig. 1.1). Observing them for several consecutive nights revealed the
most surprising pattern: unlike other stars, these points appear to move with respect
to one another, while always remaining close to Jupiter. This led him to rightfully
conclude that he was actually looking at something new: the first natural satellites to
be discovered other than our own, bringing another fundamental cornerstone to the
heliocentrism revolution. Up to this day and after much more has been discovered
about these objects, the four Galilean moons - Io, Europa, Ganymede, and Callisto -
have remained some of the most fascinating objects of the Solar System.

Following Galileo’s discovery, many more natural satellites have progressively been
found orbiting around most planets of the Solar System. The satellite population

Figure 1.1.: Galileo Galilei’s telescope observations of Jupiter’s moons. Courtesy:
University of Michigan Special Collections Library.
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2 1. INTRODUCTION

of the terrestrial planets is limited to our own moon, and Mars’ two asteroid-like
satellites. In the outer Solar System, on the other hand, the giants Jupiter, Saturn,
Uranus, and Neptune are each surrounded by a myriad of natural satellites. These
planets respectively host 95, 146, 27, and 14 confirmed moons (as recognised by the
International Astronomical Union, IAU), with more awaiting to be discovered. These
outer Solar System satellites form a very diverse population of extremely complex
- and captivating - bodies. Jupiter’s innermost Galilean moon, Io, is for instance
the most volcanically active world in the Solar System, while the subsurface ocean
on its neighbour Europa would contain more liquid water than there is on Earth.
Further away from the Sun, the Saturnian moons also present some unique features:
the climate of the system’s largest satellite, Titan, hosts ethane and methane cycles
(Lunine and Atreya, 2008). The tiny moon Enceladus, on the other hand, shows
signs of intense geological activity which, combined with the confirmed presence of
a global subsurface ocean below its icy crust (Iess et al., 2014b; McKinnon, 2015;
Thomas et al., 2016), makes this icy world one of the most promising candidates
for habitability in the Solar System. In this picture of widely diverse worlds, one
specific finding has captivated the space scientific community more than any other:
the evidence, either confirmed or tentative, of the presence of subsurface oceans
of liquid water lying hidden below the crust of some of these moons (Europa,
Ganymede, Callisto, Titan, Enceladus, Mimas, Triton, e.g., Nimmo and Pappalardo,
2016) has revolutionised our conception of habitability in the Solar System.

This is at the core of the strong interest in gas giants’ icy satellites, and plays
a central role in the lasting interest in the Galilean moons in particular. In
an unprecedented effort to further characterise these moons and their internal
oceans, the coming decade will see two dedicated missions targeting the Galilean
system: ESA’s JUpiter ICy moons Explorer (JUICE) and NASA’s Europa Clipper
(Section 1.3.3). This unique opportunity in the history of space exploration further
focusses the attention of the scientific community on the Galilean moons, as
it makes preparatory studies essential to maximise the science return of both
missions, optimise observation planning and acquisition, and streamline future
analyses. This dissertation sets itself in this context, specifically investigating the
reconstruction of an unprecedentedly accurate solution for the Galilean moons’
orbital dynamics in the wake of the JUICE and Europa Clipper missions. The
invaluable scientific implications of such an improved solution, reaching far beyond
a better characterisation of the Galilean satellites’ orbits, will be explored in the
following section.

1.1. THE MOONS’ DYNAMICS AS KEY TO THEIR INTERIORS

AND EVOLUTION
Since Galileo’s exceptional discovery, much has changed regarding the accuracy of
our measurement techniques and the diversity of our observation strategies for the
Galilean moons. In 1973, Pioneer 10 performing the first flyby of Jupiter ever
was the turning point that changed the Jovian system from a distant object of
study for Earth astronomers to a prime mission target. Following Pioneer 10, the
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Jovian system has also been visited by Pioneer 11, Voyager 1 & 2, Galileo, Ulysses,
Cassini, New Horizons, and Juno (Section 1.3). The major advancements and much
further knowledge of planetary systems that each of these missions brought have,
however, not demeaned the relevance of Galileo’s approach: to this day, studying and
precisely reconstructing natural satellites’ orbits is still key to understanding these
distant objects. Improving our knowledge of the moons’ dynamics implies refining
the moons’ so-called ephemerides, which are tabulated solutions reconstructing
the motion of natural objects as a function of time. Accurate ephemerides not
only allow us to plan and design spacecraft missions (e.g., Jacobson et al., 2000;
Jacobson, 2004; Jacobson and French, 2004), but the moons’ dynamics also contain
crucial information about the moons’ present-day interiors and bear witness of their
formation and evolution processes (e.g., Lainey et al., 2009, 2012, 2020, 2024).

The system’s long-term evolution is driven by tidal dissipation mechanisms, which
are shaped by the moons’ orbits. Due to the mutual gravitational attraction between
the central planet and each satellite, they both raise tides on each other, with an
intensity that strongly depends on the distance separating them. While the most
well known manifestations of such effects are Earth’s ocean tides raised by our own
moon, tides are not limited to liquid layers and also induce solid body deformations,
which affect the satellites’ orbits and rotations. Rocky and icy satellites indeed
do not deform instantaneously under the gravitational pull exerted by the central
planet, and their visco-elastic deformation dissipates part of the energy through
internal friction. This causes the moons’ orbits to migrate closer or further from
the planet, and slowly synchronises the moons’ orbital and rotation rhythms. Tidal
dissipation therefore governs the long-term orbital migration rate of the satellites,
but it also plays a key role in the evolution of their interiors: it indeed influences
the heating rate that they experience, thus modifying their internal structure and
properties. This in turn affects the moons’ dissipative response to gravitational
forcing, and eventually their orbital evolution. This strong coupling between the
moons’ dynamics and interiors implies that their current orbits and rotations contain
signatures of the system’s long-term history (e.g., Lainey et al., 2009, 2020, 2024).
Improving the moons’ ephemerides therefore provides a natural way to extract this
information. For the Galilean icy satellites, this is essential to investigate how
subsurface oceans could have formed and subsisted until present days, tidal heating
representing a key external energy source to sustain liquid water on cold, distant
moons (e.g., Nimmo and Pappalardo, 2016).

Since Galileo’s own orbit-based revolutionary observations, much has been revealed
about natural satellites from their orbits and rotations, due to the complex and
intricate feedback between their dynamics and interiors described above. In
particular, analyses of the moons’ rotations brought part of the evidence for some of
the moons’ subsurface oceans, as is the case for e.g., Mimas (Tajeddine et al., 2014;
Lainey et al., 2024) and Enceladus (Thomas et al., 2016). The orbits of the Galilean
moons have, moreover, revealed a strong dissipation in Io and Jupiter. This causes
Io to migrate inwards, unlike Europa and Ganymede, such that these three moons
are therefore slowly moving out of the Laplace resonance (Lainey et al., 2009). In
the Saturnian system, the moons’ current orbits led to even more ground-breaking
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results: their present-day migration rates are consistent with a highly non-linear,
frequency-dependent dissipation in Saturn (Lainey et al., 2020).

These results are in good agreement with a resonance locking scenario (different
from the crossing or capture in an orbital resonance), in which the dissipation
inside Saturn is enhanced at specific frequencies dependent on the planet’s interior
structure (Fuller et al., 2016). This concept, unlike classical linear evolution models,
predicts that the moons’ orbits would evolve on timescales linked to the planet
interior evolution, thus implying a much faster migration rate. Energy dissipation
in the convective envelopes of gas giants was moreover proposed as an alternative
explanation for the fast orbital migration of the Saturnian satellites in Terquem
(2023). Current constraints on these orbital expansion rates are entirely derived from
the moons’ orbits (see Section 3.4 for more detail), and actually suggest different
scenarios for the formation of Saturn’s rings (Wisdom et al., 2022), as well as an
alternative explanation for Iapetus’ current orbit (Polycarpe et al., 2018), coherent
with the capture of Hyperion in a mean-motion resonance with Titan (Colombo
et al., 1974). A faster migration of Saturn’s moon could also explain the progressive
tilting of Saturn’s orbit up to its current obliquity (Saillenfest et al., 2021a,b). The
characterisation of Saturn’s dissipation from the dynamics of its moons has thus
upended much of our knowledge and understanding of planetary systems’ evolution
processes. While a resonance locking mechanism has not yet been evidenced in the
Jovian system, it has been postulated that Callisto could also be caught in such a
resonance locking configuration (e.g., Downey et al., 2020; Lari et al., 2023).

The JUICE and Europa Clipper missions will directly contribute to answering this
question, as part of a much broader effort to further constraining the long-term
evolution of the Galilean moons. Radio science measurements from both spacecraft
are indeed expected to significantly improve our ephemerides solutions for the
Galilean satellites (Section 1.3.3), with far-reaching scientific implications. A better
determination of the moons’ tidal dissipation parameters will bring invaluable
insights into the long-term thermal-orbital evolution of the entire system (e.g.,
Lainey et al., 2009, 2020), but also into the satellites’ current interior structure and
properties (e.g., Vance et al., 2018; De Marchi et al., 2022). This will provide much
more definitive evidence of an internal ocean on Ganymede and Callisto (Section
1.2), and help understanding the origin and history of these oceans.

In this perspective, and as a continuation of previous efforts to characterise natural
satellites from their orbital motion, this dissertation specifically investigates how the
JUICE and Europa Clipper missions can improve the Galilean moons’ ephemerides.
This implies developing new methods and strategies to achieve the most accurate
and statistically realistic solutions for the moons’ dynamics, thus maximising what
can eventually be inferred regarding the satellites’ interiors and thermal-orbital
history.

1.2. THE GALILEAN MOONS

Before investigating the future contribution of the JUICE and Europa Clipper
missions to the moons’ ephemerides solution, we first give a detailed look at
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the uniqueness and complexity of the Galilean system (Fig. 1.2), whose main
characteristics are summarised in Table 1.1. We specifically focus on our current
knowledge and remaining open questions regarding the present and past states of
the moons’ interiors and orbits. By drawing up such an overview, this section
therefore underlines the fundamental scientific implications of a better determination
of the Galilean satellites’ dynamics, both for the entire system and for each moon
individually.

1.2.1. A UNIQUE SYSTEM

Unlike the Saturnian system which is dominated by Titan, the Galilean moons -
Jupiter’s four largest satellites - are comparably large and massive. Their mutual
gravitational interactions therefore have a noticeable influence on their respective
dynamics. Moreover, the orbits of the three innermost Galilean moons Io, Europa,
and Ganymede are placed in a very peculiar configuration: Io performs four orbital
revolutions in the time Europa and Ganymede respectively take to complete two and
one orbit(s) (Fig. 1.3). This 1:2:4 mean motion resonance (MMR), commonly referred
to as the Laplace resonance, shapes the long-term thermal-orbital evolution of the
entire Galilean system. It indeed acts as an eccentricity forcer for Io and Europa,
preventing their orbit from getting circularised and keeping a strong tidal dissipation
active for these moons (e.g., Lari, 2018). Because of the Laplace resonance, and the
consequent transfer of energy from Io to Europa and Ganymede, the strong tidal
dissipation between Io and Jupiter dominates the evolution of the entire system. The
strong tidal heating that it induces is responsible for Io’s active volcanism (Section
1.2.2) and non-negligibly contribute to the survival of Europa’s subsurface ocean
(Section 1.2.3).

The Laplace resonance is postulated to remain stable for another 105 years
(Musotto et al., 2002), and is likely to capture Callisto as well in the future (Lari
et al., 2020; Celletti et al., 2022). However, while crucial to unravel the long-term
evolution of the system, the origin and history of the Laplace resonance are still

Figure 1.2.: The Galilean satellites, ordered by increasing distance to Jupiter -
from left to right: Io, Europa, Ganymede, and Callisto. Courtesy:
NASA/JPL/DLR.
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Table 1.1.: Main properties of the four Galilean satellites: Io, Europa, Ganymede,
and Callisto. The orbital period, radius, and bulk density values are
taken from NSSDCA (NASA Space Science Data Coordinated Archive).
The normalised moments of inertia come from Anderson et al. (2001b)
(Io), Gomez Casajus et al. (2021) (Europa), Gomez Casajus et al. (2022)
(Ganymede), and Anderson et al. (2001a) (Callisto). Are also reported
presupposed interior structure inferred from gravity measurements, as
investigated in Anderson et al. (2001b, 1998, 1996, 2001a) for Io, Europa,
Ganymede, and Callisto, respectively.

Io Europa Ganymede Callisto
Type of moon rocky icy icy icy
Sub-surface ocean? no yes yes ?
Orbital period [days] 1.77 3.55 7.16 16.7
Radius [km] 1821.5 1560.8 2631.2 2410.3
Bulk density [kg/m−3] 3530 3010 1940 1830
MoI factor [-] 0.37685 0.3547 0.3156 0.3549
Differentiated? yes yes yes not fully
Interior structure metallic core metallic core

rocky mantle rocky mantle (mixed) icy-rocky interior
crust water-ice shell (water?)-ice shell

debated. While the MMR has been postulated to be primordial (Greenberg, 1987;
Peale and Lee, 2002), it could also result from a later capture (Yoder, 1979; Henrard,
1983). These different scenarios predict very different tidal heating rate and history
for the Galilean moons’ interiors, with critical implications for the formation and
evolution of the moons’ internal oceans. Periods of enhanced eccentricity, either
as the Laplace resonance evolves (if the resonance is primordial) or prior to the
formation of the current configuration, may indeed have induced strong tidal
heating inside the moons, and thus partial ice melting and ocean growth (Ojakangas
and Stevenson, 1986; Hussmann and Spohn, 2004; Bland et al., 2009; Běhounková
et al., 2021). Such high-eccentricity episodes have furthermore been suggested as a
possible explanation for Ganymede’s mix of young and old terrains, shown in Fig.
1.2 (see Section 1.2.4 for more detail). Constraining the long-term orbital evolution
of the system, of which the moons’ current orbits bear witness, is therefore critical
to understanding the history of the moons’ surfaces and interiors.

Better understanding the Galilean satellites’ dynamics, as well as their origin and
thermal-orbital evolution, has implications extending far beyond the limit of the
Jovian system. With four large satellites and extremely diverse bodies, the latter can
indeed be seen as a miniature version of our own Solar System, and studying its
history thus provides invaluable insights into that of our own Solar System, but also
of exo-planetary systems. Last but not least, the (putative) presence of subsurface
oceans of liquid water on Europa, Ganymede, and Callisto elevated these moons
as leading candidates for potential habitats in the Solar System. An improved
characterisation of the evolution of these satellites’ orbits and interiors is therefore
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critical to understanding how sub-surface oceans have formed and evolved to their
present-day states, an essential step in our investigation of habitability conditions.

1.2.2. IO

Io is the innermost Galilean moon, and is very different from the other three. Its
eccentric orbit (maintained by the Laplace resonance) and its proximity with Jupiter
induce a strong tidal forcing on this moon. As a result, its solid tides can reach
up to a hundred meters, and intense heating due to tidal dissipation makes Io a
volcanic world, with hundreds of active volcanoes covering its surface (e.g., Lopes
et al., 2023). Tidal effects also cause Io to (currently) migrate inwards (Lainey et al.,
2009), slowly driving the satellites out of resonance.

Constraining Io’s ephemeris is therefore crucial, as the dissipation between Jupiter
and Io drives the evolution of the Laplace resonance and thus the thermal-orbital
evolution of the entire Galilean system. However, Io’s highly radiative environment
makes it a very challenging mission target, and direct measurements from a
spacecraft are scarce (with the exception of the two Io flybys recently performed
as part of Juno’s extended mission phase). No flyby around Io is for instance
planned for either JUICE or Europa Clipper (see Section 1.3.3 for more detail). In
addition to insights derived from telescope images (e.g., Veeder et al., 2012), current
constraints on Io’s internal dissipation therefore come from ground-based astrometry
measurements (Lainey et al., 2009). However, disentangling the similar signatures of
Jupiter and Io’s dissipations in Io’s orbit (see Section 2.3.4) is extremely difficult in
the absence of direct measurements of Io’s tidal deformation, leading to extremely
strong correlations (i.e., linear dependency between the two parameters impeding
their unambiguous determination).

Figure 1.3.: The orbital configuration of the Galilean system (orbits are to scale,
the natural bodies’ sizes are not), with 1: Io, 2:Europa, 3:Ganymede,
and 4:Callisto. The three innermost Galilean moons - Io, Europa, and
Ganymede - are caught in a 4:2:1 MMR. Courtesy for the design of
Jupiter and its moons: ESA.
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Moreover, our poor knowledge of the moon’s interior is another limiting factor to
a better characterisation of its tidal response. Io’s normalised moment of inertia
estimated from the Galileo mission’s gravity measurements indicates a differentiated
interior in agreement with a three-layer model consisting of a metallic core, rocky
mantle, and crust (see Table 1.1). The characteristics of Io’s mantle, and its thermal
state in particular, are however still disputed. The presence of a global magma
ocean inside Io has been suggested based on Galileo’s magnetic measurements
(Khurana et al., 2011), but alternative models and explanations have also been
provided (Roth et al., 2017). Io’s interior therefore remains poorly determined, with
models as different as a fully solid, partially melted mantle, or global magma ocean
still being disputed (see Steinke 2021 for a detailed overview). This implies that
our knowledge of Io’s visco-elastic properties is currently ill-constrained. Overall,
the poor characterisation of the dissipation inside Io and Jupiter prevents robustly
mapping the estimation results to long-term evolution, which is critical to obtaining
a complete and fully consistent picture of the Galilean system’s dynamics.

1.2.3. EUROPA

The next Galilean satellite is the icy moon Europa, which the Galileo mission
identified as one of the most promising candidates for exo-terrestrial habitability.
Galileo’s magnetic field measurements indeed brought evidence of the presence of a
liquid water ocean below Europa’s icy shell and above its silicate mantle (Khurana
et al., 1998; Kivelson et al., 2000). In addition to liquid water, Europa seems
to possess two other key ingredients to the development of life: carbon-based
molecules and energy.

Regarding the latter, tidal heating represents a key external source of energy to
help sustain the presence of an internal ocean of liquid water on Europa (Sotin
et al., 2009; Nimmo and Pappalardo, 2016). The amount of dissipation occurring
within this moon can, however, not yet be quantified: it is indeed weaker than
for Io, despite Europa’s larger eccentricity, due to its larger distance to Jupiter.
Consequently, the smaller signal in the moon’s dynamics could not be extracted
from astrometry as done for Io (Lainey et al., 2009). The combination of JUICE and
Europa Clipper radio science measurements are expected to remedy this, making a
crucial step towards a more detailed characterisation of Europa’s heat budget, critical
to investigate the origin and evolution of its subsurface ocean (Section 1.3.3).

Another important crucial ingredient for habitability is time: Europa would need
to be in stable thermal-orbital state for long enough to give life the opportunity to
develop, as it did on Earth. Whether Europa fulfils this later condition is nonetheless
still debated. As mentioned in Section 1.2.1, different evolution scenarios co-exist to
explain the history of the Galilean system and how it led to its present configuration.
Europa’s young surface features and very few craters, in agreement with the presence
of an internal ocean (Greenberg et al., 1998; Pappalardo et al., 1999), are themselves
a key part of the puzzle formed by the system’s history. They are indeed indicative
of a strong tidal dissipation and of recent resurfacing processes. In particular, the
diversity of Europa’s surface features may bear witness of recent variations of the
moon’s ice thickness, suggesting changes in Europa’s internal ocean deeply linked to
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the evolution of the Laplace resonance (Hussmann and Spohn, 2004).
The coupling between the moon’s interior and orbital evolution is actually an

essential aspect of its habitability potential: Běhounková et al. (2021) indeed
showed that intense tidal heating during high-eccentricity periods, correlated to
the evolution of the Laplace resonance, could trigger the partial melting of
Europa’s rocky mantle. This has the potential to enhance seafloor volcanic activity,
strengthening ocean-mantle interactions and enriching the ocean chemistry, with
critical implications for astrobiology. While stability is, as discussed above, a
necessary ingredient to the emergence of life, some activity can still be beneficial as
means to power such interactions between Europa’s ocean and its deep interior. The
above hypothesis of a magmatic seafloor activity supporting Europa’s habitability
has however been challenged by the use of a different mantle models (Green et al.,
2024). A better determination of the moons’ current dissipation and orbital migration
rates, achieved through improved ephemerides solutions, will allow us to put tighter
constraints on the system’s long-term evolution, and thus to assess the likelihood
of different thermal-orbital scenarios for the evolution of the moons’ and of their
internal oceans.

1.2.4. GANYMEDE

The third Galilean moon, Ganymede, is the largest moon of the Solar System, with a
radius about 0.4 times that of the Earth. It is also the only natural satellite to generate
its own magnetic field (Kivelson et al., 1996). This causes complex interactions
with the Jovian environment, as Ganymede’s magnetic field interacts with Jupiter’s
(Kivelson, 2004; Van Hoolst et al., 2024, and references therein). Ganymede is also
thought to host a subsurface ocean although that detection, based on Galileo’s
magnetic field measurements combined with aurora observations (Kivelson et al.,
2002; Saur et al., 2015), is less firm than for Europa. If the presence of such an
ocean is confirmed, it might however contain more liquid water than our own planet
does. It is interesting to note that the currently presupposed interior structure of
Ganymede is similar to Europa’s, being that of a differentiated body with a metallic
core, rocky mantle, and water-ice shell. The liquid water layer would, however, be
trapped between a high-pressure ice layer below and a low-pressure ice outer shell
on top, rather than in direct contact with the rocky mantle as is thought to be the
case for Europa (see Section 1.2.3). This, combined with the absence of present
activity on Ganymede’s surface, suggests a limited ocean chemistry compared to
Europa’s, and thus a lesser astrobiology potential.

Ganymede is nevertheless a very complex and interesting body, which occupies a
special, intermediate place among the Galilean moons: its mix of old and young
surface features (Fig. 1.2) indeed gives us access to much earlier stages of the
Galilean system’s history than what can be achieved by studying Io or Europa, while
presenting traces of a past internal activity which are absent on Callisto. Ganymede’s
surface is indicative of a much more ancient resurfacing (Greenberg, 2010) and could
be remnants of a period of intense tidal heating, and thus of ocean thickening, due
to the excitation of Ganymede’s eccentricity by Laplace-like resonances prior to the
formation of the present configuration (Showman et al., 1997; Bland et al., 2009).
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Explaining the presence of liquid water on Ganymede implies different contribution
ratios between the various energy sources, compared to the Europa case. For such a
large satellite, radiogenic heating indeed plays a much more dominant role in the
moon’s heat budget (Bland et al., 2009). Furthermore, Ganymede is further away
from Jupiter compared to Io and Europa, and thus currently experiences milder tidal
heating. However, as mentioned above, the pumping of Ganymede’s eccentricity
could have strengthened the tidal heating rate experienced by this moon in the
past. The detailed characterisation of Ganymede’s hydrosphere by the JUICE mission
during its orbital phase will shed light on these questions (Van Hoolst et al., 2024).

1.2.5. CALLISTO

The furthest of the Galilean satellites is also the only one presently not caught in the
Laplace resonance, although its eventual capture has been postulated (Lari et al.,
2020; Celletti et al., 2022). Callisto presents a much older, heavily cratered surface
compared to Ganymede’s, showing no sign of recent geological activity. Evidence
of an internal ocean below this seemingly dead surface, still based on Galileo’s
magnetometer measurements (Khurana et al., 1998), is also much weaker than it is
for Europa or Ganymede. The survival of this presupposed ocean is an important
question, given that Callisto is too far away from Jupiter to experience significant
tidal heating (e.g., Nimmo and Pappalardo, 2016), especially since tidal dissipation is
not enhanced by the Laplace resonance unlike for the three other Galilean moons.

The existing estimation of Callisto’s moment of inertia indicates a less differentiated
body than Ganymede (Anderson et al., 2001a, see Table 1.1)1. These differences
between the moons’ differentiation levels possibly originate from different accretion
rates during their formation in the circumplanetary disk (e.g., Canup and Ward,
2009). They could, however, also result from different thermal evolution paths,
deeply linked to the history of the Laplace resonance. As Callisto is not caught in
the MMR, it is nevertheless unlikely that it experienced the same periods of intense
tidal heating due to eccentricity pumping as Ganymede might have (Showman et al.,
1997; Bland et al., 2009).

The orbital evolution of Callisto remains key to our understanding of the system’s
history: the fact that this moon has not yet been captured in the Laplace resonance
is an important constraint for different evolution scenarios, both for the Galilean
system and for the MMR itself. This is for instance a decisive factor when assessing
the likelihood of an active resonance locking mechanism for Callisto (Section 1.1).
A faster orbital migration for Callisto, although not impossible, appears challenging
to reconcile with the current orbital configuration of the Galilean system (Lari et al.,
2023). The determination of Callisto’s tidal migration rate from JUICE radio science
will allow us to firmly confirm or exclude this possible evolution scenario.

1This estimate should however be considered carefully, as it is poorly constrained due to Galileo’s five
flybys all being nearly equatorial.
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1.3. THE EXPLORATION OF THE GALILEAN MOONS
The upcoming JUICE and Europa Clipper missions will follow in the steps of
centuries of Galilean moons exploration, both ground- and space-based.

1.3.1. GROUND OBSERVATIONS

To this day, most of the observational constraints on the Galilean moons’ dynamics
come from ground-based astrometry. Both the available data sets and resulting
ephemerides solutions will be discussed in detail in Chapter 3. To nonetheless give a
brief introductory overview, current ephemerides rely on observations starting back
at the end of the 19th century, following the invention of the photographic plate.
Accurate photometric measurements of mutual events (i.e., eclipses and occultations
of one moon by another), on the other hand, started to be recorded in 1973 and
have been performed every 6 years ever since, whenever Jupiter crosses the ecliptic
and creates opportunities for this specific type of events.

More recently, novel observation techniques and strategies in astrometry have
been explored for moons’ ephemerides applications. The improvement of our stellar
catalogues, most notably thanks to the Gaia mission (Brown et al., 2018, 2021), has
radically enhanced the potential of stellar occultation observations (i.e., occuring
when a moon passing in front of a bright enough star, see Section 3.3.1). Our very
precise knowledge of the star position now allows us to reconstruct the moon’s
position at the time of the event with an accuracy of a few kilometres only (Morgado
et al., 2019a, 2022). Such an accuracy level is more than one order of magnitude
better than what can be achieved with classical techniques (see details in Section
3.3.1), revolutionising ground-based astrometry for moon position determination.

While yielding exceptionally accurate measurements, stellar occultations are rare
events, which unfortunately limits their contribution to the ephemerides. Just as
recent efforts were made to develop more accurate observation techniques, new
measurement strategies were also explored to exploit more frequent events. In
this perspective, it was suggested to include the observations of so called mutual
approximations in ephemerides solutions (Morgado et al., 2016, 2019b). Mutual
approximations can be seen as pseudo mutual events where the distance between
two targets in the sky reaches a minimum, instead of a perfect alignment as is
the case for a typical eclipse or occultation event. As such, they are much more
frequent than mutual events, but achieve comparable accuracy levels. Both stellar
occultations and mutual approximations thus show very complementary advantages,
boosting the potential of astrometry for natural satellites’ ephemerides applications.

1.3.2. THE AGE OF PLANETARY MISSIONS

The first flyby of Jupiter by Pioneer 10 marked the beginning of a new era where
in-situ measurements and observations in the Jovian system become possible, a
turning point immortalised by the first spacecraft-based images of the Galilean
moons ever taken (Fig. 1.4a). Following Pioneer 10’s footsteps, numerous missions
have visited the Jovian system. Pioneer 11 performed the second Jovian flyby shortly
after his predecessor (in 1973 and 1974, respectively). Jupiter was later shortly visited
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(a) (b) (c) (d)

Figure 1.4.: From left to right: picture of Ganymede taken by Pioneer 10; Io as seen
by Voyager; Europa rising observed by the New Horizons spacecraft;
Ganymede during one of Juno’s flybys (Courtesy: NASA).

by several spacecraft on their way to the more distant regions of the outer Solar
System, offering multiple opportunities to take more pictures and measurements of
the planet and its moons. The Voyager 1 and 2 missions for instance collected many
images of the Galilean satellites during their Jupiter encounters, leading to a better
characterisation of the moons’ surfaces (Smith et al., 1979b,a). Among other major
findings, these observations led to the discovery of active volcanism on Io (Fig.
1.4b), and evidence of complex (past) surface activity on Europa and Ganymede.
The Cassini and New Horizons spacecraft also passed through the Jovian system
in late 2000 and 2007 on their way to Pluto and Saturn, respectively, the former
even spending about 6 months studying Jupiter and its moons in conjunction with
the Galileo mission (e.g., Hansen et al., 2004; Throop et al., 2004; Vasavada and
Showman, 2005).

Unlike the above-mentioned missions who did not linger in the Jovian system, the
Galileo mission was specifically dedicated to studying Jupiter and its moons and, in
1995, became the first spacecraft to ever enter orbit around an outer planet. To
this day, most of our knowledge about the Galilean satellites follows from Galileo’s
measurements, collected during the spacecraft’s multiple flybys (7, 11, 8, and 8 flybys
at Io, Europa, Ganymede, and Callisto, respectively). The main scientific outcomes
of the mission, already mentioned in Section 1.2, include evidences for internal
oceans on Europa, Ganymede, and possibly Callisto, a deeper characterisation of Io’s
volcanism following Voyager’s discovery, as well as a detailed picture of magnetic
interactions in the Jovian system, including the detection of Ganymede’s own
dynamo. The probable presence of liquid water beneath the icy crust of Europa,
and possibly Ganymede and Callisto, radically affected our definition of habitability
within and beyond the boundaries of the Solar System, and identified these moons
as prime targets for decades of planetary exploration to follow.

Finally, the Juno spacecraft entered orbit around Jupiter in 2016 and is now in
its extended mission phase, foreseen to last until 2025. The focus of the Juno
mission is primarily on the central planet itself, but the remarkable insights it
provided also pave the way for the next exploration steps: a better characterisation
of the Jovian environment directly benefits follow-up missions, such as the moons’



1.3. THE EXPLORATION OF THE GALILEAN MOONS

1

13

explorers JUICE and Europa Clipper (Section 1.3.3). Some of Juno’s main scientific
achievements include a much more detailed picture of Jupiter’s magnetosphere (e.g.,
Connerney et al., 2022; Moore et al., 2018, 2019) and atmosphere (Bolton et al., 2017;
Kaspi et al., 2018; Li et al., 2020). Nonetheless, the improved determination of the
planet’s gravity field (Iess et al., 2018; Durante et al., 2020; Idini and Stevenson, 2021),
including the detection of unexpected time variations, will benefit JUICE and Europa
Clipper’s radio science investigations of the moons’ orbits and interiors the most.
Jupiter’s gravitational attraction indeed influences both the spacecraft and moons’
dynamics. By providing a refined gravity model, the Juno mission limits the impact
of Jupiter’s gravity coefficients uncertainties on the quality of the moons’ solution.

In addition to its main Jupiter investigations, the Juno spacecraft also performed
two flybys around Ganymede at the end of its nominal mission, improving our
knowledge of the moon’s magnetic field (Weber et al., 2022), but also gravity, geology,
surface features and composition, etc. (Hansen et al., 2022). As part of Juno’s
extended missions, a flyby of Europa also occurred in 2022, followed by two flybys
around Io in late 2023 and early 2024. Given the rarity of direct in-situ measurements
of Io, these two flybys are expected to be extremely valuable for future solutions of
the Galilean system’s dynamics.

1.3.3. THE JUICE AND EUROPA CLIPPER MISSIONS ERA

Following the growing interest in Jupiter’s icy moons and in their potential as
possible exo-terrestrial habitats, two missions will target Jupiter’s Galilean moons in
the coming decade. ESA’s JUpiter ICy moons Explorer (JUICE) is now on its way
to the Jovian system. It will be joined by NASA’s Europa Clipper spacecraft, to be
launched in 2024 and arriving at Jupiter in 2030, one year before JUICE.

Both missions, although focussing on different moons, have similar objectives: by
studying mostly Europa for Europa Clipper, Ganymede and Callisto for JUICE, the
two spacecraft will reconstruct an unprecedentedly detailed picture of the Galilean
satellites, investigating their habitability potential and shedding light on the origin
and evolution of the Galilean system, providing invaluable insights into planetary
systems formation in general. In particular, Europa Clipper’s more than 50 flybys
at Europa and JUICE’s orbital phase around Ganymede will allow for an extremely
thorough characterisation of the two moons’ hydrospheres.

The two missions are highly synergistic. On one hand, JUICE’s unique mission
design, including the first orbital phase around a natural satellite (except our own)
combined with a flyby tour, will provide valuable insights into Callisto’s dynamics
and interiors (21 flybys planned around that moon), before entering orbit around
Ganymede. With only two dedicated JUICE flybys, information on Europa will be
limited, but Europa Clipper will take care of this missing piece of the puzzle. The
complementarity between the two missions’ Jovian tours is illustrated in Fig. 1.5,
which also highlights the overlapping of their timelines. Given the strongly coupled
dynamics of the Galilean satellites, this inter-mission synergy represents a unique
opportunity to reconstruct an extremely accurate, yet statistically balanced, solution
for the moons’ ephemerides, with critical implications for our understanding of
their interiors and evolution (see Section 1.1). While this dissertation primarily
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focusses on the JUICE mission, it is therefore necessary to consider both missions
concurrently, which has become customary in ephemerides-dedicated simulations
over the course of this project (Magnanini et al., 2024; Fayolle et al., 2023b, 2024).

2030.5 2031 2031.5 2032 2032.5 2033 2033.5 2034 2034.5 2035 2035.5
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Figure 1.5.: Timeline and altitude of the JUICE and Europa Clipper flybys around
Europa, Ganymede, and Callisto, according to the latest mission
trajectories23.

In the JUICE-Europa Clipper framework, moons’ ephemerides improvement will
mainly be achieved through radio science tracking of the spacecraft during their
close encounters with the satellites. These measurements indeed contain indirect
signatures of the moons’ dynamics captured in the spacecraft’s own orbits (see
discussion in Section 1.4). For JUICE, the contribution of the 3GM (Gravity
& Geophysics of Jupiter and Galilean Moons, Iess et al., 2024) dedicated radio
science instrument to ephemerides will be supported by PRIDE (Planetary Radio
Interferometry and Doppler Experiment, Gurvits et al. 2023). JUICE-PRIDE will
provide phase-referenced VLBI (Very Long Baseline Interferometry) measurements
of the spacecraft position (Duev et al., 2012, 2016), alongside ah hoc Doppler
observables (Bocanegra-Bahamón et al., 2018). Unlike JUICE, Europa Clipper will
unfortunately not be equipped with dual-frequency X/Ka-band tracking capabilities,
but will carry an X-band coherent transponder. Radio science will not only
contribute to a better determination of the moons’ dynamics, but also constrain
their gravity fields, rotations, and tidal deformations, which all contain signatures
of the satellites’ interiors. This dissertation, which focusses on improving the
ephemerides specifically, hence yielding a refined characterisation of tidal dissipation

2JUICE trajectory: juice_mat_crema_5_0_20220826_20351005_v01 https://www.cosmos.esa.int/web/
spice/spice-for-juice

3Europa Clipper trajectory: 21F31_MEGA_L241010_A300411_LP01_V4_postLaunch_scpse https:
//naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/

https://www.cosmos.esa.int/web/spice/spice-for-juice
https://www.cosmos.esa.int/web/spice/spice-for-juice
https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/
https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/
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in the system (Section 1.1), contributes to the broader radio science objective of
reconstructing an unprecedentedly detailed and accurate picture of the system’s past
and present thermal-orbital state.

Radio science tracking will moreover not be the only means to characterise the
moons’ dynamics and interiors (see JUICE’s instrument set in Fig. 1.6). Space-based
optical data from the science and navigation cameras (for JUICE: JANUS and
NavCam, respectively; for Europa Clipper: EIS - Europa Imaging System) could
also contribute to the ephemerides. Measurements by JUICE’s altimeter GALA
(GAnymede Laser Altimeter, Hussmann et al., 2024) could furthermore slightly
improve JUICE’s orbit determination (Villamil et al., 2021). However, GALA’s main
contribution will mostly concern the determination of the moons’ topography and
interiors (Hussmann et al., 2019), constraining the latter from measurements of the
moons’ rotations and tidal responses. JUICE’s radar (RIME, Bruzzone et al., 2024)
and magnetometer (J-MAG, Dougherty et al., 2024) will also provide invaluable
insights into the satellites’ interiors. Similar instruments onboard the Europa Clipper
spacecraft will tackle comparable scientific investigations. Relevant inter-instrument
synergies will be revisited in Chapter 10 when discussing the scientific implications
of an improved ephemerides determination.

1.4. SCIENTIFIC RATIONALE AND RESEARCH OBJECTIVES

Current ephemerides for natural satellites are primarily based on astrometric
observations, either Earth- or space-based (Lainey et al., 2004a, 2007, 2009, 2012,

Figure 1.6.: JUICE’s instrument set, including the 3GM radio science package,
altimeter GALA, radar RIME, magnetometer J-MAJ, science camera
JANUS. Courtesy: ESA.
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2017, 2020, see more detail in dedicated Section 3.4). The upcoming, almost
simultaneous arrival of two spacecraft in the Jovian system in the 2030s, and the
exceptional accuracy of their radio science measurements, will, however, prompt a
radical paradigm shift in moons’ ephemerides determination. Including JUICE and
Europa Clipper radio science indeed has the potential to significantly improve the
quality of the moons’ state solutions, but this requires to develop and investigate
the required tools, methodologies, and observation strategies to ensure that the
solution fully benefits from these missions. This is essential to obtain the best
characterisation of the system’s dynamics to date, bringing crucial insights in the
origin and history of the Galilean moons. It therefore directly contributes to fulfilling
both JUICE and Europa Clipper’s scientific objectives: constraining the evolutionary
path that led to the present system is key to our understanding of planetary systems
formation and habitability.

1.4.1. THE GALILEAN MOONS’ EPHEMERIDES - CURRENT CHALLENGES

Including JUICE and Europa Clipper radio science in the Galilean moons’
ephemerides solution poses a number of challenges. The first of them is deeply
linked to the indirect nature of the measurements. Radio science observables
(see Section 3.3.2) are indeed only directly sensitive to the spacecraft’s dynamics.
The latter nonetheless contain indirect signatures of the moons’ orbits via the
gravitational attraction exerted on the spacecraft, especially during close encounters.
Reconstructing a global and consistent solution for the moons’ dynamics from radio
science therefore requires solving for both the spacecraft and moons’ orbits. This
can be achieved with two different strategies, which will be discussed in more
detail in Section 3.4.1. A brief introduction is however necessary to understand
the rationale for part of the work presented in this dissertation (Section 1.4). The
moons’ and spacecraft’s states are typically estimated separately, using a so-called
decoupled approach (Antreasian et al., 2008; Rosenblatt et al., 2008; Durante et al.,
2019). An alternative approach, in which we concurrently solve for both the
spacecraft and natural satellites’ dynamics, has however also been applied to similar
problems (Jacobson, 2014, 2022). The analytical framework required for such a
coupled estimation is nonetheless not available in the literature, complicating the
interpretation of existing analyses. The respective performances of the coupled and
decoupled strategies have moreover not been compared yet, a step which would
nonetheless be crucial in light of past difficulties encountered when trying to adopt
a coupled approach (Durante et al., 2019; Zannoni et al., 2020; Jacobson, 2022).

In addition to the methodology aspects discussed above, achieving an extremely
accurate, yet fully consistent, solution for the dynamics of the Galilean satellites
and associated parameters requires combining diverse observation types in a single
solution. The complex and strongly coupled dynamics of the Galilean system (e.g.,
Lainey et al., 2006) indeed severely complicate the reconstruction of a statistically
coherent dynamical solution. Because of the unique configuration created by the
Laplace resonance, constraining our knowledge of Io, Europa, and Ganymede would
ideally require a balanced data set able to yield a stable estimation of their dynamics.
Due to the short time span of the missions (∼ 5 years) and their strong focus
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on Europa and Ganymede (see Section 1.3.3), solely relying on JUICE and Europa
Clipper radio science cannot yield a stable, statistically coherent solution (e.g., Dirkx
et al., 2017). In a complex dynamical system such as the one formed by the Galilean
moons, it is therefore critical to exploit existing or novel synergies between different
data types, and to investigate the potential of innovative observation strategies for
ephemerides generation purposes. This includes recent astrometry techniques such
as stellar occultations and mutual approximations (see Section 1.3), but also unique
observation opportunities created by the presence of one or more spacecraft in the
Jovian system. Identifying such possibilities and quantifying their contribution to the
quality of the moons’ ephemerides solutions is the second research avenue explored
in this dissertation.

Prior to this dissertation, JUICE and Europa Clipper radio science simulation
analyses primarily investigated the determination of the moons’ gravity fields,
rotations, and tides (Cappuccio et al., 2020a), a preparation effort that continued
throughout the course of this work (Di Benedetto et al., 2021; De Marchi et al.,
2021, 2022; Cappuccio et al., 2022). Oftentimes, radio science analyses for
past missions also focussed on the determination of physical parameters. The
above-mentioned, specific challenges associated with the coherent estimation of the
moons’ dynamics from tracking measurements of an in-system spacecraft therefore
typically remain unnoticed or were circumvented (Durante et al., 2019; Zannoni
et al., 2020). The use of radio science data in existing ephemerides solutions is
moreover somewhat under-documented, with some specificities of the underlying
estimation methodology remaining untransparent. In the context of the JUICE and
Europa Clipper missions, rare ephemerides-dedicated studies limited themselves to
a single, sometimes simplified, state estimation method and/or data set (Dirkx et al.,
2017). This dissertation will push back these existing limitations, both in terms of
methodology and inter-data set synergies, as will be further detailed in the following.

1.4.2. RESEARCH QUESTIONS

The main objective of this dissertation is to pave the way for future global inversion
analyses of radio science and astrometry, key to improving natural satellites’
ephemerides and eventually furthering our understanding of planetary systems’
evolution. In the context of the upcoming JUICE and Europa Clipper missions, and
in light of their promises and challenges discussed above, what this goal entails
is twofold. It requires investigating different state estimation strategies to best
exploit the information on the moons’ dynamics encoded in spacecraft tracking
measurements, as well as exploring the potential of other types of observations to
most efficiently complement the JUICE-Europa Clipper radio science data set. Such
an approach does not only aim at improving the ephemerides accuracy, but also
how realistic the statistical assessment of the solution’s uncertainties is. Given the
complexity of solving for the strongly coupled dynamics of the Galilean system,
combining all available data types in an optimal way has the potential to provide the
most complete picture to date of the present-day dynamics of the Galilean satellites,
thus opening a windows on the long-term history of the system. In this perspective,
this dissertation answers the following research question:
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What are the best observation and inversion strategies to improve the determination
of the Galilean moons’ ephemerides after the JUICE and Europa Clipper missions?

Answering the above will first require us to draw up a detailed overview of the
main dynamical modelling aspects driving the orbital and rotational motion of the
Galilean satellites, which will be the focus of Chapter 2. Special attention will be
paid to tidal models, because of their crucial influence on the evolution of the
moons’ orbits and interiors. Chapter 3 will continue by presenting the underlying
inversion principle behind the determination of moons’ ephemerides, along with a
description of the available data sets and existing solutions.

After having laid out the necessary background theory and models, as well as
the current state-of-art for natural satellites’ ephemerides, we start by comparing
different state estimation techniques when solving for the dynamics of different
bodies (spacecraft, moons, central planet) from radio science. In Chapter 4, we
propose a detailed inversion framework to concurrently estimate all relevant states
and dynamical parameters of interest from a single, or combined, set of observations,
currently critically missing in the literature. For the JUICE test case, we compare the
performance of this coupled approach with the more commonly-used, decoupled
estimation approach separately solving for the spacecraft’s orbit and natural bodies’
dynamics. Chapter 4 thus answers the following questions:

1. How do coupled and decoupled estimation strategies compare when reconstruct-
ing natural satellites’ orbits from spacecraft measurements?

2. What are the main challenges of the reconstruction of a coupled, global solution
for the Galilean satellites’ dynamics from JUICE-only data?

Relying on the coupled estimation method developed in Chapter 4, we then analyse
novel observation techniques and strategies to further improve the determination
of the Galilean moons’ dynamics. Chapter 5 starts by considering VLBI tracking
capabilities, and more specifically JUICE-PRIDE, as a powerful means to constrain
the ephemerides of the Galilean satellites. Building on the work by Dirkx et al. (2017),
we assess the contribution of nominal VLBI tracking measurements of the JUICE
spacecraft, paying special attention to the out-of-plane component of the moons’
positions (i.e., in the direction perpendicular to the moons’ orbital plane), which
is typically poorly constrained by classical radio science observables (see Section
3.3.2). Moreover, we provide the first study of simultaneous, multi-spacecraft VLBI
tracking of both JUICE and Europa Clipper, which can yield exceptionally accurate
measurements of their relative angular position. We quantify the potential of these
unique measurements, made possible by the remarkable synergy between the two
missions. Taking one step further, Chapter 5 also proposes different ways to exploit
PRIDE-JUICE measurements for validation purposes, an essential step to eventually
reconstruct a fully consistent solution for the dynamics of the Galilean satellites.
This PRIDE analysis thus answers the research questions:
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3. Which improvement and validation opportunities can PRIDE VLBI measurements
bring to the joint JUICE-Europa Clipper ephemerides solution?

4. Which opportunities will the JUICE and Europa Clipper missions offer to
perform multi-spacecraft VLBI measurements, and how will such data contribute
to the solution?

As discussed above, and despite the revolutionary solution improvement expected
from JUICE and Europa Clipper radio science, ground-based astrometry - on which
current ephemerides are based (see Chapter 3) - is expected to still significantly
contribute to the estimation. The following chapters investigate this potential,
specifically focussing on stellar occultations and mutual approximations as very
promising, yet under-explored, measurement strategies (Section 1.3.1). In this
perspective, Chapter 6 develops the missing framework required to include mutual
approximations in ephemerides solutions. By performing a detailed analysis of this
new methodology and comparing it with an existing, approximate approach, we
answer the following:

5. How should mutual approximation observations between two moons be used in
the estimation to reconstruct the moons’ dynamics?

Instead of focussing on new types of observations not yet widely applied in
ephemerides solutions, Chapter 7 proposes a synergistic combination of well-
established techniques. As the accuracy of astrometric measurements of the moons’
positions improves, the uncertainty in the ephemeris of the central planet starts
playing a bigger role. For stellar occcultations, reaching kilometre level accuracies,
this error source can even dominate the error budget of the observations (Morgado
et al., 2022). However, it can be mitigated by extracting information on the
local position of the planet from VLBI tracking of an in-situ spacecraft, allowing
the ephemerides solution to fully benefit from the exceptional accuracy of stellar
occultation measurements. Chapter 7 describes this novel, combined measurement
strategy in detail, and assesses its potential for the Jovian system based on promising
Juno test cases. This eventually addresses the following research question:

6. How can spacecraft tracking contribute to further reducing the error budget of
the most accurate ground-based astrometry observations?

After having separately investigated the performance of different inversion
methodologies and the contribution of various data sets, we finally combine
simulated JUICE-Europa Clipper radio science with astrometric observations, using
the coupled state estimation approach laid out in Chapter 4. Chapter 8 presents
the underlying methodology of this global inversion, addressing how to merge very
diverse data sets in a single estimation, and quantifies the contribution of each type
of astrometric observations to the radio science solution. This chapter therefore
covers the two questions:

7. How would adding existing astrometry data improve the JUICE-Europa Clipper
radio science solution?
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8. Which existing astrometric observations will be most beneficial to combine with
JUICE and Europa Clipper radio science data sets?

This global inversion analysis represents the final cornerstone of this work. It
indeed provides the required methodology to combine diverse measurements in a
single estimation, which will be critical for JUICE and Europa Clipper ephemerides
analyses, and highlights which data sets are expected to be the most valuable.

Chapter 9 then brings together the conclusions of the separate analyses gathered in
this dissertation to answer the above research questions. Overall, this work provides
a broad overview of various estimation and observation techniques to improve the
Galilean moons’ ephemerides, in the context of the upcoming JUICE and Europa
Clipper missions. Their extremely accurate radio science measurements and unique
mission configurations will push the existing dynamical models and solutions to
their limit. This will trigger new challenges, which are also compiled and examined
in Chapter 9, alongside possible mitigation avenues.

The exceptional ephemerides accuracy attainable when such difficulties are
resolved will open unprecedented opportunities to further our understanding of
planetary systems dynamics and evolution. As a final step, Chapter 10 therefore
considers the scientific implications of such a refined determination of the Galilean
moons’ dynamics. The perspectives that this work uncovers for our understanding
and characterisation of other planetary moon systems, in light of future exploration
prospects, are discussed in the last pages of this dissertation.



2
DYNAMICS OF NATURAL SATELLITES

The determination of natural satellites’ ephemerides requires the accurate modelling
of their translational dynamics and rotations including, critically, the incorporation
of tidal effects. In this chapter, we present and discuss the underlying models,
assumptions, as well as possible sources of modelling inconsistencies. As underlined
in Section 1.1, the long-term evolution of the moons’ translational and rotational
dynamics is driven by tidal dissipation mechanisms. A detailed discussion of the
chosen tidal models and of their implementation is therefore essential. Given that
this dissertation focusses on ephemerides determination, this chapter also considers
the different models and related parameters from an estimation perspective, and
examines specific difficulties arising in this context.

2.1. TRANSLATIONAL DYNAMICS

The dynamics of a natural satellite around its central planet are governed by its
equations of motion. Among the various accelerations acting on the satellite,
the gravitational interactions, including tidal effects, are the ones dominating
the satellite’s dynamics. In the following, we provide a general formulation for
the equations of motion (Section 2.1.1), before discussing the modelling of the
gravitational potentials and resulting accelerations (Section 2.1.2). Tidal effects, on
the other hand, will be discussed in more detail in a dedicated section (Section 2.3).

2.1.1. EQUATIONS OF MOTION

We choose to express the equations of motion describing the dynamics of a natural
satellite in a planetocentric reference frame (i.e., centred at Jupiter for the Galilean
satellites, with fixed axes). In the following, the central body is always denoted by
the index 0. We will start by examining the acceleration exerted on an extended
satellite i due its mutual gravitational interaction with another extended body j in
an inertial frame, before moving to a non-inertial planetocentric frame, and finally
providing a complete formulation for the satellite’s equations of motion.

21
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MUTUAL GRAVITATIONAL INTERACTION IN AN INERTIAL FRAME

Adopting a similar formalism as in e.g., Lainey et al. (2004b), the acceleration of an
extended body i due to its gravitational interaction with another extended body j
can be decomposed as

r̈( j→i )
j i = r̈(̄ȷ→ı̄)

j i + r̈(̂ȷ→ı̄)
j i + r̈(̄ȷ→ı̂)

j i + r̈(̂ȷ→ı̂)
j i , (2.1)

where r j i and r̈ j i respectively correspond to the relative position and acceleration

vectors of body i with respect to body j . The symbols k̄ and k̂ refer to the respective
contributions of the point-mass and extended gravitational potentials of a body k.
The first and second terms thus describe the effect of the point mass and extended
body j on point mass i , while the third term accounts for the effect of body i ’s
extended potential on point mass j . Using Newton’s third law, the latter can be
rewritten as

r̈(̄ȷ→ı̂)
j i =−mi

m j
r̈(̄ı→ȷ̂)

i j . (2.2)

Finally, the figure-figure interactions (Dirkx et al., 2019a) represented by the term r̈ı̂̂ȷ

in Eq. 2.1, which describe the mutual effects of the extended gravitational potentials
of i and j on one another, can be safely neglected for our applications (Lainey et al.,
2004b; Dirkx et al., 2016). Eq. 2.1 thus becomes

r̈( j→i )
j i = r̈(̄ȷ→ı̄)

j i + r̈(̂ȷ→ı̄)
j i − mi

m j
r̈(̄ı→ȷ̂)

i j . (2.3)

CENTRAL BODY GRAVITATIONAL ACCELERATION

The acceleration of body i due to its gravitational interaction with central body 0,
expressed with respect to the non-inertial reference frame centred at body 0, is
noted r̈(0→i )

i and defined as

r̈(0→i )
i = r̈(0→i )

0i − r̈(i→0)
i 0 , (2.4)

where r̈(0→i )
0i and r̈(i→0)

i 0 are respectively the inertial acceleration of body i caused
by the central body 0, and vice versa. Substituting Eq. 2.3 in the above with the
appropriate indices leads to

r̈(0→i )
i = r̈(0̄→ı̄)

0i − r̈(̄ı→0̄)
i 0 +

(
mi +m0

mi

)
r̈(0̂→ı̄)

0i −
(

mi +m0

m0

)
r̈(̄ı→0̂)

i 0 . (2.5)

THIRD BODY PERTURBATIONS

Similarly, the acceleration of body i with respect to the reference frame origin fixed
at body 0 due to the mutual gravitational interactions between i and a third body j
should also account for the acceleration of the central body 0 due to j . This third
body perturbation can therefore be expressed as

r̈( j→i )
i = r̈( j→i )

j i − r̈( j→0)
j 0 , (2.6)

where the two terms can both be obtained from Eq. 2.3.
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COMPLETE FORMULATION FOR THE EQUATIONS OF MOTION

For a system with N satellites orbiting around a central planet (index 0), the total
acceleration exerted on a moon i can therefore be expressed as follows (in the
planetocentric reference frame):

r̈i = r̈(0→i )
i +

N∑
k=0,k ̸=i

r̈(k→i )
i +aT +aR , (2.7)

where Eqs. 2.3, 2.5, and 2.6 can be used to compute the above. Other third body
perturbations, such as the ones exerted by other planets of the Solar System (typically
modelled as point masses), can be included in a similar manner as the accelerations
due to other satellites. Additionally, relativistic and tidal accelerations, respectively
denoted aT and aR , are also included. The exact formulation of the tidal acceleration
will be discussed in detail in Section 2.3, the choice of tidal model having a
significant influence on the effects of tides on the moons’ dynamics. Relativistic
corrections, which account for space-time curvature when computing gravitational
accelerations (both for central and third-body gravitational accelerations) will not be
discussed further (more detail can be found in e.g., Combrinck, 2012). Unlike tides,
which play a crucial role in the intricate feedback between the moons’ orbits and
rotations, and are therefore key to the consistent modelling of inter-moon dynamics,
relativistic perturbations are of lesser importance for this dissertation work. They
indeed do not significantly influence the dynamical evolution of the system, and the
accuracy of the adopted models is therefore less critical.

2.1.2. GRAVITY FIELD MODELLING

The gravity field of an extended body k is typically modelled by a spherical
harmonics expansion of its gravitational potential:

Uk (r,φ,λ) = Gmk

r

∞∑
n=0

(
Rk

r

)n ∞∑
m=0

[
C̄ k

nm cos(mλ)+ S̄k
nm sin(mλ)

]
P̄nm(sinφ). (2.8)

mk is the total mass of body k and Rk represents its equatorial radius. The radial
distance, r , latitude, φ, and longitude, λ, are the spherical coordinates of the point
at which the potential is evaluated, in the reference frame fixed to body k. C̄ k

nm
and S̄k

nm are body k’s normalised cosine and sine spherical harmonics coefficients of
degree n and order m, respectively, and P̄nm designates the normalised associated
Legendre polynomial.

SPHERICAL HARMONICS GRAVITY COEFFICIENTS

The normalised spherical harmonics coefficients can be obtained from the
unnormalised coefficients C k

nm and Sk
nm as follows:

(
C̄ k

nm

S̄k
nm

)
=

√
(n +m)!

(2−δ0m)(2n +1)(n −m)!

(
C k

nm

Sk
nm

)
, (2.9)
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where δ0m is the Kronecker delta. These coefficients are directly related to the
internal density distribution of body k by (e.g., Lambeck, 1988):(

C̄ k
nm

S̄k
nm

)
= 1

mk (2n +1)

∫
Vk

ρk (r,φ,λ)

(
r

Rk

)n

P̄nm(sinφ)

(
cosmλ

sinmλ

)
dV , (2.10)

where ρk (r,φ,λ) describes the internal density of body k at these coordinates.
The monopole (i.e., n = 0) describes the potential of a point mass body, while

the degree one coefficients represent a possible offset between the body’s centre of
mass and the origin of the body-fixed reference frame. Since the latter is typically
chosen to coincide with the centre of mass, however, these coefficients are usually
equal to zero. Regarding the degree two coefficients, C̄21 and S̄21 are equal to
zero if the principal axis of inertia and the body’s rotation axis are aligned. On
the contrary, non-zero (possibly time-varying) C̄21 and S̄21 values would describe
how the rotation pole deviates from the body-fixed z-axis. Similarly, a non-zero S̄22

coefficient would indicate a misalignment between the body’s x- and y axes and the
equatorial moments of inertia.

For typical dynamical studies of natural satellites (typically caught in synchronous
rotation, see Section 2.2.2), the body-fixed reference frame is generally defined such
that the satellite’s axes (almost) align with its principal axes of inertia. In particular,
small deviations between the satellite’s polar axis and its principal axis of inertia are
commonly neglected, and C̄21, and S̄21 are set to zero. It must however be noted that
we chose not to assume S̄22 = 0 in our model, unlike C̄21 and S̄21. A small non-zero
S̄22 value is indeed easily generated by a slight mismodelling of the satellite’s rotation
around its spin axis. Such a small S̄22 will furthermore have a very similar on the
moon’s orbit as satellite tides, as will be shown in Section 2.4.2. For our purposes, it
is therefore critical to include the contribution of a hypothetical non-zero S̄22.

From Eq. 2.10, it also follows that the contribution of the body’s deep interior to
the coefficients C̄nm , S̄nm decreases with n. Out of all coefficients, those of degree
two are thus the most affected by the body’s deep interior. They can contain
valuable information on the internal density distribution, and directly relate to the
body’s principal moments of inertia (see Section 2.2.1). Higher degree coefficients,
on the other hand, are mostly affected by the body’s outer layers (e.g., icy shell for
icy satellites like Europa, Ganymede, or Callisto).

DEGREE TWO POTENTIAL

The potential expansion is often truncated at degree and order two which, assuming
C̄ k

10 = C̄ k
11 = S̄k

11 = C̄ k
21 = S̄k

21 = 0, leads to the following simplified expression:

Uk (r,φ,λ) = Gmk

r
+ Gmk R2

k

r 3

[
C̄ k

20

2

(
3sin2φ−1

)
+3

(
C̄ k

22 cos(2λ)+ S̄k
22 sin(2λ)

)
cos2φ

]
. (2.11)

Assuming that the body-fixed latitude φ at which the potential is evaluated is equal
to 0 (i.e., zero inclination and obliquity, and a perfect alignment of the body’s
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equatorial and orbital planes), the above can be further simplified into

Uk (r,φ,λ) = Gmk

r
+ Gmk R2

k

r 3

[
−C̄ k

20

2
+3

(
C̄ k

22 cos(2λ)+ S̄k
22 sin(2λ)

)]
. (2.12)

RESULTING GRAVITATIONAL ACCELERATION

The potential given by Eq. 2.8 is expressed in the reference frame fixed to body k,
and the resulting acceleration sensed by a point mass body j due to the extended
gravitational potential of body k (including the point mass contribution) in the
inertial frame is thus given by

r̈(k→ȷ̄)
k j =−Rk∇kUk (r j ,φ j ,λ j ), (2.13)

where the gradient is calculated in the body-fixed frame. Rk is the rotation matrix
describing the rotation from the reference frame fixed to body k to the inertial
reference frame in which the acceleration r̈k j is expressed. Circling back to the
gradient expression given by Eq. 2.8, the above acceleration accounts for both body
k’s point mass and extended body contributions (first two right-hand side terms in
Eq. 2.3). All other relevant terms in Eqs. 2.3, 2.5, and 2.6 can be similarly obtained
from the gravitational potential gradient of the relevant perturbing body.

If we only consider the gravitational potential up to degree and order two as given
by Eq. 2.12, the acceleration becomes (here kept in the body-fixed frame):

r̈(k→ j )
k j =−3

2

Gmk

R2
k

(
Rk

rk j

)4 ([
C̄ k

20 +6
(
C̄ k

22 cos(2λ j )+ S̄k
22 sin(2λ j )

)]
r̂

+4
[
C̄ k

22 sin(2λ j )− S̄k
22 cos(2λ j )

]
t̂
)

, (2.14)

with r̂ and t̂ the unit vectors corresponding to the radial and tangential directions
(in the body-fixed frame).

2.2. ROTATIONAL DYNAMICS

The presence of the rotation matrix Rk and body j ’s longitude (λ j ) and latitude
(φ j ) in Eq. 2.13 highlights the critical importance of the rotational dynamics in
the modelling of gravitational interactions. As will be shown in Section 2.3, the
consistent implementation of tides and rotation is also critical to properly model
the moons’ orbital evolution caused by tidal dissipation and correctly interpret
estimation results. This section introduces the rotation models used for natural
satellites, starting with the general Euler equations (Section 2.2.1) before discussing
the analytical formulation commonly used to model a synchronous rotational rate,
in which most natural satellites are caught (Section 2.2.2).
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2.2.1. EULER EQUATIONS

The rotation of a non-deformable solid body is defined by the Euler equation:

d(Iω)

d t
+ω× (Iω) =∑

i
Γi , (2.15)

where I is the inertia tensor of the rigid body, ω is the rotation vector and
the right-hand side represents the sum of all torques exerted on the body. Two
important coupling aspects, however, complicate the above. First, the torques
Γi might depend on the inertia tensor. Second, the inertia tensor I varies with
time under the combined effects of tides and rotation, which both cause the body
to deform. Properly accounting for the intricate feedback between the body’s
deformation and rotation would require replacing the above simplified formulation
(only valid for a non-deformable body) by the Laplace tidal equations (see e.g.,
Mathis and Le Poncin-Lafitte, 2009) leading to a dramatically more complex model
formulation, as will be further discussed at the end of this section.

INERTIA TENSOR

The inertia tensor of a given body depends on its internal density distribution as
follows (e.g., Dehant and Mathews, 2015):

I =
∫

V
ρ(r)

[
(r · r)13×3 − r · rT]

dV. (2.16)

Similarities with Eq. 2.10 highlight the relation between the inertia tensor
components and the degree 2 spherical harmonics gravity coefficients. After
integrating Eq. 2.16, the inertia tensor can indeed be written as (Lambeck, 1988)

I =
Ixx Ix y Ixz

Iy x Iy y Iy z

Izx Iz y Izz

= mR2


C20

3 −2C22 −2S22 −C21

−2S22
C20

3 +2C22 −S21

−C21 −S21 −2 C20
3

+ Im 13×3 (2.17)

with Im the mean moment of inertia, defined as the mean value of the diagonal
elements of I. The principal moments of inertia Ixx , Iy y , and Izz (also respectively
denoted A, B , and C ) are given by the diagonal elements of I (with A ≤ B ≤C , and
A = B for axisymmetric bodies), and are directly related to the body’s internal density
distribution. The mean moment of inertia, Im , can be expressed as

Im = A+B +C

3
. (2.18)

Combining Eqs. 2.9, 2.17, and 2.18, the gravity field coefficients C20 and C22 can
finally be linked to the principal moments of inertia:

C20 = A+B −2C

2mR2 , (2.19)

C22 = B − A

4mR2 . (2.20)
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DYNAMICAL VS. KINEMATIC ROTATIONAL MODELS

The most consistent way to account for the natural satellite’s rotation in our
dynamical model would be to concurrently integrate the body’s deformation, rotation,
and translational dynamics. This approach, although ensuring the full consistency of
the satellite’s rotational and translational dynamics, increases the model’s complexity
by expanding the set of equations to be integrated, which should then also include
the Laplace tidal equations (e.g., Mathis and Le Poncin-Lafitte, 2009). In addition
to being computationally intensive, it raises several other challenges. First, the
determination of a proper initial state for the satellite’s rotation, whose proper
modes should be properly dampened, is critical but not trivial to obtain (Rambaux
et al., 2012; Martinez and Dirkx, 2024). Second, for icy satellites, the decoupling of
their core and icy shell in the presence of a liquid ocean further complicates the
modelling of these different internal layers.

Despite its appealing ability to provide a fully consistent link between the moon’s
interior (inertia tensor I , Eq. 2.17) and rotation (ω), such a coupled model
solving for the Laplace tidal equations alongside the moon’s translational and
rotational equations of motion is therefore not deemed worth the implementation
and computational load in typical icy satellites’ dynamic studies. Simpler, kinematic
models, which do not require propagating the satellite’s rotation but instead rely
on analytical approximations, are usually preferred and will be discussed in Section
2.2.2. Such modelling approaches circumvent initialisation issues for the rotational
state, and facilitate the estimation of relevant parameters by defining a clear
parametrisation for the moon’s rotation. For icy moons, however, accounting for
the core/shell decoupling would still require to extend typical parametrisations (see
details in Section 2.2.2 and discussion in Section 10.1.2).

GRAVITATIONAL TORQUE

The main torque driving the rotational dynamics of a natural satellite i is the one
exerted by the central planet 0 on the moon’s extended shape. The gravitational
torque caused by a point mass planet on an aspherical satellite is given by (e.g.,
Rambaux et al., 2012)

Γ(0)
i =−m0ri ×∇Ui (−ri ), (2.21)

with ri the position vector of satellite i with respect to the central planet, and Ui the
gravitational potential of i (Eq. 2.8). Truncating the potential expansion to degree
two and assuming zero inclination and obliquity (Eq. 2.14) yields the following:

Γ(0)
i =−6Gm0mi

Ri

(
Ri

ri

)3 (
C̄ i

22 sin(2λ)− S̄i
22 cos(2λ)

)
ĥ, (2.22)

with ĥ the unit vector aligned with the orbit normal.
While the gravitational torque defined by Eq. 2.22 is the dominant one, it must be

noted that Eq. 2.15 should also account for other torques, such as the ones caused
by the extended perturbing body, as well as effects of the perturbing torque on a fully
extended body (i.e., beyond degree two expansion), and third-body perturbations
(Efroimsky and Williams, 2009).
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2.2.2. SYNCHRONOUS ROTATION MODEL

The time evolution of a natural satellite’s rotation governed by Eq. 2.15 leads to
different possible equilibria, referred to as Cassini’s states (Peale, 1969). When locked
in a Cassini state, the orbital normal and the rotational pole of a moon precess at
the same rate, around the same axis. While such an equilibrium implies a (small)
non-zero zero obliquity (e.g., Baland et al., 2016), we will still neglect any obliquity
effects for the Galilean satellites (theoretical estimates are indeed very small, Baland
et al., 2012; Chen et al., 2014), and assume that their orbital and spin axes are
perfectly aligned, with no precession.

Furthermore, the rotational dynamics of a natural satellite are typically
approximated by a once-per-orbit rotation around its spin axis. If the orbit is
perfectly circular, this is equivalent to assuming that the body’s principal axis of
minimum inertia is always pointing towards the central planet (i.e., the body-fixed
longitude of the planet is zero). However, non-zero eccentricity and/or inclination
prevent the moon’s rotation from being exactly synchronous. The satellite’s response
- driven by its internal structure and properties - to the central torque acting on its
dynamical figure and to third body forcings, causes its rotation to further deviate
from a fully synchronous state.

These variations are typically modelled as librations (i.e., different components
of a frequency decomposition of a body’s perturbed rotation). We can distinguish
between longitudinal and latitudinal librations. The former represent deviations
between the pointing direction of the body’s long axis (x-axis) and the direction to
the central planet (thus contained within the equatorial plane when the obliquity is
zero). Latitudinal librations, on the other hand, describe oscillations of the rotational
pole around the satellite’s y-axis. For most natural satellites, latitudinal librations
(caused by non-zero inclination and/or obliquity, and out-of-plane torques) are small
and their effects on the moon’s orbit are limited. In the following, we will therefore
focus on longitudinal librations, which can be further decomposed into optical and
physical librations. The former are geometric effects of the orbit’s eccentricity,
while physical librations arise as a response to forcing torques, and depend on the
satellite’s internal structure and properties. The total longitudinal libration, defined
as the angle between the pointing of the empty focus and the direction to the
central planet, can thus be defined as

λ=φ+γ, (2.23)

with φ and γ the optical and physical librations, respectively. It should be noted that
the total libration angle λ is the body-fixed longitude of the central planet.

OPTICAL LIBRATION

Focusing on the effect of a non-zero eccentricity on the pointing of the satellite’s
long-axis and assuming a perfectly synchronous rotation1, the satellite’s rotation

1identical rotational and orbital periods, i.e., ω= n with ω and n the moon’s rotation rate and orbital
mean motion, respectively
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angle δ is related to the mean anomaly M (see Fig. 2.1):

δ= M −γ= nt −γ. (2.24)

In the absence of physical librations (i.e., γ= 0), the above is oftentimes described
as the satellite’s principal axis of inertia always pointing towards the orbit’s empty
focus. This, however, results from an approximation in eccentricity which, as will be
demonstrated in Section 2.3.4, may significantly affect the effects of satellite tides on
the moon’s own orbit.

Denoting with β the angle between the orbit’s long axis and the direction to the
satellite as seen from the empty focus, the cosine rule gives (see Fig. 2.2)

cosβ=
1
e

(
1− r

a

)+e(
1− r

a

)+1
, (2.25)

with a, e, and r the semi-major axis, eccentricity, and distance of the satellite to the
central planet, respectively. Using the following expansion for 1− r /a as a function
of the mean anomaly (e.g., Murray and Dermott, 2000)

1− r

a
= e cos M − 1

2
e2(1−cos2M)− 3

8
e3(cos M −cos3M)+O(e4), (2.26)

one obtains

cosβ= cos M + 1
2 e(1+cos2M)− 3

8 e2(cos M −cos3M)

1+e cos M − 1
2 e2(1−cos2M)− 3

8 e3(cos M −cos3M)
+O(e4). (2.27)

Figure 2.1.: Schematic representation of the pointing direction of the satellite’s long
axis with and without physical librations (in red and blue, respectively),
with respect to the direction to the central planet. δ represents the
satellite’s rotation angle, while γ and φ respectively describe the physical
and optical librations. θ and M are the true and mean anomalies,
respectively.
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Performing a Taylor series expansion of the above for very small eccentricities, with
a truncation at O(e3), eventually yields (e.g., Murray and Dermott, 2000)

cosβ= cos M − 1

8
e2 (cos M −cos3M)+O(e3). (2.28)

This shows that the satellite’s long-axis does not exactly point to the empty focus,
and that this approximation, although widely used, is only valid up to O(e2).

From Eq. 2.24, the optical libration angle, defined between the satellite-to-planet
axis and the satellite’s long axis pointing direction, can be expressed as (Fig. 2.1):

φ= M −θ =−2e sin M +O(e3) (2.29)

where θ denotes the satellite’s true anomaly. Conic expansions are commonly used
to express the optical libration as a function of the eccentric anomaly E instead
of M , providing us with a straightforward way to compute φ from the satellite’s
cartesian state:

φ= M −θ =−2e sinE +O(e2), (2.30)

e sinE = r ·v

|r×v| . (2.31)

While offering a very convenient implementation, such a truncation in eccentricity
has severe implications for the consistency of our models and, in particular,
significantly affects the moons’ orbital migration caused by tides, as will be discussed
in detail in Section 2.4.1.

PHYSICAL LIBRATIONS

Physical librations can be divided between free and forced librations, the former
typically being dampened over planetary system evolution timescales. Forced

Figure 2.2.: Definition of the empty focus angle β for a satellite at a distance r
from the central planet, on a elliptic orbit of semi-major axis a and
eccentricity e.
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librations, on the other hand, are caused by external torques acting on the rotating
body. Assuming an ideal Keplerian orbit, the frequencies of the forced librations
induced by the central planet would be multiples of the orbital period. In practice,
orbital perturbations and third body torques also introduce librations at different
frequencies. Nevertheless, the physical libration spectrum is dominated by the
satellite’s orbital frequency, and we will therefore restrict our physical libration model
to this single component.

The once-per-orbit libration can be obtained from the linearised equations for the
synchronous rotation of a natural satellite (e.g., Murray and Dermott, 2000; Williams
et al., 2001; Rambaux et al., 2010):

γ̈+3n2 B − A

C
γ= 3n2 B − A

C
(θ−M) (2.32)

= 6n2 B − A

C
e sin M , (2.33)

with the right-hand side term describing the forcing at the orbital frequency.
Defining the satellite’s resonant frequency as

ω0 = n

√
3(B − A)

C
, (2.34)

the libration angle then becomes (e.g., Van Hoolst et al., 2008; Rambaux et al., 2010)

γ=A sin M ,

A = 2e
ω2

0

ω2
0 −n2

≈ 6e
B − A

C
. (2.35)

While this libration amplitude holds for a completely rigid body, Van Hoolst
et al. (2013) provide a revised form of the above equation accounting for the
influence of tidal deformation. In both cases, the amplitude of the once-per-orbit
physical libration is directly related to the satellite’s moments of inertia and orbital
eccentricity.

TOTAL LIBRATION

Using the expressions derived in Eq. 2.29 and 2.35 for the optical and physical
librations, respectively, the total libration angle given by Eq. 2.23 can thus be
re-written as (Lainey et al., 2019)

λ=−2e sin M +A sin M =Be sin M , (2.36)

with the total amplitude B =−2+A /e. This formulation is useful for estimation
purposes, allowing us to determine a single, combined libration amplitude at the
orbital period frequency. The same approximation as in Eq. 2.30 is then often used
to express the total libration angle as a function of the eccentric anomaly:

λ=Be sinE +O(e2). (2.37)
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2.3. TIDES
The equations of motion provided in Section 2.1 describe the effect of the
gravitational interactions between two extended bodies on their dynamics. However,
these models assume fully rigid bodies, and therefore neglect tidal effects (i.e., the
deformation of the bodies’ shape, rotation, and gravity caused by their anelastic
response to mutual gravitational forcing). As evidenced in Section 1.1, however,
tides drive the long-term evolution of natural satellites’ orbits and interiors, and
are therefore critical to include in ephemerides analyses (as will be shown in
Section 3.4.2). In the following, we define the tidal potential (Section 2.3.1) and
derive the governing equations for the effects of tides on both the moons’ rotations
(Section 2.3.3) and orbits (Section 2.3.4). These derivations are not presented as a
unified whole in literature, making it difficult to trace underlying assumptions and
resulting inconsistencies between different formulations and/or implementations.
The complete overview provided in the following sections allows us to connect and
further existing insights regarding the modelling of tidal effects for natural satellites’
dynamics. The respective advantages of different modelling approaches, including
implementation challenges, will finally be examined in Section 2.4.1, and considered
through the prism of ephemerides determination in Section 2.4.2.

The derivations presented in this section make use of a number of conic motion
expressions. For the sake of conciseness, they are provided together in Appendix A
for reference.

2.3.1. TIDAL POTENTIAL

The gravitational pull of a body j (here treated as a point mass) generates a so-called
tidal bulge on body i , responsible for its deformation. The tide-inducing potential at
any point on body i ’s surface caused by j is given by

V ( j )
i (r⋆) = Gm j

Ri

∞∑
n=2

(
Ri

ri j

)n+1

Pn(r̂⋆ · r̂i j ), (2.38)

where r⋆ is the position of the point at which the potential is evaluated, and ri j is
the position of the tidal-inducing body j with respect to body i (see Fig. 2.3).

The deformation of body i ’s gravity field caused by the tidal bulge described by
Eq. 2.38 in turn raises the following gravitational potential:

U ( j )
i (r) = Gm j

Ri

∞∑
n=2

k i
n

(
Ri

r

)n+1 (
Ri

ri j

)n+1

Pn
(
r̂ · r̂i j

)
, (2.39)

with r defining the position at which the potential is calculated with respect to body
i . The gravity field variations caused by tides, and the resulting tidal bulge potential
that they raise are driven by the tidal Love numbers k i

nm , which describe the body’s
visco-elastic response to tidal forcing (n and m respectively denoting the degree and
order of the Love number). These are frequency-dependent complex numbers whose
imaginary part defines the phase lag of the tidal response, which will be further
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Figure 2.3.: Schematic representation of the tidal deformation (solid red ellipsoid) of
body i (left) at time t due to the tidal potential (dashed red ellipsoid)
raised by point mass body j (right) at time t ′. The rotation of body
i and orbital motion of body j during the time lag ∆t = t − t ′ are also
represented.

discussed below. As done in Eq. 2.39, we typically only consider a unique Love
number k(n)

i for each degree n, neglecting the (very) small dependency to the order
m caused by the body’s asphericity (Rovira-Navarro et al., 2023). It is interesting to
note that similar Love numbers hnm and lnm are used to describe body i ’s shape
deformation due to tides (i.e., its radial and lateral surface displacement under the
effects of tides, see e.g., Petit et al. 2010).

The second degree Love number k2 has (by far) the largest effect on the tidal
potential, as can be deduced from Eq. 2.39. It is therefore the easiest tidal Love
component to extract from radio science measurements: our own moon is the
only natural satellite for which statistically significant estimates of degree 3 Love
numbers are currently available (Konopliv et al., 2013; Lemoine et al., 2013). While
it is unlikely that JUICE’s GCO will make it possible to estimate Ganymede’s k3,
the determination of its second degree Love number should be sensitive enough to
detect possible order- or frequency-dependent variations (De Marchi et al., 2022), or
lateral heterogeneities (Rovira-Navarro et al., 2023) (see discussion in Section 10.1).
The tidal potential given by Eq. 2.39 is therefore often reduced to its degree two
component, leading to the following simplified expression:

U ( j )
i (r) = Gm j k i

2

2Ri

(
Ri

r

)3 (
Ri

ri j

)3 (
3
(
r̂ · r̂i j

)2 −1
)

. (2.40)

Due to a body’s visco-elastic response to tidal stresses, there is a lag between the
perturbing potential and the body’s response. This is represented as a quality factor
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Q, directly related to k2’s imaginary part, ℑ(k2):

Q = |k2|
ℑ(k2)

. (2.41)

Q is frequency-dependent, and depends on the body’s rheology (e.g., Efroimsky and
Lainey, 2007; Efroimsky and Makarov, 2014). A rigorous description of this frequency
dependency is given by the expanded Love functions k2(ωlmpq ) and Q(ωl mpq ) (e.g.,
Efroimsky and Makarov, 2014), which provide the real and imaginary part of the
k2 Love number as a function of the Fourier modes ωl mpq (lmpq referring to the
four indices defining the Fourier modes in the Kaula expansion, see Kaula 1966).
The tidal forcing for both planet- and satellite-raised tides is dominated by a single
leading frequency, driven by the rotation period of the tide-raising body and by the
moon’s orbital period (as will be further discussed below). Nevertheless, a complete
and consistent modelling of the tidal response would ideally require extracting a
body’s tidal parameters from an appropriate rheology model (from which the above
Love numbers can be defined), accounting for all possible forcing frequencies, at
the expense of a severe increase in model complexity. This justifies the success
of simplified models for typical spacecraft orbit reconstruction and/or ephemerides
determination.

The most widely-used approximations are the constant phase lag (CPL) and
constant time lag (CTL) models, both offering different representations of the lag
between the raising of the tidal potential and the point at which its influence is
evaluated (i.e., between r̂ and r̂i j in Eq. 2.40). Both models, however, rely on
important and much disputed assumptions (Efroimsky and Makarov, 2013; Makarov
and Efroimsky, 2013). The CPL model, in particular, assumes a constant angular
phase lag, which does not hold for eccentric orbits (Efroimsky and Makarov, 2013).
Both the CPL and CTL models moreover overlook the frequency-dependent nature of
the response of a body’s interior to tidal forcing. Such an assumption is unacceptable
for long-term evolution analyses: tidal dissipation causes the orbit of a natural
satellite to either shrink or expand (see Section 2.3.4), affecting the frequency of the
tidal forcing and thus the effective Q value, which in turn defines the amount of
tidal energy dissipated in the system (e.g., Efroimsky and Lainey, 2007; Efroimsky
and Williams, 2009; Renaud et al., 2021).

For shorter timescales, such as the ones considered for typical ephemerides
studies, the frequency-dependency of the tidal dissipation occurring inside a body
(planet or satellite) is nonetheless of lesser significance. Combined with the
simplicity of its formulation, this makes the CTL model extremely attractive for our
purposes. We can moreover introduce a different constant time lag for each excited
tidal frequency. This implies that the response of e.g., Jupiter to the tidal forcing of
each Galilean moon, each of them exciting a different frequency, is modelled by a
different time lag. This approach still does not model a body’s tidal dissipation as
coherently as what could be achieved by incorporating an adequate rheology model
in our simulations. However, it circumvents the inherent limitations of the CTL
model, without dramatically increasing the complexity of our dynamical model.

In the CTL model, the time lag of the dissipation occurring in body i due to tides
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raised by body j is related to the tidal quality factor Q( j )
i by the following (e.g.,

Lainey et al., 2007),

∆t ( j )
i =

T ( j )
i arcsin

(
1/Q( j )

i

)
2π

, (2.42)

where Q( j )
i denotes the tidal quality factor of body i at the forcing frequency of the

tides raised by j , while T ( j )
i refers to the period of this tidal forcing. For tides

raised by the satellite i on the planet 0, this period depends on the satellite’s orbital

period and on the planet’s rotational period defined as T
orb

i = 2π/ni and T
rot

0 = 2π/ω0,
respectively, with ni the mean motion of satellite i and ω0 the planet’s rotational
rate:

T (i )
0 = T

orb

i T
rot

0

2|T rot

0 −T
orb

i |
= 2π

2 |ω0 −ni |
. (2.43)

For the tides raised once per orbit by the planet on a fully synchronous satellite, on
the other hand, the tidal forcing period is

T (0)
i = 2π

ni
. (2.44)

2.3.2. FORCE FORMULATION

Starting with the tides raised by the satellite i on the central planet 0, the force
acting on the satellite i due the planet’s tidal bulge is given by (in the body-fixed
frame)

F (0)
i =−mi∇U (i )

0 (ri ). (2.45)

In the following, the tidal potential raised at time t follows from the forcing
experienced at time t ′, due to the time lag ∆t of the tidal deformation, with
t = t ′+∆t . For the sake of conciseness, the superscript ′ generally indicates that the
quantity under consideration is evaluated at time t ′. Replacing the potential U (i )

0 (ri )
by the expression provided in Eq. 2.40 yields

F (0)
i =−Gm2

i k0
2

2R0
∇

((
R0

r ′
i

)3 (
R0

ri

)3 (
3
(
r̂′i · r̂i

)2 −1
))

, (2.46)

where k i
2 denotes the real part of the complex Love number of degree 2 (here and in

the rest of this chapter).
Computing the gradient of this potential in the body-fixed frame finally gives

F (0)
i =−3Gm2
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)3 (
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. (2.47)
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Similarly, due to Newton’s third law, the satellite’s tidal bulge affects its own orbit,
with a force of the same magnitude and opposite direction as the one it exerts on
the central planet:

F (i )
i =−3Gm2

0k i
2

2R2
i

(
Ri

r ′
i

)3 (
Ri

ri

)4 ([
1−5

(
r̂ ′

i · r̂i
)2

]
r̂i +2

(
r̂ ′

i · r̂i
)

r̂ ′
i

)
. (2.48)

Remarkably, comparing Eq. 2.47 and 2.48 shows that the tidal force exerted on the
satellite has the same form irrespective of whether we consider tides raised by the
central planet or by the satellite itself.

