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Abstract

In this report, inhomogeneous Lévy processes are studied in a discrete observational model based on

derivatives of the process. First, homogeneous Lévy models are de�ned and an already known nonpara-

metric method, using Fourier techniques and call and put option prices, for estimating the parameters of

the model is described based on Belomestny and Reiÿ (2006a). Previous research suggests that there is

a need for an extension of this concept since option prices with di�erent maturities produce signi�cantly

di�erent results. After all, the assumption that the parameters of the model are the same for any time

window is not realistic and better results could be achieved once this premise is rejected.

That is why inhomogeneous Lévy processes are introduced and studied in this report. The estimation

method for the homogeneous model from Belomestny and Reiÿ (2006a) is extended to �t into the inho-

mogeneous framework. Next, asymptotic normality of the estimators is proven for these processes in this

setting and con�dence intervals are constructed using the �nite sample variance method. Asymptotic

normality has already been shown and con�dence intervals have been constructed in the homogeneous

framework in the continuous observational model by Söhl (2014). Finally, data is simulated from an

inhomogeneous Merton model to test the performance of the method and options from the S&P 500

index are used as a real-world application.
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Chapter 1

Introduction

In the �nancial world, mathematics plays a huge role. Of course, when one wants to gamble on Apple

or Bitcoin there is no need to worry about mathematics at all. However, when you are selling products

related to Apple or Bitcoin shares, it is important that you are not selling products that introduce

arbitrage, a risk-free strategy with non-negative pro�t. Thus, it is necessary to price these products as

well as possible and that is where mathematics comes in. This even traces back to ancient Greek history.

Indeed, Lucretius, a Roman poet, described approximately in 60 BC that there exists something like a

random walk process that we now know as the Brownian Motion (BM). In 1827, the BM was described

extensively by Robert Brown whilst investigating pollen and 73 years later, the relation between stock

prices and BM was made by Louis Bachelier in his Ph. D. thesis. Paul Samuelson noted that using

Brownian motion to describe the movements of a stock price can be done better. Merely, because BM

does not account for the non-negativity of stock prices. Therefore, he introduced a version which does not

become negative and that allows for a certain drift, essentially he looked at the exponential BM de�ned

by exp(rt + BM). This model comes close to reality, is easy to use and easy to interpret. Therefore,

it is still used a lot in practice. For example, quantities that are used by investors such as the implied

volatility, also known as the vega, are calculated under this particular assumption.

The biggest problem with this model is that it is an oversimpli�cation for estimating the complex

market and, for example, heavy-tails are not modeled well using BM. Approximately 40 years later,

Paul Lévy introduced the more general Lévy processes and, as it might come as no surprise, the derived

exponential Lévy processes, are now one of the better models one can use to estimate the market. As is

shown in Cont and Tankov (2004a), Lévy processes model, for example, typical market characteristics as

jumps, volatility smiles, and heavy tails well. Other applications of Lévy models in �nance can be found

in Schoutens (2003).

Lévy processes are already studied extensively, for example, in Bertoin (1996), Sato and Ken-Iti

(1999) and Applebaum (2009). Moreover, di�erent estimation methods for the parameters of certain

Lévy processes are developed. For example, Gugushvili (2009) constructed an estimation method based

on direct discrete observations from the Lévy process. An interesting case is when no direct data of the

underlying process is available but only derived data. For example, options or futures related to a certain

stock or index. In short, a call option is the right to buy and a put option is the right to sell a certain

product for a given predetermined price at a given time. It happens to be the case that these option

prices are related to the underlying Lévy process under the risk-neutral measure.

Cont and Tankov (2004b) and Cont and Tankov (2006) developed an estimation procedure of the Lévy

triplet which minimizes the relative entropy with respect to a prior exponential Lévy model. Moreover,

Qin and Todorov (2017) study the behavior of a nonparametric estimation method for the Lévy density

10



in an Itô semimartingale model under the condition that the maturity decreases to 0.

One of the applications of knowing the underlying Lévy process under the risk-neutral measure is the

arbitrage-free pricing of exotic derivatives, for example, Asian options, where the payo� depends on the

average value of the share price, and other path-dependent options, see Albrecher and Predota (2004) or

Shreve (2004). Moreover, this method can be used to �nd whether or not these exotic options are priced

correctly.

As of now, nonparametric parameter estimation is only possible for homogeneous Lévy processes, i.e., the

process on [0, T ] is estimated under the condition that the parameters are assumed to be constant over

that time period. In Belomestny and Reiÿ (2006a), this method is introduced using a �nite data sample

and (asymptotic) con�dence sets of the continuous variant of this model are derived in Söhl (2014).

When the maturity T is relatively large, it is not realistic to make a homogeneous assumption.

However, derivatives with maturity T still need to be priced. In Belomestny and Reiÿ (2006b), the real

data example shows that for di�erent maturities parameters are estimated di�erently implying that this

is indeed might not be a realistic assumption. Hence, there is a need for inhomogeneous Lévy processes.

They are given a short introduction in Cont and Tankov (2004a) and in this report, inhomogeneous Lévy

processes as an extension to the regular ones are studied. The estimation procedure used in Belomestny

and Reiÿ (2006a) is extended to �t into the inhomogeneous framework and asymptotic con�dence intervals

are constructed for the parameters using the �nite sample variance. Moreover, the performance of the

implied estimators is tested as well as performance of the con�dence sets.

In Chapter 2, the class of inhomogeneous Lévy processes is properly de�ned. In Chapter 3, the estimation

procedure and the underlying model are explained in detail in both the homogeneous and inhomogeneous

case. Moreover, one can �nd the formulas for the estimators of the parameters here. Theoretical results

concerning the convergence of the estimators and the optimal rates of convergence are stated in Chapter

4. A signi�cant part of the proof of this theorem is relocated to Chapter 10 and Appendix B-C. Chapter

5 is devoted to the explicit construction of con�dence intervals using the �nite sample variance method.

In Chapters 6 and 7 simulations and applications are discussed. Discussion about particular aspects of

this study and interesting further research topics are given in Chapter 8. The conclusion of this thesis

can be found in Chapter 9.
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Chapter 2

Lévy processes

In this chapter, both homogeneous and inhomogeneous Lévy processes are de�ned properly. Moreover, a

few examples of particular Lévy processes are given.

2.1 Homogeneous Lévy processes

Let (Ω,F ,F, P ) be a �ltered probability space, where F = FT and the �ltration F = (Ft)0≤t≤T satisfy

the usual conditions. Let T ∈ [0,∞) denote the time horizon.

De�nition 1. A càdlàg, adapted, real valued stochastic process (Xt)0≤t≤T with X0 = 0 a.s. is called a

(homogeneous) Lévy process if the following conditions are met:

1. X has independent increments, i.e. Xt −Xs is independent of Fs for any 0 ≤ s < t ≤ T .

2. X has stationary increments, i.e. for any 0 ≤ s ≤ t ≤ T the distribution of Xt − Xs does only

depend on t− s.

3. X is stochastically continuous, i.e. for every 0 ≤ t ≤ T and ε > 0: lims→t P (|Xt −Xs| > ε) = 0.

In comparison to the de�nition of a Brownian motion, it is not assumed that X needs to have continuous

paths with probability 1. This is representative in the �nancial markets since errors and imperfections

of the market sometimes cause instantaneous jumps. In this report, only Lévy processes with a jump

component of �nite intensity and absolutely continuous jump distribution are under consideration.

Moreover, the assumption that Xt−Xs should be Gaussian is dropped from the de�nition of Brownian

motion to get an even more general stochastic process. Under these general assumptions, the formula for

the characteristic function simpli�es to

ϕT (u) := E
{

eiuXT
}

= exp

(
T

(
−σ

2u2

2
+ iγu+

∫ ∞
−∞

(
eiux − 1

)
ν(x) dx

))
. (2.1)

σ ≥ 0 is called the volatility and is essentially the Brownian motion component of the Lévy process which

describes its variability. γ ∈ R will be referred to as the drift and the non-negative function ν ∈ L1(R) is

the Lévy density with intensity λ = ‖ν‖L1(R). This representation of the characteristic function is called

the Lévy-Khintchine representation and, as is a known fact for characteristic functions, it characterizes

the complete Lévy process. Hence, the triplets (σ2, γ, ν) correspond one-to-one with Lévy processes and

it will therefore be called the Lévy triplet. This triplet will be the object of investigation.
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Examples of Lévy processes:

1. The compound Poisson process. This process is locally constant and at exponentially distributed

times, a jump in the path occurs. The size of the jump is allowed to follow any distribution.

2. The Brownian motion with drift. This is the only non-trivial Lévy process which has continuous

paths with probability 1.

3. The Merton model. This is essentially a Brownian motion with normally distributed jumps which

occur according to a Poisson process.

2.2 Inhomogeneous Lévy processes

As historical data suggested in Belomestny and Reiÿ (2006b) and Söhl and Trabs (2014), there is a need

for an extension of homogeneous Lévy processes. In particular, it is desired to develop an inhomogeneous

version where the parameters are time-dependent. In this report, these functions will be assumed to be

locally constant for simplicity and interpretability purposes. Moreover, smooth parameter functions are

not identi�able from options with a �nite number of maturities only.

An inhomogeneous Lévy process is de�ned as

De�nition 2. A càdlàg, adapted, real valued stochastic process (Xt)0≤t≤T with Xt = 0 a.s. is called

an inhomogeneous Lévy process if for tj, j = 1, 2, . . . , n with t1 = 0 and tn = T , it holds true that for

j = 1, . . . , n− 1, (Xt−Xtj )tj≤t<tj+1 behave like independent Lévy processes with Lévy triplets (σ2
j , γj , νj)

and for any j = 2, . . . , n− 1 and ε > 0 we have

lim
h↓0

P (|Xtj−h −Xtj+h| > ε) = 0

According to the model,

ϕTj (u) = E
{
eiuXTj

}
= E

{
eiu(XTj−XTj−1) · eiuXTj−1

}
= E

{
eiu(XTj−XTj−1)

}
· ϕTj−1

(u).

Moreover, the �rst term on the right-hand side can be simpli�ed using the Lévy-Khintchine representation

(2.1) which yields

ϕTj (u)

ϕTj−1
(u)

= exp

(
(Tj − Tj−1)

(
−
σ2
ju

2

2
+ iγju+

∫ ∞
−∞

(
eiux − 1

)
νj(x) dx

))
. (2.2)

In turn, the left-hand side of 2.2 will be estimated using option prices. From there it is possible to

construct estimators for the Lévy triplets (σ2
j , γj , νj)

n
j=1 as will be described in detail in the next chapter.
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Chapter 3

The model

From the Lévy-Khintchine representation (2.1), Belomestny and Reiÿ (2006a) developed an estimation

procedure for the (homogeneous) Lévy triplet. This method will be explained in detail in the next

section. In the second section of this chapter, this method will be generalized to inhomogeneous Lévy

processes. It is possible for the reader to skip the homogeneous part and continue with the more general

inhomogeneous part since that section is self-contained. However, for an interested reader, it is good to

see where the di�erences in generalizing the concept come from, and an inexperienced reader in this topic

might �nd the generalized case overwhelming in terms of indexes and notation. Therefore, it is advised

not to skip the homogeneous case and to look at the inhomogeneous case how the idea and all concepts

are generalized.

3.1 The homogeneous model

This section describes the model on which the estimation procedure of the Lévy triplet (σ2, γ, ν) between

0 and T is based. To that end, suppose that option data maturity T is available. Assume that the Lévy

triplet that is associated with the process Xt belongs to the class Gs(R, σmax), which is de�ned below,

for a known R and σmax.

De�nition 3. For s ∈ N and R, σmax > 0 let Gs(R, σmax) denote the set of all Lévy triplets T = (σ2, γ, ν)

satisfying

∀t ≥ 0 : E {exp(Xt)} = 1 ⇔ σ2

2
+ γ +

∫ ∞
−∞

(exp(x)− 1) ν(x) dx = 0 (3.1)

and

C := E {exp(2XT )} <∞.

Moreover, C ≤ R, µ is s-times (weakly) di�erentiable where s ∈ Z≥2 and

σ ∈ (0, σmax), |γ|, λ ∈ [0, R], max
0≤k≤s

∥∥∥µ(k)
∥∥∥
L2
≤ R,

∥∥∥µ(s)
∥∥∥
L∞
≤ R.

This de�nition invokes making a lot of di�erent assumptions. Some may seem logical while that may not

be the case for others. Therefore, the intuition and reasoning behind making these assumptions will be

given before the remaining part of the model is explained.

The condition from equation (3.1), that is imposed on the parameters, is also called the martingale

condition. This condition ensures that the exponential Lévy process induced by the Lévy triplet is a

martingale. The second assumption, i.e., C < ∞, is a technical assumption which guarantees that the

variance (or second moment) of the underlying stock price is �nite. The R and σmax are also introduced for
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theoretical purposes since it may be the case that either one of C, σ, |γ|, λ, µ(k) becomes `too large'. If one

or more of these parameters become too big, it is impossible to construct a statistically stable estimation

method. In that case, there would be no guarantee that the argument we evaluate the logarithm at

is bounded from below by a positive constant. This causes either a statistically unstable method or it

introduces an extra bias term. Both are undesirable.

Let St denote the underlying asset price. It will be assumed that St comes from an exponential inhomo-

geneous Lévy process, i.e.,

St = S0 exp(rt+Xt),

with Xt a homogeneous Lévy process and r the risk-free interest rate. Note that it is thus assumed that

the discounted asset price is a martingale under the risk-neutral measure. De�ne Km as the strike price

of the mth option with maturity T .

The risk-neutral option price for a European call option is given by (Shreve, 2004, p. 218)

C(Km, T ) = e−rTE
{

(ST −Km)+
}

with z+ := max(0, z). Notice that the expectation is taken under the risk-neutral measure. Chapter

A. is devoted to explaining brie�y what the risk-neutral measure is and why the risk-neutral measure is

used. For more about the risk-neutral measure, one can read Shreve (2012) and Shreve (2004). In the

remaining part of this section and the upcoming chapters, the risk-neutral measure will always be used

if not stated otherwise. It is common to de�ne the log-forward moneyness xm to replace the strike price

Km

xm := log(Km/S0)− rT.

We reparametrize the function C to

C(Km, T ) = S0E
{(

eXT − exm
)+}

=: C(xm, T )

For put options we have

P(xm, T ) = S0E
{(

exm − eXT
)+}

(Shreve, 2004, p. 163). Note that C(x, T ), P(x, T ) do not converge to 0 when x tends to −∞ and ∞, re-

spectively. Hence, it makes no sense to take the Fourier transform of C or P . However, limx→∞ C(x, T ) =

0 = limx→−∞ P(x, T ). Therefore, the following function is introduced

O(x) :=

S
−1
0 C(x, T ), x ≥ 0

S−10 P(x, T ), x < 0.

In Belomestny and Reiÿ (2005) and Carr and Madan (1999), the following properties of O and ϕT , de�ned

in (2.1), are proven

Proposition 1. The following properties hold.

� For all x ∈ R, O(x) = S−10 Cj(x, T )− (1− ex)
+
.

� For all x ∈ R, O(x) ∈ [0, 1 ∧ ex].

� If Cα := E
{
eαXT

}
is �nite for some α ≥ 1, then for all x ≥ 0, O(x) ≤ Cαe(1−α)x.

� At any x ∈ R\{0}, the function O is twice di�erentiable with ‖O′′‖L1(R) ≤ 3 and the �rst derivative

O′ has a jump of height −1 at 0.
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� The Fourier transform of O satis�es for all v ∈ C with Im(v) ∈ [0, 1],

FO(v) :=

∫ ∞
−∞
O(x)eivx dx =

1− ϕT (v − i)
v(v − i)

.

The last relation, which is the most important, was �rst stated by Carr and Madan (1999) and this

also explains why it is chosen to use call and put options in calibrating Lévy processes. For theoretical

purposes and easier notations, de�ne the following function

ψ(v) := T−1 log (1 + iv(1 + iv)FO(v)) = T−1 log (ϕT (v − i)) .

Under the assumptions of the model and (2.1) ψ simpli�es to

ψ(v) =
log (ϕT (v − i))

T
= −σ

2(v − i)2

2
+ iγ(v − i) +

∫ ∞
−∞

(
ei(v−i)x − 1

)
ν(x) dx

= −σ
2v2

2
+ i(σ2 + γ)v + (σ2/2 + γ − λ) +

∫ ∞
−∞

eivx · (exν(x)) dx

= −σ
2v2

2
+ i(σ2 + γ)v + (σ2/2 + γ − λ) + Fµ(v).

Concluding, ψ is a quadratic polynomial plus the Fourier transform of µ. So, given an exact formula for

the option function, it is not too hard to �nd the exact Lévy triplet. However, the option function is

not given in practical situations and only option data is available. This data is likely to be corrupted by

some noise and it is impossible to guarantee that always enough data would be available such that the

ψj function can be estimated properly since only a �xed amount of data is available.

3.1.1 The observations and the estimators

In practice, the true prices of options are not observed due to imperfections of the market and the bid-ask

spread. In theory, it is therefore assumed that the observed prices come from the following model

Ym = C(Km, T ) + ςmεm,

where εm is assumed to follow a sub-Gaussian distribution, i.e., the tail of the distribution εm is dominated

by a Gaussian tail. De�ne δm := S−10 ςm, then

Om = S−10 C(Km, T ) + δmεm = O(xm) + δmεm.