Taking the force due to the tides raised on the satellite as an example (Eq. 2.48)
and following Mignard (1980), r ′

i can be related to the tidal time lag ∆t (0)
i and the

satellite’s velocity in the body-fixed frame, ṙi , using a first order approximation:

r ′
i = ri −∆t (0)

i (ṙi −ωi × ri )+O

((
∆t (0)

i

)2
)

, (2.49)

with ωi the rotation vector of the satellite i . The inverse of the distance r ′
i can

furthermore be expanded as follows(
1
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1+3∆t (0)
i

ri · ṙi

r 2
i

)(
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(
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i

)2
. (2.50)

The above expansion and the first order approximation for r ′
i given by Eq. 2.49 can

then be substituted in Eq. 2.48. After extensive simplifications and a truncation at

O

((
∆t (0)

i

)2
)
, the expression for the tidal force eventually becomes (e.g., Lainey et al.,

2007; Lari, 2018)
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. (2.51)

An almost identical expression can similarly be obtained for the tides raised on the
central planet:

F (0)
i =−3Gm2
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r 8
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. (2.52)

An alternative formulation can be obtained by decomposing the velocity vector ṙi

into its radial and tangential components, assuming that the satellite’s rotation pole
is aligned with the normal to the orbital plane (e.g., Hut, 1981):

F (i )
i =−3Gm2

0k i
2R5

i

r 7
i

((
1+3∆t (0)

i

r̂i · ṙi

ri

)
r̂i +∆t (i )

i (θ̇i −ωi )t̂i

)
, (2.53)

where ωi is the rotation rate of the satellite, and θ̇i its angular velocity. The
advantage of this formulation is twofold. First, it makes the dependency on the
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difference between the orbital velocity and rotational rate explicit, which becomes
convenient when examining the effects of tides on the moon’s orbit (see Section
2.3.4). Second, it decomposes the tidal force into radial and tangential components,
which are commonly referred to as radial and librational tides, respectively.

A widely-used formulation trick exploits the fact that the averaged amount of
energy dissipated by librational tides over one orbit is equal to 4/3 that dissipated
by radial tides (Murray and Dermott, 2000). This allows us to re-write Eq. 2.53 as

F (i )
i =−7Gm2

0k i
2R5

i

r 7
i

(
1+3∆t (0)

i

r̂i · ṙi

ri

)
r̂i . (2.54)

This circumvents the need to explicitly include the moon’s rotation in the tidal
force. The extreme sensitivity of the satellite tide effects to the rotational dynamics
modelling (see Section 2.3.4) therefore makes the above formulation extremely
attractive. In the rest of this dissertation, we therefore apply Eq. 2.54 to model
satellite tides, while the complete force formulation (Eq. 2.53) is used for planet
tides. In light of its importance for our work, the underlying assumption of this
simplified model (i.e., librational tides dissipating 4/3 of the energy dissipated by
radial tides) and its applicability will be demonstrated and discussed in Section 2.3.4.

2.3.3. EFFECTS OF TIDES ON THE MOONS’ ROTATIONS

The tidal bulge raised by the central planet on a satellite generates a torque, which
can be computed as follows (using Eq. 2.53):

Γ(i )
i = ri ×F(i )

i (2.55)

=−3Gm2
0k i

2∆t (0)
i

R5
i

r 6
i

(θ̇i −ωi )ĥi . (2.56)

Substituting Eq. A.1 and A.6 in the above, and computing the average tidal torque
over one orbit, one obtains:
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ĥ, (2.57)

where all orbit-related quantities by default refer to the satellite (subscripts are
omitted for the sake of conciseness). Using the relation between the true and mean
anomalies (Eq. A.7) leads to
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which after integrating and re-arranging gives∣∣∣Γ(i )
i

∣∣∣=−3Gm2
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Assuming a circular orbit, this would eventually lead to a fully synchronous
rotational state, with ωi = n, and the satellite’s long axis always pointing towards the
central planet. Because of the orbit’s eccentricity, however, the averaged tidal torque
can only be equal to zero if the satellite’s rotation is slightly faster than its orbital
motion (see Fig. 2.4), as follows (Levrard, 2008; Wisdom, 2008):

ωi = n
(
1+6e2) . (2.60)

It must be noted that the exact value of the equilibrium rotation rate is contingent
upon the adopted tidal dissipation model. A similar, but slightly different relation is
also often given in literature and actually corresponds to the CPL model (Rambaux
and Castillo-Rogez, 2013):

ωi = n

(
1+ 19

2
e2

)
. (2.61)

Eq. 2.60 defines a pseudo-synchronous rotation (i.e., slightly faster than the
satellite’s orbital motion), which would yield a zero averaged torque over one orbit,
for the case of a non zero eccentricity. Despite this rotational rate appearing to
describe an equilibrium state, this result is in contradiction with what is observed
in the Solar System (full synchronicity, i.e., ω= n). It moreover appears inconsistent
with realistic rheology models for terrestrial bodies and natural satellites, which
predict this equilibrium to be unstable (Makarov and Efroimsky, 2013). Most natural
satellites are indeed found in fully synchronous rotations, even if their orbits are
slightly eccentric. Their capture in spin-orbit resonance can be explained by the
effect of the torque exerted by the central planet on the asymmetrical shape of the
satellite (Eq. 2.22), counterbalancing the tidal torque given by Eq. 2.59. Taking
into account both the torques caused by the body’s aspherical shape (Eq. 2.22, for
now keeping S̄22 = 0) and tides (Eq. 2.59), the evolution of the satellite’s rotation is
described by the following expression of the Euler equation (Eq. 2.15):

d(Iiωi )

d t
+ωi × (Iiωi ) =−6Gm0mi

Ri

(
Ri

ri

)3 (
C̄ i

22 sin(2λ)
)

ĥ +Γ(i )
i . (2.62)

The above can be further simplified by substituting ωi = ωi ĥ, leading to (after
projection to the orbit normal)

C ω̇i =−6Gm2
0

Ri

(
Ri

ri

)3

C̄ i
22 sin(2λ)+Γ(i )

i , (2.63)

with Γ(i )
i the tidal torque projected onto the orbital normal ĥ2 and C the largest

principal moment of inertia. Note that substituting Eqs. 2.20,2.24, and 2.29 in

2This out-of-plane component exactly describes the tidal torque when assuming zero inclination and
obliquity.
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Figure 2.4.: Schematic representation of the pointing direction of the satellite’s
elongated shape (in blue) and tidal bulge (in red) over one orbit. While
the average gravitational torque is zero for an axially symmetric body in
synchronous rotation, the dissipation time lag prevents the tidal torque
from exactly cancelling out.

the above, one can recover the linearised equation for the physical libration of a
synchronous satellite given by Eq. 2.32.

The capture in a fully synchronous rotational state occurs if the maximum torque
caused by the body’s aspherical shape is larger than the averaged counter-balancing
tidal torque (Goldreich and Peale, 1966; Rambaux and Castillo-Rogez, 2013). It is
moreover important to keep in mind that while the central planet’s longitude is
equal (or close) to zero in the satellite-fixed rotating frame for a fully synchronous
satellite, we are here considering the case when the satellite is not (yet) caught
in spin-orbit resonance. The spin-orbit resonance capture condition can thus be
described by the following condition:

6Gm0mi
R2

i

r 3
i

C̄ i
22 >

∣∣∣Γ(i )
i

∣∣∣ . (2.64)

From Eq. 2.59 and neglecting the terms in e2, the averaged tidal torque can be
further simplified: ∣∣∣Γ(i )

i

∣∣∣=−3Gm2
0k i

2∆t (0)
i

R5

a6 (n −ωi ) , (2.65)
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The tidal time lag ∆t (0)
i is here related to the period defined in Eq. 2.43 (and not

Eq. 2.44 as would be the case for an already fully synchronous satellite). After
substituting Eq. 2.42 and 2.43 to replace ∆t (0)

i , and expressing C̄ i
22 as a function of

the principal moments of inertia A and B (Eq. 2.20), one obtains

3

2
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)3
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2
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k i
2
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i

R5

a6

ωi −n

|ωi −n| . (2.66)

Considering that the moon’s initial rotational rate (before damping) is typically faster
than the synchronous rate and assuming a small eccentricity eventually yields the
following spin-orbit resonance condition (e.g., Rambaux and Castillo-Rogez, 2013):

B − A

C
> 1

C

k i
2

Q(0)
i

R5
i n2

G
. (2.67)

This condition is fulfilled by most natural satellites (e.g., Goldreich and Peale, 1966;
Rambaux and Castillo-Rogez, 2013), including the Galilean moons, which are indeed
known to be locked in spin-orbit resonance.

Circling back to Eq. 2.59, it follows that the tidal torque does not exactly average
out over one orbital period. The effect of the residual torque obtained over one orbit
should therefore be accounted for in Section 2.3.4, when quantifying the influence
of satellite tides on the moon’s own dynamics. Moreover, the discrepancy observed
between Eqs. 2.60 and 2.61, for two different tidal models, brings another evidence of
the critical coupling between the moon’s tides and rotation. This further strengthens
the need for a complete analysis of their combined effects on the moons’ dynamics,
as will be examined in the following.

2.3.4. EFFECTS OF TIDES ON THE MOONS’ ORBITS

As shown in Section 2.3.2, both the tides raised in the central planet and in the
satellite exert an acceleration on the latter, and therefore influence the evolution of
the moon’s orbit. Their orbital effects can be decomposed into the contributions
of the radial and librational tides, respectively. The former is caused by the tidal
deformation at periapsis being stronger than the one experienced at apoapsis.
Librational tides, on the other hand, are related to the variation of orbital velocity
along the orbit (i.e., acceleration at periapsis, deceleration at apoapsis), and to the
effect of the tidal torque. Because of the time lag in dissipation, the averaged effect
of the tidal torque indeed does not exactly average out over one orbit for a fully
synchronous satellite (see Section 2.3.3). Fig. 2.3 illustrates that the direction of the
torque induced by the tidal bulge on body i depends on whether the tide-raising
body j is on a sub- or super-stationary orbit (i.e, if its orbital period is smaller or
larger than the rotational period of body i ). For the super-stationary case, the tidal
bulge always points ahead of body j (see Fig. 2.3.2), therefore exerting a positive
acceleration on body i . The opposite is true if the tide-raising body lies below the
stationary orbit.

In the following, we precisely examine the effects of both satellite and planet tides
on the evolution of the satellite’s orbital characteristics. It must be noted that we
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continue to neglect obliquity tides. The limited latitudinal variations of the tidal
bulge’s orientation caused by a small, non-zero obliquity would anyway have little
impact on the evolution of the satellite’s semi-major axis and eccentricity - driven
by eccentricity tides - on which this section focuses. We do not investigate the
small effect of obliquity tides on the Galilean moons’ inclinations, but the interested
reader is referred to the extensive analytical analysis by Boué and Efroimsky (2019).

LINEAR APPROXIMATIONS FOR THE SEMI-MAJOR AXIS AND ECCENTRICITY EVOLUTION

Linear approximations are available for the secular variations that both planet
and satellite tides induce in the satellite’s semi-major axis ai and eccentricity ei

(Goldreich and Soter, 1966). Specifically, the effects of the tidal bulge raised by the
satellite i on the planet 0 can be modelled as (e.g., Peale et al., 1979; Malhotra, 1991;
Lari, 2018)
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2
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ni ai , (2.68)
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)5

ni ei . (2.69)

The variation of the semi-major axis is positive: the satellite i typically lies beyond
the stationary orbit (for all major moons of both Jupiter and Saturn), and planet
tides therefore cause the satellite’s orbit to expand.

For satellite tides, however, two different expressions for the secular evolution of
the semi-major axis can be found in the literature. While the following formulation
is the most commonly used (e.g., Goldreich and Soter, 1966; Lainey et al., 2009; Lari,
2018):

d a(i )
i

d t
=−21

m0

mi

k i
2

Q(0)
i

(
Ri

ai

)5

ni ai e2
i , (2.70)

another result is obtained in e.g., Emelyanov (2018); Boué and Efroimsky (2019):
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The evolution of the eccentricity under satellite tides, on the other hand, is consistent
and given by the following expression:
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While the existing discrepancy in the d a(i )
i /d t formulations is not yet perfectly

understood (Emelyanov, 2018), it is of critical importance when modelling the
moon’s orbital evolution due to tides, or extracting tidal dissipation parameters from
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the moon’s orbital migration rate.

In the following, we therefore investigate the origin of the apparent inconsistency
between Eqs. 2.70 and 2.71. In light of the absence of disagreement for the planet
tides case, we specifically focus on the semi-major axis and eccentricity variations
caused by the tides that the satellite raises on its own orbit. To this end, we
quantify the total energy dissipated due to tides over one orbit, treating the radial
and librational tides separately. Special attention will be paid to the influence of
the moon’s rotation, including physical librations, often overlooked in the literature.
In the following derivations, we take an energy-based approach (similar to the one
adopted in e.g., Hut, 1981), but identical results can be found using Gauss’ planetary
equations (see Appendix B.1).

RADIAL TIDES CONTRIBUTION

The radial component of the complete tidal force given by Eq. 2.53 is

Fr =−3Gm2
0k2

R5

r 7

(
1+3

ṙ

r
∆t

)
. (2.73)

For the sake of conciseness, the notations in the above expression and in the rest
of this section have been simplified: by default, the absence of subscript and/or
superscript refers to satellite-related properties, while r represents the position
vector of satellite i with respect to the central planet 0. ∆t denotes the time lag
associated with tides raised by the planet 0 on satellite i (i.e., ∆t (0)

i ).
From Eq. 2.73, the orbital energy dissipated by the radial tidal force over one orbit

can be computed as follows:

(∆Eorb)r =
∫ 2π

0
Fr

dr

dθ
dθ, (2.74)

which after substituting dr /dθ by Eq. A.3 leads to

(∆Eorb)r =−9Gm2
0k2∆tR5ae(1−e2)
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r 8

sinθ

(1+e cosθ)2 dθ. (2.75)

We then replace ṙ in the above using Eq. A.5:

(∆Eorb)r =−9Gm2
0k2∆tR5

a6(1−e2)
15
2

ne2
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sin2θ (1+e cosθ)6 dθ. (2.76)

After integration, the total orbital energy dissipated is

(∆Eorb)r =−9πGm2
0k2∆t

R5

a6 ne2 +O(e4). (2.77)

Considering the averaged energy dissipation over one orbital period, one finally
obtains the following dissipate rate:∣∣∣∣dEorb

d t

∣∣∣∣
r
=−9

2
Gm2

0k2∆t
R5

a6 n2e2 +O(e4). (2.78)
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Making use of the definition of the orbital energy (Eq. A.9) and its time derivative
(Eq. A.10), one can deduce the time evolution of the satellite’s semi-major axis
caused by the radial component of its own tidal perturbing potential:∣∣∣∣d a

d t

∣∣∣∣
r
=−9

m0

mi
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Conservation of the angular momentum finally allows us to derive an expression for
de/d t based on d a/d t (Eq. A.13):∣∣∣∣de

d t
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LIBRATIONAL TIDES CONTRIBUTION

Now considering the tangential component of the tidal force given by Eq. 2.53

Ft = 3Gm2
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r 7
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, (2.81)

the resulting change of orbital energy over one period is given by
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Expressing r and θ̇ as a function of θ using Eq. A.1 and A.6, respectively, yields
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After integration, we obtain

(∆Eorb)t =−6πGm2
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(
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Averaging the energy dissipated over one orbital period then gives the following
orbital energy dissipation rate:∣∣∣∣dEorb
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To avoid making any assumption regarding the satellite’s rotation rate ω yet, in
light of the results in Section 2.3.3, we choose to express it as:

ω= n(1+αe2), (2.87)
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with α= 0 for fully synchronous rotation and α= 6 for pseudo-synchronous rotation
(i.e., average torque = 0 over one orbit assuming an axially symmetric body under
the CTL model, see Section 2.3.3). Eq. 2.86 then becomes∣∣∣∣dEorb

d t
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t
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Using the relation between the semi-major axis and orbital energy again (Eq. A.9),
the evolution of the satellite’s semi-major axis due to the tangential component of
the tidal force is ∣∣∣∣d a

d t
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mi
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We now compute the change of orbital momentum over one orbital period due to
the torque generated by the tidal force’s tangential component:
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, (2.90)

= Gm2
0k2∆tR5

a6(1−e2)6

∫ 2π

0
(1+e cosθ)6

(
ω

θ̇
−1

)
dθ, (2.91)

which after expressing θ̇ as a function of θ (Eq. A.6) becomes
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After integration and replacing ω by Eq. 2.87, we obtain

(∆h)t =−6π (6−α)Gm2
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Averaging over one orbital period finally provides the angular momentum rate:∣∣∣∣dh

d t

∣∣∣∣
t
=−3(6−α)Gm2

0k2∆t
R5

a6 ne2 +O(e4). (2.94)

From the angular momentum definition, Eq. A.12 provides a relation between the
time variations in semi-major axis, eccentricity, and angular momentum. Substituting
Eq. 2.89 and 2.94 in Eq. A.12 gives the following damping eccentricity rate:∣∣∣∣de
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COMBINED EFFECTS OF RADIAL AND LIBRATIONAL SATELLITE TIDES

The total rate describing the semi-major axis evolution caused by satellite tides is
directly given by the sum of the radial and librational tidal effects (Eq. 2.79 and 2.89,
respectively):
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and the total eccentricity damping rate is similarly obtained from Eq. 2.80 and 2.96:
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Crucially, Eq. 2.98 highlights that the secular variation of the semi-major axis
induced by satellite tides is extremely sensitive to the moon’s rotation, described by
Eq. 2.87. The eccentricity damping rate, on the other hand, is independent of α
and thus insensitive to the adopted rotation model. This strongly suggests that the
discrepancy observed between different d a/d t formulations in the literature might
be rotation-related, as will be shown in the next section.

It is also insightful to compute the total amount of dissipated energy by satellite
tides, and to compare the respective contribution of the radial and librational tides.
The total energy dissipated by the radial component of the tidal force over one
orbit corresponds to the change of orbital energy given by Eq. 2.77 (no change in
rotational energy in the absence of an effective torque):

(∆E)r = (∆Eorb)r =−9πGm2
0k2∆t

R5

a6 ne2 +O(e4). (2.101)

The energy dissipated by librational tides, on the other hand, is the sum of the
changes in orbital and rotational energy:

(∆E)t = (∆Eorb)t + (∆Erot)t (2.102)

The orbital energy contribution is given by Eq. 2.85 which, once combined with Eq.
2.87, can be re-written as:

(∆Eorb)t =−6π (8−α)Gm2
0k2∆t

R5

a6 ne2 +O(e4), (2.103)

while the rotational energy dissipated over one orbit can be derived from Eq. 2.93 as
follows:

(∆Erot)t =−ω (∆h)t (2.104)

=−6π(6−α)Gm2
0k2∆t

R5

a6 ne2 +O(e4). (2.105)
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The total energy dissipated by librational tides thus becomes

(∆E)t =−12πGm2k2(∆t )
R5

a9 ne2 +O(e4). (2.106)

Combining Eq. 2.101 and 2.106, the total amount of energy dissipated by satellite
tides over one orbit is

(∆E)total =−21πGm2k2(∆t )
R5

a9 e2 +O(e4). (2.107)

This result is remarkable in that it is independent of α, and therefore holds
irrespective of any assumption regarding pseudo or full synchronous rotation for the
satellite (see discussion in Section 2.3.3). The dissipated energy is the same in both
cases but, depending on the rotation model, is divided differently between orbital
and rotational energy. A perhaps even more important conclusion can be drawn
from Eq. 2.101 and 2.106: the energy dissipated by librational tides relates to the
contribution of radial tides as

(∆E)t =
4

3
(∆E)r . (2.108)

This result was already introduced in Section 2.3.2 to reformulate the complete tidal
force into an simpler formulation (Eq. 2.54), circumventing the need to explicitly
incorporate librational tides, and thus avoiding rotation-related considerations. We
here demonstrate that the validity of the above does not depend on the value of α,
making this alternative tidal model extremely attractive, as will be discussed in more
detail in Section 2.4.1.

CIRCLING BACK TO THE DISCREPANCY IN SEMI-MAJOR AXIS EVOLUTION

Recalling the expression we derived for the evolution of the semi-major axis due to
satellite tides (Eq. 2.98) and substituting the time lag ∆t by Eq. 2.42, we obtain

d a(i )
i

d t
=− (57−6α)

m0

mi

k i
2

Q(0)
i

R5

a4
i

e2
i +O(e4). (2.109)

Assuming a perfectly synchronous satellite (α= 0), the above is actually consistent
with Eq. 2.71. The more commonly used expression for d a(i )

i /d t given by Eq.
2.70, however, matches with the pseudo-synchronous model (Eq. 2.60, i.e., α= 6).
This result directly follows from most studies considering that the tidal torque
perfectly averages out over one orbital period (or, equivalently, that the angular
momentum remains constant), which is however not exactly the case for fully
synchronous satellites (Eq. 2.59). Although the averaged value of this torque is
small, its cumulative effect on the orbit, neglected in Eq. 2.70, is of the same
order of magnitude as the radial tides effects, and explains the discrepancy currently
observed in literature (e.g., Goldreich and Soter, 1966; Emelyanov, 2018; Boué and
Efroimsky, 2019).
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As discussed in Section 2.3.3, considering an averaged tidal torque equal to zero is
equivalent to assuming a pseudo-synchronous rotation, which is inconsistent with
the present rotational state of natural satellites population. However, this non-zero
tidal torque can be compensated by a small shift in the pointing direction of the
satellite’s long axis (e.g., Yoder and Peale, 1981; Rambaux and Castillo-Rogez, 2013).
This corresponds to a non-zero S̄22 value (Section 2.1.2), which affects the satellite’s
orbit in a very similar way as tidal dissipation (see Section 2.4.2. Looking at Eq.
2.22, a non-zero S̄22 coefficient indeed induces a non-cancelling, counter-balancing
torque (see complete derivation in Appendix B.3):

Γ
(S22)
i = 6Gm0mi

R2
i

a3
i

S22

[
1−

(
B+ 3

2

)
e2

]
, (2.110)

with B the total libration amplitude (Eq. 2.23).
To conclude, Eq. 2.71 accurately models the effect of satellite tides on the

semi-major axis evolution. However, the effective semi-major axis drift would be the
one obtained the zero tidal torque assumption (Eq. 2.70), since the contributions
of the small residual tidal torque (Eq. 2.59) and of the counter-balancing S̄22

torque 2.110 cancel out. This again highlights the sensitivity of the tidally driven
evolution of the satellite’s orbital elements to the moon’s rotation model (see detailed
discussion in Section 2.4.1).

INFLUENCE OF PHYSICAL LIBRATIONS

Recalling the definition of the satellite’s rotation angle in the presence of physical
librations (Eq. 2.24)

δ= nt −γ, (2.111)

the rotation rate ω= δ̇ becomes

ω= n − γ̇. (2.112)

Substituting the expression for the satellite’s physical libration (Eq. 2.35) finally yields

ω= n − A

e
ne cos M . (2.113)

Taking the time derivative of Eq. 2.29:

2ne cos M = θ̇−n +O(e3), (2.114)

the rotation rate of the satellite becomes

ω= n + A

2e

(
n − θ̇)

, (2.115)

and the tidal force for a fully synchronous satellite can eventually be re-written as

F (i )
i =−3Gm2

0k i
2R5

i

r 7
i

((
1+3∆t (0)

i

r̂i · ṙi

ri

)
r̂i −∆t (i )

i

(
1+ A

2e

)(
ni − θ̇i

))
, (2.116)
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where only the librational tides component is affected by the presence of the
once-per-orbit physical libration.

From this modified tidal force formulation, one can derive the physical libration’s
contribution to the amount of energy dissipated due to tides (the details of the
derivation can be found in Appendix B.2). This extra dissipated energy can be
expressed as a factor of the total energy dissipated in the absence of physical
libration (Eq. 2.117):

(∆E)γ =
(

4

7

A

e
+ A 2

7e2

)
(∆E)γ=0 . (2.117)

This implies that the physical libration also affects the expressions for the evolution
of the semi-major axis and eccentricity caused by satellite tides. Following the same
derivation approach as for the no physical libration case (see Appendix B.2 for
details), Eqs. 2.98 and 2.100 eventually become∣∣∣∣d a

d t

∣∣∣∣
γ

=
(
−57−24

A

e

)
m0

mi

k2

Q

R5

a4 ne2, (2.118)∣∣∣∣de

d t
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21

2
+ 9A

4e

)
m0

mi

k2

∆t

R5

a5 ne. (2.119)

This demonstrates that the physical libration enhances the effects of satellite tides
and is therefore critical to include in our models, as will be further discussed in
Section 2.4.2. It is moreover interesting to note that the above is in remarkable
agreement with the expression given in Efroimsky (2018), obtained using a much
more general formalism applicable to any linear rheology, which brings additional
confidence into the consistency of the modelling approach adopted in this chapter.

NEW INSIGHTS ON SATELLITE TIDES MODELLING

The analytical developments presented above, once combined together, give a
complete picture of satellite tide effects on the moons’ dynamics. This includes
a number of relations and insights not typically presented or fully appreciated in
literature. In light of existing inconsistencies (see Eqs. 2.70 and 2.71), and of
the critical importance of extracting reliable dissipation estimates from the moons’
orbits (see Section 1.1), it is actually crucial to shed light on the various assumptions
behind classical model formulations, and to question their applicability.

The models overview outlined in previous sections clearly highlights the very
intricate feedback between the moon’s rotation and the effect of satellite tides on
its own orbit. The pseudo-synchronous rotations described by Eqs. 2.60 and 2.61
not only depend on the assumed tidal model, but also follow from assuming that
the satellite tidal torque averages out over one orbital orbit. However, this is in
disagreement with the rotational states of most Solar System’s moons (including the
Galilean satellites), which are caught in fully synchronous rotations (ω= n). Realising
that neither Eqs. 2.60 or 2.61 hold, it automatically follows from Eq. 2.59 that
the averaged tidal torque is non-zero. In Eq. 2.109, we actually demonstrated that
neglecting the influence of this tidal torque is precisely what causes the discrepancy
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between the different semi-major axis rates given by Eqs. 2.70 and 2.71 (zero and
non-zero tidal torques, respectively). This is, however, not the only influential factor
to be considered. In practice, the pointing of the moon’s long-axis will be slightly
shifted (i.e., not exactly pointing to the central planet at pericentre) to generate the
necessary torque to counter-balance the one caused by satellite tides (Eq. 2.110).
Eq. 2.70 therefore describes the effective impact of satellite tides on the moon’s
semi-major axis, when accounting for the fact that the effect of the tidal torque,
while not zero, is balanced by that of a small S̄22 offset.

Our derivations evidenced the extreme sensitivity of the satellite’s librational
tides to the moon’s rotation. However, we proved that the result obtained by
Murray and Dermott (2000), quantifying the contribution of librational tides as 4/3
of that of radial tides, equally holds for pseudo- or fully-synchronous rotations.
This is an important finding, particularly promising for a rotation modelling-proof
implementation (see Section 2.4.1). Finally, we evaluated the contribution of the
main once-per-orbit physical libration to the total energy dissipated due to tides (Eq.
2.117). Re-deriving this result, first provided in Efroimsky (2018) in a more general
framework, validates the consistency of our models and derivation approach. It
furthermore allows us to quantify, for the first time, the effect of physical libration
on the evolution of the satellite’s semi-major axis and eccentricity (Eqs. 2.118 and
2.119). Implications for the robust estimation of tidal dissipation from its signature
in the moon’s dynamics will again be examined in Section 2.4.2.

2.3.5. ALTERNATIVE TIDAL MODELS

As introduced in Section 2.3.1, the tides raised on a body affect its shape, internal
density distribution, and thus its gravity field. Instead of the force formulation given
in Section 2.3.2, typically used for moons’ ephemerides applications, in which the
tidal potential (Eq. 2.40) is evaluated directly (Eq. 2.45), the effects of tides on the
dynamics can therefore also be modelled directly via the time variations they induce
on a body’s gravity field. Similar to the static gravity field of a rigid body (Eq. 2.8),
the gravitational potential raised by the tidal bulge (Eq. 2.39) can also be expanded
into a spherical harmonics expansion. The resulting time-varying coefficients can be
added as small variations of the static gravity coefficients. For the tides raised by
body k on body j , these gravity field variations are defined as (e.g., Petit et al., 2010)

∆C̄ j
nm − i∆S̄ j

nm = k j
nm

2n +1

mk

m j

(
RP

r j k

)n+1

P̄nm(sinφ j )e−i mλ j , (2.120)

with φ j and λ j the body-fixed latitude and longitude of the perturbing body j , and
r j k the distance between j and k.

The above directly allows us to model the effects of both planet and satellite
tides on the moon’s own orbit, as well as on the spacecraft’s dynamics via the tidal
variations of the moon’s gravity field. This explains why this modelling approach is
traditionally preferred in gravity field-focussed studies (e.g., Cappuccio et al., 2020a;
Magnanini et al., 2024). Eq. 2.120 nonetheless directly depends on the central
planet’s satellite-fixed latitude Φ j and longitude λ j . This reveals the same sensitivity



2

50 2. DYNAMICS OF NATURAL SATELLITES

to the consistency of the rotation and tidal models as the complete force formulation
(Eq. 2.53, see Section 2.3.4). This model thus suffers from the same caveat when
investigating the effect of the tides raised by a satellite on its own orbit, and is
therefore not perfectly suited for our ephemerides-focussed applications.

2.4. IMPLEMENTATION CONSIDERATIONS
We demonstrated in Section 2.3.4 how the effects of satellite tides on its own orbit,
and especially on its orbital expansion rate, are sensitive to the modelling of the
moon’s rotation. In the following, we discuss what this entails for the applicability
of the different tidal models presented in Section 2.3 when specifically focussing on
moons’ ephemerides.

2.4.1. MODELLING CONSISTENCY

As shown in Section 2.3, a small difference in the modelling of the moon’s rotation
of the order e2 (see Eq. 2.87 and subsequent derivations depending on α) still
strongly affects the secular evolution of its semi-major axis under the effects of
satellite tides (Eq. 2.98). Although this mismatch is very small for natural satellites
given their typically low eccentricity, it yields conflicting linear approximations for
the satellite’s semi-major axis rate (e.g., Emelyanov, 2018). For ephemerides-related
studies, focussed on the accurate reconstruction of the moons’ dynamics and orbital
evolution, such inconsistencies should therefore be avoided, as they may impact the
tidal dissipation estimates. It is however important to note that this only holds for
satellite tides: the effects of the tides raised on the central planet, on the other hand,
do not strongly depend on the moon’s rotation model (see Section 2.3.2).

IMPLICATIONS FOR CLASSICAL ROTATION MODELLING

The synchronous rotation model with superimposed librations introduced in Section
2.2.2 is typically applied when modelling the moons’ dynamics. However, common
implementations of said model heavily rely on expansions truncated at O(e2). First,
as shown in Eq. 2.23, the total libration angle is usually expressed as a function
of the eccentric anomaly instead of the mean anomaly, taking advantage of the
following conic expansion

e sin M = e sinE +O(e2) = r ·v

r×v
+O(e2). (2.121)

This trick offers a very elegant implementation solution: it avoids the need to
determine the satellite’s pointing direction at each instant of the propagation, which
can instead directly be retrieved from its cartesian state. Despite its appeal, the
expansion truncation at O(e2) on which this formulation relies nonetheless directly
conflicts with the model consistency requirements discussed above. A second,
alternative approach consists in defining the moon’s orientation by determining the
direction to the empty focus. As shown in Section 2.2.2, however, the satellite’s
long-axis does not exactly point towards the empty focus, and this simplification
again results from a O(e2) approximation (see Eq. 2.28).
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In addition to these eccentricity truncation issues, determining the orientation
of the satellite’s long-axis at each instant furthermore raises another challenge. If
computed from the instantaneous state (whether in cartesian or Keplerian elements),
the moon’s rotation will follow all short-period osculations of the orbit (e.g., Dirkx
et al., 2016; Lainey et al., 2019). This behaviour is, however, not physical: inertia in
the satellite’s rotation indeed prevents it from instantaneously matching short-lived
orbital variations (i.e., well below the proper mode, Rambaux et al., 2012; Martinez
and Dirkx, 2024), which typically average out over time. Several approaches
are possible to try bypassing this complication, such as computing an averaged
position for the empty focus (Dirkx et al., 2016) or using geometric elements in
place of regular Keplerian ones (Lainey et al., 2019). Leaving aside the increase
in computational load and model complexity required by the averaged empty
focus strategy, the applicability of both methods anyway strongly depends on how
perturbed the orbit is. This issue is nevertheless of critical importance given the
extreme sensitivity of the satellite tides to the perfect consistency of our orbital and
rotational models.

WHICH MODEL FOR SATELLITE TIDES ON THE MOONS’ ORBITS?

The complications mentioned above regarding the implementation of the satellite’s
orientation pose important consistency issues for all satellite tide models relying on
an explicit formulation of the moon’s rotation. In the complete tidal force formulation
(Eq. 2.53), the term proportional to ∆t (θ̇−ω)t̂ introduces this dependency to
the satellite’s rotation rate, still present in the resulting secular evolution of the
semi-major axis (Eq. 2.98). Similarly, modelling tidal effects as time variations of
the gravity field also directly involves the moon’s rotation rate, via the body-fixed
longitude λ of the tide-raising body (Eq. 2.120). Neither of these rotation-sensitive
models is therefore perfectly suited to model the effects of tides on the satellite’s
orbit, as long as the inconsistencies between the tidal and rotational models are not
resolved. This could be achieved with a fully coupled model, in which both the
satellite’s translational and rotational dynamics are concurrently integrated together
with its rheology-dependent tidal deformations (Section 2.2.1), following a similar
approach as in Boué et al. (2016). However, the overhead in model complexity and
computational load that such an approach would imply (especially for multi-layered
interiors of icy satellites) has so far prevented its implementation for natural
satellites’ ephemerides determination purposes.

The methodology presented in Section 2.3.2, however, offers a promising alternative
to the explicit incorporation of the rotational tides in the tidal force. Accounting
for the contribution of the moon’s rotation (i.e., librational tides) as 4/3 of the tidal
energy dissipated due to radial tides indeed circumvents this modelling consistency
issue. In Section 2.3.4, we moreover demonstrated that this approximation is valid
irrespective of the exact rotational model adopted for the moon, as long as its
rotation rate can be expressed in the form given by Eq. 2.87. This above holds
whether one assumes a pseudo or fully synchronous rotation, and ensures that the
satellite tides induce the correct secular evolution of the moon’s semi-major axis
(see Section 2.3.4). In addition to guaranteeing the consistency of our tidal model,
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this formulation moreover offers an easier implementation by removing the need to
determine the exact pointing direction of the moon’s long axis.

This approach is widely applied in present ephemerides analyses (e.g., Lainey
et al., 2007, 2009, 2012, 2019, 2020), as it ensures that the proper dissipation value
can be extracted from the moon’s orbit. In the rest of this dissertation, we therefore
systematically make use of the implicit modelling of the librational tides, using the
force formulation provided in Eq. 2.54 for satellite tides (see Chapters 4, 5, and
8). This choice was motivated by our focus on natural satellites’ ephemerides, as it
represents the most robust and reliable strategy to model the effect of satellite tides
on the moon’s own orbit in a fully consistent manner. Nonetheless, while perfectly
suited for the moons’ dynamics, this approach does not model the tidal effects
sensed by a orbiting spacecraft due to the tide-induced variations of a satellite’s
gravity field. It would require modelling said gravity variations (e.g., following
the methodology outlined in Section 2.3.5), again raising possible inconsistencies
between the modelling of tides for the moons and for the spacecraft (see Chapters 5
and 8, and extended discussion in Section 9.1.2).

2.4.2. ESTIMATION CHALLENGES

As discussed in Section 1.1, improving the ephemeris solution of a given natural
satellite is particularly critical to refine our estimate of its present orbital migration.
This expansion rate is, as demonstrated in Section 2.3.4, directly related to the
amount of energy dissipated due to tides, both in the central planet and in the
satellite itself. A better characterisation of tidal dissipation in the system is thus
essential to our understanding of both its long-term orbital evolution, and of the
current thermal state of the moons’ interiors (e.g., Lainey et al., 2009, 2012). For the
above reasons, our ability to extract tidal dissipation parameters from the moons’
present-day dynamics is of key importance.

These parameters are mostly retrieved from the linear variation that tidal
dissipation induces on the moon’s semi-major axis (Eq. 2.98). However, other effects
- either enhancing the effect of tides or affecting the moon’s orbit in a similar way
- might affect the estimation if not properly accounted for. In particular, special
attention should be paid to the modelling of librations and of a potential non-zero
S̄22 coefficient (see Section 2.3.4).

ONCE-PER-ORBIT PHYSICAL LIBRATION

Eq. 2.117 shows that the main once-per-orbit physical libration (Eq. 2.35) enhances
the effects of the satellite’s librational tides (Efroimsky, 2018). Depending on the
ratio between the libration amplitude A and eccentricity e3, the physical libration
can account for a significant fraction of the observed effects of satellite tides on the
moon’s orbit. It is therefore essential to include this once-per-orbit libration in our
models, as the estimation would otherwise provide an overestimated, effective value
for the satellite’s k2/Q. The approximations for the secular evolution of the moon’s

3about 0.2 for Io, assuming a libration amplitude of 9 ·10−4 rad (Van Hoolst et al., 2020).
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semi-major axis and eccentricity can moreover be adapted accordingly to account
for these effects (Eq. 2.118 and 2.119, respectively).

It should however be noted that, while the physical libration γ strengthens the
effects of tidal dissipation in the satellite, it is not the only way in which it influences
the moon’s dynamics. Keeping in mind that this libration affects the satellite-fixed
longitude λ of the central planet, it therefore has an impact on the effect of the
satellite’s gravitational potential on its own orbit. In particular, considering the
acceleration exerted by the degree two potential (Eq. 2.14), it becomes apparent that
the main effect of the physical libration will be very similar to the one caused by
the C̄20 and C̄22 coefficients. This entails that the libration signature will not be too
strongly correlated to that of tidal dissipation. It should therefore be possible to
extract the amplitude A from the spacecraft and/or moons’ dynamics (see more
detailed discussion on the estimation of the moons’ librations in Section 10.1.2) and
correct the estimated value of k2/Q accordingly (using Eq. 2.118). Provided that the
physical libration is properly accounted for in our models, it should thus not impede
the proper estimation of tidal dissipation parameters.

NON-ZERO S̄22 COEFFICIENT

The problem posed by the influence of a non-zero S̄22 value is, however, of a
different nature. Looking at Eq. 2.14, the only radial effect of S̄22 is the one induced
by the (small) optical and physical librations, causing the satellite-fixed longitude
of the central planet to slightly depart from zero. These effects nonetheless almost
exactly cancel over one orbital period. The acceleration due to S̄22 mostly acts in
the tangential direction, similar to the tidal acceleration (Eq. 2.53). While the S̄22 is
typically very small (see Section 2.1.2), any small departure from an exact zero value
causes a similar drift in semi-major axis and eccentricity as induced by satellite tides
(see Appendix B.3). Complete derivations for the effect of a non zero S̄22 value on
the satellite’s semi-major axis and eccentricity are provided in Appendix B.3.

Simultaneously extracting tidal dissipation parameters and a non-zero S̄22 from
the moon’s orbit is therefore extremely challenging, their very comparable signatures
being difficult to disentangle. One possible approach would be to force the S̄22 value
to be exactly zero in our models. This, however, might not be a physically realistic
assumption: a small non-zero S̄22 is indeed expected to counter-balance the tidal
torque over one orbit (see discussion in Section 2.3.4). An alternative is to estimate
a parameter accounting for the combined effect of tides and S̄22. This strategy
is actually equivalent to considering the effective semi-major axis and eccentricity
evolution for an averaged tidal torque equal to zero (see Section 2.3.4).

These considerations again pertain to the consistent modelling of tides, gravity, and
rotation to accurately model their combined effects on the satellite’s dynamics. The
specific S̄22 issue discussed above was of limited importance for work performed in
this dissertation, which mostly focussed on simulations: the dynamical environment
can indeed be made perfectly consistent with the reality described by (simulated)
observations. However, it will be a critical aspect to consider in the future, when
proceeding to real data analyses of JUICE and Europa Clipper (see discussions in
Chapter 9). Investigating whether the static S̄22 value can be estimated from its
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effect on the spacecraft’s dynamics, as a possible avenue for isolating it from the
tidal dissipation signature, will be particularly interesting.



3
MOONS EPHEMERIDES - AN

OVERVIEW

Since the discovery of the Galilean moons in the 17th century, refining the
ephemerides of natural satellites has been a powerful means to understand the
physical effects affecting celestial dynamics, prepare for dedicated in-situ spacecraft
missions (e.g., Galileo, Cassini, JUICE, Europa Clipper), and even characterise the
satellites’ present orbital evolution and thermal state (Lainey et al., 2009, 2012, 2020,
and discussion in Section 1.1).

This chapter presents an overview of the fitting process involved in the
determination of natural satellites’ ephemerides, as well as a top-level description
of the different observations used to this end. In particular, we distinguish
between astrometry observations, on which current solutions mostly rely, and radio
science tracking measurements from in-situ spacecraft. For the latter, we introduce
the different strategies currently applied to incorporate radio science data in the
inversion, anticipating the comparative methodology analysis conducted in Chapter
4. We choose to give this chapter a strong focus on the Galilean system as the
main object of study of the work presented in this dissertation. Nonetheless, the
fitting methods, observation types and properties, and general considerations to be
presented in the following are not-system dependent, and equally relevant for the
ephemerides of other natural satellites.

3.1. HISTORICAL BACKGROUND FOR THE GALILEAN SYSTEM
Despite numerous observations following Galileo Galilei’s over the 17th and 18th

centuries, the first dynamical models for the Galilean system had to wait until the
end of the 18th century, when different theories were then successively proposed by
Bailly, Lagrange, and Laplace. The latter introduced the famous 1:2:4 MMR between
Io, Europa, and Ganymede, now well-known as the Laplace resonance (Section 1.2.1).
Following these very preliminary models, the first complete analytical theory of the
Galilean moons’ dynamics was proposed by Sampson (1921), later expanded and
revisited in Lieske’s work exploiting the computational power brought by modern-day
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computers (e.g., Lieske, 1977). Lieske’s first Galilean ephemerides (labelled as E1)
were successively updated to prepare for the Voyager and Galileo missions (E2 and
E4 versions, respectively, Lieske 1980), and upgraded post-missions (into E3 and E5,
respectively) (Lieske, 1998).

Lieske’s extensive and remarkable work nevertheless still relied on analytical
formulations which soon could not be reconciled with the increasing accuracy of the
observations. The next ground-breaking advancement came in the form of numerical
solutions, which were first published in the Galileo mission era (e.g., Murrow
and Jacobson, 1988; Jacobson et al., 2000). The simple model originally used to
generate these solutions (planet-satellites gravitational interactions, excluding tides)
was progressively upgraded by Lainey et al. (2004b) and subsequent publications
from the same author. The parallel improvement of our dynamical models and
quality of the observations (both ground- and space-based) has led to the continuous
refinement of the natural satellites’ ephemerides, both for the Galilean moons
and other moon systems (e.g., Lainey et al., 2004a, 2007, 2009, 2012, 2017, 2020;
Jacobson, 2010, 2014, 2022). At the dawn of the JUICE and Europa Clipper missions,
the boundaries of current solutions for the Galilean satellites are about to get
pushed back to unprecedented accuracy levels, challenging once again the quality
of our present dynamical models (see later discussions in Chapters 4 and 5). To
investigate possible improvement avenues for the natural satellites’ ephemerides,
and in particular for the Galilean moons in the JUICE-Europa Clipper context, it is
essential to first review the present-day solutions and already-available data sets.

3.2. FITTING A DYNAMICAL MODEL TO OBSERVATIONS
The determination of ephemerides solutions, whether for natural satellites or other
celestial bodies, requires fitting a dynamical model to a set of available observations
by adjusting a number of parameters (referred to as estimated parameters).
The principle is identical to spacecraft orbit determination (see e.g., Gill and
Montenbruck, 2013; Milani and Gronchi, 2010), but involves different dynamics and
observations, and poses different challenges. In the following, we briefly describe
the estimation process (Section 3.2.1), before discussing data weighting aspects in
Section 3.2.2.

3.2.1. INVERSION PRINCIPLE

The ephemerides fitting process typically involves the estimation of an initial state
for all moons under consideration, denoted y0 and defined at a reference epoch t0,
as well as related physical parameters, p .

LEAST-SQUARES FIT

To estimate these parameters from a given observation set, the most commonly
used inversion method is a linearised least-squares approach, which maps the effect
of a (small) variation in the parameter vector, ∆q (q combines both initial state
and physical parameters) into the resulting observation values. Minimising the
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observation residuals (in a weighted least squares sense) is done in an iterative
manner, by computing an update in the estimated parameter values at each iteration
i (e.g., Gill and Montenbruck, 2013):

∆qi =
(

H T
i W Hi

)−1
H T

i W∆hi , (3.1)

where Hi and W respectively refer to the observation partial (computed at iteration
i ) and weight matrices, the latter being further discussed in Section 3.2.2. ∆hi

are the observation residuals to be minimised through the successive least-squares
iterations. They are defined as the differences between the real observations used in
the least-squares fit, hobs, and those computed with our models from the parameter
values qi at iteration i :

∆hi = hi
(
qi

)−hobs. (3.2)

It should be noted that Eq. 3.1 directly involves the so-called covariance matrix of
the estimated parameters, P , defined as follows:

P = (
H T W H

)−1
. (3.3)

P provides a statistical description of the quality of the estimated solution, based
on the expected precision of the observations (via W , see more detail in Section
3.2.2) and on the sensitivity of said observations to the estimated parameters (via H ,
see Eq. 3.7). In particular, the diagonal elements of P give the variance of each
estimated parameter, while the off-diagonal elements are the covariances of each
combination of two parameters (and thus provide the parameters’ correlations):

P =


σ2

q1
ρ12σq1σq2 . . . ρ1nσq1σqn

ρ12σq2σq1 σ2
q2

· · · ρ2nσq2σqn

. . . . . . . . . . . .
ρ1nσqnσq1 ρ2nσq2σqn . . . σ2

qn

 , (3.4)

where σqi and ρi j respectively represent the formal error (i.e., standard deviation) of
parameter qi and its correlation with parameter q j . The realism of the estimation
quality’s description given by P depends on the quality of both our dynamical
and observational models. Provided that these models are perfect, the formal
uncertainties and correlations are representative of the true estimation errors that
the iterative least-squares process (Eq. 3.1) eventually converges to (i.e., differences
between the parameters’ true and estimated values). It is essential to keep in
mind that, in the absence of additional data sets that could be used to validate
the solution1, the formal errors are our unique means to assess the quality of our
parameter estimates. We indeed do not know the parameters’ true values, and the
realism of the covariance matrix is therefore of critical importance. More detailed
discussions on possible modelling issues causing the formal and true errors to

1see extended discussion in Chapter 5 on the essential role of such independent data sets for
JUICE-Europa Clipper radio science ephemerides determination.
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deviate can be found in Chapters 4, 5, and 8, when considering the limitations of
the covariance description for our ephemerides analyses.

It must be noted that Eqs. 3.1 and 3.3 correspond to the basic formulation of
a weighted linearised least-squares inversion, and do not account for the possible
consideration of a priori knowledge or consider parameters. The former constrains
the covariance of certain parameters based on existing estimates (i.e., based on
prior measurements and/or analyses). This is done by incorporating the so-called
a priori covariance matrix, P0, modifying the covariance matrix as follows (e.g., Gill
and Montenbruck, 2013)2:

P = (
P−1

0 +H T
i W Hi

)−1
. (3.5)

The so-called consider parameters, on the other hand, designate parameters which
are not directly estimated, but whose uncertainties should still be accounted for
in the fitting process, as they might affect the determination of other parameters.
When including such consider parameters, the covariance definition becomes (Gill
and Montenbruck, 2013)3:

Pc = P + (
PH TW

)(
Hc Pc H T

c

)(
PH TW

)T
, (3.6)

where P is the covariance matrix given by Eq. 3.3 (or Eq. 3.5 if a priori information
is included). Hc and Pc respectively denote the observation partials with respect
to the consider parameters, and the covariance matrix of these parameters. P0

and Pc are built identically to P (Eq. 3.3): diagonal elements are the a priori
or consider parameters’ variances, respectively, while off-diagonal elements contain
the corresponding covariances. Both the a priori and consider covariances will be
discussed in more detail when applied to our analyses in Chapters 4 and 5.

OBSERVATION PARTIALS

In Eq. 3.1, the observation partials matrix, Hi , relates the observation vector h to
the current parameter values qi , as follows:

Hi = Çh

Çqi
. (3.7)

At this point, it is useful to introduce a distinction between dynamical and
observational parameters, denoted by pdyn and pobs, respectively, and both
concatenated in the physical parameter vector p . The full parameter vector q can
thus be decomposed as

q = [
y0 ; pdyn ; pobs

]T
, (3.8)

with the parameters pobs directly affecting the observation values, and not the
dynamics of the natural satellites (e.g., observation biases). For each single

2The corresponding modified formulation for the least-squares equation (Eq. 3.1) can also be found
in Gill and Montenbruck (2013) and is not reported here for the sake of brevity.

3see footnote 2
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observation h contained in the vector h and acquired at time t , its first order
sensitivity to a variation in the estimated parameters can therefore be expanded as
follows:

Çh(t )

Çqi
=

[
Çh(t )
Çy(t )

Çy(t )
Çy0,i

; Çh(t )
Çy(t )

Çy(t )
Çpdyn,i

; Çh(t )
Çpobs,i

]
. (3.9)

Both terms highlighted in green in the right-hand side of Eq. 3.9 directly follow
from the adopted dynamical model, which after integration give the state vector y at
any time t as a function of the initial state and dynamical model parameters:

y(t ) =F (y0, pdyn, t ). (3.10)

For the moons, the dynamical function F is given by the equations of motion
provided in Section 2.1.1, relying on the dynamical models presented over the entire
Chapter 2. On the other hand, the terms in blue in Eq. 3.9 are related to the
observation models (i.e., how a given observable relates to the actual state of the
body under consideration):

h(t ) =H
(

y(t ), pobs
)

. (3.11)

These observation models will be presented in Section 3.3, when introducing the
relevant astrometric and radio science observations used in moons’ ephemerides.

3.2.2. DATA WEIGHTING

The matrix W , introduced in Eq. 3.1, is used to apply different weights to each
observation. These weight values are supposed to provide a statistical description
of the random errors affecting the observations: the inverse of W can actually
be defined as the observations covariance matrix, as opposed to the parameters’
covariance defined in Eq. 3.3. It must be noted that only random errors are
accounted for, while systematic ones are handled in a different way. The latter do
not affect the precision of the measurements, but their accuracy. They can therefore
be directly incorporated as biases to the observation models (Eq. 3.11), offering the
possibility to estimate them along with other parameters.

Before diving into the construction of the weight matrix, we will first examine its
role in the fitting process and its influence on the estimation solution.

A CRITICAL ROLE IN THE WEIGHTED LEAST-SQUARES SOLUTION

Natural satellites’ ephemerides are based on many diverse observation techniques
and data sets, all affected by different error sources and exhibiting wildly different
precision levels (see more detail in Section 3.3). To obtain a statistically balanced
solution, it is therefore essential to adjust the different observations’ respective
contribution to the least-squares solution based on their supposed quality. As
mentioned in Section 3.2.1, in an ideal scenario where all observational and
dynamical models (Eqs. 3.10 and 3.11, respectively) are perfect, a balanced solution
would be characterised by:
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1. formal uncertainties adequately describing the true estimation errors;

2. observation residuals ∆h (after the least-squares fit has converged) matching
the true statistical properties of the observations (mean, standard deviation,
etc.).

Putting aside the impact of possible mismodelling issues (see Section 3.2.1 and
more detail in Chapters 4, 5, and 8), failing to design an appropriate weight matrix
would greatly affect the consistency of the estimation solution described by the
two above conditions. First, applying either over- or underestimated weights to
certain observations would respectively give them too much or too little importance
in the fit. In case of under-weighting, very precise measurements might show
large residuals. On the other hand, the solution may get pulled towards poor
quality data points if over-weighted. Second, the formal errors and correlations
- directly dependent on the observations’ weights (Eq. 3.3) - would not offer a
realistic representation of the quality of the estimation solution. Adopting a suitable
weighting strategy is thus not only critical to obtain a balanced estimation, but also
to ensure that the solution can be interpreted in a statistically meaningful way.

BUILDING THE WEIGHT MATRIX

Assuming N perfectly independent observations, with random errors adequately
described by white noise, W is often expressed as a block diagonal matrix:

W =


P−1

obs,1 0n1×n2 . . . 0n1×ni . . . 0n1×nN

0n2×n1 P−1
obs,2 . . . 0n2×ni . . . 0n2×nN

. . . . . . . . . . . . . . . . . .
0nN×n1 0nN×n2 . . . 0nN×ni . . . P−1

obs,N

 , (3.12)

with Pobs,i the covariance of a single observation i of size ni
4. Pobs,i is defined

identically as the estimated parameters covariance in Eq. 3.3: the diagonal elements
are the variances of the observation’s components, while off-diagonal elements
account for possible intra-observation correlations. What is typically referred to as
the observation’s weight in the literature is the inverse of its variance: wi = 1/σ2

i .
Here and in the following, it is critical to keep in mind the distinction

between inter-observation correlations (i.e., in-between two measurements), and
intra-observation correlations (i.e., in-between the different components of a single
observation, in case the observable size if larger than one). Eq. 3.12 assumes that
all observations are perfectly independent from one another: all off block diagonal
elements being set to zero reflects the absence of inter-observation correlations. This
block diagonal weight matrix can, however, account for possible intra-observation
correlations. The latter can for instance arise between the two components of an
object’s angular position measurement in the sky (see astrometric observations in
Section 3.3.1), or between the three components of a spacecraft’s measured position
(see normal points concept in Section 3.4.1).

4The size of single observation is possibly larger than one if it contains several components/coordinates,
as for e.g., angular measurements, see Section 3.3.1
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Defining a realistic covariance matrix, Pobs,i for each observation i is in practice
very challenging. Even when indications are provided by e.g., the observer or
calibration tests, we indeed do not exactly know how precise a given observation is.
Starting from the pre-supposed accuracy σk,0 of a given observation subset k, the
weight σk used in the inversion can be refined iteratively to be consistent with either
the RMS (root mean squares) or standard deviation of the residuals obtained for this
particular observation set k (e.g., Jacobson et al., 2000; Lainey et al., 2007, 2019).

Furthermore, assuming zero inter-observation correlations does not systematically
hold for all observation subsets, especially if the measurement cadence is high.
Similar observations acquired over a very short period of time can indeed not
be considered as independent, due to time-correlations in both the information
content and the errors affecting the measurements. The first issue is for instance
encountered in the Cassini space astrometry data set, in which several observations
are sometimes acquired within 10 minutes (very high observation cadence for
astrometry standards), with some overlap in their information content (Lainey et al.,
2019). Correlations between subsequent radio science measurements, on the other
hand, mostly originate from their error sources5. In particular, the media propagation
delays affecting the radio science observables (see Section 3.3.2) depend on the
electron density in both the interplanetary plasma and the Earth’s atmosphere.
Depending on 1) the electron content temporal and spatial variability, and 2)
the measurements’ cadence, part of the noise may be common over subsequent
observations (Kuchynka et al., 2014). In practice, the dual-frequency (X/Ka-band)
radio-link will, however, greatly mitigate this issue for the JUICE spacecraft, by
strongly reducing the dispersive noise caused by media propagation (e.g., Mariotti
and Tortora, 2013).

To circumvent the observation correlation issues mentioned above, a common
strategy is de-weigh the observations by a factor

p
N (N being the number of

observations), essentially providing an averaged data point at the accuracy level
initially expected for the whole subset of observations (see e.g., Lainey et al., 2019, for
an example in space-based astrometry). These averaged observations are sometimes
referred to as normal points (e.g., Abbot et al., 1973; Pitjeva, 2009) and are commonly
used when processing space-based observations (either astrometry or radio science),
typically characterised by large data volumes collected over short periods of time.

3.3. OBSERVATIONS
This section provides an overview of the various observations which can and have
been used in natural satellites’ ephemerides determination. We start with the
astrometric data, on which ephemerides solutions have historically mostly relied. We
then describe radio science measurements with a strong focus on those expected
from JUICE and Europa Clipper. For both the astrometry and radio science data
sets, we will present the different types of observations and their corresponding

5Unlike in the natural satellites astrometry case, the rapidly changing dynamics of an interplanetary
spacecraft and the very high radio science accuracy limit the risk of information content overlap
between subsequent measurements.
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observables, and provide an indication of their typical accuracy. To ensure
consistency in our formulations, we first need to introduce some common notations
and definitions, including the light-time effect which equally affects astrometry and
radio science measurements.

LIGHT-TIME DEFINITION

Here and in the rest of this section, the subscript and/or superscript t refers
to the signal transmission (one-way radio science, see Section 3.3.2) or light
emission (astrometry), while r designates its reception. The light-time equation
is used to (iteratively) determine the time interval, ρ, elapsed between the
transmission/emission at time tt and the reception at time tr :

ρ = tr − tt =
|rr (tr )− rt (tt )|

c
+∑

i
δti , (3.13)

where rr (tr ) and rt (tt ) represent the receiver and transmitter/emitter position
vectors at time tr and tt , respectively, in an inertial frame. The light-time corrections
δti account for medium propagation delays and relativistic effects, as well as, for
radiometric measurements, instrumental delays. For the sake of conciseness, we
further simplify the notations by defining

r r
t = rr (tr )− rt (tt ) (3.14)

as the relative position of the receiver at reception time tr with respect to the
transmitter/emitter at time tt .

3.3.1. ASTROMETRY

As mentioned in Section 1.3.1 and to be further discussed in Section 3.4, astrometry
is the main contributor to present-day ephemerides for natural satellites, including
the Galilean moons. Before investigating the ephemerides improvement achievable
with JUICE and Europa Clipper radio science, which is a core goal of this
dissertation, it is therefore crucial to first consider the diversity and quality of the
existing astrometry data set. This is also essential to explore possible radio science
– astrometry synergies, as will be done in Chapters 7 and 8. We purposely limit
the scope of the following section to a top-level overview of the different types of
astrometric measurements, and of their accuracy levels. Specific details on how such
observations are used in our analyses can nonetheless be found in Chapter 8, which
presents these data sets in light of their potential synergies with JUICE and Europa
Clipper radio science.

OBSERVATION TYPES AND ERROR SOURCES

The main types of astrometric observations traditionally used in present-day natural
satellites’ ephemerides were already briefly introduced in Section 1.3.1. Adopting
the same classification as the one used in Chapter 8, we distinguish between the
following categories: classical astrometry, mutual phenomena, mutual approxima-
tions, space-based astrometry, and stellar occultations. Radar measurements, which
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are technically not defined as ‘astrometric’ observations, are also considered. The
first two observation types refer to ‘old’ techniques which formed the bulk of the
data available for natural satellites ephemerides (e.g., Lainey et al., 2004a) before
the advent of planetary missions and the recent development of new observation
methods (e.g., stellar occultations and mutual approximations).

Classical astrometry
Classical astrometry provides either absolute or relative measurements of the
satellites’ positions, most commonly from photographic plates or CCD imaging. The
progressive improvement of the available stellar catalogues, recently spectacularly
boosted by the Gaia mission (Brown et al., 2018, 2021), gradually brought the
observation accuracy from a few hundreds mas (milli-arcseconds) to the 100 mas
level.

Absolute position measurements typically use the target’s right ascension, α, and
declination, δ, as observables (i.e., the target’s longitude and latitude on the celestial
sphere):

hα,δ =
(
αt

(
r r

t

)
δt

(
r r

t

)) . (3.15)

Relative position measurements, on the other hand, express the position coordinates
of a target t with respect to another object used as reference, and designated by the
subscript 0 in the following. Such relative coordinates can be expressed in multiple
ways. Common relative position observables are the differential right ascension
and declination coordinates, defined as the difference between the target’s and the
reference’s absolute right ascensions and declinations:

h∆α,∆δ =
(
∆αt

0
∆δt

0

)
=

(
αt

(
r r

t

)−α0
(
r r

0

)
δt

(
r r

t

)−δ0
(
r r

0

)) . (3.16)

Another common relative position representation is given by the tangential
coordinates X and Y , obtained by a gnomonic projection of the differential right
ascension and declination onto the celestial sphere. To second order, they are
defined as (Lainey, 2002)

hX ,Y =
(

X t
0

Y t
0

)
=

(
∆αt

0 cosδ0 −∆αt
0 ∆δt

0 sinδ0

∆δt
0 + 1

2

(
∆αt

0

)2 sinδ0 cosδ0

)
. (3.17)

These coordinates are sometimes expressed in an alternative way, using the
separation s (i.e., apparent distance of the target to the reference point/object) and
position angle p, measured with respect to the celestial North direction.

Mutual phenomena
Mutual phenomena (or mutual events) designate eclipses or occultations of a natural
satellite by another, as observed from Earth. These observations therefore require a
particular geometry, only attained when the central planet crosses the ecliptic (every
six years for the Jovian system, Section 1.3.1). Unfortunately, this geometry constraint
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(a) (b) (c)

(d) (e)

Figure 3.1.: Schematic representation of different types of astrometric observations
used for ephemerides purposes. a: classical astrometry (1: absolute,
2: relative), b: mutual events (1: no event, 2: eclipse, 3: occultation),
c: space-based astrometry, d: stellar occultation (1: no occultation, 2:
occultation), e: radar. Explanations for the different observables can be
found in the text.

severely limits the number of these observations, which can provide more accurate
position measurements than what classical astrometry typically achieves (Arlot and
Emelyanov, 2019).

Due to the nature of the measurements, the observation of a mutual event, unlike
classical astrometry, can only constrain the relative position of the two moons
involved in the phenomenon. What is primarily measured is the light-curve of
the occulted or eclipsed satellite, with the received photometric flux reaching a
minimum at the moment of the occultation/eclipse. The timing of the event, which
can be extracted from the light-curve, represents the prime observable of a mutual
event. However, in the absence of a complete analytical framework to include timing
observables in the state estimation (i.e., missing formulation for the observation
partials - in orange - in Eq. 3.9), directly exploiting this quantity is challenging
(see the discussion on mutual approximations below, and the subsequent analysis
in Chapter 6). Nonetheless, knowing the geometry required for the mutual event
to occur, one can instead derive information about the relative position of the
two satellites at the (measured) time of the occultation/eclipse. Mutual events are
therefore typically reported using differential right ascension and declination (Eq.
3.16) or tangential coordinates (Eq. 3.17) as observables.

For eclipse observations, it must moreover be noted that the light-time computation
given by Eq. 3.13 needs to be slightly modified (Noyelles et al., 2003; Lainey et al.,
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2004a): the light-time from the eclipsing satellite should indeed use as reference the
moment where the eclipsed satellite enters the penumbra, such that

ρeclipsing = ρeclipsed −∆teclipsing−eclipsed, (3.18)

where ∆teclipsing−eclipsed represents the time that light takes to travel from the
eclipsing satellite to the eclipsed one.

Mutual approximations
This recently proposed observation concept (Morgado et al., 2016) was already
briefly introduced in Section 1.3.1. By considering pseudo mutual events (i.e., close
encounter of two satellites in the sky rather than the perfect alignment required
by eclipses and occultations), such a technique achieves similar accuracy levels as
mutual events, without being bounded by such strict geometry requirements.

However, the most appropriate observable to incorporate such observations in the
ephemerides fitting process remains ambiguous (Emelyanov, 2017; Morgado et al.,
2019b). The time at which the apparent distance between two satellites reaches
a minimum, referred to as central instant tc , should theoretically be the primary
observable. Nonetheless, the present absence in literature of an analytical formulation
for the central instant observation partials (orange terms in Eq. 3.9) has so far
motivated the use of either numerical partials or simplified alternative observations
(Emelyanov, 2017). This gap is actually addressed in Chapter 6, which proposes
an analytical framework to directly use central instants in the moons’ state esti-
mation and compares the respective performances of the different observable options.

Space-based astrometry
In the planetary missions era, space-based astrometry (i.e., images of natural
satellites taken from a spacecraft camera) started playing a key role in ephemerides
solutions (e.g., Lieske, 1998; Jacobson et al., 2000; Lainey et al., 2017, 2019).
Differences with respect to ground-based astrometry are multiple: the geometry of
space-based observations is indeed different from the one that can be achieved
from Earth, and the ratio between the data volume and timespan of the data set is
typically much larger than for ground-based astrometry (see discussion on related
data weighting aspects in Section 3.2.2). The much smaller distance separating
the target from the receiver moreover implies that a given angular separation error
translates into a significantly lower effective position uncertainty. However, other
error sources specific to space-based observations still limit the accuracy of space
imaging measurements (see discussion at the end of this section).

In classical astrometry, the observed object typically appears as a single point
on the photographic plate or CCD image. For space astrometry, on the other
hand, the (much) smaller target-observer distance implies that the target is usually
observed as an extended object whose position cannot simply be extracted as that
of a single bright point on the image. It first requires determining the position of
the photometric centre through a limb fitting process accounting for the object’s
extended shape. The resulting position measurements for the target’s estimated
centre are then given in pixel coordinates, namely s and l (for sample and line
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coordinates, respectively). Converting them to absolute positions requires accounting
for the camera’s properties, the position of the target with respect to the spacecraft,
and the position of the spacecraft itself.

Radar
Although very different in nature, and not proper astrometric observations per se,
radar ranging measurements have also been included in recent ephemerides. These
measurements rely on the reflection of a circularly polarised signal (transmitted by
a ground-based radar facility) on the surface of the targeted object (here a natural
satellite), and the subsequent reception of the reflected signal by the same radar
telescope on Earth. By measuring the round-trip light time, one can infer the
distance separating the target from the receiver:

r t
r = c (tt − tr )

2
. (3.19)

The accuracy of the light time measurement directly translates into a ranging error,
which for the Galilean satellites could achieve levels only surpassed by stellar
occultations (typically around a few tens of kilometres, Brozović et al. 2020a). Given
how distant the natural satellites of the outer Solar System are, Earth-based radar
measurements are however only achievable with extremely powerful radar telescopes.
With the recent loss of the Arecibo facility, the potential of this ranging technique
therefore suffered a severe setback.

Stellar occultations
The observation principle of a stellar occultation is identical to its mutual event
equivalent, but occurs between a star and a moon, rather than between two moons.
More precisely, the occultation of a sufficiently bright star by a moving satellite is
recorded and, knowing the position of the star, translated into an absolute angular
position measurement (typically using absolute right ascension and declination
observables, Eq. 3.15). This is an important distinction with respect to mutual
events, which provide a relative position constraint: in the latter case, the position
of the reference object is another moon, whose position is typically also to be
refined in the ephemerides fitting process. Just as for mutual events, it should
moroever be noted that stellar occultations are photometric observations, based
on the recording of the light curve of the occulted star. The primary observable
should therefore again be the timing of the occultation, nevertheless converted into
a position measurement for the same reasons as those mentioned for mutual events
(see previous discussion).

As already mentioned in Section 1.3.1, Gaia’s recent improvements of the stellar
catalogues have brought the accuracy attainable with stellar occultations down to the
few kilometres level, an unprecedented achievement for ground-based astrometry
(Morgado et al., 2019a, 2022). This makes these observations extremely appealing
for natural satellites’ ephemerides, and opens promising synergy opportunities with
radio science, which this dissertation starts investigating in Chapter 7. It is finally
interesting to note that these observations should not be reduced to position
measurements only: the recording of an occultation by several observers also allows
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for a better determination of both the photometric centre position and the shape of
the occulting satellite (Morgado et al., 2022). A major drawback of this observation
technique, however, is the rarity of such events: for the Galilean satellites, only a few
stellar occultations occurred since 2016 (Morgado et al., 2022).

Error sources
After accounting for the light time delay given by Eq. 3.13, astrometric observations
should still be corrected for aberration, refraction, and phase effects. Aberration here
refers to the influence of the non-zero velocity of the observer (typically on Earth)
on the light-time calculation. This is corrected by replacing rr (tr ) by rr (tr −ρ) in the
calculation of the light-time, ρ, in Eq. 3.13 which then becomes

ρ =
∣∣rr (tr −ρ)− rt (tr −ρ)

∣∣
c

+∑
i
δti . (3.20)

In addition to the above, corrections should be applied for the refraction of light in
the atmosphere (e.g., Stone, 1996), as well as for the effect of the solar phase angle
on the measured disk-integrated photometry. The latter can cause an offset between
the photocentric centre and the centre of figure (e.g., Lindegren, 1977; Emelyanov,
2021), and is therefore particularly relevant for mutual event, mutual approximation,
and stellar occultation observations.

After correcting for the above-mentioned phenomena, the remaining errors in
astrometric observations most commonly originate from (e.g., Desmars et al., 2009)

• error in the recording of the observation time,

• errors or omissions in the phase, aberration, and refraction corrections,

• stellar catalogue errors (if applicable),

• offset between the centre of mass and the photometric centre or the centre of
figure,

• instrumental errors.

For space-based astrometry or highly accurate ground astrometry (e.g., stellar
occultations), topography and shape model errors can also play a significant role in
the quality of the measurement. For space astrometry specifically, spacecraft orbit
determination and limb fitting errors should moreover be accounted for.

AVAILABLE OBSERVATIONS OF THE GALILEAN SATELLITES

Following Galileo Galilei’s discovery, the determination of the Galilean satellites’
dynamics have benefited from the continuous collection of new observations and
from the parallel improvement of our measurement techniques. An overview of the
astrometric (and radar) observations available for the Galilean moons which are used
in present ephemerides solutions has already been compiled as part of the work
presented in Chapter 8 (Section 8.2 specifically), and will therefore not be described
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in detail. The interested reader is also referred to the detailed review on the history
of Galilean satellites’ observations in Arlot (2019).

Summarising, the current data sets include:

• Earth-based classical astrometry from 1891 to present day (see e.g., Lieske,
1998; Jacobson et al., 2000; Lainey, 2002, for more detailed descriptions of
these observations),

• mutual events, which have been consistently observed and reported every six
years since the 1973 campaign (see Arlot, 2019, for a review),

• Arecibo radar observations (1999-2016, Brozović et al. 2020a),

• stellar occultations (Morgado et al., 2022),

• space astrometry from the Voyager and Galileo spacecraft.

These data sets and their typical accuracies are summarised in Table 3.1, while
Fig. 3.2 illustrates the temporal distribution of these observations (also including
their accuracies). It clearly highlights the much larger observation volume available
since the 1970s, boosted by the advent of the mutual event campaigns and of space
astrometry (the Voyager and Cassini mission timelines can actually be identified in
Fig. 3.2 from their accurate measurements). More detailed insights (not reported here
for the sake of brevity) can be gained from Figs. 8.1 and 8.2 and the corresponding
discussion in Chapter 8, which distinguish between the different types of astrometric
observations. Most of these observations (except space astrometry) are moreover
publicly available in the NSDC (Natural Satellites Data Center) database6.

3.3.2. RADIO SCIENCE

In the following, we provide the observation models for different radio science
observables, and discuss the error sources which affect such measurements. Although
radio science data acquired during past missions to the Jovian system will be
briefly mentioned for the sake of completeness, we here specifically focus on the
observables relevant for JUICE and Europa Clipper, since other radio science data
sets were not considered in this dissertation (see discussion on relevant radio
science data sets for Galilean moons’ ephemerides at the end of this section). For
a more complete overview of other possible radiometric measurement types and/or
configurations, the interested reader is referred to Moyer (2005). We moreover
restrict ourselves to measurements collected in a radio science context, and not
for navigation purposes (see e.g., Hener et al. 2024 for a good overview of the
differences). In particular, both JUICE and Europa Clipper radio science will use
Doppler and ranging data. Phase-referencing VLBI measurements of JUICE’s position
will also be provided by PRIDE. Examining the contribution of these future radio
science data sets to the Galilean moons’ ephemerides solutions will be the core of
Chapters 4 and 5.

6NSDC database for Galilean satellites observations: http://nsdb.imcce.fr/obspos/bjupogae.htm

http://nsdb.imcce.fr/obspos/bjupogae.htm
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Figure 3.2.: Distribution of the available astrometric observations over time (same
data set as in Chapter 8, see references therein), plotted as a histogram
on the left axis, along with their accuracies (shown with dots, and plotted
on the right axis), for all types of astrometric observations combined
(including radar). The colours indicate which moon is observed.

OBSERVATION TYPES AND ERROR SOURCES

Both JUICE and Europa Clipper will rely on two-way tracking to generate range and
Doppler measurements. This implies that the signal sent by a transmitter on Earth
will be received and re-transmitted by the spacecraft, and eventually received by the
same ground station which initially transmitted the signal (see Fig. 3.3). In the
following, the indices 1 and 2 respectively designate the uplink (station-spacecraft)
and downlink (spacecraft-station) legs.

Ranging measurements
Starting with range observables, they provide a measure of the distance between
the target (i.e., spacecraft) and the receiver (i.e., ground-station on Earth), in the
line-of-sight direction. A two-way range observable can be defined as

hrange(t ) = c
(
tr2 − tt1

)
, (3.21)

where tt1 and tr2 respectively designate the signal initial transmission and final
reception times. t denotes the epoch used as reference for the measurement, which
can be set to either the reception time tr2 or transmission time tt1 (see Fig. 3.3).
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Figure 3.3.: Schematic representation of a two-way link tracking configuration. The
square and circle-shaped markers respectively represent the spacecraft
and ground station’s positions. The red and blue colours indicate whether
we consider the signal’s transmission or reception, respectively.

The above can moreover be related to the light-time equation (Eq. 3.13) as:

hrange = c
(
ρ2 +ρ1 + tt2 − tr1

)
= r r2

t2
+ r r1

t1
+ c

(
tt2 − tr1

)+ c
∑

i
δt1,i + c

∑
i
δt2,i . (3.22)

tt2 − tr1 represents the signal re-transmission delay by the spacecraft, while δt1,i

and δt2,i are the light-time corrections applied over the uplink and downlink legs,
respectively.

Doppler measurements
Typical Doppler measurements, on the other hand, provide the integrated Doppler
shift over a certain time interval ∆t . This is essentially equivalent to integrating the
observed range rate, as follows:

hdoppler(t ) = 1

∆t

(
hrange

(
t + ∆t

2

)
−hrange

(
t − ∆t

2

))
, (3.23)

where the light-time effects are encompassed in the range observation formulation
(Eq. 3.22). Such a Doppler measurement is obtained by comparing the frequencies
of the transmitted and received signals. The total phase change over the integration
time ∆t is then measured with a cycle counter (see Thornton and Border 2005 for
more detail), eventually providing the integrated range-rate described by Eq. 3.23.

VLBI measurements
Different VLBI techniques can be used to measure the angular position of a
transmitting spacecraft. The well-known Delta-DOR technique makes use of
multi-tone carrier signal modulation to this end (Curkendall and Border, 2013). On
the other hand, phase-referencing VLBI correlates the signal simultaneously received
at multiple ground stations while using a nearby background radio source as phase



3

72 3. MOONS EPHEMERIDES - AN OVERVIEW

calibrator phase. PRIDE, the radio-astronomy experiment part of the JUICE mission
(see Section 1.3.3) will provide VLBI measurements of the spacecraft using the latter,
and we will therefore focus on phase-referencing VLBI in the following. More detail
on the differences between the two VLB techniques mentioned above and on their
respective performance for spacecraft tracking can be found in Gurvits et al. (2023).

Phase-referencing VLBI observables are the target’s (i.e., spacecraft) right ascension
and declination. Unlike the range and Doppler observables described above, phase-
referencing VLBI involves an atypical tracking configuration. The transmitter is here
the spacecraft, but the signal is received by multiple telescopes on Earth, a necessary
condition to the phase-referencing technique (see e.g., Bocanegra Bahamon, 2019).
The measurement is eventually expressed with respect to the geocentre, and the
observable can be written as

hvlbi =
(
α

(
r geo

t

)
δ

(
r geo

t

)) , (3.24)

which only differs from the equivalent classical astrometry observable (Eq. 3.15)
because α and δ are here expressed with respect to the geocentre, and not to the
position of a single receiver.

Error sources
The errors affecting the above-mentioned radio science measurements result from
the combination of the following effects (e.g., Asmar et al., 2005; Iess et al., 2014a):

• media propagation delays (interplanetary plasma, troposphere, ionosphere),

• instrumental noise (including thermal noise, mechanical noise, frequency
instability of the transponder or clock, etc.),

• uncertainties and biases in Earth orientation parameters and ground station
locations,

• numerical noise.

The influence of numerical noise is particularly relevant for the averaged Doppler
observables (Eq. 3.23), as it increases for small integration times ∆t . This is, however,
a practical error caused by round-off errors due to finite number representation, and
can therefore be mitigated with adequate software implementations (Zannoni and
Tortora, 2013). For phase-referencing VLBI specifically, errors in the ICRF position
of the radio-source used as phase calibrator also play an important role (e.g., Pradel
et al., 2006, see Chapter 5). A detailed error budget is beyond the scope of this
section, and specific values describing the expected quality of JUICE and Europa
Clipper radio science measurements will later be provided in Chapters 4, 5, and 8. It
is however insightful to provide some rough orders of magnitude (reported in Table
3.1), for comparison with astrometric observations.

EXISTING AND FUTURE RADIO SCIENCE FROM GALILEAN SYSTEM MISSIONS

The complete radio science data set available (or soon to be) for the Galilean system
comes from the following past, current, and upcoming missions:
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• Ulysses7: Doppler, range, VLBI;

• Galileo: Doppler, VLBI;

• Juno (flybys of Galilean moons): Doppler;

• JUICE: Doppler, range, VLBI;

• Europa Clipper: Doppler, maybe range.

The Ulysses and Galileo radio science data sets have been included in past JPL
solutions (e.g., Jacobson et al., 2000). Radiometric measurements acquired during
Juno’s recent flybys around the Galilean satellites (extended mission phase, started
in 2021), on the other hand, have already been processed in gravity field analyses
(Gomez Casajus et al., 2022), but not yet incorporated in any published natural
satellites’ ephemerides.

The ephemerides estimations conducted as part of this dissertation do not consider
these first three data sets. They rather focus on evaluating the future contribution
of the JUICE and Europa Clipper radio science (Chapters 4 and 5), also in light of
potential synergies with the existing astrometry data sets (Chapters 6 and 8). The
contribution of the Ulysses and Galileo data sets is anyway expected to be limited
due to their poor measurement quality, as suggested by an independent preliminary
analysis (A. Magnanini, private communication, see more detail in Section 8.5).
Details on the expected tracking configuration, quantity, and quality for JUICE and
Europa Clipper radio science observables considered in our analyses are specified
whenever relevant in Chapters 4, 5, and 8, and therefore not repeated here.

3.4. CURRENT EPHEMERIDES: METHODS & SOLUTIONS
In the following, we discuss the state-of-the-art in natural satellites’ ephemerides,
both in terms of inversion methodology and quality of the existing solutions. In
particular, we elaborate upon the different strategies applicable when incorporating
radio science in the estimation, as touched upon in Section 1.4.1 and to be further
analysed in Chapter 4. We also briefly describe the latest ephemerides available for
the Galilean moons, before investigating future improvement strategies in the rest of
this dissertation.

3.4.1. COMBINING ASTROMETRY AND RADIO SCIENCE

The most immediate difficulty when estimating the moons’ dynamics from spacecraft
tracking data, as mentioned in Section 1.4.1, originates from the indirect nature of
the constraints that such measurements provide: the information on the moons’
positions is extracted from the spacecraft’s motion under the moons’ gravitational
attraction, which requires solving for both the spacecraft and the moons’ dynamics.

When exploiting radio science tracking of a spacecraft for planetary or natural
satellites’ ephemerides determination, the dynamics of the spacecraft and of the

7only two flybys around Jupiter
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natural bodies are typically not estimated concurrently. The spacecraft orbit is
instead solved for independently in an arc-wise manner, alongside a (usually small)
local correction to the ephemeris of the natural body under consideration (e.g.,
Durante et al., 2019; Di Ruscio, 2021; Fienga et al., 2021b). Rather than directly
incorporating the spacecraft tracking observables, this correction to the natural
body’s state, referred to as a normal point8, can be added as a substitute input to
the ephemerides determination.

While these normal points are often reduced to their range component (Fienga
et al., 2021a; Di Ruscio, 2021), a complete state correction observable can be
obtained for body k, at the reference epoch ti (corresponding to the arc over which
both the spacecraft’s state and the natural body’s state correction are estimated):

h =∆yk (ti ). (3.25)

The weight assigned to this observable when included in the global ephemerides
estimation directly follows from the statistical error describing the quality of the
arc-wise solution:

σh =σ(yk (ti )). (3.26)

Reconciling these independent, local state estimates (or corrections) in a global,
coherent solution of the moons’ dynamics is then attempted in a subsequent step,
where the influence of the spacecraft’s orbit is no longer directly accounted for.

An alternative approach, which will be described in much more detail in Chapter
4, consists in concurrently solving for the spacecraft’s local states and the moons’
orbits in a single estimation step. As discussed in Section 1.4.1, such an estimation
strategy has already been applied (e.g., Jacobson, 2014, 2022; Lainey et al., 2020),
including for the ephemerides of the Galilean satellites (Jacobson et al., 2000). All
details of the adopted methodology (including the exact model formulation, but also
critical data merging and weighting aspects) were however not made available. In
particular, and circling back to the fitting process described in Section 3.2.1, using
a coupled approach implies that the initial state vector y0 needs to be somehow
expanded to also include the arc-wise spacecraft’s states. The exact formulation
of this estimation model has however not been reported in literature. It will be
provided in Chapter 4 and later slightly extended in Appendix 5.8.