The �rst theoretical assumption that is made, is that δm = δ(xm) for a certain Lη function δ with η > 2.

The assumption will be made intuitive in Chapter 4.

Another assumption that is made, is that the grid on logarithmic scale, i.e., {xm : m = 1, . . . N}, is
an equidistant grid. This assumption makes the calculations a lot easier without seriously a�ecting the

model. An estimator for O is now given by

Õ(x) := β0(x) +

N∑
m=1

Ombm(x)

with bm(x) := Λ((x − xm)/∆) with ∆ := |xm+1 − xm| = |xm − xm−1| and Λ(x) the triangular function

which is 0 at −1 and 1 and 1 at 0. It should be noted that for all limiting results, ∆ → 0. Moreover,

A := min(xN ,−x0)→∞.

Whilst estimating ψ, it could be that one has to evaluate the logarithm at an argument close to
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0. A small error might then induce large statistical errors. Therefore in the estimation procedure, the

logarithm will be trimmed around 0. To be precise, de�ne

κ(v) :=
1

2
min

{
exp

(
−Tσ

2
maxv

2

2
− 2RT

)
, 1

}
. (3.2)

De�ne now the estimator for ψ(v) by

ψ̃(v) := T−1 log≥κ(v) (ϕ̃T (v − i)) . (3.3)

The trimmed logarithm around κ > 0 is de�ned as

log≥κ(z) :=

log(z), if |z| ≥ κ

log(z/|z|), if |z| ≤ κ,

where the logarithm is taken such that ψ̃ is continuous with log(1) = 0. This estimator is asymptotically

well-de�ned and a proof can be found in section 10.1.

Now, de�ne µ(x) := exν(x) for notational purposes and note that µ is positive. Moreover, recall the

martingale condition (3.1). Given this information, it is not di�cult to see that the trimmed value does

not a�ect the bias of the estimator for ψ. Indeed,

|ϕT (v − i)| = |exp(Tψ(v))|

=

∣∣∣∣exp

(
T

(
−σ

2v2

2
+ i(σ2 + γ)v +

(
σ2

2
+ γ − λ

)
+ Fµ(v)

))∣∣∣∣
= exp

(
−Tσ

2v2

2
− TFµ(0) + T Re(Fµ(v))

)
= exp

(
−Tσ

2v2

2
− T ‖µ‖L1 + T Re(Fµ(v))

)
≥ exp

(
−Tσ

2v2

2
− 2T ‖µ‖L1

)
≥ exp

(
−Tσ

2v2

2
− 2TR

)
≥ exp

(
−Tσ

2
maxv

2

2
− 2TR

)
≥ 2κ(v)

(3.4)

is at least twice as large as the trimmed value.

Based on the theory above, the method given in Belomestny and Reiÿ (2006a) gives us estimates of(
σ2, γ, λ

)
by

σ̂2 :=

∫ U

−U
Re
(
ψ̃(u)

)
wUσ (u) du,

γ̂ := −σ̂2 +

∫ U

−U
Im
(
ψ̃(u)

)
wUγ (u) du,

λ̂ :=
σ̂2

2
+ γ̂ −

∫ U

−U
Re
(
ψ̃(u)

)
wUλ (u) du,

with the weight functions wUσ (u), wUγ and wUλ such that certain terms cancel in integrating ψ from −U
to U . To be precise, the conditions∫ 1

−1
u2w1

σ(u) du = −2,

∫ 1

−1
w1
σ(u) du = 0,∫ 1

−1
uw1

γ(u) du = 1,
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∫ 1

−1
u2w1

λ(u) du = 0,

∫ 1

−1
w1
λ(u) du = 1,

are imposed, where w1
ξ will be de�ned as an even function for ξ ∈ {σ, λ} and as an odd function for ξ = γ.

Moreover, it is necessary to de�ne

wUσ (u) = U−3w1
σ(u/U), wUγ (u) = U−2w1

γ(u/U), wUλ (u) = U−1w1
λ(u/U).

Note that these conditions on the weight functions are necessary to make. For example, the weight

function for σj needs to be multiplied by u2 and the integral of this product over an interval of length

2U should be a constant di�erent from 0. Since
∫ U
−U u

2 du is of the order U3, the weight function should

cancel this which thus implies it should be of the order U−3.

Furthermore, it is assumed that

F
(
w1
σ(u)/us

)
, F

(
w1
γ(u)/us

)
, F

(
w1
λ(u)/us

)
∈ L1(R).

which implies that the weight function divided by us are continuous and bounded. This can be translated

back to introduce the inequalities

∣∣wUσ (u)
∣∣ . U−(s+3)|u|s,

∣∣wUγ (u)
∣∣ . U−(s+2)|u|s,

∣∣wUλ (u)
∣∣ . U−(s+1)|u|s,

where a(u) . b(u) means there exists some constant C > 0 such that a(u) ≤ Cb(u) for all u. Next to the

estimators for the one dimensional parameters, an estimator for µ is implied by the de�nition of ψ.

µ̂(x) := F−1
[(
ψ̃(•) +

σ̂2

2
(• − i)2 − iγ̂(• − i) + λ̂

)
wUµ (•)

]
(x)

and an estimator for ν(x) will be de�ned by

ν̂(x) := F−1
[(
ψ̃(•+ i) +

σ̂2

2
(•)2 − iγ̂(•) + λ̂

)
wUν (•)

]
(x).

This estimator for the Lévy density at x is preferred over µ̂(x) ·exp(−x) since it provides a direct estimate

for ν(x) which leads to more stable results.

3.2 The inhomogeneous model

This section describes the model on which the estimation procedure of the Lévy triplet (σ2
j , γj , νj) between

two consecutive time points Tj and Tj+1 is based. To that end, suppose that option data with nmaturities

T1, . . . , Tn is available and let T0 = 0 and assume that the set of Lévy triplets that is associated with the

process Xt belongs to the class Gns (R, σmax, Tn), which is de�ned below, for a known R and σmax.

De�nition 4. For s ∈ N and R, σmax > 0 let Gns (R, σmax, Tn) denote the set of all sets of size n containing

all Lévy triplets T = (σ2
i , γi, νi)

n
i=1 satisfying

∀t ≥ 0 : E {exp(Xt)} = 1 ⇔ σ2
i

2
+ γi +

∫ ∞
−∞

(exp(x)− 1) νi(x) dx = 0 (3.5)

and

Ci := E {exp(2XTi)} <∞.
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Moreover, Ci ≤ R, µi is s-times (weakly) di�erentiable where s ∈ Z≥2, Ti ≤ Tn and

σi ∈ (0, σmax), |γi|, λi ∈ [0, R], max
0≤k≤s

∥∥∥µ(k)
i

∥∥∥
L2
≤ R,

∥∥∥µ(s)
i

∥∥∥
L∞
≤ R.

This de�nition invokes making a lot of di�erent assumptions. Some may seem logical while that may not

be the case for others. Therefore, the intuition and reasoning behind making these assumptions will be

given before the remaining part of the model is explained.

The condition from equation (3.5), that is imposed on the parameters, is also called the martingale

condition. This condition ensures that the exponential Lévy process induced by the Lévy triplet is a

martingale. The second assumption, i.e., Ci < ∞, is a technical assumption which guarantees that the

variance (or second moment) of the underlying stock price is �nite. The R and σmax are also introduced

for theoretical purposes since it may be the case that either one of Ci, σi, |γi|, λi, µ(k)
i becomes `too

large'. If one or more of these parameters become too big, it is impossible to construct a statistically

stable estimation method. In that case, there would be no guarantee that the argument we evaluate the

logarithm at is bounded from below by a positive constant. This causes either a statistically unstable

method or it introduces an extra bias term. Both are undesirable.

Also, note that it is possible to assume that µi is si times (weakly) di�erentiable. This, however, does

not impact the model much in the sense that it only a�ects the convergence rate of the bias. Moreover,

it does not matter for the convergence rate how smooth the previous µj for j = 1, . . . , i−1 are. However,

it should be noted that s plays a big role in the performance of the estimation method. It will later

be shown that s is the parameter that determines the optimal choice of the cuto� value U and thus

the optimal rate of the convergence in the estimation procedure. For practical purposes, if no further

information about the smoothness of µi is given, one can choose s = 2.

Let St denote the underlying asset price. It will be assumed that St comes from an exponential inhomo-

geneous Lévy process, i.e.,

St = S0 exp(rt+Xt),

with Xt an inhomogeneous Lévy process and r the risk-free interest rate. Note that it is thus assumed

that the discounted asset price is a martingale under the risk-neutral measure. De�ne Kj,m as the strike

price of the mth option with maturity Tj . Section 3.1 gives an estimator for the triplet (σ2
1 , γ1, ν1) using

only option data with maturity T1. Belomestny and Reiÿ (2006a) mention that whenever more data on

di�erent maturities is available, it is straightforward to extend the model. It is indeed straightforward to

modify the model to get better estimates for the parameters when di�erent maturities are used. However,

they are not extending it to inhomogeneous processes but they suggest to use a weighted average of the

multiple estimates. Therefore, it remains to estimate the next (n−1) triplets by modifying the framework

introduced in section 3.1.

The risk-neutral option price for a European call option is given by (Shreve, 2004, p. 218)

C(Kj,m, Tj) = e−rTjE
{

(STj −Kj,m)+
}

with z+ := max(0, z). Notice that the expectation is taken under the risk-neutral measure. Chapter

A. is devoted to explaining brie�y what the risk-neutral measure is and why the risk-neutral measure is

used. For more about the risk-neutral measure, one can read Shreve (2012) and Shreve (2004). In the

remaining part of this section and the upcoming chapters, the risk-neutral measure will always be used if

not stated otherwise. It is common to de�ne the log-forward moneyness xj,m to replace the strike price

Kj,m

xj,m := log(Kj,m/S0)− rTj .
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We reparametrize the function C to

C(Kj,m, Tj) = S0E
{(

eXTj − exj,m
)+}

=: C(xj,m, Tj)

For put options we have

P(xj,m, Tj) = S0E
{(

exj,m − eXTj
)+}

(Shreve, 2004, p. 163). Note that C(x, Tj), P(x, Tj) do not converge to 0 when x tends to −∞
and ∞, respectively. Hence, it makes no sense to take the Fourier transform of C or P . However,

limx→∞ C(x, Tj) = 0 = limx→−∞ P(x, Tj). Therefore, the following function for j = 1, 2, . . . , n is intro-

duced

Oj(x) :=

S
−1
0 C(x, Tj), x ≥ 0

S−10 P(x, Tj), x < 0.

In Belomestny and Reiÿ (2005) and Carr and Madan (1999), the following properties of Oj and ϕTj ,

de�ned in (2.1), are proven

Proposition 2. The following properties hold.

� For all x ∈ R, Oj(x) = S−10 Cj(x, Tj)− (1− ex)
+
.

� For all x ∈ R, Oj(x) ∈ [0, 1 ∧ ex].

� If Cα := E
{
eαXTj

}
is �nite for some α ≥ 1, then for all x ≥ 0, Oj(x) ≤ Cαe(1−α)x.

� At any x ∈ R\{0}, the function Oj is twice di�erentiable with
∥∥O′′j ∥∥L1(R) ≤ 3 and the �rst derivative

O′j has a jump of height −1 at 0.

� The Fourier transform of Oj satis�es for all v ∈ C with Im(v) ∈ [0, 1],

FOj(v) :=

∫ ∞
−∞
Oj(x)eivx dx =

1− ϕTj (v − i)
v(v − i)

.

The last relation, which is the most important, was �rst stated by Carr and Madan (1999) and this also

explains why it is chosen to use option prices in calibrating Lévy processes. For theoretical purposes and

easier notations, de�ne the following functions for j = 1, 2, . . . , n and k = 0, 1

ψkj (v) := (Tj − Tj−1)−1 log (1 + iv(1 + iv)FOj−k(v))

= (Tj − Tj−1)−1 log
(
ϕTj−k(v − i)

)
and

ψj(v) := ψ0
j (v)− ψ1

j (v).

Under the assumptions of the model and (2.2) ψj simpli�es to

ψj(v) =
1

Tj − Tj−1
log

(
ϕTj (v − i)
ϕTj−1

(v − i)

)
= −

σ2
j (v − i)2

2
+ iγj(v − i) +

∫ ∞
−∞

(
ei(v−i)x − 1

)
νj(x) dx

= −
σ2
j v

2

2
+ i(σ2

j + γj)v + (σ2
j /2 + γj − λj) +

∫ ∞
−∞

eivx · (exνj(x)) dx

= −
σ2
j v

2

2
+ i(σ2

j + γj)v + (σ2
j /2 + γj − λj) + Fµj(v).

Concluding, ψj is a quadratic polynomial plus the Fourier transform of µj . So, given an exact formula

for the option function, it is not too hard to �nd the exact Lévy triplet. However, the option function is
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not given in practical situations and only option data is available. This data is likely to be corrupted by

some noise and it is impossible to guarantee that always enough data would be available such that the

ψj function can be estimated properly since only a �xed amount of data is available.

3.2.1 The observations and the estimators

In practice, the true prices of options are not observed due to imperfections of the market and the bid-ask

spread. In theory, it is therefore assumed that the observed prices come from the following model

Yj,m = C(Kj,m, Tj) + ςj,mεj,m,

where εj,m is assumed to follow a sub-Gaussian distribution, i.e., the tail of the distribution εj,m is

dominated by a Gaussian tail. De�ne δj,m := S−10 ςj,m, then

Oj,m = S−10 C(Kj,m, Tj) + δj,mεj,m = Oj(xj,m) + δj,mεj,m.

The �rst theoretical assumption that is made, is that δj,m = δj(xj,m) for a certain Lη function δj with

η > 2. The assumption will be made intuitive in Chapter 4.

Another assumption that is made, is that the grid on logarithmic scale, i.e., {xj,m : m = 1, . . . N}, is
an equidistant grid. This assumption makes the calculations a lot easier without seriously a�ecting the

model. An estimator for Oj is now given by

Õj(x) := β0,j(x) +

N∑
m=1

Oj,mbj,m(x)

with bj,m(x) := Λ((x− xj,m)/∆j) with ∆j := |xj,m+1 − xj,m| = |xj,m − xj,m−1| and Λ(x) the triangular

function which is 0 at −1 and 1 and 1 at 0. It should be noted that for all limiting results, ∆j → 0.

Moreover, Aj := min(xj,N ,−xj,0)→∞.

Whilst estimating ψj , it could be that one has to evaluate the logarithm at an argument close to

0. A small error might then induce large statistical errors. Therefore in the estimation procedure, the

logarithm will be trimmed around 0. To be precise, de�ne

K(T, σ,R, v) :=
1

2
min

{
exp

(
−Tσ

2v2

2
− 2RT

)
, 1

}
and κ(v, T ) := K(T, σmax, R, v). (3.6)

Note that κ is decreasing in its �rst argument and that

j∏
r=1

2K(Tr − Tr−1, σr, R, v) ≥
j∏
r=1

exp

(
− (Tr − Tr−1)σ2

rv
2

2
− 2R(Tr − Tr−1)

)

= exp

(
−v

2

2

j∑
r=1

(Tr − Tr−1)σ2
r − 2R

j∑
r=1

(Tr − Tr−1)

)

≥ exp

(
−Tjσ

2
maxv

2

2
− 2RTj

)
= 2κ(v, Tj)

holds for all j = 1, 2, . . . , n. De�ne now the estimator for ψj(v) by

ψ̃j(v) := (Tj − Tj−1)−1
[
log≥κ(v,Tj)

(
ϕ̃Tj (v − i)

)
− log≥κ(v,Tj−1)

(
ϕ̃Tj−1

(v − i)
)]
. (3.7)
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The trimmed logarithm around κ > 0 is de�ned as

log≥κ(z) :=

log(z), if |z| ≥ κ

log(z/|z|), if |z| ≤ κ,

where the logarithm is taken such that ψ̃j is continuous with log(1) = 0. This estimator is asymptotically

well-de�ned and a proof can be found in section 10.1.

Now, de�ne µk(x) := exνk(x) for notational purposes and note that µk is positive. Moreover, recall

the martingale condition (3.5). Given this information, it is not di�cult to see that the trimmed value

does not a�ect the bias of the estimator for ψk. Indeed,∣∣∣∣ ϕTk(v − i)
ϕTk−1

(v − i)

∣∣∣∣ = |exp((Tk − Tk−1)ψk(v))|

=

∣∣∣∣exp

(
(Tk − Tk−1)

(
−σ

2
kv

2

2
+ i(σ2

k + γk)v +

(
σ2
k

2
+ γk − λk

)
+ Fµk(v)

))∣∣∣∣
= exp

(
− (Tk − Tk−1)σ2

kv
2

2
− (Tk − Tk−1)Fµk(0) + (Tk − Tk−1) Re(Fµk(v))

)
= exp

(
− (Tk − Tk−1)σ2

kv
2

2
− (Tk − Tk−1) ‖µk‖L1 + (Tk − Tk−1) Re(Fµk(v))

)
≥ exp

(
− (Tk − Tk−1)σ2

kv
2

2
− 2(Tk − Tk−1) ‖µk‖L1

)
≥ exp

(
− (Tk − Tk−1)σ2

kv
2

2
− 2(Tk − Tk−1)R

)
≥ 2K(Tk − Tk−1, σk, R, v).

(3.8)

It follows that

|ϕTk(v − i)| =
k∏

m=1

∣∣∣∣ ϕTm(v − i)
ϕTm−1

(v − i)

∣∣∣∣ ≥ k∏
m=1

(2K(Tm − Tm−1, σm, R, v) ≥ 2 · κ(v, Tk). (3.9)

is at least twice as large as the trimmed value.

Based on the theory above, we adapt the method by Belomestny and Reiÿ (2006a) to estimate
(
σ2
j , γj , λj

)
by

σ̂2
j :=

∫ Uj

−Uj
Re
(
ψ̃j(u)

)
wUjσj (u) du,

γ̂j := −σ̂2
j +

∫ Uj

−Uj
Im
(
ψ̃j(u)

)
wUjγj (u) du,

λ̂j :=
σ̂2
j

2
+ γ̂j −

∫ Uj

−Uj
Re
(
ψ̃j(u)

)
w
Uj
λj

(u) du,

with the weight functions w
Uj
σj (u), w

Uj
γj and w

Uj
λj

such that certain terms cancel in integrating ψj from

−Uj to Uj . To be precise, the conditions∫ 1

−1
u2w1

σj (u) du = −2,

∫ 1

−1
w1
σj (u) du = 0,∫ 1

−1
uw1

γj (u) du = 1,∫ 1

−1
u2w1

λj (u) du = 0,

∫ 1

−1
w1
λj (u) du = 1,

(3.10)

are imposed, where w1
ξ will be de�ned as an even function for ξ ∈ {σj , λj} and as an odd function for
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ξ = γj . Moreover, it is necessary to de�ne

wUjσj (u) = U−3j w1
σj (u/Uj), wUjγj (u) = U−2j w1

γj (u/Uj), w
Uj
λj

(u) = U−1j w1
λj (u/Uj).

For example, the weight function for σj needs to be multiplied by u2 and the integral of this product over

an interval of length 2Uj should be a constant di�erent from 0. Since
∫ Uj
−Uj u

2 du is of the order U3
j , the

weight function should cancel this which thus implies it should be of the order U−3j .

Furthermore, it is assumed that

F
(
w1
σj (u)/us

)
, F

(
w1
γj (u)/us

)
, F

(
w1
λj (u)/us

)
∈ L1(R).

which implies that the weight function divided by us are continuous and bounded. This can be translated

back to introduce the inequalities∣∣∣wUjσj (u)
∣∣∣ . U

−(s+3)
j |u|s,

∣∣∣wUjγj (u)
∣∣∣ . U−(s+2)|u|s,

∣∣∣wUjλj (u)
∣∣∣ . U−(s+1)|u|s,

where a(u) . b(u) means there exists some constant C > 0 such that a(u) ≤ Cb(u) for all u.

Next to the estimators for the one dimensional parameters, an estimator for µj is implied by the

de�nition of ψj . However, it is preferred to directly estimate νj(x) instead of using exp(−x)µ̂j(x) as an

estimator, because it leads to more stable results. Hence, by a simple manipulation of the above, the

estimator for νj(x) will be de�ned by

ν̂j(x) := F−1
[(

ψ̃j(•+ i) +
σ̂2
j

2
(•)2 − iγ̂j(•) + λ̂j

)
wUjνj (•)

]
(x),

where w
Uj
νj (u) = w1

νj (u/Uj). Moreover, w
Uj
νj (u) = w

Uj
νj (−u) for all u ∈ R and w

Uj
νj has support [−Uj , Uj ].

In particular, in the estimation procedure it is chosen to use the following weight functions, similar

to Söhl and Trabs (2014),

w1
σj (u) := c1 ·

(
(2s+ 1)u2s − (8s+ 12)u2s+2 + (12s+ 30)u2s+4

− (8s+ 32)u2s+6 + (2s+ 9)u2s+8
)
· 1{|u| ≤ 1}, (3.11)

w1
γj (u) := c2 ·

(
u2s+1 − 3u2s+3 + 3u2s+5 − u2s+7

)
· 1{|u| ≤ 1}, (3.12)

w1
λj (u) := c3 ·

(
(2s+ 3)u2s − (8s+ 20)u2s+2 + (12s+ 42)u2s+4

− (8s+ 36)u2s+6 + (2s+ 11)u2s+8
)
· 1{|u| ≤ 1}, (3.13)

w1
νj (u) :=


1, |u| ≤ 0.05,

exp

(
− exp(−(|u|−0.05)−2)

(|u|−1)2

)
, 0.05 < |u| < 1,

0, |u| ≥ 1

(3.14)

where the constants c1, c2, c3 are chosen such that the conditions on the weight functions given in (3.10)

are satis�ed.

Note that the exact choice of the weight functions does not have a big in�uence on the performance

of the estimation method since this function has the same role as a kernel in kernel density estimation,

where it is more important to pick the optimal bandwidth than choosing the best kernel.
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Chapter 4

Asymptotic normality

This chapter is centered around the main theoretical result of this research. Namely, that the estimators

for σ2
j , γj , λj and νj(x) are asymptotically Gaussian. From these results, it is clear that this particular

ordering of the parameters is also the ordering in terms of estimator performance which makes sense when

one investigates the de�nition of the estimators. Moreover, the optimal convergence rates are given.

Theorem 1. Let δj ∈ Lη(R) ∩ C∞(R) with η > 2. Moreover, let ∆j ‖δj‖2l2 . ‖δj‖2∞, e
−Aj . ∆j and

assume that the Lévy triplets of the process belong to Gns (R, σmax, Tn). De�ne

dj,j−k =
2 ‖δj−k‖2L2

(Tj − Tj−1)2

(
j−k∑
r=1

(Tr − Tr−1)σ2
r

)−2
exp

− 2

(
j−k∑
r=1

(Tr − Tr−1)

(
σ2
r

2
+ γr − λr

))
with dj,0 := 0 and

Cj :=
exp

(
−U2

j ·
∑j
i=1(Ti − Ti−1)σ2

i /2
)

√
dj,j∆j + dj,j−1∆j−1 exp

(
−U2

j · (Tj − Tj−1)σ2
j

) .
If Uj is chosen such that for all j = 1, 2, . . . , n

∆jU
4
j logUj exp

(
U2
j

(
j∑
i=1

(Ti − Ti−1)σ2
i

))
→ 0, (4.1)

for all j = 2, 3, . . . , n

∆2
j−1

∆j
U4
j exp

U2
j

(
j−1∑
i=1

(Ti − Ti−1)σ2
i − (Tj − Tj−1)σ2

j

)→ 0 (4.2)

and for s > 2

U
2(s+1)
j ·

∆j exp

U2
j

(
j∑
i=1

(Ti − Ti−1)σ2
i

)+ ∆j−1 exp

U2
j

(
j−1∑
i=1

(Ti − Ti−1)σ2
i

)
→∞, (4.3)
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then

Σ := U2
j · Cj ·

(
σ̂2
j − σ2

j

) D−→ |w1
σj (1)| · Z1

Γ := Uj · Cj · (γ̂j − γj)
D−→ |w1

γj (1)| · Z2

Λ := Cj ·
(
λ̂j − λj

)
D−→ |w1

λj (1)| · Z3

N(x) := U−1j · Cj · (ν̂j(x)− νj(x))
D−→ (2π)−1|w1

νj (1)| · Z4

for all j = 1, 2, . . . , n where Zi ∼ N (0, 1) for i = 1, 2, 3, 4.

First of all, it should be noted that the weight functions should not equal 0 at the cuto� value 1 for

the asymptotic normality result to make sense. Thus, other weight functions than (3.11)-(3.14) should

be used and one can use for example the proposed weight functions in Belomestny and Reiÿ (2006b).

However, this result tells us that if it is chosen to use a weight function which equals 0 at the cuto� value

1, then the convergence rate of the estimators would be much faster and that is why the functions as in

(3.11)-(3.14) are used in estimating the parameters.

This theorem invokes taking a lot of assumptions. First, it is assumed that δ ∈ Lη for η > 2.

η ≥ 2 is necessary for the L2 norm of δ to exist, which is necessary for the asymptotic variance to

exist. The assumption that η needs to be strictly bigger than 2 is necessary in showing asymptotic

normality. The assumption stated in (4.1) is made to ensure that the estimator for ψj is asymptotically

well-de�ned. Moreover, a slightly weaker version, without logUj , of equation (4.1) and (4.2) guarantee

that the remainder term in a linearization of the stochastic error converges to 0 in probability. Moreover,

(4.3) makes sure that the bias terms of the estimators converge to 0.

Since the full proof of this theorem is elaborate, it will be given in detail for σj , whereas the di�erences

in the proofs with γj and λj will be noticed at the relevant points. For νj(x), the most interesting part,

the computation of the variance, can be found in the Appendix. In this chapter, only a brief outline of

the proof will be given and for the exact details, the reader is referred to Chapter 10.

First, Σ is split up into the bias and the stochastic error. The bias term is estimated as tight as possible

and equation (4.3) makes sure that the bias tends to 0 as Uj tends to in�nity. The stochastic part of Σ

will then be split up into a linearized error term and a remainder. It is proven that under the conditions

of the theorem, the remainder converges to 0 in probability, which essentially implies that it does not

play a role in the limit distribution of Σ. Finally, it is shown that the linear error term converges to a

normal distribution. To that end, the asymptotic variance is calculated and the Lyapunov condition of

the Lindeberg-Feller central limit theorem is veri�ed.

From the above, one could construct (100 − α)% asymptotic con�dence intervals for the parameters

using Slutsky's theorem. However, it was found that using the asymptotic con�dence intervals does not

lead to satisfying coverage probabilities. This is due to the estimation of the �nite sample by its limit.

That is also the reason why this is not included in the report. A di�erent approach in constructing

(100− α)% con�dence intervals is based on the �nite sample variance and it turns out that this method

works particularly well in terms of coverage probabilities. This will be explained in the next chapter.

4.1 The optimal convergence rates

Since it is impossible to ensure that condition (4.3) holds for all triplets in Gs(R, σmax), the bias will

dominate the stochastic error in the estimation process. Therefore the convergence rates are determined

by the convergence rates of the bias. Proposition 5 states thus the rate of convergence for σj if the cuto�
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value Uj is replaced by the optimal cuto� value for all triplets in Gs(R, σmax). It turns out that the

following theorem holds

Theorem 2. Let ∆j−1/∆j be bounded as the cuto� tends to in�nity. De�ne

Uσmax := σ−1max

√
2 log ∆

−1/2
j /Tj , (4.4)

then Uσmax
is the optimal choice of the cuto� value in terms of the convergence rates of the estimators

for all Lévy triplets (σ2
j , γj , νj) in Gs(R, σmax). Moreover, the convergence rates are determined by the

bias and are given by

E
∣∣σ̂2
j − σ2

j

∣∣ . | log ∆j |−(s+3)/2,

E |γ̂j − γj | . | log ∆j |−(s+2)/2,

E
∣∣∣λ̂j − λj∣∣∣ . | log ∆j |−(s+1)/2,

E |ν̂j(x0)− νj(x0)| . | log ∆j |−s/2.

The proof of this theorem is relatively easy given the propositions from Chapter 10. and that is why it

is chosen to give the proof here.

Proof. (4.4) guarantees that (4.1) holds. Indeed,

∆j exp

(
U2
σmax

(
j∑
i=1

(Ti − Ti−1)σ2
i

))
= ∆

1−
∑j
i=1

(Ti−Ti−1)σ2i
Tjσ

2
max

j = ∆

∑j
i=1

(Ti−Ti−1)(σ2max−σ
2
i )

Tjσ
2
max

j .

Since, σmax > σi for all i, this term converges to 0 with a polynomial rate in ∆j . Thus, whenever this

is multiplied by U4
σmax

logUσmax , this still converges to 0 since this particular term converges to in�nity

only at a logarithmic rate in ∆j . Moreover, for (4.2) to hold, it is su�cient if

∆2
j−1

∆2
j

·∆
1−

∑j−1
i=1

(Ti−Ti−1)σ2i−(Tj−Tj−1)σ2j

Tjσ
2
max

j =
∆2
j−1

∆2
j

·∆

∑j−1
i=1

(Ti−Ti−1)(σ2max−σ
2
i )+(Tj−Tj−1)(σ2max+σ2j)

Tjσ
2
max

j → 0.

Note that for this to be true no particular strong assumption need to be made. The assumption

∆j/∆j−1 ≤ C is su�cient for this limit relation to hold.

Note that it is now guaranteed that the scaled remainder term converges to 0 by Proposition 6.

Moreover, the scaled bias term converges to ∞ since assumption (4.3) doesn't hold. That is the reason

why the bias the stochastic error dominates.

(4.4), Proposition 5 and the conclusion that the bias the stochastic error dominates provide now the

convergence rate of σ2
j . Indeed,

E
∣∣σ̂2
j − σ2

j

∣∣ . U−(s+3)
σmax

=

(
σ−1max

√
2 log ∆

−1/2
j /Tj

)−(s+3)

. | log ∆j |−(s+3)/2.

Similar to the statement below Proposition 5, the argument for γj and λj are similar. The convergence

rate of the bias of νj(x0) is given in equation (C.1). Plugging in (4.4) yields the result for νj(x0).

Finally, the choice Uσmax
in (4.4) is optimal since if it is chosen slightly bigger, it will not be guaranteed

that (4.1) holds, and if it is chosen slightly smaller, the bound on the bias term is bigger which makes it

less optimal.
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Chapter 5

The �nite sample variance

In this chapter, the method of constructing con�dence intervals via the �nite sample variance method is

used. In Söhl and Trabs (2014), this has been done for the continuous case. Although both derivations

are similar, it is more straightforward in the discrete case.

The idea of the method is to estimate the variance of the stochastic error. This is done similarly to

the asymptotic analysis before with respect to the fact that this method also depends on the variance of

the linear stochastic error term. The bias and the remainder term are thus neglected in this method. In

the next chapter, it is argued that if the Lévy density has a sharp peak, there is a signi�cant negative

bias around this peak for the estimator of νj . This method doesn't take that into account because it is

very di�cult to track the bias explicitly. This could, however, be an interesting further research topic.

So, because of the similarities with the asymptotic analysis earlier, the method starts in a similar

fashion. However, the linear term will not be estimated in the limit but rather in the �nite case. First,

rewrite σ2
j and compare to (10.2)

σ̂2
j − σ2

j ≈
∫ Uj

−Uj
Re
(
ψ̃j(u)− ψj(u)

)
wUjσj (u) du.

As before, the idea is to linearize the logarithm ψ̃j(u)− ψj(u) as

ψ̃j(u)− ψj(u) ≈ L0
j (u)− L1

j (u)

with

Lkj (u) =
1

Tj − Tj−1
·
ϕTj−k(u− i)− ϕ̃Tj−k(u− i)

ϕTj−k(u− i)

Recall Õj(x) =
∑N
r=1(Oj(xj,r) + εj,r)δj,rbj,r(x) and thus

FÕj(x)− FOj(x) ≈
N∑
r=1

δj,rFbj,r(x)εj,r.

The linearization error of Oj(x) is again left out of the equation, because it was found to be negligible

according to Proposition 4. Moreover, recall

Fbj,r(u) =

∫
R

exp(iux)bj,r(x) dx ≈ (xj,r+1 − xj,r−1)/2 · exp(iuxj,r) = ∆j · exp(iuxj,r).
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Hence, we approximate

ψ̃0
j (u)− ψ0

j (u) ≈ 1

Tj − Tj−1
· iu(1 + iu)

ϕTj (u− i)

N∑
r=1

δj,r∆j exp(iuxj,r)εj,r,

ψ̃1
j (u)− ψ1

j (u) ≈ 1

Tj − Tj−1
· iu(1 + iu)

ϕTj−1
(u− i)

N∑
r=1

δj−1,r∆j−1 exp(xj−1,r)εj−1,r.

The following convenient function is introduced

fkσj (u) := wUjσj (u)iu(1 + iu)/((Tj − Tj−1)ϕTj−k(u− i)) (5.1)

such that we obtain∫ Uj

−Uj
Re
(
L0
j (u)

)
wUjσj (u) du ≈

∫ Uj

−Uj
Re

(
1

Tj − Tj−1
· iu(1 + iu)

ϕTj (u− i)

N∑
r=1

δj,r∆j exp(iuxj,r)εj,r

)
wUjσj (u) du

=

∫ Uj

−Uj
Re

(
f0σj (u) ·

N∑
r=1

δj,r exp(iuxj,r)∆jεj,r

)
du

= 2π

N∑
r=1

δj,rεj,r Re
(
F−1f0σj (−xj,r)

)
∆j .

Similarly,

∫ Uj

−Uj
Re
(
L1
j (u)

)
wUjσj (u) du ≈ 2π

N∑
r=1

δj−1(xj−1,r)εj−1,r Re
(
F−1f1σj (−xj−1,r)

)
∆j−1.