The advantages and disadvantages of the coupled and decoupled strategies will
be discussed in Chapter 4, which provides the first detailed comparison of their
respective performance and merits, focussing on their future application to JUICE
and Europa Clipper radio science inversions.

3.4.2. LATEST GALILEAN MOONS’ EPHEMERIDES

The two main providers of ephemerides solutions for natural satellites are JPL
(Jet Propulsion Laboratory) and IMCCE (Institute of Celestial Mechanics and

8This is similar to the normal point concept introduced in Section 3.2.2, but here referring to a
post-fit product rather pre-fit observations.
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Computation of Ephemerides). Focussing on the Jovian system, the most recent
solution (at the time of writing) made available by the former is labelled jup380,
while their latest official release remains the previous version (jup365)9. On the other
hand, the newest ephemerides delivered by IMCCE, obtained with the NOE software
(see Chapter 8), is NOE-5-202310. The JPL and IMCCE solutions are respectively
being used to plan the operations of the Europa Clipper and JUICE missions.

ORBITAL SOLUTIONS

Both the JPL and IMCCE solutions rely on very similar astrometric data sets (see
Section 3.3.1): Earth-based astrometry and radar observations, Voyager and Galileo
imaging data, HST (Hubble Space Telescope) observations and Gaia data for the
IMCCE ephemerides. The JPL inversion, on the other hand, also includes radio
science measurements from past missions, among which those acquired by the
Galileo spacecraft. While the exact radio science data sets used in jup365 or
jup380 are not specified, radiometric measurements from the Ulysses mission were
also considered in previous JPL solutions, such as the one reported in Jacobson
et al. (2000). The JPL ephemerides typically rely on a global, coupled inversion of
astrometry and radio science (see previous discussion in Section 3.4.1). Due to the
lack of details provided on the exact methodology, data sets selection, and data
processing, it is nonetheless difficult to evaluate the contribution of the radio science
data in the JPL ephemerides with respect to the astrometry-only IMCCE solution.

Fig. 3.4 shows the differences in the Galilean moons’ positions obtained when
comparing jup380 and NOE-5-2023 over the period 2015-2030. For Io, Europa,
and Ganymede, differences remain, on average, constrained within 10-15 km (with
Europa’s tangential position locally exhibiting larger discrepancies). This seems to be
consistent with the accuracy levels expected for these latest ephemerides solutions
(V. Lainey, personal communication, 2023). Callisto’s tangential position, however,
shows rather large differences (about 40 km on average). Considering the quality of
the existing astrometry and upcoming radio science data sets (Table 3.1) in light of
the present solutions’ accuracy (indicated by Fig. 3.4) clearly highlights why JUICE
and Europa Clipper measurements are expected to bring a significant ephemerides
improvement. Precisely quantifying the quality of the attainable solution, while
accounting for the complications related to the use of spacecraft-derived constraints
(Section 3.4.1), is the focus of Chapters 4, 5, and 8.

It is also worth mentioning that discrepancies in the underlying dynamical models
used to fit the observations can explain some of the differences observed between
the JPL and IMCCE solutions. In particular, tidal dissipation was not modelled in
the latest release version from JPL (jup365), leading to much larger differences with
respect to the IMCCE ephemerides than those reported in Fig. 3.4. This has however
been corrected in the more recent jup380 solution (see discussion below).

9Both JPL solutions are available at https://ssd.jpl.nasa.gov/ftp/eph/satellites/bsp/
10IMCCE solution available at https://ftp.imcce.fr/pub/ephem/satel/NOE/JUPITER/2023/

https://ssd.jpl.nasa.gov/ftp/eph/satellites/bsp/
https://ftp.imcce.fr/pub/ephem/satel/NOE/JUPITER/2023/
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Figure 3.4.: Differences in position for the four Galilean satellites between the jup380
and NOE-5-2023 ephemerides (JPL and IMCCE solutions, respectively).
The position differences are expressed in the RTN (radial, tangential,
normal) reference frame.

TIDAL DISSIPATION ESTIMATION11

Estimating the drift in the Galilean satellites’ mean motion caused by tides, already
mentioned by De Sitter (1931), was first attempted while still relying on simplified,
analytical representations of the moons’ dynamics in Lieske (1987); Aksnes and
Franklin (2001). This, however, led to very small and inconsistent estimates.
Dissipation estimation prospects changed radically when Lainey and Tobie (2005)
added tidal effects to their numerical model, originally developed in Lainey et al.
(2004b,a). Using the tidal force formulation presented in Section 2.3.2, relevant tidal
parameters can indeed be extracted from the signatures of both planet and satellite
tides in the moon’s dynamics.

It is particularly interesting to note that the differences between the release
(jup365) and latest (jup380) versions of the JPL ephemerides for the Galilean
satellites evidence the significant influence of tidal dissipation on the moons’ orbits.
Dissipation (both in Jupiter and in Io) was indeed only added in the latter solution.
Fig. 3.5 displays the differences between the two ephemerides for Io: the quadratic
drift in tangential position due to the secular mean motion shift induced by tides is

11The focus of this section is again purposely kept on the Galilean system. For a more general overview
of the present-day estimates of tidal dissipation parameters in the Solar System, the interested
reader is referred to Lainey (2016) and, for the Saturnian system specifically, to the updated results
provided in Lainey et al. (2020) (see also Jacobson 2022 for an alternative study of dissipation in
the Saturnian system).
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Figure 3.5.: Differences in position for Io between the jup365 and jup380 ephemerides
(tidal dissipation was not accounted for in the former, but added in
the latter). The position differences are expressed in the RTN (radial,
tangential, normal) reference frame.

distinctly observable. This clearly demonstrates that such effects are large enough to
be detectable from the available observations.

Fitting existing astrometric observations to the above-mentioned tidal force model
allowed Lainey et al. (2009) to obtain the present best estimates of dissipation in Io
and in Jupiter at Io’s frequency:

(k2/Q) j = (1.102±0.203)×10−5 (3.27)

(k2/Q)i = 0.015±0.003. (3.28)

This strong dissipation seems consistent with the intense heating experienced by
Io’s surface, and has important implications regarding the moon’s thermal state and
the evolution of the Laplace resonance (Lainey et al., 2009, and Sections 1.1 and
10.1 of this dissertation). Refining the above estimates is therefore at the core of
the rationale for improving current ephemerides by exploiting JUICE and Europa
Clipper’s future contributions (see the global inversion analysis presented in Chapter
8, and extended discussion in Section 10.1).
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DECOUPLED AND COUPLED MOONS’

EPHEMERIDES ESTIMATION

STRATEGIES

M. S. FAYOLLE, D. DIRKX, V. LAINEY, L. I. GURVITS, P. N. A.
M. VISSER

When reconstructing natural satellites’ ephemerides from space missions’ tracking
data, the dynamics of the spacecraft and natural bodies are often solved for separately,
in a decoupled manner. Alternatively, the ephemeris generation and spacecraft
orbit determination can be performed concurrently. This method directly maps the
available data set to the estimated parameters’ covariances while fully accounting for
all dynamical couplings. It thus provides a statistically consistent solution to the
estimation problem, whereas this is not directly ensured with the decoupled strategy.
For the Galilean moons in particular, the JUICE mission provides a unique, although
challenging, opportunity for ephemerides improvement. For such a dynamically
coupled problem, choosing between the two state estimation strategies will be
influential. This paper quantifies the Galilean moons’ state uncertainties attainable
when applying a coupled estimation strategy to simulated JUICE data, and discusses
the challenges that remain to be addressed to achieve such a coupled solution from
real observations. We first provide a detailed, explicit formulation for the coupled
approach, which was still missing in the literature although already used in past
studies. We then assessed the relative performances of the two ephemerides generation

An earlier version of this chapter is published in Planetary and Space Science (Fayolle et al., 2022):
Fayolle, M., Dirkx, D., Lainey, V., Gurvits, L. I., & Visser, P. N. A. M. (2022). Decoupled and coupled
moons’ ephemerides estimation strategies application to the JUICE mission. Planetary and Space
Science, 219, 105531.
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techniques for the JUICE test case. To this end, we used both decoupled and coupled
models on simulated JUICE radiometric data. We compared the resulting covariances
for the Galilean moons’ states, and showed that the decoupled approach yields slightly
lower formal errors for the moons’ tangential positions. However, the coupled model
can reduce the state uncertainties by more than one order of magnitude in the
radial direction (i.e., towards the central body). It also proved more sensitive to the
dynamical coupling between Io, Europa and Ganymede, allowing the state solutions
for the first two moons to fully benefit from JUICE orbital phase around Ganymede.
On the other hand, we showed that the choice of state estimation methods does not
strongly affect the moons’ gravity field determination. Many issues still remain to be
solved before a concurrent estimation strategy can be successfully applied, especially
to reconstruct the moons’ dynamics over long timescales. Nonetheless, our analysis
highlights promising ephemerides improvements and thus motivates future efforts to
reach a coupled state solution for the Galilean moons.

4.1. INTRODUCTION
The upcoming JUICE mission1 (JUpiter ICy moons Explorer) will focus on the three
Galilean moons Europa, Ganymede, and Callisto. The JUICE spacecraft is expected
to arrive in the Jovian system in 2031, with a launch planned in 2023. It will first
execute a series of flybys (2, 7, and 21 flybys at Europa, Ganymede, and Callisto,
respectively), from 2032 to 2034. JUICE will then initiate its orbital phase around
Ganymede, with an eccentricity ranging from 0.6 to 0 (GEO and GCO500 phases:
Ganymede Elliptic Orbit and Ganymede Circular Orbit, respectively, both at an
altitude of 5000 km). In May 2035, after a second elliptical phase, the spacecraft
will eventually enter its final circular orbit at 500 km altitude (denoted GCO500),
for a nominal period of 4 months. This mission profile, displayed in Fig. 4.1 and
adopted in the rest of this paper, was obtained from the version 5.0 of the CReMA
(Consolidated Report on the Mission Analysis)2.

The JUICE spacecraft will carry one dedicated radio science instrument (3GM:
Gravity and Geophysics of Jupiter and the Galilean Moons, e.g., Di Benedetto et al.,
2021), which will provide highly accurate range and Doppler measurements (see
Section 4.3.3). These 3GM observations will be complemented by PRIDE (Planetary
Radio Interferometry and Doppler Experiment, e.g., Gurvits et al., 2013). The
latter does not require any additional onboard instrument and uses tracking or
3GM radiometric signals to derive angular position measurements of the spacecraft
with respect to the ICRF (International Celestial Reference Frame), as well as
supplementary Doppler observables (e.g., Duev et al., 2012; Bocanegra-Bahamón
et al., 2018; Molera Calvés et al., 2021). The radiometric data to be acquired by
both 3GM and PRIDE are expected to contribute to a more accurate determination
of the Galilean moons’ states (Dirkx et al., 2016, 2017; Lari and Milani, 2019;
Cappuccio et al., 2020a). Improved ephemerides are crucial to better understand
the long-term thermal-orbital evolution of these moons, which is strongly driven by

1https://sci.esa.int/web/juice
2https://www.cosmos.esa.int/web/spice/spice-for-juice
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tidal dissipation in both Jupiter and the satellites themselves (Peale, 1999; Hussmann
and Spohn, 2004; Greenberg, 2010; Hay et al., 2020, see Section 1.1). The moons’
ephemerides provide a natural way to extract the current rates of tidal dissipation,
through the observed migration rates of the satellites (e.g., Lainey and Tobie, 2005;
Lainey et al., 2009). Furthermore, a better characterisation of tidal dissipation
mechanisms can provide tighter constraints on the moons’ interiors, which is critical
to investigate sub-surface ocean’s properties (or confirm the existence of a putative
ocean for Callisto, e.g., Lunine, 2017).

For natural satellites’ ephemerides, the estimations of the spacecraft’s and moons’
dynamics are typically not performed in a coupled manner (e.g., Rosenblatt et al.,
2008; Durante et al., 2019). Instead, when ephemerides are to be determined from
flybys, the spacecraft trajectory with respect to the central body (i.e., body at which
the flyby is performed) is determined from the available tracking data, along with
the central body’s state at the flyby epoch. The per-flyby state solutions for the
natural body define the so-called normal points (see Section 3.4.1), which are then
used in a second global estimation to reconstruct the long-term dynamics of this
body (e.g., Durante et al., 2019).

If needed, a unified model may also be used, in which the spacecraft dynamics
are determined in a multi-arc fashion, and the natural bodies’ dynamics in a
single-arc fashion, during a single inversion. Such an approach, used for instance
by Dirkx et al. (2019b); Lari and Milani (2019), has the advantage of automatically
incorporating all dynamical couplings, as well as the full sensitivity to physical

32 32.5 33 33.5 34 34.5 35 35.5
10 2

10 3

10 4

Figure 4.1.: Altitude of the JUICE spacecraft with respect to the Galilean moons
during the flyby and orbital phases, based on CReMA 5.0. The vertical
lines directly provide the closest-approach distances for the flyby series,
while the orbit of JUICE around Ganymede is clearly identifiable, starting
slightly before 2035.
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parameters of both types of dynamics. The decoupled strategy, on the other hand,
reconstructs the moons’ dynamics from the normal points, which only capture the
moons’ kinematics (and not dynamics) at each flyby. However, while desirable, a
coupled solution for the spacecraft’s and moons’ states is not always achievable in
practice (e.g., Durante et al., 2019). It indeed requires the moons’ dynamical models
(with respect to the planet) to be consistent over both short and long timescales, to
the accuracy level of the spacecraft’s dynamics (with respect to the moon). Here,
short and long timescales respectively refer to typical flyby duration (i.e., a few
hours) and entire mission timeline (i.e., several years, so still short with respect to
system evolution’s timescale).

For the JUICE mission, we will be presented with a unique situation: the mission
profile indeed involves a combination of flybys around multiple satellites and an
extended orbit phase around Ganymede, which was never before performed in a
planetary mission. Additionally, three of the four Galilean moons are in resonance,
making the estimation of the different moons’ dynamics strongly coupled, with the
added complication that JUICE will provide a strong imbalance in data for these
three moons. As a result, the estimation of ephemerides from JUICE-only data is
(close to be) an ill-posed mathematical problem (Dirkx et al., 2017). Due to the
complexity and novelty of the mission profile, and to the strong dynamical couplings
that are involved, the concurrent single- and multi-arc estimation strategy appears
particularly well-suited for the JUICE test case. In this paper, we compare the
simulated state estimation solutions obtained with both the decoupled and coupled
approaches, to quantify the impact of the adopted estimation strategy.

We limit ourselves to a covariance analysis, complemented by a deterministic
simulation performed as verification. As already highlighted, the practical
applicability of the coupled method to the JUICE mission is however not guaranteed,
as bringing the dynamical models fidelity down to the required accuracy level will be
really challenging. By definition, these issues cannot be addressed by a covariance
analysis, as the resulting formal uncertainties do not account for inaccuracies in the
dynamical models used for the moons and the JUICE spacecraft, or in the models
representing the observations’ errors. Our paper thus assesses which uncertainty
levels could be obtained with a coupled estimation, provided that our dynamical
models are accurate enough for a viable solution to be achieved. The formal
uncertainties we obtain therefore quantify the coupled strategy’s requirements in
terms of dynamical modelling accuracy. Besides comparison purposes, precisely
evaluating the performance of the decoupled method is thus also crucial in case
obtaining a global coupled solution for the Galilean moons remains beyond (current)
modelling capabilities. It must be noted that modelling issues, while not directly
addressed by our covariance analysis, remain nonetheless deeply relevant for this
study and will therefore be extensively discussed (see Sections 4.2.4 and 4.5.2). More
generally, the limitations and scope of our formal analysis will be further detailed in
Section 4.2.4.

The details of the coupled model, as well as the issues associated with its
implementation and application, are not found in the literature, despite its
application in a number of past studies (e.g., Dirkx et al., 2019b; Lari and Milani,
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2019; Magnanini, 2021). Therefore, we choose to provide a detailed exposition of our
coupled method in Section 4.2, completed by a shorter description of the decoupled
approach. The models used to either propagate the moons’ and spacecraft’s
dynamics or simulate JUICE radio science measurements are then described in
Section 4.3. Section 4.4 presents the results of our comparative analysis of the
coupled and decoupled estimation strategies, first for the flyby phase only, and
then for the entire JUICE mission. Finally, Section 4.5 discusses in more detail the
strengths and challenges of both estimation methods, before our conclusions are
summarised in Section 4.6.

4.2. ESTIMATION FRAMEWORK

This section describes the whole estimation process, for both the coupled and
decoupled approaches introduced in Section 4.1. The complete formulation for the
coupled single- and multi-arc state estimation model, still missing in the literature,
is provided in Section 4.2.2. For the sake of completeness, our implementation of
the decoupled strategy for the JUICE case is given in Section 4.2.3. This section thus
directly highlights the main differences between the two estimation strategies.

All methods described in the following were implemented in our TU Delft
Astrodynamics Toolbox (Tudat) software3, and are therefore freely available.

4.2.1. COVARIANCE ANALYSIS

We first briefly review the propagation of the variational equations and describe how
covariance matrices are generated and propagated in our simulations, as typically
implemented in any estimation process, either single- and/or multi-arc.

VARIATIONAL EQUATIONS FORMULATION

The variational equations describe how the dynamics of the system are influenced
by the parameters to be estimated. In the following, we adopt the nomenclature of
Gill and Montenbruck (2013). The state vector is denoted as y and is propagated
numerically from the initial time t0 using

ẏ(t ) = f(y,p, t ), (4.1)

where p is a vector of parameters influencing the system’s dynamics or the
observations, and f represents the dynamical model (described in Section 4.3).
Unless otherwise indicated, all states are expressed in a reference frame with inertial
orientation (e.g., J2000). We stress that, in a general formulation, the states y need
not be translational states, but may be any type of dynamics, of any number of
bodies (see Mazarico et al. (2017); Dirkx et al. (2019a) for an example of coupled
translational-rotational dynamics estimation of multiple bodies).

3Documentation: https://tudat-space.readthedocs.io
Full source code: https://github.com/tudat-team/tudat-bundle

https://tudat-space.readthedocs.io
https://github.com/tudat-team/tudat-bundle
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The state transition matrix Φ(t , t0) and sensitivity matrix S(t ) are defined as

Φ(t , t0) = Çy(t )

Çy(t0)
, (4.2)

S(t ) = Çy(t )

Çp
. (4.3)

The differential equations used to solve for Φ and S are termed the variational
equations, and are given by

dΦ(t , t0)

d t
= Çf(y,p, t )

Çy(t )
Φ(t , t0), (4.4)

dS(t )

d t
= Çf(y,p, t )

Çy(t )
S(t )+ Çf(y,p, t )

Çp
, (4.5)

with the following initial conditions:

Φ(t0, t0) = 1n×n , (4.6)

S(t0) = 0n×np , (4.7)

where n and np represent the sizes of the state vector y and parameter vector
p, respectively. The single-arc and multi-arc formulations are essentially identical,
with the sole difference that the multi-arc solution is obtained by subsequent,
independent, integrations of Eqs. (4.1), (4.4) and (4.5).

A variant of the multi-arc method, referred to as the constrained multi-arc
approach, uses the fact that the arc-wise state estimates obtained for a given body
should be consistent to further constrain the estimation solution (Alessi et al., 2012;
Serra et al., 2018). In our analysis, we however chose to limit ourselves to the
unconstrained multi-arc estimation. During the first part of the mission, the flybys
are indeed temporarily distant, such that propagating information from previous
arcs would not efficiently constrain the JUICE spacecraft’s state. When arcs are
contiguous (i.e., orbital phase around Ganymede), the high quality of the estimation
solution anyway undermines the use of multi-arc constraints.

PROPAGATED COVARIANCE

Let h(T,q) denote the set of all modelled observations generated up to a time T .
The design matrix H(T,q) associated with these observations is then formed by
computing

H(T,q) = Çh(T,q)

Çq
, (4.8)

with q a vector containing the estimated parameters (e.g., Gill and Montenbruck,
2013; Milani and Gronchi, 2010). It usually includes initial states parameters,
represented by the vector y0, and a subset of the parameters p influencing the
dynamical or observational models. To simplify the notations, the vector of estimated
parameters q will be divided as q = [y0;p] in the following. It should however be
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noted that the exact definition of q depends on the estimation model, and that y0

and p might not directly incorporate all initial states, dynamical and observational
models. More details on how y0 and p are precisely defined for both the coupled
and decoupled models will be provided in Sections 4.2.2, 4.2.3 and 4.3.3.

The covariance matrix of q obtained using data up to time T is denoted Pqq(T )
and is given by

Pqq(T ) =
(
P−1

qq,0 +
(
HT (T )W(T )H(T )

))−1
, (4.9)

where Pqq,0 is the a priori covariance matrix of the parameters q (see Section 4.2.3
for a priori knowledge in our JUICE test case). The matrix W(T ) contains the weights
associated with all observations up to time T . In most cases, it is set as a diagonal
matrix with Wi i = σ−2

h,i , implicitly assuming the measurement uncertainties to be
uncorrelated. This is however not the case in every estimation step of the decoupled
model, as will be discussed in Sections 4.2.3 and 4.2.3. σh,i denotes the uncertainty
of observation i . The covariance Pqq(T ) can be used to compute the covariance of
the state y at any later time t . We refer to this propagated covariance as Pyy(t ,T )
and define it as

Pyy(t ,T ) = [Φ(t , t0);S(t )]Pqq(T )[Φ(t , t0);S(t )]T , (4.10)

where Φ and S are the state transition and sensitivity matrices obtained through Eqs.
4.4, 4.5, 4.6 and 4.7. For the covariances in Eqs. (4.9) and (4.10), the formal errors are
obtained from the square root of the diagonal elements of Pqq and Pyy, respectively.

4.2.2. COUPLED SINGLE- AND MULTI-ARC ESTIMATION

This section describes the extension of the variational equations introduced in
Section 4.2.1 to the concurrent estimation of single- and multi-arc states. The
formulation specifics are detailed in Section 4.2.2 for the JUICE case.

GENERAL PRINCIPLE

The coupled strategy relies on the concurrent estimation of the spacecraft orbit and
natural bodies’ ephemerides, as well as of all parameters influencing the dynamics
and/or observations (vector q in Section 4.2.1). The natural bodies’ dynamics, on the
other hand, are reconstructed over a single arc. More precisely, the spacecraft orbit is
solved for in an arc-wise manner (along with any observations- or spacecraft-related
parameters, e.g., biases, accelerometer calibrations factors). Such a coupled model
allows us to directly and robustly link observation strategies, data quality, mission
profile, etc. to the final formal uncertainties in natural bodies’ ephemerides and
dynamical parameters (tidal dissipation, gravity field coefficients). Fig. 4.2 provides a
schematic visualisation of this coupled approach, taking the JUICE flyby phase as an
example. A preliminary framework for a concurrent single- and multi-arc estimation
was briefly described by Dirkx et al. (2019b). A similar method was also used by
Lari and Milani (2019) to study the onset of chaos in the dynamics of the JUICE
spacecraft. The following sections provide the detailed and complete formulation for
such a coupled estimation procedure for single- and multi-arc dynamics.
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Single arc moons’ state and per-flyby 

JUICE’s state in a single estimation

Flyby 𝑖 + 2Flyby 𝑖 + 1

Flyby 𝑖

Moon

Origin of the observations in the estimation in red
Multi-arc initial states (coloured circles)
Single-arc initial states (black squares)

Figure 4.2.: Schematic representation of the coupled spacecraft and moons state
estimation model, illustrated for a series of JUICE flybys around a
single moon. The solid lines represent the actual trajectories of either
the spacecraft or the central moon, while the dashed lines depict the
reconstructed moons’ dynamics after the estimation process is complete.

COUPLED VARIATIONAL EQUATIONS

We denote the single-arc state vector yS (t ), of size ns and associated with the initial
time t0. The multi-arc state, on the other hand, is designated by yM (t ) and the
arc-wise initial time is noted ti for arc i , with i =∈ [1, N ] for N arcs. The size of each
arc-wise state vector is nm . The multi-arc state function yM (t ) is defined as

yM (t ) = yM ,i (t ), (4.11)

t ∈ [ti , t̃i ], (4.12)

where yM ,i (t ) refers to the state at time t during arc i , and t̃i denotes the end time
of arc i . It should be noted that the multi-arcs need not be contiguous, and gaps
may exist in the arc-wise solutions to Eq. (4.1). Eq. (4.11) is therefore only defined if
an arc i exists that satisfies Eq. (4.12) at the time t .

The full state function is given as a combination of the single- and multi-arc states
at time t , as follows:

y(t ) =
(

yS (t )
yM (t )

)
. (4.13)

For our estimation, we require a linearised model for the change in y(t ) induced by
a variation in the parameters p and in the full vector of initial states y0, to compute
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S and Φ, respectively. We define the full initial state as:

y0 =


yS (t0)

yM ,1 (t1)
...

yM ,N (tN )

 . (4.14)

Looking at Eqs. (4.13) and (4.14), the size of the full initial state vector, y0, is
different from that of the state function y(t ), as the former combines all single-arc
and multi-arc initial states, while y(t ) only includes the single-arc states and the
multi-arc state of the current arc. We note that p may affect the single- or multi-arc
dynamics solutions, or both. The only limitation imposed on the dynamics (Eq.
4.1) is that the differential equation for yS (t ) must be independent of yM (t ). The
opposite is not true, yM (t ) being allowed to (and in our case does) depend on yS (t ).
These assumptions only hold if the masses of the multi-arc bodies are negligible
with respect to the single-arc bodies’. This is typically the case as the spacecraft’s
dynamics are generally propagated in a multi-arc manner, while the bodies included
in the single-arc solution are often natural bodies (see Section 4.2.2).

We use ΦSS (t , t0) and ΦM M ,i (t , ti ) to refer to the single- and multi-arc state
transition matrices, respectively. Similarly, the single- and multi-arc sensitivity
matrices are denoted as SS (t ) and SM ,i (t ). We note that, for the multi-arc case, the
parameter vector p can include local parameters that influence the dynamics of a
single arc i only, as well as global parameters affecting all arcs. The state transition
matrix is defined as the derivative of the current state y(t ) (Eq. 4.13) with respect to
both the single-arc initial state yS (t0) at time t0, and the arc-wise initial states yM ,i ,
at the beginning ti of each arc. The full state transition matrix, noted Φ(t ; t0, ti ), and
sensitivity matrix S(t ) can thus be written as

Φ(t ; t0, ti ) = Çy(t )

Çy0
(4.15)

=
(
ΦSS (t , t0) 0ns ,nm (i−1) 0ns ,nm 0ns ,nm (N−i )

ΦMS,i (t , ti ) 0nm ,nm (i−1) ΦM M (t , ti ) 0nm ,nm (N−i )

)
,

S(t ) = Çy(t )

Çp
=

(
SS (t )

SM ,i (t )

)
, (4.16)

where we introduced the coupling term

ΦMS,i (t , ti ) = ÇyM ,i (t )

ÇyS (t0)
(4.17)

into the state transition matrix. The zero entries in the first row of Eq. (4.15) directly
result from the dynamics of yS (t ) being independent of yM (t ). For clarification
purposes, the dimensions of these zero blocks are specified as subscripts.

To obtain the numerical solution to the coupled variational equations, we first
propagate the single-arc dynamics and variational equations, to obtain yS , ΦSS and
SS . For the multi-arc formulation, the differential equations for ΦM M are unchanged
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compared to the classical (decoupled) approach. However, to compute the full
state transition and sensitivity matrices, we need a formulation for the coupling
term ΦMS,i which incorporates the influence of single-arc dynamics on the multi-arc
dynamics, as follows:

dΦMS,i (t , ti )

d t
= ÇẏM ,i (t )

ÇyS (t )
ΦSS (t , t0)+ ÇẏM ,i (t )

ÇyM ,i (t )
ΦMS,i (t , ti ). (4.18)

Similarly, we require a formulation for SMS,i , given by

dSM ,i (t )

d t
= ÇẏM ,i (t )

ÇyS (t )
SS (t )+ ÇẏM ,i (t )

ÇyM ,i (t )
SM ,i (t )+ ÇẏM ,i (t )

Çp
. (4.19)

This completes the required formulation for the differential equations governing the
evolution of Eqs. (4.15) and (4.16). From the single-arc propagation, we retrieve yS ,
ΦSS and SS , appearing in Eqs (4.18) and (4.19), and use as a given when solving the
multi-arc dynamics and variational equations.

The advantage of this approach, with two separate integrations to fully populate
the coupled Φ and S matrices, is that different numerical settings may be used for
the single- and multi-arc segment. In particular, for the case of coupled natural
body and spacecraft dynamics estimation, one will typically require a much smaller
time-step for propagating the spacecraft than for the natural bodies (as well as
possibly a different integrator).

FORMULATION FOR THE JUICE MISSION

In Section 4.2.2 we presented our general framework for propagating coupled
single- and multi-arc variational equations. We now discuss specific details of the
formulation for the JUICE mission. Our single-arc state vector is defined in a
planetocentric reference frame as

yS (t ) =


x(0)

1 (t )
x(0)

2 (t )
x(0)

3 (t )
x(0)

4 (t )

 , (4.20)

where the index 0 refers to Jupiter, and indices 1,2,3,4 correspond to Io, Europa,
Ganymede and Callisto, respectively, following the formalism adopted in Dirkx et al.
(2016).

Only the spacecraft’s dynamics are solved for in arc-wise manner, such that the
multi-arc state vector for arc i can simply be written as

yM ,i (t ) = x( ji )
sc,i (t ). (4.21)

We use ‘sc’ to denote properties relating to the JUICE spacecraft, while ji designates
the index j of the central body during arc i . The reference frame origin is selected
as the moon where a flyby is performed during the flyby phase (Europa, Ganymede
or Callisto), and as Ganymede during the orbital phase.



4.2. ESTIMATION FRAMEWORK

4

89

Solving the coupled variational equations provides solutions for the derivatives
Çx

( ji )
sc,i
Ç∗ , which describe changes in the moon-centred state of the JUICE spacecraft.

However, to evaluate our design matrix H (see Eq. 4.8), we need to account for the
variations in the observed position of the spacecraft, often expressed in an inertial
frame (e.g., Solar System Barycentre). As a result, the dynamics of the moons
influence the observed position of the spacecraft in two distinct manners:

• the dynamical contribution, through the bottom-left block of Eq. (4.15),

• the kinematic or indirect contribution, through the variations in the moons’
states with respect to the reference frame used for the observed spacecraft’s
motion.

This methodology automatically allows the incorporation of parameters that
directly influence both the spacecraft’s and moon’s dynamics. Principally, this
concerns the moons’ spherical harmonic coefficients. Consistently propagating S(t )
for the full system ensures that the covariance of the moons’ initial states is robustly
propagated to later epochs (see Section 4.2.1).

4.2.3. DECOUPLED SINGLE- AND MULTI-ARC ESTIMATION

To complement the description of the coupled estimation method in Section 4.2.2,
the decoupled strategy is now discussed. As this approach does not differ from
textbook formulations (e.g., Gill and Montenbruck, 2013; Milani and Gronchi, 2010),
less details are provided and we directly address the JUICE case specifically. For our
comparative analysis, it is however crucial to make both the decoupled and coupled
formulations explicit, to highlight their main differences.

GENERAL PRINCIPLE

The decoupled estimation is performed in two separate steps, as shown in Fig. 4.3.
The spacecraft’s and natural bodies’ dynamics are first solved for concurrently, as in
the coupled case, but in a multi-arc manner. Only the dynamical coupling between
the spacecraft and the central body is thus accounted for in this estimation step
(while all dynamical couplings are included to propagate the moons’ states, see
Section 4.3.2). Since the natural bodies’ states are independently estimated for each
arc, the adopted dynamical model need not be consistent over long timescales.

This first estimation step therefore provides arc-wise estimated states for the
central bodies. These so-called normal points are then used as observables in a
second step, which aims at reconstructing the natural bodies’ dynamics on a more
global scale. More precisely, a normal point is defined as the central moon’s cartesian
state components (vector of size 6) and associated covariances (6-by-6 matrices),
determined with respect to Jupiter at the time of closest approach. The covariances
Pqq for the arc-wise initial states, resulting from the first estimation step, determine
the weights W (see Eq. 4.9) assigned to each normal point in the second step.
The matrix W is thus not exactly diagonal in this particular case (see Section 4.2.1).
It instead shows non-zeros, diagonally-centred, 6-by-6 blocks containing the 6-by-6
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Figure 4.3.: Schematic representations of the decoupled spacecraft and moons state
estimations, illustrated for a series of JUICE flybys around a single moon.
The solid lines represent the actual trajectories of either the spacecraft
or the central moon, while the dashed lines depict the reconstructed
moons’ dynamics after the estimation process is complete.

normal points’ covariances. The entire two-step decoupled estimation process is
depicted in Fig. 4.3, using JUICE flybys as an example.

While the coupled model estimates all parameters concurrently, different sets of
estimated parameters are defined for the two steps of the decoupled method. An
obvious example are the spacecraft’s states, which are determined in a multi-arc
manner in the first step but are absent from the second step, when reconstructing
the global solution for the moons (see Fig. 4.3). As previously mentioned, it must
be noted that the first step of the decoupled model only estimates the state of the
central moon j when determining the normal point for a flyby around that moon.
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The state uncertainties of the other moons are not accounted for, and our decoupled
estimation strategy might thus yield slightly too optimistic formal errors for the
arc-wise state of moon j . However, as a verification, we ran an additional analysis
for the JUICE test case including the other moons’ states as consider parameters in
the normal points determination process. As an indication, we provide the results
obtained for two of the JUICE flybys in Appendix 4.7. This verification showed that
these uncertainties have a negligible impact on the normal points solution when
using tracking arcs of 8 hours only around each flyby (see Section 4.3.3). This
assumption should however be revisited if longer tracking arcs were to be considered
for the JUICE flybys, as the influence of the state uncertainties for the non-central
moons is then expected to increase. A more complete discussion on the estimated
parameters for our JUICE analysis is provided in Section 4.3.3 (see Table 4.3).

DECOUPLED VARIATIONAL EQUATIONS FOR THE JUICE MISSION

As described in Section 4.2.3, the spacecraft’s and moon’s dynamics are first
reconstructed in a multi-arc fashion. For each arc i , the initial translational state to
be estimated is thus defined as

yM ,i (ti ) =

x(0)
ji ,i (ti )

x( ji )
sc,i (ti )

 , (4.22)

where ji again refers to the index of the central moon for arc i .
In practice, all arcs sharing the same central moon are combined, to allow some

dynamical parameters to be estimated globally alongside the arc-wise states (e.g.,
gravity field coefficients of the central moon). For each moon j , the full initial state
is thus built by concatenating the corresponding multi-arc states, as follows:

y j =



x(0)
j (t1)

x( j )
sc,1(t1)

x(0)
j (t2)

· · ·
x( j )

sc,N j
(tN j )


, (4.23)

with N j the number of arcs with moon j as central body.
The arc-wise state transition matrix Φi (t , ti ) can be derived from Eq. (4.22) as

Φi (t , ti ) = ÇyM ,i (t )

ÇyM ,i (ti )
, t ∈ [ti , t̃i ] (4.24)

=
(
Φ ji (t ; ti ) 06,6

Φsc, ji (t , ti ) Φsc(t , ti )

)
. (4.25)
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Eq. (4.25) shows some similarities with Eq. (4.15), but also clearly highlights
major differences between the coupled and decoupled formulations. In particular,
Φsc, ji (t , ti ) also represents a coupling term, but expressed in a multi-arc fashion and
with respect to the central moon ji only:

Φsc, ji (t ; ti ) = Çysc(t )

Çy ji (ti )
, (4.26)

as opposed to Eq. (4.17). The variational equations provided above apply to the
first, arc-wise estimation step of the decoupled strategy (see Section 4.2.3). The
second phase, in which a single-arc estimation is performed to reconstruct the
long-term dynamics of the Galilean moons, follows the regular single-arc approach.
The associated variational equations are therefore not detailed in this paper.

A PRIORI KNOWLEDGE STRATEGY

As shown in Eq. 4.9, prior knowledge is accounted for in the estimation by means
of the a priori covariance matrix Pqq,0. Appropriate a priori values for all estimated
parameters, referred to as default a priori covariances, are further discussed in
Section 4.3.3 and are combined in a diagonal matrix P0 (shortened notation for
Pqq,0).

For the decoupled case in particular, the moons’ arc-wise state solutions first
determined at the beginning of each flyby strongly depend on these a priori
constraints (see results in Section 4.4.1). Using the same default a priori values for
all arc-wise moon states, derived from the existing ephemerides solutions, would
be a rather conservative approach. It indeed neglects the iterative improvement
achievable by progressively including more flybys in the estimation. Even if
the observations processed by the estimation remain the same, some additional
information is incorporated in the multi-arc model to improve the solution, namely
that the arc-wise state solutions for a given moon j are not completely independent
from one another. They indeed belong to a single body’s trajectory and should thus
be dynamically consistent. Such an update strategy for the a priori contraints on
the moons’ states can be compared to the multi-arc constrained approach for the
spacecraft’s orbit determination (e.g., Alessi et al., 2012), but applied to the moons’
arc-wise states instead of the spacecraft’s. It must be noted that using this a priori
update strategy introduces some correlations between the arc-wise state components
of moon j (i.e., between the different normal points determined for this moon).
The off-diagonal blocks of the weight matrix W are therefore not filled with zeros
anymore.

Focusing on the N j arcs with moon j as central body, more realistic a priori
covariances can be derived for arc k by propagating the covariance obtained for arc
k −1 up to the beginning of arc k. This propagated covariance is denoted as Pk→k+1

0
in the following. Some state components may nonetheless be poorly constrained
by the previous arc’s estimation, thus yielding unrealistically large a priori errors in
certain directions. The a priori matrix Pk

0 for arc k is thus built as a combination of
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the default and propagated a priori covariance matrices, as follows:(
Pk

0

)−1 = (P0)−1 +
(
Pk−1→k

0

)−1

= (P0)−1 +
(
Φ j (tk−1, tk )Pk−1

0 Φ j (tk−1, tk )T
)−1

, (4.27)

where Φ j (tk−1, tk ) is the state transition matrix for moon j , computed from the
start of arc k −1 to the beginning of the current arc k. This propagation scheme is
initialised with the default a priori matrix (so P0→1

0 = 0, i.e., matrix filled with zeros).
Iterating on the a priori knowledge for the moons’ arc-wise states requires to run

the first step of the decoupled estimation multiple times, gradually increasing the
number of arcs being processed. The final outcome of the multi-arc estimation
(i.e., normal points and global parameters’ estimates, see Section 4.2.3) is reached
when all N j arcs associated with moon j are included. This process is schematically
summarised in Fig. 4.4.

It must be stressed that, in the strategy described above, we only propagate the
covariances between moon j ’s own state components from arc k−1 to the beginning
of arc k. We thus neglect the influence that uncertainties in other moons’ states
could have on the propagated a priori covariance for moon j . Discarding the
contribution of the other moons is consistent with the philosophy of the decoupled
estimation, in which only the central moon’s state is determined for each arc. It
should however be noted that the a priori used for the normal points might therefore
be slightly too optimistic.

The impact of the a priori information on the parameters solution, and especially
the effect of the above updating strategy for the arc-wise states, will be further
investigated and discussed in Section 4.4.1. For each estimated parameter, the
contribution of the a priori information to the solution cq can be evaluated as
follows (e.g., Floberghagen, 2001):

cq = I−P P−1
0 , (4.28)

where I is to the identify matrix, while P and P−1
0 refer to the final and a priori

covariance matrices, respectively (Pqq and P−1
qq,0 in Eq. 4.9). A cq equal to 1 indicates

that the parameter’s estimation relies entirely on the observations, while a value of 0
means that it is based on a priori information.

4.2.4. SCOPE OF THE COMPARATIVE ANALYSIS

As mentioned in Section 4.1, we limit ourselves to a covariance analysis in this study.
We compare the performances of the decoupled and coupled models by analysing
the formal errors and correlations obtained in both cases. It is important to stress
that the coupled model, by concurrently accounting for all dynamical couplings and
sensitivities, directly maps the simulated observations to the estimated parameters’
covariances. Assuming that the fidelity of both our dynamical and measurement
error models is sufficient, the resulting formal errors and correlations are therefore
considered to provide a good statistical representation of the estimation solution,
while this is not directly true for the decoupled method. Our study characterises
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how much the solution obtained by decoupling the spacecraft’s and moons’ state
estimation departs from the covariances given by the coupled approach, regarded as
statistically consistent.

For any estimation, true errors obtained from real data after completing the
iterative least-squares estimation are however larger than the formal errors provided
by a covariance analysis. Differences between true and formal errors originate from
non-white measurement noise, as well as inaccuracies in the models used for the
spacecraft’s and planetary system’s dynamics. For the JUICE mission data analysis,
this situation may even be more severe than for any previous natural satellite’s
ephemeris determination, due to the much better data quality and subsequent
higher requirements on dynamical modelling.

In practice, both the decoupled and coupled methods are limited by the dynamical
model fidelity, so that the true errors would be larger than formal ones in the two

Flyby 3

Flyby 2

Flyby 1

Moon

𝑷𝟎
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𝑷𝟎
𝟏→𝟐
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𝑷𝟐

𝑷𝟑

𝑷𝟎
𝟐→𝟑

𝑷𝟎

2D projection of the a priori covariance for each arc 

2D projection of the estimated covariance 𝑷i for arc 𝑖
(colour-coded based on which a priori information is used)

Covariance propagation

Default a priori constraints (see Section 3.3)

Updated a priori constraints                                      
(𝑷i propagated to beginning of arc 𝑖 + 1)

𝑷𝟎

𝑷𝟎
𝒊→𝒊+𝟏

Figure 4.4.: Schematic representation of the iterative strategy for the a priori
covariances applied to the first step of the decoupled method (i.e.,
normal points determination). The solid covariance ellipses are colour-
coded to indicate which a priori values are used, with the default a priori
P0 represented in green.
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cases. The goal of this study is to determine at which point and to what extent
the coupled estimation would be beneficial for ephemerides determination, as well
as to quantify the dynamical model requirements to achieve this (see Section 4.1).
Dynamical mismodelling would nonetheless influence the decoupled and coupled
solutions differently, and represent a major challenge for the applicability of the
coupled model in particular. These modelling issues will therefore be discussed in
more detail in Section 4.5.

4.3. DYNAMICAL AND OBSERVATION MODELS

In the following section, we discuss the settings and models used for our simulated
covariance analysis for Galilean satellites’ ephemerides from JUICE tracking data.
The spacecraft’s and moons’ dynamical models are summarised in Sections 4.3.1
and 4.3.2, respectively, while the estimation and observations settings are described
in Section 4.3.3.

4.3.1. SPACECRAFT DYNAMICS

When propagating the dynamics of the spacecraft during arc i , the following
accelerations were taken into account:

• spherical harmonic acceleration of the central moon ji , expanded up to degree
l j and order m j (with l1/m1 = 2/2, l2/m2 = 4/4, l3/m3 = 12/12, l4/m4 = 6/6).
Higher degrees might be accessible from JUICE data, especially for Ganymede,
but were purposely not included in our analysis, which primarily focuses on
ephemerides determination.

• point-mass acceleration of moon k, for each k ∈ {1,2,3,4}, with k ̸= ji

• spherical harmonic acceleration of Jupiter, expanded up to degree l0 = 8 and
order 0 (zonal terms only),

• point-mass accelerations exerted by Saturn and the Sun,

• cannonball radiation pressure acceleration due to the Sun’s radiation,

• arc-wise constant empirical acceleration in the RTN frame (radial, tangential,
normal), representing errors in the accelerometer calibration.

We adopted the same models for the environment (gravity fields, ephemerides,
etc.) as Dirkx et al. (2016), with a number of exceptions: we used the Jupiter gravity
field from Iess et al. (2018), and CReMA 5.0 for the JUICE orbit4, released by ESA in
the form of Spice kernels (Acton Jr, 1996).

4https://www.cosmos.esa.int/web/spice/spice-for-juice
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4.3.2. MOON DYNAMICS

When propagating the dynamics of the Galilean moons, we used similar models as
Lainey et al. (2004a); Dirkx et al. (2016), taking into account

• the mutual spherical harmonic acceleration between Jupiter and each moon j ,
with the gravity field of Jupiter expanded up to degree 8 and order 0, and that
of the moons to degree and order 2,

• the mutual spherical harmonic accelerations between all moons j and k, with
the fields of the bodies expanded up to degree and order 2,

• the point-mass accelerations due to Saturn and the Sun,

• the acceleration exerted on each moon j due to tidal dissipation in Jupiter
forced by moon j ,

• the acceleration on each moon j due to both planet and satellite tides, using
the tidal force formulation defined in e.g., Lainey et al. (2007); Lari (2018).

4.3.3. ESTIMATION SETTINGS

As the tracking configurations differ between the flyby and orbital phases of the
JUICE mission, different estimation settings were used. An 8-hour tracking arc was
defined for each flyby, centred at the time of closest approach. For the orbital phase,
we simulated 8 hours of tracking per day. In practice, the JUICE spacecraft will
be tracked from three stations of the European Space Tracking network (ESTRACK),
the main one being Malargue, which is as of yet the only one enabling both X-
and Ka-band tracking. However, we assumed that the other two will also be able
to handle Ka-band tracking by the time the JUICE spacecraft arrives in the Jovian
system. We thus considered 8 hours per day of almost continuous tracking, except
during occultations or for elevations lower than 15 deg (as in e.g., Di Benedetto
et al., 2021; Magnanini, 2021).

Tracking arcs of two days, separated by three days without tracking, were used as
the nominal tracking configuration for the orbital phase. Nonetheless, the sensitivity
of the estimation solution to these tracking settings was investigated by considering
one day- and one week-arcs (results are presented in Section 4.4.2). The three days
interval between two tracking arcs was merely used to reduce the computational
load of our simulations. We verified that adding some buffer between tracking arcs
did not affect the resulting formal uncertainties and, most importantly, the way the
coupled solution compares to the decoupled one.

For each arc, we simulated both Doppler and range observables which are
measurements, in the line of sight direction, of the spacecraft’s position and velocity
with respect to a ground station, respectively. Doppler observables were modelled
with a noise level of 15 µm/s at an integration time of 60 s, while range observables
have a noise level of 20 cm. This is quite precise but should actually be a
conservative value, given the 1 cm range accuracy achieved by the BepiColumbo
mission (e.g., Genova et al., 2021). For selected passes, as was done by Dirkx et al.
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(2017), we also simulated VLBI observables (lateral position of the target spacecraft)
following methodology described by Pogrebenko et al. (2004) and Duev et al. (2016),
with a noise level of 0.5 nrad. Doppler data were generated as unbiased, while
we included arc-wise biases for both the range and VLBI observables. It should
be noted that range and Doppler data are obtained in a topocentric frame, while
VLBI observations are measured in the ICRF. For both the flyby and orbital phase,
observations are subject to constraints on ground station visibility (e.g., occultation,
Sun angle).

When presenting and discussing our results in the rest of this paper, the estimated
states will generally be expressed in the RTN frame: the x-axis points from the
central body towards the spacecraft or moon, the z-axis is aligned with the normal
to the orbital plane and the y-axis completes the reference frame. In the following,
they are referred to as the radial, tangential and normal directions, respectively.

In our simulations, we estimated the following set of parameters:

• arc-wise JUICE initial states x( ji )
sc (ti ) (i = 1...N ), with a priori uncertainty of 5

km and 0.5 m/s on position and velocity components, respectively;

• global or arc-wise Galilean moons’ initial states x(0)
j (t0/ti ) ( j = 1..4). The a priori

uncertainty in position was set to 15 km in the three RTN directions. For the
velocity components, we used the differences between the latest IMCCE and
JPL ephemerides (NOE-5-20215 and JUP3656, respectively) as a conservative a
priori. These a apriori values are provided in Table 4.1;

• gravitational parameters of Galilean moons µ j ( j = 1..4), using the a priori
uncertainties provided in Schubert et al. (2004) and reported in Table 4.2;

• gravity field coefficients of Galilean moons C ( j )
lm , S( j )

lm , up to degree and order
2, 4, 12 (6 when considering the flyby phase only) and 6, for Io, Europa,
Ganymede and Callisto respectively. As a priori constraints, we used the formal
uncertainties by Schubert et al. (2004) for C̄20 and C̄22, which are given in
Table 4.2. We applied Kaula’s rule with K = 10−5 for the remaining gravity field
coefficients (σ= K /l 2, Kaula, 1966);

• arc-wise accelerometer bias calibration factors ci , with the a priori constraint
set to 10−7 m·s−2 (10 times larger than in Cappuccio et al., 2020a);

• arc-wise biases for range observables, with an a priori uncertainty fixed to 0.25
m;

• arc-wise biases for VLBI observables. We set the bias constraint at 0.5 nrad in
both right ascension and declination (Charlot et al., 2020).

Table 4.3 specifies whether a parameter is to be estimated globally or in an
arc-wise manner. It highlights important differences between the two estimation
methods, but also between the two steps of the decoupled approach. It must be

5https://ftp.imcce.fr/pub/ephem/satel/NOE/JUPITER/
6https://ssd.jpl.nasa.gov/sats/ephem/
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Table 4.1.: A priori constraints for the Galilean moons’ velocity components. These
a priori values are computed as the differences between the NOE-5-2021
and JUP365 ephemerides, averaged over the JUICE mission timeline.

Radial [m/s] Tangential [m/s] Normal [m/s]
Io 0.98 0.14 0.72
Europa 0.35 0.10 0.74
Ganymede 0.21 0.08 0.32
Callisto 0.16 0.07 0.10

Table 4.2.: A priori constraints for gravitational parameters, normalised C̄20 and C̄22

coefficients for the four Galilean moons. The values are retrieved from
Schubert et al. (2004).

µ [km/s2] C̄20 [-] C̄22 [-]
Io 0.02 2.7 ·10−6 0.8 ·10−6

Europa 0.02 8.2 ·10−6 2.5 ·10−6

Ganymede 0.03 2.9 ·10−6 0.87 ·10−6

Callisto 0.01 0.8 ·10−6 0.3 ·10−6

stressed that the moons’ gravity field coefficients are only included in the second
step of the decoupled approach to account for the influence of uncertainties in
the moons’ gravity fields on the propagated state solutions (see Eq. 4.10). This is
merely a way to avoid obtaining too optimistic formal errors because part of the
uncertainties sources would be omitted. The a priori values for these coefficients
are directly taken from the formal errors obtained after the first estimation step,
and the gravity field solutions are actually not improved further by the second step,
compared to these a prioris.

As shown by Dirkx et al. (2016, 2017), the influence of Jupiter’s state and
gravity field uncertainties on the estimation results was considered negligible in
the post-Juno era (Durante et al., 2020), and these parameters were therefore not
determined in our simulations. Tidal dissipation parameters were also excluded from
the list of parameters to estimate in this preliminary study, keeping the focus of our
analysis primarily on state estimation methods and on the resulting solutions for
both the spacecraft and the moons.

4.4. RESULTS

This section presents the results of our comparative covariance analyses, performed
with both the coupled and decoupled estimation models (Sections 4.2.2 and 4.2.3).
We first only considered the flyby phase, before including the orbital phase. The
results obtained in the two configurations are presented in Sections 4.4.1 and 4.4.2,
respectively.

It should first be highlighted that the estimation problem is very close to being
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Table 4.3.: Detailed description of the estimated parameters sets, for both the
coupled and decoupled estimation approaches. As mentioned in Section
4.2.3, the parameters change between the first and second steps of the
decoupled method. NI stands for ‘not included’.

Coupled Decoupled
1st step 2nd step

JUICE’s states arc-wise arc-wise NI
Moons’ states global arc-wise global
Moons’ gravity coef. global global global
Accelerometer biases arc-wise arc-wise NI
Range biases arc-wise arc-wise NI
VLBI biases arc-wise arc-wise NI

ill-posed, with extremely high condition number for the normal equations (Eq. 4.9).
The exact values of the formal errors provided in the coming section should thus
be treated cautiously. However, it must be noted that, as a verification, we also
performed a deterministic least-squares estimation for the coupled case, to bring
confidence in the formal uncertainties level (see Appendix 4.8). It proves that
our implementation of the lesser documented coupled model is correct, and that
the obtained formal errors would be representative of the true errors under the
assumptions of a covariance analysis (perfect dynamical and observational models,
to be further discussed in Section 4.5). Our results therefore remain insightful,
especially since we focus on comparing two estimation strategies (and not on
absolute error values).

Given the near ill-posedness of the Galilean moons’ state estimation problem, it
is worth stressing that the condition number is higher when using the decoupled
method, which is an important disadvantage of this approach. When reconstructing
the moons’ long-term dynamics from the normal points, extremely high correlations
between the position and velocity components in the radial and tangential directions
even made the estimation problem non-invertible at first. Eventually, only the
normal points’ positions were therefore added as observables in the second step of
the decoupled method (Section 4.2.3), to partially eliminate these correlations. In
most other analyses, the normal points also include the central moon’s position only
(e.g., Durante et al., 2019; Di Ruscio et al., 2020; Di Ruscio, 2021).

4.4.1. FLYBYS PHASE ONLY

This section presents the covariance analysis results obtained from observations
simulated over the JUICE flyby phase only. We first discuss and compare the
resulting formal errors in Galilean moons’ states (Section 4.4.1), and in gravity field
coefficients (Section 4.4.1). The sensitivity of the estimation solutions to the a priori
covariances for the moons’ initial states is then investigated in Section 4.4.1.
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STATE ESTIMATION

Focusing on the first step of the decoupled estimation strategy, the uncertainties
of the normal points generated for each flyby are displayed in Fig. 4.5. For each
moon, the reduction in the normal points’ uncertainties as the number of flybys
increases is clear. This is a direct consequence of updating the a priori knowledge
for the moons’ states, ensuring that each arc benefits from the previous ones
(Section 4.2.3). Fig. 4.5 shows that the position of the central moon is much better
determined in the radial and tangential directions than it is in the normal direction
(i.e., out-of-plane). Interestingly, the errors in radial and tangential positions are of
similar orders of magnitude, especially for Callisto. This is due to high correlations
between the tangential and radial state components. As an indication, Fig. 4.6
shows the absolute correlations obtained when generating the normal points for the
first flybys at Europa, Ganymede and Callisto. Callisto’s first normal point is much
less correlated than Europa’s and Ganymede’s. Looking at Fig. 4.5, it appears that
this does not indicate a good normal point determination, but, on the contrary, is
due to the fact that the first, relatively high altitude flyby performed at Callisto (see
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Figure 4.5.: Formal errors in position obtained after the first step of the decoupled
estimation for each normal point (i.e., each flyby represented in Fig.
4.1), for the three Galilean moons targeted by the JUICE spacecraft.
They correspond to the 1σ uncertainties as provided by the covariance
analysis, and are here expressed in the RTN frame.
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Fig. 4.1) does not allow the estimation to significantly improve the normal point
determination compared to a priori values. The estimated state components for
this normal point remain rather uncorrelated (since the default a priori covariances
assume no correlation between parameters), but the associated formal uncertainties
are quite large. The other flybys performed around Callisto, supported by the
adopted a priori update strategy (see Section 4.2.3), progressively improve the quality
of the normal points determination (see Fig. 4.5), but also yield much higher normal
points’ correlations, which then become comparable to ones displayed for Europa
and Ganymede in Fig. 4.6.

The global solutions for the Galilean moons’ dynamics, either reconstructed from
the normal points shown in Fig. 4.5 in the decoupled case, or directly outputted by
the coupled model, are displayed in Fig. 4.7. The 1σ uncertainties in the moons’
states, estimated at the beginning of the flyby phase from all flybys’ data, were
propagated through the 2030-2038 time period following the methodology presented
in Section 4.2.1. The local uncertainty reductions in the propagated solutions clearly
indicate when the flybys are performed.

Comparing both solutions in Fig. 4.7, the coupled method leads to lower formal
errors in the moons’ radial positions (one or two orders of magnitude lower than in
the decoupled case). On the other hand, the uncertainties in the moons’ tangential
positions are comparable between the two estimation strategies, and can even be
locally slightly lower with the decoupled approach. These results follow from the
similar formal error levels in the normal points’ radial and tangential positions (see
Fig. 4.5), which translates into uncertainties of comparable orders of magnitude
in both directions when reconstructing the global ephemerides solution. On the
contrary, the coupled approach is able to more efficiently decorrelate the moon’s
radial and along-track motion.

Finally, differences between the coupled and decoupled solutions are not so
significant in the normal direction and seem more arbitrary: the decoupled method
performs slightly better for Io and Ganymede, while the converse is true for Europa
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Figure 4.6.: Absolute correlations obtained when generating the first normal point of
each moon (so for each first flyby at Europa, Ganymede, and Callisto,
respectively). The correlations are computed between the central moon’s
and spacecraft’s state components, both expressed in the RTN frame.
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Figure 4.7.: Propagated formal errors in position for the four Galilean moons,
obtained with both the decoupled and coupled methods (left and right
sides, respectively). These estimated solutions are based on radiometric
data simulated for the JUICE flyby phase only. The black vertical lines
indicate when the JUICE flybys occur, for each moon (see Fig. 4.1).
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and Callisto. The main difference between the two estimation approaches originates
from the decoupled strategy only accounting for the dynamical coupling between the
moons in the second step, when trying to reconstruct the moons’ dynamics using
the kinematic information contained in the normal points. The coupled model, on
the other hand, includes all dynamical effects at once. As the strong dynamical
coupling between the moons mostly manifests itself in the moons’ orbital plane, the
results obtained in the normal (i.e., out-of-plane) direction are less sensitive to the
choice of estimation method.

While tidal dissipation parameters were intentionally excluded from our
comparative state estimation analysis, preliminary insights can still be extrapolated
from the expected ephemerides quality. Especially, an accurate determination of
the moons’ along-track positions is crucial to investigate tidal dissipation effects,
through the secular change in mean motion that they induce. While the decoupled
estimation led to slightly lower formal errors for the tangential positions of the
moons (see Fig. 4.7), we should keep in mind that the uncertainties obtained with
the coupled model are thought to be more statistically representative, as mentioned
in Section 4.2.4. It should therefore be highlighted that the determination of the
moons’ states in the tangential direction might be too optimistic in the decoupled
case, possibly translating into lower formal errors for the tidal parameters. The
coupled strategy, on the other hand, may prove beneficial to achieve realistic errors
when trying to estimate Jupiter’s dissipation at the forcing frequencies of the moons.
This would be particularly important to further investigate whether Callisto is caught
in a tidal resonance lock (Fuller et al., 2016; Lainey et al., 2020). It is however
essential to stress that, with both models, achieving this tangential uncertainty level
will be most challenging, and the results may well be limited by dynamical model
error, as further discussed in Section 4.5.2.

GRAVITY FIELD ESTIMATION

The formal errors for the moons’ gravity field coefficients obtained with the
decoupled and coupled approaches are provided in Fig. 4.8, superimposed with
their a priori values (Section 4.3.3). The limited number of flybys at Europa (2)
and Ganymede (7) does not allow the estimation to significantly improve the gravity
field solution with respect to the a priori knowledge. This is true for both the
coupled and decoupled models, and neither of them seems to perform systematically
and distinctly better for these two moons: for the rare coefficients for which an
improvement is noticed compared to the a priori constraints, the formal errors are
sometimes lower with one method, sometimes with the other.

Results are different in Callisto’s case: the 21 flybys, performed at lower altitudes
and condensed over a short period of time (Fig. 4.1), help to determine the gravity
field well beyond a priori values. It is interesting to note that our formal uncertainties
for Callisto’s gravity field are comparable with those obtained in Di Benedetto et al.
(2021). As shown in Fig. 4.8, the gravity field uncertainties given by the decoupled
solution are slightly larger than those achieved with the coupled model. For some of
Callisto’s flybys, the decoupled method indeed performs poorly in decorrelating the
moon’s and spacecraft’s arc-wise states, which degrades the gravity field estimation.
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(a) Europa

(b) Ganymede

(c) Callisto

Figure 4.8.: Formal errors in gravity field coefficients for the three Galilean moons
targeted by JUICE flybys. The coupled and decoupled solutions are
compared with respect to a priori values (see Section 4.3.3). The cosine
Ci m and sine Si m coefficients (x-axis) are grouped by degree and plotted
by increasing order m. The label C /Si m indicates where the coefficients
of degree i start, and the order m of these coefficients progressively
increases until the start of the next group of coefficients (degree i +1).
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We must nonetheless stress that these differences remain small, the formal errors
obtained with the two estimation strategies still being of comparable orders of
magnitude.

The decoupled model was actually used in several gravity field estimation studies,
mainly to avoid the challenges arising from the reconstruction of dynamically
consistent ephemerides over long timescales, as the dynamical model fidelity could
not be brought to the required level (e.g., Durante et al., 2019). Our results
verified that the decoupled errors for the moons’ gravity coefficients are also not
too optimistic compared to the coupled solution. This analysis thus confirmed that
opting for the normal points strategy for the JUICE flyby phase would not notably
affect the gravity fields solution. This is particularly relevant for Callisto, while
Ganymede’s and Europa’s gravity field determination will also significantly benefit
from JUICE’s orbital phase and the Europa Clipper mission, respectively.

SENSITIVITY TO A PRIORI KNOWLEDGE

The decoupled solution was found to strongly depend on the a priori constraint
applied to the moons’ states before each flyby. As an experiment, we discarded the
update strategy presented in Section 4.2.3 and applied the same default a priori
covariances to all arcs. The normal points approach then led to rather different
results, reported in Table 4.4. All position uncertainties get significantly larger when
the state knowledge is not conveyed from one arc to the next. Results are the worst
for the moons’ radial and tangential positions, with errors increased by more than
one order of magnitude. Updating the a priori information after each flyby is thus
critical if realistic uncertainties are to be achieved with a decoupled approach. In
particular, it progressively helps to decorrelate the central moon’s and spacecraft’s
arc-wise dynamics.

When computing the observations’ contribution to the solution using Eq. 4.28,
the average cq value for the moons’ positions drops from cq >0.98 when using
updated a priori covariances to ≈ 0.40 with the default ones (except for the first
flyby of each moon for which no updated a priori is available and cq thus remains
close to 1). This confirms that the a priori information then becomes predominant
and significantly helps the solution. On the contrary, the coupled solution is not
noticeably affected by the adopted a priori values for the moons’ states (cq ≈ 1), and
thus appears significantly more robust. It also relies on a more straightforward,
update-free strategy as it only uses the default a priori values (see Section 4.3.3).

It must be noted that the a priori knowledge for the moons’ states, while driving
the quality of the decoupled state estimation, has no notable impact on the gravity
field solution, irrespective of the selected estimation method. This again shows that
the main drawbacks of the normal points strategy do not significantly influence the
estimated gravity fields. It confirms that the decoupled method is a good alternative
when focusing on gravity field determination, in agreement with conclusions drawn
in Section 4.4.1.
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Table 4.4.: Formal errors in position for the Galilean moons in the RTN frame,
achieved with the decoupled estimation method for different a priori state
knowledge. The a priori covariances are either updated from one normal
point to the next, as described in Section 4.2.3, or kept fixed to their
default values for all normal points. The errors were averaged over one
year, starting from the first flyby.

Moons A priori values Ratio
(nb flybys) updated [1] constant [2] [1]/[2]

R 3.36 km 35.9 km 0.09
Io T 5.36 km 63.6 km 0.08
(0) N 7.15 km 20.3 km 0.4

R 0.845 km 11.5 km 0.07
Europa T 1.02 km 14.2 km 0.07
(2) N 0.854 km 9.68 km 0.09

R 26.5 m 594 m 0.04
Ganymede T 26.5 m 570 m 0.05
(7) N 57.2 m 535 m 0.1

R 3.48 m 36.1 m 0.1
Callisto T 4.00 m 43.9 m 0.09
(21) N 39.6 m 118 m 0.3

4.4.2. FLYBY AND ORBITAL PHASES COMBINED

We extended the tracking data set to include the orbital phase at Ganymede in
addition to the flybys, again performing the estimation with both the decoupled
and coupled methods. Sections 4.4.2 and 4.4.2 present the results for the states
and gravity field estimates, respectively, obtained in the so-called nominal tracking
configuration for the orbital phase (see Section 4.3.3). The influence of the tracking
settings is further analysed in Section 4.4.2.

STATE ESTIMATION

To apply the decoupled estimation to the orbital phase, we generated one normal
point per tracking arc and determined the central moon’s arc-wise state and the
associated covariances at the centre of the arc. The propagated uncertainties in the
Galilean moons’ states are shown in Fig. 4.9, for both the decoupled and coupled
solutions. Callisto’s state being almost only constrained by the flyby phase, the
formal errors for this moon are similar to those discussed in Section 4.4.1, when
excluding the orbital phase, and are therefore not discussed in the following (see
Figs. 4.7 and 4.9).

It should be stressed that Ganymede’s formal errors fall below 1 m during JUICE
orbit, in both the decoupled and coupled cases (Fig. 4.9). However, current
dynamical models are likely far from being accurate enough to represent sub-meter
level effects. Therefore, achieving the presented level of errors in reality will require
these models to be rigorously adapted and validated. The implications of these
modelling limitations, which differ for the coupled and decoupled solutions, will be
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Figure 4.9.: Propagated formal errors in position for the four Galilean moons,
obtained with the decoupled and coupled methods (left and right sides,
respectively). Tracking data were simulated over both the flybys and
orbital phase. The black vertical lines indicate when the JUICE flybys
occur, for each moon, and the shaped grey area represents the orbital
phase around Ganymede (see Fig. 4.1).
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further discussed in Section 4.5.
Comparing Figs. 4.7 and 4.9 directly highlights the ephemerides improvement

provided by the orbital phase. For both the coupled and decoupled solutions, the
decrease in Ganymede’s position uncertainties during JUICE orbit is clear. These
results also clearly illustrate the strong dynamical coupling between the three
innermost Galilean moons: the errors reduction for Io and Europa with respect to
Fig. 4.4.1 is indeed achieved by collecting more observations close to Ganymede.

Fig. 4.9 also confirms the flybys-based conclusions discussed in Section 4.4.1. In
particular, the coupled estimation still provides a noticeable improvement in the
radial direction, while errors in the moons’ tangential positions are overall lower
with the decoupled method. It is however interesting to note that these trends
are accentuated for some moons, and attenuated for others. For Ganymede, the
tangential position uncertainties are noticeably lower with the decoupled model
during the orbital phase, and the error reduction in the radial direction achieved by
the coupled solution remains limited. The opposite is observed for Io and Europa:
the coupled solution’s radial position uncertainties are on average one to two orders
of magnitude lower than in the decoupled case, while the errors level remains
comparable in the tangential direction.

This is caused by differences in how each method captures the strong dynamical
coupling between Io, Europa, and Ganymede. In the decoupled approach, the
radiometric data collected during JUICE orbit are used to generate normal points
solely at Ganymede. At first, these observations thus exclusively improve our
knowledge of Ganymede’s local states. The coupling between the three moons is only
introduced in the second step of the decoupled estimation (Section 4.2.2), and Io’s
and Europa’s solutions therefore benefit from the orbital phase in an indirect way,
through very accurate normal points generated at Ganymede. On the contrary, the
coupled model directly uses all data to estimate the four moons’ states concurrently,
and provides the most statistically accurate mapping of data uncertainty covariance
to parameter covariance (see Section 4.2.4). In the coupled case, the solution
improvement provided by the orbital phase is thus more evenly spread between the
three innermost moons.

GRAVITY FIELD ESTIMATION

The results and conclusions regarding the moons’ estimated gravity fields are similar
to those discussed in Section 4.4.1. For Europa’s and Callisto’s estimated gravity
coefficients, there is actually no noticeable difference with respect to the flybys
phase’s results, which was expected since the orbital phase at Ganymede does
not constrain other moons’ gravity fields. The solution for Ganymede is however
significantly improved by the orbital phase, as shown in Fig. 4.10. It should be noted
that these results rely on a simplified estimation setup, and that gravity field studies
based on 3GM data from JUICE’s orbital phase estimate Ganymede’s gravity along
with the moon’s rotational parameters, Love numbers, etc. (e.g., Cappuccio et al.,
2020a). Nonetheless, the order of magnitude of the formal uncertainties reported in
Fig. 4.10 are in agreement with those obtained in dedicated 3GM studies (Cappuccio
et al., 2020a; De Marchi et al., 2021).
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Figure 4.10.: Formal errors in Ganymede’s gravity field coefficients. The coupled
solution obtained when including the tracking data collected over both
the flyby and orbital phases is compared with the flyby-only solution
(up to degree and order 6 only, see Section 4.3.3). The cosine Ci m

and sine Si m coefficients (x-axis) are grouped by degree and plotted by
increasing order m, with the cosine coefficients first, followed by the
sine terms.

In our simulations, limited differences between the coupled and decoupled cases
could still be detected from the flybys-based results, at least for Callisto whose
gravity coefficients could be estimated beyond their a priori values (see Fig. 4.8).
However, such discrepancies between the two models are not observed anymore (for
any moon) once the orbital phase is included, which is why Fig. 4.10 only displays
the coupled solution. Compared to the flybys, JUICE’s orbital phase generates large
amount of data, continuously collected over a longer period of time (as opposed to
discrete arcs at each flyby). The contribution of the orbital phase thus completely
dominates the gravity field solution (see Fig. 4.10). The longer tracking arcs (i.e., 2
days, with 8 hours of tracking per day, instead of 8 hours only for the flybys) and the
much larger numbers of observations allow both methods to properly decorrelate the



4

110 4. DECOUPLED AND COUPLED MOONS’ EPHEMERIDES ESTIMATION STRATEGIES

spacecraft’s and moon’s dynamics, which explains why nearly identical uncertainties
are obtained for Ganymede’s gravity field in each case. This confirms conclusions
drawn in Section 4.4.1, according to which the adopted state estimation strategy
does not significantly influence the gravity field solutions.

SENSITIVITY TO TRACKING SETTINGS

We re-ran our simulations with varying arc duration for the orbital phase, to
investigate the sensitivity of each estimation method to the tracking configuration.
As mentioned in Section 4.3.3, three test cases were considered with arcs of one day,
two days (nominal) and one week, respectively. When shortening the tracking arcs
from two days to one, the errors grow larger for both the decoupled and coupled
solutions. The opposite is true when increasing the arc duration to a full week,
as longer arcs allow a better decoupling of JUICE’s and Ganymede’s dynamics. As
expected, this effect is the smallest for Callisto’s uncertainties.

Importantly, the relative evolution of the decoupled and coupled solutions as
the arc duration varies provides valuable insights into the fundamental differences
between the two state estimation approaches. Fig. 4.11 shows ratios in formal
errors resulting from different arc durations. Except for Io’s and Ganymede’s normal
positions, the improvement provided by longer arcs is systematically weaker in the
decoupled case.
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Figure 4.11.: Ratios of the formal errors in position for different arc durations over
JUICE’s orbital phase (in the RTN frame). The results obtained with both
the coupled and decoupled methods are displayed for the four moons
(with no noticeable differences for Callisto). For each method and each
moon, we provide the ratio of the formal uncertainties obtained with 1
day-arcs over 2-days arcs, and 1 day-arcs over 1 week-arcs.
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This is caused by decoupling the spacecraft’s and moons’ state estimations. As
already mentioned, lengthening the tracking arcs generally helps to decorrelate the
spacecraft’s motion from the central moon’s, but does not necessarily reduce the
correlations between the moon’s own state components. This still results in lower
state uncertainties for the normal points. However, it does not automatically reduce
the correlations level in the second step of the decoupled estimation, the spacecraft’s
states being excluded anyway (see Section 4.3.3, Table 4.3). In the decoupled case,
the reduction in the moons’ state uncertainties thus remains limited by the normal
points’ high correlations, especially in the radial and tangential directions. On the
contrary, the correlations between the spacecraft’s and moon’s states are directly
included in the coupled model, since their dynamics are concurrently estimated. The
coupled solution therefore fully benefits from longer tracking arcs, explaining why
a more significant improvement is achieved for the radial and tangential positions
than what the decoupled model allows.

4.5. DISCUSSION: MAIN STRENGTHS AND CHALLENGES OF

BOTH METHODS
This paper assesses the relative performance of two state estimation strategies,
applied to the JUICE test case. To put the obtained formal errors and correlations
into context, we discuss practical considerations related to data analysis in the
following, and how they affect the coupled and decoupled models in different ways.
Data processing challenges are detailed in Section 4.5.1, while model-related issues
will be addressed in Section 4.5.2. As a possible mitigation strategy, we finally
suggest a possible alternative state estimation approach in Section 4.5.3.

4.5.1. DATA PROCESSING CONSIDERATIONS

One of the major differences between the coupled and decoupled techniques lies in
the way the available data are processed. The decoupled method can theoretically
treat each mission, and each mission phase, independently and generate as many
normal points as required by the mission design. These normal points can later
be combined with those determined from other missions and/or with different
observation sets (e.g., optical, astrometric data). For the coupled solution, however,
all data need to be processed at once.

For the Galilean moons test case in particular, reaching a global solution
would ideally require to include spacecraft data from various missions, as well as
Earth-based optical astrometric observations. More precisely, JUICE’s imbalanced
data set, with its strong focus on Ganymede, would be efficiently complemented by
the Europa Clipper and Juno missions, with over 40 flybys7 at Europa planned for
the former (e.g., Verma and Margot, 2018; Young et al., 2019), and an orbital phase
at Jupiter lasting since 2016 for the latter, combined with a few crucial flybys at Io
during the extended mission phase. In addition to radiometric data, spacecraft-based
optical observations captured with navigation cameras can also be useful to help

7at the time of writing
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constraining the ephemeris solution. These can be direct imaging of other moons
(e.g., JANUS data for JUICE, Dirkx et al. 2017), as well as eclipses and Sun or stellar
occultations observed from the spacecraft (Andreoli and Zannoni, 2018).

Additionally, Earth-based photo- and astrometric observations of the Galilean
moons have been collected over centuries. They include absolute and differential
astrometry, already performed since the 17th century (e.g., data starting from late
19th century used in Lainey et al., 2009), as well as eclipses and occultations (e.g.,
Arlot and Emelyanov, 2019). More recently, mutual approximations were identified
as interesting observables (Morgado et al., 2019a; Fayolle et al., 2021) and the first
stellar occultation by the moon Europa was observed in 2017, with a remarkable
accuracy of 0.80 mas (i.e., 2.55 km at Jupiter’s distance) (Morgado et al., 2019b).
Interestingly, the GAIA catalogue will facilitate the observations of such occultations
in the future.

Merging all above-mentioned data sets and processing them in a single step
does not only make the coupled estimation process slower, but also substantially
increases its complexity. It first implies to carefully weigh all different observations
to obtain a statistically balanced and realistic solution. The JUICE radiometric
data, which led to formal state uncertainties below the meter level for the Galilean
moons (see Fig. 4.9), would indeed need to be properly combined with Earth-based
optical astrometric data whose current accuracy remains larger than 1km (even
stellar occultations). Furthermore, optical astrometric and radiometric tracking data
are typically processed by different estimation tools, while the coupled estimation
model would require a single software able to handle and process all observation
types concurrently, which imposes significant practical constraints (many different
observation types required, with, for each of them, suitable error and dynamical
models, etc.).

Moreover, Earth-based observations are collected over longer periods of time
compared to the spacecraft data, which are condensed over the planetary missions’
timeline. This requires dynamical models to be consistent over both short and long
timescales, and represents a major challenge for the reconstruction of a coupled
solution, which will be further discussed below.

4.5.2. MODELLING-RELATED CONSIDERATIONS

For the JUICE mission specifically, our covariance analysis indicates that Ganymede’s
formal state uncertainties get lower than the meter level during the orbital phase
(see Fig. 4.9). For such position errors to be meaningful, major modelling efforts
would however be essential. Model-related issues are therefore expected to occur
when real JUICE data become available, but their influence on the estimation can
unfortunately not be easily quantified in a simulation analysis. Dirkx et al. (2016)
analysed which effects would likely be detectable from a long-term (several years)
signature in the dynamics. However, they did not address the observability and
relevance of short-term periodic variations. Such potentially mismodelled dynamical
effects (both long- and short-term) are however crucial to discuss here, as they
would have different impacts on the coupled and decoupled solutions.

Among possible sources of inaccuracies, the models currently used for the
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dissipation occurring inside the moons rely on simplified analytical formulations
(Lainey et al., 2009; Lari, 2018). These approximations circumvent the need for
perfectly consistent rotational and translational models, still unavailable for natural
satellites, but are based on time-averaging assumptions. The dissipation inside the
moons however directly influences the orbital evolution of the moons themselves
and plays a key role in the long-term dynamical history of the Jovian system, such
that its accurate modelling is crucial.

Additionally, due to the coupling between the moons’ translational and rotational
motions, issues can also originate from mismodelled librations. Ganymede’s
libration will likely be observable in the dynamics of JUICE itself during the orbital
phase (Cappuccio et al., 2020a). The coupled model thus presents an interesting
oppurtunity, since the libration’s signature on the spacecraft and moon dynamics
is different but would need to be fitted concurrently, possibly yielding a better
constrained solution. On the other hand, modelling inconsistencies in Ganymede’s
librational motion would more critically degrade the residuals of the coupled
solution.

For JUICE specifically, properly modelling the moons’ rotations would furthermore
require to reconcile what the different instruments are sensitive to. JANUS and GALA
(navigation camera and altimeter, respectively) will observe the rotational motion
of the moon’s surface shell, which might be decoupled from the full body inertial
rotation sensed by the radiometric data. Additionally, temporal variations in the
central planet’s gravity field are also not yet perfectly understood, and are suspected
to be responsible for small, unmodelled time-dependent accelerations detected at
periapsis in Juno (Durante et al., 2020) and Cassini data (Iess et al., 2019). It
should nonetheless be stressed that an imperfect dynamical model can still achieve
the required accuracy if properly parametrised (e.g., if time-dependent librational
and gravitational variations are adequately adjusted), provided the relevant free
parameters are incorporated in the estimation, and sufficiently decorrelate from the
other parameters.

The fundamental differences between the coupled and decoupled approaches (see
Figs. 4.2–4.3) significantly influence how the above-mentioned modelling issues
might affect the estimation solutions. Compared to the coupled case, the decoupled
approach indeed estimates more state parameters, determined more locally (Table
4.3), which directly increases the ability of this model to absorb dynamical modelling
inaccuracies. Additionally, the long-term moons’ dynamics are only reconstructed in
the second step of the decoupled estimation, and they are adjusted to the normal
points (i.e., arc-wise covariances of the moons’ states). For the JUICE flyby phase
for example, the decoupled model is thus fitting formal state uncertainties generally
ranging from tens up to hundreds of meters (the last flybys at Callisto getting closer
to the meter level for the radial and tangential positions). The coupled approach,
on the other hand, is directly adjusting the parameters to the radiometric data,
with expected accuracies of 20 cm and 15 µm/s for the range and range-rate of
JUICE with respect to the Earth (Section 4.3.3). It is therefore significantly easier
to obtain flat residuals with the decoupled estimation strategy (i.e., zero-mean
residuals, noise within expected observation errors), as observables with accuracies
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up to 101 −102 m bring sufficient flexibility to (at least partially) absorb dynamical
modelling inaccuracies.

The fact that the coupled method estimates the moons’ dynamics in a single
arc also drastically reduces its ability to absorb such model errors. It indeed
implies that the estimation model cannot compensate for modelling inaccuracies by
a local moon’s state variation without affecting other arcs, and possibly conflicting
with their own observational constraints. Furthermore, the decoupled estimation
leaves out the arc-wise spacecraft states when determining the moons’ long-term
dynamics (see Section 4.2.3). The coupled model, on the contrary, imposes perfect
consistency between the spacecraft’s and moons’ state estimation solutions, which
further reduces its degrees of freedom.

In practice, the above entails that the concurrent estimation of the spacecraft’s
and moons’ states would need accurate and consistent dynamical models over both
short and long timescales. The current modelling fidelity has for example not yet
allowed a coupled solution to be achieved from Cassini and Juno data (e.g., Durante
et al., 2019). Furthermore, even if a global solution can still be reconstructed for the
natural bodies’ dynamics, modelling errors are expected to manifest themselves in
high, incompressible residuals, due to the coupled strategy’s lack of flexibility. On
the contrary, in the decoupled case, modelling issues are more likely to be absorbed
in the final estimated states and to thus remain unnoticed. Reflecting back on the
normal points obtained for JUICE, with errors largely below one meter, more realistic
uncertainties in agreement with the available dynamical models would significantly
raise this error level. It would therefore degrade the quality of the decoupled
estimation, but not prevent obtaining of a viable solution. On the other hand, the
(large) post-fit residuals obtained with the coupled estimation can be indicative of
the magnitude of the dynamical modelling inaccuracies, and help to interpret the
decoupled solution’s true uncertainty.

4.5.3. POSSIBLE ALTERNATIVE STRATEGY

Despite the promising results obtained with the coupled model, Sections 4.5.1 and
4.5.2 highlighted crucial challenges that would need to be addressed before a reliable
and statistically consistent coupled solution can be reconstructed for the Galilean
moons’ dynamics. Hybrid approaches, halfway between fully coupled and decoupled
strategies, could therefore prove promising. In such hybrid scenarios, the coupled
model can be applied more locally, rather than on the entire time period of interest.
For the JUICE test case, a coupled solution might typically be attainable over
the GEO/GCO5000 and/or GCO500 phases. Some flybys could also be processed
concurrently (e.g., the two flybys at Europa). It would also be possible to reconstruct
a coupled solution over the entire JUICE mission, but to combine it with other
mission/data sets in a separate step, to mitigate the data merging issues highlighted
in Section 4.5.1.

This would efficiently mitigate the effects of long-term modelling inconsistencies
and thus make a coupled solution achievable locally. Such local coupled solutions
can then be treated as normal points or a priori information for other analyses, and
combined with those generated for different missions or with optical astrometric
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data, as discussed in Section 4.5.1. This would also eliminate the need to process
astrometric and radiometric data in a single estimation tool as in the fully coupled
strategy (see Section 4.5.1), by splitting the data analysis steps. This hybrid approach
could represent an interesting alternative: it would potentially allow the estimation
solution to benefit from a higher sensitivity to the system’s full dynamical coupling,
while still guaranteeing that a viable solution can be achieved.

4.6. CONCLUSIONS

We provided the complete formulation for a coupled, concurrent state estimation of
the spacecraft and natural bodies from planetary missions’ data. Such a coupled
model has already been used in past studies (i.e., Dirkx et al., 2019b; Lari and
Milani, 2019), but, to the best of our knowledge, was not explicitly described in
the literature. We then performed a detailed covariance analysis comparing the
decoupled and coupled estimation strategies for the upcoming JUICE mission. The
realism of the formal errors given by the coupled model was verified by running a
deterministic simulation and comparing the least-squares estimation errors with the
formal uncertainties.

The JUICE mission will make us face both unique opportunities and challenges
due to the unusual mission profile and unprecedented accuracy of the radiometric
data, used to reconstruct the strongly coupled dynamics of the Galilean moons.
Our study primarily assessed how a coupled solution, if attainable, would affect
the accuracy of the Galilean moons’ ephemerides. The results of the decoupled
estimation approach, on the other hand, indicate the uncertainty level that would
be achievable in case the coupled model failed to reconstruct a viable solution for
the moons’ dynamics (see discussion in Section 4.5). It must be stressed that we do
not anticipate the conclusions of our study to depend on the CReMA (i.e., trajectory)
version used for the JUICE spacecraft. While the absolute uncertainty levels for the
estimated parameters might vary, the comparison between the two state estimation
methods is expected to yield similar results.

We first showed that selecting appropriate a priori values for the moons’ states
is critical for the decoupled solution. The state solution improvement must be
accounted for by updating the a priori covariance from one normal point to the
next. Discarding the information gained in previous arcs indeed leads to poorly
constrained normal points (limited to kilometer level accuracy). This eventually
drives the decoupled solution to be one or two orders of magnitude less accurate
than the coupled one, for all moons and in all directions (e.g., tens of meters against
∼ 500 m for Ganymede’s position uncertainties with and without a priori update,
respectively, see Table 4.4).

Furthermore, the flybys-based results already highlighted notable differences
between the coupled and decoupled state solutions. The coupled method achieves
lower radial position uncertainties (∼ 102 m for Io and Europa, ∼ 101 m for
Ganymede, ∼ 100 m for Callisto), which are one or two orders of magnitude smaller
than in the decoupled case. In the tangential direction, the formal errors given by
the decoupled approach are however slightly lower: ∼ 10 m against ∼ 30 m, keeping
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Ganymede’s initial position uncertainties as an example. As discussed in Section
4.2.4, the coupled model is nonetheless considered to provide a statistically accurate
representation of the estimation problem, which might imply that the tangential
position uncertainties obtained with the decoupled model are slightly optimistic.

Our results also proved that JUICE orbital phase is crucial for the quality of the
ephemerides of the four Galilean moons. Assuming a perfect dynamical model,
Ganymede’s position uncertainties would even reach submetric levels during the
orbit. Interestingly, it seems that Io’s and Europa’s solutions benefit more from
the orbital phase when adopting a coupled approach (Europa’s radial position also
determined with an accuracy better than one meter, see Fig. 4.4.2), while the
improvement appears stronger for Ganymede in the decoupled case. Including
the orbital phase in our simulations actually enhances the differences between the
two estimation strategies, and indicates that the dynamical coupling between the
Galilean moons is better captured by the coupled model.

Concerning dynamical parameters, the adopted state estimation method is not so
influential for the gravity field coefficients’ estimates. This indicates that the normal
points strategy is perfectly adapted for gravity field determination from JUICE
radiometric data (e.g., Magnanini, 2021), and generally for most local parameters
studies as well. Rotational and tidal dissipation parameters, on the other hand,
were omitted from our simulated estimations. Future studies should include these
parameters and try determining the dissipation in Jupiter at the moons’ frequency
(Lainey et al., 2009, 2020). It would then be crucial to investigate whether the
decoupled model can achieve realistic uncertainties despite a slightly optimistic
estimation of the moons’ along-track motion.

As a preliminary step towards an improved solution for the Galilean moons’
ephemerides, we limited ourselves to an analysis based on simulated data only. As
extensively discussed in Section 4.5, many issues are however expected to arise when
real JUICE radiometric data become available and are fed to the estimation process,
as happened with Cassini and Juno data (Durante et al., 2019, 2020). For the JUICE
test case, the coupled estimation model nonetheless appears to yield promising
improvements with respect to the decoupled strategy: it overall reconstructs a more
balanced solution for the three Galilean moons in resonance, with significantly
reduced uncertainties in the moons’ radial positions. Despite the challenging issues
that may emerge, this motivates future efforts to achieve a coupled state estimation
for the Galilean moons.

4.7. APPENDIX A: INFLUENCE OF THE NON-CENTRAL

MOONS’ STATES AS CONSIDER PARAMETERS ON THE

NORMAL POINTS DETERMINATION

This appendix presents a subset of the results verifying how the normal point
generated for a flyby’s central moon is affected by uncertainties in the other moons’
states. As mentioned in Section 4.2.3, the first step of the decoupled model only
estimates the arc-wise state solution for the central moon and neglects the possible
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contribution of these uncertainties. As a verification, we quantified the influence of
this simplification by adding the non-central moons’ states as consider parameters
for each normal point determination.

We only show the results obtained for two specific flybys. One is the first flyby of
JUICE’s flyby tour, which is performed around Ganymede. Since the uncertainties in
the other moons’ states are then still limited to their a priori knowledge, we could
expect their influence on Ganymede’s estimated state solution to be significant.
The 12th flyby at Callisto was also selected as a particularly interesting one: the
uncertainties of Callisto’s normal points are indeed noticeably reduced from this
flyby onward (formal errors smaller than 10 m in the radial and tangential directions,
see Fig. 4.5), while Ganymede’s and Europa’s states are still poorly determined and
could therefore affect Callisto’s solution.

The results for the two above-described flybys are provided in Tables 4.5 and 4.6.
They showed that including the other moons’ states as consider parameters does
not noticeably affect the formal errors obtained for the central moon’s normal point.
This confirms the validity of our simplified approach and allow us to keep excluding
the non-central moons’ states from the first step of the decoupled estimation. It
must be noted that while this appendix only presents only two flybys in detail, this
analysis was conducted for all JUICE flybys, with identical conclusions.

4.8. APPENDIX B: DETERMINISTIC SIMULATION AS A

VERIFICATION
While we limited ourselves to covariance analyses in our comparative study
(see Section 4.2.4), we also performed a complete least-squares estimation as a
verification of the coupled model, which we will refer to as a deterministic simulation
in the following. Our goal is to check whether the formal uncertainties discussed
in our paper are consistent with the parameters values that would be estimated
from non-ideal observations (i.e., including biases and noises) using an iterative
least-squares inversion. This is especially important given the high condition number

Table 4.5.: Normal point determination for the 1st flyby at Ganymede, with and
without including the other moons’ states as consider parameters in the
estimation. The formal errors in Ganymede’s arc-wise state are provided
in inertial coordinates.

Formal errors in Other moons’ states Relative difference
Ganymede’s state Excluded Consider parameters [%]

x 989 m 991 m 0.18
Position y 147 m 151 m 2.8

z 2.12 km 2.21 km ∼0
vx 0.0645 m/s 0.0645 m/s ∼0

Velocity vy 0.0104 m/s 0.0104 m/s ∼0
vz 0.145 m/s 0.145 m/s ∼0
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Table 4.6.: Normal point determination for the 12th flyby at Callisto, with and
without including the other moons’ states as consider parameters in the
estimation. The formal errors in Callisto’s arc-wise state are provided in
inertial coordinates.

Formal errors in Other moons’ states Relative difference
Callisto’s state Excluded Consider parameters [%]

x 1.69 m 1.70 m 1.4
Position y 6.63 m 6.63 m ∼0

z 126 m 126 m ∼ 0
vx 2.71 ·10−5 m/s 2.71 ·10−5 m/s ∼0

Velocity vy 4.59 ·10−5 m/s 4.59 ·10−5 m/s ∼0
vz 1.53 ·10−3 m/s 1.53 ·10−3 m/s ∼0

encountered when inverting the normal equations (see Sections 4.4.1 and 4.4.2).

4.8.1. SCOPE OF THE VERIFICATION

The deterministic simulations presented in this appendix remain within the scope of
some major assumptions of the covariance analysis: in our simulated environment,
this verification indeed still relies on perfect dynamical and observational models.
The additional simulations presented in the following thus do not hinder or replace
the discussion in Section 4.5.2 on dynamical modelling fidelity and its possible
effect on the coupled and decoupled solutions. Deviations between the true errors
and the statistical behaviour predicted by formal uncertainties mostly originate from
observational and dynamical modelling inaccuracies. Therefore, this analysis is not
meant as a validation and cannot investigate how representative formal errors are
of the true errors that would be obtained from real data. It could be possible to
purposely introduce perturbations in our dynamical models. However, simulating
such errors such that their effects are representative of the limitations of our current
models is not straightforward. It would require a dedicated, extensive analysis of our
current dynamical and observational models, as discussed in Section 4.5, and was
therefore deemed beyond the scope of this comparative state estimation study.

Nonetheless, running a deterministic simulation still allows us to check that the
formal uncertainties are consistent with the true errors resulting from the iterative
least-square estimation, presuming that the assumptions of the covariance analysis
hold. Such a verification ensures that our implementation of the estimation model is
correct and demonstrates that our formal uncertainties are reliable in a covariance
analysis context.

We only conducted such a deterministic simulation for the coupled model. It
is indeed currently less widely applied and less documented than the decoupled
estimation method, and such a verification thus becomes relevant. The coupled
model being an extension of the classical formulations used by the decoupled
estimation, the added value of performing a separate deterministic verification for
the decoupled model appears limited. Additionally, implementing and running the
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entire least-squares estimation with the decoupled model would be more demanding,
since it relies on two consecutive estimation steps (Fig. 4.3) and in practice also
requires multiple sequential estimations to determine all normal points, due to the
chosen a priori update strategy (see Section 4.2.3).

4.8.2. APPROACH AND SETTINGS

When performing an iterative weighted least-squares inversion, the variation in
parameters values ∆qi , at each iteration i , is given by (e.g., Gill and Montenbruck,
2013)

∆qi =
(
P−1

qq,0 +HT
i Wi Hi

)−1 (
HT

i Wi∆zi +P−1
qq,0∆q0,i

)
,

where ∆zi is the vector containing the observations residuals at iteration i , and ∆q0,i

is the difference between the current parameters estimates and their a priori values.
The rest of the notation follows that of Eq. 4.9.

In our simulations, true errors are directly defined as the difference between the
true parameters values (i.e., values assumed in our simulated environment) and their
estimated values. To keep our simulation as realistic as possible, the observations
are modelled with the bias and noise levels given in Section 4.3.3: noise levels of 20
cm, 15 µm/s and 0.5 nrad for range, Doppler and VLBI observations, respectively,
with biases of 1 m for range measurements and 0.5 nrad for VLBI data. We also
applied small initial perturbations to the a priori values of the estimated parameters,
to mimic imperfect knowledge of the true parameters values. The way the initial
parameters’ offsets were defined is detailed below:

• moons’ initial states: initial perturbation ∆q0 calculated such that, once
propagated over the duration of the JUICE mission, the difference between
the perturbed and unperturbed moons’ trajectories would be of the order of
magnitude of the current ephemerides’ accuracy (see Section 4.3.3). This led
to initial offsets of 100 m in position and 5 mm/s in velocity.

• JUICE’s arc-wise states: offset of 100 m in position and 0.01 m/s in velocity (in
all inertial directions);

• other parameters (gravitational parameters, gravity coefficients, accelerometer
calibration biases, range and VLBI observation biases): perturbation set to 5%
of their true values.

Some differences should be noted with respect to the nominal estimation settings
used for our covariance analyses (Section 4.3.3). Io’s initial state was removed from
the list of estimated parameters, due to the absence of Io’s flyby, resulting in a lack
of observations at this moon. The least-squares inversion could indeed not converge
when trying to estimate its state alongside with those of the other Galilean moons.
This already provides valuable insights about the challenges one will face when
conducting real data analysis (as further discussed in Section 4.5). It should be
noted that this convergence issue is only caused by JUICE’s imbalanced data set, and
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that many more difficulties are to be expected when dynamical and observational
models will be confronted with real data (see discussion in Section 4.5). It is also
important to highlight that this was only observed when perturbing the a priori
values of the estimated parameters. When no initial perturbation is applied, the
least-squares estimation could converge while solving for Io’s state along with the
other moons’. All true errors were then found to be smaller than 3σ, σ designating
the corresponding formal errors.

Furthermore, the elevation and occultation checks normally performed to verify
the viability of an observation were switched off, thus assuming constant link during
the tracking arcs. One specific tracking arc did not have enough viable observations
for the estimation problem to converge otherwise. While this issue could have also
been fixed with tighter a priori constraints, we adopted a simpler approach. We
must stress that removing the visibility requirements, thus adding a few observations,
does not lessen the relevance of our verification analysis, since it focuses first and
foremost on the consistency between true and formal uncertainties provided by the
coupled model, and not on absolute error values.

We conducted this iterative least-squares inversion for the flyby phase case
only. This was mostly motivated by the high computational load required by such
deterministic runs. We do expect similar results and conclusions when including the
orbital phase at Ganymede.

4.8.3. RESULTS

After 5 iterations, the least-squares inversion reached convergence, and the final
observations residuals are provided in Fig. 4.12. As expected, the residuals follow a
Gaussian distribution with almost zero mean, and a standard deviation close to the
observations noise level (Section 4.3.3). This can most clearly be observed for the
Doppler residuals, due to the larger number of observations available compared to
range and VLBI data.

The histogram of the ratios between true and formal errors is displayed in Fig.
4.13, and all ratio values are between 0 and 9. Precisely quantifying which true
to formal errors ratio should be expected is far from straightforward, as it is both
data- and parameter-dependent. While true errors 2 to 3 times larger than formal
errors can be typically expected for planetary ephemerides (Jones et al., 2015, 2020,
for Saturn’s ephemeris derived from VLBA observations), larger true to formal errors
ratios have been found for dynamical parameters estimated from spacecraft tracking
data (gravity fields, rotational parameters, etc.) (e.g., Konopliv et al., 2011; Mazarico
et al., 2015). These results were however all based on real observations, such that
inaccurate dynamical or observations error models significantly contributed to the
true/formal errors discrepancy.

In our simulations, however, our models are still deemed perfect, and true errors
should be comparable to formal uncertainties if the estimation is able to converge
towards the correct parameters values. In other JUICE simulation studies, true errors
were indeed found to be similar or even slightly lower than formal ones for Callisto’s
gravity field in Di Benedetto et al. (2021), although it is unclear if the parameters
values were initially perturbed, and by how much. In Lari and Milani (2018), similar
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Figure 4.12.: Observations residuals after the weighted least-squares estimation
reached convergence (from left to right: VLBI, range, and Doppler
residuals). The black vertical lines indicate the mean of the residuals
for each observation type, while the dashed vertical lines represent the
standard deviation around the mean value.

results were obtained, but true errors were averaged over 10 experiments with
different initial parameters perturbations (smaller than those we applied).

In our simulation, for most parameters (97% of the 432 estimated parameters),
the true error is smaller than 3σ (i.e., true to formal errors ratio smaller than 3).
A significant fraction (62%) of the true errors are actually smaller than 1σ. These
results confirm that, for the vast majority of estimated parameters, the coupled
estimation model is able to properly converge towards the true parameter value, and
that errors can be expected to be in agreement with 3σ uncertainties. All parameters
exhibiting a true to formal errors ratio larger than 3 were actually found to be
Europa-related properties (gravity field coefficients, initial position along the x-axis,
etc.). Due to the limited amount of observations collected at Europa (only two flybys,
see Fig. 4.1), these parameters are either highly correlated (second degree and order
gravity field coefficients with Europa’s state), or cannot be estimated beyond their a
priori constraints (cq close to 1 for Europa’s other gravity coefficients, implying a
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Figure 4.13.: Distribution of the ratio between true and formal errors for all estimated
parameters. A value smaller than 1 indicates that the true estimation
error is lower than the associated formal uncertainty. 432 parameters
were estimated in total.

so-called biased estimation). This might at least partially explain why unexpectedly
large true to formal errors ratios were obtained for these parameters.

Overall, this deterministic simulation succeeded in verifying that the 3σ
uncertainties provided by the coupled estimation are good indicators of the
expectable estimation errors. This increased confidence in our covariance analyses.
The effect of inaccuracies in dynamical or observational modelling was however not
investigated (see discussion in Section 4.5). Interestingly, and despite still relying on
ideal models, this simulation nonetheless highlighted issues arising when trying to
complete the least-squares estimation, due to the high condition number resulting
from the lack of observations at Io and Europa.
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CONTRIBUTION OF PRIDE VLBI

PRODUCTS TO EPHEMERIDES

M. S. FAYOLLE, D. DIRKX, G. CIMO, L. I. GURVITS, V. LAINEY,
P. N. A. M. VISSER

In the coming decade, JUICE and Europa Clipper radio science will yield the
most accurate estimation to date of the Galilean moons’ physical parameters and
ephemerides. JUICE’s PRIDE (Planetary Radio Interferometry and Doppler Experiment)
will help achieve such a solution by providing VLBI (Very Long Baseline Interferometry)
observations of the spacecraft’s lateral position, complementing nominal radio science
measurements. In this paper, we quantify how PRIDE VLBI can contribute to the
moons’ ephemerides determination, in terms of attainable solution improvement
and validation opportunities. To this end, we simulated VLBI data for JUICE,
but also investigated the possibility to perform simultaneous tracking of JUICE and
Europa Clipper, thus ultimately generating both single- and dual-spacecraft VLBI.
We considered various tracking and data quality scenarios for both VLBI types,
and compared the formal uncertainties provided by covariance analyses with and
without VLBI. These analyses were performed for both global and local (i.e., per-flyby)
estimations of the moons’ states, as eventually achieving a global solution first requires
proceeding arc-per-arc. We showed that both single- and multi-spacecraft VLBI
measurements only bring limited improvement to the global state estimation, but
significantly contribute to the moons’ normal points (i.e., local states at flyby times),
most notably in the out-of-plane direction. Finally, we designed a validation plan
exploiting PRIDE VLBI to progressively validate the classical radio science solution,

This chapter is under revision for publication in Icarus (Fayolle et al., 2024): Fayolle, M. S., Dirkx, D.,
G. Cimo, L. I. Gurvits, Lainey, V., & Visser, P. N. A. M. Contribution of PRIDE VLBI products to the
joint JUICE-Europa Clipper moons’ ephemerides solution.
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whose robustness and statistical realism is sensitive to modelling inconsistencies.
PRIDE will indeed be invaluable to overcome possible dynamical modelling challenges,
and eventually achieve the uncertainty levels promised by JUICE-Europa Clipper
analyses.

5.1. INTRODUCTION

In the 2030s, both ESA’s JUpiter ICY moons Explorer (JUICE) and NASA’s Europa
Clipper spacecraft will study Jupiter’s Galilean satellites (Grasset et al., 2013; Witasse
et al., 2024; Pappalardo et al., 2021). They will perform a series of flybys around
these moons, with a strong focus on Callisto (JUICE) and Europa (Europa Clipper),
followed by an 8-month orbital phase around Ganymede for JUICE. The strong
interest in the Galilean system was strengthened from the Galileo mission, with the
detection, either tentative or confirmed, of subsurface oceans of liquid water below
the icy crust of the three outermost satellites (Europa, Ganymede, and Callisto)
(Khurana et al., 1998; Kivelson et al., 2000, 2002). Both JUICE and Europa Clipper
missions are specifically designed to confirm the findings of the Galileo mission,
and provide the most detailed characterisation to date of the moons’ hydrospheres
(Petricca et al., 2023; Roberts et al., 2023).

As part of their scientific objectives, data from JUICE and Europa Clipper will
further constrain the formation and long-term evolution of the Galilean system,
a critical step to understand how the moons’ internal oceans could have formed
and survived until present-day. Our understanding of the system’s thermal-orbital
evolution indeed remains incomplete, with fundamental questions still open
regarding the history of the Laplace resonance (Yoder, 1979; Greenberg, 1987) and
the possibility of a rapid migration of Callisto’s orbit if caught in a resonance-locking
mechanism (Lari et al., 2023). Answering those will require a better understanding
of tidal dissipation mechanisms, which govern the moons’ orbital migration (e.g.,
Lainey et al., 2009, 2020) and heats up their interiors (Nimmo and Pappalardo,
2016). The Galilean system can moreover be seen as a miniature version of the Solar
System. Understanding its formation and history will therefore bring invaluable
insights into planetary systems evolution in general (e.g., Deienno et al., 2014; Heller
et al., 2015).

The moons’ current orbits result from these long-term evolution processes, and
therefore bear witness of the satellites’ orbital and interior history. Improving our
ephemerides solutions for the Galilean satellites is thus a natural way to gain insights
into the system’s thermal-orbital evolution. In planetary space missions such as
JUICE and Europa Clipper, this is primarily achieved by extracting the dynamical
signatures of the Galilean satellites from the radiometric tracking measurements of
the spacecraft during their close encounters with the moons (flybys or orbital phase).

For this purpose, JUICE will benefit from a dedicated radio science instrument
3GM (Gravity & Geophysics of Jupiter and Galilean Moons, Iess et al. 2024), while
Europa Clipper will rely on the spacecraft’s nominal tracking and communication
radio capabilities (Mazarico et al., 2023). The potential of classical radio science
observables from both JUICE and Europa Clipper has already been demonstrated for
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ephemerides determination applications (Magnanini, 2021; Magnanini et al., 2024;
Fayolle et al., 2022). These measurements are nonetheless limited by the observation
geometry: range and Doppler data mostly constrain the spacecraft’s motion (position
and velocity, respectively) in the line-of-sight direction.

To alleviate this limitation, JUICE will take advantage of an additional support
experiment: the Planetary Radio Interferometry and Doppler Experiment (PRIDE),
which has already been successfully used for, among others, the Huygens Probe,
Venus Express, and Mars Express missions (Pogrebenko et al., 2004; Bocanegra-
Bahamón et al., 2018; Duev et al., 2016). PRIDE provides phase-referenced VLBI
(Very Long Baseline Interferometry) measurements of the spacecraft’s position. This
is achieved by simultaneously detecting the signal transmitted by JUICE with several
ground-based radio telescopes, while nodding between the target (i.e., spacecraft)
and a nearby stable background radio source used as a phase calibrator. This
allows PRIDE to accurately reconstruct the lateral position of the spacecraft in the
ICRF (International Celestial Reference Frame), providing the missing information
on JUICE’s position components orthogonal to the line-of-sight. Because of the
strong geometrical complementarity with the range and Doppler measurements,
PRIDE VLBI data are expected to significantly help constraining the Galilean moons’
dynamics. A more detailed discussion on the main differences and advantages of the
PRIDE phase-referencing technique with respect to classical Delta-DOR VLBI can be
found in Gurvits et al. (2023).

The contribution of JUICE-PRIDE to the ephemerides solution has already been
investigated by Dirkx et al. (2017). As expected, VLBI measurements were found
to mostly improve the estimation of the out-of-plane position of Jupiter and its
moons. However, this previous analysis, performed with an earlier version of the
JUICE trajectory, focussed on a JUICE-only radio science solution. In addition,
the methodology underlying this study, while sufficient for a preliminary analysis,
did not properly capture the dynamical interactions between the spacecraft, moons
and Jupiter in its uncertainty quantification. Since this first study, the expected
simultaneous presence of the JUICE and Europa Clipper spacecraft in the Jovian
system has radically changed the picture, the synergy between their Jovian tours
greatly benefiting the ephemerides estimation. Thanks to this unique dual-mission
configuration, joint JUICE-Europa Clipper analyses indeed achieve significantly more
accurate and stable solutions than previous single-mission studies (Magnanini et al.,
2024).

Investigating the potential of PRIDE as a powerful validation experiment, and as an
additional data set to obtain a robust and stable solution, then becomes critical. The
extremely low uncertainty levels predicted to be achievable by existing simulations
(e.g., Fayolle et al., 2022; Magnanini et al., 2024) will indeed be extremely difficult to
achieve in practice. Previous attempts to reconstruct a consistent, global solution for
the motion of natural satellites from a series of radio science flybys, in the context of
the Cassini mission, have proven extremely sensitive to dynamical modelling issues,
sometimes preventing or complicating the obtention of a reliable coupled solution
(Durante et al., 2019; Zannoni et al., 2020; Jacobson, 2022).

The extremely accurate radio science data from JUICE and Europa Clipper will
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impose an even more stringent requirement on the consistency of our dynamical
models. Similar issues as for the Cassini case are therefore expected to arise (e.g.,
Dirkx et al., 2017; Fayolle et al., 2022). Overcoming these modelling challenges
requires proceeding gradually, by first performing local state estimations to gradually
reconstruct a coherent, global solution for the moons’ ephemerides. PRIDE will
be instrumental in achieving this, by providing completely independent VLBI
measurements of the spacecraft position. These will be extremely valuable to validate
the solutions based on range and Doppler data, as well as to detect and identify
potential modelling issues.

Furthermore, the presence of two in-system spacecraft opens novel, unique
opportunities to perform simultaneous VLBI tracking of both JUICE and Europa
Clipper. This tracking configuration, referred to as multi-spacecraft VLBI in the
following, will provide extremely accurate measurements of the relative angular
position between the two spacecraft. These can translate into constraints on the
relative position of the Galilean moons with respect to one another, as most of
JUICE’s flybys occur around Ganymede and Callisto, while Europa Clipper focusses
on Europa. These unique observations therefore have the potential to greatly help
constraining the strongly coupled dynamics of the Galilean system.

In light of the above, this paper analyses the contribution of various PRIDE VLBI
products to the moons’ ephemerides determination from JUICE and Europa Clipper
radio science. We specifically quantify how much VLBI measurements can improve
the solution obtained from Doppler and range data, both for local and global
estimations of the moons’ orbits. To this end, we pay particular attention to the
error budgets of our VLBI observables, using more detailed and realistic random
and systematic noises than in (Dirkx et al., 2017). We moreover identify promising
opportunities to perform multi-spacecraft tracking and assess the contribution of
the resulting observables to the ephemerides solution. Finally, several validation
strategies enabled by the PRIDE VLBI technique are explored. We discuss their
potential, and investigate their upcoming role in the progressive reconstruction of a
statistically consistent solution for the Galilean moons’ ephemerides from JUICE and
Europa Clipper data.

We first describe our simulated VLBI observables in Section 5.2, before presenting
the details of our joint JUICE-Europa Clipper estimation setup in Section 5.3. The
underlying numerical model used for the estimation is extended from Fayolle et al.
(2022). Sections 5.4 and 5.5 then present the results obtained when adding single-
and multi-spacecraft VLBI measurements, respectively, to the joint JUICE-Europa
Clipper ephemerides solution. Finally, Section 5.6 discusses the various validation
opportunities offered by the PRIDE VLBI technique and Section 5.7 provides the
main conclusions of our analyses.

5.2. VLBI OBSERVABLES

Our analyses will rely on simulated VLBI observables to quantify the expected
PRIDE contribution to the ephemerides solution for the Galilean moons. In this
perspective, this section presents our simulated VLBI measurements, starting with
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describing the adopted error budget and the search process for the VLBI phase
calibrators in Sections 5.2.1 and 5.2.2, respectively. We then discuss the conditions
and opportunities to perform multi-spacecraft VLBI tracking between the JUICE and
Europa Clipper spacecraft in Section 5.2.3.

5.2.1. ERROR BUDGET FOR PHASE-REFERENCING VLBI
To make our simulations as realistic as possible, the noise budget assigned to
VLBI simulated data was designed based on past measurements. The main error
sources are media propagation delays (interplanetary plasma, troposphere, and
ionosphere), instrumental signal delays, clock offsets and instabilities, signal-to-noise
ratio (SNR) of the spacecraft’s signal and calibrator’s broadband emission, as well
as uncertainties in ground stations’ coordinates, and Earth’s orientation parameters
(Pradel et al., 2006). Moreover, the quality of past VLBI data is often assessed by
analysing post-fit residuals, which are however not only sensitive to the accuracy of
the VLBI measurements but also affected by the quality of the orbit determination
solution and by the position uncertainty of the calibrator in the ICRF.

Phase-referencing VLBI was conducted with both the Venus Express (VEX) and
Mars Express (MEX) spacecraft as observing targets. For the former, the analysis
of pre-fit residuals between the VLBI data points and the a priori trajectory of
the spacecraft revealed a large discrepancy between right ascension and declination
(Duev et al., 2012). The low declination of the MEX spacecraft (ranging from −11 deg
to −13 deg), combined with a relatively large separation (2.5 deg) with respect to the
phase calibrator, resulted in the poor cancellation of tropospheric and ionospheric
effects, mostly translating in a large declination error. The MEX VLBI measurements,
on the other hand, show smaller pre-fit residuals: the median values of the rms
residuals are 0.03 mas and 0.06 mas1 in right ascension and declination, respectively,
with a 2-min integration time (Duev et al., 2016).

Furthermore, Jones et al. (2020) provide an overview of the VLBI measurements of
the Cassini spacecraft over the entire mission duration (2004-2017). After removing
outliers due to poor a priori orbit determination solution for Cassini and/or large
separation between the spacecraft and calibrator (larger than 7 deg), the rms
residuals are 0.24 mas and 0.36 mas in right ascension and declination, respectively.
The orbit determination error and the uncertainty in the calibrators’ ICRF positions
can however account for half of these residuals. Both error sources are not
inherently related to the VLBI measurement accuracy, and they will be accounted
for independently in our simulations. We thus consider a VLBI measurement quality
of 0.6 nrad (∼ 0.12 mas) and 0.9 nrad (∼ 0.18 mas) for Cassini’s VLBI data in right
ascension and declination, respectively.

VLBI astrometry of the Juno spacecraft during the early phase of the mission has
also been published, yielding rms (post-fit) residuals of 0.4 mas and 0.6 mas in right
ascension and declination, respectively (Jones et al., 2019; Park et al., 2021). These
residuals are larger than for Cassini, due to the poorer quality of Juno’s a priori
orbit solution available at the beginning of the mission, as well as large calibrator

11 mas = 4.84 nrad
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position errors for some epochs (Jones et al., 2019). The few published Juno VLBI
measurements were thus not considered representative of the accuracy typically
expected from VLBI phase-referencing tracking.

Based on these existing measurements, and excluding the pessimistic errors in
declination obtained with VEX, we selected two different Gaussian random noise
budgets for our simulated VLBI observables (see Table 5.1):

• Poor VLBI noise case: σ(α) = 0.12 mas and σ(δ) = 0.18 mas, based on
Cassini VLBI post-fit residuals after removing the estimated contribution of the
calibrators’ positions ;

• Good VLBI noise case: σ(α) = 0.04 mas2 and σ(δ) = 0.06 mas, consistent with
MEX VLBI measurements and with the minimum tropospheric effect errors.

The above only encompasses random error sources, and does not account for the
systematic bias induced by an error in the calibrator’s ICRF position, which will be
addressed in Section 5.2.2.

These error levels are consistent with the simulation-based analysis of VLBI
systematic errors in Pradel et al. (2006). They indeed identified wet tropospheric
effects as the dominant error source, apart from the uncertainty in the calibrator’s
position, which in our case is treated as a separate bias (see Section 5.2.2). The
error due to the total tropospheric effect was found comprised between 0.03 and
0.045 mas in right ascension, and between 0.05 and 0.13 mas in declination. These
values give an indication of the minimum noise level that can be expected for
VLBI measurements, and are in line with our good VLBI case. Moreover, the
existing VLBI measurements on which we based our error budget did not benefit
from dual-frequency calibration techniques to cancel ionospheric effects, nor from
water vapor radiometers for wet tropospheric delay calibration. The quality of these
data points can thus be considered rather conservative with respect to the highest
accuracy achievable with the phase-referencing VLBI technique (Jones et al., 2020).

It should also be noted that the random errors in VLBI observables cannot
be perfectly represented by purely uncorrelated white noise. In practice, some
uncertainty sources (e.g., atmospheric delays) are time-dependent, limiting how
frequently independent (i.e., uncorrelated) VLBI data points can be obtained. In
the following, we will therefore consider different VLBI measurement cadences to
account for this and avoid overestimating the data volume and information content
of the VLBI data set (see Section 5.3.2).

The two VLBI noise budgets mentioned above rely on past X-band VLBI
measurements and thus indirectly assume tracking at similar frequencies. However,
JUICE is also equipped with Ka-band tracking capabilities. While no existing VLBI
data at such frequencies can be exploited to derive realistic noise budgets, a factor
two to four improvement can be theoretically expected between X- and Ka-band
measurements. We thus considered an additional case, referred to as Ka-band case
(see Table 5.1), with VLBI noise level set to half their X-band values in the best case

2The error in right ascension was set to 0.04 mas instead of 0.03 mas to keep the same ratio between
the good and poor VLBI noises in both right ascension and declination.
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scenario. The actual feasibility of Ka-band VLBI tracking will eventually depend on
the availability of both suitable calibrators at these frequencies (see Section 5.2.2),
and VLBI arrays with sufficient number of Ka-band-capable telescopes.

5.2.2. PHASE-REFERENCING VLBI CALIBRATORS

The phase-referencing VLBI technique used by PRIDE requires nodding between
the target (spacecraft) and a nearby radio source, used as calibrator, to yield very
accurate measurements of the target’s lateral position in the ICRF. For each of our
simulated VLBI data points (see Section 5.3.2), we therefore first verified that a
suitable phase calibrator is available, which implies fulfilling the following conditions.

32 32.5 33 33.5 34 34.5 35 35.5

10 0

10 1

(a) Uncertainties in right ascension.

32 32.5 33 33.5 34 34.5 35 35.5

10 0

10 1

(b) Uncertainties in declination.

Figure 5.1.: Uncertainties in the ICRF positions of the phase calibrators identified
over the course of the JUICE mission, using the latest JUICE trajectory
(see Section 5.3.1). The blue dots represent all calibrators (at all
epochs), while we highlighted in orange the epochs corresponding to an
active tracking session during the flyby and orbital phases, when VLBI
measurements are actually possible.
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First, the radio source must have a sufficiently high total flux density at X- and
Ka-bands (e.g., at least ∼30 mJy as was the case for MEX observations in 2013, Duev
et al., 2016). Furthermore, the source must be compact (i.e., bright) enough for a
major part of the total flux density coming from a compact, mas-scale morphology.
Additionally, the angular separation between the calibrator and the spacecraft should
typically be smaller than 2 deg to obtain accurate phase-calibrated measurements.

Moreover, as mentioned in Section 5.2.1, an error in the calibrator’s ICRF position
would introduce a systematic bias in the spacecraft’s angular position derived from
the VLBI observation. For each calibrator identified over JUICE’s Jovian tour,
we therefore extract its position uncertainty from the Radio Fundamental Catalog
(rfc2023b3), as shown in Fig. 5.1, to be applied as a systematic bias. The influence of
such biases, which vary over the mission duration as different calibrators are used,
is thus directly accounted for in our estimations (see Section 5.3.4). From Fig. 5.1,
the averaged uncertainty values are 0.8 nrad and 1.3 nrad in right ascension and
declination, respectively. However, the calibrators’ position accuracy is significantly
worse between mid-2032 and 2033, due to the absence of better calibrators within
2 deg of the spacecraft. This period unfortunately overlaps with eight of JUICE’s
flybys, including its two flybys at Europa, and will be further discussed in our results
(Section 5.4).

A similar calibrator search was conducted in Ka-band, but the limited number
of catalogued radio source at these frequencies yielded poor results (no suitable
Ka-band calibrator during the flyby phase). Our results for the Ka-band case should
therefore be treated carefully, as they depend on the hypothetical presence of a
nearby appropriate calibrator. In the following, we arbitrarily used X-band calibrators
for our Ka-band analyses. If the added-value of Ka-band VLBI is demonstrated,
future observation campaigns to densify the Ka-band radio source background
should be conducted before JUICE reaches the Jovian system.

5.2.3. MULTI-SPACECRAFT IN-BEAM MEASUREMENTS

As mentioned in Section 5.1, the simultaneous presence of JUICE and Europa Clipper
in the Jovian system will make it possible to perform concurrent VLBI tracking of
the two spacecraft. Such multi-spacecraft VLBI measurements have already been
acquired for various Mars missions: between the Phoenix spacecraft and the Martian
orbiters MRO (Mars Reconnaissance Orbiter) and Odyssey (Fomalont et al., 2010),
and between MEX (Mars Express), TGO (Trace Gas Orbiter), and MRO (Molera Calvés
et al., 2021).

Performing multi-spacecraft VLBI tracking requires the two spacecraft (here JUICE
and Europa Clipper) to be concurrently transmitting, with a suitable calibrator
within 2 deg of the targets, as for single-spacecraft VLBI. Moreover, for in-beam
tracking to be feasible, the angular separation between the two target spacecraft
should be smaller than the beam size of a typical single-dish telescope involved in
the observation (∼3 arcmin for a 30-m-class radio telescope observing at X-band).
In addition to these feasibility requirements, some additional conditions should also

3http://astrogeo.org/rfc/

http://astrogeo.org/rfc/
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Figure 5.2.: Timespan between each JUICE flyby and the temporarily nearest Europa
Clipper flyby, using the latest mission trajectories (see Section 5.3.1),
to identify multi-spacecraft tracking opportunities. The colours indicate
around which moon each flyby is performed, and the horizontal plain
and dashed lines represent a time interval limit of one and three days,
respectively.

be fulfilled for the multi-spacecraft VLBI measurements to significantly contribute
to the moons’ ephemerides estimation. The most promising opportunities indeed
occur when the two spacecraft are both temporally close to an encounter (i.e flyby)
with a moon, such that the spacecraft’s motions still contain signatures of the
moons’ dynamics. When looking for multi-spacecraft VLBI tracking opportunities,
we therefore focus on combinations of two flybys, one by JUICE and one by Europa
Clipper, less than three days apart. This also ensures that the (potentially relatively
large) pre-encounter and clean-up manoeuvres planned three days before and after
each flyby (ESOC, 2019; Young et al., 2019), respectively, are excluded from the
tracking arcs and do not affect the estimation.

Based on these requirements, Fig. 5.2 highlights possible multi-spacecraft VLBI
opportunities. In total, 11 flyby combinations meet the maximum time interval
requirement of three days, as summarised in Table 5.2. Seven of them involve
flybys performed around two different moons (referred to as multi-moon flyby
combinations). The remaining five, on the other hand, are flybys performed at the
same moon (single-moon flyby combinations), including a flyby of Europa by both
spacecraft with less than four hours in-between. The potential of such tracking
configurations, due to their unique geometry, to validate the radio science solution(s)
or detect dynamical modelling issues will be discussed and exploited in Section 5.6.

Multi-spacecraft VLBI tracking will yield very accurate measurements of the relative
position of the two spacecraft in the ICRF. However, a distinction should be made
between in-beam and telescope nodding phase referencing. If the two spacecraft are
close enough (less than 3 arcminutes), their signals can be simultaneously tracked
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Table 5.2.: Combinations of JUICE and Europa Clipper flybys allowing for multi-
spacecraft VLBI tracking.

JUICE Clipper Time In-beam
flyby at flyby at interval [h] possible

1 Ganymede Europa 70.7 no
2 Ganymede Europa 6.5 yes
3 Europa Europa 3.7 yes
4 Callisto Europa 54.3 yes
5 Callisto Callisto 51.3 yes
6 Callisto Ganymede 57.8 partially
7 Callisto Callisto 71.5 no
8 Callisto Callisto 71.5 no
9 Callisto Europa 71.4 partially

10 Ganymede Europa 23.9 no
11 Callisto Europa 65.6 partially

within the primary beam of the radio telescope. In such in-beam configuration,
many systematic errors affecting the quality of the measurement cancel out (Majid
and Bagri, 2007; Fomalont et al., 2010). Based on previous in-beam experiments,
an accuracy of 0.1 nrad could then be expected for the relative angular position
measurement (Fomalont et al., 2010). To be conservative, we also considered a poor
accuracy case. Given the very small angular separation between the two targets and
the cancellation of many measurement errors (Majid and Bagri, 2007), we used the
good single-spacecraft VLBI case (see Section 5.2.1) for the poor in-beam VLBI error.

For nodding multi-spacecraft measurements (when the two spacecraft are too
far apart for in-beam tracking), the noise budget is slightly worse as the error
cancellation is not as effective. For our good noise case, we used the same error
levels for single-spacecraft VLBI (see Section 5.2.1). However, for the poor noise case,
we set our multi-spacecraft VLBI errors halfway between single-spacecraft VLBI’s
best and worst cases, the latter being too pessimistic for multi-spacecraft tracking.
For single-spacecraft VLBI, large errors are indeed only obtained for large angular
separations, or with phase calibrators whose ICRF positions are poorly constrained,
neither of these two conditions being relevant in a multi-spacecraft tracking
configuration. Table 5.3 summarises these different noise levels for multi-spacecraft
VLBI.

Table 5.3.: Selected error levels for simulated multi-spacecraft VLBI measurements.

Selected 1σ(α) [nrad] 1σ(δ) [nrad]
noise in-beam nodding in-beam nodding

Poor case 0.2 0.4 0.3 0.6
Good case 0.1 0.2 0.1 0.3
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5.3. ESTIMATION SETUP FOR JOINT JUICE - EUROPA

CLIPPER SOLUTIONS
This section describes the estimation setup for our JUICE-Europa Clipper radio
science simulations, starting with the models used to propagate the dynamics of
both the moons and spacecraft in Section 5.3.1. Sections 5.3.2 and 5.3.3 then present
the simulated observables and state estimation strategies applied in our analyses,
respectively, before Section 5.3.4 lists the various parameters to be estimated.

5.3.1. DYNAMICAL MODELS

Following the recommendations formulated in Dirkx et al. (2016) and the models
used in Fayolle et al. (2023b), the dynamics of the Galilean satellites were propagated
in a jovocentric frame using the following set of accelerations:

• mutual spherical harmonics acceleration between Jupiter and each moon,
considering all zonal coefficients for Jupiter up to degree 10, and expanding
the moons’ gravity fields up to degree and order 2;

• mutual spherical harmonics acceleration between the four Galilean moons,
including interactions between terms up to degree and order 2;

• point mass gravity from the Sun and Saturn;

• relativistic acceleration corrections;

• tidal effect on the orbit of moon k due to the tides raised on Jupiter by moon
k (see discussion below);

• tidal effect on the orbit of moon k due to the tides raised by Jupiter.

The moons’ gravity field coefficients were taken from Schubert et al. (2004), while
Jupiter’s gravity field was based on the current state-of-the-art model at mid-Juno
mission (Iess et al., 2018; Durante et al., 2020). We used the latest IAU model for
Jupiter’s rotation (Archinal et al., 2018), and the moons’ rotations were assumed to
be synchronous, with their long axis pointing towards the empty focus of their orbit
(e.g., Lari, 2018).

We chose to directly model the effects of tides on the moons’ orbits, following the
formulation proposed in e.g., Lari (2018); Lainey et al. (2019), instead of introducing
time-variation of the satellites’ gravity fields due to tidal deformation. The motivation
for this modelling choice is twofold. First, it circumvents the need for (near)-perfect
consistency between our tidal and rotational models to accurately reproduce the
effects of tides on the moons’ dynamics (e.g., Dirkx et al., 2016). More importantly,
this allows us to focus on the signature of the tidal effects present in the moons’
orbits specifically, and not in the gravity field variations sensed by the spacecraft
(analysed in Magnanini et al., 2024). This allows us to investigate how PRIDE VLBI
measurements might help estimate tidal dissipation parameters via an improved
determination of the moons’ ephemerides.

Our estimation setup also requires propagating Jupiter’s dynamics (heliocentric
frame), for which the following accelerations set was considered:
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• mutual spherical harmonics acceleration between Jupiter and the Sun,
expanding both gravity fields up to degree and order 2;

• point mass gravity from all planets in the Solar System and from the four
Galilean satellites;

• relativistic acceleration corrections.

Finally, the orbits of the JUICE and Europa Clipper spacecraft were propagated
with respect to the central moon of each flyby and/or orbital phase, using the
latest available trajectories as references45. The following set of accelerations was
considered:

• spherical harmonics gravitational acceleration from Jupiter (zonal coefficients
up to J10);

• spherical harmonics gravitational acceleration from the central moon up to
degree and order 13 (Europa), 15 (Ganymede), and 9 (Callisto) (see Section
5.3.4);

• point mass gravity from the other (non-central) Galilean moons, the Sun, and
Saturn;

• solar radiation pressure from the Sun;

• arc-wise empirical accelerations, constant in the RTN (radial, tangential,
normal) frame (nominal values set to zero), modelling possible accelerometer
calibration errors.

Regarding the latter, one set of empirical accelerations was considered for each
flyby and for each daily arc during JUICE’s GCO (Ganymede Circular Orbit) phase.
Longer arcs were however considered in-between flybys for multi-spacecraft tracking
(Section 5.2.3), during which daily empirical accelerations were added to modelled
expected perturbations of the spacecraft’s dynamics.

5.3.2. SIMULATED RADIO SCIENCE OBSERVATIONS

For our covariance analyses, we first simulated classical radio science measurements
(Doppler and range) for both JUICE and Europa Clipper. For the sake of clarity, the
range and Doppler-only solution, with no VLBI included, will be referred to as the
baseline solution in the rest of this paper.

For JUICE, we assumed a X/Ka-band link and three tracking arcs of 6h each per
flyby, one centred around the closest approach and the other two planned 12h
before and after the flyby, following the configuration used in Cappuccio et al.
(2022). In addition, the GCO was divided in day-long arcs, with 8h of tracking per

4JUICE trajectory: juice_mat_crema_5_0_20220826_20351005_v01 https://www.cosmos.esa.int/web/
spice/spice-for-juice

5Europa Clipper trajectory: 21F31_MEGA_L241010_A300411_LP01_V4_postLaunch_scpse https:
//naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/

https://www.cosmos.esa.int/web/spice/spice-for-juice
https://www.cosmos.esa.int/web/spice/spice-for-juice
https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/
https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/
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day. For each of these tracking arcs, Doppler and range data were simulated with a
noise level of 12 µm/s (60s of integration time) and 20 cm, respectively. Although
in agreement with similar JUICE simulation analyses (e.g., Cappuccio et al., 2022),
this range noise budget is very conservative based on BepiColombo’s sub-centimeter
ranging accuracy (Cappuccio et al., 2020b; Genova et al., 2021).

For Europa Clipper, only Doppler measurements were simulated. We assumed a
noise level of 0.1 mm/s during the 4h-long tracking arcs centred at each closest
approach, due to the unavailability of the high gain antenna (HGA) (Mazarico et al.,
2023). We also considered more accurate Doppler data with a noise of 0.05 mm/s, to
be acquired during the navigation passes (HGA available). These additional passes
are, on average, scheduled 20h before and after each flyby (Magnanini et al., 2024).

We then also simulated single- and multi-spacecraft PRIDE VLBI observations.
Since our analyses focus on the contribution of such measurements, we considered
different data acquisition and noise level scenarios, varying the following settings:

• VLBI random noise, using the different error budgets defined in Section 5.2.1;

• measurement cadences (i.e., how often can an independent VLBI data point be
generated, Section 5.2.1) of 1 h, 20 min, 5 min, and 2 min;

• frequency of the VLBI tracking sessions during JUICE’s GCO (from weekly to
monthly).

We also tested different tracking scenarios for multi-spacecraft VLBI, essentially
distinguishing between two types of configuration (see Fig. 5.3):

1. mid-arc tracking: single tracking arc centred in-between the JUICE and Europa
Clipper flybys involved in the flyby combination of interest;

2. arc bounds tracking: for each flyby combination, two tracking arcs occurring
respectively just after the first close encounter and just before the second one.

While we varied the duration of the multi-spacecraft tracking arcs, we always
ensured that the total tracking duration is identical between the two above cases
(i.e., using halved arcs for the arc bounds tracking case). Regarding the quality of
the simulated multi-spacecraft VLBI observables, we adopted the two different noise
budgets presented in Table 5.3. Finally, navigation Doppler data were also simulated
during the longer arcs required for multi-spacecraft tracking, with a noise level of 80
µm/s at an integration time of 1h (ESOC, 2019). These Doppler observables were
merely included to constrain the empirical accelerations added over these longer
arcs (see Section 5.3.1).

5.3.3. ESTIMATION STRATEGY

To quantify the relative improvement of the estimation solution achievable with
PRIDE VLBI, we performed multiple covariance analyses, in different scenarios. The
covariance matrix P of the estimated parameters is given by the following (Gill and
Montenbruck, 2013):

P = (
HTWH+P−1

0

)−1
, (5.1)
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4h6h

mid flyby combination

Flyby +12h

Default tracking sessions6h ~5h

JUICE flyby Clipper flybyFlyby -20h

Multi-spacecraft VLBI
mid-arc tracking

Multi-spacecraft VLBI
arc bounds tracking

max. 3 days

Figure 5.3.: Multi-spacecraft VLBI tracking configurations, illustrated for a flyby
combination where the JUICE flyby occurs before the Europa Clipper
one. The grey boxes represent the radio science tracking sessions, with
their durations indicated inside. ∆T denotes the (varying) duration of
the multi-spacecraft tracking arc (see Section 5.5).

where W designates the observations weight matrix and H is the observations partial
matrix with respect to the estimated parameters. P0, on the other hand, contains
the a priori covariances of the estimated parameters, accounting for our knowledge
of these parameters prior to the estimation. As will be highlighted in Section 5.3.4,
some of our estimations also include consider parameters (i.e., parameters that are
not directly estimated, but whose uncertainties are accounted for in the estimation).
The statistical representation of the estimation accuracy is then provided by the
so-called consider covariance analysis Pc , defined as:

Pc = P+ (
PHTW

)(
Hc CHT

c

)(
PHTW

)T
. (5.2)

P, H, and W refer to the same matrices as in Eq. 5.1, and Hc and C respectively
designate the observation partials with respect to the consider parameters and
the covariance matrix describing our knowledge of these parameters. The formal
uncertainties of the estimated parameters are given by the square root of the
diagonal elements of P and Pc . Finally, these formal errors can be propagated to any
epoch t , the propagated covariance being obtained as follows:

P(t ) = [Φ(t , t0);S(t )]P [Φ(t , t0);S(t )] , (5.3)

where Φ(t , t0) and S(t ) are the state transition and sensitivity matrices, respectively.
Eq. 5.3 can also be applied to propagate the consider covariance Pc instead of P.

Covariance analyses, while perfectly adapted for our purposes, inherently rely on
a number of simplifying assumptions. In particular, our dynamical models should
be able to perfectly represent reality, which is particularly difficult to achieve for
the non-conservative accelerations acting on the spacecraft. The resulting formal
uncertainties therefore provide a too optimistic statistical representation of the true
estimation errors. While we take this into consideration in our discussion, it does not
impact the relevance of our approach, since we focus on the relative contribution of
PRIDE VLBI with respect to a baseline solution.
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However, as discussed in Section 5.1, modelling inconsistencies do not only yield
discrepancies between true and formal errors, but might also prevent obtaining a
consistent, stable solution. Overcoming these issues will require an iterative process,
starting with reconstructing the spacecraft and flyby moons’ orbits locally using the
so-called normal points (i.e., arc-wise state solutions for the flybys’ central moons,
determined at the closest approach). These local estimates of the moons’ states
would then be reconciled into a global solution in a subsequent step. The main
challenges of a direct global estimation of the moons’ dynamics will be further
discussed in Section 5.6, along with possible mitigation strategies. Because of
these foreseen difficulties, we nonetheless chose not to solely focus on a global
ephemerides solution, but to also consider the determination of the moons’ normal
points (i.e., per-flyby solutions) as an intermediate estimation step. In our analyses,
we therefore apply both strategies, which are described in more detail in Fayolle
et al. (2022):

• Local estimation, determining the central moon’s normal point for each flyby
and each tracking arc during the orbital phase for JUICE. These normal points
are estimated perfectly independently from one another (unlike in Fayolle
et al., 2022);

• Global estimation, reconstructing a single solution for the moons’ orbits over
the timelines of the JUICE and Europa Clipper missions. This model has
been extended with respect to Fayolle et al. (2022) to also account for the
concurrent estimation of the central planet’s state (see 5.3.4). More details on
the extended formulation can be found in Appendix 5.8.

In Sections 5.4 and 5.5, we thus assess the contribution of PRIDE VLBI data to
both types of solution. We also specifically discuss how VLBI could help going from
arc-wise state solutions to a single, fully consistent picture of the system’s dynamics
over the entire missions’ timeline (see Section 5.6).

5.3.4. ESTIMATED PARAMETERS

The parameters estimated from the simulated radio science observables described in
Section 5.3.2 are reported in Table 5.4. We distinguish between the global and local
state estimation setups introduced in Section 5.3.3, and specify if each parameter is
estimated globally or locally (e.g., per arc). The arc and pass definitions refer to
those defined in Section 5.3.2. Finally, regarding the moons’ gravity field spherical
harmonics expansion, we extended it up to the point where expanding it further no
longer affects the state estimation results.

The main addition of our baseline setup compared to most radio science solutions
lies in estimating Jupiter’s state along with the Galilean moons’ orbits. While
unnecessary for gravity field analyses, this becomes relevant for moons’ ephemerides
determination. Existing JUICE and/or Europa Clipper simulations indeed predict
extremely low formal uncertainties, reaching sub-metre levels for Ganymede’s radial
position during JUICE orbital phase (e.g., Fayolle et al., 2022; Magnanini et al., 2024).
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When facing such accuracy levels, the influence of Jupiter’s position error can no
longer be neglected and needs to be accounted for in our analyses.

It should be noted that, in the absence of real data, no unique estimation setup is
currently predetermined for JUICE and Europa Clipper radio science estimations. For
this reason, we kept a certain flexibility in our setup. We adopted the configuration
in which both range and VLBI biases are estimated as nominal. However, we kept
alternative options, such as including observation biases as consider parameters,
for additional analyses meant to investigate the sensitivity of our solutions to the
estimation setup choice (see Sections 5.4 and 5.5). Although estimating observation
biases will not necessarily pose a particular challenge, we used these parameters
as a proxy to simulate a potential deterioration of the simulation-based solution,
possibly too optimistic, when moving to real data analysis. Range biases were
selected because of their influence on the determination of the absolute position
of the Jovian system, moons, and spacecraft, which directly affects the contribution
of PRIDE VLBI measurements. Including biases as consider parameters also allows
us to account for the fact that an arc-wise constant value might not be able to
adequately model the systematic error in the measurements. Nonetheless, unless
otherwise indicated, the results presented in the rest of this paper are obtained with
the nominal setup (i.e., estimating all biases).

5.4. RESULTS: SINGLE-SPACECRAFT VLBI
This section presents our results regarding the contribution of single-spacecraft
PRIDE VLBI measurements of the JUICE spacecraft to the moons’ state estimation.
We first describe the baseline radio science solution in Section 5.4.1, before
presenting the improvement achieved with VLBI for the global and normal points
solutions in Sections 5.4.2 and 5.4.3, respectively. The latter addresses the VLBI
contribution to the local, intermediate estimation results for the moons’ states, which
will be essential to eventually achieve the global ephemerides solution discussed in
Section 5.4.2. It is therefore critical to quantify the improvement provided by VLBI
with both approaches (see more detailed discussion in Section 5.6).

5.4.1. BASELINE SOLUTION WITHOUT VLBI
Before quantifying the improvement provided by VLBI, the baseline radio science
solution for the moons’ ephemerides, based on JUICE-Europa Clipper range and
Doppler (classical) data, must first be briefly discussed. As our analyses focus on
PRIDE VLBI specifically, we limit ourselves to a top-level description of the formal
uncertainty levels that can be expected from JUICE and Europa Clipper classical
radio science measurements. More detailed results and discussions can nonetheless
be found in dedicated studies, including more complete analyses of the Jovian
system’s tidal parameters considering the full effects of tidal dissipation both on the
moons’ and spacecraft’s orbits (Cappuccio et al., 2020a, 2022; De Marchi et al., 2021,
2022; Magnanini et al., 2024; Mazarico et al., 2023).

6Kaula’s rule: σ= K /l 2, K = 10−5, l =degree
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Figure 5.4.: Baseline formal errors as a function of time for Jupiter and the Galilean
moons’ positions, estimated from JUICE’s and Europa Clipper’s range
and Doppler simulated data. For the sake of conciseness, the calendar
years are shown without preceeding digits "20".

The formal position uncertainties of our baseline solutions are shown in Fig.
5.4, for both Jupiter and its Galilean satellites. Jupiter’s position errors are at the
sub-metre level in the radial direction, around 1-2 m for the along-track component
and a few tens of metres in the out-of-plane direction. While seemingly small, these
errors are not negligible compared to the moons’ position uncertainties, confirming
the need to account for the Jovian ephemeris error in our estimations (Section 5.3.4).
In the moons’ solutions, the flybys and orbital phase also yield very low propagated
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errors. The signature of the Europa Clipper flybys at Europa, and of JUICE orbital
phase around Ganymede, are particularly visible. As expected, the in-plane position
components show very low uncertainty levels, on average at the metre level for the
radial direction and slightly larger (tens of metres) for the tangential position. These
directions are well constrained by Doppler and range data, and the improvement
achievable with VLBI is therefore expected to be limited. This, however, does not
hold for the normal direction, with larger formal uncertainties at around a hundred
metres. Good quality VLBI data (good noise case, see Section 5.2.1) are expected to
provide measurements of JUICE’s lateral position with an accuracy of about 120-200
m. Considering that multiple VLBI data points will be acquired and that the VLBI
geometry is mostly sensitive to the normal direction, this suggests that PRIDE could
improve the moons’ out-of-plane positions.

The results presented in Fig. 5.4 were obtained with the nominal estimation setup.
Nonetheless, a baseline covariance analysis was also conducted with range biases as
consider parameters, which increased the position errors by a factor five to eight,
depending on the moon and direction, compared to Fig. 5.4. For our analyses, the
degradation of the baseline solution’s accuracy in the out-of-plane direction, where
PRIDE VLBI is expected to provide the largest improvement, is particularly relevant.
For our purposes, we nonetheless adopted as nominal the setup yielding a more
optimistic baseline solution, to avoid overestimating the contribution of PRIDE VLBI
observables.

5.4.2. VLBI CONTRIBUTION TO THE GLOBAL SOLUTION

After simulating VLBI measurements of the JUICE spacecraft as described in Section
5.3.2, we added these observables to the radio science estimation. In the following,
we describe their contribution to the global state solution for the Galilean satellites
for different tracking and data quality configurations. The results are summarised in
Table 5.5.

We first discuss the GCO phase, during which performing VLBI tracking yields no
noticeable improvement. In the best case scenario, the improvement reaches ∼ 8%
for certain state parameters, but remain around 1-2 % for most moons’ position
components. These uncertainty reductions, already negligible, are moreover only
achieved in a very optimistic configuration, assuming frequent VLBI tracking sessions
(i.e., every week), very dense VLBI outputs (one independent measurement every 2
min) and exceptional data quality (Ka-band noise budget). Consequently, performing
VLBI tracking GCO is not worth the negligible improvement it brings to the solution,
and we did not consider such tracking options in the rest of our analyses.

Now focussing on VLBI tracking simulated during the flyby phase, Table 5.5 shows
the contribution of such observables to the global ephemerides solution for both
Jupiter and its moons. The results are expressed as the relative improvement in the
propagated position uncertainties with respect to the baseline solution (Fig. 5.4),
averaged over the missions’ timelines. It must be noted that the error reductions
are nearly constant over time, and are therefore adequately represented by the
average improvement values provided in Table 5.5. Overall, the sensitivity of the
PRIDE VLBI contribution to the adopted tracking settings behaves as expected,



5.4. RESULTS: SINGLE-SPACECRAFT VLBI

5

143

Ta
b

le
5.

5.
:

Im
p

ro
ve

m
en

t
in

av
er

ag
ed

fo
rm

al
p

o
si

ti
o

n
u

n
ce

rt
ai

n
ti

es
(p

er
ce

n
ta

ge
)

w
it

h
re

sp
ec

t
to

th
e

so
lu

ti
o

n
o

b
ta

in
ed

w
it

h
n

o
V

LB
I,

fo
r

va
ri

o
u

s
V

LB
I

tr
ac

ki
n

g
an

d
ac

q
u

is
it

io
n

sc
en

ar
io

s
(b

u
t

V
LB

I
tr

ac
ki

n
g

d
u

ri
n

g
th

e
fl

yb
y

p
h

as
e

o
n

ly
).

T
h

e
p

o
si

ti
o

n
er

ro
rs

ar
e

co
m

p
u

te
d

in
th

e
R

T
N

fr
am

e,
an

d
o

n
ly

im
p

ro
ve

m
en

ts
la

rg
er

th
an

5%
ar

e
re

p
o

rt
ed

.

C
ad

en
ce

N
o

is
e

Ju
p

it
er

Io
E

u
ro

p
a

G
an

ym
ed

e
C

al
li

st
o

V
L

B
I

b
u

d
ge

t
R

T
N

R
T

N
R

T
N

R
T

N
R

T
N

1
h

p
o

o
r

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1

h
go

o
d

-
-

7.
0

-
-

-
-

-
-

-
-

-
-

-
-

1
h

K
a-

b
an

d
-

-
7.

6
-

-
-

-
-

-
-

-
-

-
-

-
20

m
in

p
o

o
r

-
-

7.
4

-
-

-
-

-
-

-
-

-
-

-
5.

0
20

m
in

go
o

d
-

-
11

.5
-

-
-

-
-

-
-

-
-

5.
1

10
.1

17
.1

20
m

in
K

a-
b

an
d

-
7.

8
17

.5
-

-
-

-
-

-
-

-
-

8.
8

18
.5

33
.8

5
m

in
p

o
o

r
-

-
10

.1
-

-
-

-
-

-
-

-
-

-
7.

2
11

.8
5

m
in

go
o

d
-

8.
4

18
.5

-
-

-
-

-
-

-
-

-
9.

2
19

.7
36

.7
5

m
in

K
a-

b
an

d
8.

7
12

.9
31

.4
-

-
-

-
-

6.
8

-
-

7.
5

15
.5

28
.7

55
.2

2
m

in
p

o
o

r
-

-
12

.4
-

-
-

-
-

-
-

-
-

5.
2

11
.7

20
.7

2
m

in
go

o
d

7.
0

10
.9

26
.6

-
-

-
-

-
5.

1
-

-
5.

6
13

.6
26

.1
50

.1
2

m
in

K
a-

b
an

d
12

.5
15

.2
40

.9
-

-
-

-
-

11
.9

-
6.

8
12

.5
20

.1
33

.4
65

.1



5

144 5. CONTRIBUTION OF PRIDE VLBI PRODUCTS TO EPHEMERIDES

the improvement becoming stronger with increasing measurement cadence and
more accurate observations. In particular, more frequent VLBI data points could
notably improve the PRIDE VLBI contribution. However, it is yet unclear if such
a high measurement cadence is realistically achievable (due to inter-measurements
correlations, see Section 5.2.1). Assessing this will require detailed analyses of the
statistical properties of real JUICE VLBI data once available. For our preparatory
analyses, we consider a VLBI cadence of one data point every 20 minutes as a
reasonable scenario.

As suspected, the improvement is the strongest in the normal direction, for Jupiter
and Callisto in particular. The limited number of JUICE flybys (or absence thereof)
around Europa and Io implies that only few VLBI data points are strongly sensitive
to the dynamics of these two moons, explaining the poor VLBI contribution. For
Ganymede, the GCO phase yields an extremely accurate baseline solution, which
effectively prevents VLBI tracking from notably improving the solution beyond what
Doppler and ranging data can already achieve. Furthermore, even for Jupiter
and Callisto, adding JUICE VLBI data only brings limited improvement. Their
out-of-plane position errors get reduced by about 11.5% and 17.1%, assuming that
accurate (good noise case) VLBI measurements can be acquired every 20 minutes.
The determination of Callisto’s in-plane position, mainly in the along-track direction,
also slightly improves upon adding VLBI measurements. This is an indirect effect
of a better determination of Jupiter’s tangential (and radial) position achieved with
VLBI. However, the very weak signal of Callisto’s dissipation on its own orbit, mostly
noticeable in the along-track direction, will still remain far from detectable in JUICE
tracking data, even with VLBI. On the other hand, the observed improvement for
Jupiter’s dissipation at Callisto’s frequency is too limited to noticeably affect our
ability to determine whether Callisto is caught in a resonance lock (see Section 5.1).

The above results, which already show very limited VLBI contribution, are
furthermore sensitive to the choice of baseline setup and solution. If VLBI biases
are not estimated and must be included as consider parameters, adding VLBI
measurements actually degrades the moons’ state solutions. Remarkably, this still
holds when range biases are also treated as consider parameters, i.e., with a more
pessimistic baseline solution, which theoretically would leave more improvement
margin for PRIDE VLBI. In a consider covariance analysis, the formal errors are
automatically raised, by an amount that depends on both the consider parameters
covariance and the weights assigned to the observations sensitive to said parameters
(see Eq. 5.2). For VLBI biases, the very high accuracy of the VLBI observables yields
large weights, such that the consider biases significantly affect the covariance results.
This highlights the importance of the VLBI calibrators and, more specifically, of their
position uncertainty in the ICRF. This could motivate future observation campaigns
to identify more suitable or better characterised radio sources, as will be further
discussed in the next section.

5.4.3. CONTRIBUTION TO LOCAL STATE SOLUTIONS

As mentioned in Section 5.3.3, the reconstruction of a global, coherent solution for
the Galilean system’s dynamics from real data will require proceeding step-by-step,
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Figure 5.5.: Formal uncertainties for the normal points generated for each of JUICE’s
30 flybys, with and without including VLBI measurements (top panels).
The bottom panels show the ratio between the baseline errors (without
VLBI) and the uncertainties obtained with VLBI.

starting with arc-wise state estimations for both the spacecraft and the moons.
The results in Section 5.4.2 indicate that PRIDE VLBI data will have a very limited
influence on the quality of the final ephemerides. In this section, we however assess
how much PRIDE VLBI will contribute to the process of achieving such a global
solution, by quantifying the improvement of the moons’ normal points achievable
with VLBI data (see more detailed discussion in Section 5.6). The moons’ local
state uncertainties are actually significantly larger than those achieved with a global
estimation. Each flyby is indeed processed independently, without constraining the
local solutions for a given moon to form a consistent, single trajectory (Fayolle et al.,
2022). The VLBI contribution to the moons’ normal points is therefore stronger than
for the global estimation, for which the extreme accuracy of the baseline solution
limits the margin for further improvement (see Section 5.4.2).

Fig. 5.5 shows the position formal errors obtained for each normal point (per-flyby
solution, see Section 5.3.3), with and without VLBI, as well as the improvement ratio
between the two solutions. As observed in the global estimation results (Section
5.4.2), VLBI tracking mostly reduces the flyby moon’s position in the out-of-plane
direction. The VLBI contribution to the flyby moon’s normal position only appears
negligible for a few flybys, namely flybys 2, 3, 5, 6, 9, and 15. They actually
correspond to situations where VLBI measurements cannot be simulated, either
because no calibrator is available (see Fig. 5.1) or because the tracking visibility
conditions are not met. For the rest of the JUICE flybys, however, VLBI data
significantly reduce the normal point uncertainties in the out-of-plane direction,
with an averaged improvement ratio of about 10 and 20 for the poor and good
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(a) VLBI biases based on original calibrators (see Fig.
5.1).
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(b) Refined VLBI biases based on artificial, better
characterised calibrators.

Figure 5.6.: Improvement ratio of the flyby moon’s normal position uncertainty
enabled by VLBI tracking, when estimating range biases but including
VLBI biases as consider parameters, for different sets of phase calibrators.

VLBI error budgets, respectively. VLBI tracking can also help refine the flyby moon’s
along-track position, depending on the flyby geometry and accuracy of the baseline
solution. Unlike for the moons, the improvement in the spacecraft’s local state at
each flyby’s closest approach is however very limited, reaching at most 30% with the
best VLBI noise budget and in the normal direction only.

Focussing on the PRIDE contribution to the moons’ state solutions, the good VLBI
noise case automatically yields lower uncertainties than the more pessimistic error
budget. Nonetheless, the latter can still provide a significant improvement with
respect to the baseline solution (see Fig. 5.5, especially for the normal direction).
This demonstrates the potential of PRIDE VLBI data as a powerful means to refine
our local estimation of the moons’ states, irrespective of the measurements accuracy.
Section 5.6 will further explore the key role that these more accurate normal points
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can play in helping us reconstruct a consistent global solution for the moons’
dynamics.

Similarly as for the global estimation case (Section 5.4.2), we investigated the
sensitivity of our normal point results with respect to the choice of estimation
setup. To this end, we re-conducted our analysis while assuming that VLBI biases
cannot be estimated and must be accounted for as consider parameters. As
expected, this weakens the contribution of PRIDE VLBI to the local flyby moon’s
states. Fig. 5.6a shows the improvement ratio of the flyby moon’s normal position
uncertainty achieved with VLBI in such an estimation setup (as in Fig. 5.5, the
other two directions show much more limited improvement). In addition to the few
above-mentioned flybys with unfavourable VLBI tracking conditions, flybys 8 to 14
now also show negligible improvement. These flybys overlap with the period of
the JUICE Jovian tour when the identified phase calibrators are characterised by
abnormally poorly constrained ICRF positions (referred to as poor calibrators in the
following). Such calibrators yield large systematic VLBI errors for flybys 8 to 15 (Fig.
5.1), which strongly affect the estimation if they cannot be better determined.

We therefore assessed how better-suited calibrators (which could be found with
a dedicated campaign, e.g., Duev et al. 2016) would improve the determination of
the corresponding normal points. To this end, we substituted the poor calibrators
with an artificial one, with a more typical position uncertainty. The latter was
set to the average value computed among all suitable calibrators identified over
JUICE flyby phase (i.e., all calibrators with a position error lower than 2 nrad in
Fig. 5.1). Fig. 5.6b shows how this indeed further improves the solution achieved
with VLBI data for flybys 8-15. This further demonstrates the importance of using
adequate, and sufficiently characterised radio source as phase calibrators, to avoid
introducing systematic errors in our estimation and to maximise the added-value of
VLBI tracking.

5.5. RESULTS: MULTI-SPACECRAFT IN-BEAM VLBI
This section presents the solution improvement achievable by performing multi-
spacecraft VLBI tracking of the JUICE and Europa Clipper spacecraft. Using the 11
flyby combinations identified in Section 5.2.3, we simulated these unique observables
and included them in our state estimation. Sections 5.5.1 and 5.5.2 respectively
discuss the contribution of multi-spacecraft VLBI to the global ephemerides solution
and normal points estimation. We used the same baseline solution as presented in
Section 5.4.1.

5.5.1. VLBI CONTRIBUTION TO THE GLOBAL SOLUTION

Table 5.6 presents the relative improvement of the moons’ global state solutions
achieved with multi-spacecraft tracking VLBI, for the different tracking configurations
defined in Section 5.3.2. As with single-spacecraft VLBI, we only provide the average
improvement, given that PRIDE VLBI contribution to the propagated errors is almost
constant over the missions’ duration. As expected, longer tracking arcs and more
accurate measurements strengthen the contribution of the multi-spacecraft VLBI
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observables to the solution. In the following, we adopt tracking arcs of 2×8 hours
as the nominal configuration. Longer tracking arcs are deemed too optimistic
regarding the additional tracking resources that would be required both onboard
the spacecraft and on ground. The full tracking configuration covering the entire
time gap separating the JUICE and Europa Clipper flybys thus depicts an optimal,
yet practically unrealistic tracking scenario, but is merely intended to quantify the
strongest improvement possibly achievable.

On average, for identical tracking durations, it first appears more beneficial
to acquire multi-spacecraft VLBI measurements in the mid-arc tracking scenario.
However, the nominal transmitting sessions are centred around the flybys (Section
5.3.2, Fig. 5.3). For combinations with a rather long time gap between the two flybys
(> 1 day), mid-arc tracking might thus require planning a full additional tracking
session in-between the two flybys, for both spacecraft, with the necessary resource
allocations that this implies. The arc bounds tracking strategy, on the other hand,
will exploit the fact that each spacecraft is already transmitting close to its flyby.
This approach effectively limits the additional tracking resources with respect to
the mid-arc option. Comparing the results of the 2×8 h arc bounds and 2×4 h
mid-arc tracking cases in Table 5.6, which require comparable extra resources, we
recommend adopting the arc bounds strategy when planning future multi-spacecraft
VLBI tracking.

Overall, the contribution of multi-spacecraft VLBI measurements to the moons’
global states is stronger than for single-spacecraft VLBI (see Section 5.4.2). This
also holds when comparing the results obtained with poor multi-spacecraft and
good single-spacecraft VLBI, despite them sharing comparable noise budgets (Tables
5.1 and 5.3). The improvement is particularly strong for Jupiter and Europa. For
Europa, the reason for this significant improvement is twofold. First, Europa is
involved in 7 out of the 11 flyby combinations during which multi-spacecraft VLBI
tracking is performed (Table 5.2). Second, most of these Europa flybys are Europa
Clipper flybys, and Europa Clipper’s coarser radio science solution leaves more
margin for improvement compared to JUICE’s. The contribution to Jupiter’s state
estimation, on the other hand, is an indirect effect of the measurement geometry: by
constraining the relative positions of the two spacecraft close to some of their flybys,
multi-spacecraft VLBI constrains the moons’ relative dynamics in their orbit around
Jupiter, which greatly helps refine Jupiter’s position.

Unlike in the single-spacecraft VLBI case, our baseline setup, by estimating
both range and VLBI biases, yields a rather conservative quantification of the
multi-spacecraft VLBI contribution. Systematic VLBI errors are indeed small (Section
5.2.3) and therefore do not strongly affect the solution. However, the improvement
attainable with VLBI only gets larger when using a slightly more pessimistic baseline
solution such as the one obtained when range biases are not estimated (see
Appendix 5.9). The above strengthens the robustness of our findings, hinting
that multi-spacecraft VLBI measurements might improve the moons’ ephemerides
solution further than suggested by Table 5.6, depending on the quality of the baseline
solution.

It must moreover be noted that the time elapsed in-between the two flybys
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is shorter than one day for 3 combinations out of 11 in Table 5.2. For these
combinations, multi-spacecraft tracking could be performed without extending the
nominal tracking sessions (Section 5.3.2). Interestingly, the solution improvement
achievable with these three combinations is not negligible, as shown in Table 5.9 in
Appendix 5.10. In the good VLBI noise case, Jupiter and Callisto’s normal position
errors still get reduced by about 53% and 27%, respectively, against 58% and
36% with all 11 flyby combinations. This result demonstrates that non-negligible
improvement could still be achieved with multi-spacecraft VLBI without necessarily
requiring extra resources.

Finally, we investigated the role played by the navigation Doppler data simulated
during the multi-spacecraft VLBI tracking arcs (see Section 5.3.2). However, they only
contributed to estimating the extra empirical accelerations added to our setup to
account for the perturbations (e.g., manoeuvres) influencing the spacecraft’s orbits
over longer arcs. No improvement of the moons’ orbit solutions was indeed noticed
when adding Doppler navigation data only. The uncertainty reductions reported in
Table 5.6 can therefore be confidently attributed to multi-spacecraft VLBI.

5.5.2. VLBI CONTRIBUTION TO LOCAL STATE SOLUTIONS

Multi-spacecraft VLBI measurements were also included in the normal points
determination, to assess the contribution of such observables to the moons’ arc-wise
solutions. Fig. 5.7 shows the improvement achieved for the two moons involved in
each flyby combination. While the contribution of multi-spacecraft VLBI is again
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Figure 5.7.: Formal uncertainties for the normal points generated for each of
the 11 flyby combinations in Table 5.2, with and without including
multi-spacecraft VLBI measurements (top panels). The bottom panels
show the ratio between the baseline errors (without VLBI) and the
uncertainties obtained with VLBI.
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Table 5.7.: Improvement ratio for the flyby moons’ position uncertainties (percentage),
when adding different VLBI data sets with respect to the baseline
estimation (without VLBI). The values reported in this table are averaged
over the 11 flyby combinations during which multi-spacecraft tracking is
possible (Table 5.2).

Noise budget VLBI data set
Improvement ratio
R T N

JUICE flybys poor VLBI
single-spacecraft VLBI 1.4 4.3 8.9
multi-spacecraft VLBI 1.4 2.3 11.3

both VLBI 1.7 8.4 17.6

JUICE flybys good VLBI
single-spacecraft VLBI 1.8 5.8 13.4
multi-spacecraft VLBI 1.5 3.2 4.0

both VLBI 2.3 8.4 17.6

Europa Clipper flybys poor VLBI
single-spaeccraft VLBI - - -
multi-spacecraft VLBI 5.3 6.2 8.3

both VLBI 5.4 8.2 17.3

Europa Clipper flybys good VLBI
single-spacecraft VLBI - - -
multi-spacecraft VLBI 6.0 7.1 10.7

both VLBI 6.2 9.5 23.6

the largest for the moons’ normal positions, the improvement in this direction is
lower than with single-spacecraft VLBI (see Figs. 5.5 and 5.7). On the contrary,
however, the reduction of the in-plane position uncertainties is slightly stronger with
multi-spacecraft VLBI. On average, the moons’ radial and along-track local positions
indeed get reduced by more than a factor three and four, respectively, even with the
poor VLBI error budget.

This can be explained by the difference in the nature of the observables: while
single-spacecraft VLBI provides a direct measure of JUICE’s lateral position in the
ICRF, multi-spacecraft observations are only sensitive to JUICE and Europa Clipper
relative position. They therefore indirectly constrain the relative motion of the
flybys’ moons, instead of their absolute positions. Consequently, depending on
the geometry of the flyby combination, the signature of the moons’ out-of-plane
positions in the multi-spacecraft VLBI observables is not systematically as strong as
it would be for single-spacecraft VLBI. On the other hand, multi-spacecraft tracking
might provide slightly tighter constraints on the moons’ in-plane motion. This
strong dependency on the tracking geometry also explains the variability of the
multi-spacecraft VLBI contribution from one flyby combination to another (see Fig.
5.7).

Interestingly, the improvement is much stronger for the central moons of Europa
Clipper’s flybys than for JUICE’s. This logically follows from Europa Clipper’s
baseline state estimation being less accurate, due to the lower quality of Europa
Clipper’s tracking (see Section 5.3.2). The uncertainties of the moon’s normal
points however become comparable between JUICE and Europa Clipper’s flybys
once multi-spacecraft VLBI is included. Starting from a coarser solution, the relative
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improvement is thus stronger for the Europa Clipper estimation.
Finally, it should be mentioned that the improvement provided by multi-spacecraft

VLBI is not limited to the flyby moons’ state solutions, but also extends to the
spacecraft orbit determination. On average, multi-spacecraft tracking can lower the
spacecraft’s position uncertainties at closest approach by about a factor 5, 2.5, and
50 in the radial, tangential, and normal directions, respectively, regardless of the
choice of VLBI noise budget. While not the primary focus of our analyses, smaller
uncertainty ellipses for the spacecraft’s local states might greatly help disentangling
mismodelling effects affecting either the spacecraft’s or the moons’ dynamics, as will
be further discussed in Section 5.6.

Overall, the general trends highlighted in Fig. 5.7 for a specific case (8h-long
arcs, arc bounds tracking) do not strongly depend on the tracking configuration
considered. All tracking setups reported in Table 5.6 for the global estimation were
also tested for the normal points determination. Interestingly, unlike what was
observed in Section 5.4, simulating multi-spacecraft VLBI tracking close to both
flybys, and not in the middle of the arc, yields better results. This can be expected
when reconstructing local state solutions at flyby time: the moon’s dynamical
signature is stronger in tracking measurements acquired immediately before or after
the close encounter.

Finally, we also quantified the combined improvement attainable when both
single- and multi-spacecraft VLBI observables are included in the estimation. The
improvement ratio of the flyby moons’ position components with single-spacecraft
VLBI only, multi-spacecraft VLBI only, and both types of VLBI are reported in Table
5.7. Adding all VLBI measurements does significantly reduce the normal points’
uncertainties for the flyby moons, in all three directions. Given that PRIDE is a
JUICE experiment, no single-spacecraft VLBI tracking was considered for the Europa
Clipper spacecraft. Remarkably, however, the solution for Europa Clipper’s flyby
moons notably improves when adding JUICE’s nominal tracking measurements to
the estimation. This is an indirect effect of the better state solution achieved for
JUICE’s flyby which, via the constraints provided by the multi-spacecraft tracking
measurements, also constrain Europa Clipper’s flyby solution. In addition to these
quantitative improvements, the synergy between single- and multi-spacecraft VLBI
reaches its full potential when exploited to validate the baseline radio science
solution(s), as will be explored in Section 5.6.

5.6. PRIDE VLBI AS A POWERFUL VALIDATION MEANS

While our results indicate that PRIDE VLBI may not significantly contribute to the
moons’ global state estimation (Sections 5.4.2 and 5.5.1), it can greatly reduce local
state estimation uncertainties and play a key role in helping us eventually achieve
a global solution. As discussed in Section 5.3.3, when reconstructing the dynamics
of natural satellites from spacecraft tracking, mismodelling of the spacecraft or
moons’ dynamics might impede the direct reconstruction of a global solution for
the moons’ orbits. A global state estimation for the moons indeed requires the
spacecraft and moons’ dynamical models to be consistent over both short and long
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timescales (typical flyby duration, i.e., a few hours, vs. entire mission). In particular,
combining all available flybys at a given moon in a single solution increases the
observation timespan, such that additional perturbations and possibly mismodelled
effects become relevant. As mentioned in Section 5.1, such modelling issues led
to solution instabilities and eventually prevented the reconstruction of a global
ephemeris for Titan and Dione from Cassini flybys’ radio science data (Durante
et al., 2019; Zannoni et al., 2020).

For JUICE and Europa Clipper radio science analyses, this modelling consistency
requirement is even made more severe by the very good accuracy levels for the
moons’ ephemerides predicted by simulations (Fayolle et al., 2022; Magnanini et al.,
2024). For these formal uncertainties to be physically meaningful, our dynamical
models should be consistent to the same (sub-meter) level. For the spacecraft’s
dynamics, this makes the coherent modelling of all spacecraft perturbations essential
(manoeuvres, solar radiation pressure, accelerometer errors, etc.). Based on past
Cassini data analyses, issues related to specific aspects of the moons’ dynamical
models will also arise. In particular, the modelling of (frequent-dependent) tidal
dissipation in the central planet and the moons, as well as variations of the central
planet’s gravity field and rotation, are expected to be critical (Durante et al., 2019;
Zannoni et al., 2020).