Thus, an estimation for the variance of the estimator of the square of the volatility σ2
j is given by

s2σ2
j

:= 4π2
N∑
r=1

(
δj(xj,r) Re

(
F−1f0σj (−xj,r)

)
∆j

)2
+
(
δj−1(xj−1,r) Re

(
F−1f1σj (−xj−1,r)

)
∆j−1

)2
.

The (100−α)% con�dence intervals are now de�ned by
(
σ̂2
j + zα/2 · ŝσ2

j
, σ̂2
j + z100−α/2 · ŝσ2

j

)
where zp is

the pth quantile of a standard normal distribution and where ϕ̃Tj is used in fkσj (u) instead of ϕTj .

We de�ne fkγj and fkλj by replacing the weight function w
Uj
σj (u) in (5.1) by w

Uj
γj (u) and w

Uj
λj

(u),

repectively. This gives the following results for γj and λj where the derivation is similar to the one for

σj and thus will be left to the reader.

s2γj := 4π2
N∑
r=1

(
−Re

(
F−1f0σj (−xj,r)

)
+ Im

(
F−1f0γj (−xj,r)

))2
δ2j,r∆

2
j

+ 4π2
N∑
r=1

(
−Re

(
F−1f1σj (−xj−1,r)

)
+ Im

(
F−1f0γj (−xj−1,r)

))2
δ2j−1,r∆

2
j−1

and

s2λj := 4π2
N∑
i=1

(
−Re

(
1

2
F−1f0σj (−xj,r) + F−1f0λj (−xj,r)

)
+ Im

(
F−1f0γj (−xj,r)

))2

δ2j,r∆
2
j

+ 4π2
N∑
i=1

(
−Re

(
1

2
F−1f1σj (−xj−1,r) + F−1f1λj (−xj−1,r)

)
+ Im

(
F−1f1γj (−xj−1,r)

))2

δ2j−1,r∆
2
j−1.
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The computation of the variance of the estimator for νj(x0) works a little bit di�erent and the expressions

become longer. That is why g
(k)
Uj

is introduced for k = 0, 1, 2

g
(k)
Uj

(x0) := F−1
[
uk · wUjνj (u)

]
(x0).

This function will be approached numerically since it is impossible to �nd g
(k)
Uj

(x0) in closed form if w
Uj
νj (u)

is chosen as in (3.14). Now, de�ne

fkνj (u) := −
w
Uj
νj (u)u(u+ i)

(Tj − Tj−1)ϕTj−k(u)

such that the expression for the variance of the estimator of νj at x0 can be written as

s2νj(x0)
:= 4π2

N∑
r=1

(
e−xj,r

2π
F−1f0νj (x0 − xj,r)

+ Re
(
F−1f0σj (−xj,r)

)
·
(

1

2
g
(2)
Uj

(x0) + ig
(1)
Uj

(x0)− 1

2
g
(0)
U (x0)

)
+ Im

(
F−1f0γj (−xj,r)

)(
−ig(1)Uj (x0) + g

(0)
Uj

(x0)
)

− Re
(
F−1f0λj (−xj,r)

)
g
(0)
Uj

(x0)

)2

δ2j,r∆
2
j

+
4π2

N

N∑
r=1

(
e−xj−1,r

2π
F−1f1νj (x0 − xj−1,r)

+ Re
(
F−1f1σj (−xj−1,r)

)
·
(

1

2
g
(2)
Uj

(x0) + ig
(1)
Uj

(x0)− 1

2
g
(0)
U (x0)

)
+ Im

(
F−1f1γj (−xj−1,r)

)(
−ig(1)Uj (x0) + g

(0)
Uj

(x0)
)

− Re
(
F−1f1λj (−xj−1,r)

)
g
(0)
Uj

(x0)

)2

δ2j−1,r∆
2
j−1.

The derivation is similar to Söhl and Trabs (2014) and is therefore left to the reader.
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Chapter 6

Simulations

In this chapter, the model is tested for simulated data. For the purpose of showing the properties and

the performance of the inhomogeneous model, data is simulated from the Merton model with option data

available at times T1 and T2. In this model, the Lévy triplet is given by (σ2, γ, ν) where ν ∼ λ ·N (µ, δ2)

The objective of the simulation will be to evaluate the performance of the model in estimating the Lévy

triplet between T1 and T2 in comparison to the performance in estimating the Lévy triplet between 0 and

T1. First, however, the model parameters should be chosen adequately.

These parameters include:

1. The amount of available option data

2. The noise level in the option prices

3. The time to maturity, the interest rate, the smoothness parameter s, and the Merton model pa-

rameters

4. The choice of the weight functions w1
σj (u), w1

γj (u) and w1
γj (u)

To represent a realistic model, the amount of available option data is chosen to be 100 because it is

realistic to have 100 di�erent call and put options at the same maturity. Moreover, the noise level in the

option prices is set to 5% relative to the value of the option function.

The times to maturity for the options are chosen to be T1 = 1 month and T2 = 2 months, the interest

rate r is chosen to be 6%, the smoothness parameter s will be chosen to be 2, and the Merton model

parameters of the time period [0, T1] are �xed and chosen to be σ1 = 0.2, λ1 = 5, ν1 = N
(
−0.3, 0.32

)
,

and γ1 = 1.11 where the latter is implied by the martingale condition. Moreover, the parameters of the

time period [T1, T2] will vary according to σ2 ∈ {0.1, 0.2, 0.3}, λ2 ∈ {3, 5, 7}, Var ν2 ∈
{

0.22, 0.32, 0.52
}
,

and γ2 is again implied by the martingale condition (3.5). Not every combination is tested because that

would mean 27 di�erent results would have to be included. The default of the second parameter will

be given by the second value in the set as given above and a simulation includes varying at most one

parameter such that only 7 di�erent types of simulations are performed. Note, that these parameters

make sure that the trimmed value κ does not become too small. In particular, huge statistical errors are

avoided.

The weight functions that are used in the simulations will be given by the formulas as in (3.11)-

(3.14). As argued before, the exact choice of the weight functions does not in�uence the estimation

much. However, as was also argued before, the value at the cuto� matters, as well as some smoothness

assumptions imposed on the weight functions. These weight functions are chosen such that the value

and its �rst two derivatives at the cuto� are equal to 0, making it a smooth function and therefore more
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optimal than, for example, the weight functions proposed by Belomestny and Reiÿ (2006b) which aren't

continuous.

Finally, an up-to-now undiscussed topic should be addressed, namely, how the cuto� U should be chosen.

It should be noted that the main focus of this research was not to �nd a good method to choose U .

However, to see whether the simulations give good results, it is necessary to invoke a method to choose

the cuto� U . Three methods described below are implemented to �nd a value for the cuto� U . The

oracle method is used in the simulations.

6.1 The oracle method

The oracle method is one of the best methods when one starts doing simulations. The idea of the method

is to choose the U that gives the best parameter estimates in terms of the L1-distance between the

estimated parameters and the real parameters. In the simulations, we used the following function for the

oracle method

UO = argmin
U>0

{
|σ̂(U)− σ|+ |γ̂(U)− γ|+

∣∣∣λ̂(U)− λ
∣∣∣} .

The major drawback of this method is that it is not applicable to real-world applications. However, it

does provide in some sense a lower bound of what we could expect in an ideal situation.

6.2 The �at method

The �at method is a method that tries to �nd the �attest region for all estimates of the parameters.

In theory, every value for the cuto� U should give a good estimation for the parameters. Therefore, it

makes sense that whenever a few values of U in a row give similar parameter estimates the estimate is

better than whenever a few values of U in a row that do not give similar values. Moreover, Bauer and

Reiÿ (2008) give arguments why this method works well in practice. We used the following function for

the �at method

UF = argmin
U>0

m∑
i=1

{|σ̂(U + (i−m/2)x)− σ̂(U + (i−m/2− 1)x)|}

for some x > 0. This x will be chosen as small as possible as the simulations allow and m is heuristically

chosen to be 5.

6.3 The PLS method

The PLS, partial least squares, method is a method that �nds the best Lévy triplet such that its implied

option function ÔU is close to the estimated option function Õ. We de�ned it to be equal to the L2-

distance

UP = argmin
U>0

∫ ∞
−∞

(
ÔU (x)− Õ(x)

)2
dx.

6.4 Results

To assess the performance of the model in the simulations, the oracle method is chosen to determine the

cuto� value U . In that way, the error is minimized and it is shown how well the model behaves in the

best case scenario. In Figure 6.1 the option functions O1 and O2 under the Merton model de�ned by
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the default parameters, as described above, are plotted against the log-forward moneyness. Moreover,

the simulated noisy option prices are plotted such that a 1% noise level is visualized. Based on these

observations, the model is estimated and the results of the simulations are plotted in Figures 6.2-6.15.
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Figure 6.1: The option functions O1 and O2 and the simulated option function values under the Merton
model de�ned by the default parameters plotted for maturity T1 = 1 month and for maturity T2 = 2
months.

From the simulations, the following conclusions are drawn. First of all, ψ2(v) is estimated quite well for

|v| ≤ 20 and that it is not a good idea to choose the cuto� value much higher than 20 in these kinds of

models. This is explained by the de�nition of ψ2 which involves taking a logarithm of a characteristic

function. The characteristic function converges to 0 as |u| tends to in�nity such that small errors lead to

big ones. Since it is desirable to choose the value of U as high as possible, it is therefore suggested that

a cuto� value of approximately 20 is optimal.

Secondly, the estimate of ν2 is generally better when the variance is higher because the estimate of

ν2 is generally a smooth version of ν2. This makes it particularly di�cult to estimate steep peaks well

which can be viewed in almost all �gures where the variance of the jump distribution is assumed to be

0.32 or less. In particular, Figure 6.7, where the variance has been set to 0.22, the method completely

misses the peak of the distribution due to the smoothing.
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Figure 6.2: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.1, λ2 = 5 and Var ν2 = 0.32.
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Figure 6.3: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.1,
λ2 = 5 and Var ν2 = 0.32. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.
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Figure 6.4: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.2, λ2 = 3 and Var ν2 = 0.32.
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Figure 6.5: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.2,
λ2 = 3 and Var ν2 = 0.32. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.
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Figure 6.6: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.2, λ2 = 5 and Var ν2 = 0.22.
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Figure 6.7: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.2,
λ2 = 5 and Var ν2 = 0.22. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.
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Figure 6.8: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.2, λ2 = 5 and Var ν2 = 0.32.
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Figure 6.9: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.2,
λ2 = 5 and Var ν2 = 0.32. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.
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Figure 6.10: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.2, λ2 = 5 and Var ν2 = 0.52.
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Figure 6.11: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.2,
λ2 = 5 and Var ν2 = 0.52. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.
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Figure 6.12: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.2, λ2 = 7 and Var ν2 = 0.32.
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Figure 6.13: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.2,
λ2 = 7 and Var ν2 = 0.32. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.

40



-40 -20 0 20 40

v

-80

-60

-40

-20

0

20

R
e(

2
)

The real part of 
2
 and its estimate

2

Estimated 
2

-40 -20 0 20 40

v

-50

0

50

Im
(

2
)

The imaginary part of 
2
 and its estimate

2

Estimated 
2

Figure 6.14: Estimate of ψ2(v) as a function of v of one simulation under the Merton model implied by
σ2 = 0.3, λ2 = 5 and Var ν2 = 0.32.
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Figure 6.15: Estimates of the parameters of one simulation under the Merton model implied by σ2 = 0.3,
λ2 = 5 and Var ν2 = 0.32. The optimal cuto� value U2 according to the oracle method is plotted as
vertical line.
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To assess the performance of the �nite sample variance method in practice, it is not allowed to pick the

cuto� value U according to the oracle method since that will in�uence the results heavily. Moreover, that

is not how that particular model was built. In this case, it is thus necessary to pick a �xed U . Based

on the simulations, it is not an unreasonable choice to let U be equal to 20. In Table 6.1, one can �nd

the coverage probabilities of the con�dence intervals which are constructed in section 5 in estimating the

Merton model implied by the default parameters de�ned above.

Moreover, in Figures 6.16-6.17 the 95% pointwise con�dence intervals for ν2 are plotted where the

cuto� value U is chosen to be approximately 10. The �rst �gure suggests that the con�dence interval

method does not work very good since it is signi�cantly wrong around the peak. Moreover, t also just

misses to cover the curve between (−0.9,−0.7) ∪ (0.1, 0.2) ∪ (1.4, 1.8). The negative bias around the

mode is due to the smoothing in the estimation process and cannot be avoided. Moreover, it is very hard

to track this error. The bump around 1.6 comes from the estimation procedure. The estimate for the

density is the inverse of a Fourier transform and thus it will oscillate around 0 which sometimes cause

these kinds of bumps. The other errors are explained by other �aws in the model.

In the other �gure, the peak of the density is less sharp, which makes the estimator perform better, at

least around the mode. Unfortunately, this pointwise con�dence interval also doesn't cover the complete

density. However, it only misses approximately 5% of the density over the area (−2, 2) which is reasonable

since one should note that this is not a uniform con�dence interval.

It turns out that, when the peak of the Lévy density is too sharp, the bias can in�uence the model

signi�cantly and the con�dence intervals may become useless. In theory, one can �nd an exact upper

bound for the convergence rate of the bias since the measure µj is known. So, it might be theoretically

possible to incorporate the bias if the goal is to cover the complete function. However, this is impossible

for any application since the in�nity norm of the sth derivative of the measure µj is unknown. Therefore

incorporating the bias in con�dence intervals will not be considered.

σ2
2 γ2 λ2

50% 60.8% 56.8% 57.5%

95% 99.1% 98.8% 98.8%

Table 6.1: Coverage probabilities of 50% and 95% con�dence intervals constructed using the �nite sample
variance method. The probabilities are calculated via a Monte Carlo simulation study using 1000 Monte
Carlo iterations.
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Figure 6.16: The estimate of ν2 is plotted with its 95% pointwise con�dence intervals. Moreover, the true
ν2 is also plotted in this �gure to show the performance of the con�dence intervals.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2
(x

)

Levy density estimate

estimated 
2

95% confidence

2

Figure 6.17: The estimate of ν2 is plotted with its 95% pointwise con�dence intervals. Moreover, the true
ν2 is also plotted in this �gure to show the performance of the con�dence intervals.
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Chapter 7

Applications

Option data from the S&P 500 index is collected. The date from which the data is collected is January 5,

2016 and the data can be found at https://www.historicaloptiondata.com/content/sample-files-0.

3 di�erent maturities of the options are investigated, 15 January 2016, 19 February 2016, and 18 March

2016. These maturities will be referred to with T1, T2, and T3, respectively. Moreover, T0 will be de�ned

as January 5, 2016, the date of collection. To construct the con�dence intervals, it is assumed that

δj(x) = 0.01Oj(x), similar to (Cont and Tankov, 2004a, p. 439) and the smoothness parameter s is set

equal to 2.
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Figure 7.1: The option function values of the S&P 500 index.

From Figure 7.1, it appears that a lot more put options with a relatively small strike price are sold than

call option with a relatively high strike price. This is due to the risk-averseness of investors. If the index

drops a lot, the put options with low strike prices provide an insurance to some extent to investors.

To compare the homogeneous model to the inhomogeneous model, the results of the homogeneous

model with the third maturity, i.e., 18 March 2016, are presented below and below those results, the

results of the inhomogeneous model are presented. The �gure structure of the plots of the estimates

of the Lévy parameters of the inhomogeneous Lévy process, i.e., Figures 7.4-7.7, corresponding to the

maturities is given by the matrix (
T1 T2

T3

)
.
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Figure 7.2: Estimates of the Lévy density under the assumption of homogeneity on [T0, T3] including a
95% pointwise con�dence level of the S&P 500 index where the cuto� U is chosen using the �at method.
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Figure 7.3: Estimates of the parameters of the Lévy process under the assumption of homogeneity on
[T0, T3] of the S&P 500 index where the cuto� U is chosen using the �at method.
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Figure 7.4: Estimates of the Lévy density under the assumption of homogeneity on [T0, T1], [T1, T2] and
[T2, T3] including a 95% pointwise con�dence level of the S&P 500 index where the cuto� U is chosen
using the �at method.
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Figure 7.5: Estimates of the volatility parameter of the Lévy model under the assumption of homogeneity
on [T0, T1], [T1, T2] and [T2, T3] of the S&P 500 index where the cuto� U is chosen using the �at method.
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Figure 7.6: Estimates of the drift parameter of the Lévy model under the assumption of homogeneity on
[T0, T1], [T1, T2] and [T2, T3] of the S&P 500 index where the cuto� U is chosen using the �at method.
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Figure 7.7: Estimates of the intensity of the Lévy model under the assumption of homogeneity on [T0, T1],
[T1, T2] and [T2, T3] of the S&P 500 index where the cuto� U is chosen using the �at method.

From the �gures above and the tables displayed below, it is clear that the inhomogeneous Lévy process

gives signi�cantly di�erent results when compared with the homogeneous Lévy process. This shows that

assuming homogeneity might indeed be wrong. For example, the intersection of the 95% con�dence

intervals is disjoint when comparing the estimators of the parameters from di�erent time intervals. Also

when comparing the parameters of the inhomogeneous Lévy model with the homogeneous model, there

is no overlap in the con�dence intervals. Moreover, the Lévy densities for [0, T1], [T1, T2] and [T2, T3] are

also signi�cantly di�erent from each other and from the estimated Lévy density under the assumption
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that the process is homogeneous.