Traditionally, the moons’ orbits are first solved for in an arc-wise manner, using
the normal points approach mentioned in Section 5.3.3. This strategy is perfectly
adapted to gravity field studies (Durante et al., 2019) and moreover circumvents the
above-mentioned modelling challenges. It indeed relaxes the modelling requirements
by letting the moon’s local state solution absorb part of the models’ inaccuracies (see
Fayolle et al., 2022, for a more detailed discussion). When reconstructing the moons’
dynamics using a decoupled approach, these normal points (i.e., arc-wise state
estimates and their corresponding formal uncertainties) are then used as observables
to reconstruct a global solution (see more detail in Fayolle et al., 2022). Generating
per-flyby, local state solutions for the moons will therefore be an indispensable
first step when determining the Galilean moons’ ephemerides from JUICE-Europa
Clipper radio science. These local state estimations will be the groundwork for
gradually progressing towards a global, coupled inversion of the spacecraft and
moons’ dynamics over the entire mission(s) duration.

By providing an additional set of independent measurements of the spacecraft’s
lateral position in the ICRF, PRIDE VLBI not only yields an improved local
estimation, but can also help us moving from the normal points determination to
the reconstruction of a single, consistent solution for the moons’ orbits. In the
following, we propose an iterative PRIDE-based validation strategy, showing how
VLBI data can improve and/or validate the estimation solutions at various stages of
this process. Section 5.6.1 first discusses how the refined normal points obtained
with VLBI (Sections 5.4.3 and 5.5.2) can be used to detect possible inconsistencies
in our models and investigate their possible causes. Capitalising on these local
analyses, Section 5.6.2 then presents several validation steps exploiting PRIDE VLBI
to facilitate the estimation of a global, coupled solution for the moons’ dynamics.
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5.6.1. APPLICATION TO THE LOCAL STATE ESTIMATIONS

As shown by our results presented in Sections 5.4.3 and 5.5.2, adding VLBI
measurements to the estimation can significantly lower the state uncertainties
associated with the moons’ normal points. In addition to this promising quantitative
improvement, verifying the statistical consistency of the arc-wise state solutions
obtained with and without VLBI (Fig. 5.8) can bring valuable insights into the
consistency of our models, which might later affect our ability to achieve a global
solution.

Detecting inconsistencies between the normal points with and without VLBI would
suggest either dynamical mismodelling issues or larger-than-expected systematic
VLBI errors. The latter is nonetheless rather unlikely, considering that we will have a
good estimate of the expected error budget of our VLBI measurements. Moreover,
we should be able to identify such observation errors by analysing our post-fit
residuals. In particular, they should manifest themselves as non-flat, incompressible
residuals for VLBI observations specifically, not observable for Doppler and/or range
measurements. Finally, it must be noted that large systematic errors in the VLBI
measurements would most likely be caused by the use of poor calibrators, which
can clearly identified (see Fig. 5.1). For the flybys that would show inconsistencies
between the normal points with and without VLBI, a detailed characterisation
campaign of the radio source used as calibrator can be performed a posteriori (see
e.g., Duev et al., 2012). This would yield a better phase calibration, and will allow us
to eliminate unexpectedly large systematic biases from our measurements.

After addressing VLBI measurement-related issues, remaining inconsistencies
between the refined and nominal normal points (i.e., without and with VLBI,
respectively, as illustrated by the right-hand side of Fig. 5.9) can be safely attributed

Baseline normal points Refined normal points 
(with VLBI)

No mismodelling detected

consistent inconsistent

Mismodelling most likely in 
the spacecraft's dynamics

Spacecraft and moon's states

Inconsistency 
between normal points

Interpretation of the validation outcomeLegend

Data/solution products
Compare Strong evidence

Probable

Legend

Refined normal points (with VLBI)

Baseline normal points
Covariance ellipse
Estimated solution

Figure 5.8.: Validation of the statistical consistency between the moons’ normal
points reconstructed with and without VLBI measurements.
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to dynamical modelling issues. Given that the reconstruction of the flybys’ normal
points does not force the moons’ local states to form a single, consistent trajectory,
modelling inconsistencies are, at this stage, more likely to originate from the
spacecraft’s dynamics.

5.6.2. APPLICATION TO THE GLOBAL STATE ESTIMATION

Following the careful analyses of our local solutions described in Section 5.6.1, the
next step is to perform a global, coupled estimation of the moons’ dynamics. While
such an estimation strategy is expected to yield the most statistically consistent state
solution (Fayolle et al., 2022), successfully achieving the above will require proceeding
gradually. Provided that instabilities caused by modelling inconsistencies do not
prevent us from obtaining such a global solution, modelling errors are still expected
to translate into large, non-flat residuals and/or large true-to-formal errors. A fully
statistically consistent and robust ephemerides solution for the Galilean moons from
classical radio science measurements thus cannot be achieved directly, but can only
be attained through an iterative process. This will imply, in particular, detecting
and overcoming various inconsistencies and inaccuracies in our models affecting the
quality and realism of the solution. In the following, we explore how PRIDE VLBI
can facilitate this process, by identifying, isolating, and whenever possible mitigating
potential modelling inconsistencies. In the subsequent discussion, we designate by
preliminary global solution an intermediate global estimation result (without VLBI),
obtained when working towards a final, fully consistent solution. This solution
corresponds to the nominal estimation setup described in Section 5.3.4.

VLBI AS INDEPENDENT MEASUREMENTS

An important first validation step to assess the statistical realism of the preliminary
global solution is to verify that said solution is compatible with the VLBI
measurements of the spacecraft’s angular position. As illustrated in Fig. 5.9, the
pre-fit VLBI (i.e., raw measurements, as in not included in the estimation) should
fall within the error ellipse defined by the preliminary global solution’s covariance.
As the VLBI data are not yet included in the estimation, they are only affected by
the measurement error, and not by potential dynamical mismodelling. A discrepancy
between the VLBI measurements and the preliminary global solution would thus
indicate either an unquantified systematic bias in the VLBI data (see Section 5.6.1),
or issues in the global estimation (e.g., large true-to-formal errors ratio).

Relatively large true-to-formal error ratios can be expected when reconstructing
natural satellites’ ephemerides from radio science, compared to astrometry-based
solutions. The observational constraints on the moons’ dynamics, derived from
spacecraft tracking measurements, are indeed indirect in nature. Estimations of
physical parameters from tracking data are thus affected by modelling inacccuracies
in the spacecraft’s dynamics, and therefore typically show larger true-to-formal error
ratios. Based on previous radio science estimations of e.g., natural bodies’ gravity
fields and rotations, ratios of about 10 can be expected (e.g., Milani et al., 2001;
Konopliv et al., 2011; Mazarico et al., 2015). Last but not least, as previously
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Figure 5.9.: Comparison between a preliminary global solution (without VLBI) and the
pre-fit VLBI measurements to detect or quantify possible inconsistencies
in the estimation.
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Figure 5.10.: Detection threshold for possible inconsistencies between the global
solution (without VLBI) and the single-spacecraft pre-fit VLBI measure-
ments, expressed as the minimum true-to-formal error ratio required
for such discrepancies to be detectable.

mentioned, determining the moons’ orbits from radio science imposes to consistently
model the dynamics of both the spacecraft and moons, a requirement even more
stringent for JUICE and Europa Clipper analyses due to the expected low formal
uncertainties (Fayolle et al., 2022). In our analyses, we thus considered three, five,
and ten as a realistic range of true-to-formal errors ratios. Any detection threshold
comparable to or lower than these ratios indicates that VLBI tracking might be
realistically sensitive to possible inconsistencies in the preliminary global solution,
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Figure 5.11.: Detection threshold for possible inconsistencies between the global
solution (without VLBI) and the multi-spacecraft pre-fit VLBI measure-
ments, expressed as the minimum true-to-formal error ratio required
for such discrepancies to be detectable.

or at least provide an upper limit on the true errors for the moons’ states.
To quantify the probability that VLBI data can detect discrepancies between true

and formal errors, we projected the error ellipse of the spacecraft’s position given
by the preliminary global solution onto the plane-of-the-sky, to be compared with
the expected VLBI measurement uncertainty. As illustrated in Fig. 5.9, we could
then determine the minimum true estimation errors in JUICE’s right ascension and
declination for the global solution not to overlap with the VLBI measurement.
In practice, a discrepancy can be detected if the estimated solution, within the
confidence region statistically described by its formal uncertainties, is not consistent
with the VLBI measurement, even when accounting for the uncertainty of the
latter. This imposes a limit on the minimum true estimation error required for the
VLBI observable to detect a possible inconsistency, referred to as the discrepancy
detection threshold in the following.

We computed this threshold for each flyby, both for single- and multi-spacecraft
VLBI tracking (Figs. 5.10 and 5.11, respectively). For the former, we compare
the uncertainty in JUICE’s right ascension and declination predicted by the
global estimation (without VLBI) with the expected VLBI accuracy. The use of
multi-spacecraft VLBI for validation is nearly identical, except that we focus on the
relative lateral position of JUICE and Europa Clipper with respect to each other. Figs.
5.10 and 5.11 show, for each flyby or flyby combination, the ratio between the true
and formal errors in the spacecraft’s right ascension and declination corresponding
to the discrepancy detection threshold defined above. A threshold value equivalent
to a realistic true-to-formal errors ratio for our analyses (see discussion above)
indicates that VLBI measurements can be meaningfully used to investigate possible
inconsistencies in the estimation.

Fig. 5.10 shows that single-spacecraft VLBI tracking could meaningfully contribute
to validating the preliminary global solution for most flybys. Assuming the worst
VLBI error budget and a true-to-formal errors ratio equal to ten, PRIDE VLBI could
detect inconsistencies in JUICE’s right ascension for 14 out of 30 flybys. For JUICE’s
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declination, the discrepancy detection threshold is lower, and an estimation error
only five times larger than the formal uncertainty would be detectable for half of the
flybys. Improving the VLBI precision would lower this threshold further: in the good
error budget case, VLBI data would be sensitive to any true-to-formal error ratio
larger than three in declination for flybys 20 to 30. Interestingly, the detection level
is rather consistent between the different flybys, with the exception of flybys 8-15
with poor VLBI calibrators (see Fig. 5.1 and discussion in Section 5.4).

Fig. 5.11 highlights similar validation opportunities for multi-spacecraft VLBI
tracking, for the 11 possible flyby combinations identified in Section 5.2.3. As in the
single-spacecraft VLBI case, inconsistencies in declination will be easier to detect: a
true-to-formal error ratio of three should be detectable for 9 out of 11 combinations,
in the good VLBI error case. The slightly larger variability of the detection threshold
compared to Fig. 5.10 can be explained by the relative nature of multi-spacecraft
VLBI tracking: how the accuracy of such measurements compares to the preliminary
solution depends on the relative geometry of JUICE and Europa Clipper, and on
whether part of the preliminary solution’s uncertainties cancel out when computing
the error ellipse for the two spacecraft’s relative right ascension and declination.

Overall, our results show that pre-fit VLBI will be able to detect inconsistencies in
the preliminary global solution for a number of flybys and/or flyby combinations,
provided that the true errors are large enough with respect to the formal
uncertainties. Alternatively, detecting no discrepancy would demonstrate the realism
of the estimation solution, and allow us to put an upper limit on the true-to-formal
error ratio.

In most cases, the validation step described above will however not be sufficient to
precisely identify the source of the potential inconsistencies, if detected. A notable
exception, highlighted in Fig. 5.9, arises for multi-spacecraft VLBI acquired during
a single-moon flyby combination (flyby combinations 3, 5, 7, and 8, see Table 5.2).
In such a tracking configuration, the VLBI data points are almost insensitive to
the moon’s state estimation, except for the possible slight change in the moon’s
position error during the time elapsed between the JUICE and Europa Clipper flybys.
This effect, however, is deemed small, especially for flybys combination 3 in which
only three hours separate the two flybys around Europa. The outcome of our first
validation step for these single-moon flyby combinations will therefore primarily
depend on the consistency of the spacecraft’s orbit solution. As such, they will
represent a unique opportunity to isolate modelling issues affecting the spacecraft’s
dynamics.

COMPARING LOCAL AND GLOBAL SOLUTIONS

Finally, the state solution provided by the global estimation at the time of a flyby
i should be statistically compatible with the corresponding normal point. As
shown in Sections 5.4.3 and 5.5.2, VLBI tracking, either in single or multi-spacecraft
configuration, can significantly reduce the uncertainty ellipses of the moons’ normal
points. This enhances the potential of this local vs. global state estimation
comparison, by facilitating the detection of possible inconsistencies. The refined
arc-wise solutions, with reduced uncertainties, indeed become sensitive to much
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Figure 5.12.: Validation strategy exploiting the moons’ refined normal points obtained
with VLBI to detect possible inconsistency in a global preliminary
solution.

smaller discrepancies (see Fig. 5.12).

As in the previous validation steps, the main challenge is to identify the source
of the observed discrepancies. Our ability to do so will strongly depend on the
state parameters concerned by the said inconsistencies (see Fig. 5.12). The arc-wise
state solutions for the spacecraft and the moons can be analysed separately to try
disentangling different mismodelled effects. If inconsistencies are only detected in
the spacecraft’s state solution, they are more likely to originate from mismodelling of
the spacecraft dynamics, while the opposite is true for the moons’ solution. However,
no firm conclusion can be drawn if the discrepancies concern both the spacecraft
and moons’ solutions.

Critically, the outcomes of this validation step must be considered in light of
previous results. As described in Section 5.6.1, we should be able to eventually
discriminate between VLBI systematic errors and dynamical mismodelling effects.
Furthermore, combining the different tests described above (Figs. 5.9 and 5.12) will
help further isolate modelling issues specifically affecting the spacecraft or moons’
dynamics. We will moreover be able to confirm our conclusions by exploiting the
unique potential of multi-spacecraft VLBI in the four single-moon flyby combinations
identified in Table 5.2, as such measurements will be robust against errors in the
moons’ state solutions.
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5.7. CONCLUSION

Building on the previous work by Dirkx et al. (2017), we investigated the contribution
of PRIDE VLBI to the Galilean moons’ ephemerides solution, in the context of
the JUICE and Europa Clipper missions. We considered both a global and local
state estimation, the latter representing a necessary intermediate step to eventually
achieve a coherent solution for the moons’ dynamics over the entire missions’
timeline. We simulated single-spacecraft VLBI measurements of the JUICE spacecraft,
but also explored the possibility to perform simultaneous VLBI tracking of JUICE
and Europa Clipper (multi-spacecraft VLBI). We quantified the contribution of both
types of VLBI data to the moons’ global and local state estimations, under various
tracking and data quality scenarios.

Overall, both single- and multi-spacecraft VLBI measurements do not significantly
improve the global ephemerides solution for the Galilean moons, the contribution
of the latter nonetheless being stronger. For realistic tracking configurations, the
improvement provided by single- and multi-spacecraft VLBI can reach up to 17% (for
Callisto) and 36% (for Europa), respectively, assuming good VLBI data quality. The
attainable improvement is severely limited by the very accurate baseline solution
already achieved with range and Doppler data.

It must be noted that our single-spacecraft VLBI results proved rather sensitive to
systematic errors in the VLBI measurements. For each tracking pass, the position
error of the selected phase calibrator can thus have a significant influence, as
highlighted in Fig. 5.6. This could, however, be mitigated in various ways. Our
results indeed motivate future campaigns to densify the phase reference calibrators
currently identified within the required patch of the sky, or to refine our knowledge
of the ICRF position of known calibrators. In particular, we identified a specific
period, overlapping with 8 out of 30 JUICE flybys, during which finding better
calibrators would be critical to performing high-quality PRIDE observations (see
Section 5.2.2). The lack of suitable calibrators in Ka-band also calls for dedicated
reference source densification campaigns. Alternatively, one could exploit the fact
that some tracking arcs rely on the same calibrator, as extracting a common bias
over several arcs will be easier. It might moreover be possible to reduce VLBI errors
by using multiple visible phase calibrators during a single pass. However, properly
assessing both the feasibility and actual potential of such a strategy would require
dedicated further analyses.

The possible contribution of PRIDE VLBI is moreover not limited to a quantitative
improvement of the state estimation. For each flyby, the local estimation of
the central moon’s state (i.e., normal point) represents an essential step before a
global, fully consistent solution can be reconstructed from all flybys combined. The
contribution of PRIDE VLBI to the flyby moons’ normal points is much stronger
than for the global ephemerides solution. This is most noticeable in the out-of-plane
direction where poor-quality single- and multi-spacecraft VLBI data respectively
reduce the position uncertainty by a factor 10 and 6 on average. This highlights the
crucial role that PRIDE VLBI can play in the progression towards a global solution
for the moons’ dynamics.

VLBI also offers multiple opportunities to validate and improve the statistical
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realism of the baseline solution derived from classical radio science observables.
To exploit this potential, we have designed a PRIDE VLBI-based validation plan,
which exploits two features of the VLBI data set. First, PRIDE provides independent
measurements, which the baseline solution can be compared against. Second, the
ability of VLBI data to reduce the moons’ local state uncertainties will facilitate the
detection of possible inconsistencies in the estimation. In particular, the careful
analysis of the observation residuals and state estimation solutions in different
configurations will help disentangle inconsistency sources, from observation errors to
various dynamical modelling discrepancies. The unique geometry of multi-spacecraft
tracking VLBI data acquired when both JUICE and Europa Clipper are performing
a flyby around the same moon will be particularly valuable to isolate specific
mismodelling issues.

PRIDE VLBI will therefore greatly contribute to overcoming dynamical modelling
issues in the estimation, gradually working towards the very low uncertainty levels
predicted by simulations for the moons’ ephemerides and the Jovian system’s tidal
dissipation parameters (e.g., Fayolle et al., 2023b; Magnanini et al., 2024). As
such, PRIDE will play an indirect, yet crucial, role in the reconstruction of an
unprecedentedly accurate and fully consistent solution for the Galilean moons’
dynamics, essential to further our understanding of the Galilean system’s long-term
evolution.

5.8. CONCURRENT STATE ESTIMATION OF A CENTRAL PLANET

AND ITS SATELLITE(S) FROM SEVERAL ORBITING

SPACECRAFT
As mentioned in Section 5.3.3, our global estimation setup follows the coupled model
described in Fayolle et al. (2022). We recall that the states of the moons are then
determined globally, while the spacecraft’s dynamics are solved for in an arc-wise
manner. In this appendix, we expand the mathematical formulation provided in
Fayolle et al. (2022) to include the central planet (here Jupiter) in the estimation and
to account for several spacecraft (here JUICE and Europa Clipper).

In this more complete configuration, additional implementation subtleties arise
when handling the various central body dependencies. The different bodies and
spacecraft’s states are indeed typically expressed and estimated with respect to their
central body, which might be included in the propagation. The full state vector is
defined as

y(t ) =


yP (t )
yM (t )
yS1

(t )
...

ySN
(t )

 . (5.4)

yP (t ) refers to the central planet’s state. yM (t ) is the moons’ state vector with respect
to the central planet, of size 6×n with n the number of moons. Finally, ySi

(t )
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represents the state of the i th spacecraft with respect to its arc-wise central moon
mi , j . N is the number of spacecraft involved in the estimation (equal to 2 in our
analyses).

The full initial state vector to be estimated can thus be written as follows:

y0 =


yP (t0)
yM (t0)

yS1
(tS1

)
...

ySN
(tSN

)

 (5.5)

where tSi
contains the arc-wise reference epochs for spacecraft Si . The spacecraft’s

states being estimated in an arc-wise manner, their initial state vector can be further
expanded:

ySi
(tSi

) =


ySi ,1 (tSi ,1 )

...
ySi ,a1

(tSi ,ai
)

 , (5.6)

with ai the number of arcs over which spacecraft Si is propagated, and tSi , j the
reference epoch of arc j .

However, the equations of motion and variational equations are generally
propagated in a single reference frame. States expressed in this global propagatation
reference frame will be designed by the superscript ⋆ in the following. In contrast to
Eq. 5.4, the propagated state can be defined as

y⋆(t ) =


y⋆

P
(t )

y⋆
M

(t )
y⋆

S1
(t )

...
y⋆

SN
(t )

 . (5.7)

The propagated and estimated states can be related using the following:

yP (t ) = y⋆
P

(t ) (5.8)

yM (t ) = y⋆
M

(t )+y⋆
P

(t ) (5.9)

ySi
(t ) = y⋆

Si
(t )+y⋆

mi , j
(t ),with t ∈

[
tSi , j ; t̃Si , j

]
(5.10)

with mi , j the central moon of spacecraft Si during arc j . tSi , j and t̃Si , j respectively
represent the start and end times of arc j for spacecraft Si .

In our analyses, the covariance matrix P describes the uncertainties and
correlations of the state parameters with respect to their respective central bodies,
according to Eq. 5.4. To compute P using Eq. 5.1, the observation matrix H must
first be computed to obtain the covariance matrix:

H(q) = Çh(q)

Çq
, (5.11)



5.9. MULTI-SPACECRAFT VLBI IN DIFFERENT ESTIMATION SETUPS

5

163

with h the observations vector and q the parameters vector, which can be written

as q = [
y0,p

]T. y0 is the initial state given by Eq. 5.5, and p contains the non-state
parameters. Focusing on the estimation of the initial state, we can then write, for a
single observation:

Çh(q)

Çy0
= Çh(q)

Çy⋆0

Çy⋆0
Çy0

, (5.12)

= Çh(q)

Çy⋆(t )
Φ⋆(t , t0,tS1

, ...,tSN
)
Çy⋆0
Çy0

. (5.13)

Çh(q)
Çy⋆(t ) and Φ⋆(t , t0,tS1

, ...,tSN
) can be computed after propagating the variational

equations with respect to the global propagation reference frame, while
Çy⋆0
Çy0

can be

derived from Eq. 5.10. It must be noted that Φ⋆(t , t0,tS1
, ...,tSN

) is equivalent to
the state transition matrix Φ(t , t0) in Eq. 5.3. A less detailed notation was indeed
adopted in the core part of the paper for the sake of conciseness.

Finally, the propagated covariance is given by

P(t ) =
(
Çy(t )

Çy0

)
P

(
Çy(t )

Çy0

)T

. (5.14)

The partials in Eq. 5.14 must again be re-written with respect to the propagated, and
not estimated, state:

Çy(t )

Çy0
= Çy(t )

Çy⋆(t )

Çy⋆(t )

Çy⋆0

Çy⋆0
Çy0

(5.15)

= Çy(t )

Çy⋆(t )
Φ⋆(t , t0)

Çy⋆0
Çy0

. (5.16)

Again, Çy(t )
Çy⋆(t ) and

Çy⋆0
Çy0

can be extracted from Eq. 5.10.

This small model extension completes the coupled estimation formulation provided
in Fayolle et al. (2022). The main addition is the possibility to include the central
planet’s state in the estimation, which allows us to account for the Jovian ephemeris
uncertainty in our analyses (Section 5.3.4). The proposed implementation can
however be applied to any planetary system and is versatile enough to accommodate
any number of moons or spacecraft.

5.9. MULTI-SPACECRAFT VLBI CONTRIBUTION TO THE

GLOBAL SOLUTION WITH DIFFERENT ESTIMATION

SETUPS
As discussed in Section 5.5.1, our choice of baseline estimation setup - estimating
both range and VLBI biases - leads to a conservative estimate of the global solution
improvement attainable with multi-spacecraft VLBI. For the sake of completeness,
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we ran the same analysis while including range and VLBI biases as consider
parameters. The results are reported in Table 5.8 for a limited number of tracking
configurations, and indeed show larger improvements than with the baseline setup.
Only Io and Europa’s in-plane position uncertainties slightly degrade when adding
range and VLBI biases as consider parameters instead of estimating them. This can
be explained by the fact that Europa’s solution, and thus indirectly Io’s, strongly rely
on Europa Clipper radio science (i.e., Doppler only, Section 5.3.2). The baseline
solution for these components is thus less sensitive to range biases, and only the
VLBI contribution is notably affected by the change of estimation setup. However,
for the rest of the state parameters, the VLBI improvement strengthens when the
observation biases are not estimated, due to the deterioration of the baseline
solution. Overall, as mentioned in Section 5.5.1, our results indicate that a stronger
contribution could possibly be expected from multi-spacecraft VLBI measurements,
depending on the accuracy of the baseline solution.

5.10. MULTI-SPACECRAFT VLBI CONTRIBUTION TO THE

GLOBAL SOLUTION FOR DIFFERENT SETS OF FLYBY

COMBINATIONS
11 flyby combinations were identified as representing promising opportunities to
perform multi-spacecraft VLBI tracking (Section 5.2.3, Table 5.2). An upper threshold
of three days between each JUICE flyby and the closest Europa Clipper flyby was
applied. However, as discussed in Section 5.5.1, such an elapsed time in-between
the two flybys would require extending the nominal tracking sessions and thus
be more resource-demanding. Interestingly, the JUICE and Europa Clipper flybys
are planned less than one day apart for three combinations (Table 5.2), such that
multi-spacecraft VLBI could be acquired at minimal expense, without extending the
nominal tracking arcs. Table 5.9 compares the solution improvement achieved when
simulating multi-spacecraft VLBI either during all 11 combinations, or just during
the above-mentioned three combinations with close flybys. The results are discussed
in Section 5.5.1.





6
MUTUAL APPROXIMATIONS FOR

EPHEMERIDES DETERMINATION

M. S. FAYOLLE, D. DIRKX, P. N. A. M. VISSER, V. LAINEY

The apparent close encounters of two satellites in the plane of the sky, called mutual
approximations, have been suggested as a different type of astrometric observation to
refine the moons’ ephemerides. The main observables are then the central instants
of the close encounters, which have the advantage of being free of any scaling
and orientation errors. However, no analytical formulation is available yet for
the observation partials of these central instants, leaving numerical approaches or
alternative observables (i.e., derivatives of the apparent distance instead of central
instants) as options. Filling that gap, this paper develops an analytical method
to include central instants as direct observables in the ephemerides estimation and
assesses the quality of the resulting solution. To this end, the apparent relative position
between the two satellites is approximated by a second-order polynomial near the close
encounter. This eventually leads to an expression for mutual approximations’ central
instants as a function of the apparent relative position, velocity, and acceleration
between the two satellites. The resulting analytical expressions for the central instant
partials were validated numerically. In addition, we ran a covariance analysis to
compare the estimated solutions obtained with the two types of observables (central
instants versus alternative observables), using the Galilean moons of Jupiter as a test
case. Our analysis shows that alternative observables are almost equivalent to central
instants in most cases. Accurate individual weighting of each alternative observable,
accounting for the mutual approximation’s characteristics (which are automatically

An earlier version of this chapter is published in Astronomy & Astrophysics (Fayolle et al., 2021):
Fayolle, M., Dirkx, D., Visser, P. N. A. M., & Lainey, V. (2021). Analytical framework for mutual
approximations-Derivation and application to Jovian satellites. Astronomy & Astrophysics, 652, A93.
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included in the central instants’ definition), is however crucial to obtain consistent
solutions between the two observable types. Using central instants still yields a small
improvement of 10-20% of the formal errors in the radial and normal directions
(RSW frame), compared to the alternative observables’ solution. This improvement
increases when mutual approximations with low impact parameters and large impact
velocities are included in the estimation. Choosing between the two observables thus
requires careful assessment, taking into account the characteristics of the available
observations. Using central instants over alternative observables ensures that the state
estimation fully benefits from the information encoded in mutual approximations,
which might be necessary depending on the application of the ephemeris solution.

6.1. INTRODUCTION

Natural satellites are among the most fascinating objects in our Solar System. In
particular, leading candidates for extraterrestrial habitats are found among Jovian
and Saturnian satellites. Knowing more about the past history of these moons is key
to understanding whether they offer life-favourable conditions now and, therefore,
to analysing the conditions for habitability in our Solar System and beyond (Marion
et al., 2003; Parkinson et al., 2008; Lunine, 2017). However, the moons’ origin and
evolution still remain poorly understood, while they are crucial to investigate the
existence and stability of these putative habitats (e.g., Crida and Charnoz, 2012; Ćuk
et al., 2016; Fuller et al., 2016).

Measuring and fitting the current motion of natural satellites provides valuable
insights into their dynamical history. In particular, it helps to understand tidal
dissipation mechanisms, which play a crucial role in planetary systems’ orbital
evolution (Lainey et al., 2009, 2012, 2020; Fuller et al., 2016). More generally,
determining natural satellites’ dynamics indirectly gives hints about planetary
formation processes (e.g., Heller et al., 2015; Samuel et al., 2019).

As our interest in natural satellites grows, more dedicated missions are being
proposed to explore them (JUICE, Europa Clipper, IVO, MMX, etc.). Precise
knowledge of the moons’ current states then also becomes crucial to optimise the
orbital design of such missions, for instance to propose efficient orbital insertions
and flybys (Murrow and Jacobson, 1988; Raofi et al., 2000; Lynam and Longuski,
2012). Due to inaccuracies in the predicted state of the targeted body, corrective
manoeuvres are indeed required before and after flybys (or, similarly, orbital
insertions) and can be significantly reduced by improved ephemerides.

Determining the orbits of natural satellites is typically achieved with observations
of their absolute positions in the sky or of their relative motion with respect to one
another. Spacecraft-based observations (either radiometric tracking or optical data)
can also be used, but they are much sparser because they are only collected during
planetary missions. Extremely precise measurements are moreover necessary to be
sensitive to very weak dynamical effects, such as tidal forces, which drive the orbital
evolution of planetary systems. Unfortunately, the precision of Earth-based classical
astrometric observations is limited, typically ranging from 50 to 150 milliarcseconds
(mas) (e.g., Stone, 2001; Kiseleva et al., 2008; Robert et al., 2017).
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A lot of effort has thus been dedicated to develop more precise types of
observations. For example, relative measurements of the positions of two satellites
in the sky plane have been shown to be more accurate, with a precision down to
30 mas (Peng et al., 2012). Relative astrometric observations can indeed benefit
from the so-called precision premium: the precision is significantly improved when
apparent distances get smaller than 85 mas. In such a situation, instrumental and
astronomical error sources tend to have a similar effect on the measurement of each
of the two satellites’ position, and thus eventually cancel out (Morrison and Gilmore,
1994; Peng et al., 2008).

Alternatively, the relative position of two satellites can also be precisely measured
by observing mutual events - occultations or eclipses (e.g., Emelyanov, 2009;
Emelyanov et al., 2011; Dias-Oliveira et al., 2013; Arlot et al., 2014). During mutual
events, one satellite masks the other, resulting in a drop of the flux received by the
observer. Those mutual phenomena can provide measurements of satellites’ relative
positions with a precision of about 10 mas (Emelyanov, 2009; Dias-Oliveira et al.,
2013). However, they can only be witnessed during the equinox of the central planet,
which occurs every 6 years for Jupiter and 15 years for Saturn. This significantly
limits the number of available observations.

To overcome the limitations of the above-mentioned observations, a very
promising alternative technique called mutual approximation was recently proposed
by Morgado et al. (2016), though initially suggested in Arlot et al. (1982). This
method determines the so-called central instant at which a close encounter occurs in
the sky plane (i.e., the apparent distance between two satellites reaches a minimum,
see Fig. 6.1). The precision of mutual approximations was found to be comparable
to that of mutual events (Morgado et al., 2016, 2019b).

Central instants are free of any orientation and scaling errors in the instrumental
frame: they do not depend on the absolute value of the apparent distance itself, nor
on the relative orientation of the two satellites (Emelyanov, 2017). This eliminates
two major error sources present in classical astrometric observations. Properly
recording the observational time at the ground station becomes crucial, but this
can be easily achieved with GPS receivers or dedicated software. Most importantly,
mutual approximations occur very regularly, and thus offer a very promising
alternative to eclipses and occultations (Morgado et al., 2016, 2019b).

To estimate ephemerides using mutual approximations, the observation partials
for central instants are required. They link a small variation of the parameters to
be estimated (natural satellites’ states in our case) to a change in the observable.
However, the central instants’ complex definition and their relation to the satellites’
states makes deriving these equations difficult. Other astronomic observables only
depend on the apparent (relative) position of the observed body which is an indirect
function of its inertial position, after projection on the plane of the sky. Mutual
approximations, on the other hand, are also determined by the apparent relative
velocity and acceleration of the two satellites. As a consequence, such observations
are affected by the satellites’ inertial relative dynamics, and not only by their
position.

Emelyanov (2017) and Morgado et al. (2019b) therefore assumed that variational
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equations could not be solved analytically when using central instants, as analytical
partials were not yet available (or easily derivable) for such observables. Those
central instants partials could be computed numerically, but this process is
highly computationally demanding (Emelyanov, 2017) and can also be error prone.
Consequently, it was suggested to use a modified observable and fit the derivative of
the apparent distance instead of the central instant itself (Emelyanov, 2017; Morgado
et al., 2019b). This modified observable can be expressed as a simple function of
the relative position and velocity of the two satellites (see Section 6.2.5). Moreover,
the apparent distance derivative is by definition equal to zero at closest encounter,
which significantly simplifies the equations.

This indirect method is currently the recommended approach to obtain the mutual
approximations’ observation partials (Emelyanov, 2017; Morgado et al., 2019b).
Fundamentally, defining the central instant tc directly or stating that the derivative
of the apparent distance should be equal to zero at tc both express the fact that the
point of closest approach is reached at this instant. However, the information both
observable types convey to the state estimation is not necessarily identical and it has
not yet been proven that fitting the derivative of the apparent distance is equivalent
to fitting the central instants. Actually, using numerical partials for central instants
led to convergence issues in Emelyanov (2017), while none were encountered with
alternative observables. This would indicate that the two observables are not
completely interchangeable.

To extend the current framework available for the mutual approximation technique,
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Figure 6.1.: Observation of a mutual approximation (i.e., close encounter between
two natural satellites). The apparent distance between the two satellites
(blue dots in the top panel) is frequently measured and a polynomial
is used to fit these observations and estimate the central instant of the
close encounter (typically fourth-order polynomial, displayed in purple).
The residuals between the apparent distances measurements and the
fitted polynomial are shown in black (bottom panel).
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this paper develops an analytical formulation for the observation partials of the
central instants. To achieve this, the relative motion of the two satellites in
the plane of the sky is approximated by a polynomial function around the close
encounter. The polynomial coefficients are defined from the relative position,
velocity, and acceleration of the two satellites, as seen from the observer. It thus
becomes possible to derive analytical expressions for the change in central instant
induced by a variation in either the two satellites’ or the observer’s states. We
successfully performed the state estimation with mutual approximations’ suggested
alternative observables (derivatives of the apparent distance) and with central
instants separately, using our analytical observation partials for the latter. This
comparison aims at quantifying the influence of the observable choice on the
estimated solution. We show that it is essential to adopt an appropriate weighting
strategy when using alternative observables to achieve consistent results between
the two observable types, but that central instants can nonetheless yield a 10-20%
reduction in formal errors.

We develop the analytical framework for mutual approximations’ central instants
in Section 6.2, while the details of the observables simulation and state estimation
are provided in Section 6.3. The results of our comparative analysis are discussed in
Section 6.4, first using a simple test case limited to mutual approximations between
Io and Europa, before extending it to the four Galilean moons. The main concluding
points are summarised in Section 6.5. All the numerical simulations presented in
this paper were conducted using the Tudat toolkit developed by the Astrodynamics
& Space Missions department of Delft University of Technology (see Appendix C in
Dirkx et al., 2019a).

6.2. USING MUTUAL APPROXIMATIONS IN THE ESTIMATION

In this section, we first provide a formal definition to describe the observation
of a mutual approximation between two satellites in Section 6.2.1. We develop
an analytical formulation for the central instants and their observation partials in
Section 6.2.2 and Section 6.2.3, respectively. The light-time effect contribution
to those partials is discussed in Section 6.2.4. Finally, the alternative mutual
approximations’ observable (i.e., derivative of the apparent distance, as introduced
in Section 6.1) is presented in more detail in Section 6.2.5.

6.2.1. MUTUAL APPROXIMATION DEFINITION

A mutual approximation involves an observer (denoted by the subscript O in the
following), which is most commonly a ground station, and two natural satellites,
between which a close encounter is observed (subscripts S1 and S2, respectively).
Because light has a finite speed, the time at which the mutual approximation is
observed (observation time tO ) differs from the time at which the light eventually
received by the observer got reflected by each of the satellites (tS1 and tS2 for
satellites 1 and 2, respectively).

The relative range vectors between the satellites and the observer can thus be
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defined as follows (see Fig. 6.2):

r S1
O

= rS1 (tS1 )− rO (tO ), (6.1)

r S2
O

= rS2 (tS2 )− rO (tO ). (6.2)

The relative velocity and acceleration of the two satellites can then be expressed as

ṙ Si
O

= dr Si
O

d t
= drSi

d t
(tSi )− drO

d t
(tO ), (6.3)

r̈ Si
O

= d 2r Si
O

d t 2 = d 2rSi

d t 2 (tSi )− d 2rO

d t 2 (tO ); i ∈ {1,2}. (6.4)

As mentioned in Section 6.1, a mutual approximation is defined as a point of
closest encounter of two satellites in the field of view of an observer (see Fig. 6.1).
This corresponds to the moment at which the apparent distance between the two
moons reaches a minimum. The apparent distance as seen by an observer is

d =
√

X 2 +Y 2, (6.5)

where X and Y are the coordinates of the relative position between the satellites, in
the instrumental frame of the observer.

Figure 6.2.: Schematic representation of the different coordinate systems and
positions. The first satellite and all associated notations are depicted in
red, while blue is used for the second satellite. r Si

O denotes the relative
position vector between satellite i and the observer, and

[
xi , yi , zi

]
correspond to the observer-centred cartesian coordinates of satellite i .
αSi and δSi refer to the right ascension and declination of satellite i , as
seen by the observer.

[
x ′

i , y ′
i , z ′

i

]
are the satellites’ central body-centred

cartesian coordinates.
[
eSi

r
,eSi

s
,eSi

w

]
defines the RSW reference frame

associated with satellite i . The vectors eSi
r

, eSi
s

, and eSi
w

correspond to
the radial, normal, and axial directions, respectively.
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The apparent relative position coordinates X and Y are defined as

X = (αS2 −αS1 )cos

(
δS1 +δS2

2

)
, (6.6)

Y = δS2 −δS1 . (6.7)

X and Y thus depend on the right ascensions αSi and declinations δSi of the two
satellites, which are functions of the inertial relative range vectors with respect to
the observer:

αSi

(
r Si

O

)= 2arctan

 yi√
x2

i + y2
i +xi

 , (6.8)

δSi

(
r Si

O

)= π

2
−arccos

 zi√
x2

i + y2
i + z2

i

 , (6.9)

where
[
xi , yi , zi

]
correspond to the components of the relative range vectors r Si

O

(see Fig. 6.2). X and Y are thus time-dependent, as they are indirectly defined
by the time-varying relative range vectors between each of the two satellites and
the observer. In the rest of this paper, ri denotes the norm of these relative range
vectors and rix y the norm of the reduced vector

[
xi , yi ,0

]
. δm refers to the average

declination, such that δm =
(
δT1

+δT2

)
/2. The differences in right ascension and

declination are noted ∆α=αT 2 −αT 1 and ∆δ= δT 2 −δT 1 .
By definition, the central instant tc of a mutual approximation (recorded by the

observer) fulfills the following condition:

d

d t

(√
X (tc )2 +Y (tc )2

)
= 0. (6.10)

The apparent distance at tc is referred to as the impact parameter of the mutual
approximation and denoted dc .

6.2.2. ANALYTICAL EXPRESSIONS FOR CENTRAL INSTANTS

The central instant tc is typically determined by fitting a fourth order polynomial to
the apparent distance history between two satellites (see Fig. 6.1). The roots of the
derivative of the fitted polynomial provide the estimated central instant of the close
encounter. For simulated mutual approximations, the procedure can be iterated to
improve the precision of the predicted central instants by re-centring the polynomial
fit on the current estimate of the point of closest approach.

A fourth order polynomial is needed to reproduce the relative motion of the two
satellites over the typical duration of a close encounter (i.e., 60 minutes). However,
when focusing on only a fraction of this event, a fourth order polynomial is not
necessary. For instance, a second order polynomial provides a fit over the interval
[tc −15min; tc +15min] which is as good as the one provided by a fourth order
polynomial over the whole event, as shown in Appendix 6.6.
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To derive observation partials, we quantify the effect of very small changes in
position and velocity of the two satellites. We are thus investigating only slight
variations of the central instant tc , and can limit our analysis to short time intervals
centred on the current estimate of tc . Consequently, for our analysis, it is safe to
approximate the apparent relative motion of the two satellites by a second order
polynomial only.

Around the point of closest approach, the relative position coordinates X and Y
can thus be expressed as a function of three polynomial coefficients each:

X (t − tc ) = a0 +a1(t − tc )+a2(t − tc )2, (6.11)

Y (t − tc ) = b0 +b1(t − tc )+b2(t − tc )2. (6.12)

These polynomial coefficients are directly given by the apparent relative position,
velocity, and acceleration coordinates at central instant tc . Introducing the relative
time t ′ = t − tc as well as simplified notations (Xc = X (tc ), Ẋc = Ẋ (tc ), etc.), Eqs. 6.11
and 6.12 can be rewritten as follows:

X (t ′) = Xc + Ẋc t ′+ Ẍc

2
t ′2, (6.13)

Y (t ′) = Yc + Ẏc t ′+ Ÿc

2
t ′2. (6.14)

The relative velocity coordinates are then approximated by a first order polynomial
when close enough to the central instant:

Ẋ (t ′) = Ẋc + Ẍc t ′, (6.15)

Ẏ (t ′) = Ẏc + Ÿc t ′. (6.16)

Higher-order terms could be included in Eqs. 6.13-6.16. However, as discussed
above, a second-order polynomial is well-suited to reproduce the apparent relative
motion of the two satellites around the point of closest encounter. Higher-order
terms can thus be safely neglected, as shown by the verification of our analytical
partials for central instants (see Appendix 6.9).

As already mentioned in Section 6.2.1, the derivative of the apparent distance
is equal to zero at central instant tc . Therefore, the dot product between the
relative position and velocity vectors must be equal to zero, leading to the following
condition: (

Xc + Ẋc t ′+ Ẍc

2
t ′2

)(
Ẋc + Ẍc t ′

)
+

(
Yc + Ẏc t ′+ Ÿc

2
t ′2

)(
Ẏc + Ÿc t ′

)= 0. (6.17)

The above equation can be rewritten as a third-order polynomial expression in t ′:(
Ẍ 2

c + Ÿ 2
c

)
t ′3 +3

(
Ẋc Ẍc + Ẏc Ÿc

)
t ′2

+2
(
Ẋ 2

c + Ẏ 2
c +Xc Ẍc +Yc Ÿc

)
t ′+2

(
Xc Ẋc +Yc Ẏc

)= 0. (6.18)
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Solving for t ′ is equivalent to finding the roots of this cubic polynomial, which
can be done analytically with Cardano’s formula (e.g., Weisstein, 2002b). In case
the cubic polynomial has three real roots, the closest to the current tc estimate
should be selected, the other two falling outside the nominal duration of the close
encounter event in most cases. An analytical expression can thus be derived for t ′,
as a function of the apparent position, velocity, and acceleration components at tc :

t ′ = f
(
Xc ,Yc , Ẋc , Ẏc , Ẍc , Ÿc

)
. (6.19)

Formulations for Ẋ and Ẏ are derived from expressions for X and Y (Eqs. 6.6 and
6.7), as follows:

Ẋ =∆α̇cos(δm)−∆αsin(δm) δ̇m , (6.20)

Ẏ =∆δ̇. (6.21)

α̇ and δ̇ can be computed from Eqs. 6.8 and 6.9 as a function of the inertial relative
position and velocity:

α̇Si
= xi ẏi − yi ẋi

r 2
ix y

, (6.22)

δ̇Si
=

−zi
(
xi ẋi + yi ẏi

)+ r 2
ix y

żi

r 2
i rix y

; i ∈ 1,2. (6.23)

Finally, the apparent relative acceleration components Ẍ and Ÿ are required and
can be similarly derived:

Ẍ =∆α̈cos(δm)−2δ̇m∆α̇sin(δm)−∆α(
δ̇2

m cos(δm)+ δ̈m sin(δm)
)

(6.24)

Ÿ =∆δ̈, (6.25)

where the second time derivatives of α and δ also depend on the inertial relative
acceleration:

α̈Si
= −2

(
xi ẏi − yi ẋi

)(
xi ẋi + yi ẏi

)
r 4

ix y

+
(
xi ÿi − yi ẍi

)
r 2

ix y

, (6.26)

δ̈Si
= 1

r 2
i rix y

[
−zi

(
xi ẍi + yi ÿi

)+ r 2
ix y

z̈i − zi

(
xi ẏi − yi ẋi

)2

r 2
ix y

+
2
(
r Si

O · ṙ Si
O

)
r 2

i

(
zi (xi ẋi + yi ẏi )− żi r 2

ix y

) ; i ∈ {1,2}. (6.27)

Inserting Eqs. 6.8-6.9, 6.22-6.23, and 6.26-6.27 into Eqs. 6.6-6.7, 6.20-6.21, and
6.24-6.25 gives a direct analytical expression for t ′, and therefore for the central
instant tc , via Eq. 6.19.
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6.2.3. PARTIALS WITH RESPECT TO THE NATURAL SATELLITES’ STATES

To estimate ephemerides using central instants as observables, the partials of tc with
respect to the states of the two natural satellites are required. Recalling the analytical
expression obtained for t ′ (Eq. 6.19) and noting q the vector of parameters, the
central instants partials are

Çt ′

Çq
=Ç f

(
Xc ,Yc , Ẋc , Ẏc , Ẍc , Ÿc

)
Çq

(6.28)

= Ç f

Ç[Xc ,Yc ]

Ç[Xc ,Yc ]

Çq
+ Ç f

Ç[Ẋc , Ẏc ]

Ç[Ẋc , Ẏc ]

Çq
+ Ç f

Ç[Ẍc , Ÿc ]

Ç[Ẍc , Ÿc ]

Çq
. (6.29)

The partials of the relative apparent position, velocity, and acceleration can be
decomposed as a function of the partials of αSi

, δSi
, α̇Si

, δ̇Si
, α̈Si

, and δ̈Si
, as follows:

Ç [X ,Y ]

Çq
= Ç[X ,Y ]

Ç [α,δ]Si

Ç [α,δ]Si

Çq
; i ∈ {1,2}, (6.30)

Ç[Ẋ , Ẏ ]

Çq
= Ç[Ẋ , Ẏ ]

Ç [α,δ]Si

Ç [α,δ]Si

Çq
+ Ç[Ẋ , Ẏ ]

Ç[α̇, δ̇]Si

Ç[α̇, δ̇]Si

Çq
, (6.31)

Ç
[

Ẍ , Ÿ
]

Çq
= Ç[Ẍ , Ÿ ]

Ç[α,δ]Si

Ç[α,δ]Si

Çq
+ Ç[Ẍ , Ÿ ]

Ç[α̇, δ̇]Si

Ç[α̇, δ̇]Si

Çq
+ Ç[Ẍ , Ÿ ]

Ç[α̈, δ̈]Si

Ç[α̈, δ̈]Si

Çq
. (6.32)

From the definition of the apparent position (X ,Y ), velocity (Ẋ ,Ẏ ), and accelerations
(Ẍ ,Ÿ ) in Eqs. 6.6-6.7, 6.20-6.21, and 6.24-6.25, their partials with respect to the
satellites’ states can be easily derived (the proof is left as an exercise to the reader).
Finally, the partials of α, δ, α̇, δ̇, α̈, and δ̈ also need to be computed with respect to
the position and velocity vectors of the two satellites.

To quantify the influence of the uncertainties in the observer’s state on the
estimated solution, partials with respect to rO and ṙO might also be required. All
derivations are provided in Appendix 6.7. Our analytical formulation for the partials
of the central instants with respect to both the satellites’ and observer’s states were
validated numerically. The results of this verification are reported in Appendix 6.9.

6.2.4. LIGHT-TIME EFFECTS

In Section 6.2.3, the contribution of the light-time effects was not yet included in
the observation partials and we therefore assumed that both tO and tSi were fixed.
Corrections required to account for the finite speed of light are now discussed.
When computing light-time effects, we typically fix either the time at the observed
body (here tSi ) or the time at the observer (tO ). The other one is determined via an
iterative scheme to ensure that the difference between the two times matches the
light-time calculated from the observer and observed bodies’ states (Moyer, 2005).
For mutual approximations, the reception time should always be fixed. Fixing the
two transmission times would indeed lead to two different inconsistent reception
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times for a unique observation. The light-time equations are expressed as follows
(Moyer, 2005):

tSi − tO =
∣∣rSi (tSi )− rO (tO )

∣∣
c

; i ∈ {1,2}, (6.33)

where c refers to the speed of light and the observation time tO is a fixed unique
value.

The partials of the light-time with respect to a vector of parameters q can then be
derived from Eq. 6.33:

ÇtSi

Çq
= 1

c

r Si
O

r Si
O

(
ÇrSi

Çq
(tSi )− ÇrO

Çq
(tO )+ ṙSi (tSi )

ÇtS1

Çq

)
. (6.34)

Solving for the partials of tSi with respect to q , we finally obtain (Moyer, 2005)

ÇtSi

Çq
= 1

c

r Si
O

r Si
O

− r Si
O

· ṙSi
c

(
ÇrSi

Çq
(tSi )− ÇrO

Çq
(tO )

)
. (6.35)

The time tSi thus depends on both the natural satellite’s and observer’s states.
As already mentioned, right ascension and declination partials with respect to the
vector of parameters q were provided for fixed tO and tSi in Section 6.2.3. When
accounting for the light-time effect, the complete formulation for those partials
becomes

Ç [α,δ]Si

Çq
=
Ç [α,δ]Si

Çq

∣∣∣∣∣
tSi

+ [
α̇, δ̇

]
Si

ÇtSi

Çq
; i ∈ {1,2}. (6.36)

The same applies to the partials of α̇, δ̇, α̈, and δ̈, and leads to the following
expressions:

Ç[α̇, δ̇]Si

Çq
=
Ç[α̇, δ̇]Si

Çq

∣∣∣∣∣
tSi

+ [α̈, δ̈]Si

ÇtSi

Çq
, (6.37)

Ç[α̈, δ̈]Si

Çq
=
Ç[α̈, δ̈]Si

Çq

∣∣∣∣∣
tSi

+ [
...
α ,

...
δ ]Si

ÇtSi

Çq
; i ∈ {1,2}. (6.38)

According to Eq. 6.38, the complete partials for α̈Si
and δ̈Si

require one to

compute
...
α Si

and
...
δ Si

(see Eq. 6.38), and thus the time derivative of the relative
acceleration of each satellite with respect to the observer. This would significantly
increase both the implementation and computational efforts, while the α̈Si

and δ̈Si
partials only marginally contribute to the central instant partials (at most of the
order of 0.001% for the case of the Galilean satellites, see Appendix 6.10, Table 6.7).
As a consequence, neglecting the light-time effects when computing the partials for
α̈Si

and δ̈Si
was considered a fair simplifying assumption, which was applied in the

rest of this analysis.
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6.2.5. ALTERNATIVE OBSERVABLES

As already mentioned in Section 6.1, the alternative observable recommended by
Morgado et al. (2019b) correspond to the derivative of the apparent distance, defined
as

h = d

d t

(√
X 2 +Y 2

)
= X Ẋ +Y Ẏp

X 2 +Y 2
. (6.39)

If X and Y and their time derivatives Ẋ and Ẏ were computed at the exact central
instant tc of the close encounter, the observable h would by definition be equal to
zero. This is however not the case. This observable thus indirectly evaluates the
difference between the current estimate of tc and its true value by quantifying how
much the derivative of the apparent distance departs from zero.

In contrast to central instants which also depend on the satellites’ relative
accelerations, alternative observables are thus only a function of their relative
position and velocity. The partials of such an observable with respect to a vector of
parameters q are much easier to derive than for central instants and are given by
Morgado et al. (2019b):

Çh

Çq
= 1p

X 2 +Y 2

(
X
ÇẊ

Çq
+ Ẋ

ÇX

Çq
+Y

ÇẎ

Çq
+ Ẏ

ÇY

Çq

)
− X Ẋ +Y Ẏ(

X 2 +Y 2
)3/2

(
X
ÇX

Çq
+Y

ÇY

Çq

)
. (6.40)

The results of the comparison between the two types of observables are discussed in
Section 6.4.

6.3. OBSERVATIONS SIMULATION AND EPHEMERIDES

ESTIMATION
We first describe how mutual approximations are simulated in Section 6.3.1, before
introducing the covariance analysis used to compare the two observable types in
Section 6.3.2. The strategy applied to weigh the mutual approximations’ observables
is then discussed in Section 6.3.3. Finally, Section 6.3.4 defines an additional figure
of merit to analyse the estimation solution.

6.3.1. MUTUAL APPROXIMATIONS SIMULATION

We used simulated mutual approximations in our analysis. As a preliminary test
case, we first propagated the trajectories of Io and Europa only, and detected close
encounters between these two moons (results discussed in Sections 6.4.1 to 6.4.4). A
more complete simulation including all Galilean moons was also conducted to verify
the findings of the former simple test case (Section 6.4.5).

The orbits of the Galilean moons were propagated using a simplified dynamical
model. For each of the moons, we considered only the point-mass gravitational
accelerations exerted by Jupiter and the three other satellites. A more detailed
dynamical model (e.g., Dirkx et al., 2016; Lainey et al., 2004a) would yield more
accurate propagated orbits for the Galilean moons, and thus affect the predicted
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mutual approximations. However, we focus on comparing two types of mutual
approximations’ observables. High-accuracy dynamical modelling is therefore not
critical for this study, as long as the same set of simulated observations is used for
both observable types.

Mutual approximations were simulated for the period 2020-2029. To limit the
number of observations, we only considered mutual approximations with an impact
parameter lower than 30 arcseconds (as), in agreement with Morgado et al. (2019b).
We selected three of the ground stations involved in the 2016-2018 observational
campaign reported in Morgado et al. (2019b), designated by FOZ, OHP, and OPD
(their coordinates are reported in Table 6.1). To ensure the feasibility of the
observation, daytime events were discarded. In addition, the lower limit on the
distance between the mutual approximation and the limb of Jupiter was set to 10
as. Only mutual approximations observable from the three ground stations under an
elevation angle larger than 30 degrees were included.

When achievable under the aforementioned conditions, a single event can be
observed by several ground stations. Those multiple observations of one mutual
approximation were assumed to have uncorrelated noise and thus they were added
as independent observations to the state estimation. This implies that such
simultaneous observations improve the estimation solution by increasing the size of
the observational data set, as formal errors are expected to scale down with

p
n (n

being the total number of observations). Finally, weather conditions were taken into
account to obtain a realistic set of observations. Due to bad weather conditions,
about 35% of the predicted mutual approximations could not be observed during the
2016-2018 campaign (Morgado et al., 2019b). We took a conservative approach to
simulate these bad weather conditions and discarded 50% of the viable observations,
selected arbitrarily using a uniform distribution.

The distribution per year of the remaining simulated mutual approximations is
shown in Fig. 6.3. Fig. 6.3a displays the fraction of simulated events per ground
station, while Fig. 6.3b focuses on the number of mutual approximations for
each combination of two Galilean moons. It is interesting to note that no mutual
approximation respecting the conditions mentioned in the previous paragraphs
could be found in 2020, and that some years are more favourable to such events due
to the time evolution of the Earth - Jovian system relative geometry.

6.3.2. COVARIANCE ANALYSIS

To compare state estimations obtained with the two types of mutual approximation
observables, we limited ourselves to a covariance analysis. Despite its limitations
(Gaussian observation noise, dynamical and observational models assumed perfect),
such an analysis is well-adapted for comparison purposes. Formal errors are known
to be too optimistic compared to true errors, but we only focus on comparing
two sets of estimation errors and not on absolute error values. Since mutual
approximations are almost exclusively sensitive to the relative dynamics between
the two satellites while both their absolute states are estimated, realistic errors are
anyway difficult to achieve without including other observations.

In our simulations, the estimated parameters were the initial states of the
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Table 6.1.: Ground stations’ geodetic coordinates. The three ground stations reported
in this table are the ones from which the observations of the mutual
approximations are simulated. The table is adapted from Morgado et al.
(2019b).

Alias
Site Longitude [E] Latitude [N] Altitude [m]
Location

FOZ
Foz do Iguacu - 54◦35’37.0” - 25◦26’05.0” 184
PR-Brazil

OHP
Haute-Provence 05◦42’56.5” 43◦55’54.7” 633
France

OPD
Itajuba - 45◦34’57.5” W - 22◦32’07.8” 1864
MG-Brazil

moons involved in the mutual approximations. In most of our analysis, only the
Jupiter-centred initial states of Io and Europa are estimated (Sections 6.4.1 to 6.4.4),
while we also solved for the initial states of Ganymede and Callisto in the more
complete case used for verification (see Section 6.4.5). For the moons’ initial position
components, a priori covariance of 100 km was considered, while it was set to 100
m/s for their initial velocity. These a priori values are large, but were only included
to slightly constrain the estimation, thus avoiding an ill-posed problem and making
the comparison between the estimation solutions obtained with the two observable
types possible.

6.3.3. DATA WEIGHTS

Observation weights are usually applied to account for the quality of the data. For
our comparative analysis, it is essential to ensure that the data weights are consistent
between the two types of observables. We used an error of 3.5 s for the central
instants tc (average error obtained over the 104 observed mutual approximations of
the 2016-2018 campaign reported in Morgado et al., 2019b).

To derive appropriate weights for the alternative observables, the shape of the
simulated mutual approximation must be taken into account. By definition, the
derivative of the apparent distance (i.e., alternative observable) is always equal to
zero at t = tc . However, an error of 3.5 seconds in the determination of the central
instant would shift this value away from zero. The exact value of the resulting
alternative observable error directly depends on the specific geometry of each mutual
approximation. The alternative observable error was thus individually computed for
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Figure 6.3.: Distribution of the simulated mutual approximations per year, depending
on the ground station (panel a) and on the two moons involved (panel
b). Mutual approximations which have been discarded to mimic the
effect of bad weather conditions are not included in this distribution.

each observation, as follows:

σalt. =
∣∣ḋ(tc −σtc )

∣∣+ ∣∣ḋ(tc +σtc )
∣∣

2
, (6.41)

where σtc is set to its averaged value (σtc = 3.5 s) and ḋ is the derivative of the
apparent distance (given by Eq. 6.39).
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Consistent weights between the two observables are not only needed to perform
a meaningful comparison. When using alternative observables, weighting can be
an indirect way to account for the satellites’ relative dynamics during the close
encounter. Indeed, a non-zero value for the derivative of the apparent distance at
tc only quantifies how much the observed central instant departs from the current
point of closest approach. However, it does not provide any information about the
current apparent distance minimum. For a given non-zero value of the apparent
distance derivative, the difference between the observed and current central instants
entirely depends on the satellites’ apparent relative dynamics, which drive the
geometry of the observed encounter.

This effect is, by definition, inherently captured by central instants, for which
applying an appropriate constant weight value is thus suitable. For alternative
observables, on the other hand, individual weights accounting for each mutual
approximation’s dynamics, as given in Eq. 6.41, are crucial. This is necessary to
translate an error in the estimated central instant to an error in the derivative
of the apparent distance. The importance of applying this weighting strategy
to obtain consistent estimation solutions with the two different observable types
is demonstrated in Section 6.4.4. Furthermore, we computed the appropriate
alternative observables’ weights for the past mutual approximations observed during
the 2016-2018 campaign and reported in Morgado et al. (2019b). These weights are
provided in Appendix 6.11 and should be used when including the 2016-2018 mutual
approximations in the state estimation.

6.3.4. CONTRIBUTION OF EACH OBSERVATION TO THE SOLUTION

To perform a detailed comparison of the two observable types, the mutual
approximations’ contributions to the solution were used as an additional figure of
merit to complement the covariance analysis. In this study, each observation’s
contribution to the solution is defined as the root-mean-square (RMS) of the
weighted observation partial with respect to the parameters of interest’s vector q .
For example, the contribution c of an observation h to Io’s Jupiter-centred initial
position vector is expressed as:

c(
rIo

)(h) =
√(

Çh

ÇxIo (t0)

)2

+
(

Çh

ÇyIo (t0)

)2

+
(

Çh

ÇzIo (t0)

)2

, (6.42)

where t0 is the initial epoch at which Io’s state is estimated. The contribution
c(q)(h) to the vector of parameters q is then normalised as follows (the bar indicates
normalisation):

c̄(q)(h) =
log

(
c(q)(h)

)
− log

(
min(c(q))

)
log

(
max

(
c(q)

))
− log

(
minc(q))

) , (6.43)

where c(q) is the vector containing the contributions of the entire set of mutual
approximations with respect to q (for one type of observable).
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6.4. RESULTS
We present here the results of the comparison between the ephemeris estimation
determination solutions obtained using either central instants or alternative
observables. The comparison is first conducted for a simple test case with Io
and Europa only, to analyse how each mutual approximation contributes to the
ephemerides solution and how this affects the relative performance of the two types
of observables. Results of this first analysis are presented in Sections 6.4.1 to 6.4.4.
A more complete test case also including Ganymede and Callisto is used to verify
those findings (Section 6.4.5).

6.4.1. COMPARISON OVER THE 2020-2029 OBSERVATIONAL PERIOD

We first only simulated mutual approximations between the two innermost Galilean
moons, for the period 2020–2029, and estimated Io’s and Europa’s initial states from
those simulated observations. The evolution of the formal errors with time is
displayed in Fig. 6.4, as more mutual approximations are included in the estimation.
The differences in formal errors between the two types of observables do not exceed
20% at the end of our simulation, after ten years of observations. Alternative
observables and central instants lead to comparable formal errors evolutions. At
first order, this proves that the two types of mutual approximations’ observables
are largely equivalent, at least when enough observations are added to the state
estimation. It validates the recommendations formulated in Morgado et al. (2019b),
but seems to contradict the results on numerical partials in Emelyanov (2017).

Nonetheless, using central instants still results in slightly lower formal errors
for each component of both Io’s and Europa’s initial position. The formal error
improvement is stronger in the radial and normal directions (about 20% for both
Io and Europa at the end of simulation) and less significant in the axial direction
(only 10-12%). As mentioned in Section 6.2.5, the observation partials developed
for the central instants account for variations in the apparent relative acceleration
between the two satellites, while this is not the case for alternative observables.
The additional information captured by central instants thus principally lies within
the orbital plane of the Galilean moons, within which the inter-moons accelerations
primarily act. On the other hand, the central instants are not significantly more
sensitive than alternative observables to state variations in the axial direction.

Interestingly, the difference in formal errors between the two types of observables
is not constant over time, as clearly highlighted by Fig. 6.4. It can be as low
as a few percents (e.g., Io’s normal position in year 2021) or as high as 35% (e.g.,
Io’s normal position during the first half of year 2027). This is related to the
mutual approximations’ heterogeneous contribution to the solution: it varies from
one observation to another, but also between the two observable types. The cause
of this heterogeneity is further discussed in Section 6.4.2.

First, as expected, the contribution of each mutual approximation depends on the
time at which it occurs. Observations collected further in time (with respect to the
initial epoch t0 at which the states are estimated) indeed contribute more to the
initial state solution. This directly results from the fact that later observations provide
tighter constraints to the initial state due to the orbit propagation: the effect of a
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Figure 6.4.: Time evolution of the formal errors in Io’s and Europa’s initial RSW
coordinates (radial, normal, and axial directions, see Fig. 6.2), as more
observations are progressively included in the state estimation. The blue
and purple lines respectively display the central instants and modified
observables cases (left y-axis). The black line (right y-axis) represents
the relative difference (in percentage) between the two solutions as a
function of time. The formal errors are equal to their a priori values
(i.e., 100 km, see Section 6.3.2) until the inclusion of the first mutual
approximation (towards the end of 2021) and no difference between the
two observables’ solutions is thus observed beforehand.

slight variation in the initial state of Io and Europa on their trajectories grows with
time. However, this time trend similarly affects both observable types and thus it has
no noticeable influence on the solution improvement provided by central instants.

Nonetheless, the observable type choice also has an effect on some mutual
approximations’ contribution to the estimated solution. Fig. 6.5 displays the
normalised contribution ratio of central instants over alternative observables,
as defined in Section 6.3.4, for each mutual approximation. Some mutual
approximations, mostly concentrated in the 2026-2027 period, contribute significantly
less to both Io’s and Europa’s estimated positions when alternative observables are
used instead of central instants. As expected, these observations coincide with an
increase of the difference in formal errors between the two observables. The coming
sections investigate why this discrepancy between the two observable types only
concerns some mutual approximations and specific observational periods.

6.4.2. INFLUENCE OF THE MUTUAL APPROXIMATIONS’ CHARACTERISTICS

To better characterise the difference between the two observable types, we further
analyse the relative contribution of each observation and the effect of the mutual
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Figure 6.5.: Reduction in formal errors obtained by using central instants instead of
alternative observables, as more observations are added to the solution.
This is displayed on the left axis, for the three RSW position components
(panel a: Io, panel b: Europa). On the right axis (black dots), the
ratio between the normalised contributions of central instants over
their corresponding alternative observables is plotted, for each mutual
approximation (normalised contributions are computed as in Eq. 6.43).

approximation’s characteristics. Section 6.4.2 discusses the influence of the impact
parameter and velocity on each mutual approximation’s contribution to the solution,



6

186 6. MUTUAL APPROXIMATIONS FOR EPHEMERIDES DETERMINATION

for both central instants and alternative observables. The link between those
characteristics and the observation geometry is explored in Section 6.4.2.

INFLUENCE OF IMPACT PARAMETER AND VELOCITY ON EACH MUTUAL

APPROXIMATION’S CONTRIBUTION

Focusing on the central instants case first, Fig. 6.6a shows that each mutual
approximation’s contribution to the estimated positions (averaged between Io
and Europa) strongly depends on the impact parameter and velocity. Highest
contributions are systematically obtained with both low impact parameter and
velocity (up to about 7 as and 1 mas/s, respectively). Mutual approximations with
either low impact parameter and high impact velocity, or high impact parameter but
low impact velocity also contribute significantly to the ephemerides solution.

Using alternative observables instead of central instants alters the way some
mutual approximations contribute to the estimated solution, as hinted in Section
6.4.1. Fig. 6.6b displays the ratio between central instants’ and alternative
observables’ contributions to the estimated initial positions (contributions were
again averaged between Io and Europa). Mutual approximations characterised by
low impact parameter and high impact velocity contribute significantly less to the
solution when switching to alternative observables. More precisely, most mutual
approximations with impact parameters lower than 5 as and impact velocities larger
than 4 mas/s contribute about 2 times more to the estimated solution when using
central instants instead of alternative observables.

This analysis proves that the differences between the two observable types for some
mutual approximations is amplified by specific impact characteristics. Furthermore,
mutual approximations identified as unfavourable for alternative observables (low
impact parameters with large impact velocities) are not evenly distributed over the
2020-2029 observational period, but rather concentrated in the 2026-2027 interval.
As expected, it corresponds to the period during which the differences in formal
errors between the two observables increase (Section 6.4.1, see Fig. 6.5).

It is interesting to note that mutual approximations characterised by extremely
low impact parameters are also unfavourable from an observational perspective, and
not only from an estimation point of view. If the two satellites eventually become
so close that a (partial) occultation occurs, the observer cannot distinguish between
their images anymore, introducing a gap in the apparent distance measurements
near the point of closest approach and thus leading to a larger error in the estimated
central instant (Morgado et al., 2019b).

LINK TO THE OBSERVATION GEOMETRY

Interestingly, most of the mutual approximations simulated over the 2026-2027
period are characterised by low impact parameters (lower than 5 as), while it is not
the case outside of this time interval. This is clearly shown in Fig. 6.8, where impact
parameters are displayed in black.

The apparent relative motion of the two moons is driven by two parameters: their
inertial relative motion in the Jovian system and the observation geometry. Fig. 6.7
focuses on the former and shows the absolute distance between Io and Europa for
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Figure 6.6.: Observations’ contributions to the estimated initial positions’ solution
(in colours), as a function of each mutual approximation’s characteristics
(impact parameters and impact velocities, reported on the x- and y-axes,
respectively). Panel a: normalised contribution (Eq. 6.43) of each
mutual approximation to the solution (averaged between Io and Europa),
when using central instants. Panel b: ratio between the normalised
contributions of central instants over their corresponding alternative
observables.
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Figure 6.7.: Effect of the inertial geometry on the mutual approximations’ impact
characteristics. Both the impact parameter and the inertial distance
between Io and Europa (as opposed to apparent distance as seen from
the ground stations) are displayed, for each mutual approximation. The
colours represent the time of the observation.
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Figure 6.8.: Effect of the observation geometry on the mutual approximations’ impact
parameters. The angle between the orbital plane of the Galilean moons
and the observation vectors (Earth-Io in blue and Earth-Europa in
purple) is plotted for each mutual approximation. The corresponding
impact parameters (in as) are represented by black dots.
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each mutual approximation, as a function of the corresponding impact parameter.
The time at which each mutual approximation occurs is displayed in colours. When
excluding the 2026-2027 interval (orange dots), the impact parameters take a wide
range of values (up to the limit of 30 as). The lowest impact parameters usually
coincide with low inertial distances between Io and Europa, typically below 3.5 ·105

km (see the fraction of Fig. 6.7 highlighted in red). It should be noted that the
reverse is not true: low inertial distances do not automatically lead to low impact
parameters.

However, during the 2026-2027 period, mutual approximations with low impact
parameters are systematically achieved, even for large inertial distances between Io
and Europa. This difference between the inertial and apparent relative motions is
caused by the evolution of the observation geometry. Fig. 6.8 displays the angle
between the orbital plane of the Galilean moons and the two observation vectors
(Earth-Io and Earth-Europa), for each mutual approximation. The 2026-2027 period
coincides with an almost perfect alignment between the satellite-observer vectors
and the moons’ orbital plane, resulting in overall lower apparent distances during
Io-Europa close encounters. Those low impact parameters then regularly happen
to be combined with large impact velocities. This is why mutual approximations
with both aforementioned characteristics, for which the differences between the two
observable types are the largest (see Section 6.4.2), mostly occurred during years
2026 and 2027.

Such an observational period is thus not a special isolated case, but rather
a periodic effect of the Earth - Jovian system geometry. Therefore, mutual
approximations less favourable to alternative observables are expected to occur
repeatedly, about every 6 years, and coincide with the so-called ‘mutual events
season’ during which eclipses and occultations occur. Implications of this effect
of the observation geometry concerning the selection of the appropriate mutual
approximations’ observable type are discussed in Section 6.4.3.

It must be stressed that the selected weighting strategy for alternative observables
(Section 6.3.3) accounts for the mutual approximation’s characteristics, and thus
indirectly for the close encounter’s geometry. The aforementioned impact of the
observation geometry on the equivalence between the two observable types and
more precisely on the benefit of using central instants over alternative observables
is therefore already attenuated by our careful weighting of the latter. Section
6.4.4 investigates the consequences of this geometry effect when not taken into
consideration in the observation weights.

OBSERVATIONAL PERIOD REDUCED TO 2026-2027

To quantify the impact of using a limited observation set when it unfortunately
corresponds to the observational period less favourable to alternative observables,
we ran additional simulations including only 2026-2027 mutual approximations in
the state estimation. Table 6.2 compares the improvement in formal errors provided
by central instants over alternative observables with either complete (2020-2029) or
partial (2026-2027) observation sets.

As expected, the differences in formal errors between the two observables increase
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when only considering 2026-2027 observations, except for Europa’s axial position
component. The improvement provided by central instants is multiplied by factors
ranging from 1.5 to 3 for most position and velocity components. Compared to
results obtained with the complete observation set, formal errors’ improvements in
the axial direction become more significant. They are even comparable to those
achieved in the radial direction for both Io’s and Europa’s velocity.

Although alternative observables and central instants were proven to lead to very
comparable solutions in nominal configurations, the influence of the available set of
observations must thus not be neglected. If the number of mutual approximations is
limited, or the period over which they were observed too short, it is recommended
to investigate the characteristics of the available mutual approximations before
selecting an observable type. The improvement provided by using central instants is
indeed amplified when exclusively including mutual approximations observed under
unfavourable observation angles (2026-2027 period in our case).

6.4.3. IMPLICATIONS

If enough observations are available, the improvement achieved by using central
instants instead of alternative observables is limited to about 20% for our Io-Europa
test case. However, such improvement might still be relevant when concurrently
estimating other dynamical parameters along with natural bodies’ ephemerides.
Accurate determination of the tidal dissipation, in particular, is required to gain

Table 6.2.: Improvements in the final errors obtained with central instants, using two
different observations sets. The improvement in formal errors obtained
with central instants is computed with respect to formal errors resulting
from alternative observables, in two different cases. First, all mutual
approximations simulated over the whole 2020-2029 period are included
(referred to as case [1] in the table). Second, only mutual approximations
occurring during the 2026-2027 period are selected (referred to as [2]).

Parameters Improvement formal errors Ratio
2020-2029 [1] 2026-2027 [2] [2]/[1]

Position radial 21.9 % 45.2 % 2.1
Io normal 17.4 % 26.7 % 1.5

axial 12.0 % 29.5 % 2.5

Velocity radial 17.3 % 26.5 % 1.5
Io normal 22.3 % 46.3 % 2.1

axial 2.9 % 25.1 % 8.6

Position radial 19.7 % 59.8 % 3.0
Europa normal 20.4 % 27.8 % 1.4

axial 11.0 % 2.5 % 0.2

Velocity radial 22.1 % 29.3 % 1.3
Europa normal 19.7 % 59.7 % 3.0

axial 4.2 % 33.6 % 7.8
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insights into the orbital evolution of planetary systems.

Recent estimations from astrometric data indeed showed that Saturn’s tidal quality
factor Q can vary by several orders of magnitude from one moon’s forcing frequency
to another (Lainey et al., 2020). These results are highly inconsistent with current
evolution models, thus highlighting the need for accurate frequency-dependent
estimation of tidal parameters (Fuller et al., 2016). This is for instance not yet done
for Jupiter, whose tidal quality factor is currently only determined at Io’s frequency
(Lainey et al., 2009). A 20% improvement in the formal errors of the natural satellites’
initial states might be critical for such applications. As many perturbing dynamical
effects can be absorbed by a variation in the initial state, any improvement in the
state estimation can indeed help to detect and estimate such small tidal effects.

Furthermore, a 20% improvement in the predicted position and/or velocity of the
targeted body is not negligible for orbital design applications. It can indeed affect
the corrective manoeuvres required before and after a flyby or an orbital insertion,
allowing for a more efficient design and thus reducing the ∆V budget. The impact
of the mutual approximations’ observables choice then depends on the timing of
the manoeuvre. Fig. 6.9 displays the improvement in propagated errors in radial,
normal, and axial direction for both Io’s and Europa’s positions. The 20% difference
in the formal errors of the initial states can increase once propagated, at least in
the radial and normal directions. Depending on the time at which the manoeuvre
is planned, the improvement in the accuracy of the predicted targeted body’s state
might thus be higher than 20% if central instants are used. Looking at Fig. 6.9a,
differences can reach up to 35% for Io’s radial and normal position components
while they increase up to almost 40% for Europa (see Fig. 6.9b).

For Europa, the largest differences in propagated errors clearly correspond to the
2026-2027 period and thus coincide with the least favourable observation geometry
for alternative observables (see discussion in Section 6.4.2). This effect is however
barely noticeable in Fig. 6.9a, for Io’s case. Yet, it should be pointed that when a
very sensitive manoeuvre is planned during such a particular observational period,
the impact of the observable choice on the quality of the estimated solution might
not be negligible.

All aforementioned points are direct consequences of the imperfect equivalence
between the two types of observables, which might be accentuated when fewer
observations are available. In practice, however, this would be balanced by
other observations combined with mutual approximations in the state estimation.
Building on Section 6.4.2, it is nonetheless worth highlighting that the number and
distribution of the observations should be carefully considered when selecting an
appropriate observable for the processing of mutual approximations data.

The fact that the alternative observables’ unfavourable observational period
corresponds to the mutual events season might also be an interesting finding for the
processing of the mutual events themselves. Indeed, if the timings at which eclipses
and occultations occur were to be directly used as observables (as it is the case
with mutual approximations’ central instants), the effect of the observation geometry
would first need to be carefully investigated.
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Figure 6.9.: Propagated formal errors in position components over the observational
period (panel a: Io, panel b: Europa). The errors in position are
expressed in the RSW frame (Fig. 6.2) and are obtained from the
propagated covariance matrix and estimated initial states. The black
dots (right axis) display the ratio between the normalised contributions
of central instants over their corresponding alternative observables, for
each mutual approximation.
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6.4.4. INFLUENCE OF THE WEIGHTING SCHEME

When enough mutual approximations are available, the quality of the match between
the two observable types’ solutions actually strongly depends on the accurate
weighting of each mutual approximation. As highlighted in Section 6.3.3, individual
weights have to be computed for alternative observables. Using a single averaged
value for alternative observables’ weights yields a much larger discrepancy with
respect to the central instants solution over the full simulation, as reported in Table
6.3. Compared to formal errors obtained with alternative observables, those achieved
with central instants are then reduced by a factor 1.5 to 2.7 for the initial position
components, and up to a factor 4 for the velocity components.

These results clearly prove that the equivalence between the two observable types
is conditioned by the appropriate weighting of alternative observables. As mentioned
in Section 6.3.3, it is crucial to carefully compute suitable observation weights to
ensure that the alternative observables indirectly take into account the geometry of
the close encounter in the plane of the sky.

Emelyanov (2017) already conducted a comparative analysis between the two types
of observables, although the central instant partials were computed numerically.
Interestingly, a convergence issue was encountered with alternative observables,
while none was reported for central instants. This indicates that the two observables
types were not perfectly equivalent in this case, which might be due to the weighting

Table 6.3.: Comparison of the final formal errors obtained with the two types of
observables, when applying constant weight values. The final errors in
the moons’ positions are expressed in Jovicentric cartesian coordinates.
The central instants solution uses a constant weight σtc = 3.5 s (see
Section 6.3.3). For the alternative observables, we use the average of the
individual weights defined by Eq. 6.41: σalt. = 8.87×10−3 mas/s.

Parameters Formal errors with Ratio
Central Alternative

instants [1] observables [2] [2]/[1]

x′
Io 7.01 km 11.2 km 1.6

y ′Io 10.4 km 17.6 km 1.7
z′Io 14.5 km 37.3 km 2.6

ẋ′
Io 0.372 m/s 1.30 m/s 3.5

ẏ ′Io 0.373 m/s 0.904 m/s 2.4
ż′Io 0.562 m/s 1.86 m/s 3.3

x′
Europa 2.31 km 6.24 km 2.7

y ′Europa 13.6 km 20.5 km 1.5

z′Europa 26.3 km 49.1 km 1.9

ẋ′
Europa 0.191 m/s 0.535 m/s 2.8

ẏ ′Europa 0.222 m/s 0.851 m/s 3.8

ż′Europa 0.454 m/s 1.75 m/s 3.9
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issue we just highlighted.

6.4.5. VERIFICATION CASE: FOUR GALILEAN MOONS

As verification, we simulated mutual approximations between the four Galilean
moons of Jupiter. Ganymede’s and Callisto’s initial states were then estimated in
addition to Io’s and Europa’s. The resulting formal errors in the four moons’ initial
states are provided in Table 6.4. Even if not displayed here, the time evolution of the
errors in Io’s and Europa’s initial states show a behaviour comparable to what was
observed in the first test case limited to Io and Europa only (see Fig. 6.4). The final
formal errors are however a bit lower in the four moons’ case.

Similarly to the Io-Europa test case, using central instants over alternative
observables mostly improves errors in the radial and normal directions, but only has
a marginal effect on the axial errors. For Europa’s axial position, the estimation is
even 2% better with alternative observables. As shown in Table 6.4, differences in
formal errors between the two types of observables are significantly lower for Callisto
than for the three other moons. These differences are only of a few percents, while
they reach about 10% for Io’s, Europa’s, and Ganymede’s initial positions.

Again, the contribution of each mutual approximation to the estimated
ephemerides solution also reflects the higher sensitivity of central instants to the
complex dynamics at play in the Jovian system. Fig. 6.10 shows the contribution
of every observation to the initial position of Io (dark blue), Europa (light blue),

Table 6.4.: Comparison of the formal errors in the initial positions of the four
Galilean moons. The formal errors in position are expressed in the RSW
frame (see Fig. 6.2) and are provided for the two types of observables. The
last column displays the relative difference between the two. All predicted
mutual approximations over the period 2020-2029 were included in the
state estimation.

Moon Position Formal errors [km] Relative
component Central Alternative difference

instants observables [%]

Radial 0.222 0.242 8.2
Io Normal 6.60 7.30 9.6

Axial 4.49 4.57 1.7

Radial 0.908 1.02 10.7
Europa Normal 5.27 5.90 10.7

Axial 10.3 10.1 2.2

Radial 1.22 1.37 11.3
Ganymede Normal 5.99 6.39 6.2

Axial 17.9 18.1 1.1

Radial 1.55 1.56 0.7
Callisto Normal 8.64 8.93 3.2

Axial 25.5 26.0 1.6
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Figure 6.10.: Normalised contribution of mutual approximations between Io and
Europa (I-E, left plots), Io and Ganymede (I-G, centre-left plots), Io
and Callisto (I-C, centre-right plots), Europa and Ganymede (E-G, right
plots) to the initial position of Io (dark blue), Europa (light blue),
Ganymede (purple), and Callisto (orange). Results for Europa-Callisto
and Ganymede-Callisto mutual approximations are not presented here,
but do not show any trend that is not already highlighted by the
contributions of the other observations.

Ganymede (purple), and Callisto (orange). As expected, all mutual approximations
contribute to estimating the initial states of Io, Europa, and Ganymede because of
the Laplace resonance between these three moons. On the other hand, only mutual
approximations directly involving Callisto significantly help determine its initial state.