This does not necessarily mean that we are allowed to reject the homogeneity premise but it does give

veri�cation to some extent that this premise is wrong. However, to conclude that such a statement is

wrong, one should of course perform a certain hypothesis test. A possible approach is explained in more

detail in the next chapter.

σ2 γ λ

p0.025 0.0592 0.1222 0.5291

p0.975 0.0606 0.1236 0.5416

Table 7.1: 95% con�dence intervals constructed using the �nite sample variance method for the param-
eters of the underlying process of the S&P 500 index under the homogeneous Lévy assumption. The
con�dence intervals for the parameters are given by (p0.025, p0.975).

σ2
1 σ2

2 σ2
3 γ1 γ2 γ3 λ1 λ2 λ3

p0.025 0.0319 0.0232 0.0162 0.0044 0.0408 0.0701 0.0651 0.1632 0.3033

p0.975 0.0326 0.0239 0.0179 0.0049 0.0414 0.0717 0.0673 0.1698 0.3182

Table 7.2: 95% con�dence intervals constructed using the �nite sample variance method for the param-
eters of the underlying process of the S&P 500 index under the inhomogeneous Lévy assumption. The
con�dence intervals for the parameters are given by (p0.025, p0.975).
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Chapter 8

Discussion and further research

In this chapter, possible extensions of this research are discussed.

In the simulations only the inhomogeneous Merton model is used for testing the performance of the

method. Of course, there are a lot more interesting Lévy models that could be the subject of study. For

example, the double exponential jump-di�usion model described by Kou (2002) is interesting since the

Lévy density of this model has a very sharp peak. Moreover, it is interesting to study the performance

of the model when the Lévy process follows a mixture of di�erent Lévy processes, for example, the

Lévy process could follow a Merton model on [0, T1] and a double exponential jump-di�usional model on

[T1, T2].

In the construction of the con�dence intervals using the �nite sample variance method, sharp peaks

of the Lévy density are not estimated well because of the intermediate smoothing in the estimation

procedure which smooths the peak of the Lévy density. It is interesting to investigate if the sharp peaks

can be captured by di�erent con�dence intervals if, for example, the bias term is taken into account.

Moreover, as a rule of thumb the option function error δj has been set equal to 1% of Oj , similar to

(Cont and Tankov, 2004a, p. 439). It might give better con�dence estimates if one estimates δj using

regression techniques. Another possibility is to assume that δj is proportional to Oj and estimate the

L2-norm of δj by the test statistic of the PLS method, i.e.,

∫ Uj

−Uj

(
Õj(x)−Oj(x)

)2
dx ≈

∫ Uj

−Uj

(
Õj(x)−Olj(x)

)2
dx =

∫ Uj

−Uj

(
N∑
r=1

εj,rδj(xj,r)bj,r(x)

)2

dx

≈
∫ Uj

−Uj

N∑
r=1

δj(xj,r)
2bj,r(x)2 dx =

N∑
r=1

δj(xj,r)
2

∫ xj+1,r

xj−1,r

bj,r(x)2 dx

=

N∑
r=1

δj(xj,r)
2 · 2∆j

3
≈ 2

3
‖δj‖2L2(R)

where in step one, we estimated the option function Oj by its linearization. In the second approximation,

the random variable is estimated by its expectation. In the end, the summation is approximated by its

limit as Uj tends to∞. This also provides a direct estimate of the function δj . It should be note, however,

that the approximation steps should be dealt with more rigorously if one wants to use this approximation.

One di�erent topic that could be studied in further research is the construction of hypothesis tests for

testing whether or not the process is inhomogeneous on [Tj , Tj+2].

Of course, one could estimate the Lévy triplets on [Tj , Tj+1] and [Tj+1, Tj+2] separately without wor-

rying about possible homogeneity. On one hand, it gives better results in general when inhomogeneity is
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assumed. However, when in a perfect world, the process actually is homogeneous on [Tj , Tj+2], better es-

timation results are achieved when all three (or more) maturities Tj , Tj+1, Tj+2 are used in the estimation

process of the corresponding Lévy triplet.

In the application of the model, both the inhomogeneous and the homogeneous model are �tted in the

same application. Parameter estimates turned out to be completely di�erent, however, it might be the case

that both models produce similar results in di�erent applications of the model and that the homogeneous

model produces more stable results, for example. To test this, one could calculate the implied option

functions and compare the di�erence of the implied option functions with the estimated option function

from the data. From there, one could perform a bootstrap to determine p-values. Another possibility

would be to use di�erent derivatives and investigate the di�erences with these derivatives.
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Chapter 9

Conclusion

In this report, estimators for inhomogeneous Lévy processes are developed and extensively studied. It

has been shown that the estimators are asymptotically normal, optimal convergence rates are determined

and theoretic con�dence intervals are constructed. Moreover, the model is applied to simulations from

an inhomogeneous Merton model and to the S&P 500 index.

It turned out from the simulations that the asymptotic normality result shouldn't be applied to

determine con�dence intervals. However, the result isn't useless since from the statement the optimal

convergence rates of the estimators are determined. Moreover, it wasn't necessary to get the con�dence

intervals from the asymptotic normality result since a di�erent approach based on the �nite sample

variance turned out to work pretty well in terms of coverage probabilities. This worked better since it

was based on the direct estimation of the variance of the estimators instead of using a limiting result.

From the simulations of the inhomogeneous Merton model, it was clear that the cuto� value shouldn't

be chosen to high due to large stochastic and numerical errors as was expected from the model.

Moreover, it was found that the method had a lot of di�culty in estimating sharp peaks of the Lévy

density. This was explained by the Fourier techniques in the method which essentially smoothens the

density causing a (signi�cant) negative bias around the mode of the density. This negative bias also

sometimes invalidates the pointwise con�dence intervals around this area when the actual peak is too

sharp. It is suggested that this problem might lead to an interesting further research topic.

Finally, the application of the model to the S&P 500 stock agrees with the questionability of the

homogeneity assumption. Indeed, signi�cantly di�erent results are found for di�erent time frames. How-

ever, to actually reject the premise, it is necessary to perform a hypothesis test or something similar. This

would also be a very interesting new research topic that is induced by the introduction of inhomogeneous

Lévy processes.
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Chapter 10

Proofs

10.1 The estimator ψ̃j for the function ψj

In order to ensure that the estimation procedure works, it is necessary to check whether the estimator

for ψj is well-de�ned, i.e., that P(ϕ̃Tj (u − i) = 0) = 0. This turns out to be asymptotically true under

the assumption that the error distribution is sub-Gaussian and if Uj does not converge to in�nity too

quickly. One should recall the de�nition of K(T, σ,R, v) which can be found in (3.6).

In the same spirit of Söhl (2010), the following results hold.

Proposition 3. Let j ∈ {1, 2, . . . , n}, let the error distribution be sub-Gaussian and let Uj be such that

∆jU
4
j logUj exp

(
U2
j ·

j∑
m=1

(Tm − Tm−1)σ2
m

)
→ 0.

Moreover, if there exists a p > 1 such that

lim
Uj→∞

N∑
j=1

δ2j (1 + |xj |p) ∆j <∞,

then

lim
Uj→∞

P

(
sup

u∈[0,Uj ]
|ϕ̃Tj (u− i)− ϕTj (u− i)| > 2j−1 inf

u∈[0,Uj ]

j∏
m=1

K(Tm − Tm−1, σm, R, u)

)
= 0.

Moreover, the estimator ψ̃j de�ned in (3.7) is asymptotically well-de�ned.

Corollary 1. Under the assumptions of Proposition 3.,

lim
N→∞

P

(
sup

u∈[0,Uj ]
| arg ϕ̃Tj (u− i)− argϕTj (u− i)| > π

)
= 0 (10.1)

holds.

Note that if the limit relation holds, well-de�nedness is immediate by Lemma 2, |ϕTj (u− i)| > 2κ(u, Tj)

and

2j−1 inf
u∈[0,Uj ]

j∏
m=1

K(Tm − Tm−1, σm, R, u) ≥ inf
u∈[0,Uj ]

κ(u, Tj).
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Proof (Proposition 3). To prove the limit relation, Markov's inequality will be applied, where the main

di�culty is found in estimating the expectation of the supremum of the di�erence

|ϕ̃Tj (u− i)− ϕTj (u− i)|2 =

∣∣∣∣∣iu(1 + iu) ·
N∑
r=1

δj,rFbj,r(u)εj,r

∣∣∣∣∣
2

= ∆j

(
u4 + u2

)
· |Gu|2

with

Gu :=
1√
∆j

N∑
r=1

δj,rFbj,r(u)εj,r.

Gu will be bounded using an entropy argument. To that end, we bound the di�erence |Gu−Gv| in terms

of |u− v|. Let q ∈ [0, 1], then

∆jE
{
|Gu −Gv|2

}
= E


∣∣∣∣∣
N∑
r=1

δj,rεj,r

∫ ∞
−∞

bj,r(x)
(
eixu − eixv

)
dx

∣∣∣∣∣
2


=

N∑
r=1

δ2j,r

∣∣∣∣∫ ∞
−∞

bj,r(x)
(
eixu − eixv

)
dx

∣∣∣∣2

≤
N∑
r=1

δ2j,r

(∫ ∞
−∞

bj,r(x)
∣∣eixu − eixv

∣∣ dx

)2

≤
N∑
r=1

δ2j,r

(∫ ∞
−∞

bj,r(x) ·min(2, |u− v||x|) dx

)2

=

N∑
r=1

δ2j,r

(∫
|x|>2/|u−v|

2bj,r(x) dx+

∫
|x|≤2/|u−v|

bj,r(x) · |u− v||x|dx

)2

≤
N∑
r=1

δ2j,r

(∫
|x|>2/|u−v|

2bj,r(x) ·
(
|x||u− v|

2

)q
dx

+

∫
|x|≤2/|u−v|

bj,r(x) · |u− v||x| ·
(

2

|x||u− v|

)1−q

dx

)2

=

N∑
r=1

δ2j,r

(∫ ∞
−∞

21−qbj,r(x) · |x|q · |u− v|q dx

)2

= |u− v|2q ·
N∑
r=1

δ2j,r

(∫ ∞
−∞

21−qbj,r(x) · |x|q dx

)2

≤ |u− v|2q · 22−2q ·
N∑
r=1

δ2j,r

(∫ xr+1

xr−1

bj,r(x) · |x|q dx

)2

≤ |u− v|2q · 22−2q ·
N∑
r=1

δ2j,r · (xr+1 − xr−1)2 · |max{xr+1,−xr−1}|2q

≤ |u− v|2q · 24−2q∆2
j

N∑
r=1

δ2j,r(|xr|+ ∆j)
2q

From Lemma 3. we �nd

(|xr|+ ∆j)
2q ≤ max

(
22q−1, 1

) (
|xr|2q + ∆2q

j

)
≤ 2

(
|xr|2q + ∆2q

j

)
.
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Hence, the supremum of the di�erence |Gu −Gv| is bounded as N →∞. Indeed,

∆jE
{
|Gu −Gv|2

}
≤ |u− v|2q · 24−2q+1∆2

j

N∑
r=1

δ2j,r

(
|xr|2q + ∆2q

j

)
is bounded as N → ∞ by the second assumption in the proposition. This leads to the choice of q =

min(p/2, 1) where the minimum is taken with 1 such that q ∈ [0, 1], a necessary condition for the above

calculation to hold.

Concluding, there exist a constant c > 0 such that

d(u, v) :=
√
E {|Gu −Gv|2} ≤ c|u− s|H =: ρ(u, v)

with H = q = min(p/2, 1). Hence, Bρ(x, r) ⊂ Bd(x, r) for all x ∈ R and r > 0 and thus Nd(X, r) ≤
Nρ(X, r) for all sets X and all r > 0.

Before Dudley's theorem is applied, the metric entropy will be estimated. First of all, it is noted that

there exists a D < ∞ such that d(u, v) ≤ D for all u, v ∈ R. This is immediate when one applies the

inequality |eix − eiy| ≤ 2 for x, y ∈ R.
The covering number of [0, Uj ] of the metric ρ given a radius r is equal to

Nρ([0, Uj ], r) = dUj(c/r)1/H/2e.

Moreover, we assume Uj to be large enough such that Uj ≥ (eD/c)1/H , then

Nρ([0, Uj ], r) ≤ Uj(c/r)1/H .

The metric entropy is now estimated as follows

J([0, Uj ], d) :=

∫ ∞
0

√
log(Nd([0, Uj ], r)) dr =

∫ D

0

√
log(Nd([0, Uj ], r)) dr

≤
∫ D

0

√
log(Nρ([0, Uj ], r)) dr ≤

∫ D

0

√
log
(
Uj(c/r)1/H

)
dr

= H−1/2
∫ D

0

√
log
(
UHj (c/r)

)
dr

= cH−1/2UHj

∫ D/(UHj c)

0

√
log(1/s) ds

≤ cH−1/2UHj ·D/(UHj c)
√

log
(
(UHj c)/D

)
=
√

log(Uj) + log
(
c1/H/D1/H

)
.
√

logUj

where the one but last inequality needs a little veri�cation. De�ne

x := D/(UHj c) ≤ e−1

then

log x−1 ≥ 1.
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The integral is now solved and estimated as follows∫ x

0

√
log(1/s) ds =

√
π

2
·
(

1− Erf
(√

log x−1
))

+ x
√

log x−1

with

Erf(x) =
2√
π

∫ x

0

e−s
2

ds.

Moreover, we have

1− Erf
(√

log x−1
)
≤ exp

(
− log x−1

)
/
(√

π
√

log x−1
)

=
x√
π
· 1√

log x−1

Thus ∫ x

0

√
log(1/s) ds ≤ x

2
·

(
1√

log x−1
+
√

log x−1

)
≤ x

√
log x−1

wherelog x−1 ≥ 1 is used.

Dudley's theorem now states that for all U > 0 we have a version of the process which is almost surely

continuous on [0, U ] with respect to the metric d. Moreover, it provides the following bound (van der

Vaart and Wellner, 1997, Corollary 2.2.8) for all a ≥ 1

E

{
sup

u∈[0,Uj ]
|Gu|a

}
. (logUj)

a/2

Moreover,

P

(
sup

u∈[0,Uj ]
|ϕ̃Tj (u− i)− ϕTj (u− i)| > 2j−1 inf

u∈[0,Uj ]

j∏
m=1

K(Tm − Tm−1, σm, R, u)

)

≤ E

{
sup

u∈[0,Uj ]
|ϕ̃Tj (u− i)− ϕTj (u− i)|2

}
·

(
2j−1 inf

u∈[0,Uj ]

j∏
m=1

K(Tm − Tm−1, σm, R, u)

)−2

≤ ∆j

(
U4
j + U2

j

)
E

{
sup

u∈[0,Uj ]
|Gu|2

}
· 22−2j

j∏
m=1

(
K(Tm − Tm−1, σm, R, Uj)

)−2
≤ ∆j

(
U4
j + U2

j

)
E

{
sup

u∈[0,Uj ]
|Gu|2

}
· 4 exp

(
U2
j ·

j∑
m=1

(Tm − Tm−1)σ2
m − 4R

j∑
m=1

(Tm − Tm−1)

)

. ∆jU
4
j log(Uj) · exp

(
U2
j ·

j∑
m=1

(Tm − Tm−1)σ2
m

)

The latter converges to 0 by assumption.

Now, we can conclude that the process is asymptotically well-de�ned since

∣∣ϕTj (u− i)∣∣ ≥ 2 ·

(
2j−1

j∏
m=1

K(Tm − Tm−1, σm, R, u)

)

for all u ∈ R. Moreover, the argument di�erence is uniformly bounded as stated in Corollary 1. For the

details of the latter, it is referred to Lemma 2.
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10.2 Proof of Theorem 1

Before it is possible to prove Theorem 1, it is necessary to invoke the following result from Belomestny

and Reiÿ (2006a). It states how the estimator for Oj behaves.

Proposition 4. Under the assumptions of Theorem 1, we obtain

sup
u∈R

∣∣∣E{FÕj(u)− FOj(u)
}∣∣∣ = sup

u∈R

∣∣FOlj − FOj(u)
∣∣ . ∆2

j

where Olj(u) is the linear approximation of Oj(u) such that at the given data points xj,r, one has

Olj(xj,r) = Oj(xj,r).

To prove the theorem, we start by rewriting σ2
j − σ̂2

j ,

σ̂2
j − σ2

j =

∫ Uj

−Uj
Re (Fµj(u))wUjσj (u) du+

∫ Uj

−Uj
Re
(
ψ̃j(u)− ψj(u)

)
wUjσj (u) du

=

∫ Uj

−Uj
Re (Fµj(u))wUjσj (u) du+

∫ Uj

−Uj
Re
(
ψ̃0
j (u)− ψ0

j (u)
)
wUjσj (u) du

−
∫ Uj

−Uj
Re
(
ψ̃1
j (u)− ψ1

j (u)
)
wUjσj (u) du

=

∫ Uj

−Uj
Re(Fµj(u))wUjσj (u) du+

∫ Uj

−Uj
Re(L0

j (u))wUjσj (u) du+

∫ Uj

−Uj
Re(R0

j (u))wUjσj (u),du

−
∫ Uj

−Uj
Re(L1

j (u))wUjσj (u) du−
∫ U

−U
Re(R1

j (u))wUjσj (u) du

=: Bσ2 + L
(0)
σ2 +R

(0)
σ2 − L(1)

σ2 −R(1)
σ2

(10.2)

with Lkj the linear error term en Rkj the remainder error term de�ned as

Lkj (u) =
1

Tj − Tj−1
·
ϕ̃Tj−k(u− i)− ϕTj−k(u− i)

ϕTj−k(u− i)
and Rkj (u) = ψ̃kj (u)− ψkj (u)− Lkj (u)

for k = 0 and k = 1.

For readability, the proof of Theorem 1. is split up into the following 4 parts, all having their own

subsection. In the �rst and second subsection, it is shown that the bias and the remainder error term,

respectively, converge to 0. In the third subsection, the asymptotic variance of the linear error term is

calculated and in the fourth, the last, subsection it is proven that the linear error term is asymptotically

normally distributed.

10.2.1 The bias Bσ2

Proposition 5.

|Bσ2 | ≤ U−(s+3)
j

∥∥∥µ(s)
j

∥∥∥
∞

∥∥∥∥∥F
(
w1
σj (u)

usj

)∥∥∥∥∥
L1

The di�erence with γj and λj will be the order of convergence. Instead of U−(sj+3), they will have the

terms U−(sj+2) and, respectively, U−(sj+1). The proof changes only at the point where the de�nition of

wUξ (u) in terms of w1
ξ(u) is inserted for ξ ∈ {σ, γ, λ}.

Proof. We will use (iu)sjFµj(u) = Fµ(sj)
j (u) and Plancherel's isometry which states∫ ∞

−∞
f(x)g(x) dx =

∫ ∞
−∞

ˆ̂
f(ξ)ˆ̂g(ξ) dξ,
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where
ˆ̂
f(ξ) :=

∫ ∞
−∞

f(x)e−2πiξx dx

to �nd a bound on the �rst term. We use, however,

f̂(ξ) =

∫ ∞
−∞

f(x)eivx dx

Thus, Plancherel's isometry changes to∫ ∞
−∞

f(x)g(x) dx =

∫ ∞
−∞

ˆ̂
f(ξ)ˆ̂g(ξ) dξ =

∫ ∞
−∞

f̂(−2πξ)ĝ(−2πξ) dξ =
1

2π

∫ ∞
−∞

f̂(ζ)ĝ(ζ) dζ

We get now for the �rst integral∣∣∣∣∣
∫ Uj

−Uj
Fµj(u)wUjσj (u) du

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞
Fµ(s)

j (u) ·
w
Uj
σj (u)

(iu)s
du

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ∞
−∞
Fµ(s)

j (u) ·

(
w
Uj
σj (u)

(−iu)s

)
du

∣∣∣∣∣∣
= 2π

∣∣∣∣∣∣
∫ ∞
−∞

µ
(s)
j (x)F−1

(
w
Uj
σj (u)

(−iu)s

)
(x) dx

∣∣∣∣∣∣
≤ 2π

∫ ∞
−∞

∣∣∣µ(s)
j (x)

∣∣∣
∣∣∣∣∣∣F−1

(
w
Uj
σj (u)

(−iu)s

)
(x)

∣∣∣∣∣∣ dx

≤ 2π
∥∥∥µ(s)

j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣F−1
(
w
Uj
σj (u)

(−iu)s

)
(x)

∣∣∣∣∣ dx

≤ 2π
∥∥∥µ(s)

j

∥∥∥
∞

∥∥∥∥∥ 1

2π
· F
(
w
Uj
σj (u)

(−iu)s

)
(x)

∥∥∥∥∥
L1

=
∥∥∥µ(s)

j

∥∥∥
∞

∥∥∥∥∥F
(
w
Uj
σj (u)

(−iu)s

)
(x)

∥∥∥∥∥
L1

=
∥∥∥µ(s)

j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

w
Uj
σj (u)

(−iu)s
· eiξu du

∣∣∣∣∣ dξ

=
∥∥∥µ(s)

j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

U−3j w1
σj (u/Uj)

(−iu)s
· eiξu du

∣∣∣∣∣ dξ

= U−3j ·
∥∥∥µ(sj)

j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

w1
σj (ũ)

(ũUj)s
· eiξũUj · Uj dũ

∣∣∣∣∣ dξ

= U−2−sj ·
∥∥∥µ(s)

j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

w1
σj (ũ)

ũs
· eiξũUj dũ

∣∣∣∣∣ dξ

= U−2−sj ·
∥∥∥µ(s)

j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

w1
σj (ũ)

ũs
· eiξ̃ũ dũ

∣∣∣∣∣ · 1

Uj
dξ̃

= U
−(s+3)
j ·

∥∥∥µ(s)
j

∥∥∥
∞

∫ ∞
−∞

∣∣∣∣∣F
(
w1
σj (ũ)

ũsj

)
(ξ̃)

∣∣∣∣∣ dξ̃

= U
−(s+3)
j

∥∥∥µ(s)
j

∥∥∥
∞

∥∥∥∥∥F
(
w1
σj (u)

us

)∥∥∥∥∥
L1
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10.2.2 The remainder R
(k)

σ2

Proposition 6. Let

∆j · U4
j exp

(
U2
j

j∑
i=1

(Ti − Ti−1)σ2
i

)
→ 0

and
∆2
j−1

∆j
· U4

j exp

(
U2
j

((
j−1∑
i=1

(Ti − Ti−1)σ2
i

)
− (Tj − Tj−1)σ2

j

))
→ 0.

Then,

U2
j exp

(
−U2

j ·
∑j
i=1(Ti − Ti−1)σ2

i /2
)
·R(k)

σ2

dj,j
√

∆j + dj,j−1
√

∆j−1 exp
(
−U2

j · (Tj − Tj−1)σ2
j /2
) P−→ 0

We have shown in (3.9) that

∣∣ϕTj (u− i)∣∣ ≥ j∏
m=1

(2K(Tm − Tm−1, σm, R, u) =: 2Kj(u).

For the remainder term the following lemma is proven �rst.

Lemma 1. For all u ∈ R the remainder term satis�es with probability tending to 1

|Rkj (u)| ≤ 1

2
(Tj − Tj−1)−1Kj−k(u)−2

(
u4 + u2

) ∣∣∣F(Oj−k − Õj−k)(u)
∣∣∣2

Proof (Lemma). Recall the de�nition of ψ̃kj

ψ̃kj (u) :=
1

Tj − Tj−1
log≥κ(u,Tj−k)

(
ϕ̃Tj−k(u− i)

)
with Cj(u) = 2j−1κj(u) and note that

(Tj − Tj−1)ψ̃kj (u) = log
(

e(Tj−Tj−1)ψ̃
k
j (u)

)
.

Hence, we can write the remainder term as follows, where the idea is to write it such that we can use a

second order Taylor expansion of the logarithm.

(Tj − Tj−1)|Rkj (u)| =
∣∣∣(Tj − Tj−1)ψ̃kj (u)− (Tj − Tj−1)ψkj (u)− (Tj − Tj−1)Lkj (u)

∣∣∣
=

∣∣∣∣log
(

e(Tj−Tj−1)ψ̃
k
j (u)

)
− log

(
e(Tj−Tj−1)ψ

k
j (u)

)
−
ϕ̃Tj−k(u− i)− ϕTj−k(u− i)

ϕTj−k(u− i)

∣∣∣∣
≤

∣∣∣∣∣log
(

e(Tj−Tj−1)ψ̃
k
j (u)

)
− log

(
e(Tj−Tj−1)ψ

k
j (u)

)
−

e(Tj−Tj−1)ψ̃
k
j (u) − ϕTj−k(u− i)

ϕTj−k(u− i)

∣∣∣∣∣
+

∣∣∣∣∣ ϕ̃Tj−k(u− i)− e(Tj−Tj−1)ψ̃
k
j (u)

ϕTj−k(u− i)

∣∣∣∣∣
=

∣∣∣∣∣log
(

e(Tj−Tj−1)ψ̃
k
j (u)

)
− log

(
e(Tj−Tj−1)ψ

k
j (u)

)
− e(Tj−Tj−1)ψ̃

k
j (u) − e(Tj−Tj−1)ψ

k
j (u)

e(Tj−Tj−1)ψkj (u)

∣∣∣∣∣
+
∣∣∣ϕTj−k(u− i)−1

(
ϕ̃Tj−k(u− i)− e(Tj−Tj−1)ψ̃

k
j (u)

)∣∣∣
A direct consequence of Proposition 3. is

lim
U→∞

P
(∣∣ϕ̃Tj−k(u− i)

∣∣ ≥ Kj−k(u)
)

= 1 (10.3)
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This implies that

lim
U→∞

P
(

e(Tj−Tj−1)ψ̃
k
j (u) = ϕ̃Tj−k(u− i)

)
= 1 (10.4)

since Kj(u) ≥ Cj(u). Thus, the second term will be zero with probability tending to one.

In (3.8) it is shown that | exp((Tj −Tj−1)ψkj (u))| ≥ 2Kj−k(u) and from (10.3) and (10.4) we �nd that

with probability tending to one, | exp((Tj − Tj−1)ψ̃kj (u))| = |ϕ̃Tj−k(u − i)| ≥ Kj−k(u). Hence, we can

apply Lemma 5 with probability tending to one to bound the �rst term and complete the proof∣∣∣∣ log
(

e(Tj−Tj−1)ψ̃
k
j (u)

)
− log

(
e(Tj−Tj−1)ψ

k
j (u)

)
− e−(Tj−Tj−1)ψ

k
j (u)

(
e(Tj−Tj−1)ψ̃

k
j (u) − e(Tj−Tj−1)ψ

k
j (u)

) ∣∣∣∣
≤ 1

2
Kj−k(u)−2

∣∣∣e(Tj−Tj−1)ψ̃
k
j (u) − e(Tj−Tj−1)ψ

k
j (u)

∣∣∣2
=

1

2
Kj−k(u)−2

(
u4 + u2

) ∣∣∣F(Oj−k − Õj−k)(u)
∣∣∣2 .

Proof (Proposition). From the Lemma, we �nd

E


∣∣∣∣∣
∫ Uj

−Uj
Rkj (u)wUjσj (u) du

∣∣∣∣∣
2
 ≤ E


(∫ Uj

−Uj
|Rkj (u)||wUjσj (u)|du

)2


. E


(∫ Uj

−Uj
Kj−k(u)−2

(
u4 + u2

) ∣∣∣F(Õj−k −Oj−k)(u)
∣∣∣2 |wUjσj (u)|du

)2


= E
{∫ Uj

−Uj

∫ Uj

−Uj
Kj−k(u)−2Kj−k(v)−2

(
u4 + u2

) (
v4 + v2

)
·
∣∣∣F(Õj−k −Oj−k)(u)

∣∣∣2 ∣∣∣F(Õj−k −Oj−k)(v)
∣∣∣2 |wUjσj (u)||wUjσj (v)|dudv

}
=

∫ Uj

−Uj

∫ Uj

−Uj
Kj−k(u)−2κj(v)−2

(
u4 + u2

) (
v4 + v2

)
· E
{∣∣∣F(Õj−k −Oj−k)(u)F(Õj−k −Oj−k)(v)

∣∣∣2} |wUjσj (u)||wUjσj (v)|dudv

Recall the de�nition Om,l(x) := E{Õm(x)}. We are going to further look into the expected value with

m = j − k

E
{∣∣∣F(Õm −Om)(u)F(Õm −Om)(v)

∣∣∣2}
= E

{∣∣∣F(Õm −Om,l +Om,l −Om)(u)F(Õm −Om,l +Om,l −Om)(v)
∣∣∣2}

≤ 4E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}+ 4E
{∣∣∣F(Õm −Om,l)(u)F(Om,l −Om)(v)

∣∣∣2}
+ 4E

{∣∣∣F(Om,l −Om)(u)F(Õm −Om,l)(v)
∣∣∣2}+ 4E

{
|F(Om,l −Om)(u)F(Om,l −Om)(v)|2

}
≤ 4E

{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)
∣∣∣2}+ 4 |F(Om,l −Om)(v)|2 E

{∣∣∣F(Õm −Om,l)(u)
∣∣∣2}

+ 4 |F(Om,l −Om)(u)|2 E
{∣∣∣F(Õm −Om,l)(v)

∣∣∣2}+ 4 |F(Om,l −Om)(u)F(Om,l −Om)(v)|2

≤ 4E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}+ 4 ‖F(Om,l −Om)‖2∞ E
{∣∣∣F(Õm −Om,l)(u)

∣∣∣2}
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+ 4 ‖F(Om,l −Om)‖2∞ E
{∣∣∣F(Õm −Om,l)(v)

∣∣∣2}+ 4 ‖F(Om,l −Om)‖4∞

Hence, the second and third terms become a constant times the variance of FÕm. This, in particular,

can also be estimated

Var
[
FÕm(u)

]
= Var

[
F
(
β0,m(x) +

N∑
r=1

Om,rbm,r(x)

)
(u)

]
= Var

[
Fβ0,m(u) +

N∑
r=1

Om,rFbm,r(u)

]

= Var

[
N∑
r=1

Om,rFbm,r(u)

]
= Var

[
N∑
r=1

(Om(xr) + δm,rεm,r)Fbjk(u)

]

= Var

[
N∑
r=1

δm,rεm,rFbm,r(u)

]
=

N∑
r=1

|δm,rFbm,r(u)|2 Var [εm,r]

=

N∑
r=1

|δm,rFbm,r(u)|2 ≤
N∑
r=1

|δm,r|2 ‖Fbm,r‖2∞ ≤
N∑
r=1

|δm,r|2 ‖bm,r‖2L1

≤ ∆2
m

N∑
k=1

|δm,r|2 = ∆2
m ‖δm‖

2
l2 . ∆m ‖δm‖2∞

It follows that

E
{∣∣∣F(Õm −Om)(u)F(Õm −Om)(v)

∣∣∣2}
. E

{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)
∣∣∣2}+ ‖δm‖2∞ ‖F(Om,l −Om)‖2∞

+ ‖δm‖2∞ ‖F(Om,l −Om)‖2∞ + ‖F(Om,l −Om)‖4∞

. E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}+ ‖δm‖2∞ ·∆
4
m + ∆8

m.

Since the behavior of the integrand is interesting when Uj tends to in�nity, the lower order u
2 and v2 are

left outside the equation. It could be taken into account with these terms. In the end, however, it will

turn out that these terms are negligible. To avoid long negligible expressions, these terms are left out of

the equation.

E


∣∣∣∣∣
∫ Uj

−Uj
Rkj (u)wUjσj (u) du

∣∣∣∣∣
2
 .

∫ Uj

−Uj

∫ Uj

−Uj
Km(u)−2Km(v)−2

(
u4 + u2

) (
v4 + v2

)
·

(
E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}+

‖δm‖2∞ ·∆
4
m + ∆8

m

)
|wUjσj (u)||wUjσj (v)|dudv

.
∫ Uj

−Uj

∫ Uj

−Uj
Km(u)−2Km(v)−2u4v4

·

(
E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}+

‖δm‖2∞ ·∆
4
m + ∆8

m

)
|wUjσj (u)||wUjσj (v)|dudv
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The next step is to simplify the expectation in the integral.

E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}

= E


∣∣∣∣∣F
(
β0,m(x) +

N∑
r=1

Om,rbm,r(x)− β0,m(x)−
N∑
r=1

Om(xr)bm,r(x)

)
(u)F(Õm −Om,l)(v)

∣∣∣∣∣
2


= E


∣∣∣∣∣F
(

N∑
r=1

(Om,r −Om(xm,r))bm,r(x)

)
(u)F

(
N∑
s=1

(Om,s −Om(xm,s))bm,s(x)

)
(v)

∣∣∣∣∣
2


= E


∣∣∣∣∣F
(

N∑
r=1

δm,rεm,rbm,r(x)

)
(u)F

(
N∑
s=1

δm,sεm,sbm,s(x)

)
(v)

∣∣∣∣∣
2


= E


∣∣∣∣∣
N∑
r=1

δm,rεm,rFbm,r(u)

N∑
s=1

δm,sεm,sFbm,s(v)

∣∣∣∣∣
2


= E


∣∣∣∣∣
N∑
r=1

N∑
s=1

δm,rδm,sεm,rεm,sFbm,r(u)Fbm,s(v)

∣∣∣∣∣
2


= E

{
N∑
r=1

N∑
s=1

δ2m,rδ
2
m,sε

2
m,rε

2
m,s|Fbm,r(u)|2|Fbm,s(v)|2

}

=

N∑
r=1

N∑
s=1

δ2m,rδ
2
m,sE

{
ε2m,rε

2
m,s

}
|Fbm,r(u)|2|Fbm,s(v)|2

which simpli�es further to

E
{∣∣∣F(Õm −Om,l)(u)F(Õm −Om,l)(v)

∣∣∣2}
=

N∑
r=1

δ4m,rE
{
ε4m,r

}
|Fbm,r(u)|2|Fbm,r(v)|2

+

N∑
r=1

N∑
s=1,s 6=r

δ2m,rδ
2
m,sE

{
ε2m,r

}
E
{
ε2m,s

}
|Fbm,r(u)|2|Fbm,s(v)|2

.
N∑
r=1

δ4m,r|Fbm,r(u)|2|Fbm,r(v)|2 +

N∑
r=1

N∑
s=1,s6=r

δ2m,rδ
2
m,s|Fbm,r(u)|2|Fbm,s(v)|2

=

N∑
r=1

N∑
s=1

δ2m,rδ
2
m,s|Fbm,r(u)|2|Fbm,s(v)|2 =

(
N∑
r=1

δ2m,r|Fbm,r(u)|2
)
·

(
N∑
r=1

δ2m,r|Fbm,r(v)|2
)
,

where we used the �niteness of the fourth moments of εm,r. We obtain that the integral is bounded by

E


∣∣∣∣∣
∫ Uj

−Uj
Rkj (u)wUjσj (u) du

∣∣∣∣∣
2


.
∫ Uj

−Uj

∫ Uj

−Uj
Km(u)−2Km(v)−2u4v4 ·

( N∑
r=1

δ2m,r|Fbm,r(u)|2
)
·

(
N∑
r=1

δ2m,r|Fbm,r(v)|2
)

+ ‖δm‖2∞ ·∆
4
m + ∆8

m

|wUjσj (u)||wUjσj (v)|dudv
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=

(∫ Uj

−Uj
Km(u)−2u4

N∑
r=1

δ2m,r|Fbm,r(u)|2 · |wUjσj (u)|du

)2

+
(
‖δm‖2∞ ·∆

4
m + ∆8

m

)(∫ Uj

−Uj
Km(u)−2u4|wUjσj (u)|du

)2

.