In Fig. 6.10, clear periodic patterns can be identified in the central instants case, at
least when enough observations are available, such as for Io-Europa, Io-Ganymede,
and Europa-Ganymede mutual approximations. While still present, those patterns
are however less pronounced for the alternative observables case. They are directly
related to the relative motion of the satellites in the Jovian system (inertial motion,
as opposed to apparent). This again indicates that part of the information encoded
in mutual approximations is not fully captured by alternative observables.

As already highlighted by the Io-Europa case (Section 6.4.1), central instants are
indeed more sensitive to the apparent relative acceleration between the two satellites.
Central instants’ partials directly account for any acceleration variation induced by a
small change in initial states, while alternative observables do not. This may also
explain why differences between the two observables are lower for Callisto. As it is
the most remote moon with respect to Jupiter, the distance between Callisto and
each of the three other moons is larger than the distances between Io, Europa, and
Ganymede, resulting in smaller inter-moon accelerations. Furthermore, because of
the Laplace resonance between the three innermost Galilean satellites, accelerations
exerted by one of these three moons on the other two strongly influence their
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dynamics. These two combined effects might strengthen the advantage of central
instants over alternative observables for Io, Europa, and Ganymede, compared to
Callisto.

Overall, all findings obtained in the first simple Io-Europa test case are confirmed
by this second analysis extended to the four Galilean moons. The two types of
observables lead to almost equivalent solutions if the alternative observables are
properly weighted (see Section 6.3.3), despite a 10% reduction of the formal errors
in both radial and normal directions when using central instants. The effect
of the observation geometry is also similar to the Io-Europa case: low impact
parameter, large impact velocity mutual approximations simulated in 2026-2027 are
unfavourable to alternative observables.

6.5. CONCLUSION & DISCUSSION

We developed an analytical formulation for the observation partials of the mutual
approximations’ central instants. This allows those central instants to be directly
used as observables to estimate the ephemerides of natural satellites. Our analytical
method relies on a second-order polynomial to approximate the relative motion of
two satellites around their point of closest approach. From this polynomial function,
we derived an expression for the central instant as a function of the apparent relative
position, velocity, and acceleration of the two satellites.

Higher-order terms could theoretically be included in our formulation. Using a
third-order polynomial to reproduce the apparent relative motion of the two moons
(Eqs. 6.11-6.12) would lead to a fourth-order polynomial for the central instant (Eq.
6.18). The roots of such a polynomial could still be computed analytically, but at the
cost of a dramatic increase in complexity. However, a second-order polynomial has
been proven sufficient to capture the apparent relative dynamics of the two satellites
around their closest encounter and to yield highly accurate analytical partials for
central instants.

Numerically computing partials for central instants, on the other hand, is extremely
computationally demanding (Emelyanov, 2017). It requires to independently
propagate small variations in each of the estimated parameters (at least 6 initial
state components for each of the two moons involved). Afterwards, the new central
instants must be determined, which is a time-consuming process in itself. Should
central instants be used, our analytical approach is thus significantly faster than the
numerical computation of the observation partials.

We conducted a comparative covariance analysis using either only central instants,
or only mutual approximation’s alternative observables to estimate the Galilean
moons’ ephemerides. When using the entire set of viable mutual approximations over
the period 2020-2029, the difference in formal errors does not exceed 20% between
the two types of observables. The central instants achieve the best ephemerides
solution because alternative observables do not account for some of the dynamical
effects affecting the close encounter (e.g., apparent relative acceleration between the
two satellites). In contrast, these effects are directly captured by central instants,
which is beneficial for the resulting estimated solution.
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Overall, we still prove alternative observables to be almost equivalent to central
instants, but only under specific conditions. First, when using alternative observables,
the shape of the observed close encounter must indirectly be accounted for in
the calculation of the observation weights, while it is automatically included in
the central instant case. Individual and accurate weighting of each event, based
on the apparent relative dynamics of the satellites, is then crucial to obtain a
consistent solution. It is indeed necessary to convert any error in the estimated
central instant to an error in the derivative of the apparent distance. We show
that when using a single averaged value to weigh all mutual approximations, the
formal errors in initial states obtained with central instants were 1.5 to 4 times lower
than with alternative observables in our test case. As discussed in Section 6.4.4, an
inappropriate weighting scheme could thus possibly explain previous indications of
a non-equivalence between the two observable types (Emelyanov, 2017). When using
alternative observables, we therefore recommend to adopt the weighting strategy
described in Section 6.3.3, and more precisely to compute the weights with Eq. 6.41.
In Appendix 6.11, we provide the appropriate alternative observables’ weights for the
2016-2018 mutual approximations reported in Morgado et al. (2019b). These weight
values should be applied for these observations to be properly included in the state
estimation.

Furthermore, all mutual approximations do not homogeneously contribute to the
ephemerides solution. The satellites’ dynamics are overall better constrained by
mutual approximations with a low impact parameter (typically below 7 as) and low
relative velocity (1 mas/s), for both observable types. However, some characteristics
in particular are unfavourable to alternative observables: mutual approximations with
low impact parameters but large impact velocities contribute significantly more to
the estimated solution when using central instants (factor 2 to 3). Preferring central
instants is thus particularly advantageous for these specific mutual approximations,
which are not isolated events but periodically represent most of the observations for
one or two years (see discussion in Section 6.4.2).

Choosing between the two types of observables when estimating ephemerides
from mutual approximations therefore requires critical evaluation. If many mutual
approximations are available to estimate the moons’ ephemerides, one can safely
use alternative observables without substantially degrading the solution. However,
this does not systematically hold for a small set of observations, especially if they
are all collected during the alternative observables’ unfavourable observation period.
The formal error reduction provided by our method then strongly depends on the
mutual approximations’ characteristics.

The relevance of selecting central instants over alternative observables eventually
depends on the application of the ephemerides solution. As detailed in Section 6.4.3,
a 10-20% improvement in the formal errors of the satellites’ state might be significant
when concurrently estimating tidal parameters. It may also be non-negligible for
mission design applications. Improved ephemerides are indeed crucial to design
efficient flybys or orbital insertions requiring only limited corrective manoeuvres.
The timing of the manoeuvres must then be taken into consideration to select
a suitable observable, especially if they coincide with observation geometries less
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favourable to alternative observables.

As mentioned in Section 6.4.3, a comparable analysis could be conducted for
mutual events. We expect to obtain consistent results with respect to the mutual
approximations’ case, given the similarities between the two types of observation.
However, all mutual events occur during the alternative observables’ unfavourable
observational period. It is thus important to confirm the influence of the observation
geometry on the differences between central instants’ and alternative observables’
state estimation solutions. This could be an interesting result, in case the
timings of eclipses and occultations are directly used as observables, as for mutual
approximations.

6.6. APPENDIX A: FITTING A POLYNOMIAL TO A CLOSE

ENCOUNTER’S APPARENT DISTANCE HISTORY

As described in Section 6.1, the apparent distance history during a close encounter
between the two satellites is typically fitted with a fourth order polynomial (e.g.,
Morgado et al., 2016). This allows to estimate the mutual approximation’s central
instant, as well as other properties such as the impact parameter. In this appendix,
we discuss the influence of the order of the fitting polynomial. The maximum
absolute values of the residuals between the fitted polynomial and the true apparent
distance history are reported in Table 6.5 (for the first mutual approximations
predicted between Io and Europa, starting from 01/01/2020). For clarity, the apparent
distance observations, fitted polynomial, and resulting residuals are displayed in Fig.
6.11 for the first mutual approximation.

When switching from a fourth order to a second order polynomial to reproduce
the apparent distance history over the whole duration of the close encounter (i.e.,
60 minutes), the residuals increase by almost a factor 10. However, if we only
focus on a small fraction of the event (here only 30 minutes centred on the central
instant), a second order polynomial achieves similar residuals as a fourth order
polynomial applied to the full close encounter duration. This proves that a second
order polynomial is well-suited when focusing on short time intervals centred on
tc . This is the case when deriving observation partials for central instants, as we
then only consider slight changes in tc , induced by small variations of the estimated
parameters.
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Figure 6.11.: Apparent distance measurements during a mutual approximation (blue
dots on top panels). The polynomial used to fit these observations is
typically a fourth order one (left panel). A second order polynomial
was also tested, for the whole duration of the event (middle panels)
and over a reduced time interval (30 minutes) centred on the central
instant tc . For each of the three case, the residuals between the fitted
polynomial and the true apparent distance history are displayed in the
bottom panels.

Table 6.5.: Maximum absolute values for the residuals between the apparent
distance history and the fitted polynomial. The residuals are compared
between three configurations: fourth order and second order polynomials
used over the whole duration of the close encounter (i.e., 60
minutes: [tc − 30min; tc + 30min]) and second order polynomial over
a reduced interval centred on the central instant (only 30 minutes:
[tc −15min; tc +15min]). Results are reported for 5 mutual approximations.

Mutual Max. absolute residual value [as]
approx. [tc −30min; tc +30min] [tc −15min; tc +15min]

4th order 2nd order 2nd order

1 3.50 ·10−2 2.84 ·10−1 3.11 ·10−2

2 3.13 ·10−2 2.45 ·10−1 2.97 ·10−2

3 3.55 ·10−2 2.67 ·10−1 3.28 ·10−2

4 3.84 ·10−2 2.99 ·10−1 3.40 ·10−2

5 3.78 ·10−2 2.79 ·10−1 3.32 ·10−2
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6.7. APPENDIX B: POSITION AND VELOCITY PARTIALS OF αSi ,
δSi , α̇Si , δ̇Si , α̈Si AND δ̈Si

6.7.1. αSi AND δSi PARTIALS

First, we derive the partials of the right ascension αSi and declination δSi with
respect to the two satellites’ and observer’s positions, as follows:
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The partials of αSi and δSi with respect to the velocity vectors are by definition equal
to zero:
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6.7.2. α̇Si AND δ̇Si PARTIALS

The partials of α̇Si and δ̇Si with respect to the position vectors of the two satellites
and the observer are
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zi ẏi − yi żi
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We also compute partials of α̇Si and δ̇Si with respect to the two satellites’ and the
observer’s velocity vectors:
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ÇṙSi

∣∣∣∣
tSi

=− Çα̇Si

ÇṙO
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6.7.3. α̈Si AND δ̈Si PARTIALS

The partials of α̈Si and δ̈Si with respect to position vectors lead to more complex
expressions. We therefore split those partials into two terms. The first one, denoted
as gα̈Si

or gδ̈Si
, correspond to the contribution of the acceleration partials (more

details about how to compute them are provided in Appendix 6.8). The rest of the
partial expression is included in the other term (g ′

α̈Si
or g ′

δ̈Si

).

We thus obtain the following formulation for the partial of α̈Si with respect to the
position of satellite i :
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Çÿi
ÇySi

− yi
Çẍi
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The partials of α̈Si with respect to the position vectors of the observer and of the
other satellite j are
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tSi

=


xi

Çÿi
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Çẍi
ÇxS j
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Çÿi
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Çẍi
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Çÿi
ÇzS j
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Çẍi
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 ; i ̸= j . (6.59)

Similarly, the position partials of δ̈Si are written as follows:

Çδ̈Si

ÇrSi

∣∣∣∣∣
tSi

= gδ̈Si
+ g ′

δ̈Si
, with (6.60)
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Çz̈i
ÇzSi

 , (6.61)
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(6.62)
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Çÿi
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Çÿi
ÇyO

xi
Çẍi
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, (6.63)

Çδ̈Si
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tSi

= −zi
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i rix y


xi

Çẍi
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Çz̈i
ÇxS j

Çz̈i
ÇyS j

Çz̈i
ÇzS j

 ; i ̸= j . (6.64)

Finally, the velocity partials also have to be derived for α̈Si and δ̈Si . We again
split the partials expressions into two terms, designated by kα̈Si

and k ′
α̈Si

(or kδ̈Si

and k ′
δ̈Si

). Again kα̈Si
corresponds to the contribution of the acceleration partials.
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Starting with the partials of α̈Si with respect to the satellites’ and observer’s velocity
vectors, we obtain the following expressions:

Çα̈Si

ÇṙSi

∣∣∣∣
tSi

= kα̈Si
+k ′

α̈Si
, with (6.65)
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Çẍi
ÇẋSi
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 , (6.66)

k ′
α̈Si

= 2

r 4
ix y


(y2

i −x2
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 , (6.67)
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Çẍi
ÇẏO
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, (6.68)
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Lastly, we obtain the following formulations for the partials of δ̈Si with respect to the
satellites’ and observer’s velocity vectors:
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tSi

= kδ̈Si
+k ′

δ̈Si
, with (6.70)
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ÇẏSi

+ yi
Çÿi
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Çẍi
ÇżSi
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xi ẋi + yi ẏi
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Çẍi
ÇẋO
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Çδ̈Si
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6.8. APPENDIX C: ACCELERATION PARTIALS
As shown in Appendix 6.7, computing α̈Si

and δ̈Si
partials requires first computing

the partials of those relative acceleration, starting from Eq. 6.4:

Çr̈ Si
O

Çq
= Çr̈Si (tSi )

Çq
− Çr̈O (tO )

Çq
; i ∈ {1,2}. (6.75)

The vector of parameters q can either refer to one of the satellites state sSi (tSi ) or to
the observer state sO (tO ). We first consider the partials with respect to the observer
state, given by

Çr̈ Si
O

ÇsO (tO )
= Çr̈Si (tSi )

ÇsO (tO )
− Çr̈O (tO )

ÇsO (tO )
; i ∈ {1,2}. (6.76)

The acceleration r̈Si (tSi ) of the satellite i at time tSi depends on the observer state
sO at t = tSi , assuming the observer’s body indeed exerts an acceleration on satellite
i (although such acceleration is usually negligible, see simplifying assumptions
discussed at the end of this appendix). Eq. 6.76 must thus be rewritten as

Çr̈ Si
O

ÇsO (tO )
= Çr̈Si (tSi )

ÇsO (tSi )

sO (tSi )

sO (tO )
− Çr̈O (tO )

ÇsO (tO )

= Çr̈Si (tSi )

ÇsO (tSi )
ΦO (tO , tSi )− Çr̈O (tO )

ÇsO (tO )
; i ∈ {1,2}. (6.77)

Similarly, acceleration partials with respect to the two satellites’ states are expressed
as follows:

Çr̈ Si
O

ÇsSi (tSi )
= Çr̈Si (tSi )

ÇsSi (tSi )
− Çr̈O (tO )

ÇsSi (tO )
ΦSi (tSi , tO ), (6.78)

Çr̈ Si
O

ÇsS j (tS j )
= Çr̈Si (tSi )

ÇsS j (tSi )
ΦS j (tS j , tSi )− Çr̈O (tO )

ÇsS j (tO )
ΦS j (tS j , tO ); {i , j } ∈ {1,2}, j ̸= i . (6.79)

According to Eqs. 6.77-6.79, four state transition matrices need to be computed.
However, a few remarks must be considered, in light of the computational effort this
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would require. For mutual approximations between the Galilean moons observed
from the Earth, the satellite-observer distance is comparable between the two
satellites. The difference between the two times tS1 and tS2 is thus very small, and
the state transition matrices ΦSi (tSi , tS j ) (with {i , j } ∈ {1,2} and j ̸= i ) are consequently
close to unit matrices. The difference between each time tSi and the observation
time tO is larger. However, looking at Eqs. 6.77-6.79, the state transition matrices
ΦO (tO , tSi ) and ΦSi (tSi , tO ) are always multiplied by partials of the observer’s body
acceleration with respect to one of the satellite’s state, or the other way around.
Considering the large satellites - observer distances, these accelerations partials can
actually be neglected.

Overall, for mutual approximations between Galilean moons, the state transition
matrices appearing in Eqs. 6.77-6.79 can be either approximated by unit matrices,
or the entire acceleration partial term they contribute to can be neglected. This
significantly simplifies the implementation and reduces the computational effort.
Acceleration partials are anyway only required to compute the partials of α̈Si

and

δ̈Si
, which represent a marginal contribution of the total central instant partials (see

Section 6.2.4). Simplifying assumptions to compute those acceleration partials can
therefore be made safely.

6.9. APPENDIX D: VERIFICATION OF THE ANALYTICAL

PARTIALS

The central instants partials derived in Section 6.2.3 were validated numerically, by
comparing the analytically estimated change in central instant with the actual change
obtained when applying a small variation to the estimated parameters. Partials
were expressed with respect to rS1 (tS1 ), rS2 (tS2 ) and rO (tO ) (for the first satellite’s,
second satellite’s and observer’s states, respectively). Analytical approximations of the
changes in central instants were derived from the observation partials with respect
to the initial state of interest, multiplied with the appropriate state transition matrix,
as follows:

∆tc = Çtc

ÇrS1 (tS1 )
Φ

(
tS1 , t0

)
∆rS1 (t0), (6.80)

∆tc = Çtc

ÇrS2 (tS2 )
Φ

(
tS2 , t0

)
∆rS2 (t0), (6.81)

∆tc = Çtc

ÇrO (tO )
Φ

(
tO , t0

)
∆rO (t0). (6.82)

The results of the numerical verification are reported in Table 6.6. The extremely
low differences found between the analytical and numerical changes in central
instant prove the validity of our analytical partials.
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Table 6.6.: Comparison between analytical and numerical solutions for the changes
in central instants, after applying a small variation (0.001%) in the
initial states of Io, Europa and the Earth. Analytical approximations of
the changes are derived from the central instants partials provided in
Section 6.2.3. Results are here only reported for the 20 first mutual
approximations detected in 2020 (although verification was conducted
over 200 observations).

Mutual Change in tc Relative
approx. analytical [s] numerical [s] error [-]

1 2.17458 2.17455 7.84 ·10−6

2 36.7842 36.7824 4.85 ·10−5

3 73.9007 73.8972 4.76 ·10−5

4 94.9994 94.9951 4.56 ·10−5

5 111.043 111.038 4.74 ·10−5

6 132.098 132.092 4.55 ·10−5

7 169.169 169.161 4.55 ·10−5

8 203.983 203.974 4.58 ·10−5

9 206.006 206.198 9.30 ·10−4

10 241.156 241.145 4.53 ·10−5

11 261.643 261.631 4.35 ·10−5

12 278.322 278.309 4.51 ·10−5

13 298.557 298.544 4.21 ·10−5

14 335.416 335.403 4.04 ·10−5

15 371.133 371.117 4.27 ·10−5

16 372.219 372.205 3.84 ·10−5

17 408.219 408.202 4.23 ·10−5

18 445.273 445.254 4.21 ·10−5

19 464.009 463.996 2.82 ·10−5

20 482.288 482.267 4.21 ·10−5

6.10. APPENDIX E: CONTRIBUTION OF THE α̈Si AND δ̈Si

PARTIALS TO THE CENTRAL INSTANT PARTIALS

Table 6.7 gives the relative contributions of the α̈Si and δ̈Si partials to the total central
instant partials. They are reported for the first five Io-Europa mutual approximations
in 2020 and are shown to be negligible.

6.11. APPENDIX F: ALTERNATIVE OBSERVABLES’ WEIGHTS

FOR PAST MUTUAL APPROXIMATIONS (2016-2018
OBSERVATIONAL CAMPAIGN)

We computed the alternative observables’ weights for the mutual approximations
observed during the 2016-2018 campaign, which are provided in Morgado et al.
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Table 6.7.: Relative contributions of the α̈Si and δ̈Si partials to the total central
instants partials. The partials are computed with respect to the first
satellite’s state sS1 , second satellite’s state sS2 , and observer’s state sO ,
all expressed in cartesian coordinates. Results are only reported for 5
mutual approximations (five first Io-Europa mutual approximations from
01/01/2020).

Mutual Relative contribution to the tc partials [%]
approx.

w.r.t. first satellite’s state sS1 = [rS1 ṙS1 ]T

xS1 yS1 zS1 ẋS1 ẏS1 żS1

1 6.8 ·10−7 1.3 ·10−4 3.2 ·10−4 1.1 ·10−5 9.1 ·10−8 9.3 ·10−8

2 5.4 ·10−6 2.8 ·10−4 1.0 ·10−3 1.3 ·10−4 1.0 ·10−6 6.4 ·10−7

3 4.9 ·10−6 2.2 ·10−4 8.0 ·10−4 1.1 ·10−4 8.8 ·10−7 3.9 ·10−7

4 1.2 ·10−6 9.8 ·10−5 2.9 ·10−4 1.3 ·10−5 1.4 ·10−8 4.7 ·10−8

5 3.0 ·10−6 1.2 ·10−5 4.4 ·10−4 6.5 ·10−5 5.1 ·10−7 1.0 ·10−7

w.r.t. second satellite’s state sS2 = [rS2 ṙS2 ]T

xS2 yS2 zS2 ẋS2 ẏS2 żS2

1 2.5 ·10−7 3.3 ·10−5 7.9 ·10−5 2.2 ·10−5 8.7 ·10−8 1.2 ·10−9

2 7.1 ·10−7 7.1 ·10−5 2.6 ·10−4 7.8 ·10−5 2.7 ·10−7 1.6 ·10−7

3 6.5 ·10−7 5.5 ·10−5 2.0 ·10−4 6.4 ·10−5 1.4 ·10−7 4.7 ·10−8

4 3.5 ·10−7 2.6 ·10−5 7.2 ·10−5 2.6 ·10−5 1.0 ·10−8 2.2 ·10−7

5 4.1 ·10−7 3.1 ·10−5 1.1 ·10−4 3.7 ·10−5 3.4 ·10−9 1.7 ·10−7

w.r.t. observer’s state sO = [rO ṙO ]T

xO yO zO ẋO ẏO żO

1 1.7 ·10−6 5.3 ·10−5 1.7 ·10−4 8.6 ·10−3 3.5 ·10−6 8.3 ·10−5

2 1.0 ·10−5 9.0 ·10−5 6.1 ·10−4 4.4 ·10−2 9.2 ·10−4 5.5 ·10−4

3 8.7 ·10−6 7.2 ·10−5 4.6 ·10−4 3.7 ·10−2 9.0 ·10−4 4.8 ·10−4

4 2.8 ·10−6 4.3 ·10−5 1.5 ·10−4 9.6 ·10−3 2.4 ·10−5 1.5 ·10−4

5 5.1 ·10−6 4.1 ·10−5 2.5 ·10−4 2.2 ·10−2 6.0 ·10−4 2.9 ·10−4

(2019b). Tables 6.8-6.11 contain the weight values obtained with Eq. 6.41, following
the weighting strategy described in Section 6.3.3. We have shown this approach to
be crucial to obtain consistent estimation solutions between central instants and
alternative observable in Section 6.4.4.

For consistency purposes, the errors in central instant σ(tc ) given in Morgado et al.
(2019b) were translated into errors in the alternative observable σalt. using the same
ephemerides as the ones used in Morgado et al. (2019b) (i.e., JUP310 with DE435
from JPL). Tables 6.8 and 6.9 focus on mutual approximations observed in 2016,
while Tables 6.10 and 6.11 are dedicated to the years 2017 and 2018, respectively.
The coordinates of the six different ground stations can be found in Morgado et al.
(2019b). We recommend to use the computed weight values σalt. when including the
2016-2018 observations in the state estimation with alternative observables.
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Table 6.8.: Appropriate weights for alternative observables (in mas/s), for the mutual
approximations observed in 2016 (Morgado et al., 2019b). The letters I, E,
G, and C respectively designate Io, Europa, Ganymede, and Callisto. This
table is adapted from Morgado et al. (2019b).

Date Event Station tc (UTC) σ(tc ) [s] σalt. [mas/s]

2016-02-03 E-G OPD 04:48:01.1 4.2 1.357 ·10−2

2016-02-08 I-E FOZ 06:29:38.4 0.6 2.428 ·10−3

2016-02-15 I-E FOZ 08:39:28.5 1.1 3.769 ·10−3

2016-02-24 I-G OPD 01:53:25.5 1.1 3.508 ·10−3

FEG 01:53:27.3 4.0 1.276 ·10−2

2016-02-25 I-E GOA 23:55:58.2 2.4 7.070 ·10−3

2016-03-04 I-E GOA 02:09:59.3 2.3 4.095 ·10−3

2016-04-02 I-E FOZ 05:45:57.1 2.2 3.206 ·10−3

OPD 05:46:03.2 2.5 3.643 ·10−3

FEG 05:45:59.1 3.8 5.538 ·10−3

2016-04-02 I-C OPD 23:24:20.4 1.2 1.846 ·10−3

FOZ 23:24:22.4 1.4 2.153 ·10−3

FEG 23:24:22.3 3.5 5.383 ·10−3

2016-04-12 I-C OPD 04:35:29.7 8.9 1.631 ·10−2

FOZ 04:35:31.1 1.1 2.016 ·10−3

FEG 04:35:29.1 2.5 4.581 ·10−3

2016-04-12 I-E FOZ 04:45:49.0 10.1 1.167 ·10−3

2016-04-12 E-C FOZ 05:01:34.6 1.9 3.337 ·10−3

FEG 05:01:36.1 4.2 7.376 ·10−3

2016-04-12 I-E OPD 21:17:16.2 0.8 1.653 ·10−3

2016-04-19 I-E OPD 23:35:15.3 1.0 2.456 ·10−3

FOZ 23:35:14.2 2.1 5.158 ·10−3

GOA 23:35:13.3 2.2 5.404 ·10−3

UTF 23:35:15.2 3.2 7.860 ·10−3

OHP 23:35:13.9 1.5 3.686 ·10−3

2016-04-20 E-C OHP 20:15:57.8 1.8 2.474 ·10−3

2016-04-24 I-G OPD 22:35:12.0 0.5 2.609 ·10−3

UTF 22:35:13.1 2.6 1.357 ·10−2

2016-04-29 I-G OPD 00:32:28.1 2.4 1.023 ·10−2

UTF 00:32:28.6 4.2 1.790 ·10−2

2016-05-02 I-G OPD 01:08:50.3 1.5 7.411 ·10−3

FOZ 01:08:50.7 2.3 1.136 ·10−2

FEG 01:08:49.1 1.8 8.893 ·10−3

UTF 01:08:51.1 4.5 2.223 ·10−2
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Table 6.9.: See Table 6.8.

Date Event Station tc (UTC) σ(tc ) [s] σalt. [mas/s]

2016-05-03 E-G OPD 01:04:55.4 1.3 2.391 ·10−3

UTF 01:04:55.5 1.9 3.494 ·10−3

2016-05-06 E-C OPD 00:59:06.8 6.5 7.955 ·10−3

2016-05-19 E-G FOZ 22:52:31.9 1.0 3.485 ·10−3

2016-05-27 E-G FEG 02:00:21.8 5.5 1.853 ·10−2

2016-06-17 I-E OPD 00:48:02.9 1.3 1.059 ·10−2

FEG 00:48:07.0 4.8 3.910 ·10−2

2016-06-28 I-G OPD 23:58:57.1 1.4 3.857 ·10−3

FEG 23:58:59.0 1.1 3.031 ·10−3

2016-06-28 I-E OPD 22:36:02.2 0.5 2.567 ·10−3

FEG 22:36:02.9 1.2 6.160 ·10−3

2016-07-08 E-G OPD 21:51:35.5 0.6 1.445 ·10−3

FEG 21:51:32.6 3.3 7.946 ·10−3

Table 6.10.: Same as Table 6.8 for mutual approximations in 2017.

Date Event Station tc (UTC) σ(tc ) [s] σalt. [mas/s]

2017-02-07 I-E FOZ 04:36:54.1 1.0 3.525 ·10−3

2017-02-26 I-E FOZ 04:32:43.5 1.3 4.368 ·10−3

2017-02-27 I-G FOZ 03:36:51.3 1.1 1.609 ·10−3

2017-03-07 I-G FOZ 03:00:44.4 32.9 2.126 ·10−3

2017-03-14 I-G FOZ 07:19:33.8 1.1 6.109 ·10−4

2017-04-04 I-E OHP 20:43:34.4 0.7 3.227 ·10−3

2017-04-06 I-E FEG 03:46:43.1 2.2 6.249 ·10−3

2017-04-08 E-G FOZ 01:52:40.5 1.0 1.924 ·10−3

2017-04-13 I-E FOZ 05:49:28.3 1.0 2.712 ·10−3

2017-05-06 I-G GOA 02:16:30.2 1.7 4.460 ·10−3

2017-05-08 I-E FOZ 01:11:26.5 1.0 2.124 ·10−3

2017-05-13 I-G FOZ 04:47:32.1 1.0 2.418 ·10−3

2017-05-15 I-E FEG 03:23:43.1 1.7 3.237 ·10−3

2017-05-31 E-G FEG 22:30:36.2 27.9 9.891 ·10−4

2017-06-08 I-E FEG 23:48:57.1 7.5 6.752 ·10−3

GOA 23:48:58.1 1.8 1.621 ·10−3

2017-06-23 I-E FOZ 23:17:09.0 1.1 8.644 ·10−4

GOA 23:17:07.7 1.9 1.493 ·10−3

2017-07-06 E-G FOZ 22:58:42.6 1.4 8.937 ·10−4

FEG 22:58:41.1 19.4 1.238 ·10−2

2017-07-25 I-E FOZ 22:40:24.8 1.2 2.166 ·10−3

FEG 22:40:21.3 3.3 5.957 ·10−3

2017-08-02 G-C FEG 23:38:20.0 7.7 4.172 ·10−3

2017-08-10 E-C FOZ 23:41:23.6 48.2 1.680 ·10−3

2017-08-24 I-G FEG 22:35:37.6 6.6 3.915 ·10−3
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Table 6.11.: Same as Table 6.8 for mutual approximations in 2018.

Date Event Station tc (UTC) σ(tc ) [s] σalt. [mas/s]

2018-03-05 I-E FOZ 05:10:29.7 0.6 1.378 ·10−3

2018-03-11 I-G OPD 05:40:46.7 1.8 6.834 ·10−4

FOZ 05:40:47.0 2.0 7.594 ·10−4

2018-03-12 I-E OPD 07:20:57.6 0.5 1.236 ·10−3

FOZ 07:20:58.8 1.4 3.461 ·10−3

2018-03-17 I-E FOZ 03:15:03.2 0.8 2.898 ·10−3

2018-03-24 I-E FOZ 05:18:47.9 0.7 2.527 ·10−3

2018-04-06 I-E OPD 02:40:32.0 1.2 3.641 ·10−3

FOZ 02:40:31.4 1.0 3.034 ·10−3

2018-06-11 E-G FEG 23:03:46.0 1.8 2.885 ·10−3

GOA 23:03:45.1 1.2 1.923 ·10−3

2018-06-19 E-G FOZ 01:55:19.9 1.1 1.785 ·10−3

2018-06-22 I-G FEG 02:17:09.5 7.2 1.005 ·10−3

OPD 02:17:12.6 4.5 6.282 ·10−4

FOZ 02:17:12.5 5.6 7.818 ·10−4

GOA 02:17:09.9 6.5 9.074 ·10−4

2018-06-23 I-E FOZ 00:40:47.4 1.1 4.486 ·10−3

2018-07-07 I-G OPD 00:30:56.8 1.1 1.829 ·10−3

FEG 00:30:57.0 2.2 3.658 ·10−3

2018-07-11 E-C OPD 22:48:02.8 1.4 1.010 ·10−3

2018-07-12 I-E FEG 01:07:36.3 2.5 5.285 ·10−3

OPD 01:07:37.4 1.0 2.114 ·10−3

2018-07-13 E-G OPD 02:01:30.9 1.1 9.424 ·10−4

FEG 02:01:29.9 5.4 4.626 ·10−3

2018-07-19 I-C OPD 01:52:08.6 1.9 1.502 ·10−3

FOZ 01:52:09.3 2.1 1.661 ·10−3

2018-08-07 E-G OPD 23:15:18.8 1.3 2.118 ·10−3

2018-08-12 I-E OPD 23:54:58.4 1.1 1.186 ·10−3

FOZ 23:54:58.5 1.2 1.294 ·10−3
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SYNERGIES BETWEEN SPACECRAFT

VLBI TRACKING AND STELLAR

OCCULTATIONS

M. S. FAYOLLE, V. LAINEY, D. DIRKX, L. I. GURVITS, G. CIMO,
S. B. BOLTON

Stellar occultations currently provide the most accurate ground-based measurements
of the positions of natural satellites (down to a few kilometres for the Galilean
moons). However, when using these observations in the calculation of satellite
ephemerides, the uncertainty in the planetary ephemerides dominates the error
budget of the occultation. We quantify the local refinement in the central planet’s
position achievable by performing Very Long Baseline Interferometry (VLBI) tracking
of an in-system spacecraft temporally close to an occultation. This demonstrates
the potential of using VLBI to enhance the science return of stellar occultations for
satellite ephemerides. We identified the most promising observation and tracking
opportunities offered by the Juno spacecraft around Jupiter as perfect test cases, for
which we ran simulations of our VLBI experiment. VLBI tracking at Juno’s perijove
close to a stellar occultation locally (in time) reduces the uncertainty in Jupiter’s
angular position in the sky to 250-400 m. This represents up to an order of magnitude
improvement with respect to current solutions and is lower than the stellar occultation
error, thus allowing the moon ephemeris solution to fully benefit from the observation.
Our simulations showed that the proposed tracking and observation experiment can

An earlier version of this chapter is published in Astronomy & Astrophysics (Fayolle et al., 2023a):
Fayolle, M., Lainey, V., Dirkx, D., Gurvits, L. I., Cimo, G., & Bolton, S. J. (2023). Spacecraft VLBI
tracking to enhance stellar occultations astrometry of planetary satellites. Astronomy & Astrophysics,
676, L6.
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efficiently use synergies between ground- and space-based observations to enhance the
science return on both ends. The reduced error budget for stellar occultations indeed
helps to improve the moons’ ephemerides, which in turn benefit planetary missions
and their science products, such as the recently launched JUICE and upcoming Europa
Clipper missions.

7.1. INTRODUCTION
In addition to classical astrometry, various ground-based observation techniques
have been developed and intensively used to study the orbital motion of natural
satellites (e.g., Arlot and Emelyanov, 2019, and references therein). Observations
of stellar occultations, which occur when a moon passes in front a star, have
proven particularly promising (Morgado et al., 2019a, 2022). Thanks to the Gaia
star catalogues, with sub-mas (milliarcsecond) precision for the star positions (Gaia
et al., 2018; Brown et al., 2021), stellar occultations provide the most accurate
ground-based measurements to date for natural satellite positions (accuracy of the
order of 1 mas, i.e., a few km for the Galilean satellites, Morgado et al., 2022).

These observations constrain the moons’ positions in the plane of the sky, typically
in the International Celestial Reference Frame (ICRF). However, improving satellite
ephemerides requires information on the moons’ relative positions with respect to
the central planet, rather than their absolute positions in the ICRF. To use stellar
occultations in satellite ephemeris generation, the uncertainty in the planet’s position
thus directly increases the effective error budget of the stellar occultations.

For recent occultations by the Galilean satellites, discrepancies between observed
and predicted events (the latter being ephemerides-based) are still significant and

15 20 25 30
-5

0

5

Figure 7.1.: Difference between INPOP21 and DE440 planetary ephemerides for
Jupiter in radial, along-track (tangential), and cross-track (out-of-plane)
directions. Deviations in right ascension α and declination δ are also
provided.
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vary depending on which planetary ephemerides are considered, as reported in
Morgado et al. (2022). Non-negligible differences indeed remain between different
Jovian ephemerides, indicating possible errors or discrepancies. This is illustrated in
Fig. 7.1 for the most recent solutions: INPOP21 (Fienga et al., 2021b) and DE440
(Park et al., 2021). The deviations are small for the in-plane components, especially
in the radial direction, which significantly benefited from Juno tracking data (e.g.,
Fienga et al., 2021a). The discrepancy is larger, however, in the out-of-plane
direction, with a long-term periodic effect building up to 4.5 km. In right ascension
and declination, differences can amount up to 2 km and 5 km, respectively, which is
comparable to a typical stellar occultation accuracy.

A possible means to mitigate this error source is to combine spacecraft VLBI
tracking with stellar occultation observations. To demonstrate the added value of
such an experiment, we quantify the local refinement in Jupiter’s position provided
by phase-referencing VLBI observations of an orbiting spacecraft in the close vicinity
of stellar occultations. Phase-referenced VLBI tracking relies on a nearby radio source
(within a few degrees of the spacecraft) to perform phase calibration and obtain
accurate measurements of a spacecraft’s position in the ICRF (e.g., Jones et al., 2010;
Duev et al., 2012, 2016). If the spacecraft orbits close to Jupiter, this also provides
valuable constraints on Jupiter’s position in the ICRF. It is worth mentioning that
we focus on Jupiter’s angular position (αJup,δJupiter) in the sky, which directly affects
the stellar occultation error budget (Section 7.2.1), and do not intend to improve
Jupiter’s global fit. We exploit the presence of the Juno spacecraft in the Jovian
system (Bolton et al., 2017) and use two experiment opportunities that it offers, in
2023 and 2024, as test cases for our study.

To quantify the improvement in the effective stellar occultation error budget
provided by the VLBI data, we can use the INPOP21-DE440 deviations (Fig. 7.1)
as a conservative lower limit for the current uncertainty in Jupiter’s position. Our
two test occultations of interest, in 2023 and 2024, coincide with Jupiter’s crossing
the ecliptic. It thus also corresponds to a local minimum for the INPOP21-DE440
difference, mostly originating from a small discrepancy in Jupiter’s orbit orientation.
Consequently, the periodic behaviour observed in Fig. 7.1 illustrates the discrepancies
between the two fits, but is likely not indicative of the exact evolution of the
ephemeris error in time. This would imply that the uncertainty in Jupiter’s
out-of-plane position at time t can in practice be expected to take any value up to
∼4.5 km. We thus chose the averaged difference between INPOP21 and DE440 as a
better metric for Jupiter’s position error.

The principle of the experiment is described in Section 7.2, where upcoming
tracking and observation opportunities are also identified, to be used as test
cases. Section 7.2 presents the simulations performed for two stellar occultations,
to demonstrate the local improvement in Jupiter’s right ascension and declination
accuracy, and the resulting improvement in stellar occultation quality for satellite
ephemerides. The results and conclusions are discussed in Sections 7.3 and 7.4,
respectively.
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7.2. EXPERIMENT PRINCIPLE AND SIMULATIONS

7.2.1. EXPERIMENT AND NEXT OPPORTUNITIES

Fig. 7.2 summarises the configuration of the proposed experiment. A stellar
occultation by Callisto is used as an example and would nominally measure the
moon’s position (α, δ) in the ICRF to an accuracy of a few kilometres (green ellipse).
Reconstructing the moon’s orbit around Jupiter requires accounting for Jupiter’s own
position error (assuming the two errors are uncorrelated) as

σ2 (
rCallisto/Jup

)=σ2 (rCallisto)+σ2 (
rJup

)
, (7.1)

where rCallisto/Jup denotes Callisto’s position with respect to Jupiter, while rCallisto is
the moon’s position with respect to the Solar System barycentre (SSB), as provided
by the stellar occultation. However, Jupiter’s ephemeris error is similar to or possibly
larger than the occultation uncertainty (red ellipse in Fig. 7.2). VLBI tracking of
Juno during the perijove(s) closest to the occultation would help refine Jupiter’s
barycentric position, as was already done in the past by Jones et al. (2019, 2021).

Since each of Juno’s orbits lasts about 40 days, the occultation might occur a few
weeks away from the closest perijove. We therefore propose to track the spacecraft
during the two perijoves surrounding the stellar occultation. This would constrain

Figure 7.2.: Illustration of the proposed experiment (not to scale). The occultation
yields a very accurate measurement of Callisto’s position in the ICRF
(small green ellipse centred at Callisto). Tracking the Juno spacecraft at
the perijove(s) closest to the occultation would reduce Jupiter’s initial
position uncertainty (red ellipse) to the smaller blue ellipse.
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Jupiter’s position both before and after the observation, thus ensuring a reduced
uncertainty at occultation time.

Two promising occultations will occur in the near future, one by Ganymede on
23 October 2023 (star magnitude G = 11.3) and one by Callisto on 15 January 2024
(G = 8.8). Table 7.1 provides the dates and times of the Juno perijoves preceding and
following these two occultations. For each of these perijoves we identified suitable
phase calibrators within two degrees of the Juno spacecraft. The sources taken into
consideration for this work are listed in Table 7.2. We also ran a coverage analysis
for Juno tracking from three major VLBI telescope networks: the European VLBI
Network1 (EVN), the Very Long Baseline Array2 (VLBA), and the Long Baseline Array3

(LBA). None of the networks can alone ensure tracking during the four perijoves
of interest. In particular, EVN cannot cover the perijoves surrounding Ganymede’s
2023 occultation, while VLBA and LBA each miss one perijove of Callisto’s 2024
occultation.

7.2.2. SIMULATION SET-UP

The aim of our analysis is to quantify the local (in time) uncertainty reduction in
Jupiter’s right ascension and declination at the time of the occultation(s) using VLBI.
As illustrated in Fig. 7.3, this was achieved in two steps. First, we determined the
error associated with Juno’s orbit (Fig. 7.3, left), referred to as Juno state estimation.
Second, we used Juno’s estimated orbit uncertainty to construct VLBI observables
re-centred at Jupiter with realistic errors. We could subsequently estimate Jupiter’s
state at the time of the occultation from these VLBI data points (Fig. 7.3, right)
referred to as Jupiter state estimation.

It should be noted that this study relied on simulated observations and was limited
to covariance analyses. This approach is well adapted to quantify the contribution
of VLBI measurements to Jupiter’s local position, even if the real data analysis will

1https://www.evlbi.org/
2https://public.nrao.edu/telescopes/vlba/
3https://www.atnf.csiro.au/vlbi/overview/index.html

Table 7.1.: Predicted occultations by the Galilean satellites and corresponding Juno
perijoves. Stellar occultations were predicted for the years 2023 and
2024 only. For each VLBI network, the coverage percentage indicates the
fraction of the 6h arc during which more than three stations (per network)
can track Juno’s radio signal (minimum elevation of 10 deg).

Occultations Juno perijoves VLBI networks coverage
Date Occulting moon Date Time [UTC] EVN VLBA LBA

23-10-2023 Ganymede 15-10-2023 10:52:58 0 % 100 % 55 %
22-11-2023 12:16:47 0 % 45 % 100 %

15-01-2024 Callisto 30-12-2023 12:36:20 42.8 % 0 % 100 %
03-02-2024 21:47:30 80 % 100 % 0 %

https://www.evlbi.org/
https://public.nrao.edu/telescopes/vlba/
https://www.atnf.csiro.au/vlbi/overview/index.html
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later require a full fit. All results, from both Juno’s and Jupiter state estimations, are
therefore based on formal uncertainties derived from covariance matrices.

Starting with Juno state estimation, we simulated Doppler measurements during
the perijoves preceding and following each of the two occultation opportunities
(Section 7.2.1). Doppler data were generated every 60s over 6h tracking arcs, with
a noise of 0.05 mm/s in agreement with the residuals from Juno radio science
experiment (Iess et al., 2018).

For the purpose of our analysis, which focused on a local rather than global
fit improvement for Jupiter, we only needed to consider two perijoves for each
occultation. As a consequence, we chose not to estimate all dynamical parameters
usually determined from Juno data. Only Juno’s and Jupiter’s states were estimated
at perijove time tPJ, the latter ensuring that the Jovian ephemeris uncertainty
was included in Juno’s orbit error. Similarly, we also added a number of
consider parameters to account for their influence on the estimation (e.g., Gill and
Montenbruck, 2013):

• Jupiter’s spherical harmonics gravity coefficients up to degree and order 2, and
zonal coefficients up to degree 10;

• Jupiter’s pole orientation and rotation rate;

• Empirical accelerations on Juno, required to fit Doppler data. We assumed
constant components in the radial, tangential, and normal (RTN) directions,
estimated every 10 min during a two-hour window around perijove time, as
described in Durante et al. (2020).

The uncertainty values for all the consider parameters were taken from the estimation
results at mid-Juno mission (Iess et al., 2018; Durante et al., 2020) and are reported
in Table 7.4.

Doppler data alone cannot notably improve Jupiter’s state uncertainties beyond
their a priori constraints. The main objective of this first estimation step, however,
is to obtain the covariance describing Juno’s orbit uncertainty P(xJuno/Jup)(tPJ), which
can be extracted from the full covariance matrix and directly used to re-centre VLBI
observables to Jupiter’s centre of mass (Fig. 7.3), using the same methodology as in
Dirkx et al. (2017). The total uncertainty σVLBI(α,δ) for these observables needs to
account for the nominal error budget for VLBI observations σ⋆(α,δ), and for Juno’s
orbit error

σ2
VLBI(α,δ)(t ) =σ2

⋆(α,δ)+σ2(αJuno/Jup,δJuno/Jup)(t ), (7.2)

where σ(αJuno/Jup,δJuno/Jup)(t ) is the projection of the propagated covariance
P(xJuno/Jup)(t ) to right ascension and declination. The noise value of a single
VLBI observation σ⋆(α,δ) was conservatively set to 1.0 nrad based on recent
phase-referencing VLBI tracking of Cassini and Mars Express spacecraft (Jones et al.,
2010, 2019; Duev et al., 2016). Since formal uncertainties are typically known to
be too optimistic compared to the true errors (e.g., Dirkx et al., 2017), a factor f
was first applied to Juno’s state covariance before propagating it from perijove to
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occultation time. We used both f = 1 and f = 5, but our nominal results, unless
otherwise indicated, correspond to the latter conservative case to ensure that Juno’s
orbit error is not underestimated.

Independent VLBI observables re-centred to Jupiter were simulated every 20
minutes, using the error model in Eq. 7.2. A systematic bias was also added to these
observations, corresponding to the uncertainty in the phase calibrator’s position
in the ICRF (Table 7.2). These biases were included as consider parameters. As
such, they cannot be reduced in the estimation process, which ensures that this
uncertainty source is conservatively accounted for in our results. Four additional
tracking configurations were considered: tracking by the EVN, VLBA, and LBA
networks individually, as well as a perfect coverage case where all three are involved.
From the VLBI data, we estimated Jupiter’s state at occultation time. The resulting
uncertainties in Jupiter’s right ascension and declination σ(αJup,δJup) correspond to
the blue error ellipse in Fig. 7.2 and are discussed in the following section.

7.3. EXPECTED CONTRIBUTION

From the simulated Doppler measurements, we first estimated Juno’s state with
respect to Jupiter at perijove time. We obtained formal uncertainties in right
ascension and declination σ(αJuno/Jup,δJuno/Jup) between 50 and 120 m (perijove-
dependent). Those uncertainties and their correlations were then propagated over
the entire arc, as shown in Fig. 7.4 for the 15 October 2023 perijove. Jupiter-centred
VLBI measurements could then be constructed at any time t from the instantaneous
orbit determination error.

-3 -2 -1 0 1 2 3
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Figure 7.4.: Propagated errors in Juno’s right ascension and declination for the 15
October 2023 perijove, preceding Ganymede’s occultation. The results
correspond to the f = 1 case (i.e., no scaling of Juno’s determination orbit
error).
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Figure 7.5.: Uncertainties in αJup and δJup at occultation time. Panel a: Occultation
by Ganymede on 23 October 2023; Panel b: occultation by Callisto on
15 January 2024. Markers on the x- and y-axes indicate the averaged
and maximum deviation between INPOP21 and DE440 (over the period
2015–2030), as well as the typical uncertainty for stellar occultations
(based on Morgado et al., 2022). The coloured confidence ellipses
represent the 1σ (orange) and 5σ (blue) covariances in Jupiter’s position
resulting from VLBI tracking.



7

220 7. SYNERGIES BETWEEN VLBI TRACKING AND STELLAR OCCULTATIONS

Table 7.3.: Formal errors in Jupiter’s position. The formal uncertainties are
provided for different VLBI tracking configurations, and are expressed as
uncertainties in right ascension and declination at the occultation time.
Results are given for f = 1 and f = 5, f being the factor applied to Juno’s
state covariance to re-scale the orbit error.

VLBI network(s) 23-10-2023 occultation 15-01-2024 occultation
σ(αJup) [km] σ(δJup) [km] σ(αJup) [km] σ(δJup) [km]
f = 1 f = 5 f = 1 f = 5 f = 1 f = 5 f = 1 f = 5

EVN N.A. N.A. N.A. N.A. 0.32 0.36 0.49 0.80
VLBA 0.28 0.31 0.54 0.63 0.43 0.45 0.81 0.92
LBA 0.30 0.31 0.51 0.58 0.38 0.41 0.73 0.85
All 0.28 0.29 0.51 0.58 0.30 0.32 0.46 0.60

Uncertainties in αJup,δJup estimated from the VLBI observations are displayed in
Fig. 7.5. The orange and blue ellipses represent the 1σ and 5σ covariances (in both
cases a factor f = 5 was first applied to Juno’s orbit error). The latter is a very
conservative case, again accounting for formal errors possibly being too optimistic.
For both occultations, VLBI tracking leads to 1σ errors of 300 m and 600 m, for
αJup and δJup respectively (in the worst-case scenario, i.e., f = 5). This is well below
both the stellar occultations accuracy and the estimated error of the current Jupiter
ephemeris, and would thus allow the moons’ ephemerides to fully benefit from the
exceptional quality of these observations.

The estimated errors in αJup and δJup are respectively about a factor of 4 and
a factor of 5 smaller than the average difference between the two ephemerides
solutions. With respect to the maximum INPOP21-DE440 deviation, the uncertainty
reduction almost reaches a factor of 10. Even when considering the very pessimistic
5σ confidence ellipse, a significant improvement is still attainable for σ(δJup).

As mentioned in Section 7.1, the differences between the current ephemerides
give a conservative estimate of Jupiter’s state uncertainty. The two ephemerides are
based on the same observation set (Fienga et al., 2021b; Park et al., 2021) and rely
on comparable dynamical models, and may therefore possess common biases. VLBI
tracking, on the other hand, provides the absolute measures of Jupiter’s position in
the sky, with biases at the sub-nrad level. The local improvement in the Jovian
ephemeris provided by VLBI may thus be greater than our results indicate.

Finally, the results shown in Fig. 7.5 assumed continuous VLBI tracking during the
6h arcs, which would require different networks to be involved (Table 7.1). Table 7.3
presents the outcome of various tracking scenarios. For Ganymede’s occultation on
23 October 2023, only relying on either VLBA or LBA is sufficient to ensure errors
comparable to those obtained with the two networks (irrespective of the factor f
applied to Juno’s orbit error). This does not hold for Callisto’s occultation which
would benefit from using multiple networks, especially in the f = 5 case. To optimise
the outcome of the experiment, relying on two or three VLBI networks for each
perijove would thus be ideal.
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7.4. CONCLUSIONS
To optimise the science return of stellar occultations for satellite ephemerides
calculations, VLBI tracking of an in-system spacecraft can be used to locally reduce
the uncertainty in the central planet’s position, which directly contributes to the
occultation error budget. To demonstrate the potential of this VLBI experiment, we
performed simulations for two promising observation opportunities with the Juno
spacecraft, in 2023 and 2024. For both test cases our results indicate that VLBI
tracking will indeed reduce the uncertainty in Jupiter’s position to the sub-kilometre
level at occultation time (Section 7.3), ensuring that it no longer dominates the
stellar occultation error budget.

This also represents a unique opportunity to test our current planetary and satellites
ephemerides, which are both involved in the prediction of stellar occultations, and
both have estimated errors at a level similar to or higher than the stellar occultations.
In practice, offsets between predicted and observed occultations already indicated
possible errors and/or discrepancies in the existing solutions (Morgado et al., 2022).
Our experiment could help quantify them, possibly identifying their origin and
distinguishing between planetary and satellite ephemerides errors.

Finally, this experiment would serve as a preparation for the upcoming JUICE and
Europa Clipper missions. First, it would help to improve the Galilean satellites’
ephemerides before the missions, which can reduce pre- and post-flyby corrective
manoeuvres (Bellerose et al., 2016; Boone et al., 2017; Hener et al., 2024). Moreover,
if proven successful, similar experiments could be implemented for any other
mission, including JUICE and Europa Clipper. By exploiting synergies between
different measurement techniques, which will likely be critical in order to achieve
a high-accuracy ephemeris solution from the missions’ data (Fayolle et al., 2022),
it would capitalise on the presence of one or more in-system spacecraft to also
benefit ground-based observations, and therefore enhance the science return of the
mission(s). Among other advantages, radio occultation studies could benefit from
the VLBI tracking experiments proposed here, the Doppler data being directly useful
for such analyses (Bocanegra-Bahamón et al., 2019), while VLBI measurements can
refine Jupiter’s local state at occultation time.

7.5. APPENDIX A: CONSIDER PARAMETER UNCERTAINTIES
Table 7.4 provides the uncertainties for each of the consider parameters used in Juno
state estimation. These uncertainties are based on mid-mission results (Iess et al.,
2018; Durante et al., 2020).
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Table 7.4.: Uncertainties for the consider parameters. Except for empirical
accelerations aemp, all parameters refer to Jupiter.

Parameter Consider uncertainty
µ 8.9×109 [m3s−2]
J2 1.7×10−9 [-]
C21 2.3×10−9 [-]
C22 1.1×10−9 [-]
S21 1.5×10−9 [-]
S22 1.0×10−9 [-]
J3 3.3×10−9 [-]
J4 2.4×10−9 [-]
J5 4.2×10−9 [-]
J6 6.7×10−9 [-]
J7 1.2×10−8 [-]
J8 2.1×10−8 [-]
J9 3.6×10−8 [-]
J10 6.5×10−8 [-]
α 4.0×10−5 [deg]
δ 5.0×10−5 [deg]
aemp 2×10−8 [ms−2]
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MERGING LONG-TERM

ASTROMETRY AND RADIO SCIENCE

M. S. FAYOLLE, A. MAGNANINI, V. LAINEY, D. DIRKX, M.
ZANNONI, P. TORTORA

The upcoming JUICE and Europa Clipper missions targeting Jupiter’s Galilean
satellites will provide radio science tracking measurements of both spacecraft. Such
data are expected to significantly help estimating the moons’ ephemerides and related
dynamical parameters (e.g., tidal dissipation parameters). However, the two missions
will yield an imbalanced dataset, with no flybys planned at Io, condensed over less
than six years. Current ephemerides’ solutions for the Galilean moons, on the other
hand, rely on ground-based astrometry collected over more than a century which,
while being less accurate, bring very valuable constraints on the long-term dynamics
of the system. An improved solution for the Galilean satellites’ complex dynamics
could however be achieved by exploiting the existing synergies between these different
observation sets. To quantify this, we merged simulated radio science data from both
JUICE and Europa Clipper spacecraft with existing ground-based astrometric and
radar observations, and performed the inversion in different configurations: either
adding all available ground observations or individually assessing the contribution
of different data subsets. Our discussion specifically focusses on the resulting formal
uncertainties in the moons’ states, as well as Io’s and Jupiter’s tidal dissipation
parameters. Adding astrometry stabilises the moons’ state solution, especially beyond
the missions’ timelines. It furthermore reduces the uncertainties in 1/Q (inverse of

An earlier version of this chapter is published in Astronomy & Astrophysics (Fayolle et al., 2023b):
Fayolle, M., Magnanini, A., Lainey, V., Dirkx, D., Zannoni, M., & Tortora, P. (2023). Combining
astrometry and JUICE–Europa Clipper radio science to improve the ephemerides of the Galilean
moons. Astronomy & Astrophysics, 677, A42.
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the tidal quality factor) by a factor two to four for Jupiter, and about 30-35% for
Io. Among all data types, classical astrometry data prior to 1960 proved particularly
beneficial. Overall, we also show that ground observations of Io add the most to the
solution, confirming that ground observations can fill the lack of radio science data
for this specific moon. We obtained a noticeable solution improvement when making
use of the complementarity between all different observation sets. The promising
results obtained with simulations thus motivate future efforts to achieve a global
solution from actual JUICE and Europa Clipper radio science measurements.

8.1. INTRODUCTION

Due to the Laplace resonance between Io, Europa, and Ganymede, Jupiter’s Galilean
satellites form a complex dynamical system (e.g., Lainey et al., 2006). Reconstructing
the long-term evolution of the Jovian system is thus extremely challenging, but
will shed light on the formation and history of both the system itself (Peale, 1999;
Greenberg, 2010), our own Solar System (Heller et al., 2015), and exoplanetary
systems in general (Horner et al., 2020). In particular, an improved ephemerides’
solution for the Galilean moons is expected to provide crucial insights into tidal
dissipation mechanisms in the Jovian system, with direct implications for the moons’
orbital evolution (Lainey et al., 2009; Greenberg, 2010; Fuller et al., 2016; Hay
et al., 2020). This would also lead to a better characterisation of the moons’
interior evolution, which would help to constrain the past and present properties
of sub-surface oceans on Europa and Ganymede, as well as confirm the existence
of such an ocean on Callisto (Spohn and Schubert, 2003; Schubert et al., 2004;
Greenberg, 2010; Lunine, 2017).

Current solutions for the Galilean moons’ ephemerides (Lainey et al., 2004a,
2009) mostly rely on ground-based astrometry, supplemented by space-based optical
observations from Voyager and Galileo (Jacobson et al., 2000; Haw et al., 2000;
Smith et al., 1979a). Radio science measurements acquired from the Galileo
spacecraft during its moon flybys are included in a number of solutions, but the
tracking accuracy was limited (S-band, low gain antenna) and not comparable to
that of recent planetary missions (Jacobson et al., 2000; Gomez Casajus et al.,
2021). Moreover, these data are not publicly available at present, limiting efforts to
incorporate them into ephemeris solutions.

However, in the coming decade, the JUICE (JUpiter ICy moons Explorer) and
Europa Clipper missions will both visit the Jovian system and specifically target the
Galilean satellites. NASA’s Europa Clipper mission will start its flyby tour in 2030
and perform more than 50 flybys of Europa. On the ESA side, the JUICE spacecraft
will execute a series of flybys around the Galilean moons from 2032 to 2034 (two,
seven, and nine at Europa, Ganymede, and Callisto, respectively). It will then
enter an orbital phase of about eight months around Ganymede (first elliptical at
an altitude of 5000 km, then circular at 500 km), before the planned mission end
in 2035. The exceptional accuracy of the radiometric science data to be generated
during the missions (e.g., Cappuccio et al., 2022; Mazarico et al., 2023), enhanced by
the complementarity of their tours and concurrent schedules, is expected to bring
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unique insights into the Galilean satellites’ dynamics.
Several simulation studies have analysed the science return from both JUICE’s

and Europa Clipper’s radio science, and indicated that the post-missions formal
uncertainties for the moons’ state solutions could reach unprecedentedly low levels
(Cappuccio et al., 2020a; Magnanini, 2021; Fayolle et al., 2022). However, exploiting
the complementarity between the future radio science measurements and existing
ground-based observations could yet further improve and stabilise the reconstruction
of the Galilean moons’ dynamics. For the Saturnian system, the independent
determination of Titan’s tidal dissipation parameters from ground astrometry and
Cassini’s radio science already led to very consistent solutions, indicating that Titan’s
migration rate might have been much faster than expected (Lainey et al., 2020).
This suggests the potential of global solutions capitalising on the synergies between
diverse data types.

In practice, and for the Galilean moons in particular, astrometry and radio science
are indeed very complementary datasets. While ground observations have been
collected over more than a century, radio science measurements are by definition
concentrated during planetary missions’ timelines. Radio science thus provides
shorter, but highly accurate data points. Existing ground-based observations are also
relatively evenly distributed among the four Galilean satellites. JUICE and Europa
Clipper, on the contrary, will provide an imbalanced dataset with a strong focus on
Europa, Ganymede, and to a lesser extent Callisto, and no direct flyby performed at
Io. The lack of data for Io has especially been identified as an important caveat
in previous preparation studies for the two missions (e.g., Dirkx et al., 2017). The
dynamics of Io, Europa, and Ganymede are indeed strongly coupled due to the
Laplace resonance, such that missing observational constraints for one of these three
moons degrades the stability of the inversion and affects the estimation solution.

In this paper, we combine the existing astrometry and radar observations, used to
generate the latest Galilean moons’ ephemerides (NOE-5-20211), with radio science
products from the JUICE and Europa Clipper spacecraft, as simulated in former
analyses (Cappuccio et al., 2022; De Marchi et al., 2022; Di Benedetto et al., 2021;
Magnanini et al., 2024; Mazarico et al., 2023). We aim to quantify the synergy
between the different datasets and its impact on the accuracy level of future
ephemerides’ solutions for the Galilean satellites. We considered different data
subsets among all existing observations, and analyse their respective contribution
to the joint solution. In particular, we investigated the improvement separately
provided by classical astrometry, mutual phenomena, radar data, stellar occultations,
and space-based astrometry. We finally quantified the added-value of potential
future observation campaigns prior to JUICE’s and Europa Clipper’s Jovian tours.

On a more practical perspective, this study also demonstrates the ability to obtain
a consistent solution while relying on several software currently tailored for different
applications. The reconstruction of the moons’ motion from astrometry is performed
by NOE, a software developed in IMCCE (Institut de Mecanique Celeste et de
Calcul des Ephemerides) used to generate state-of-the-art moons ephemerides for
various systems (Lainey et al., 2009; Lainey, 2016; Lainey et al., 2019, 2020). On

1https://ftp.imcce.fr/pub/ephem/satel/NOE/JUPITER/2021/
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the other hand, simulating JUICE and Europa Clipper radio science observables and
subsequently solving for both the spacecraft’s and moons’ dynamics was performed
using two dedicated software packages: JPL’s orbit determination software MONTE
(Mission Analysis, Operations, and Navigation Toolkit Environment, Evans et al.,
2018) and Tudat (TU Delft Astrodynamics Toolbox). Various missions’ radio science
analyses already relied on MONTE (e.g., Iess et al., 2018; Durante et al., 2019;
Zannoni et al., 2020), while Tudat, an open-source astrodynamics and estimation
software developed at TU Delft, was used in a number of simulated estimation
studies (e.g., Dirkx et al., 2017; Villamil et al., 2021; Fayolle et al., 2021).

Both softwares were recently used to simulate the expected state solution for the
Galilean moons from JUICE and/or Europa Clipper radio science (Fayolle et al., 2022;
Magnanini et al., 2024) with slightly different estimation setups (Section 8.3.3). In
the present article, we retain the minor differences in estimation settings between
the two tools, as we consider both to be equally representative of the estimation
setup that will be used for the missions’ data analysis. As will be shown in Section
8.4, these minor differences in setup yield only minor differences in results. Keeping
the small differences between MONTE and Tudat setups in our analysis not only
provides important validation for the results provided by each tool, but it also
provides more confidence in the robustness of the uncertainty results of one specific
setup.

All datasets used in our joint estimation are first presented in Section 8.2,
starting with astrometry and radar observations before providing more details on
the simulated JUICE and Europa Clipper radio science products. Section 8.3
then describes the inversion strategy adopted in this work to combine not only
different observation sets, but also different dynamical and propagation models for
the spacecraft. The resulting global solution is discussed in Section 8.4, along
with detailed analyses of the contribution of different observation types, before
conclusions can be drawn in Section 8.5.

8.2. DATASETS
This section describes the different observation sets to be included in the global
inversion. The astrometry and radar data are first described in Sections 8.2.1 and
8.2.2, followed by the simulated radio science measurements for both JUICE and
Europa Clipper missions in Section 8.2.3. The synergies between the two datasets
are finally further discussed in Section 8.2.4.

8.2.1. EXISTING ASTROMETRY

All astrometric and radar observations used in IMCCE’s latest ephemerides’ solution
for the Galilean satellites (NOE-5-2021) are shown in Figs. 8.1–8.2, the black
vertical line separating past observations from predicted ones (after 2024). We
distinguish between five main types of observations, displayed on separate rows.
Astrometric data include both ground-based and space-based (SA) observations. The
former encompasses classical astrometry (CA), mutual phenomena (MP), and stellar
occultations (SO). Finally, existing radar observations of the Galilean satellites were
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Figure 8.1.: Distribution of the astrometric observations between the five main
observation types: CA (classical astrometry), SA (space-based astrometry),
MP (mutual phenomena), RD (radar), SO (stellar occultation). The colour
indicates the accuracy of each measurement (see also Fig. 8.2). The
black vertical line delimits existing data and simulated future ones.

also included in our dataset (RD). For the sake of brevity, all above observations are
designated as the ‘astrometric dataset’ in the rest of the paper even though they also
include a few radar data.

The weight assigned to each data point in the inversion (see Section 8.3.2), which
can be interpreted as a measure of accuracy, is displayed on the vertical axis in
Fig. 8.2 and colour-coded in Fig. 8.1. These observation weights are nominally
determined through an iterative process ensuring that they are consistent with the
root-mean-square (RMS) of the residuals, and a 3σ ruling is applied to exclude
outliers. Moreover, if many observations (N ) are acquired in a short time span, such
that they cannot be considered as independent measurements, they are de-weighted
by a factor

p
N . More details on the weighting process, for space-based astrometry

in particular, can be found in Lainey et al. (2019).
We include classical astrometry data from 1891 up to 2016. No data were available
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Figure 8.2.: Accuracy of the different ground- and space-based astrometric and radar
data, for each of the main observation types (see Fig. 8.1). The accuracy
of the space astrometry is expressed with respect to the spacecraft, and
not with respect to Earth as for the other observations. The black vertical
line delimits existing data and simulated future ones.

after 2016, as such observations are rarely performed for the Galilean satellites
nowadays, due to the exceptional accuracy achieved with more novel observation
techniques (e.g., stellar occultations, see discussion below). Classical astrometry
provides either absolute or inter-satellite position measurement in the plane of
the sky. As shown in Figs. 8.1–8.2, old astrometry typically shows low accuracy
(several hundreds of kilometres). Nonetheless, some old photographic plates have
been digitised and re-reduced using recent star catalogues (e.g., Robert et al., 2011),
improving the accuracy of the observations. In addition to the data provided
in Robert et al. (2011), recently reduced observations were also included in the
estimation (not yet publicly available, from V. Robert, private communication).

Mutual phenomena designate occultations and eclipses of one moon by another.
Such events require specific observation geometries, with the two moons aligned
either with the Sun (eclipses) or with the Earth (occultations). For the Galilean
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satellites, they occur every six years when the Sun crosses their orbital plane. They
have been observed since 1973, the latest mutual campaign to be recorded having
taken place in 2021 (e.g., Aksnes and Franklin, 1976; Arlot et al., 2006b, 2014;
Emelyanov et al., 2022).

Finally, stellar occultations currently represent the most accurate ground-based
observation technique (Morgado et al., 2019a, 2022) for the Galilean satellites. They
rely on recording the drop in the photometric flux received by an observer as a moon
passes in front of a star. With the help of recent Gaia star catalogues, which provide
a very accurate position for the occulted star (Gaia et al., 2018; Brown et al., 2021),
the observation of the event allows to determine the moon’s position in the ICRF
(International Celestial Reference Frame) with an accuracy of a few milliarcseconds,
equivalent to a few kilometres at Jupiter’s distance. Since the availability of a highly
accurate star catalogue is key to the quality of such observations, the first published
stellar occultation by a Galilean moon (Europa) only occurred in 2017. Such events
moreover require the Galilean satellites to pass in front of a bright enough star
(maximum magnitude of 11.5, Morgado et al., 2019a), and are therefore not very
frequent. Only five stellar occultations are currently included in our dataset.

It is worth noting that the stellar occultations’ uncertainty indicated in Figs. 8.1–8.2
was actually artificially increased by 1.5 mas to account for the error in Jupiter’s
ephemeris (e.g., Fienga et al., 2021b). This error source could eventually be mitigated
using Gaia data, by extracting information about the Jovian system barycentre’s
position from Gaia’s observations of Jupiter’s outer satellites. Alternatively, the VLBI
tracking experiment proposed in Chapter 7 could also help reducing the contribution
of Jupiter’s error to the occultation’s error budget. This would be critical to achieve
the expected few kilometres accuracy for stellar occultations.

In addition to ground-based observations, space-based astrometry was also
performed during planetary missions. In particular, both the Galileo and Voyager
spacecraft were able to take images of the Galilean moons (e.g., Haw et al., 2000;
Smith et al., 1979a). Those observations are interesting because of the different
geometry under which they were taken, but they are affected by errors in the
spacecraft orbit determination. For Galileo and Voyager, this error was very high
compared to modern missions, significantly reducing the quality of the space
astrometry data. In Figs. 8.1–8.2, their accuracy is expressed with respect to the
spacecraft and not with respect to Earth, and thus cannot be directly compared with
that of ground-based astrometric observations.

Regarding ground-based radar observations, only 22 measurements from Arecibo
are available (Brozović et al., 2020a). Their number is limited, but they yield highly
accurate measurements of the moons’ line-of-sight ranges with respect to Earth
(accuracy between 10 µs and 250 µs for the time delay measurement, equivalent to
6-80 km). The information provided by radar data actually distinguishes them from
astrometric observations, which typically measure position(s) in the plane of the sky.

8.2.2. FUTURE ASTROMETRY FOR THE PERIOD 2024-2029
To complement the existing set of astrometric and radar data described in Section
8.2.1, we also used future astrometric observations for the 2024-2029 period
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preceding the arrival of the JUICE and Europa Clipper spacecraft in the Jovian
system, which were originally simulated for a past study investigating pre-mission
ephemerides’ solutions (V. Lainey, private communication). Including such synthetic
data in our analyses allows us to quantify how much such Earth-based observations
could contribute to a post-mission combined solution. Given the unprecedented
accuracy level expected for the radio science products of both missions (see Section
8.2.3 for more details), this is a key analysis to justify the need for future observation
campaigns and identify which yet missing observations could efficiently complement
JUICE’s and Europa Clipper’s data.

In addition to simulated classical astrometric observations, the upcoming mutual
phenomena period, which will occur in 2027, is included. For classical astrometry,
we generated around 1000 observations per moon and considered an accuracy of 150
km at Jupiter’s distance, in agreement with the most accurate observations recently
collected. This is representative of the expected accuracy for future observation
campaigns, particularly given the availability of the very accurate Gaia GDR3
catalogue. Regarding mutual phenomena, 535 measurements were simulated (all
moons combined), with accuracy levels comparable to recent observations (150-200
km). These synthetic observations are all reported in Figs. 8.1–8.2, on the right-hand
side of the black line. As for radar observations, the set of existing data is limited
to the 22 measurements acquired since 1992. Given the loss of Arecibo, which
dramatically reduces the ground-based radar observation capability, we chose not to
include simulated radar data before the beginning of the JUICE and Europa Clipper
missions.

8.2.3. SIMULATED RADIO SCIENCE DATA

The radio science dataset contains simulated range and Doppler measurements for
the JUICE and Europa Clipper spacecraft. Both missions will generate such tracking
data during flybys at Europa, Ganymede, and Callisto, as well as during Ganymede’s
orbital phase for JUICE.

For JUICE’s Jovian tour, we considered a X/Ka-band radio-link and assumed 48
hours of radiometric tracking centred at each flyby’s closest approach, from the
ESTRACK ground stations (Cappuccio et al., 2022). We applied a noise of 20 cm
for ranging measurements, which may be a rather conservative estimate given the
recent performance of the BepiColombo radio science instrument (sub-centimetre
accuracy, Cappuccio et al., 2020a; Genova et al., 2021), and 12 µm/s for Doppler
data (at an integration time of 60 s). The orbital phase around Ganymede was
divided into 24 hours-long arcs, with eight hours of tracking per day during which
both range and Doppler measurements are generated.

We simulated four hours of tracking at each closest approach for the Europa
Clipper spacecraft, assuming a noise level of 0.1 mm/s as the X/Ka-band high-gain
antenna (HGA) is then not available due conflict with other instruments (Mazarico
et al., 2023). The navigation tracking passes were however also included, in
agreement with the current mission operation plan and recommended tracking setup
for Europa Clipper simulations (e.g., Magnanini et al., 2024). During these tracking
arcs occurring further before or after the closest approach, the HGA can be used
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and the noise for Doppler data is thus divided by two. The average duration of the
navigation tracking passes is five hours and they typically occur 20h before and after
the closest approach. Range measurements could also be collected during such arcs,
for which we assumed a noise of 1 m.

8.2.4. SYNERGISTIC COMBINATION

Figs. 8.1-8.2 highlight the main characteristics of the astrometry (and radar) dataset.
Here, we described where synergies with radio science data will originate from. First,
astrometry and radar observations are significantly less accurate than radio science
measurements, with accuracies ranging from a few kilometres to several hundreds of
kilometres depending on the observation type. However, they cover a much longer
time span, starting in the 1890s until 2021, and even extending until the beginning
of the JUICE and Europa Clipper missions if simulated data are included. Adding
astrometry and radar observations is thus crucial to be sensitive to long-term signals
in the moons’ dynamics (e.g., dissipation effects). This is particularly important for
the Galilean satellites as their dynamics show many long-period effects with different
frequencies, which are difficult to distinguish from one another (Lainey et al., 2006).
Radio science measurements, on the other hand, are confined to the missions’
timelines, for a total period of less than six years. The expected accuracy is however
orders of magnitude better than what is achievable from ground-based observations
(e.g., Magnanini et al., 2024).

Furthermore, Figs. 8.1–8.2 clearly illustrate that the astrometry dataset is more
balanced than the radio science data, with observations more evenly distributed
among the four Galilean satellites. JUICE and Europa Clipper, on the other hand,
strongly focus on Europa and Ganymede, respectively. While Callisto is still targeted
by a total of 30 flybys with both spacecraft, no flyby of Io is planned in the nominal
mission scenarios. As already mentioned in Section 8.1, adding existing astrometric
and radar observations of this moon is thus particularly critical, since it is in
mean-motion resonance with Europa and Ganymede.

Finally, ground-based astrometry and radio science observables characterise the
moons’ dynamics under different observation geometries and are sensitive to the
moons’ motion projected in different directions. Astrometry typically measures
the (absolute or relative) position of the satellites in the plane of the sky, while
radio science’s classical measurements, namely ranging and range-rate, probe the
spacecraft’s position and velocity in the Earth’s line-of-sight direction.

While comparing the astrometry and radio science datasets and their synergies,
it is also worth noting a few of their major differences which might affect the
estimation solution(s). First, astrometry and radio science measurements are affected
by different noise sources. In particular, astrometry and radar data are sensitive to
the offset between the centre of figure (COF) and centre of mass (COM), measuring
the former while trying to solve for the latter. While this was not accounted for in
our analysis, combining radio science with astrometry will be an effective way to
estimate the COF-COM offset and thus mitigate this error source (see Section 8.5).

Radio science tracking, on the other hand, only indirectly probes the moons’
dynamics around Jupiter, by reconstructing the spacecraft’s trajectory as it passes
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in the close (gravitational) proximity of the Galilean satellites. This implies that
additional parameters influencing the spacecraft’s orbit determination solution need
to be solved for concurrently with the moons’ dynamics (Fayolle et al., 2022;
Magnanini et al., 2024), as listed in Section 8.3.3. In practice, the number
of estimated parameters significantly increases when introducing radio science
measurements, especially since all spacecraft-related parameters are typically solved
for locally, in an arc-wise manner. This can affect the stability of the inversion and
the estimation solution.

8.3. INVERSION METHODOLOGY
This section presents the adopted strategy to perform the global inversion of
astrometric and radio science data. Section 8.3.1 provides a top-level description
of the propagation and estimation setups, before Section 8.3.2 details the merging
process to combine astrometry and radio science data in the estimation. Finally, the
list of estimated parameters can be found in Section 8.3.3.

8.3.1. PROPAGATION AND ESTIMATION SETUPS

As mentioned in Section 8.1, we rely on three different softwares to obtain a
combined solution with astrometry and radio science. The NOE software is used to
propagate the moons’ dynamics over the entire time span of the astrometric dataset
and compute the associated partials (see Fig. 8.3). To this end, the gravity fields of
Jupiter and the Galilean satellites are modelled by spherical harmonics expansions,
extended up to degree and order two for the moons and including zonal coefficients
up to degree ten for Jupiter. The moons’ rotation is assumed to be synchronous, with
the tidal bulge pointing towards the empty focus of the orbit (Lainey et al., 2019;
Lari, 2018). Jupiter’s rotation include precession and nutations terms, following the
IAU model (Archinal et al., 2018). To propagate the dynamics of the Galilean moons,
the following accelerations are considered (Lainey et al., 2004a; Dirkx et al., 2016):
mutual spherical harmonics acceleration between Jupiter and each moon i , mutual
spherical harmonics acceleration in-between the Galilean moons, tidal dissipation
(using the formulation presented in e.g., Lainey et al. 2017; Lari 2018), third-body
perturbation from Saturn and the Sun, and general relativity acceleration corrections.

On the radio science side, the equations of motion and variational equations
for the spacecraft are solved with both Tudat and MONTE. Both tools propagate
the dynamics of the spacecraft, using the latest JUICE2 and Europa Clipper 3

trajectories as baselines. The gravitational accelerations exerted by the moons
on the spacecraft are modelled using spherical harmonics gravity models up to
degree and order two for Io, 13 for Europa, 50 for Ganymede, nine for Callisto.
Additionally, the spherical harmonics gravitational acceleration from Jupiter (with
zonal coefficients up to degree ten), point-mass gravitational accelerations from

2JUICE trajectory: juice_mat_crema_5_0_20220826_20351005_v01: https://www.cosmos.esa.int/web/
spice/spice-for-juice

3Europa Clipper trajectory: 21F31_MEGA_L241010_A300411_LP01_V4_postLaunch_scpse: https:
//naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/

https://www.cosmos.esa.int/web/spice/spice-for-juice
https://www.cosmos.esa.int/web/spice/spice-for-juice
https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/
https://naif.jpl.nasa.gov/pub/naif/EUROPACLIPPER/kernels/spk/
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the Sun and Saturn, and the solar radiation pressure acceleration are considered.
From the spacecraft’s propagated trajectories, both softwares can simulate radio
science measurements with expected noise levels (see Section 8.2.3) and provide the
corresponding observation partials. NOE and Tudat or MONTE thus each provide
part of the required inputs, allowing us to perform a combined estimation (see
Fig. 8.3). Section 8.3.2 describes in detail how the astrometric and radio science
observations were merged in the inversion process.

For the purpose of our analyses, we chose to primarily rely on covariance results
(see details in Section 8.3.2). We indeed focus on quantifying the improvement
attainable from a combined solution, which is well described by comparing formal
uncertainties. It is however worth specifying that, as discussed in Section 8.2.1, the
weights assigned to the existing astrometric observations are based on the RMS of
the residuals, and thus on real data analysis.

8.3.2. MERGING ASTROMETRIC AND RADIO SCIENCE PARTIALS

The inversion approach adopted in our analyses follows the coupled estimation
strategy described in detail in Fayolle et al. (2022), with limited extensions to allow
for the merging of different datasets, as summarised below. The covariance matrix
P for the estimated parameters p is given by the following equation (e.g., Gill and
Montenbruck, 2013):

P = (
H TW H +P−1

0

)−1
, (8.1)

where H is the observations partial matrix, W is the matrix containing the weights
to be applied to each observation and P0 is the a priori covariance matrix of the
estimated parameters.

The full observation partial matrix H can be decomposed between the astrometric
(denoted as ‘ast’) and radio science (‘rs’) data subsets (see Fig. 8.3), as follows:

H =
(

Hast

Hr s

)
=

( Çhast
Çp
Çhrs
Çp ,

)
(8.2)

where hast and hrs represent the astrometric and radio science observations,
respectively. The parameters vector p can be written as

p = [
xm(t0) xsc(ti ) qdyn qobs

]T
, (8.3)

with xm(t0) the concatenated initial state vector for the four Galilean moons,
and xsc(ti ) the vector containing all the arc-wise initial states of both the JUICE
and Europa Clipper spacecraft. t0 refers to the global reference epoch, while ti

contains the initial times of each arc. qdyn and qobs correspond to the non-state
parameters influencing the moons’ and spacecraft’s dynamics and the observations
(e.g., biases), respectively. By definition, the astrometric observations are not
sensitive to spacecraft-related parameters, such that only a subset of the parameters
vector p is considered in the computation of their partials. In the merging process,
zero-filled columns are thus added when relevant.
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Using Eq. 8.3 to expand the formulation for astrometric partials, we obtain for a
single observation hast(t ) in Hast (t being the observation time):

Çhast(t )

Çp
=

[
Çhast(t )
Çxm (t0)

Çhast(t )
Çxsc(ti )

Çhast(t )
Çqdyn

Çhast(t )
Çqobs

]
(8.4)

=
[
Çhast(t )
Çxm (t )

(
Φm(t , t0) 0 Sm(t )

) Çhast(t )
Çqobs

]
, (8.5)

where Φm(t , t0) and S(t ) are the state transition and sensitivity matrices for the
moons dynamics, defined as:

Φm(t , t0) = Çxm(t )

Çxm(t0)
; Sm(t ) = Çxm(t )

Çqdyn
. (8.6)

The astrometric subset of the design matrix Hast is thus fully derived from the
variational equations solution for the moons’ dynamics. On the other hand, the
spacecraft’s states are influenced by the moons’ orbital motion, and the radio science
partials Hrs therefore depend on both the moons’ and spacecraft’s states:

Çhrs(t )

Çp
=

[
Çhrs(t )
Çxm (t0)

Çhrs(t )
Çxsc(ti )

Çhrs(t )
Çqdyn

Çhrs(t )
Çqobs

]
(8.7)

=
[
Çhrs(t )
Çxsc(t )

(
Çxsc(t )
Çxm (t0) Φsc(t , ti ) Ssc(t )

)
Çhrs(t )
Çqobs

]
, (8.8)

where Φsc(t , ti ) and Ssc(t ) represent the state transition and sensitivity matrices
for the spacecraft’s dynamics. Because of the coupling between the moons’ and
spacecraft’s dynamics, computing Çxsc(t )

Çxm (t0) and Ssc(t ) in Eq. 8.8 also requires to solve
the moons’ variational equations (Fayolle et al., 2022).

When computing the observation partials for (simulated) radio science data only
with the MONTE or Tudat software, the equations of motion and variational
equations for both the moons and the spacecraft are concurrently integrated, to
account for the coupling in their dynamics. This implies that both NOE and Tudat
or MONTE can provide their own solutions for Φm(t , t0) and Sm(t ), as illustrated in
Fig. 8.3. Two different approaches can thus be considered:

1. Independently integrating the moons’ variational equations with different
software;

2. Importing the moons’ solution provided by a single software into the other(s).

The first option is straightforward to apply and allows for the direct stacking of
the partials matrices Hast and Hrs, each generated with different software (NOE, and
Tudat or MONTE, respectively) but using the same reference epoch t0. However, the
solutions to the equations of motion and variational equations for the moons must
then be consistent between the two software, which was carefully verified in our
case (between NOE and both Tudat or MONTE).

The second option is to directly import NOE’s solution for Φm(t , t0) and Sm(t ) into
Tudat or MONTE to avoid propagating the moons’ dynamics with different software.
While this strategy is more demanding implementation-wise, it automatically ensures
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that the moons’ dynamics are fully consistent between the astrometric Hast and
radio science Hrs partials. In practice, we implemented both options and showed
that they indeed lead to equivalent results for our JUICE-Europa Clipper case (see
results in Section 8.4).

8.3.3. ESTIMATED PARAMETERS

From the astrometric and/or radio science datasets, we estimate various parameters
characterising the Jovian system and influencing the dynamics of the Galilean
satellites. These include the initial states for Io, Europa, Ganymede, and Callisto,
estimated at the reference epoch t0 (set in the middle of the JUICE and Europa
Clipper expected timelines), as well as the moons’ gravitational parameters µi ,
i ∈ [1 : 4] and their gravity field coefficients up to degree and order 13, 50, and 9
for Europa, Ganymede, and Callisto, respectively. Regarding Jupiter, we estimate its
gravitational parameter µ0, zonal coefficients (J2 to J6), and pole orientation (right
ascension α and declination δ at the reference epoch t0). Finally, tidal dissipation
parameters include the 1/Q of Jupiter at a single frequency, and the 1/Q of Io at
Jupiter’s frequency.

Spacecraft-related parameters are also determined when including radio science in
the solution. Different subsets of the following set of parameters are estimated in
the MONTE and Tudat setups. In addition to the arc-wise initial states of the JUICE
and Europa Clipper spacecraft (estimated in both setups), the spacecraft-related
parameters include various observation-related parameters: range biases (both
setups), antenna phase centre positions (MONTE only), accelerometer calibration
factors (Tudat only), solar radiation pressure coefficients (MONTE only).

The above describes a simplified setup compared to detailed simulations studying
the achievable radio science solution at the end of the JUICE and/or Europa
Clipper missions (Magnanini, 2021; Magnanini et al., 2024; Fayolle et al., 2022). In
particular, only Io’s and Jupiter’s tidal dissipation parameters are estimated, with no
frequency-dependency introduced for 1/Q. However, our study aims at quantifying
the relative improvement achieved with global inversion with respect to a radio
science or astrometry-only solution. Keeping the setup close to the one currently
used for the astrometry-only inversion (e.g., Lainey et al., 2009) facilitates this
comparison and the analysis of the estimation results.

Furthermore, as shown by the list of estimated parameters, the nominal setups
for the joint JUICE-Europa Clipper estimation in Tudat and MONTE show some
small differences. These different setups were independently used in past radio
science simulation studies (Magnanini et al., 2024; Fayolle et al., 2022, for MONTE
and Tudat setups, respectively). The reason for keeping them as such is twofold.
First, both are realistic and representative setups for simulation purposes, since the
optimal estimation setup cannot be fixed before real data become available. Second,
using perfectly identical setups is challenging due to the lack of certain software
capabilities (e.g., antenna phase centre positions not readily available in Tudat)
and/or to the significant modifications that it would have required (e.g., including
accelerometer calibration factors in the MONTE setup). On the other hand, and
especially considering the absence of a unique preconised setup for a joint radio
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science inversion of JUICE and Europa Clipper, keeping these discrepancies between
the two softwares also allows us to verify that our general results are not affected by
the details of the covariance analysis setup.

It makes our comparative results more robust by ensuring that the specific settings
chosen do not substantially impact the results, and are thus more representative in
light of the potential deviations that are expected to arise between simulations and
real data solutions. Section 8.4 will thus provide results obtained with both Tudat and
MONTE. Simulated analyses of radio science experiments performed with different
tools and slightly different setups should result in comparable results if both setups
are representative. Experience from past missions shows that differences of a factor
two or three are not uncommon (see for instance BepiColombo simulations in e.g.,
Schettino et al., 2015; Imperi et al., 2018). Moreover, a difference of a comparable
order between absolute uncertainties in simulated analyses and real mission data
analysis is to be expected.

8.4. RESULTS

This section presents the results of the global inversion, in comparison with the
astrometry only or radio science only solutions. We then quantify the individual
contribution of various subsets of the astrometry dataset, distinguishing between
different types of observations or different targets. A detailed comparison between
JUICE-only and Europa Clipper-only is provided in Magnanini et al. (2024).

8.4.1. COMBINED SOLUTION FROM ASTROMETRY AND RADIO SCIENCE

As discussed in Section 8.1, combining astrometric data with planetary missions’
radio science measurements is mostly expected to help reconstructing the long-term
orbital motion of the Galilean satellites. We thus focussed our analysis on the
resulting uncertainties in the moons’ states, as well as tidal dissipation parameters
of Io and Jupiter. Three different simulated inversion solutions were generated: first
with astrometry or radio science data only, and then using the complete observations
set. All inversions were independently performed with both the Tudat and MONTE
software, adding the astrometric observation partials and weights retrieved from
NOE when relevant.

SOFTWARE CONSISTENCY

The solution based on astrometry only was used as a benchmark to compare the
inversion results independently provided by our three software. This is to ensure
that the computation of the covariance matrix according to Eq. 8.1 is fully consistent
between the tools. For astrometric observations, all inputs to Eq. 8.1 are indeed
identical, as they are directly provided by the NOE software (Fig. 8.3), with no need
to include the JUICE and Europa Clipper spacecraft in the estimation. The three
solutions were in agreement and provided the same formal uncertainties for all
estimated parameters.
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For both the radio science and combined configurations, the two different
approaches described in Section 8.3.2 led to similar results (for a given software).
For the sake of conciseness, Table 8.1 thus only provides one set of results for
each software, which were equivalently obtained with both inversion strategies.
Whether the solutions to the equations of motion and variational equations for
the Galilean satellites were directly imported from the NOE software or separately
recomputed when simulating the spacecraft dynamics did not affect the solution,
demonstrating the consistency of the different software. In the rest of our analyses,
the two approaches were thus considered equivalent. All Tudat results were obtained
with both methods, while the second strategy was preferred in the MONTE setup
(i.e., the moons’ dynamical and variational equations were integrated with MONTE
independently from NOE, for implementation reasons).

INFLUENCE ON THE MOONS’ STATE ESTIMATION

This section discusses the results of the global inversion for the Galilean satellites
state estimation, analysing correlations (Fig. 8.4) as well as formal uncertainties (Fig.
8.5, 8.6, and 8.7). First looking at the impact on the correlations between state
parameters, Fig. 8.4 shows the relative change ϵ in absolute decorrelation when
adding astrometry, with respect to the radio science only case, defined as follows:

ϵ=
(
1−|call

i j |
)
−

(
1−|crs

i j |
)

1−|crs
i j |

, (8.9)

where 1−|crs
i j | and 1−|call

i j | are the decorrelation between parameters i and j in the

radio science only and combined (radio science and astrometry) cases, respectively.
Focusing on decorrelations (1 − correlations) rather than correlations allows to scale
changes as a function of the distance to full correlation: a decrease in correlation
between two parameters indeed has a stronger influence on the inversion if the
two parameters were originally fully correlated than if they were already rather
decorrelated.

Fig. 8.4 shows that including astrometry in the solution decreases the correlations
for most state parameters (shown as decorrelation increase in Fig. 8.4). This is
not only observed between state components of the same moon, but also between
different moons. For fewer parameters, the correlations actually increase, which can
be caused by the heterogeneous effect of adding more data (i.e., more information)
on the uncertainties of different estimated parameters. If the additional observations
help to reduce the uncertainty in parameter i , its correlation with parameter
j whose uncertainty remains unchanged might increase. Nonetheless, adding
astrometry overall reduces the strong correlations between the states of Io, Europa,
and Ganymede caused by the Laplace resonance. This improvement originates from
adding observations over a longer time span, as well as direct measurements of Io’s
position which are critically missing in the JUICE and Europa Clipper radio science
dataset.

Similar observations can be made from the state uncertainties obtained for
the Galilean moons. During the period of the two missions, only Io’s solution
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Figure 8.4.: Effect of combining radio science and astrometry on the decorrelations
between the moons’ initial states (in jovocentric coordinates). Panel
a: decorrelations for the radio science-only solution. Darker colours
indicate lower decorrelations, thus stronger correlations. Panel b:
relative differences in decorrelations between the combined and radio
science-only solutions (see Eq. 8.9). Blue and red indicate an increase
and a decrease in decorrelation, respectively.



8

240 8. MERGING LONG-TERM ASTROMETRY AND RADIO SCIENCE

benefits from adding astrometry data to the estimation (Fig. 8.5), while the other
moons’ states could not be improved in this time interval beyond the radio science
solution. This is expected given the unprecedentedly low uncertainties predicted by
simulations for JUICE and/or Europa Clipper (Fayolle et al., 2022; Magnanini et al.,
2024). For a joint solution relying on both missions, the position uncertainties for
Europa, Ganymede, and Callisto achieve sub-meter accuracy in the radial direction,
while they do not exceed a few tens of meters in the tangential and normal
directions. However, when using radio science data only, Io’s state solution is solely
based on indirect constraints originating from the well-determined dynamics of the
other two moons in resonance. Including astrometry thus has a stronger effect for
this moon: it reduces the averaged uncertainty in the radial and tangential positions
by about a factor two (Fig. 8.5).

While radio science measurements alone already provide an extremely accurate
solution for the Galilean moons’ states during the JUICE and Europa Clipper
missions, the formal uncertainties start to dramatically increase once propagated
beyond the missions’ timeline, especially in the radial and tangential directions. The
solution is particularly unstable for the three moons in resonance whose dynamics
are mutually affected by their state uncertainties. This is illustrated in Fig. 8.6a,
using Europa as an example (results for the other moons can be found in Appendix
8.6). The propagated uncertainties show a similar increase with time for both
radial and tangential positions, although the errors in the radial direction remain
about two orders of magnitude lower than the tangential ones. Uncertainties in the
normal direction, on the other hand, do not strongly degrade upon propagation.
These differences between in-plane and out-of-plane uncertainty propagation can
be explained by the fact that most dynamical perturbations, as well as the Laplace
resonance, act within the moons’ orbital plane. This causes in-plane position errors
to quickly propagate into larger uncertainties, which however do not strongly affect
the out-of-plane motion.

Merging the radio science data with astrometry, however, brings observational
constraints over a much longer time span and thus significantly helps maintaining
low uncertainty levels (Fig. 8.6b). The formal errors in the moons’ tangential
positions obtained from the complete dataset indeed tend to asymptotically get
closer to the astrometry solution when getting further away from the missions period
(2030-2035), as the influence of JUICE and Europa Clipper diminishes. Similarly, the
radial position error level does not degrade as strongly as in the radio science case.
For the moon’s normal position errors, which are significantly more stable upon
long-term propagation, adding astrometry has a smaller effect.

To analyse the long-term error propagation further, Fig. 8.7 displays the state
uncertainty levels for all moons, averaged over the period 1890-2030 (after backward
propagation). In particular, the radio science-only solution errors are extremely high
for the tangential positions (as in Fig. 8.6), and adding astrometry can reduce them
by more than one order of magnitude for Io, Europa, and Ganymede. Callisto is
however a notable exception: as the moon is not in resonance, the low uncertainty
levels reached during the JUICE and Europa Clipper missions remain relatively stable
upon propagation. The combined solution is thus closer to the radio science case,
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Figure 8.5.: Evolution of the formal uncertainties in Io’s state during the timelines
of the JUICE and Europa Clipper missions. Panel a: radio science only
solution, panel b: global inversion results (astrometry and radio science
combined).

1920 1940 1960 1980 2000 2020

10 -2

10 0

10 2

(a)

1920 1940 1960 1980 2000 2020

10 -2

10 0

10 2

(b)

Figure 8.6.: Propagated formal uncertainties in Europa’s position (from 2030 to 1890)
for the radio science (Rs), astrometry (Ast) and combined solutions
(Rs+Ast), obtained with Tudat and NOE. Panel a: radio science solution,
panel b: astrometry-only and combined solutions. The errors are given
in the RTN (radial, tangential, normal) directions and the scales are
identical on both Fig. 8.6a and 8.6b. To keep both the computational and
memory loads manageable, we used a propagation output of one point
per year and performed data smoothing over five-year windows to avoid
aliasing effects. While this does not allow for local uncertainty analyses,
it is nonetheless sufficient to investigate the long-term behaviour of the
position errors far from the missions period.

and the astrometry dataset does not provide any significant improvement. It should
however be noted that various additional perturbations and uncertainty sources,
such as gravitational perturbations by the inner moons and asteroids (see detailed
discussion in Section 8.5), would also affect the long-term error propagation and
deteriorate the accuracy of Callisto’s solution.
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Figure 8.7.: Formal uncertainties in the Galilean moons’ satellites, averaged over the
period 1890-2030. The results are provided for the radio science (RS),
astrometry (AST), and combined (ALL) solutions.

INFLUENCE ON THE TIDAL DISSIPATION PARAMETERS

The formal errors obtained for 1/QJupiter and 1/QIo in the three different
configurations are reported in Table 8.1. It should be noted that Tudat and MONTE
provide different uncertainties for the radio science solution. While the results are
surprisingly very close for σ(1/QJupiter) in the radio science-only case, this does not
reflect the behaviour obtained for other parameters. The error in 1/QIo obtained
with Tudat is indeed three times larger than the one provided by MONTE, and
the moons’ state uncertainties (not showed in Table 8.1) show similar differences
(factor two to three, depending on the considered moon and direction). These
discrepancies can be at least partially explained by differences in the tracking and
estimation setups used for the joint JUICE-Europa Clipper analysis, as mentioned
in Section 8.3.3. Differences between the two software can also contribute to the
observed disparity (see Section 8.3.1).

Finally looking at the combined solution, the uncertainties in 1/QJupiter are a factor
two to four smaller than for the radio science case, depending on the software and
estimation setup. We also obtained a consistent 30-35% improvement for 1/QIo with
both MONTE and Tudat. With respect to the current, astrometry-based solution,
the combined solution actually represents an order of magnitude improvement.
Overall, the attainable uncertainty reduction in both 1/QJupiter and 1/QIo thus seems
significant. This improvement could be anticipated from the long-term propagation
of the moons’ state solutions shown in Fig. 8.8. Combining radio science and
astrometry indeed strongly reduces the uncertainty in the along-track direction (by
more than one order of magnitude). This is crucial for the determination of the
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moons’ tidal dissipation parameters, as the tidal effects are mostly detectable from
the moons’ orbits through the secular change in mean motion that they cause.
Those results, even if obtained in a simplified, (partially) simulation-based setup,
indicate that adding astrometry to JUICE and Europa Clipper data is a promising
approach to better constrain tidal dissipation effects in the Jovian system.

It is worth noting that including astrometry in the solution also slightly reduces
the (high) correlation between Jupiter’s and Io’s tidal dissipation parameters. Taking
the Tudat setup as an example, the 92% correlation between 1/QJupiter and 1/QIo

when relying on radio science solely is brought down to about 87% in the combined
case. This still represents a ∼60% improvement in the solution departure from full
correlations (8% with radio science to 13% with both radio science and astrometry).

8.4.2. CONTRIBUTION OF DIFFERENT ASTROMETRIC OBSERVABLE TYPES

To further analyse which observations most effectively contribute to reducing the
uncertainties in 1/QJupiter and 1/QIo, we ran simulations including only subsets
of the available astrometry data to the simulated radioscience data. We first
considered each type of observations independently. In addition to radio science,
we thus separately incorporated classical astrometry, space-based astrometry, mutual
phenomena, radar data, and stellar occultations. The resulting formal uncertainties
are reported in Table 8.2. For each data subset, results are also provided as a
percentage of the total improvement in σ(1/QJupiter) and σ(1/QIo) achieved when
adding all astrometric observations to radio science. We chose to show and discuss
the individual contribution of different datasets based on the estimation formal
errors, for which this distinction is stronger and more directly observable than for
the correlations between parameters.

When looking at the individual contribution of each data type in Table 8.2, classical
astrometry has the biggest influence on the solution. More precisely, it seems that
old measurements (i.e., acquired before 1960) are the most beneficial, while they
only account for 20% of all classical astrometric data, which is consistent with the
discussion in Section 8.4.1. As shown in Figs. 8.1–8.2, these observations typically
show low accuracy (100s km to 1000 km). Nonetheless, they provide invaluable
constraints on the long-term dynamics of the Galilean satellites and thus play a

Table 8.1.: Formal uncertainties in 1/Q of Io and Jupiter.

1/QJupiter [-] 1/QIo [-]
Astrometry

2.5 ·10−6 1.7 ·10−2

Radio science
MONTE 1.3 ·10−6 1.0 ·10−3

Tudat 1.5 ·10−6 3.0 ·10−3

Combined
MONTE 3.0 ·10−7 7.0 ·10−4

Tudat 7.3 ·10−7 1.9 ·10−3
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Table 8.2.: Formal uncertainties in 1/Q of Io and Jupiter. The formal uncertainties
are obtained from radio science simulated data combined with various
subsets of the astrometric observations (Nast being the number of
observations contained in each subset). The relative contributions of each
data subsets are also provided. They are expressed as fractions of the
total improvement achieved by adding all astrometric observations to the
radio science only solution.

Dataset
Nast [-]

1σ [-] Contribution astrometry
radio science + 1/QJupiter 1/QIo 1/QJupiter 1/QIo

no astrometry 0 1.5 ·10−6 3.0 ·10−3 - -
all astrometry 14 454 7.3 ·10−7 1.9 ·10−3 100% 100%
classical astrometry

all 12 073 9.8 ·10−7 2.3 ·10−3 67% 64%
before 1960 2 473 1.2 ·10−6 2.3 ·10−3 39% 64%
after 1960 9 600 1.3 ·10−6 2.8 ·10−3 26% 18%

mutual phenomena 2 043 1.3 ·10−6 2.9 ·10−3 26% 9%
ground-based radar 22 1.3 ·10−6 2.8 ·10−3 26% 18%
stellar occultation 5 1.4 ·10−6 2.9 ·10−3 13% 9%
all Io observations 3 814 9.3 ·10−7 2.4 ·10−3 74% 55%
future astrometry 4 877 1.5 ·10−6 3.0 ·10−3 - -

crucial role in the determination of Jupiter’s and Io’s tidal dissipation parameters.
Comparatively, mutual phenomena provide a smaller improvement. They are

however relatively recent observations (performed from 1973 onwards) and, as such,
do not provide nearly as strong constraints as classical astrometry on the Galilean
satellites’ dynamics. For ground-based radar and stellar occultations, only 22 and
5 data points are respectively available. Nevertheless, their contribution to the
estimation of 1/QJupiter and 1/QIo is not negligible. While these are also very recent
observations (starting in the 1990s and late 2010s for radar and stellar occultations,
respectively), both measurement techniques demonstrate exceptional accuracy (see
Figs. 8.1–8.2, Brozović et al., 2020a; Morgado et al., 2019a, 2022), which explains why
they still provide a meaningful contribution to the solution. While ground-based
radar capabilities are strongly reduced by the loss of Arecibo, these results provide
strong motivation to continue observing future stellar occultation events.

The space-based astrometry data acquired during the Galileo and Voyager missions
were found to not noticeably contribute to the determination of 1/QJupiter and 1/QIo,
such that the solution including these observations is identical to the radio science
only case (thus not reported in Table 8.1). This result follows from the limited
accuracy of the Voyager and Galileo data, but it does not reflect the quality and
contribution of space-based astrometry in general. For our particular case of the
Galilean satellites, the accuracy of the upcoming space astrometry data from the
JUICE and Europa Clipper missions is expected to be closer to that of Cassini
ISS observations, which have been proven invaluable in ephemerides and tidal
dissipation studies for the Saturnian system (Lainey et al., 2017, 2019, 2020).
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We then considered only observations of Io, without discriminating between
different types of astrometric measurements. As shown in the last row of Table
8.2, this Io-only dataset can already account for about 74% and 55% of the total
improvement attainable when adding all astrometric observations to radio science
(for σ(1/QJupiter) and σ(1/QIo), respectively). The significance of this result is
strengthened by the fact that Io’s data points only represent about 26% of the entire
astrometry set. This confirms that ground-based observations of Io most efficiently
complement the radio science dataset, and alleviate JUICE and Europa Clipper’s lack
of direct constraints on Io’s dynamics. As discussed in Section 8.2.4, Io’s observations
are thus a crucial aspect of the strong synergy between the radio science and
astrometry.

We also quantified the contribution of potential future astrometric observations,
simulated between 2023 and the beginning of JUICE’s and Europa Clipper’s Jovian
tours (see Section 8.2.2). These additional ground-based data could however not
help reducing the estimated uncertainties further, for neither Io’s and Jupiter’s tidal
dissipation parameters nor the Galilean moons’ states (see Table 8.1). The added
value of future astrometric observations, whose accuracy cannot compete with that
of radio science measurements, directly suffers from their temporal proximity with
the JUICE and Europa Clipper missions. This could be foreseen looking at formal
uncertainties predicted for the radio science only solution close to the missions’
period: they are indeed comparable or lower than the ∼150-200 km accuracy level
expected for astrometric data in near-future observational campaigns. While crucial
to properly constrain the ephemerides of the Galilean system before the arrival of
the two spacecraft, acquiring new ground-based observations is thus not expected
to noticeably improve the post-missions reconstruction of the Galilean moons’
dynamics.

8.5. DISCUSSION AND CONCLUSIONS

We showed that adding decades of astrometry and radar observations to the radio
science data expected from the upcoming JUICE and Europa Clipper missions helps
estimating Io’s and Jupiter’s dissipation parameters. Uncertainties in Io’s and Jupiter’s
tidal dissipation parameters are reduced by a factor two to four, depending on the
software and simulation settings (see Section 8.4.1) It also stabilises the moons’
dynamics solution which, if solely based on radio science tracking of the spacecraft,
degrades rapidly outside the missions’ time bounds (see Fig. 8.8). Conversely, the
radio science data from JUICE and Europa Clipper will reduce the uncertainties in
Io’s and Jupiter’s dissipation parameters by one order of magnitude with respect to
the current, astrometry-based solution.

With respect to the rest of the astrometry dataset, Io’s observations contribute
the most to the joint radio science and astrometry solution. They indeed provide
direct information about Io’s orbital motion which are otherwise missing in the radio
science tracking data, due to the absence of any flyby planned around that moon.
Despite showing limited accuracy, old classical astrometry observations also proved
very valuable thanks to the unique constraints they impose on the moons’ long-term
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dynamics.

On the other hand, we showed that near-future astrometric data potentially
acquired before the spacecraft reach the Jovian system could not noticeably improve
the joint estimation. The added-value of such observations is limited when radio
science data are included in the estimation, as the latter then dominate the solution
close to the JUICE and Europa Clipper missions period. Until such radio science
measurements become available in the 2030s, astrometric data to be collected in
the coming years are nonetheless still valuable. As has already been investigated in
a separate study (V. Lainey, private communication), these observations will indeed
help improving the moons’ ephemerides’ solution available before the missions start,
which is a key aspect of the preparation effort. Additionally, more observation
campaigns will be required after both missions end, to avoid the moons’ state
uncertainties rapidly deteriorating over time.

Our results rely on simulated measurements for JUICE’s and Europa Clipper’s
radio science, and on the subsequent formal uncertainties obtained for the different
estimated parameters. It is nonetheless worth noting that these formal errors
likely indicate too optimistic uncertainty levels. In the particular case of the
JUICE and Europa Clipper missions, unique challenges are expected to arise. The
unprecedented accuracy of the radio science measurements, combined with JUICE’s
unique mission profile, indeed predicts meter-level determination of the moons’
radial positions (even down to a few centimeters for Ganymede’s during JUICE’s
orbital phase). For such estimation errors to actually be attainable, our dynamical
models of both the moons and the spacecraft would need to reach comparable
accuracy levels over relevant time scales, as discussed in e.g., Fayolle et al. (2022).
The uncertainties in the Galilean moons’ states and related dynamical parameters
might thus be larger than predicted, which also implies that the improvement
provided by astrometry could be stronger in practice.

Among the different effects which will require significant model refinement for
the JUICE and Europa Clipper data to be exploited to their full potential, tidal
dissipation mechanisms are critical to our understanding of the Galilean satellites’
interiors and orbital evolution, which are key scientific objectives of both missions.
In this analysis, we relied on the constant 1/Q assumption, but various approaches
exist to incorporate tidal dissipation into the dynamical model (constant time lag,
frequency-dependent 1/Q, resonance locking (Fuller et al., 2016), etc.). However, a
fully consistent implementation for both the moons and the central planet, with a
coherent modelling of the bodies’ deformation response, remains ambiguous (see
Chapter 2). A deeper analysis of the different tidal modelling strategies and their
influence on the estimation solution will thus be crucial to provide robust results for
tidal dissipation parameters (Magnanini et al., 2024).

Additionally, some uncertainty sources in the satellites’ dynamical model were
neglected and should be analysed in future studies. This includes, among others, the
gravitational perturbations by asteroids or by Jupiter’s inner moons, whose orbital
motions and masses are less accurately determined than those of the Galilean moons.
The influence of the COM-COF offset should also be quantified. The possibility to
exploit the combination of radio science and astrometry data to estimate this offset
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and thus mitigate its effect on the solution could also be explored. This would also
further motivate the need for future astrometric observations during the JUICE and
Europa Clipper missions, to complement the contribution of JUICE’s altimeter GALA
(mostly limited to the orbital phase around Ganymede).

Possible mismodelling of the spacecraft’s dynamics would also indirectly affect the
moons’ ephemerides’ solution. Accurately modelling all perturbations impacting the
orbital motions of JUICE and Europa Clipper will thus be critical (e.g., manoeuvres,
solar radiation pressure, errors in the High Accuracy Accelerometer (HAA) calibration,
etc.). Moreover, in addition to the already mentioned potential inaccuracies in the
current Jovian system model, time-variations in Jupiter’s gravity field and rotation or
inconsistencies in the satellites’ rotation models could also affect the spacecraft orbit
determination. Finally, for JUICE specifically, errors in the accelerometer calibration
are particularly important and should be further analysed.

On the observations side, other datasets could be considered in future studies. In
particular, radio science data from the Galileo and Juno missions are not included in
our current work. The former is however not expected to significantly improve the
solution (A. Magnanini, private communication): the Galileo spacecraft could indeed
only rely on an S-band, single frequency link due to the failure of the X-band high
gain antenna. The resulting radio science measurements therefore showed relatively
low accuracy compared to current missions (Jacobson et al., 2000; Gomez Casajus
et al., 2021). On the other hand, the contribution of Juno data to the solution might
suffer from its (temporal) proximity with the JUICE and Europa Clipper timelines,
with the notable exception of the two flybys around Io planned for early 2024. These
flybys are expected to bring invaluable information on Io’s ill-constrained dynamics
and should thus later be added to the joint solution for the Galilean moons. Finally,
Gaia data, by refining the orbits of Jupiter’s outer moons (Section 8.2.1), could
help quantifying the error in the Jovian ephemeris and mitigating its impact on
the moons’ solution (see also Chapter 7). This is of particular interest for stellar
occultations, as removing the contribution of Jupiter ephemeris would reduce their
error budget to a few kilometres only (see Section 8.2.1).

As already mentioned, our current results rely on simulated observations for the
radio science side. In practice, many additional difficulties will arise when processing
real radio science measurements and merging them with astrometry. Accurate
dynamical modelling has already been identified as an important obstacle to a
balanced ephemerides’ solution for the Galilean satellites from JUICE and Europa
Clipper data. Combining old astrometric observations with spacecraft radio science
will make this requirement even more stringent by requiring our dynamical models
to be consistent over both long- and short timescales. The appropriate weighting
of extremely diverse data types and datasets, with different noise properties and
accuracies, also represents a major challenge. Finally, quantifying and mitigating the
influence of the COM-COF offset will be crucial in future real data analyses.

Nonetheless, our analysis proves successful in generating a combined, global
solution by relying on three different tools with distinct focusses and capabilities
(moons’ ephemerides or spacecraft dynamics, astrometry or radio science data).
Our results show that exploiting the synergies between the different datasets can



8

248 8. MERGING LONG-TERM ASTROMETRY AND RADIO SCIENCE

substantially improve the inversion solution, and the estimation of tidal dissipation
parameters in particular. This encourages future efforts to work towards such a global
solution, to fully exploit the JUICE and Europa Clipper radio science measurements
when they become available.

8.6. APPENDIX A: PROPAGATED FORMAL POSITION

UNCERTAINTIES FOR THE FOUR GALILEAN SATELLITES
This appendix presents the formal position uncertainties propagated from 2033, in
the middle of the JUICE and Europa Clipper science tours, to 1890 when the first
astrometric observations included in our analyses were acquired. Fig. 8.8 displays
the results for the four Galilean satellites, while only those obtained for Europa are
shown in Section 8.4.1.
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Figure 8.8.: Propagated formal uncertainties in the moons’ RTN positions (from 2030
to 1890) for the radio science (Rs), astrometry (Ast) and combined
solutions (Rs+Ast), obtained with Tudat and NOE. We used a propagation
output of one point per year only and performed data smoothing over
five-year windows to avoid aliasing effects (see Fig. 8.6). The top panels
present the results obtained for Io (panels a & b), the middle panels
correspond to Ganymede (panels c & d), and the bottom ones to Callisto
(panels e & f). The left hand side panels (a, c, e) always display the radio
science only solutions, while the right hand side panels (b, d, f) show
both the astrometry-only and combined solutions.
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CONCLUSIONS AND OUTLOOK

Chapters 4, 5, 6, 7, and 8 have each addressed one or more of the research
questions highlighted in Chapter 1. We now summarise our findings, bringing
them together to address our main research objective. The different steps taken
in this dissertation have furthermore raised additional questions, and opened new
avenues of research. This chapter discusses these perspectives, and the opportunities
and challenges that await in the field of natural moons’ ephemerides. In Section
9.1, we first specifically focus on the moons’ ephemerides improvement attainable
with JUICE-Europa Clipper upcoming radio-science measurements. Section 9.2
then compiles our findings regarding the potential of new astrometric observation
strategies, before Section 9.3 finally examines the results and perspectives of a
combined inversion of astrometry and radio-science data.

9.1. RECONSTRUCTING THE GALILEAN MOONS’ ORBITS

FROM JUICE AND EUROPA CLIPPER RADIO SCIENCE
Chapters 4 and 5 together investigated promising techniques and strategies to
estimate natural satellites’ dynamics from radio science tracking of one or several
in-situ spacecraft, applied to JUICE and Europa Clipper. Combining the results of
these chapters provides an overview of the possible approaches, challenges, and
mitigation strategies essential to achieve an accurate, but also robust and consistent,
ephemerides solution for the Galilean moons.

As highlighted in Section 3.4.1, two different approaches currently co-exist when
using radio science for natural satellites’ state estimations. Typically, the spacecraft
and moons’ dynamics are solved for separately (i.e., decoupled strategy). Chapter
4, however, provides the first detailed formulation in literature of an alternative,
coupled approach where the spacecraft’s local states and the moons’ orbits are
concurrently estimated in a single step. Given the exceptional moons’ ephemerides
accuracy achievable from JUICE and Europa Clipper radio science (see below), the
uncertainty in Jupiter’s position will moreover have a non-negligible effect on the
solution. The implementation of the coupled estimation model makes it possible
to incorporate this central planet’s contribution in a natural and fully consistent
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manner. This has been presented in Chapter 5 which, combined with Chapter 4,
thus gives a complete overview of the underlying estimation methodologies behind
the reconstruction of natural satellites’ dynamics from spacecraft radio science.

The formal uncertainty levels expected from a joint JUICE-Europa Clipper radio
science inversion, assuming a coupled estimation strategy is applied, can be found
in Chapter 51. Covariance analyses indicate that the moons’ radial positions could
theoretically be determined at the meter or sub-meter level and, for Ganymede, can
even reach down to a few centimeters during JUICE’s orbital phase. The formal
errors in the tangential direction, on the other hand, are constrained in the 1–10
m range for Europa, Ganymede, and Callisto, while they remain around a few tens
of meters for Io. Finally, the determination of the moons’ out-of-plane positions
is slightly less accurate (10–100 m). Attaining such formal uncertainty levels will,
however, first require overcoming a few critical challenges, as will be discussed in
the following.

9.1.1. MAIN RESULTS AND FINDINGS

After introducing both the coupled and decoupled approaches for radio science-based
moons’ state estimation, Chapter 4 compared their respective performance and
limitations for the JUICE case, specifically answering the following research question:

How do coupled and decoupled estimation strategies compare when reconstructing
natural satellites’ orbits from spacecraft measurements?

The added-value of concurrently estimating the moons’ and spacecraft’s states is
the strongest in the radial direction: formal errors for the moons’ radial positions
are typically one order of magnitude lower with the coupled model than with
the decoupled one (e.g., a few meters vs. a few tens of meters for Io, see Fig.
4.9). Interestingly, this trend is inverted in the along-track direction, for which the
decoupled estimation yields lower formal uncertainties. Overall, these results follow
from the decoupled estimation yielding comparable uncertainty levels for the radial
and along-track position components (unlike in the coupled case where the radial
position is much better constrained). This results from the poor decorrelation of
these two directions in the arc-wise, local state estimation step. As argued in Chapter
4, the coupled solution, by automatically accounting for all dynamical dependencies,
nonetheless provides the most consistent and statistically realistic measure of the
achievable uncertainties.

This indicates that adopting a decoupled approach might lead to unrealistically
low errors for the moons’ along-track positions, with a possible effect on the
determination of tidal dissipation parameters. Our analyses moreover show that the
strong dynamical coupling between Io, Europa, and Ganymede due to the Laplace
resonance is only fully captured by the coupled model: the improvement observed in
Io and Europa’s radial position errors when including the orbital phase (with respect

1The analyses presented in Chapter 4 were still limited to a JUICE-only configuration, and the results
obtained in Chapter 5 are therefore considered more representative of what will be achieved after
the JUICE and Europa Clipper missions
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to considering the flyby tour only) is significantly stronger with the coupled model
than the decoupled one (see Fig. 4.9). In the JUICE mission case, the uniqueness of
the Galilean system’s dynamical configuration, combined with the imbalanced focus
of the mission tour on Ganymede and Callisto (see Section 1.3), thus makes the
coupled estimation approach the most promising estimation strategy.

However, achieving a global, fully consistent solution for the dynamics of the
Galilean satellites will be far from straight-forward. Chapter 4 therefore also discussed
the major obstacles to overcome before a coupled approach can be successfully
applied to the moons’ state estimation from JUICE (and Europa Clipper) radio science:

What are the main challenges of the reconstruction of a coupled, global solution for
the Galilean satellites’ dynamics from JUICE-only data?

The first barrier to the direct application of a coupled estimation model is a data
merging issue. As will be elaborated upon in Section 9.3, the key to bringing our
ephemerides solution to unprecedented accuracy levels is to fully exploit synergies
between various existing and upcoming data sets. By definition, the coupled
estimation strategy described in Chapter 4 would however require to process all
observations concurrently, in a single estimation step. This first poses a very
practical challenge, by requiring the use of a single tool able to consistently handle
very diverse data sets, typically processed separately in present natural satellites’
ephemerides determination. Data weighting and biases considerations will also bring
difficulties of their own (Section 3.2.2). The data properties, volume, and quality
indeed strongly differ from one set of observations to another, which will require
designing adequate weighing strategies to obtain a statistically balanced solution, as
will be further discussed in Section 9.3.2.

Furthermore, modelling inconsistencies, both in the spacecraft and moons’
dynamics, also represent a major obstacle to the reconstruction of a consistent
ephemerides solution. Such issues for instance arose in past Cassini radio science
analysis, already when trying to reconstruct a coherent ephemeris for a single
moon (Durante et al., 2019; Zannoni et al., 2020). The strong dynamical coupling
between the Galilean moons, however, imposes to consider the entire system to
obtain a dynamically consistent solution and rigorously account for the influence
of the Laplace resonance. This puts an even more stringent requirement on the
quality of our models: they indeed need to be consistent for the entire system
and to adequately reproduce the dynamics of both the spacecraft (short timescales)
and moons (longer timescales), with an accuracy well below the formal error levels
of our simulated state estimations. For the Galilean system, and the JUICE and
Europa Clipper missions specifically, the following effects will be particularly critical
to model accurately (this will be elaborated upon in Section 9.1.2):

• non-conservative forces acting on the spacecraft,

• central planet’s rotation and gravity variations,

• coupling between the moons’ tides, rotations, and orbits.



9

254 9. CONCLUSIONS AND OUTLOOK

After realising how the above-mentioned challenges might impede the use of a
coupled estimation approach and prevent the ephemerides solution from achieving
the formal errors predicted by simulations, Chapter 5 investigated how other JUICE
radio data could help overcome these difficulties. More specially, we analysed the
role of JUICE PRIDE as a supporting experiment in the pursuit of a coherent coupled
solution for the system’s dynamics. In addition to nominal, single-spacecraft VLBI
tracking, we capitalised on the concurrent presence of JUICE and Europa Clipper in
the Galilean system to explore unique opportunities for simultaneous VLBI tracking
of both spacecraft. Chapter 5 thus addressed the following:

Which improvement and validation opportunities can PRIDE VLBI measurements
bring to the joint JUICE - Europa Clipper ephemerides solution?

Which opportunities will the JUICE and Europa Clipper missions offer to perform
multi-spacecraft VLBI measurements, and how will such data contribute to the
solution?

In addition to single-spacecraft VLBI, we identified 11 combinations of JUICE
and Europa Clipper flybys offering promising opportunities for multi-spacecraft
VLBI (Table 5.9). We however showed that the contribution of both single- and
multi-spacecraft VLBI to a global, coupled state solution for the moons will remain
limited, once such a solution can be achieved (see Sections 5.4.2 and 5.5.1).

The improvement achievable with both single- or multi-spacecraft VLBI is
nonetheless much stronger when determining local, arc-wise solutions for both the
spacecraft and moons’ states. In light of the challenges to overcome before a global
solution can be reconstructed (see discussion above), starting with a decoupled
estimation will be a necessary first step. PRIDE VLBI will help obtaining more
accurate normal points in the out-of-plane direction, with typical formal errors
around several hundreds of meters (see Fig. 5.10). This represents an average
uncertainty reduction factor of 10-20 with respect to the classical radio science
solution. Depending on the flyby geometry, a noticeable improvement can also be
achieved in the along-track direction (up to almost one order of magnitude for a few
specific flybys, bringing the local formal error from the 100 m level to a few tens
of meters). These local improvements will in turn facilitate progressing towards a
coupled estimation, and thus a coherent global solution for the moons’ dynamics.

We furthermore investigated the potential of the PRIDE VLBI technique to validate
the radio science solution(s). Independent VLBI measurements of the spacecraft’s
lateral position in the sky can indeed be compared to JUICE’ orbit solution
reconstructed from range and Doppler data. Any discrepancy would either indicate

1. a systematic bias in the VLBI observables, which we would then be able to
recover and validate using background densification campaigns,

2. possible discrepancies between the orbit solution’s statistical confidence region
and its real accuracy, indicative of dynamical or observation noise modelling
issues.
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Detecting such discrepancies between raw VLBI measurements and the radio science
solution (or, equivalently, the absence thereof) will moreover allow us to put an
upper limit on the true-to-formal error ratios (Section 5.6.2), thus providing us with
a means to assess true estimation errors. More precisely, our results indicate that
true errors exceeding three to five times2 the corresponding formal uncertainties
could be detectable with PRIDE VLBI measurements.

Taking one step further, the refined arc-wise solutions attainable once VLBI is
included will automatically be sensitive to much smaller discrepancies with respect
to a preliminary global solution (see schematic representation in Fig. 5.12). This
will also facilitate identifying possible discrepancies. If combined, the validation
capabilities of single- and multi-spacecraft VLBI will moreover enhance each other,
being sensitive to different mismodelling or error sources. A perfect example is
the simultaneous tracking of JUICE and Europa Clipper in a single-moon flyby
combination (i.e., both spacecraft each performing a flyby around the same moon):
the resulting VLBI measurements are almost independent of any mismodelling in
the moon’s dynamics, but sensitive to errors in the spacecraft models.

PRIDE VLBI will therefore offer invaluable opportunities to progressively validate
the radio science estimation of the Galilean system’s dynamics. In particular, it will
play a crucial role in overcoming some of the challenges discussed above, which
might otherwise prevent us from obtaining a robust and dynamically consistent
global solution for the moons’ orbits. Ironically, if VLBI eventually helps attain such
a solution, the moons’ ephemerides will become accurate enough that adding VLBI
measurements to the estimation will no longer bring a significant improvement.
VLBI will nonetheless be invaluable in bringing the estimation solution to such
accuracy levels in the first place, with critical implications for our understanding of
the Galilean system’s dynamical and thermal history (see Chapter 10).

9.1.2. OUTLOOK

Building on the discussion initiated in the above Section 9.1.1, we further
discuss possible intermediate steps and analyses to overcome the various obstacles
complicating a coupled estimation of the spacecraft and moons’ dynamics.

A STEP-BY-STEP APPROACH TOWARDS A GLOBAL SOLUTION

The results of Chapters 4 and 5, together with the discussion in Section 9.1.1,
highlight the need to proceed gradually to eventually reconstruct a global solution
for the Galilean system’s dynamics. To this end, we recommend starting with
local, per-flyby estimations of the moons’ states before progressing towards a global
solution. The thorough analysis of the solution’s statistical realism and consistency
at each intermediate step will be essential, especially in view of an eventual global
inversion of diverse data sets (see Section 9.3). In the Cassini case, the instability
of the radio science-only solution (e.g., Jacobson, 2022) significantly obscures the
interpretation of the dynamical solution obtained for the Saturnian moons (see
Section 10.2.2). For the Galilean satellites, significant efforts must therefore be

2depending on the quality of the VLBI measurements
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dedicated to validating the JUICE-Europa Clipper radio science estimation as a
standalone solution, before a global inversion of various data set can eventually be
attempted.

The objective and strategy behind the VLBI-based validation plan proposed in
Chapter 5 and discussed in Section 9.1.1 remain applicable to any set of independent
observations. In particular, the strong synergies within JUICE and Europa Clipper’s
instrument sets and the unique simultaneous presence of two spacecraft in the
Galilean system offer invaluable validation opportunities which should be exploited
to their fullest potential. Besides PRIDE VLBI measurements, other independent data
sets can and should be used to this end, as will be discussed in Section 9.2.2.

INVESTIGATING DYNAMICAL MODELLING INCONSISTENCIES

While our analyses have highlighted the risk for dynamical mismodelling to affect the
estimation process, precisely assessing the impact of such modelling issues on the
solution is extremely difficult in a simulation framework. It would require introducing
some discrepancies in the models used to respectively simulate and estimate the
moons’ and spacecraft’s dynamics. The nature of the problem itself is however such
that we do not know how their dynamics differ from what our current models predict.
The difficulties encountered in Cassini radio science analyses perfectly illustrate this
challenge (Durante et al., 2019; Zannoni et al., 2020): when trying to interpret and
correct such inconsistencies, one is faced with our insufficient understanding both of
the limitations of the available models, and of the dynamical and physical effects yet
to be accounted for. One should nonetheless keep in mind that this is, in practice,
an iterative process essential to the progressive improvement of our models. The
orbit determination of the Juno spacecraft offers a perfect example: unmodelled
physical signatures, which first had to be absorbed in extra empirical accelerations
(Durante et al., 2020), eventually led to the refinement of Jupiter’s gravity field and
rotation models (e.g., Durante et al., 2022). Circling back to the most pressing
modelling challenges identified in Section 9.1.1, a few aspects can be elaborated upon.

Non-conservative forces acting on the spacecraft
All perturbations acting on the spacecraft (e.g., manoeuvres, effects of exospheric
drag, radiation pressure, solar array flexing, propellant sloshing, thermal and antenna
emission recoil pressure) must be adequately modelled and/or parametrised. This
is particularly critical in a coupled estimation, when simultaneously solving for
the spacecraft and moons’ dynamics, as any mismodelled effect might spill in
the moons’ solution. The JUICE’s High Accuracy Accelerometer (HAA) will play a
crucial role in characterising such non-conservative perturbations. Accounting for
the accelerometer measurements in the orbit determination process (as investigated
for the BepiColombo mission, De Filippis et al., 2024), as well as for the influence of
HAA calibration errors (Cappuccio et al., 2020b), will therefore be essential.

A promising approach to investigate the latter is to exploit the available spectral
characterisation of the HAA performance (Cappuccio et al., 2020b) to model the
accelerometer errors in the form of unexpected and unparametrised perturbations.
Including such perturbations in JUICE’s dynamical model, and investigating their



9.1. THE GALILEAN MOONS’ EPHEMERIDES FROM RADIO SCIENCE

9

257

influence on the state estimation, would be an important first step to start analysing
the impact of mismodelled effects. It would be particularly interesting to quantify
how such modelling errors, restricted to the spacecraft’s dynamics, may eventually
affect the moons’ ephemerides solution due to the indirect nature of the radio
science measurements and to the coupling of the spacecraft and moons’ dynamics
(especially during JUICE orbital phase). The HAA power spectrum given in Cappuccio
et al. (2020b) shows that the accelerometer is primarily designed to operate within
the 5 ·10−6 −5 ·10−1 Hz frequency range. The orbital motion of the Galilean satellites
are, however, mostly driven by frequencies either at the extreme lower end of
this range (Io’s orbital frequency is 6.5 ·10−6 Hz), or significantly lower (see e.g.,
Lainey et al., 2006). Although a detailed analysis is required, this already indicates
that mismodelled effects susceptible to eventually affect the moons’ ephemerides
determination might unfortunately not be properly captured by the accelerometer.

It must be noted that these modelling issues will also be (partially) mitigated by
the parallel developments of refined models for the non-gravitational accelerations
affecting the spacecraft dynamics. Recent advances have for instance been made in
the context of the BepiColombo mission (di Stefano et al., 2023), which uses the
same accelerometer as JUICE (Italian Spring Accelerometer, Iafolla et al., 2010). Such
modelling development efforts focus on effects whose magnitudes are too small to
be properly captured by the accelerometer, but which can still noticeably degrade
the quality of the orbit determination solution (e.g., solar radiation, thermal recoil
pressure, antenna emission recoil pressure). The resulting upgraded models will
directly benefit future JUICE and Europa Clipper analyses, which will in turn prompt
further modelling improvements.

Central planet’s rotation and gravity variations
The central planet’s pole motion and potential time- and longitude-dependent
variations of its gravity field (respectively linked to Jupiter’s normal modes and wind
dynamics), if non-modelled, might also affect our ability to reconstruct a coherent
solution for the moons’ dynamics (e.g., Zannoni et al., 2020). For the Jovian system,
these effects will nonetheless be better constrained at the time of the JUICE and
Europa Clipper missions thanks to Juno’s insights. The time variations of Jupiter’s
gravity field identifiable in Juno gravity field measurements can for instance be
exploited to refine our model of Jupiter’s gravity field beyond the classical approach
of a static field and tidal variations (Iess et al., 2019; Durante et al., 2020, 2022). The
same holds for Jupiter’s rotational pole orientation, recently estimated from Juno
radio science data (Lari et al., 2024).

Coupling between the moons’ tides, rotations, and orbits
Regarding the modelling of the natural satellites’ dynamics, one of the top priorities
should be to investigate the influence of possible inconsistencies between the
rotational and tidal models (or in the parametrisation of these models). The results
in Section 2.3.4 clearly demonstrate how intricate the combined feedback of tides
and rotation on the moon’s orbit is, and how a slight mismodelling of the satellite’s
rotation can affect its tidally-driven orbital evolution.
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Ensuring the consistency of our models is critical to extract statistically realistic
estimates of the moons’ rotational and tidal parameters from their orbits (which is
at the core of the JUICE and Europa Clipper’s scientific objectives, see discussion
in Section 10.1). In particular, radio science measurements will be sensitive to the
combined effects of tides and rotations both on the moons’ orbits and on their
gravity fields, which in turn influence the spacecraft’s dynamics. This two-level
sensitivity makes the full consistency of the moons’ and spacecraft’s dynamics
even more critical, a requirement further strengthened by the fact that the moons’
librations and tidal responses will also be detectable from other spacecraft-based
data sets (e.g., altimetry, radar, see Section 10.1.2). Precisely modelling the moons’
librations will be a particularly complex problem for the Galilean icy moons: unlike
for completely rigid bodies, the decoupling of their deep interior, liquid layer, and
icy crust will generate distinct librations, to which JUICE’s instruments will moreover
be sensitive in different ways (Section 10.1.2).

Critically, we should therefore carefully analyse whether tidal-rotational mismod-
elling can be absorbed in the estimation, possibly yielding erroneous estimates of
dissipation parameters. If, on the contrary, they lead to incompressible, non-flat
residuals, we should assess whether we could confidently map such residuals back
to potential modelling inconsistencies (see discussion in Section 2.4.1).

9.2. ASSESSING THE POTENTIAL OF NOVEL OBSERVATION

STRATEGIES
The first part of this dissertation (Chapters 4 and 5) focussed on the expected
contribution of JUICE and Europa Clipper radio science to the Galilean satellites’
ephemerides. However, as discussed in Section 3.4, present solutions primarily
rely on astrometric observations. While the long time span over which classical
astrometry observations have been collected is invaluable to constrain the moons’
long-term dynamics, more recent techniques have revolutionised the field of
astrometry for moons’ ephemerides determination. Our work specifically investigated
two of the currently most promising types of astrometric observations: mutual
approximations (Chapter 6) and stellar occultations (Chapter 7).

9.2.1. MAIN RESULTS AND FINDINGS

As mentioned in Section 3.3.1, mutual approximations offer a promising alternative
to mutual events to constrain natural satellites’ ephemerides. They indeed yield
as accurate measurements as for mutual events, but occur much more frequently.
In light of the recent mutual approximation campaigns for the Galilean moons
(Morgado et al., 2016, 2019b) and of their expected potential for moons’ ephemerides
in general, we developed the missing framework necessary to properly include these
observables in the state estimation, answering the following research question:

How should mutual approximation observations between two moons be used in the
estimation to reconstruct the moons’ dynamics?
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The primary observable of a mutual approximation is the time at which the
distance between the two targets reaches a minimum in the plane-of-the-sky,
referred to as central instant. We developed the missing analytical formulation
for the observation partials of these central instants (Section 6.2), circumventing
the need for the alternative observables traditionally used as substitutes (i.e.,
derivative of the apparent distance, Emelyanov, 2017). Advantageously, using the
mutual approximation’s central instant ensures that the full signature of the moons’
dynamics encoded in the observation is also automatically captured and exploited
in the estimation. Alternative observables, on the other hand, only contain the
kinematic part of the observation’s information content.

Despite this important difference in the nature of the two types of observables,
we showed that directly using central instants in the estimation only yields a small
improvement compared to the solution achieved with alternative observables. When
simulating mutual approximations for the Galilean satellites over the 2020–2029
period and subsequently estimating the moons’ states (using these observations
only), the improvement in formal position errors achieved with central instant
observables over the alternative option does not exceed 20% (Fig. 6.4). However, this
only holds if the alternative observables are carefully and adequately weighted in
the inversion. Formal error differences otherwise reach a factor 1.5 to 4 in favour
of the central instants (see Section 6.4.4). When adopting the alternative observable
approach, appropriate weighing accounting for the geometry of the close encounter
is therefore indispensable, but also requires considering each observation separately.
This information is, on the contrary, automatically included in the central instant.

The potential of mutual events and approximations for ephemerides determination
has nonetheless been somewhat shadowed by the exceptional accuracy reached with
stellar occultations which, unfortunately, occur very rarely (Morgado et al., 2019a,
2022, see Section 3.3.1). Recent improvements of the stellar catalogues’ quality thanks
to the Gaia mission (e.g., Brown et al., 2018, 2021) have made stellar occultations
the most accurate ground-based technique to measure the moons’ positions in the
plane-of-the-sky. However, the kilometre accuracy level reached by stellar occultation
observations implies that their error budget can effectively be dominated by the
uncertainty in the central planet’s ephemeris. To mitigate this, Chapter 7 proposed
a novel experiment relying on VLBI tracking of an in-system spacecraft to locally
reduce the planet’s position uncertainty, specifically addressing the following:

How can spacecraft tracking contribute to further reducing the error budget of the
most accurate ground-based astrometry observations?

We demonstrated the potential of the proposed experiment by using two
occultations, by Ganymede and Callisto, as test cases, leveraging the presence of the
Juno spacecraft in the Jovian system at the time of the occultations. Our results
showed that VLBI tracking of the Juno spacecraft during the perijoves preceding and
following each stellar occultation manages to locally reduce the Jovian ephemeris
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error to sub-kilometre level, below the nominal accuracy of a stellar occultation
measurement (see Table 7.3). By reducing the error budget of such observations, this
directly enhances their contribution to moons’ ephemerides solutions.

Since this experiment was initially proposed, the two stellar occultations and their
corresponding Juno perijoves have already taken place. While the first occultation
could unfortunately not be positively recorded, partially due to poor meteorological
conditions, both the second occultation and the VLBI tracking of Juno during the
four perijoves were successful. The analyses of the occultation observation’s results
and the processing of the Juno tracking sessions are still ongoing, and will eventually
allow us to confirm the simulation results reported in Chapter 7.

More generally, our results highlighted the potential of synergistic experiments
capitalising on the strengths of various tracking and observation techniques to
eventually benefit the moons’ ephemerides determination. It should be noted that
the proposed experiment is not only valid for the two specific test cases highlighted
in Chapter 7. It is applicable to any stellar occultation with similar spacecraft
tracking opportunity in its temporal proximity, as will be available during the
upcoming JUICE and Europa Clipper mission phases.

9.2.2. OUTLOOK

In the following, we first present interesting research perspectives specific to mutual
approximations and to the proposed stellar occultations experiment, respectively,
before addressing more general considerations regarding promising astrometric
observation techniques for Galilean moons’ ephemerides.

CENTRAL INSTANTS AS PROMISING OBSERVABLES

First, it must be noted that the central instant concept used in Chapter 6 as
the prime observable for mutual approximations is not restricted to this type of
observations only. The same observable formulation could be considered for mutual
events, to complement the relative tangential coordinates of the satellites typically
used for these observations (see Section 3.3.1). Interestingly, the central instant
contains different, dynamical information on the moon’s motion, as opposed to the
kinematic constraint extractable from the satellite’s position at the time of the event.
The potential benefit of including this observable in addition to the nominal position
measurements should therefore be further investigated. This could indeed enhance
the contribution of mutual events to the ephemerides solution by exploiting the full
information captured in these observations. The analytical formulation developed
in Chapter 6 to use central instants instead of alternative, simplified observables
in the estimation is equally suited and directly applicable to mutual events. It is
moreover interesting to note that the configurations for which using central instant
observables proved the most beneficial correspond to mutual event observations
(i.e., low impact parameter, see Chapter 6). The methodology initially developed for
mutual approximations could thus prove even more valuable for mutual events.
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STELLAR OCCULTATIONS DURING THE JUICE-EUROPA CLIPPER TIMELINE

Coming back to the stellar occultation experiment presented in Chapter 7, it will
also serve as a test experiment for the quality of planetary ephemerides. Differences
between the two main Jovian ephemeris solutions currently available can indeed
reach up to almost 5 km for the out-of-plane position component, indicating that
their accuracy is at this level in this specific direction (Fig. 7.1). Circling back to the
joint JUICE-Europa Clipper radio science results presented in Chapter 5, the very low
position uncertainty levels predicted by our simulations will, as already discussed in
Section 9.1, require to consider the influence of such Jupiter’s position uncertainty
on the estimation.

Bringing together the results and considerations presented in Chapters 5 and 7
regarding the Jovian ephemeris error leads to the following observations. When
including Jupiter in the estimation, JUICE and Europa Clipper tracking data alone
can bring the planet’s position uncertainty down to about 200-300 m, 10 m and
1-10 m for the normal, tangential, and normal components, respectively (see Fig.
5.4e). Depending on the direction, these results are lower or comparable to what our
simulations predict can be achieved locally with VLBI tracking of the Juno spacecraft.
This result can be exploited in two different ways. First, a stellar occultation by a
Galilean moon observed during the JUICE and Europa Clipper missions will benefit
from a similarly reduced error budget as the one obtained in Chapter 7 from the
Juno tracking experiment. Second, including Jupiter’s normal points based on Juno
measurements could possibly further reduce the Jovian position uncertainty (with
respect to what is shown in Fig. 5.4e). This would limit the impact of the central
planet’s ephemeris error impact on the moons’ solution, and at least limit the risk of
erroneously absorbing other effects, such as range biases, in Jupiter’s state.

EXPLOITING ASTROMETRY ’S POTENTIAL

Nonetheless, neither Chapter 6 nor Chapter 7 quantified the contribution of mutual
approximations or stellar occultations to the Galilean moons’ ephemerides solution
achievable after the JUICE and Europa Clipper missions. However, based on the very
high accuracy levels attainable with radio science, these astrometric observations
are not expected to significantly contribute to the post-mission estimation. This
is further supported by the preliminary analyses of the contribution of future
astrometry (classical astrometry and mutual events observations only) conducted in
Chapter 8 (see Section 8.4.2). The radio science-derived constraints will indeed
dominate the solution in the temporal vicinity of the JUICE and Europa Clipper
mission. However, improving the moons’ ephemerides prior to the missions is
also critical. Reduced position uncertainties limit the need for pre- and post-flyby
corrective manoeuvres, effectively reducing the statistical Delta-V budget required for
such orbit corrections. This pre-mission improvement should be carefully assessed,
to further motivate and prioritise future observation campaigns.

Furthermore, the promising observation strategies discussed in Chapters 6 and 7
will also be beneficial to refine the ephemerides solutions of other moon systems,
in particular those for which radio science measurements of dedicated missions are
not yet, or only scarcely, available (unlike e.g., the Saturnian system which benefits
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from Cassini data). The growing interest in the icy giant planetary systems currently
elevate Uranian moons, and to a lesser Neptune’s, as high-priority mission targets
(see detailed discussion in Sections 10.2.3 and 10.2.4, respectively). Improving the
ephemerides of these satellites is therefore critical to facilitate the orbital design
of potential upcoming mission(s), and is scientifically relevant in its own right
(see Section 10.2). Tighter constraints on these systems’ dynamics might also help
refine the scientific objectives prior to the mission(s), and/or adjust the chosen
mission design to best address them. In this perspective, the respective advantages
of both mutual approximations and stellar occultations with respect to classical
astrometry techniques make them particularly appealing, and future observation
opportunities for such events are under investigation (e.g., Santos-Filho et al., 2019;
Marques Oliveira et al., 2022; French and Souami, 2023).

9.3. EXPLOITING INTER-DATA SETS SYNERGIES
Chapters 4, 5, 6, and 7 each focussed on a specific type of observations. Even
though the latter investigated VLBI’s potential to benefit stellar occultations, it still
considered these two kinds of measurements independently, first processing the
simulated VLBI observables to eventually reduce the occultations’ error budget.
Chapters 4 and 5, on the other hand, demonstrated that JUICE and Europa Clipper
radio science will bring the moons’ ephemerides down to unprecedented accuracy
levels. The relatively short time span of this data set (about five years, as opposed to
more than one century of astrometry) will however not be sufficient to reconstruct
the long-term dynamics of the Galilean system and may limit the quality of the
dissipation parameters estimation. The robustness of the solution is moreover
further degraded by the imbalance of the radio science data set, and specifically by
the lack of direct constraints on Io’s orbit. Merging different data sets is therefore
key to overcoming their individual limitations, and ensuring that the ephemerides
solution benefits from their respective strengths and complementarities.

9.3.1. MAIN RESULTS AND FINDINGS

In this perspective, Chapter 8 performed a global inversion of existing astrometric
observations and simulated radio science from both JUICE and Europa Clipper,
addressing the following question:

How would adding existing astrometry data improve the JUICE-Europa Clipper
radio science solution?

Our estimations showed that combining radio science and astrometry can yield a
small reduction of Io’s in-mission position uncertainty (about 50% in the tangential
direction, see Fig. 8.5). A more significant improvement is obtained for the
estimation of Io’s and Jupiter’s tidal dissipation quality factors (∼30–35%3 for Io’s
and a factor 2–44 for Jupiter, see Table 8.1). This will be extremely valuable to

3This range encompasses two solutions obtained using different software (see Chapter 8).
4see footnote 3
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characterise the thermal-orbital evolution of Io, but also of the entire Galilean system
as the strong tidal interaction between Io and Jupiter drives the evolution of the
Laplace resonance, and thus the orbital migration of Europa and Ganymede (see
Section 10.1.1). The state estimation solutions for the other moons, on the other
hand, remain primarily constrained by the radio science data, and do not show any
noticeable improvement when adding astrometry.

Our results also indicate that increasing the observation time span by including
older data sets to the inversion helps constraining the long-term dynamics of
the system. Adding astrometry to the joint JUICE-Europa Clipper radio science
estimation indeed notably improved the stability of the solution: the moons’ formal
position errors progressively converge towards the astrometry-only solution accuracy
(i.e., ∼ 10 km in the along-track direction) when propagated backwards, away from
the JUICE-Europa Clipper missions period (see Fig. 8.6). On the contrary, relying
only on radio science data yields a comparatively poor and unstable characterisation
of Io’s orbit and of the dissipation between Io and Jupiter, which prevents robustly
mapping the estimation results to the long-term evolution of the Galilean system.

Analysing the above results further, our global inversion setup allowed us to
assess the respective contribution of the different astrometric measurements to the
solution, thus examining the following:

Which existing astrometric observations will be most beneficial to combine with
JUICE and Europa Clipper radio science data sets?

Old classical astrometric observations of Io (i.e., before 1960) were found to
contribute to the solution the most. They respectively account for 40% and 64% of
the total improvement in Jupiter and Io’s dissipation estimates achieved when using
all astrometric observations (see Table 8.2). This confirms the strong influence of
the lack of direct radio science data for Io, in the absence of any flyby around that
moon by JUICE or Europa Clipper. In the radio science estimation, Io’s orbit is only
indirectly constrained, through the Laplace resonance, by our accurate knowledge of
Europa and Ganymede’s dynamics. This is, however, insufficient to obtain a robust
solution. Adding direct astrometric observations of Io nonetheless proved effective in
complementing the radio science data set. This is further supported by the improved
determination of Io’s orbit and of the dissipation parameters characterising the tidal
interaction between Io and Jupiter with respect to the radio science-only solution.

Besides the key importance of constraining Io’s motion, these results confirmed
the crucial role of old astrometric data, and thus of an increased observation time
span, in the solution improvement described above. As mentioned in Chapter 8,
this is even more remarkable considering that old classical astrometric observations
are significantly less accurate than more recent measurements (both in timing and
position). Our results however demonstrate that radio science data dominate the
solution close to the missions’ timelines, in such a way that the more recent
astrometry cannot further improve the solution. On the other hand, the short
time span of the radio science data set (about five years) makes older astrometry
extremely valuable to improve the long-term robustness of the estimation solution.
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9.3.2. OUTLOOK

Our analyses clearly confirmed the global inversion of various data sets as the way
forward for natural satellites’ ephemerides determination. For the Galilean moons
specifically, such data merging strategies are key to achieving a statistically consistent
and robust solution from JUICE and Europa Clipper radio science, as well as to
fully exploiting existing data sets. In the following, we discuss both the challenges
and opportunities awaiting on this path, before future global inversion analyses can
eventually bring current ephemerides solutions down to exceptional accuracy levels.

DATA MERGING CHALLENGES

A number of challenges will arise specifically from dealing with real radio science
data. The analysis presented in Chapter 8 included real existing astrometric
observations, but simulated JUICE and Europa Clipper radio science measurements.
We moreover limited ourselves to a covariance analysis. In full estimations based on
real data, however, obtaining a statistically balanced solution will require adopting
appropriate weighing strategies and bias representations to realistically represent the
measurement errors and the information contained in each data set.

Current natural satellites’ ephemerides already rely on the combination of different
astrometric data sets and/or data types, with extremely different accuracy levels (e.g.,
Jacobson, 2010, 2022; Jacobson et al., 2022; Lainey et al., 2007, 2009, 2012, 2017, see
Section 3.4). As discussed in Section 3.2.2, the weights assigned to each data set are
typically adjusted to be in agreement with the RMS of the residuals (see e.g., Lainey
et al., 2019). However, in existing global inversion of radio science and astrometry,
with extremely contrasted data volume and quantity, the lack of available details
on the exact weighting methodology makes current data merging strategies rather
untransparent (e.g., Jacobson et al., 2006; Jacobson, 2010, 2022).

We will nonetheless be able to draw inspiration from other fields of study, where
combined inversions of highly diverse and heterogeneous data sets are common,
such as precise orbit determination and physical parameters estimation for e.g.,
Earth or lunar gravity missions (Kusche, 2003; Lemoine et al., 2013). A possible
weight adjustment strategy consists in fine-tuning the weighting scheme to ensure
that the differences between full and partial least-squares estimations (the former
being based on a subset of the observations) are consistent with the estimated
error bounds (Lerch, 1991). More rigorous approaches, widely used in gravity field
analyses, rely on variance component estimation (VCE) to ensure that the adopted
weights are consistent with the weighted residual variances (e.g., Lemoine et al.,
2013, 2014; Goossens et al., 2023). These variance determination strategies have
also been applied to planetary radio science analyses (Bertone et al., 2021; Goossens
et al., 2022), and should be perfectly suited for global inversions of radio science and
astrometry in the context of natural satellites’ ephemerides estimation.

More complex noise whitening filters, such as the ones commonly applied for
Earth gravity field determination (e.g., Pail and Plank, 2002; Schuh, 2003; Siemes,
2008), could moreover also be considered rather than the averaging approach
mentioned in Section 3.2.2. Such whitening processes could help decorrelate the
measurements, rather than accounting for the observation correlations in the weight
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matrix (e.g., by introducing non-zero diagonal components in Eq. 3.12).

OTHER COMPLEMENTARY DATA SETS

In addition to the existing astrometric observations considered in Chapter 8,
other data sets could efficiently complement JUICE and Europa Clipper radio
science. As hinted at by our previous analyses and confirmed by our combined
astrometry and radio science estimation (Chapter 8), the lack of constraints on
Io’s orbit currently represents the main avenue of improvement for the Galilean
moons’ ephemerides. An obvious complementary data set to consider is the radio
science measurements collected during the two Io flybys performed by Juno during
its extended mission phase. Preliminary analyses, either as a standalone radio
science data set or combined with JUICE and Europa Clipper (simulated) tracking
measurements, already hinted at possible improvement of the estimation of Io and
Jupiter’s dissipation parameters (Filice et al., 2023; Magnanini et al., 2023).

In parallel to the work conducted in this dissertation, a comparative analysis of
JUICE simulated radio science and radiometric navigation data has been performed
in Hener et al. (2024). This study was originally initiated to investigate possible
in-mission ephemerides improvements for the Galilean moons based on JUICE radio
science data, as opposed to the radiometric measurements of lesser accuracy, but
more widely spread out in time, on which the navigation solution relies. The
results, however, did not confirm these initial expectations. While radio science will
yield more accurate post-mission ephemerides, the in-mission solution achieved with
navigation data seems competitive with what can be achieved with radio science.
Partial radio science estimations relying on the limited - and thus imbalanced - data
set available at a certain time t before the end of Jovian tour severely suffer from
instability issues. The long navigation tracking arcs, on the other hand, proved very
valuable to extract the signature of Io’s orbit in the spacecraft’s dynamics, and could
therefore help constrain Io’s state.

More detailed follow-up analyses will be required to confirm these unexpected
conclusions. In particular, the accumulating effects of non-conservative perturbations
acting on the spacecraft over the long navigation arcs and the possible mismodelling
of such effects (see Sections 9.1.1 and 9.1.2) should be properly accounted for. It must
moreover be noted that this analysis was conducted in a JUICE-only configuration.
The radio science solution thus did not benefit from the complementarity of
the JUICE and Europa Clipper data sets, which significantly improves both the
robustness and the quality of the ephemerides estimation (see Chapters 4 and
5). Nonetheless, these considerations would only affect how the radio science
and navigation in-mission solutions compare to each other, but not diminish the
potential of JUICE’s navigation data to constrain Io’s orbit. This should be further
investigated, by combining both nominal radio science and navigation data in
a single inversion, and carefully investigating the resulting improvement for Io’s
estimated state.

In addition to radio science-derived constraints, either via rare direct flybys
(Juno) or indirect sensitivity to dynamical coupling (JUICE, Europa Clipper), other
space-based - yet more direct - observations of Io can be exploited to refine its
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ephemeris. JUICE’s navigation and science cameras will indeed take optical images
of Io throughout the mission. The potential of space-based astrometry for moons’
ephemerides has already clearly been demonstrated in the context of the Cassini
mission, where invaluable improvements of the Saturnian moons’ ephemerides have
been achieved thanks to ISS (Imaging Science Subsystem) images (e.g., Lainey
et al., 2017, 2019, 2024). For the specific case of the Galilean system’s dynamics
in the JUICE-Europa Clipper context, such imaging observations can greatly help
stabilise the solution by directly constraining Io’s motion (e.g., Dirkx et al., 2017, for
the JUICE-only case), similarly to what was observed in Chapter 8 with classical
astrometry. Alternatively, space-based optical images of Io might also provide us
with an independent, additional means to validate the radio science solution (see
Section 9.1.1). Such validation opportunities are particularly critical for Io’s orbit,
given its indirect determination, but are also scarcer. The validation potential of the
PRIDE VLBI data set, highlighted in Chapter 5, will for instance be much reduced for
Io, specifically because of the absence of direct radiometric spacecraft tracking close
to that moon. Zenk et al. (2024) investigated the possible role of space astrometry
in that respect, assuming reasonable deviations between the true estimation errors
for Io’s orbit and the formal uncertainties obtained in this dissertation. These
preliminary simulation analyses promisingly indicate that space imaging of Io could
non-negligibly contribute to improving, or at least meaningfully validating, Io’s radio
science-based solution.

JUICE and Europa Clipper’s instrument suites moreover offer an additional
opportunity to further constrain Io’s orbit (Van Hoolst et al., 2024). Both spacecraft
carry similar UVS (UltraViolet Spectrograph) instruments, intended to study the
atmospheres of Jupiter and its moons. The exceptional timing accuracy (about
1 ms, Davis et al., 2021) with which JUICE-UVS will record stellar occultations
by Io can translate into a measurement of the moon’s position with respect to
the starry background with a accuracy of a few hundreds of metres. In addition
to constraining Io’s instantaneous shape - sensitive to both librations and tidal
deformation - with the same accuracy level, these unique observations can thus
notably contribute to the reconstruction of Io’s orbit. UVS observations actually
present the same advantages as space astrometry with respect to the radio science
data set, providing independent and direct constraints on Io’s motion, but show
much better accuracy. The limited number of planned observations (about 60
occultations by Io5), combined with the influence of JUICE’s orbit error and Io’s
topography uncertainties, will be the main limiting factors of UVS occultations’
contribution to Io’s ephemeris. Their promising potential and complementarity with
the space astrometry data set should nonetheless be further investigated.

5https://www.cosmos.esa.int/web/juice/science-opportunity-analysis

https://www.cosmos.esa.int/web/juice/science-opportunity-analysis
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SCIENTIFIC IMPLICATIONS

Chapter 9 presented the main conclusions of this dissertation, as well as derived
recommendations and future research avenues, focussing specifically on the
determination of the Galilean moons’ ephemerides after the JUICE and Europa
Clipper missions. In the following, we widen the scope of our discussion to consider
the implications of a refined estimation methodology and improved solution for
natural satellites’ ephemerides. We will start with the Galilean system, to which this
dissertation was originally bound to, before discussing possible applications to other
planetary systems.

10.1. IMPLICATIONS FOR THE GALILEAN SATELLITES
This work has investigated the quality and robustness of the Galilean moons’
ephemerides solution achievable in the wake of the upcoming JUICE and Europa
Clipper missions to the Jovian system. The JUICE-Europa Clipper radio science data
set, complemented by various other observations (Section 9.3.2) and most notably by
existing and future astrometry (Chapter 8), will provide the most accurate picture of
the system’s present-day dynamics. Additionally, an improved ephemerides solution
for the Galilean moons offers the opportunity to extract the tidal dissipation signal
from their orbits. The determination of such dissipation parameters will bring
invaluable insights into the satellites’ current orbital migration rate and thermal state,
critical to our understanding of the system’s long-term thermal-orbital evolution.
This will be complemented by other constraints on the moons’ interiors derived
from radio science (gravity fields and rotations, estimated alongside the moons’
dynamics), but also altimetry, magnetic field, radar, and optical measurements (e.g.,
Petricca et al., 2023; Roberts et al., 2023; Van Hoolst et al., 2024). The following
sections therefore discuss ephemerides-based insights, in the broader context of the
JUICE and Europa Clipper’s objectives and expected findings.

10.1.1. CONSTRAINING THE SYSTEM’S EVOLUTION

We will first consider the characterisation of the moons’ present-day orbits and
dissipation-driven migration rates, before examining possible implications for our

267
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understanding of the system’s long-term history.

PRESENT ORBITAL MIGRATION RATES

The current orbital expansion rates of the Galilean moons result from the combined
effects of the tides raised both on Jupiter and on the moons themselves, which have
a very similar influence on their orbits (see Eq. 2.68–2.72). This is a major challenge
when attempting to disentangle the contributions of the dissipation in Jupiter and in
the moons based on measurements of the moons’ orbits. Distinguishing between the
two effects is then only possible because the eccentricity change is primarily caused
by dissipation inside the satellite (e.g., Lainey et al., 2009, and Eqs. 2.69 and 2.72).

However, radio science tracking of JUICE and Europa Clipper offers the possibility
to naturally separate both effects. The spacecraft’s dynamics are indeed primarily
sensitive to tidal effects via the variations induced in the satellite’s gravity field (see
Fig. 10.1, and more detailed discussion in Section 2.3.1). The tidal signature in the
spacecraft’s orbit is thus dominated by the tides raised on the moon, and can be
extracted in gravity-focussed inversion without the need to reconstruct a global state
solution for the moon (e.g., Durante et al., 2019; De Marchi et al., 2022). Natural
satellites’ state estimations from radio science data, on the other hand, are sensitive
to both the effect of tidal dissipation on the spacecraft’s dynamics and on the moon’s
orbit (Fig. 10.1), the latter being influenced by the dissipation in both Jupiter and
the moon. These different sensitivities facilitate distinguishing between the real and
imaginary parts of the Love number k2, but also between the dissipation occurring
within the central planet and within its moons. This, in turn, is critical to reliably
determine not only the moons’ orbital migration, but also the tidal heating rate of
their interiors (see discussion in Section 10.1.2).

Distinguishing between the different dissipation signals in the moons’ dynamics
still requires accurately modelling the small secular effect that the tides on a given
moon cause on its own orbit (see Section 2.3.4). It moreover assumes that a fully
statistically consistent dynamical solution can be reconstructed for the moons over
the course of the two missions, and beyond (to fit other data sets, see Chapter 3).
Provided that the two above conditions are met, however, it will be possible not only
to distinguish between tidal dissipation in Jupiter and its moons, but also to estimate
a frequency-dependent dissipation in the planet, following refined dissipation models
and recent results for the Saturnian system (Lainey et al., 2020). Existing simulations
predict that, for the three outermost Galilean moons, JUICE and Europa Clipper
radio science will indeed allow us to discriminate between dissipation in Jupiter and
in the moons (e.g., Magnanini et al., 2024). This is of particular importance for the
dissipation in Jupiter at Callisto’s frequency: a joint inversion of JUICE and Europa
Clipper radio science data will help us determine whether Callisto is caught in a
resonant locking mechanism, and thus differentiate between the widely different
long-term orbital evolutions that this would entail for the Galilean system (Lari et al.,
2023), as well as for Jupiter’s obliquity (Dbouk and Wisdom, 2023).

Our results, however, showed that only relying on JUICE and Europa Clipper radio
science cannot yield an unambiguous estimation of the tidal dissipation in Io, and
in Jupiter at Io’s frequency. Not only the absence of direct flybys around this moon
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prevents us from distinguishing between moon and planet tides, but their combined
signature in Io’s orbit is only extracted from its indirect effect on the dynamics of
the other moons (mostly on Europa’s) via the Laplace resonance. This results in
strong correlations between dissipation in Io, and dissipation in Jupiter at Io and
Europa’s frequencies (e.g., Magnanini et al., 2024). As highlighted by the results in
Chapter 8, including direct observations of Io will therefore be crucial to overcome
this issue and determine the moon’s current orbital migration and tidal heating
rate (see Section 9.3.2 for a more detailed discussion on promising complementary
data sets). This is in turn essential to provide robust constraints on the long-term
evolution of the system and of the Laplace resonance, as will be further discussed in
the following.

LONG-TERM EVOLUTION SCENARIOS

In addition to a picture of the Jovian system’s present-day dissipation, the JUICE-
Europa Clipper ephemerides solution will help us investigate possible long-term
evolution scenarios for the Galilean moons. The latter typically requires the coupled
integration of thermal and dynamical models (e.g., Showman et al., 1997; Hussmann
and Spohn, 2004; Bland et al., 2009), whose initialisation will directly benefit
from tighter constraints on the moons’ orbits and of the system’s tidal dissipation
parameters.

Our results, however, highlighted that the instability of Io’s solution effectively
limits the quality of the moons’ orbital solution outside of the JUICE-Europa Clipper
missions time bounds. Io’s orbit indeed influences the entire system’s orbital history
via the Laplace resonance. Therefore, the lack of direct observations for this moon

Figure 10.1.: Tidal forces acting on the spacecraft and moon i , due to tides raised
in the moon (blue) and in the planet 0 (red). Tidal effects in the
spacecraft’s dynamics primarily originate from the moon’s gravitational
deformation (solid blue ellipsoid), but are also affected by the moon’s
orbital expansion (purple) under both planet and moon tides.
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would overall loosen the constraints placed on long-term evolution models, and
require the careful incorporation of all relevant correlations when exploring the
parameter space. This again emphasises the need to include other data sets in the
estimation, and give priority to direct observations of Io prior, during, and right
after the two missions. Recent observation techniques developed for Earth-based
astrometry (see Section 9.2.2), as well as complementary space data (Juno mission,
or different JUICE-Europa Clipper data sets, see Section 9.3.2), are particularly
promising.

Provided that the above solution instability is solved, which the results of this
dissertation will facilitate, invaluable constraints will be available to refine our
understanding of the system long-term evolution. Possible evolutionary paths should
indeed be consistent with the moons’ current orbits, but also with their internal
structures, properties, and thermal states derived from ephemerides, gravity field,
tidal deformation, magnetic field, and radar measurements, as well as geological
features and estimates of the surfaces’ heat outputs. Bridging the gap between the
system’s current and past states will nonetheless require developing a fully consistent
model for the moons’ interiors and dynamical evolution, coherently accounting for
the intricate feedback between the moons’ rotation, orbital migration, and tidal
heating of their interiors. Such a model is however not yet available for the Galilean
system, for which past thermal-orbital studies were limited to one or two satellites,
assumed the Laplace resonance as locked, and did not consider the influence of
rotational dynamics (e.g., Fischer and Spohn, 1990; Hussmann and Spohn, 2004).

Refined evolution scenarios for the Galilean moons will eventually bring invaluable
insights into the yet poorly constrained history of the Laplace resonance, compared
to existing, astrometry-based estimates of the resonance’s current evolution (Lainey
et al., 2009). Such constraints will help discriminate between a primordial origin
or a later capture (Yoder and Peale, 1981; Canup and Ward, 2002), and investigate
possible past periods of enhanced eccentricities. This will shed light onto the
different thermal evolution processes undergone by Europa, Ganymede, and Callisto,
explaining why these moons exhibit such different surface features and differentiation
levels (e.g., Van Hoolst et al., 2024). The past tidal heating rate experienced by
the Galilean satellites, driven by the moons’ past eccentricities, will moreover be a
key ingredient in better understanding the formation, history, and stability of their
subsurface oceans (Section 1.1). This is particularly critical to explain how an ocean
could have formed and subsisted until present day on Ganymede and even Callisto,
despite current tidal heating being insufficient (see Section 10.1.2). Successive
melting and freezing phases would moreover have affected the interactions between
the trapped ocean and the moon’s surface and/or deep interior (e.g., Běhounková
et al., 2021), with consequences for possible chemical processes in the ocean, and
thus for astrobiology.

10.1.2. PEEKING AT THE MOONS’ INTERIORS

Our ability to extract the tidal quality factors Q of the Galilean satellites and
of Jupiter from a refined, radio science-based dynamical solution offers another
means to constrain the moons’ dissipative and thermal states, opening a window
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onto their interior structure and properties. In the following, we discuss direct
ephemerides-related insights into the moons’ present-day interiors. We furthermore
put them in perspective with other constraints derived from other instruments
and/or data sets, some of which will also benefit from the modelling improvement
required by the ephemerides determination process (see Section 9.1.2).

THERMAL STATE

Refining our understanding of the Galilean moons’ heat budget is key to answering
some of the top scientific questions about these icy moons: how could subsurface
oceans of liquid water form and subsist on these distant satellites until present-day?
Besides radiogenic heating, tidal heating is the other main possible contributor to
the heat budget of icy satellites (e.g., Hussmann et al., 2006). In the Galilean system,
it is presently a significant heat source for both Io and Europa. This is enhanced,
for the case of the more distant Europa, by the transfer of energy from Io via the
Laplace resonance. Quantifying the satellites’ tidal heating rate, defined by the phase
lag of the complex Love number k2

1, is thus crucial to characterise their current
thermal and dissipative states. As shown in Section 2.3.4, this information can
directly be extracted from the dissipation-driven evolution of the moons’ orbits (Eqs.
2.68–2.72). For Europa and Ganymede, this is essential to investigate the present
state of their internal oceans (freezing or in thermal equilibrium?). As mentioned in
Section 10.1.1, exploiting current constraints to characterise this over long timespans
is moreover key to investigate the stability and evolution of the subsurface oceans.