Note that the �rst integral can be bounded in terms of the second one

∫ Uj

−Uj
Km(u)−2u4

N∑
r=1

δ2m,r|Fbm,r(u)|2 · |wUjσj (u)|du

≤
∫ Uj

−Uj
Km(u)−2u4

N∑
r=1

δ2m,r ‖Fbm,r‖
2
∞ · |w

Uj
σj (u)|du

. ∆2
m

∫ Uj

−Uj
Km(u)−2u4

N∑
r=1

δ2m,r · |wUjσj (u)|du

. ∆2
m ‖δm‖

2
l2

∫ Uj

−Uj
Km(u)−2u4|wUjσj (u)|du

. ∆m ‖δm‖2∞
∫ Uj

−Uj
Km(u)−2u4|wUjσj (u)|du.

Hence, we get with Lemma 6 the following bound for the remainder term

E


∣∣∣∣∣
∫ Uj

−Uj
Rkj (u)wUjσj (u) du

∣∣∣∣∣
2


.
(
‖δm‖4∞ ·∆

2
m +

(
‖δm‖2∞ ·∆

4
m + ∆8

m

))(∫ Uj

−Uj
Km(u)−2u4|wUjσj (u)|du

)2

.
(
‖δm‖4∞ ·∆

2
m + ‖δm‖2∞ ·∆

4
m + ∆8

m

)
· exp

(
2U2

j ·
m∑
i=1

(Ti − Ti−1)σ2
i

)
.

We can now prove convergence in probability of this term, i.e. for all ε > 0

P

 U2
j exp

(
−U2

j ·
∑j
i=1(Ti − Ti−1)σ2

i /2
)

dj,j
√

∆j + dj,j−1
√

∆j−1 exp
(
−U2

j · (Tj − Tj−1)σ2
j /2
) · ∣∣∣∣∣

∫ Uj

−Uj
Re
(
Rkj (u)

)
wUjσj (u) du

∣∣∣∣∣ > ε


≤ P

 U2
j exp

(
−U2

j ·
∑j
i=1(Ti − Ti−1)σ2

i /2
)

dj,j
√

∆j + dj,j−1
√

∆j−1 exp
(
−U2

j · (Tj − Tj−1)σ2
j /2
) · ∣∣∣∣∣

∫ Uj

−Uj
Rkj (u)wUjσj (u) du

∣∣∣∣∣ > ε


.

1

ε2
·
‖δm‖4∞ ·∆2

m · exp
(
2U2

j

∑m
i=1(Ti − Ti−1)σ2

i

)
· U4

j exp
(
−U2

j

∑j
i=1(Ti − Ti−1)σ2

i

)
(
dj,j
√

∆j + dj,j−1
√

∆j−1 exp
(
−U2

j · (Tj − Tj−1)σ2
j /2
))2

≤ 1

ε2
·
‖δm‖4∞ ·∆2

m · exp
(
2U2

j

∑m
i=1(Ti − Ti−1)σ2

i

)
· U4

j exp
(
−U2

j

∑j
i=1(Ti − Ti−1)σ2

i

)
d2j,j∆j + d2j,j−1∆j−1 exp

(
−U2

j · (Tj − Tj−1)σ2
j

)
≤
‖δm‖4∞
ε2 · d2j,j

· ∆2
m

∆j
· U4

j · exp

(
2U2

j

m∑
i=1

(Ti − Ti−1)σ2
i − U2

j

j∑
i=1

(Ti − Ti−1)σ2
i

)
=: pj,m.

For k = 0, i.e., m = j, we have

pj,j =
‖δj‖4∞
ε2 · d2j,j

·∆j · U4
j · exp

(
U2
j

j∑
i=1

(Ti − Ti−1)σ2
i

)
→ 0
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and for k = 1, i.e., m = j − 1, we have

pj,j−1 =
‖δj−1‖4∞
ε2 · d2j,j

·
∆2
j−1

∆j
U4
j exp

U2
j

((
j−1∑
i=1

(Ti − Ti−1)σ2
i

)
− (Tj − Tj−1)σ2

j

)→ 0

Proving convergence to 0 in probability of the remainder term.

The di�erences in the proof with γj and λj occur again only at a single point. In applying Lemma

6 we get extra Uj terms, but in the normalizing constant exactly these terms are missing such that the

product will still be the same. Moreover, note that we have constructed a proof for σ for the absolute

value of the remainder. Hence, this proof works for both the real part of the remainder as well as the

imaginary part of the remainder.

10.2.3 Asymptotic variance of the linear term L
(k)

σ2

In this subsection, the asymptotic variance of L
(k)
σ2 is calculated.

Proposition 7. As Uj to in�nity,

Var
(
L
(k)
σ2

)
w1
σj (1)2

∼ U−4j ·

dj,j ·∆j exp

(
j∑
r=1

(Tr − Tr−1)σ2
rU

2
j

)
+ dj,j−1 ·∆j−1 exp

(
j−1∑
r=1

(Tr − Tr−1)σ2
rU

2
j

)
where a ∼ b if lim ab−1 = 1.

Proof. Recall

Lkj (u) =
1

Tj − Tj−1
·
ϕ̃Tj−k(u− i)− ϕTj−k(u− i)

ϕTj−k(u− i)

and

L
(k)
σ2 =

∫ Uj

−Uj
Re(Lkj (u))wUjσj (u) du.

Working this out yields

L
(k)
σ2 =

∫ Uj

−Uj
Re(Lkj (u))wUjσj (u) du = Uj

∫ 1

−1
Re(Lkj (uUj))w

Uj
σj (uUj) du = U−2j

∫ 1

−1
Re
(
Lkj (uUj)

)
w1
σj (u) du

= U−2j

∫ 1

0

Re
(
Lkj (uUj)

)
w1
σj (u) du+ U−2j

∫ 1

0

Re
(
Lkj (−uUj)

)
w1
σj (−u) du

= U−2j

∫ 1

0

Re
(
Lkj (uUj)

)
w1
σj (u) du+ U−2j

∫ 1

0

Re
(
Lkj (uUj)

)
w1
σj (u) du

= 2U−2j

∫ 1

0

Re
(
Lkj (uUj)

)
w1
σj (u) du

= 2U−2j

∫ 1

0

Re

(
1

Tj − Tj−1
·
ϕ̃Tj−k(uUj − i)− ϕTj−k(uUj − i)

ϕTj−k(uUj − i)

)
w1
σj (u) du

=
2U−2j

Tj − Tj−1

∫ 1

0

Re

 iuUj(1 + iuUj)F
(
Õj−k −Oj−k

)
(uUj)

ϕTj−k(uUj − i)

w1
σj (u) du.
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We will now use the following formula with m = j − k

ϕTm(u− i) = exp

−u2
2
·

(
m∑
r=1

(Tr − Tr−1)σ2
r

)
+ iu ·

(
m∑
r=1

(Tr − Tr−1)
(
σ2
r + γr

))

+

(
m∑
r=1

(Tr − Tr−1)

(
σ2
r

2
+ γr − λr

))
+

(
m∑
r=1

(Tr − Tr−1)Fµr(u)

)
=: exp

(
−u

2

2
·Am + iu ·Bm + Cm +Dm(u)

)
.

Inserting this into the equation yields

L
(k)
σ2 =

2U−2j
Tj − Tj−1

Re

∫ 1

0

iuUj(1 + iuUj)F
(
Õm −Om

)
(uUj)w

1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du


=

2U−2j
Tj − Tj−1

Re

∫ 1

0

iuUj(1 + iuUj)
(∑N

r=1 δm,rFbm,r(uUj)εm,r
)
w1
σ(u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du


=

2U−2j
Tj − Tj−1

N∑
r=1

δm,rεm,r Re

(∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)
.

(10.5)

We will now apply the Lindeberg-Feller central limit theorem. Veri�cation of this theorem depends on

the computation of the asymptotic variance. Thus, we will compute the variance V k
Re2 z

of L
(k)
σ2

V kRe2 z =
4U−4j

(Tj − Tj−1)2

N∑
r=1

δ2m,r Re2

(∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)

Instead of computing the real part immediately, we will make use of the following identity

Re2 z =

(
z + z

2

)2

=
1

4

(
z2 + 2zz + z2

)
and compute the three di�erent parts instead, where we will start with z2

V kz2 :=
4U−4j

(Tj − Tj−1)2

N∑
r=1

δ2m,r

(∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2

and we will study the behaviour of the integral inside the summation

Iz2 :=

(∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2

=

∫ 1

0

∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)ivUj(1 + ivUj)Fbm,r(vUj)w1

σj (v)

exp
(
− (u2 + v2)U2

j Am/2 + i(u+ v)UjBm + 2Cm +Dm(uUj) +Dm(vUj)
) dudv

= −U2
j exp(−2Cm)

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (1 + iuUj)(1 + ivUj) · g(u, v) dudv

= −U2
j exp (−2Cm) ·

(∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· g(u, v) dudv

+ iUj

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (u+ v)g(u, v) dudv
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− U2
j

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· uvg(u, v) dudv

)
.

with g de�ned as

g(u, v) :=
Fbm,r(uUj)w1

σj (u)Fbm,r(vUj)w1
σj (v)

exp (i(u+ v)UjBm +Dm(uUj) +Dm(vUj))

where the weight function w1
σj is symmetrically extended to (−1, 0), i.e., such that w1

σj (u) = w1
σj (−u) for

all u ∈ (−1, 0). Similarly,

Iz2 = −U2
j exp (−2Cm) ·

(∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· g(−u,−v) dudv

+ iUj

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (−u− v)g(−u,−v) dudv

− U2
j

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· uvg(−u,−v) dudv

)

and

Izz = U2
j exp (−2Cm) ·

(∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· g(u,−v) dudv

+ iUj

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (u− v)g(u,−v) dudv

− U2
j

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· −uvg(u,−v) dudv

)
We will now de�ne a function that is equal to uv exp(2iUjBm)Fbm,r(Uj)−2g(u, v), or in more detail

g̃Uj (u, v) := uv·Fbm,r(uUj)Fbm,r(vUj)Fbm,r(Uj)2
·w1
σj (u)w1

σj (v)· exp (2iUjBm)

exp (i(u+ v)UjBm)
·exp (−Dm(uUj)−Dm(vUj))

and we will apply Lemma 7. The intuition behind this choice is that the limit for limUj→∞ g̃Uj (1, 1) exists

because of these factors. Hence, we need to check the conditions on g̃Uj and we need to �nd functions fUj

which converge to a Dirac delta function at (1, 1). Rescaling the other factors in the integrals we obtain

fUj (u, v) := A2
mU

4
j exp

(
−AmU2

j

)
uv exp

(
Am(u2 + v2)U2

j /2
)

=: F (u) · F (v).

However, we still need to check the conditions of the lemma on the function fUj .∫ 1

1−U−3/2
j

F (u) du = exp
(
−AmU2

j /2
) ∫ 1

1−U−3/2
j

uAmU
2
j exp

(
Amu

2U2
j /2
)

du

= exp
(
−AmU2

j /2
)
·
[
exp

(
Amu

2U2
j /2
)]1
u=1−U−3/2

j

= exp
(
−AmU2

j /2
)
·
[
exp

(
AmU

2
j /2
)
− exp

(
Am

(
1− U−3/2j

)2
U2
j /2

)]
= 1− exp

(
AmU

2
j

[(
1− 2U

−3/2
j + U−3j

)
− 1
]
/2
)

= 1− exp
(
−AmU1/2

j +AmU
−1
j /2

)
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Hence,

lim
Uj→∞

∫ 1

1−U−3/2
j

∫ 1

1−U−3/2
j

fUj (u, v) dudv = lim
Uj→∞

(∫ 1

1−U−3/2
j

F (u) du

)2

=

(
lim

Uj→∞
1− exp

(
−AmU1/2

j +AmU
−1
j /2

))2

= 1.

Checking the other condition on the function f is left to the reader. So, what remains is checking

boundedness of g̃U on the unit square and we need to check that

lim
Uj→∞

sup
(u,v)∈[1−U−3/2,1]2

|g̃Uj (u, v)− g̃Uj (1, 1)| = 0

which can be found in Lemma 8.

From this, it appears that all the integrals in the �nal expressions for Iz2 , Iz2 and Izz converge equally

fast to 0. Hence, the dominating term is the last one by the U4
j factor in front of it. Henceforth, the �rst

two integrals will be left out of the equation.

lim
U→∞

Iz2 ·A2
m exp(−AmU2

j )Fbm,r(Uj)−2 exp(2iUjBm)

= lim
U→∞

exp(−2Cm)

∫ 1

0

∫ 1

0

fUj (u, v)g̃Uj (u, v) dudv

= exp(−2Cm) lim
U→∞

g̃Uj (1, 1)

= exp(−2Cm)w1
σj (1)2 lim

U→∞
exp (−2Dm(Uj))

= exp(−2Cm)w1
σj (1)2

(10.6)

Similarly,

lim
U→∞

Iz2 ·A2
m exp(−AmU2

j )Fbm,r(Uj)
−2

exp(−2iUjBm)

= exp(−2Cm)w1
σj (1)2

and
lim
U→∞

Izz ·A2
m exp(−AmU2

j )|Fbm,r(Uj)|−2

= exp(−2Cm)w1
σj (1)2

We can now compute the asymptotic variance. Note that the summands are replaced by their respective

asymptotic behavior. Since N grows as Uj grows, this replacement is not a trivial step. The details of

the veri�cation of this step can be found in Lemma 9.

lim
Uj→∞

∆−1m U4
j A

2
m exp(−AmU2

j )V kz2

=
4

(Tj − Tj−1)2
lim

Uj→∞
∆−1m

N∑
r=1

δ2m,rA
2
m exp(−AmU2

j )Iz2

=
4

(Tj − Tj−1)2
lim
U→∞

∆−1m

N∑
r=1

δ2m,r exp(−2Cm)w1
σj (1)2Fbm,r(Uj)2 exp (−2iBmUj)

= 4(Tj − Tj−1)−2 exp(−2Cm)w1
σj (1)2 lim

Uj→∞
exp (−2iBmUj) ∆−1m

N∑
r=1

δ2m,rFbm,r(Uj)2
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Similarly,

lim
U→∞

∆−1m U4
j A

2
m exp(−AmU2

j )V kz2

= 4(Tj − Tj−1)−2 exp(−2Cm)w1
σj (1)2 lim

Uj→∞
exp (2iBmUj) ∆−1m

N∑
r=1

δ2m,rFbm,r(−Uj)2

and
lim
U→∞

∆−1m U4
j A

2
m exp(−AmU2

j )V kzz

= 4(Tj − Tj−1)−2 exp(−2Cm)w1
σj (1)2 lim

Uj→∞
∆−1m

N∑
r=1

δ2m,r|Fbm,r(Uj)|2.

To compute the limit, it is necessary to actually calculate Fbm,r. First, we know that the Fourier

transform of the unit box function with limits −1/2 and 1/2 is equal to the sinc = sin(•)/• function.
Hence the Fourier transform of the convolution of two unit box functions is equal to the sinc2 function,

whereas the convolution is equal to the triangular function Λ with limits −1 and 1. We have

bm,r(∆mx+ xm,r) = Λ (x)

Then

sinc2(u) =

∫ 1

−1
exp(iux)Λ(x) dx = ∆−1m

∫ xm,r+1

xm,r−1

exp

(
iu · y − xm,r

∆m

)
bm,r(y) dy

= ∆−1m exp
(
−iuxm,r∆−1m

)
Fbm,r

(
u∆−1m

)
Thus,

Fbm,r(y) = ∆m exp (iyxm,r) sinc2 (y∆m) . (10.7)

Hence,

lim
Uj→∞

exp (−2iBmUj)∆
−1
m

N∑
r=1

δ2m,rFbm,r(Uj)2

= lim
Uj→∞

exp (−2iBmUj) sinc4 (Uj∆m)

N∑
r=1

δ2m,r exp (2iUjxm,r) ∆m

= lim
Uj→∞

exp (−2iBmUj) sinc4 (Uj∆m)

∫ ∞
−∞

δm(x)2 exp (2iUjx) dx

= lim
Uj→∞

exp (−2iBmUj) sinc4 (Uj∆m)Fδ2m(2Uj).