JUICE’s GCO radio science will allow us to retrieve Ganymede’s tidal phase lag
with remarkable precision, providing invaluable insights into the moon’s dissipative
state. Constraining Callisto’s Im(k2), on the other hand, is expected to be challenging
(Mazarico et al., 2023; Magnanini et al., 2024). The current tidal heating rate
inside Callisto is anyway estimated to be too small to explain the survival of a
putative internal ocean until present-day, which should instead be linked to the
moon’s thermal-orbital history (Section 10.1.1). Finally, our ability to detect Europa’s
tidal phase lag, mostly from Europa Clipper radio science, will depend on the
effective phase lag amplitude, and thus on the moon’s interior (Magnanini et al.,
2024). Current models predict a phase lag up to 1 degree (Moore and Schubert,
2000), at the limit of detectability from JUICE and Europa Clipper radio science
data (Magnanini et al., 2024). We should only be able to detect large Φk2 values
(up to 25 degrees Hussmann et al., 2016), corresponding to an extremely hot and
dissipative interior which is currently considered unlikely. Our (in)capacity to obtain
a statistically significant estimate for Europa’s phase lag will therefore allow us
to firmly rule out or confirm such highly dissipative interior models. A negative
detection would moreover help us put upper bounds on the phase lag value. The
state estimation methods developed in this dissertation will facilitate the robust
estimation of Φk2 from the moons’ orbits. However, the results in Chapter 2
evidence the risk for possible modelling consistency issues to affect the estimation
when extracting Φk2 from both the spacecraft and moons’ dynamics. This provides

1A large phase lag of the moon’s tidal response Φk2
indicates a highly dissipative interior.
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clear avenues for necessary model refinement to improve the characterisation of the
moons’ dissipative states from radio science.

Constraining Φk2 is nevertheless not enough to unambiguously determine whether
the dissipation mostly occurs in a moon’s outer ice shell or deep interior. Firmer
insights into the dissipative state of the deep layers can be gained through the
phase lag difference ∆Φ=Φk2 −Φh2 , where Φh2 designates the phase-lag of the radial
shape deformation due to tides (Hussmann et al., 2016). Assuming that the outer
icy shell is mostly decoupled from the deep interior, Φh2 will be primarily driven by
dissipation in the former. The phase lag of the tidal potential Φk2 , on the other
hand, depends on the moon’s entire mass distribution. Large phase lag differences
would therefore indicate a strong dissipation in the moons’ deep interiors, i.e., in
Ganymede’s high pressure ice shell or Europa’s silicate mantle, while similar Φk2

and Φh2 values would imply that most of the dissipation takes place in the outer
shell. For Ganymede, large phase lag differences would however only be detectable
for low-viscosity values of its high pressure ice layer (i.e., very hot deep interior,
Hussmann et al., 2016; Van Hoolst et al., 2024). Constraining Europa’s phase lag
difference, on the other hand, might help detect a potential dissipation in its hot
silicate mantle (Hussmann et al., 2016; Běhounková et al., 2021). Combining Φk2

and Φh2 would thus provide crucial information on the moons’ internal viscosity
and thermal states. The robustness of our estimates and interpretations, however, is
again contingent upon the perfectly consistent modelling of the moon’s rotation and
tidal response, as well as spacecraft’s dynamics. Linking together the spacecraft orbit
and moon ephemerides errors with the resulting h2 estimate uncertainties could
nevertheless be achieved via a concurrent determination of orbital dynamics and
shape deformation using altimetry crossovers, which are sensitive to both (Villamil
et al., 2021).

INTERIOR STRUCTURE AND PROPERTIES

An accurate and consistent solution for the Galilean moons’ ephemerides will
moreover provide invaluable insights into the satellites’ internal structure and
properties. In the following, we specifically address how this will help characterising
Europa and Ganymede’s hydrospheres, thus contributing to some of JUICE and
Europa Clipper’s core scientific objectives.

The moons’ internal structure and properties define both their rotational and tidal
responses to external forcing (via Eq. 2.16 and 2.39, respectively). Despite their
intricate feedback on the moons’ orbits, all relevant internal properties cannot be
unambiguously extracted from their signature in the satellites’ dynamics, as discussed
in Section 2.4.2. Reconstructing an accurate and detailed picture of the moons’
interiors thus requires capitalising on synergistic constraints derived from different
data sets and analyses. In particular, further insights can be gained by exploiting the
different sensitivities of the spacecraft and moons’ orbits to various manifestations
of the moons’ interiors (e.g., gravity, libration, tidal response). Obtaining physically
reliable and robust estimates from such a concurrent estimation, however, requires
the consistent modelling of orbits, tides, and rotations, and of their combined effects
on both the spacecraft and the moons’ dynamics. The extreme sensitivity of the
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moons’ dynamics to the modelling of their tidal and rotational responses, underlined
in Chapter 2, can in turn be exploited to verify the statistical realism and physical
consistency of spacecraft-based estimates. In the following, we therefore take a
broader view by examining both moon- and spacecraft-derived quantities together.
This is essential to eventually maximise the information on the satellites’ interiors
which can be extracted from the moons’ dynamics.

Starting with gravity-derived insights, JUICE and Europa Clipper solutions will
confirm whether the three icy Galilean satellites are in hydrostatic equilibrium.
Improved estimates of the moons’ degree two gravity field coefficients, together with
their rotational state, will help refine our current knowledge of their moments of
inertia (see Section 2.1.2 and 2.2.1), providing constraints on their internal structure
(Cappuccio et al., 2022). JUICE’s orbital phase makes the radio science investigation
at Ganymede a special case, as measurements acquired during the GCO will bring
remarkably detailed insights into the moon’s interior. Simulations indeed predict
that Ganymede’s gravity field could be estimated up to degree and order 30 to 50,
depending on the adopted interior model (Cappuccio et al., 2020a; De Marchi et al.,
2021). Low-degree coefficients will, as for the other moons, constrain Ganymede’s
internal structure. The higher degree part of the gravity field spectrum, on the other
hand, can be compared with the moon’s detailed shape model to extract crucial
information about Ganymede’s ice shell’s thickness, degree of isostatic compensation,
and density distribution (e.g., De Marchi et al., 2021). Although gravity constraints
will mostly come from the spacecraft’s orbit(s), the estimation of the moons’ states
and gravity fields should still be done concurrently, as they both influence each
other (Section 2.1.1). It is nonetheless interesting to note that results in Chapter 4
showed very limited degradation in gravity field reconstruction when estimating the
moons’ states in an arc-wise manner instead of a coupled approach.

As described in Section 2.3.4, the moon tides signature in its own orbit depends
on the ratio k2/Q (Eqs. 2.68–2.72). Obtaining separate and reliable estimates
for k2’s real and imaginary parts thus requires extracting the former from the
spacecraft’s dynamics. Once combined with dissipation estimates derived from the
moon’s ephemeris, powerful constraints can be placed on the moons’ visco-elastic
properties. The estimate of Callisto’s k2

2 from JUICE flybys should for instance be
accurate enough to confirm the presence of an internal ocean (Cappuccio et al.,
2022). Thanks to JUICE’s GCO, we will moreover be able to determine Ganymede’s
k2 at various forcing frequencies, providing tight constraints on its ocean layer’s
thickness (De Marchi et al., 2022). Furthermore, a recent model developed by
Rovira-Navarro et al. (2023) expands the existing Love number formalism to account
for lateral heterogeneities in the moon’s interior, expected to arise from icy shell
variations. The determination of Ganymede’s k2 should be accurate enough to
distinguish between the respective contribution of radial and lateral heterogenities
to the moon’s tidal response, providing unique constraints onto possible icy shell
variations. Promisingly, Ganymede’s k2 will still have an effect, albeit small, on
its own dynamics. Although this signature can be very effectively absorbed in

2Here and the following, k2 will by default refer to the real part of the Love number.
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other parameters, the exceptionally accurate radio science constraints from JUICE’s
GCO will complicate such absorption. The consistent modelling of tides in the
ephemerides solution could therefore be used to validate the refined spacecraft-based
k2 estimates mentioned above.

In addition to constraining the subsurface ocean’s depth (achievable for Ganymede
from its k2 frequency spectrum, as discussed above), determining the thickness of
the moons’ outer icy shells is another key to characterising their hydrospheres. While
this cannot be achieved with k2 only, combining the Love numbers k2 and h2 can
yield a less ambiguous estimate (Wahr et al., 2006; Cappuccio et al., 2020a; Mazarico
et al., 2023). The ice shell’s thickness can also be extracted from the moons’
librations, offering a great opportunity to validate our results (Van Hoolst et al.,
2024). As demonstrated in Section 2.3.4, the effect of the moon’s main once-per-orbit
libration on its own orbit is indistinguishable from that of the dissipation induced
by moon tides (see Eqs. 2.118–2.119). The librations are therefore extracted from
the spacecraft’s dynamics, which sense the librational response of the moon’s entire
interior via the time-varying orientation of its static gravity field (Eq. 2.120).
Nonetheless, this does not reduce the importance of proceeding to a concurrent
estimation of the spacecraft and moons’ dynamics, tidal dissipation, and librations,
which is twofold. First, the constraints on librations originating from the spacecraft’s
orbit are crucial to obtain a reliable and robust estimate of tidal dissipation from
the moon’s orbital solution (Section 2.4.2). Second, the sensitivity of the latter to
rotational parameters offers a powerful means of validation for the spacecraft-derived
libration estimate.

In addition to the ice shell thickness, further insights could be gained from the
detailed characterisation of Ganymede’s librations enabled by GCO radio science.
The respective contribution of the outer icy shell and deep interior to the
librational response sensed by gravity field measurements will indeed depend on
the degree of the spherical harmonics coefficient under consideration3. Using an
expanded parametrisation accounting for the (partially) decoupled librations of the
moon’s different layers could therefore allow us to discriminate between librational
contributions from different parts of Ganymede’s interior. This disentanglement
could moreover be facilitated by measurements from other instruments (e.g.,
imaging, altimetry, radar), sensitive to the librations of the satellite’s outer icy shell.
Eventually isolating the librational response of the icy shell, which depends on the
shell’s rigidity and thickness (Van Hoolst et al., 2013), could help us constrain both
of these quantities. The comparison of the full body and icy shell’s librations will
also bring insights into the level of decoupling between the shell and the moon’s
deep interior. Such a detailed model for the moon’s librations might, however, come
at the risk of over-parametrising the inversion problem. This again highlights the
need for a unified, full consistent dynamical model concurrently integrating both
the rotational and translational dynamics. Such a coupled modelling approach -
whose importance for moons’ ephemerides specifically was strongly underlined in

3By construction of the spherical harmonics expansion of the gravity field, the coefficients C̄nm and
S̄nm depend less on the density distribution of the moon’s deep interior and, inversely, more on
that of its outer layers, as the order n increases (see Section 2.1.2).
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this dissertation (Chapters 2, 4, and 9) - would therefore also benefit estimated
quantities primarily extracted from the spacecraft’s dynamics.

As described above, the detailed characterisation of a moon’s rotation and tidal
response (using synergistic constraints from both spacecraft and moons’ dynamics)
can help us determine the thicknesses of its icy shell and underlying ocean layer.
This is foreseen to be at least achievable for Ganymede (e.g., Van Hoolst et al.,
2024). Interestingly, constraints on Ganymede’s icy shell thickness and ocean depth
can also be inferred from a joint inversion of JUICE’s gravity and magnetic field
measurements (Petricca et al., 2023). Such a synergistic approach proved successful
in overcoming the individual limitations and ambiguities of the inversion solutions
typically obtained separately from gravity and magnetic field data. Comparing the
results of such a global inversion with the insights derived from the moon’s rotation
and tidal deformation offers invaluable cross-validation opportunities.

10.1.3. FUTURE EXPLORATION

While the JUICE and Europa Clipper missions will revolutionise our knowledge and
understanding of the Galilean satellites, both for each moon independently and for
the entire system as a whole, they are but one step in our continued exploration of
this fascinating system.

A key future mission target is the still enigmatic volcanic world Io, currently
under-explored by space missions because of its extremely hostile radiation
environment. As highlighted on numerous occasions in this work, a better
characterisation of Io’s present state is critical to complete the very accurate picture
of Europa, Ganymede, and Callisto that will be available in the post-JUICE and
Europa Clipper era. Io is moreover an extremely interesting object in its own right,
offering the perfect opportunity to further our understanding of tidal heating and
heat transport in planetary interiors (Keane et al., 2021a,b, 2022; Steinke, 2021). The
Io Volcanic Explorer (IVO) mission proposed as part of NASA’s Discovery Program
was precisely designed to fill this knowledge gap, with multiple low altitude flybys
(below 100 km) planned around Io (e.g., McEwen et al., 2023). This mission’s core
objectives include a deeper understanding of Io’s extreme volcanism, via a better
characterisation of the moon’s present thermal state and heat , combined with
detailed investigation of Io’s interior via magnetic field measurements and refined
characterisation of the moon’s Love number k2 and librations. It may allow Io’s k2/Q
to be determined directly, disentangling it from Jupiter’s k2/Q and increasing the
robustness of the ephemerides solution. However, due to the proximity to Jupiter,
the tidal-orbital-rotational modelling consistency will be even more important. In
addition to IVO, various Io-focussed New Frontiers mission concepts were proposed
(McEwen et al., 2023). While the decadal strategy survey gave preference to other
moon systems for New Frontiers missions (see Section 10.2), it nonetheless reiterated
the critical importance of Io’s exploration (Decadal strategy survey, 2022).

Furthermore, future steps in icy worlds exploration look beyond remote-sensing
techniques to envision in-situ measurements. A lander mission on Europa is
considered as a promising follow-up to the Europa Clipper mission (e.g., Hendrix
et al., 2019; Blanc et al., 2021; Phillips et al., 2021; Hand et al., 2022). Together with
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the tiny Saturnian moon Enceladus (also a core future mission target, see Section
10.2.2), Europa appears to be an active ocean world: the interactions between
its internal ocean and icy surface, as well as with its rocky seafloor (Běhounková
et al., 2021), are indeed critical for ocean chemistry. Combined with the detailed
orbit-based characterisation of this moon that will be available after completion of
the Europa Clipper mission, this designates Europa as a prime candidate for a lander
mission. Such a mission indeed represents the next step in investigating Europa’s
habitability, through a refined characterisation of the moon’s surface, icy shell, and
internal ocean. In particular, radio science tracking of a Europan lander would
allow us to precisely determine the rotation and deformation of the moon’s icy
shell under the effects of tides, while in-situ measurements would bring invaluable
constraints on the thermal state of the moon’s icy shell (e.g., Blanc et al., 2021; Hand
et al., 2022). Lander-based tracking measurements would moreover greatly benefit
the ephemerides solution. Critically, such a mission would build on the JUICE and
Europa Clipper scientific heritage, but also directly benefit from ensuing advances in
modelling and estimation methodology (see Chapter 9).

10.2. CODA: APPLICATION TO OTHER PLANETARY SYSTEMS
The above discussion summarised the main scientific implications of the
methodologies developed in this dissertation, for our investigation of the Galilean
moons specifically. However, the application of this work is not limited to our
upcoming investigation of these four satellites. We will thus now take on a more
top-level tour spanning from the Martian to the Neptunian moon systems. We
will discuss the science case for refined ephemerides of their natural satellites, as
key scientific questions pertain to our knowledge of the moons’ present and past
dynamics. The methodologies and findings presented in this dissertation, equally
applicable to other systems, will therefore also directly contribute to achieving these
science objectives. With the moons of our Solar System as key mission targets, future
exploration perspectives will moreover rely on similar mission configurations and/or
resulting data products as JUICE and Europa Clipper. The insights and advances
achieved in the specific context of the preparation for these two missions are thus of
great relevance for upcoming exploration steps, beyond the frontiers of the Jovian
system.

10.2.1. THE MARTIAN SYSTEM

Our neighbour planet Mars is the only other terrestrial planet in our Solar System to
also possess natural satellites, Phobos and Deimos. Despite its proximity to Earth
and the various missions that explored the Martian system, much is left to learn
about these unique and fascinating moons. In particular, our current knowledge
of their interiors and orbits could not yet yield firm conclusions regarding these
satellites’ origin and evolution. Three different scenarios - capture, disk accretion
and post-impact accretion - are still disputed, implying widely different histories
for the Martian system (e.g., Burns, 1978; Rosenblatt, 2011; Rosenblatt et al., 2016;
Bagheri et al., 2021; Miranda et al., 2023). As in the Galilean system case, a better
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understanding of the Martian moons’ formation and evolution would moreover bring
further insights into planetary evolution processes in general.

A much refined dynamical solution for the Martian satellites would greatly help
discriminating between these different evolution scenarios. Tighter constraints on
Phobos and Deimos’ still poorly characterised interiors (Le Maistre et al., 2019; Yang
et al., 2020) would also provide invaluable insights, and are therefore key objectives
for future Martian moons-dedicated missions. In particular, a better determination
of these moons’ orbits, gravity fields, rotations, and tidal responses would provide
us with a natural way to refine our knowledge of Phobos and Deimos’ current
internal structure and properties (e.g., Le Maistre et al., 2019). As will be discussed
below, this is achievable through direct tracking of future orbiters and/or landers,
but also requires an improved reconstruction of the dynamics of the Martian moons
themselves. Phobos’ ephemeris error was indeed identified as an important limiting
factor to the proper interpretation of the MEX flybys radio science (Yang et al., 2020).

The long-lasting interest in the Martian moons and plethora of remaining open
questions regarding their origin and history inspired many attempted and/or
proposed mission concepts in the past (e.g., Marov et al., 2004; Oberst et al., 2012;
Murchie et al., 2014; Oberst et al., 2018). This includes the upcoming Martian
Moons eXploration (MMX) JAXA-led mission, expected to be launched in 2026 and
the first one to ever enter orbit around Phobos (Ogohara et al., 2022). Radio
science simulations for MMX promisingly indicate that Phobos’ degree and order 2
coefficients could be recovered with very good accuracy (0.1% of the value assumed
in Yamamoto et al., 2023), bringing valuable constraints on the moon’s moments
of inertia (Eqs. 2.19 and 2.20). Beyond the MMX mission horizon, one of the
most promising next steps in the exploration of the Martian moons (and of Phobos
in particular) would rely on a lander to perform in-situ measurements. Tracking
measurements from such a landing segment, as opposed to an orbiter, would be
directly sensitive to Phobos’ rotation and deformation, bringing invaluable insights
into the moon’s ephemeris and interior (Le Maistre et al., 2013; Dirkx et al., 2014).

The dynamical configuration of the Martian moon system is however particularly
complex, as the close proximity of Phobos’ orbit with Mars induces a strong coupling
of Phobos’ translational and rotational dynamics. Phobos’ dynamics are indeed
affected by its mutual gravitational interaction with Mars, which is in turn sensitive
to the moon’s rotation (Borderies and Yoder, 1990). This coupling between Phobos’
orbit and rotation (including its librations, Rambaux et al., 2012), combined with
the significant tidal torques exerted on Phobos’ elongated shape, imposes a strict
requirement on the consistency of our dynamical model(s) (Chapter 2), as also
required for upcoming JUICE and Europa Clipper real data analyses (see Section
9.1.2). More precisely, in light of novel architectures and tracking techniques expected
for future missions, the Martian moons’ rotation and translational dynamics cannot
be handled separately (Dirkx et al., 2014), and should be concurrently integrated in
a unified, coupled model (Martinez and Dirkx, 2024). While modelling advances
in preparation for JUICE and Europa Clipper will therefore directly benefit Martian
system analyses, the synergy will actually be mutual. Phobos indeed offers the
perfect test case for the development of refined, fully coherent dynamical models:
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the modelling of its tidal and rotational response is significantly simpler than for an
icy layered satellite (see Section 10.1.2) and its resonance-free orbit environment is a
lot easier to model than the Galilean system.

In addition to these modelling aspects, improving the reconstruction of the
Martian moons’ dynamics also shares many of the state estimation and data merging
challenges identified in the Galilean system case. Current estimation solutions for
Phobos and Deimos’ orbits and physical parameters indeed rely on diverse data sets,
including long-term and space astrometry (Lainey et al., 2007, 2021), radio science
from Phobos’ flybys (Rosenblatt et al., 2008; Yang et al., 2019), or both (Jacobson,
2010, 2014). Similarly as what JUICE and Europa Clipper will achieve for the Galilean
moons, accurate radio science tracking measurements of the MMX spacecraft will
moreover radically improve the estimation solution in the coming decade. The state
estimation methodology developed in this dissertation for the JUICE-Europa Clipper
case will therefore be equally suited to the determination of Phobos’ dynamics from
MMX tracking radio science. The potential data merging strategies outlined in
Section 9.1.2 for global inversions of the Galilean moons’ dynamics will furthermore
be (at least partially) applicable to the Martian case as well.

10.2.2. THE SATURNIAN SYSTEM

The Saturnian system is home to at least 82 moons, forming a very diverse set of
icy and rocky worlds which the Voyager 1, 2 and Pioneer 11 missions started to
reveal (Smith et al., 1981, 1982) . Most of our current knowledge of this system,
however, comes from the Cassini mission which spent 13 years studying Saturn
and its satellites before its final dive in the planet’s atmosphere. Saturn possesses
eight major satellites: Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Hyperion,
and Iapetus (by increasing distance to the planet, see Fig. 10.2). These moons
form a unique system dominated by the massive Titan (accounting for 95% of the
system’s total mass), and exhibiting several orbital resonances, specifically a 4:2 MMR
between Mimas and Tethys, a 2:1 MMR between Enceladus and Dione MMR, and a
4:3 MMR between Titan and Hyperion (see Fig. 10.2). The crossing of other MMRs
in the past moreover plays an essential role in explaining the system’s present orbital
configuration (e.g., Iapetus’ eccentric and inclined orbit, Polycarpe et al., 2018),
and the potential formation of sub-surface oceans through past enhancements of
eccentricity, and thus tidal heating (e.g., for Mimas, Lainey et al., 2024).

One of the ground-breaking results from Cassini is the strong and frequency-
dependent dissipation occurring inside Saturn, estimated from the Saturnian moons’
orbits (Lainey et al., 2012, 2017, 2020, see Section 1.1). Evidence for such
a frequency-dependency was separately obtained from astrometry (ground- and
space-based) and Cassini radio science, and predicts a fast outward orbital migration
for the major Saturnian moons. In addition to suggesting a resonant locking
mechanism at play in the Saturnian system (Fuller et al., 2016; Lainey et al.,
2020)4, these rapid migration rates, and that of Titan in particular, suggest different

4The rapid migrations of the Saturnian moons could also be reconciled with the energy dissipation
model in Saturn’s convective envelopes proposed in Terquem (2023), except for Titan and Rhea.
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evolution scenarios for the Saturnian system (see detailed discussion in Section 1.1).
Despite a good agreement for all the other moons, an independent study however
reported an order of magnitude weaker dissipation for Saturn at Titan’s frequency,
based on a combined analysis of astrometry and Cassini radio science (Jacobson,
2022). This discrepancy has not yet been explained, and its origin remains difficult
to identify given the complexity of the global inversion and the stability issues of the
Cassini radio science solution, at present mostly ascribed to dynamical mismodelling
(Durante et al., 2019; Zannoni et al., 2020; Jacobson, 2022). Combined with the
present inconsistency between estimates of Saturn’s dissipation at Titan’s frequency,
this calls for a re-analysis of Cassini data, for which the methodologies outlined in
this dissertation would be ideally suited.

The complementarities between the state estimation strategies developed for
future Galilean system missions (including the work initiated in this dissertation) and
those needed to re-analyse Cassini data set(s) are bilateral. Both require combined
aspects of data merging, global inversions, and dynamical modelling (see Chapter
2). Advances in any of the above in preparation for the JUICE and Europa Clipper
missions will directly benefit the re-analysis of Cassini data for natural satellites’
dynamics applications. On the other hand, the data set available for the Saturnian
system - a diverse mix of astrometry (ground- and space-based) and radio science
from multiple flybys at different moons - represents the best opportunity to apply
and refine the global inversion methodologies developed for the Galilean moons’
ephemerides.

Looking beyond the legacy of the Cassini mission, the Saturnian system is
moreover still a very high priority for future missions, ever since Cassini brought
evidence of the presence of sub-surface oceans on some of its icy moons, together

Figure 10.2.: Saturn’s major satellites (excluding the outermost Iapetus) with 1:Mimas,
2:Enceladus, 3:Tethys, 4:Dione, 5:Rhea, 6:Titan, 7:Hyperion, including
the Mimas-Tethys, Enceladus-Dione, Titan:Hyperion MMRs. The moons’
sizes are not to scale, but their orbits are.
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with hydrocarbon surface oceans on Titan. Enceladus and Titan are particularly
interesting targets (Hendrix et al., 2019). The latter is a large, organics-rich moon,
with a dense atmosphere and a unique methane cycle, possibly harbouring an
internal ocean (Iess et al., 2012; Durante et al., 2019), thus showing great promises
for habitability perspectives. Our interest in Mimas has also lately been renewed,
as the rotation of this tiny moon indicates the surprising presence of a young
sub-surface ocean (Tajeddine et al., 2014; Rhoden and Walker, 2022; Lainey et al.,
2024). Nevertheless, the tiny ocean satellite Enceladus (Iess et al., 2014b; McKinnon,
2015; Thomas et al., 2016) remains the most fascinating of Saturn’s moons. The
detection of plumes (Porco et al., 2006), combined with the moon’s mix of young
and old surface features, makes Enceladus the most (tidally) active ocean world in
the Solar System, but also the one offering the easiest access to its internal ocean,
opening exciting exploration opportunities.

Most of our open questions about Enceladus are related to our limited
understanding of tidal dissipation in the Saturnian system, which improved
ephemerides can help furthering. In particular, solving Enceladus’ heat budget
enigma requires determining how much dissipation the moon experiences (Nimmo
et al., 2018, 2023) and where dissipation occurs in its interior, which is still much
disputed (Roberts and Nimmo, 2008; Chen and Nimmo, 2011; Beuthe, 2016; Choblet
et al., 2017; Beuthe, 2019; Hay and Matsuyama, 2019; Rovira-Navarro et al., 2019;
Souček et al., 2019; Rovira-Navarro et al., 2022). Determining the above is a key
scientific objective of future Enceladus missions (see discussion below), and involves
similar characterisation strategies as those presented in this dissertation for the
JUICE-Europa Clipper case (see overview in Section 10.1).

Our limited knowledge of the tidal dissipation mechanisms at play in the
Saturnian system also has implications for our understanding of the moons’ origin
and evolution. Presently, different formation scenarios co-exist for Saturn’s mid-
sized moons (mostly divided between circumplanetary disk and ring formations),
predicting different moon ages and thermal-orbital evolutionary histories (e.g.,
Charnoz et al., 2011; Ćuk et al., 2016; Hyodo et al., 2017; Salmon and Canup, 2017). A
better characterisation of Saturn’s dissipation spectrum, aided by the methodologies
developed in this dissertation, is key to discriminating between these different
scenarios (e.g., Castillo-Rogez et al., 2018). Existing thermal-orbital evolution studies
(e.g., Neveu and Rhoden, 2019) should moreover be revisited in light of our refined
estimates of tidal dissipation in the system (Lainey et al., 2020).

In light of the strong science case exposed above, various mission concepts have
been proposed for further explorations of the Saturnian moons (Barnes et al., 2021;
Choblet et al., 2021; Mitri et al., 2021; Sulaiman et al., 2021; Mousis et al., 2022;
Rodriguez et al., 2022). In particular, a strong case can be made for a single or dual
orbiter around Enceladus (e.g., Ermakov et al., 2021; Marusiak et al., 2021), leveraging
similar measurement and synergistic estimation strategies as JUICE and Europa
Clipper for the Galilean system (see Section 10.1). In particular, the Enceladus
mission concept investigated in Genova et al. (2024) shows strong similarities with
the orbital phase of the JUICE mission. It could allow the estimation of the
moon’s gravity field up to degree 30, along with the determination of its k2 and
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tidal dissipation. The dynamical model requirements, both in terms of accuracy
and consistency, will also be similar to JUICE’s. This again shows that modelling
and state estimation advances achieved in the JUICE-Europa Clipper context will be
directly transposable to future Saturnian system missions.

10.2.3. THE URANIAN SYSTEM

Succeeding to a decade of outer Solar System exploration strongly focussed on
the Galilean satellites, the Uranian moon system is now at the centre of future
mission plans. The decadal strategy survey outlining NASA’s exploration program
for the coming 2023-2032 period ranked the Uranus Orbit and Probe (UOP) mission
highest among six flagship mission candidates (Decadal strategy survey, 2022). On
the European side, the moons of the giant planets of the Solar System - including
those of the icy giants Uranus and Neptune (see Section 10.2.4 for the latter) - were
selected as one of three exploration themes for ESA’s Voyage 2050 plan.

Improving the ephemerides of Uranus’ five main satellites and precisely quantifying
their accuracy (e.g., Lainey, 2008) is essential in preparation for a potential upcoming
mission. The benefit of a pre-mission ephemerides improvement is twofold.
It will first directly facilitate the mission’s orbital design, but might also bring
additional insights into the Uranian moons’ dynamics, possibly helping us refine
current evolution scenarios and related mission scientific objectives (see discussion
below). The present ephemerides for Uranus’ satellites primarily rely on classical
astrometry and mutual events (Arlot et al., 2006a), but also include images from
Voyager 2 (Lainey, 2008; Emelyanov and Nikonchuk, 2013) and HST (Jacobson, 2014).
Nonetheless, the accuracy of these ephemerides remains limited to a few hundreds
of kilometres (Lainey, 2008; Jacobson, 2014). To improve the current solutions,
mutual approximations are a promising substitute to mutual events, which only
occur every 42 years in the distant Uranian system. Mutual approximations between
the major Uranian moons have already been successfully observed (Santos-Filho
et al., 2019), with an accuracy far exceeding that of classical astrometry.

Many of the proposed mission concepts place Uranus’ five major satellites
Miranda, Ariel, Umbriel, Titania, and Oberon (see Fig. 10.3) at the core of their

Figure 10.3.: Uranus’ major satellites: Miranda, Arial Umbriel, Titania, and Oberon
(in increasing distance from Uranus). Courtesy for the moons’ images:
NASA.
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scientific objectives (Fletcher et al., 2020; Cartwright et al., 2021; Leonard et al.,
2021). These objectives actually gravitate around these two main foci: 1) the
exploration of the Uranian moons as ocean worlds whose interior, origin, and
evolution are yet poorly constrained (Hendrix et al., 2019; Fletcher et al., 2020), 2)
the use of Uranus’ primordial satellite system as a laboratory for studying long-term
evolution processes (Fletcher et al., 2020; Cartwright et al., 2021; Leonard et al.,
2021; Castillo-Rogez et al., 2023). Both investigation avenues pertain to a refined
understanding of the system’s past and present orbital configuration, including an
improved characterisation of tidal dissipation. These objectives are extremely similar
to those of the JUICE and Europa Clipper missions, and will leverage analogous
merging strategies of historical data sets and upcoming radio science from future
missions. In the following, we examine more precisely open research questions
related to the evolution of the Uranian moons’ orbits and interiors, in light of the
methodology advances outlined in this dissertation for the Galilean moons case.

Potential internal oceans, if they survived until present-day, most likely subsist in
the form of residual, shallow oceans. Both Hussmann et al. (2006) and Bierson
and Nimmo (2022) nevertheless showed that the thermal-orbital evolution of the
two outermost major moons Titania and Oberon might be consistent with the
subsistence of sub-surface oceans of liquid water. A better determination of the past
and present orbital migration rate of these satellites from their ephemerides (Eqs.
2.68–2.72) would be - just as for the Galilean system - a powerful means to refine our
knowledge of these moons’ dissipation history, and shed new light on the evolution
and stability of their subsurface oceans. Following the approach investigated in this
dissertation, this will be facilitated by similarly exploiting the strengths and synergies
of the various data sets available, namely combining ground astrometry and radio
science from a future spacecraft.

At present, the orbital history of the Uranian moons remains poorly constrained.
This partially follows from our poor knowledge of Uranus’ dissipation, possibly both
frequency- and time-dependent (Nimmo, 2023), which drives the orbital migration of
these satellites and thus the crossing of past MMRs. These are crucial to explain both
the present orbital configuration of the system, including Miranda’s high inclination
(∼4 deg), and evidence of past intense tidal heating episodes on Miranda and
Ariel’s surfaces (e.g., Beddingfield et al., 2015; Peterson et al., 2015). However, the
resonance overlap between the significant moon-moon interactions and the effects
of the central planet’s oblateness complicate the picture (e.g., Dermott et al., 1988):
past capture(s) in MMR, secular and/or spin-orbit resonances may have induced
chaotic motion (Laskar and Jacobson, 1987; Dermott et al., 1988). Despite many
attempts to reconcile the present thermal and orbital constraints with various past
resonances (e.g., Tittemore and Wisdom, 1989, 1990; Ćuk et al., 2020; Gomes and
Correia, 2023), obtaining a consistent solution for all major Uranian satellites proved
extremely challenging.

Most of these past dynamical analyses - both analytical and numerical - relied on
a classical constant Q assumption for Uranus’ dissipation. However, a recent study
demonstrated that a low tidal quality factor in Uranus’ recent past could explain
the satellites’ high surface heat flux (Nimmo, 2023). Such a strong dissipation
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could still be in agreement with an ancient formation of the Uranian moons if we
assume a time-dependent Q, as suggested by the resonance locking mechanism
(Fuller et al., 2016). Discriminating between the different orbital evolution scenarios
presented above, while critical to our understanding of the system’s thermal-orbital
evolution, is nevertheless extremely difficult to achieve from dynamical simulations
only. In particular, the determination of a variable Q would directly benefit from
the combination of old astrometry and in-situ measurements from a dedicated
mission (e.g., Filice et al., 2024). The methodologies developed in this dissertation
to reconstruct accurate ephemerides and extract reliable dissipation estimates from
various data sets are therefore particularly valuable in the perspective of a future
mission to Uranus’ moons.

It must be noted that the fast orbital migration of a former, now disrupted satellite
driven by a strong dissipation in the past has moreover been recently suggested as
a possible explanation for Uranus’ tilting (Saillenfest et al., 2022). This offers an
alternative to existing scenarios relying either on a slow tilting process of the planet’s
axis (Boué and Laskar, 2010) or, more commonly, on collisional event(s) (Morbidelli
et al., 2012). Characterising dissipation in Uranus - which this dissertation will
facilitate - therefore also holds the key to the origin of the planet’s tilted axis.

While the above discussion focussed on Uranus’ five major moons, the Uranian
system also hosts nine irregular satellites (i.e., small satellites far away from the
central planet on highly eccentric orbits). These are extremely faint objects and
thus very difficult to observe. The lack of observations, combined with their
highly perturbed dynamics, make the dynamics of the irregular satellites particularly
difficult to constrain (e.g., Jacobson et al., 2012; Brozović and Jacobson, 2022). While
challenging to achieve, an improved ephemerides solution for these moons, which
are likely to be captured objects, would nonetheless be invaluable to shed light on
their dynamical history.

10.2.4. THE NEPTUNIAN SYSTEM

Comparing the satellites of the Solar System’s two icy giants, the Neptunian moon
system is wildly different from its Uranian counterpart. While the latter is supposed
to be primordial, the history and current state of the Neptunian system has been
re-shaped by the capture of its largest satellite, Triton, a former Kuiper Belt Object
(KBO). Triton’s retrograde, yet almost circular, orbit indeed advocates against an
in-situ formation. It can be better reconciled with the capture of a transneptunian
object (McKinnon, 1984; Goldreich et al., 1989), possibly a binary as suggested in
Agnor and Hamilton (2006). The capture would be followed by the tidal-driven
circularisation of Triton’s initially highly eccentric orbit (McCord, 1966; McKinnon,
1984; Goldreich et al., 1989; Correia, 2009), yielding strong internal dissipation and
intense tidal heating (e.g., McKinnon, 1984; Ross and Schubert, 1990; Correia, 2009).
The uniqueness of Triton’s orbital history reinforces the scientific implications of an
improved dynamical solution for this moon, and for the entire Neptunian system.

Our interest in Triton - the unique Solar System representative of a new class
of moons comparable to dwarf planets of the trans-Neptunian region - is indeed
deeply linked to its thermal-orbital history, primarily accessible to us via a refined
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determination of its ephemeris. First identified as a potential ocean world in
Hussmann et al. (2006), the intense heating Triton experienced in the past due
to eccentricity tides strengthens the likelihood of this moon retaining a liquid
subsurface ocean until present-day. The discovery by Voyager 2 of plumes emerging
from Triton’s Southern polar cap (Soderblom et al., 1990), combined with the moon’s
extremely young surface and puzzling geological features, further contributed to
raising interest in this singular satellite. Triton’s is indeed the youngest icy surface
in the Solar System, being evaluated to be at most 100 Myr, but probably much
closer to 10 Myr (Schenk and Zahnle, 2007). Reconciling this estimate with Triton’s
thermal-orbital history is however difficult.

Triton’s surface features, witnesses of a recent heating process, first appear rather
inconsistent with its postulated dynamical evolution given the short eccentricity
damping timescales (1 Gyr, Correia 2009; Nogueira et al. 2011). Nonetheless, Triton is
the most likely natural satellite in the Solar System to currently experience significant
ocean tidal dissipation, due to its very low eccentricity and highly inclined orbit
(Chen et al., 2014; Nimmo and Spencer, 2015). The moon’s high inclination (Fig.
10.4) could indeed be consistent with a rather large obliquity (0.7 deg, Chen et al.
2014; Nimmo and Spencer 2015), and the resulting tidal dissipation in Triton’s ocean
could account for its recent resurfacing. Distinguishing between the dissipation
occurring in different layers of the moon’s interior is however challenging, as
discussed in Section 10.1.2 for the Galilean moons case. It would require combined
measurements of the dynamics of both Triton and an in-situ spacecraft, and be
difficult to achieve with a flyby mission only. The detectability of ocean tides from

Figure 10.4.: Neptune and its moons (labelled) observed by the James Webb Space
Telescope. The high inclination of Triton with respect to the rest of
Neptune’s moon system can be clearly observed. Courtesy: NASA, ESA,
CSA, STScI.
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an orbiting spacecraft furthermore remains to be investigated.

In addition to Triton, seven regular satellites are found inside Triton’s orbit (Smith
et al., 1989; Showalter et al., 2019). Interestingly, these satellites might not be
primordial, but could have formed after Triton’s capture. The circularisation of
Triton’s orbit is likely to have severely perturbed the orbits of Neptune’s primordial
regular satellites, possibly leading to their destruction through collisions and/or
disruptions (e.g., Banfield and Murray, 1992; Rufu and Canup, 2017). Similarly,
different explanations co-exist for the presence of the remaining six outer, irregular
Neptunian satellites, found on highly eccentric and distant orbits (Holman et al.,
2004): they were either captured after the circularisation of Triton’s orbit (Nogueira
et al., 2011) or leftovers of the chaotic, system-wide perturbations caused by Triton’s
capture (e.g., for Nereid, Goldreich et al., 1989; Rufu and Canup, 2017).

As just underlined, the origin and history of Neptune’s satellites is still poorly
understood, and a more accurate ephemerides solution would greatly help
discriminate between different evolution scenarios. In particular, tighter constraints
on the system’s present-day dynamics are essential to investigate possible past
orbital resonances, which are in turn critical to explain the system’s present orbital
configuration (e.g., Zhang and Hamilton, 2007, 2008; Brozović et al., 2020b). The
dynamical history of the Neptunian moon system, and of past orbital resonances in
particular, is moreover deeply linked to that of Neptune’s ring arcs. Being able to
exclude or confirm the previous crossing or capture in specific resonances via an
improved solution of the moons’ current orbits would thus also shed some light on
the origin of such rings (e.g., Goldreich et al., 1989; De Pater et al., 2018), or on the
possible formation of natural satellites from these rings (Crida and Charnoz, 2012).

The various singularities mentioned above make the Neptunian system, and more
specifically its largest satellite, a fascinating mission target (e.g., Hendrix et al., 2019;
Fletcher et al., 2020; Frazier et al., 2020; Hansen et al., 2021; Rymer et al., 2021). In
particular, the opportunity to indirectly investigate icy dwarf planets formed in the
Kuiper belt by studying Triton is especially appealing (e.g., Masters et al., 2014). Key
scientific objectives of these proposed missions include a further characterisation
of this moon, both as a captured KBO and candidate ocean world, as well a
refined understanding of the system’s thermal-orbital evolution and of interactions
between Neptune’s small inner satellites and the ring arcs. As highlighted in the
above discussion, these open questions are deeply linked to our presently limited
knowledge of the past and present dynamical state of the Neptunian moon system.

In this perspective, measurements to be collected by future missions will be
invaluable to refine the ephemerides of the Neptunian satellites, currently based on
Earth-based, Hubble Space Telescope, and Voyager 2 observations (Jacobson, 2009;
Brozović et al., 2020b), with an accuracy ranging from several tens to hundreds
of kilometres. The absence of tighter constraints on the moons’ current orbits is
precisely what prevents us from drawing firmer conclusions on their origin and
history. Bringing the ephemerides accuracy to the kilometre level or below, which
should be achievable with a dedicated mission, would translate into much refined
initial conditions for critically-needed long-term dynamical simulations. Again,
the methodologies developed in this dissertation for the Galilean system will help
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capitalising on the availability of both old astrometric observations and highly
accurate radio science data to attain the best possible solution.

Expected challenges in the reconstruction of accurate ephemerides for Neptunian
satellites will be of different nature than those faced in the Jovian system. While
the Galilean moons’ comparable masses cause significant moon-moon interactions,
the dynamics of the Neptunian satellites will be, in this respect, much simpler to
reconstruct. Additional difficulties will however arise from the very chaotic orbital
history of this moon system, the highly perturbed orbits of Neptune’s irregular
satellites, and the much more limited available set of ground observations. Although
the underlying causes will differ, similar inversion instabilities as those highlighted in
this dissertation for the Galilean system are thus also likely to affect the ephemerides
determination of the Neptunian moons. Possible mitigation strategies to stabilise
the inversion developed in the JUICE-Europa Clippper context might therefore be
relevant for future investigations of the Neptunian system’s dynamics.

10.3. A NEW ERA FOR MOONS’ EPHEMERIDES AND THEIR

IMPLICATIONS
Our fascination for the icy moons of giant planets has only grown stronger and
stronger since the discovery of their internal liquid water oceans, starting with
Galileo’s findings in the Galilean system. The coming decade will initiate a new
exploration phase of these ocean worlds, with JUICE and Europa Clipper specifically
targeting the Galilean satellites, while other icy satellites, now labelled as prime
mission targets, await for their own dedicated mission (see Section 10.2). Unlike
what was done for previous missions, whose data products could be analysed
separately, this new era, with much more ground- and space-based data available,
will require adopting a different analysis philosophy, relying more heavily on intra-
and inter-mission synergies to maximise the science return.

At the core of our investigation of icy satellites lies the characterisation of their
internal oceans’ long-term stability and potential habitability, which requires a better
understanding of the thermal-orbital history of these moons. This is, however,
an extremely intricate problem, due to the coupling between the evolution of the
moons’ interiors and of their orbits, both driven by and driving tidal dissipation
mechanisms. Exploiting the information contained in various data sets, and the
complementarity of the different missions’ foci and strengths, will thus be essential
in this respect.

This work has clearly demonstrated the need for exploiting such synergies for the
Galilean moons specifically, started to investigate some of them, and highlighted
prioritisation avenues for the remaining candidate data sets. During the long time
between launch and actually receiving JUICE and Europa Clipper’s first data from
the Galilean system, our focus should be on assessing the potential of merging these
different data sets, and exploring new ways to extract information on the moons’
orbits and interiors. Actively preparing ourselves for the data merging and dynamical
modelling challenges that await is essential.

In the Jovian system and beyond, the next generation of ground- and space-based
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measurements, accompanied by parallel advances of our interior and dynamical
models, will push back the current limits of the field. These developments offer
new opportunities to further explore the link between the present state of the
moons’ orbits and interiors, and to better constrain their long-term thermal-orbital
evolution. This will eventually revolutionise our understanding of these fascinating
worlds, paving the way for future, possibly in-situ, exploration.





A
USEFUL CONIC MOTION

EXPRESSIONS

This appendix provides relevant orbital motion and conic expressions used in the
rest of the dissipation (in Chapter 2 and Appendix B specifically). Those are
considered an input to the calculations presented in this work, and we therefore
do not elaborate on the underlying derivations leading to these expressions. The
interested reader is referred to Murray and Dermott (2000) or other astrodynamics
textbooks.

Starting with fundamental conic motion definitions, the distance between a natural
satellite and its central planet can equivalently be obtained as

ri =
a

(
1−e2

)
1+e cosθ

, (A.1)

ri = a (1−e cosE) (A.2)

with a, e, θ, and E respectively referring to the moon’s semi-major axis, eccentricity,
true anomaly, and eccentricity anomaly. Consequently, the partial derivatives of ri

with respect to the true and eccentric anomalies are

dr

dθ
= ae

(
1−e2

)
sinθ

(1+e cosθ)2 , (A.3)

dr

dE
= a (1+e sinE) . (A.4)

The time derivative of ri can moreover be expressed as

ṙi = nae
(
1−e2)− 1

2 sinθ. (A.5)

The time derivative of the true anomaly θ, on the other hand, is

θ̇ = n (1+e cosθ)2(
1−e2

) 3
2

. (A.6)
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As some of the calculations presented in Chapter 2 and Appendix A make use of the
relations between the satellite’s true, eccentric, and mean anomalies, the following
partials are also particularly useful:

d M

dθ
=

(
1−e2

) 3
2

(1+e cosθ)2 , (A.7)

dθ

dE
=

(
1−e2

) 1
2

1−e cosE
. (A.8)

Furthermore, the orbital energy Eorb and angular momentum h are also useful
quantity to define. The former is given by

Eorb =−Gm0mi

2a
, (A.9)

and its time derivative can therefore be expressed as follows:

dEorb

d t
= Gm0mi

2a2

d a

d t
. (A.10)

The angular momentum h, on the other hand, is

h = Gm0mi

na

(
1−e2) 1

2 , (A.11)

leading to the following expression for the time derivative of the eccentricity:

de

d t
= 1−e2

2ae

d a

d t
− na

(
1−e2

) 1
2

Gm0mi e

dh

d t
. (A.12)

If the angular momentum is conserved, the above simplifies into:

de

d t
= 1−e2

2ae

d a

d t
. (A.13)

Finally, the mean motion n and orbital period T are directly related, and defined
as follows:

n =
(

G (m0 +mi )

a3

) 1
2

, (A.14)

T = 2π

n
= 2π

(
a3

G (m0 +mi )

) 1
2

, (A.15)

where m0 and mi designate the masses of the central planet and satellite, respectively.



B
ORBITAL ELEMENTS EVOLUTION:

ADDITIONAL CALCULATIONS

As done in Section 2.3.4, the notations used in this appendix have been simplified for
the sake of conciseness. By default and unless this could be a source of ambiguity,
the absence of subscript and/or superscript refers to satellite-related properties. r
represents the position vector of satellite i with respect to the central planet 0. Since
we focus on satellite tides, ∆t denotes the time lag associated with tides raised by
the planet 0 on satellite i (i.e., ∆t (0)

i ).

B.1. EFFECT OF SATELLITE TIDES ON a FROM GAUSS’
PLANETARY EQUATIONS

In Section 2.3.4, we derive the secular evolution of the satellite’s semi-major axis
caused by satellite tides by quantifying the change in orbital and rotational energy
due to dissipation. In light of the inconsistencies observed in the literature
(specifically for the change in a due to satellite tides), we here take an alternative
derivation route to verify the validity of the analytical results presented in Section
2.3.4. In the following, we use Gauss’ form of the planetary equations to evaluate
the drift in semi-major axis.

RADIAL TIDE CONTRIBUTION

Following the planetary equations, the evolution of the semi-major axis due to the
radial component of the tidal force, Fr , is given by

d a

d t
= 2

n

(
1−e2)−

1
2

)
e sinθ

Fr

mi
. (B.1)

From Eq. 2.73, and replacing r and ṙ by Eq. A.1 and A.5, respectively, the radial tidal
force can be re-written as

Fr =−9Gm2
0k2∆tR5a−7 (

1−e2)− 17
2 ne sinθ (1+e cosθ)8 . (B.2)
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Substituting Eq. B.2 into Eq. B.1 and computing the average semi-major axis
variation rate over one orbital period leads to the following:∣∣∣∣d a

d t

∣∣∣∣
r
=−9n

π

Gm2
0

mi
k2∆tR5a−4 (

1−e2)−9
e2

∫ 2π

0
sinθ (1+e cosθ)8 dθ

d M
dθ, (B.3)

which after using Eq. A.7 and performing the integration gives∣∣∣∣d a

d t

∣∣∣∣
r
=−9

m0

mi
k2∆tR5a−4n2e2 +O(e4). (B.4)

After replacing the tidal time lag ∆t by its definition in Eq. 2.42, we finally find the
same expression as our previous result in Section 2.3.4 (Eq. 2.79):∣∣∣∣d a

d t

∣∣∣∣
r
=−9

m0

mi

k2

Q
∆tR5a−6ne2 +O(e4), (B.5)

thereby further verifying the consistency of our result.

LIBRATIONAL TIDE CONTRIBUTION

The planetary equations define the contribution of the tangential force component,
Ft , to the change in semi-major axis as follows:

d ai

d t
= 2

n

1

r

(
1−e2)− 1

2 (1+e cosθ)
Ft

mi
. (B.6)

Similar to what was done for the radial component, the force defining the librational
tide, initially expressed as Eq. 2.81, can be expanded into

Ft = 3Gm2
0k2∆R5a−7 (

1−e2)−7
n

[(
1+αe2)− (

1−e2)− 3
2 (1+e cosθ)2

]
(1+e cosθ)7 ,

(B.7)

where the above is obtained by substituting r and θ̇ by Eq. A.1 and A.6, respectively.
The satellite’s rotational rate is again expressed as a function of the factor α (Eq.
2.87). Using B.7 in Eq. B.6 and averaging the change in semi-major axis over one
orbital period yields∣∣∣∣d a

d t

∣∣∣∣
t
= 3

π
G

m2
0

mi
k2∆tR5a−7 (

1−e2)− 15
2

·
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2

∫ 2π
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(1+e cosθ)8 dθ

d M
d M

]
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(B.8)

Substituting Eq. A.7 in the above and performing the integration gives∣∣∣∣d a

d t

∣∣∣∣
t
= 3

m0

mi
k2∆tR5a−4n2

[(
1+αe2)(2+15e2)−(

1+ 3

2
e2

)(
2+28e2)]+O(e4). (B.9)
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After some simplfications and replacing the tidal time lag ∆t by Eq. 2.42, we finally
arrive at the same analytical expression as the one obtained in Section 2.3.4 (Eq.
2.89): ∣∣∣∣d a

d t

∣∣∣∣
t
=−6

m0

mi

k2

Q
R5a−4ne2 (8−α)+O(e4). (B.10)

B.2. PHYSICAL LIBRATION
For the sake of clarity, we recall the modified formulation for the tidal force
accounting for the once-per-orbit physical libration, γ, (Eq. 2.116):

F (i )
i =−3Gm2

0k i
2R5

i

r 7
i

((
1+3∆t (0)

i

r̂i · ṙi

ri

)
r̂i −∆t (i )

i

(
1+ A

2e

)(
ni − θ̇i

))
. (B.11)

The physical libration’s contribution to the orbital energy dissipation caused by
librational tides can thus directly be obtained from the case with no physical
libration (Eq. 2.85)1:

(∆Eorb)t ,γ =−24πGm2k2∆tR5na−6A e. (B.12)

The total amount of rotational energy dissipated by librational tides in the presence
of the physical libration can furthermore be calculated as

(∆Erot)t =−
∫ 2π

0
ωr Ft

dθ

θ̇
(B.13)

=−3Gk2∆tm2
0R5

(
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)∫ 2π
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)6
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. (B.14)

Replacing the satellite’s rotation rate by Eq. 2.115 yields

(∆Erot)t =−3Gk2∆tm2R5
(
1+ A
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)∫ 2π

0

(
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)6 (
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(B.15)

=−3Gk2∆tm2R5
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2e

)
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θ̇
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(
1+ A

e

)
n + A

2e
θ̇

]
dθ.

Expressing both θ̇ and r as function of θ using Eq. A.6 and A.1, respectively, the
above becomes

(∆Erot)t =−3Gk2∆tm2R5a−6 (
1−e2)−6

(
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2e
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·
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2e

(
1+ 3

2
e2

)∫ 2π

0
(1+e cosθ)8 dθ

]
.

1The derivation is analogous to the one presented in Section 2.3.4 for the no libration case.
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After integration, we obtain

(∆Erot)t =−6πGk2∆tm2R5na−6
(
1+ A

2e

)
·
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1+ A
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)(
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2
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+O(e3), (B.17)

which after simplification gives

(∆Erot)t =−6πGk2∆tm2R5na−6
(
1+ A

2e

)(−6e2 +A e
)+O(e3) (B.18)

=−6πGk2∆tm2R5na−6
(
−6e2 −2A e + A 2

2

)
+O(e3). (B.19)

Subtracting the rotational energy dissipated by librational tides for a fully synchronous
satellite (γ= 0, Eq. 2.85) from the above provides the contribution of the physical
libration specifically:

(∆Erot)t ,γ = 6πGm2k2∆tR5na−6
(
2A e − A 2

2

)
+O(e3). (B.20)

The additional dissipation due to the physical libration over one orbit is finally
given by

(∆E)γ = (∆Eorb)t ,γ+ (∆Erot)t ,γ (B.21)

=−3Gm2k2∆tR5na−6 (
4A e +A 2) (B.22)

Recalling that the total amount of energy dissipated due to tides over one orbit in
the absence of physical libration is (Eq. 2.107)

(∆E)γ=0 =−21πGm2k2∆tR5a−9e2, (B.23)

the physical libration’s contribution can finally be expressed as a factor of (∆E)γ=0:

(∆E)γ =
(

4

7

A

e
+ A 2

7e2

)
(∆E)γ=0 . (B.24)

From the above derivatives, we can furthermore derive modified expressions for
the secular evolution of the semi-major axis and eccentricity accounting for the
physical libration effects. The semi-major axis rate is again derived from the total
change in orbital energy (Eq. A.10), leading to∣∣∣∣d a
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Determining the eccentricity damping rate, on the other hand, first requires
computing the angular momentum rate:∣∣∣∣dh

d t

∣∣∣∣
t ,γ

=
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2e
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, (B.27)

which similarly yields ∣∣∣∣de
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B.3. NON-ZERO S22 COEFFICIENT
Using Newton’s third law, the force acting on the satellite due to its own S22 gravity
coefficient is defined as (Eq. 2.14)

FS22 =−3

2
Gm0mi R2

(
1

r

)4 (
6S̄22 sin(2λ)r̂ −4S̄22 cos(2λ)t̂

)
. (B.30)

Taking the most general formulation for the satellite’s rotation accounting for both
optical and physical librations 2.23, the satellite-fixed longitude of the central planet
is

λ=Be sinE +O(e2). (B.31)

As a reminder, the amplitude B of the total libration angle is the sum of the optical
and physical libration contributions (Eq. 2.23). B would therefore still be non-zero
in the absence of physical libration (but then equal to -2, see Eq. 2.29).

Evaluating the effect of the satellite’s S22 on its own orbit requires exploiting the
Jacobi-Anger expansion (Weisstein, 2002a), leading to the following series expansions:

sin(2λ) = sin(2Be sinE) = 2
∞∑

n=1
J2n−1 (2Be)sin((2n −1)E) , (B.32)

cos(2λ) = cos(2Be sinE) = J0 (2Be)+2
∞∑

n=1
J2n (2Be)cos(2Be) , (B.33)

where Jk are Bessel functions of the first kind. Given that 2Be =−4e +2A ≪ 1, use
can be made of the following approximations (for x ≪ 1):

J0(x) ≈ 1−
( x

2

)2
(B.34)

Jk (x) ≈ 1

k !

( x

2

)k
. (B.35)

Including only the terms up to e2, Eq. B.32 and B.33 can be re-written as

sin(2λ) =Be sinE +O(e3) (B.36)

cos(2λ) = (
1−B2e2)+B2e2 cos(2E). (B.37)
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Making use of the above expansions, the S22 force given by Eq. B.30 can be
re-written as

FS22 =−3

2
Gm0mi R2

(
1

r

)4

· (6S̄22Be sinE r̂ −4S̄22
[(

1−B2e2)+B2e2 cos(2E)
]

t̂
)+O(e3). (B.38)

In the rest of this appendix, we will derive expressions for the secular drifts that a
non-zero S22 coefficient induces in the satellite’s semi-major axis and eccentricity,
following a similar methodology as in Section 2.3.4.

TANGENTIAL EFFECT

Considering Eq. B.30, the force exerted by the satellite S22 mostly acts in the
tangential direction. The average variation in orbital energy that this tangential
component induces over one orbit can be obtained as:∣∣∣∣dEorb
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which after substituting Eq. B.38, Eq. A.2, and A.8 becomes∣∣∣∣dEorb
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After performing the integration and simplifying the resulting expression, we finally
obtain ∣∣∣∣dEorb

d t
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causing the following drift in semi-major axis:∣∣∣∣d a
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The average change in angular momentum, equivalent to the average torque
exerted by the S22 coefficient, can further be derived as follows:∣∣∣∣dh
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Expressing the term inside the integral as a function of the eccentric anomaly, E ,
instead of the true anomaly (using Eq. A.1, A.2, A.6, and A.8) eventually gives the
following (after simplification):∣∣∣∣dh

d t

∣∣∣∣
t
= 3

π
Gm0mi R2S̄22a−3

·
[(

1−B2e2)∫ 2π

0
(1−e cosE)−2 dE +B2e2

∫ 2π

0
cos(2E)dE

]
+O(e4). (B.44)
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Performing the integration leads to the following average S22 torque:∣∣∣∣dh

d t

∣∣∣∣
t
= ΓS22 = 6Gm0mi R2S̄22a−3

(
1−

(
B+ 3

2

)
e2

)
. (B.45)

Using the relation between semi-major axis, eccentricity, and angular momentum,
we can then derive the eccentricity drift caused by the S22 torque, using Eq. A.12.
This eventually results in ∣∣∣∣de

d t

∣∣∣∣
t
= 6n

R2

a2 S̄22e

(
9−B

2
+B2

)
. (B.46)

RADIAL EFFECT

For the sake of completeness, we also derive the contribution of the radial
component of the S22 force, even if its effect on the satellite’s orbit is much less
significant than the one acting in the tangential direction.

The orbital energy rate caused by the radial S22 effect is computed as∣∣∣∣dEorb

d t

∣∣∣∣
r
= n

2π

∫ 2π

0
Fr

dr

dE
dE , (B.47)

which after substituting Eq. A.2 and A.8 becomes∣∣∣∣dEorb

d t

∣∣∣∣
r
=−9n

π
Gm0mi R2S̄22a−3Be

∫ 2π

0
(1−e cosE)−4 (1+e sinE)sinE dE (B.48)

=− 9

n
Gm0mi R2S̄22a−3Be2 +O(e4). (B.49)

The resulting secular variation of the semi-major axis can then be derived from Eq.
A.10 and gives the following: ∣∣∣∣d a

d t

∣∣∣∣
r
=−18n

R2

a
S̄22Be2. (B.50)

Finally, the effect on the eccentricity evolution is obtained using the conservation of
the angular momentum (Eq. A.13):∣∣∣∣de

d t

∣∣∣∣
r
=−9n

R2

a2 S̄22Be. (B.51)

As expected, the contribution of the S22 radial force to the semi-major axis
evolution is very small with respect to that caused by the tangential forcing (Eq. B.42).
In particular, the torque exerted by a non-zero S22 coefficient can counter-balance
the residual, non-cancelling tidal torque acting on a fully synchronous satellite (see
Sections 2.3.3 and 2.3.4).
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M., Čadek, O., Postberg, F., and Souček, O.
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Ćuk, M., Dones, L., and Nesvornỳ, D. (2016).
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Villani, D., and Bonanno, C. (2001).
Gravity field and rotation state of Mercury
from the BepiColombo Radio Science
Experiments. Planetary and Space Science,
49(14-15):1579–1596.

Miranda, C., Patel, M., Berberan-Santos,
M. N., Hormigo, T., Correia, A., Pedras,
B., and Martins, Z. (2023). The importance
of Phobos simulants: a review on our
current knowledge. Frontiers in Astronomy
and Space Sciences, 10.

Mitri, G., Barnes, J., Coustenis, A., Flamini, E.,
Hayes, A., Lorenz, R. D., Mastrogiuseppe,
M., Orosei, R., Postberg, F., Reh, K.,
et al. (2021). Exploration of Enceladus and
Titan: investigating ocean worlds’ evolution
and habitability in the Saturn system.
Experimental astronomy, pages 1–34.

Molera Calvés, G., Pogrebenko, S. V., Wagner,
J. F., Cimò, G., Gurvits, L. I., Bocanegra-
Bahamón, T. M., Duev, D. A., and Nunes,
N. V. (2021). High spectral resolution
multi-tone Spacecraft Doppler tracking
software: Algorithms and implementations.
Publications of the Astronomical Society of
Australia, 38:e065.

Moore, K., Cao, H., Bloxham, J., Stevenson,
D., Connerney, J., and Bolton, S. (2019).
Time variation of Jupiter’s internal magnetic
field consistent with zonal wind advection.
Nature Astronomy, 3(8):730–735.

Moore, K. M., Yadav, R. K., Kulowski, L.,
Cao, H., Bloxham, J., Connerney, J. E.,
Kotsiaros, S., Jørgensen, J. L., Merayo, J. M.,
Stevenson, D. J., et al. (2018). A complex
dynamo inferred from the hemispheric
dichotomy of Jupiter’s magnetic field.
Nature, 561(7721):76–78.

Moore, W. B. and Schubert, G. (2000).
The tidal response of Europa. Icarus,
147(1):317–319.

Morbidelli, A., Tsiganis, K., Batygin, K., Crida,
A., and Gomes, R. (2012). Explaining
why the uranian satellites have equatorial
prograde orbits despite the large planetary
obliquity. Icarus, 219(2):737–740.

Morgado, B., Assafin, M., Vieira-Martins, R.,
Camargo, J., Dias-Oliveira, A., and Gomes-
Júnior, A. (2016). Astrometry of mutual
approximations between natural satellites.
Application to the Galilean moons. Monthly
Notices of the Royal Astronomical Society,
460(4):4086–4097.

Morgado, B., Benedetti-Rossi, G., Gomes-
Júnior, A., Assafin, M., Lainey, V., Vieira-
Martins, R., Camargo, J., Braga-Ribas, F.,
Boufleur, R., Fabrega, J., et al. (2019a). First
stellar occultation by the Galilean moon
Europa and upcoming events between
2019 and 2021. Astronomy & Astrophysics,
626:L4.

Morgado, B., Gomes-Júnior, A., Braga-Ribas,
F., Vieira-Martins, R., Desmars, J., Lainey, V.,
D’aversa, E., Dunham, D., Moore, J., Baillié,
K., et al. (2022). Milliarcsecond astrometry
for the Galilean moons using stellar
occultations. The Astronomical Journal,
163(5):240.

Morgado, B., Vieira-Martins, R., Assafin,
M., Machado, D., Camargo, J., Sfair,
R., Malacarne, M., Braga-Ribas, F.,



316 BIBLIOGRAPHY

Robert, V., Bassallo, T., et al. (2019b).
APPROX–mutual approximations between
the Galilean moons: the 2016–2018 obser-
vational campaign. Monthly Notices of the
Royal Astronomical Society, 482(4):5190–
5200.

Morrison, L. V. and Gilmore, G. F. (1994).
Galactic and Solar System Optical Astrome-
try. Cambridge University Press.

Mousis, O., Bouquet, A., Langevin, Y., André,
N., Boithias, H., Durry, G., Faye, F.,
Hartogh, P., Helbert, J., Iess, L., et al.
(2022). Moonraker: enceladus multiple
flyby mission. The planetary science journal,
3(12):268.

Moyer, T. D. (2005). Formulation for observed
and computed values of Deep Space Network
data types for navigation. John Wiley &
Sons.

Murchie, S., Eng, D., Chabot, N., Guo, Y.,
Arvidson, R., Yen, A., Trebi-Ollennu, A.,
Seelos, F., Adams, E., and Fountain, G.
(2014). MERLIN: Mars-Moon Exploration,
Reconnaissance and Landed Investigation.
Acta Astronautica, 93:475–482.

Murray, C. D. and Dermott, S. F. (2000). Solar
system dynamics. Cambridge university
press.

Murrow, D. and Jacobson, R. (1988). Galilean
satellite ephemeris improvement using
Galileo tour encounter information. In
Astrodynamics Conference, page 4249.

Musotto, S., Varadi, F., Moore, W., and
Schubert, G. (2002). Numerical simulations
of the orbits of the Galilean satellites.
Icarus, 159(2):500–504.

Neveu, M. and Rhoden, A. R. (2019).
Evolution of Saturn’s mid-sized moons.
Nature astronomy, 3(6):543–552.

Nimmo, F. (2023). Strong Tidal Dissipation
at Uranus? The Planetary Science Journal,
4(12):241.

Nimmo, F., Barr, A. C., Behounková, M., and
McKinnon, W. B. (2018). The thermal and
orbital evolution of Enceladus: observa-
tional constraints and models. Enceladus
and the icy moons of Saturn, 475:79–94.

Nimmo, F., Neveu, M., and Howett, C.
(2023). Origin and Evolution of Enceladus’s
Tidal Dissipation. Space Science Reviews,
219(7):57.

Nimmo, F. and Pappalardo, R. T. (2016).
Ocean worlds in the outer solar system.
Journal of Geophysical Research: Planets,
121(8):1378–1399.

Nimmo, F. and Spencer, J. (2015). Powering
Triton’s recent geological activity by obliq-
uity tides: Implications for Pluto geology.
Icarus, 246:2–10.

Nogueira, E., Brasser, R., and Gomes, R.
(2011). Reassessing the origin of Triton.
Icarus, 214(1):113–130.

Noyelles, B., Vienne, A., and Descamps, P.
(2003). Astrometric reduction of lightcurves
observed during the PHESAT95 campaign
of Saturnian satellites. Astronomy & Astro-
physics, 401(3):1159–1175.

Oberst, J., Lainey, V., Poncin-Lafitte, C. L.,
Dehant, V., Rosenblatt, P., Ulamec, S., Biele,
J., Spurmann, J., Kahle, R., Klein, V., et al.
(2012). GETEMME — A mission to explore
the Martian satellites and the fundamentals
of Solar System physics. Experimental
Astronomy, 34:243–271.

Oberst, J., Wickhusen, K., Willner, K.,
Gwinner, K., Spiridonova, S., Kahle, R.,
Coates, A., Herique, A., Plettemeier, D.,
Díaz-Michelena, M., et al. (2018). DePhine–
the Deimos and Phobos interior explorer.
Advances in Space Research, 62(8):2220–
2238.

Ogohara, K., Nakagawa, H., Aoki, S., Kouyama,
T., Usui, T., Terada, N., Imamura, T.,
Montmessin, F., Brain, D., Doressoundiram,
A., et al. (2022). The Mars system revealed
by the Martian Moons eXploration mission.
Earth, Planets and Space, 74:1–32.



317

Ojakangas, G. W. and Stevenson, D. (1986).
Episodic volcanism of tidally heated satel-
lites with application to Io. Icarus,
66(2):341–358.

Pail, R. and Plank, G. (2002). Assessment
of three numerical solution strategies for
gravity field recovery from GOCE satellite
gravity gradiometry implemented on a
parallel platform. Journal of Geodesy,
76:462–474.

Pappalardo, R., Becker, T., Blaney, D.,
Blankenship, D., Burch, J., Christensen,
P., Craft, K., Daubar, I., Gudipati, M.,
Hayes, A., et al. (2021). The Europa
Clipper Mission: understanding icy world
habitability and blazing a path for future
exploration. Bulletin of the American
Astronomical Society, 53(4):255.

Pappalardo, R. T., Belton, M. J., Breneman,
H., Carr, M., Chapman, C. R., Collins,
G., Denk, T., Fagents, S., Geissler, P. E.,
Giese, B., et al. (1999). Does Europa have
a subsurface ocean? Evaluation of the
geological evidence. Journal of Geophysical
Research: Planets, 104(E10):24015–24055.

Park, R. S., Folkner, W. M., Williams, J. G.,
and Boggs, D. H. (2021). The JPL planetary
and lunar ephemerides DE440 and DE441.
The Astronomical Journal, 161(3):105.

Parkinson, C. D., Liang, M.-C., Yung, Y. L.,
and Kirschivnk, J. L. (2008). Habitability
of Enceladus: planetary conditions for life.
Origins of Life and Evolution of Biospheres,
38:355–369.

Peale, S. (1999). Origin and evolution of
the natural satellites. Annual Review of
Astronomy and Astrophysics, 37(1):533–602.

Peale, S. and Lee, M. H. (2002). A primordial
origin of the Laplace relation among the
Galilean satellites. Science, 298(5593):593–
597.

Peale, S. J. (1969). Generalized Cassini’s laws.
Astronomical Journal, Vol. 74, p. 483 (1969),
74:483.

Peale, S. J., Cassen, P., and Reynolds, R. T.
(1979). Melting of Io by tidal dissipation.
Science, 203(4383):892–894.

Peng, Q., He, H., Lainey, V., and Vienne, A.
(2012). Precise CCD positions of Galilean
satellite-pairs. Monthly Notices of the Royal
Astronomical Society, 419(3):1977–1982.

Peng, Q. Y., Vienne, A., Wu, X., Gan, L., and
Desmars, J. (2008). CCD positions of Saturn
and its major satellites from 2002–2006.
The Astronomical Journal, 136(5):2214.

Peterson, G., Nimmo, F., and Schenk, P.
(2015). Elastic thickness and heat flux
estimates for the uranian satellite Ariel.
Icarus, 250:116–122.

Petit, G., Luzum, B., et al. (2010). IERS
technical note no. 36. IERS conventions,
179.

Petricca, F., Genova, A., Castillo-Rogez,
J. C., Styczinski, M. J., Cochrane, C. J.,
and Vance, S. D. (2023). Characteriza-
tion of icy moon hydrospheres through
joint inversion of gravity and magnetic
field measurements. Geophysical Research
Letters, 50(17):e2023GL104016.

Phillips, C., Hand, K., Scully, J., Pitesky,
J., Craft, K., Cameron, M., Nordheim, T.,
Hofmann, A., Tan-Wang, G., Hofgartner,
J., et al. (2021). An exploration strategy
for Europa. Bulletin of the American
Astronomical Society, 53(4):207.

Pitjeva, E. V. (2009). EPM ephemerides and
relativity. Proceedings of the International
Astronomical Union, 5(S261):170–178.

Pogrebenko, S., Gurvits, L., Campbell, R.,
Avruch, I., Lebreton, J.-P., and van’t
Klooster, C. (2004). VLBI tracking of the
Huygens probe in the atmosphere of Titan.
In Planetary Probe Atmospheric Entry and
Descent Trajectory Analysis and Science,
volume 544, pages 197–204.

Polycarpe, W., Saillenfest, M., Lainey, V.,
Vienne, A., Noyelles, B., and Rambaux,



318 BIBLIOGRAPHY

N. (2018). Strong tidal energy dissipation
in Saturn at Titan’s frequency as an
explanation for Iapetus orbit. Astronomy &
Astrophysics, 619:A133.

Porco, C. C., Helfenstein, P., Thomas, P.,
Ingersoll, A., Wisdom, J., West, R., Neukum,
G., Denk, T., Wagner, R., Roatsch, T., et al.
(2006). Cassini observes the active south
pole of Enceladus. Science, 311(5766):1393–
1401.

Pradel, N., Charlot, P., and Lestrade, J.-F.
(2006). Astrometric accuracy of phase-
referenced observations with the VLBA
and EVN. Astronomy & Astrophysics,
452(3):1099–1106.

Rambaux, N. and Castillo-Rogez, J. (2013).
Tides on satellites of giant planets. In
Tides in astronomy and astrophysics, pages
167–200. Springer.

Rambaux, N., Castillo-Rogez, J., Le Maistre, S.,
and Rosenblatt, P. (2012). Rotational motion
of Phobos. Astronomy & Astrophysics,
548:A14.

Rambaux, N., Castillo-Rogez, J. C., Williams,
J. G., and Karatekin, Ö. (2010). Libra-
tional response of Enceladus. Geophysical
Research Letters, 37(4).

Raofi, B., Guman, M., and Potts, C. (2000).
Preliminary statistical Delta V analysis for
a representative Europa Orbiter Mission. In
Astrodynamics Specialist Conference, page
4035.

Renaud, J. P., Henning, W. G., Saxena,
P., Neveu, M., Bagheri, A., Mandell,
A., and Hurford, T. (2021). Tidal dis-
sipation in dual-body, highly eccentric,
and nonsynchronously rotating systems:
Applications to Pluto–Charon and the exo-
planet TRAPPIST-1e. The Planetary Science
Journal, 2(1):4.

Rhoden, A. R. and Walker, M. E. (2022).
The case for an ocean-bearing Mimas from
tidal heating analysis. Icarus, 376:114872.

Robert, V., De Cuyper, J.-P., Arlot, J.-E.,
De Decker, G., Guibert, J., Lainey, V.,
Pascu, D., Winter, L., and Zacharias, N.
(2011). A new astrometric reduction of
photographic plates using the DAMIAN
digitizer: improving the dynamics of the
Jovian system. Monthly Notices of the Royal
Astronomical Society, 415(1):701–708.

Robert, V., Saquet, E., Colas, F., and Arlot,
J.-E. (2017). CCD astrometric observations
of Amalthea and Thebe in the Gaia era.
Monthly Notices of the Royal Astronomical
Society, 467(1):694–698.

Roberts, J. H., McKinnon, W. B., Elder, C. M.,
Tobie, G., Biersteker, J. B., Young, D., Park,
R. S., Steinbrügge, G., Nimmo, F., Howell,
S. M., et al. (2023). Exploring the Interior
of Europa with the Europa Clipper. Space
Science Reviews, 219(6):46.

Roberts, J. H. and Nimmo, F. (2008). Tidal
heating and the long-term stability of a
subsurface ocean on Enceladus. Icarus,
194(2):675–689.

Rodriguez, S., Vinatier, S., Cordier, D., Tobie,
G., Achterberg, R. K., Anderson, C. M.,
Badman, S. V., Barnes, J. W., Barth,
E. L., Bézard, B., et al. (2022). Science
goals and new mission concepts for
future exploration of Titan’s atmosphere,
geology and habitability: titan POlar
scout/orbitEr and in situ lake lander and
DrONe explorer (POSEIDON). Experimental
Astronomy, 54(2-3):911–973.

Rosenblatt, P. (2011). The origin of the
Martian moons revisited. The Astronomy
and Astrophysics Review, 19:1–26.

Rosenblatt, P., Charnoz, S., Dunseath, K. M.,
Terao-Dunseath, M., Trinh, A., Hyodo, R.,
Genda, H., and Toupin, S. (2016). Accretion
of Phobos and Deimos in an extended
debris disc stirred by transient moons.
Nature Geoscience, 9(8):581–583.

Rosenblatt, P., Lainey, V., Le Maistre, S.,
Marty, J.-C., Dehant, V., Pätzold, M.,
Van Hoolst, T., and Häusler, B. (2008).



319

Accurate Mars Express orbits to improve the
determination of the mass and ephemeris
of the Martian moons. Planetary and Space
science, 56(7):1043–1053.

Ross, M. N. and Schubert, G. (1990). The
coupled orbital and thermal evolution
of Triton. Geophysical research letters,
17(10):1749–1752.

Roth, L., Saur, J., Retherford, K. D., Blöcker,
A., Strobel, D. F., and Feldman, P. D. (2017).
Constraints on Io’s interior from auroral
spot oscillations. Journal of Geophysical
Research: Space Physics, 122(2):1903–1927.

Rovira-Navarro, M., Katz, R. F., Liao, Y.,
van der Wal, W., and Nimmo, F. (2022).
The tides of Enceladus’ porous core.
Journal of Geophysical Research: Planets,
127(5):e2021JE007117.

Rovira-Navarro, M., Matsuyama, I., and Berne,
A. (2023). A Spectral Method to Compute
the Tides of Laterally-Heterogeneous Bod-
ies. arXiv preprint arXiv:2311.15710.

Rovira-Navarro, M., Rieutord, M., Gerkema,
T., Maas, L. R., van der Wal, W., and
Vermeersen, B. (2019). Do tidally-generated
inertial waves heat the subsurface oceans
of Europa and Enceladus? Icarus, 321:126–
140.

Rufu, R. and Canup, R. M. (2017). Triton’s
evolution with a primordial Neptunian
satellite system. The Astronomical Journal,
154(5):208.

Rymer, A. M., Runyon, K. D., Clyde, B.,
Núñez, J. I., Nikoukar, R., Soderlund, K. M.,
Sayanagi, K., Hofstadter, M., Quick, L. C.,
Stern, S. A., et al. (2021). Neptune odyssey:
A flagship concept for the exploration of
the neptune–triton system. The Planetary
Science Journal, 2(5):184.

Saillenfest, M., Lari, G., and Boué, G. (2021a).
The large obliquity of Saturn explained
by the fast migration of Titan. Nature
Astronomy, 5(4):345–349.

Saillenfest, M., Lari, G., Boué, G., and Courtot,
A. (2021b). The past and future obliquity
of Saturn as Titan migrates. Astronomy &
Astrophysics, 647:A92.

Saillenfest, M., Rogoszinski, Z., Lari, G.,
Baillié, K., Boué, G., Crida, A., and
Lainey, V. (2022). Tilting Uranus via the
migration of an ancient satellite. Astronomy
& Astrophysics, 668:A108.

Salmon, J. and Canup, R. M. (2017).
Accretion of Saturn’s inner mid-sized moons
from a massive primordial ice ring. The
Astrophysical Journal, 836(1):109.

Sampson, R. A. (1921). Theory of the four
great satellites of Jupiter. Memoirs of the
Royal Astronomical Society, Vol. 63, p. 1,
63:1.

Samuel, H., Lognonné, P., Panning, M.,
and Lainey, V. (2019). The rheology
and thermal history of Mars revealed by
the orbital evolution of Phobos. Nature,
569(7757):523–527.

Santos-Filho, S., Assafin, M., Morgado, B.,
Vieira-Martins, R., Camargo, J., Gomes-
Júnior, A., and Benedetti-Rossi, G. (2019).
Mutual approximations between the five
main moons of Uranus. Monthly Notices of
the Royal Astronomical Society, 490(3):3464–
3475.

Saur, J., Duling, S., Roth, L., Jia, X.,
Strobel, D. F., Feldman, P. D., Christensen,
U. R., Retherford, K. D., McGrath, M. A.,
Musacchio, F., et al. (2015). The search
for a subsurface ocean in Ganymede with
Hubble Space Telescope observations of
its auroral ovals. Journal of Geophysical
Research: Space Physics, 120(3):1715–1737.

Schenk, P. M. and Zahnle, K. (2007). On
the negligible surface age of Triton. Icarus,
192(1):135–149.

Schettino, G., Cicalo, S., Di Ruzza, S.,
and Tommei, G. (2015). The relativity
experiment of MORE: Global full-cycle
simulation and results. In 2015 IEEE



320 BIBLIOGRAPHY

Metrology for Aerospace (MetroAeroSpace),
pages 141–145. IEEE.

Schubert, G., Anderson, J., Spohn, T., and
McKinnon, W. (2004). Interior composition,
structure and dynamics of the Galilean
satellites. Jupiter: The planet, satellites and
magnetosphere, 1:281–306.

Schuh, W.-D. (2003). The processing of band-
limited measurements; filtering techniques
in the least squares context and in the
presence of data gaps. Space Science
Reviews, 108:67–78.

Serra, D., Spoto, F., and Milani, A. (2018).
A multi-arc approach for chaotic orbit de-
termination problems. Celestial Mechanics
and Dynamical Astronomy, 130:1–17.

Showalter, M. R., de Pater, I., Lissauer,
J. J., and French, R. S. (2019). The
seventh inner moon of Neptune. Nature,
566(7744):350–353.

Showman, A. P., Stevenson, D. J., and
Malhotra, R. (1997). Coupled orbital and
thermal evolution of Ganymede. Icarus,
129(2):367–383.

Siemes, C. (2008). Digital filtering algorithms
for decorrelation within large least squares
problems. PhD thesis, Institute of Geodesy
and Geoinformation, University of Bonn.

Smith, B. A., Soderblom, L., Batson, R.,
Bridges, P., Inge, J., Masursky, H., Shoe-
maker, E., Beebe, R., Boyce, J., Briggs, G.,
et al. (1982). A new look at the Saturn
system: The Voyager 2 images. Science,
215(4532):504–537.

Smith, B. A., Soderblom, L., Beebe, R., Boyce,
J., Briggs, G., Bunker, A., Collins, S. A.,
Hansen, C. J., Johnson, T. V., Mitchell,
J. L., et al. (1981). Encounter with Saturn:
Voyager 1 imaging science results. Science,
212(4491):163–191.

Smith, B. A., Soderblom, L. A., Banfield,
D., Barnet, C., Basilevsky, A., Beebe,
R., Bollinger, K., Boyce, J., Brahic, A.,

Briggs, G., et al. (1989). Voyager 2 at
Neptune: Imaging science results. Science,
246(4936):1422–1449.

Smith, B. A., Soderblom, L. A., Beebe, R.,
Boyce, J., Briggs, G., Carr, M., Collins, S. A.,
Cook, A. F., Danielson, G. E., Davies, M. E.,
et al. (1979a). The Galilean satellites and
Jupiter: Voyager 2 imaging science results.
Science, 206(4421):927–950.

Smith, B. A., Soderblom, L. A., Johnson, T. V.,
Ingersoll, A. P., Collins, S. A., Shoemaker,
E. M., Hunt, G., Masursky, H., Carr, M. H.,
Davies, M. E., et al. (1979b). The Jupiter
system through the eyes of Voyager 1.
Science, 204(4396):951–972.

Soderblom, L. A., Kieffer, S., Becker, T., Brown,
R., Cook, A., Hansen, C., Johnson, T., Kirk,
R. L., and Shoemaker, E. (1990). Triton’s
geyser-like plumes: Discovery and basic
characterization. Science, 250(4979):410–
415.

Sotin, C., Tobie, G., Wahr, J., McKinnon,
W. B., McKinnon, W., and Khurana, K.
(2009). Tides and tidal heating on Europa.
Europa, 11.
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AFTERWORD
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also become my friends, many thanks for sharing this journey with me and making
it so much fun! Special mention to Livio and Rania, who started their PhD trajectory
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