We have assumed δ to be an L2 function, hence Fδ2m(2Uj)→ 0 as Uj →∞. Moreover, Uj∆m → 0, thus

sinc4(Uj∆m) → 1 as Uj → ∞ and the �rst term is bounded in norm with 1. So, we conclude that this

sum is equal to 0 in the limit. Similarly,

lim
U→∞

exp (2iBmUj) ∆−1m

N∑
r=1

δ2m,rFbm,r(−Uj)2 = 0

and

lim
Uj→∞

∆−1m

N∑
r=1

δ2m,r|Fbm,r(Uj)|2 = lim
Uj→∞

sinc4 (Uj∆m)

N∑
r=1

δ2m,r∆m

= lim
Uj→∞

sinc4 (Uj∆m)

∫ ∞
−∞

δm(x)2 dx

= lim
Uj→∞

sinc4(Uj∆m) ‖δm‖2L2 = ‖δm‖2L2
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Concluding, the asymptotic variance of L
(k)
σ2 is equal to

V kRe2 z = ∆mU
−4
j A−2m exp(AmU

2) · 1

4

(
0 + 2 · 4(Tj − Tj−1)−2 exp(−2Cm)w1

σj (1)2 ‖δm‖2L2 + 0
)

= 2 ‖δm‖2L2 (Tj − Tj−1)−2A−2m exp(−2Cm)w1
σj (1)2 ·∆mU

−4
j exp(AmU

2
j )

(10.8)

If we de�ne

dj,m = 2 ‖δm‖2L2 (Tj − Tj−1)−2A−2m exp(−2Cm),

we can write the asymptotic variance AV of σ̂2
j − σ2

j as

AV = U−4j ·
(
dj,j ·∆j exp

(
AjU

2
j

)
+ dj,j−1 ·∆j−1 exp

(
Aj−1U

2
j

) )
· w1

σj (1)2

Note that in this proof, the di�erence with γj and λj is only found in the order of Uj as the �rst term.

In the other cases, we have U−2j and, respectively, 1 instead of U−4j .

10.2.4 Asymptotic normality of the linear term L
(k)

σ2

To prove asymptotic normality, we will apply the Lindeberg-Feller version of the central limit theorem.

A version of their theorem is formulated as

Theorem 3. Let X1, X2, . . . be independent random variables such that EXn = 0 and VarXn = σ2
n <∞.

De�ne Tn =
∑n
k=1Xk and s2n = VarTn =

∑n
k=1 σ

2
k. Then the following statement holds(

∃ η > 2 : lim
n→∞

s−ηn

n∑
k=1

E {|Xk|η} = 0

)
⇒

(
Tn
sn

D−→ N(0, 1)

)
.

The left-hand side will be referred to as the Lyapunov condition.

Before the next proposition can be proved, it is necessary to introduce sub-Gaussian distributions.

De�nition 5. The distribution of a random variable Z is called sub-Gaussian if there exist positive

constants A and B such that for every t > 0

P(|Z| > t) ≤ Ae−Bt
2.

In other words, Z is called sub-Gaussian if the tail of its distribution is dominated by a Gaussian

tail. Moreover, one should note that any bounded random variable is sub-Gaussian. Since in practice

everything is bounded, it will not be wrong to assume sub-Gaussianity. It is now possible to prove the

next proposition, where in the case of γj and λj nothing really changes since the Uj terms will always

cancel in the end.

Proposition 8. If the distributions of εj,r and εj−1,r are sub-Gaussian for all r and if δj , δj−1 ∈ Lη with

η > 2, then L
(k)
ξ is asymptotically normal for ξ ∈ {σ2, γ, λ, ν(x)}

Proof. The Lindeberg-Feller central limit theorem will be applied to conclude that L
(k)
σ2 as given in (10.5)

is asymptotically normal. In particular, the Lyapunov condition is proven to hold.

Note that we have already computed s2n, i.e.,

s2n = U−4j ·
(
dj,j ·∆j exp

(
AjU

2
j

)
+ dj,j−1 ·∆j−1 exp

(
Aj−1U

2
j

) )
≥ dj,m · U−4j ∆m exp

(
AmU

2
j

)
.
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We can also bound σr,η := E|Xr|η, where we can make use of the sub-Gaussianity of εr,j to estimate the

expectation with a constant which may depend on the choice of η.

σr,η = E

{∣∣∣∣∣ 2U−2j
Tj − Tj−1

δm,rεm,r Re

(∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)∣∣∣∣∣
η}

. U−2ηj |δm,r|η
∣∣∣∣∣Re

(∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)∣∣∣∣∣
η

≤ U−2ηj |δm,r|η
∣∣∣∣∣
∫ 1

0

iuUj(1 + iuUj)Fbm,r(uUj)w1
σj (u)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

∣∣∣∣∣
η

We note that the integral I looks similar to the ones that we have calculated in the previous section.

To avoid repeating arguments, the integral behaves in the limit as

lim
U→∞

|I| ·Am exp(−AmU2
j /2)|Fbm,r(Uj)|−1 = exp(−Cm)w1

σj (1).

Hence, in the limit we have

|I| . A−1m exp(AmU
2
j /2)|Fbm,r(Uj)| exp(−Cm)w1

σj (1)

= A−1m exp(AmU
2
j /2)∆m sinc2(Uj∆m) exp(−Cm)w1

σj (1).

Thus

σr,η . U−2ηj |δm,r|η exp
(
AmU

2
j · η/2

)
∆η
m.

Hence,

lim
n→∞

s−ηn

n∑
k=1

E {|Xk|η} . lim
n→∞

U2η
j ∆−η/2m exp

(
−AmU2

j · η/2
) N∑
r=1

U−2ηj |δm,r|η exp
(
AmU

2
j · η/2

)
∆η
m

= lim
n→∞

∆η/2−1
m

n∑
r=1

|δm,r|η∆m = lim
n→∞

∆η/2−1
m

∫ ∞
−∞
|δm(x)|η dx

= ‖δm‖Lη · lim
n→∞

∆η/2−1
m = 0

Where in the last step, it is used that η > 2, δm ∈ Lη and δm Riemann integrable.
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Appendix A

The risk-neutral measure

A commonly used measure in �nance is the risk-neutral measure. This is a measure that is not related to

the real-world probability measure but it is related to how investors are willing to invest. This chapter

is devoted to explaining what the risk-neutral measure is and why it is important. Moreover, it may

become more clear why the Lévy process under the risk-neutral measure is estimated instead of under

the real-world probability measure.

De�nition 6. The risk-neutral measure is a probability measure such that the discounted expectation of

a trade is equal to its value.

Consider the following example. Alice needs to have 10 euros right now otherwise Alice has a big problem.

The problem is that Alice only has 7 euros available. Luckily, there is one possibility available. Bob o�ers

to pay 3 euros if Alice guesses one unbiased coin toss correctly. However, if Alice doesn't guess correctly,

she has to pay Bob 7 euros. This is not a winning game but since there are no other options available at

the time, Alice is likely to play the game.

The real-world probability of Alice winning is 50% and the risk-neutral probability is 70% since in

that case, the expectation of the game would be 0. It might be tempting to think that she has more

chance of winning the game in the risk-neutral world. However, one should never think of it that way.

One of the ways, the risk-neutral probabilities are useful, is in pricing derivatives. Suppose that

Charlie notices that Alice and Bob were playing this game, then he could o�er Dave the opportunity

to make money out of this game. He o�ers to pay 2 euros to Dave if Alice wins and 0 if Alice loses.

How much would the price of this contract cost for Dave? The exact price of this contract should be

1.40(= 0.7 · 2 + 0.3 · 0) euros, which is the expectation of the contract under the risk-neutral measure.

It looks like this contract costs too much if one considers the real-world probabilities, however, if Dave

could buy it for 1.20 euros in real life, he should do this. Moreover, Dave should sell 20% of the game

generating a direct income of 1.40 euros. At time 0, Dave would have 1.40− 1.20 = 0.20 euros. If Alice

wins the game, Dave would get 2 euros from the contract with Charlie and he would have to pay Alice 2

euros for selling the game which leads to a zero net gain. Moreover, if Alice loses the game, Dave would

get 0 from the contract with Charlie and he has to pay 0 from selling the game because it is not worth

anything anymore. Either way, Dave has a net gain of 0 at time 1. Hence, he gains the 20 cents he

received at the beginning without having to face any risk.

In the case described above, an arbitrage situation occurred. In the real world, Dave probably wouldn't

get to sell 20% of the game because this stock is obviously overpriced. However, in a real-world situation,

it is almost always possible to sell a stock for almost the exact price at which it is being sold. This will

eventually imply that more people are willing to sell than to buy which induces a drop in price but that

is not the point of this example. The point is that because of this phenomenon option pricing should be
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done very carefully and, instead of using the real-world probability measure, the risk-neutral probability

measure should be used in pricing options such that arbitrage is excluded.

Thus since the risk-neutral probability measure is used in pricing options and not the real-world

probability measure, it should come as no surprise that option prices don't imply anything about the

real-world probability measure. Moreover, knowing the risk-neutral measure is crucial for pricing options

such as the regular ones, like European calls, and the exotic ones, like Bermudan puts.
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Appendix B

Additional lemmas

The following two lemmas are used in the proof for Proposition 3. The �rst lemma provides a technical

proof of a fairly obvious result and the second one gives a precise construction for the constant C such

that (y + ∆)
2q

can be bounded by
(
y2q + ∆2q

)
for positive y.

Lemma 2. Given two continuous functions f, g : [0, T ]→ C for which holds |f(t)| > C and |f(t)−g(t)| ≤
C for all t ∈ [0, T ]. Moreover, arg f(0) = arg g(0). Then, if arg is chosen to be such that t 7→ arg(γ(t))

is continuous for a continuous function γ, then

sup
t∈[0,T ]

| arg g(t)− arg f(t)| ≤ π

Proof. Suppose supt∈[0,T ] | arg g(t) − arg f(t)| > π. Then, by continuity of arg g(t) and arg f(t), there

exists a t0 ∈ [0, T ] such that | arg g(t0) − arg f(t0)| = π, which is equivalent with g(t0) = −rf(t0) with

r ∈ R>0. However, then

|f(t0)− g(t0)| = |f(t0) + rf(t0)| = (1 + r)|f(t0)| > |f(t0)| ≥ C

which is a contradiction with the assumption |f(t)− g(t)| ≤ C for all t ∈ [0, T ].

Lemma 3. For any q, x ∈ R and c > 0, we have

(
x2 + c

)2q ≤ max
(
22q−1, 1

)
·
((
x2
)2q

+ c2q
)
,

where in the case of x, q = 0, one should read
(
x2
)2q

= 1.

Proof. If q = 0, the result is obvious. So without loss of generality, we will assume q 6= 0. Moreover, we

de�ne y = x2 and we consider y ≥ 0. De�ne fc : R≥0 → R≥0 as follows

fc(y) =
(y + c)

2q

y2q + c2q

and note that this function has no singularities and that it is di�erentiable with derivative

dfc
dy

(y) =

(
y2q + c2q

)
· 2q(y + c)2q−1 − (y + c)2q · 2qy2q−1

(y2q + c2q)
2

=
2q(y + c)2q−1 ·

( (
y2q + c2q

)
− (y + c)y2q−1

)
(y2q + c2q)

2
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=
2qc(y + c)2q−1 ·

(
c2q−1 − y2q−1

)
(y2q + c2q)

2

Moreover, we note that

lim
y→∞

fc(y) = 1

and fc(0) = 1. Thus either |fc(y)| ≤ 1 for all y > 0 or |fc(y)| ≤ fc(z) with z a zero of f ′c. From the

equation above it is clear that f ′c has one zero on its domain which equals c. For this zero we have

f(c) = 22q−1. It is now clear that for any q, x ∈ R and c > 0

|fc(y)| ≤ max
(
22q−1, 1

)
holds, which completes the proof.

The next three lemmas are used in bounding the remainder error term.

Lemma 4. Given |z̃| > C and given |z| > 2C. Then

| log(z̃)− log(z)− (z̃ − z)z−1| ≤ |z̃ − z|
2

2C2

if | arg z − arg z̃| ≤ π

Proof. First note that if we have proven the result for C = 1, the result for general C follows immediately

by replacing z and z̃ with z/C and z̃/C, respectively.

Second observation to be made is that if the result is proven for positive z, the result for general z follows

immediately by a rotational argument, i.e., replacing w with weiϕ for w = z and z̃. So, without loss of

generality, we will take C = 1 and z ∈ R>0.

The proof is based on showing that 1/4 bounds the following real-valued function

f :
(
R2 \ {(x, y) : x2 + y2 < 1}

)
× [2,∞)→ R>0

de�ned by

f(x, y, z) =
| log(x+ iy)− log(z)− (x+ iy − z)z−1|2

|x+ iy − z|4
.

Via the fminsearch function from MATLAB, it is quickly believed that the maximum of this function is

attained at z = 2 and x2 + y2 = 1. Moreover, it is found, iteratively, that the maximum will be located

at the point such that the di�erence in argument is maximized. In our case, this would mean x = −1

and y = 0, leading to a di�erence of π in the argument. This leads to the following upper bound of the

function f

|f(z)| ≤ (3/2− log(2))2 + π2

34
≈ 0.1299 ≤ 1

4
,

which completes the proof.

Lemma 5. For the functions ψj and ψ̃j as de�ned before we have with T = Tj − Tj−1∣∣∣∣ log
(

e(Tj−Tj−1)ψ̃
k
j (u)

)
− log

(
e(Tj−Tj−1)ψ

k
j (u)

)
− e−(Tj−Tj−1)ψ

k
j (u)

(
e(Tj−Tj−1)ψ̃

k
j (u)

)
− e(Tj−Tj−1)ψ

k
j (u)

∣∣∣∣
≤ 1

2
Kj(u)−2

∣∣∣e(Tj−Tj−1)ψ̃
k
j (u) − e(Tj−Tj−1)ψ

k
j (u)

∣∣∣2
with probability tending to 1
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Proof. This is an immediate result of combining Proposition 3, Corollary 1 and Lemma 4.

Lemma 6. For j = 1, 2, . . . , n, we have

∫ Uj

−Uj
Kj(T, σmax, R, u)−2u4|wUjξ1 (u)|du . ξ2 exp

(
U2
j ·

j∑
m=1

(Tm − Tm−1)σ2
m

)

for ξ1 ∈ {σj , γj , λj} and, respectively, ξ2 ∈
{

1, Uj , U
2
j

}
.

Proof. The result will be proven in detail for ξ = σj . The proof of the two others option for ξ are similar.

De�ne Aj :=
∑j
m=1(Tm − Tm−1)σ2

m and recall

Kj(u) := 2j−1 exp

(
−u

2

2
·Aj + 2R

j∑
m=1

(Tm − Tm−1)

)

Thus

Kj(u)−2 . exp
(
Aju

2
)
.

Hence, ∫ Uj

−Uj
Kj(u)−2u4|wUjσj (u)|du .

∫ Uj

−Uj
exp

(
Aju

2
)
u4|wUjσj (u)|du

.
∫ Uj

−Uj
exp

(
Aju

2
)
u4U−(s+3)|u|s du

. U
−(s+3)
j

∫ Uj

0

u3+s · 2Aju exp
(
Aju

2
)

du

≤
∫ Uj

0

2Aju exp
(
Aju

2
)

du

=
[
exp

(
Aju

2
)]Uj
u=0

. exp
(
AjU

2
j

)

The last two lemmas are used in computing the asymptotic variance of the linear error term.

Lemma 7. Let gU (u, v) be bounded functions on the unit square such that 0 ≤ |gU (u, v)| ≤ C. Moreover,

let h(x) ↓ 0 as x→∞ and assume that the functions gU satisfy the following condition for all η > 0

lim
U→∞

sup
(u,v)∈[1−h(U),1]2

|gU (u, v)− gU (1, 1)| = 0.

Let fU (u, v) be a positive function such that

lim
U→∞

∫ 1

0

∫ 1

0

fU (u, v) dudv = 1

and

lim
U→∞

∫ 1

1−h(U)

∫ 1

1−h(U)

fU (u, v) dudv = 1.

Then

lim
U→∞

∫ 1

0

∫ 1

0

fU (u, v)gU (u, v) dudv = lim
U→∞

gU (1, 1).
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Proof. By the monotonicity property of integrals, we have

lim
U→∞

∣∣∣∣∣
∫ ∫

(0,1)2\[1−h(U)]2
fU (u, v)gU (u, v) d(u, v)

∣∣∣∣∣ ≤ lim
U→∞

∫ ∫
(0,1)2\[1−h(U)]2

fU (u, v) dudv · C

= 0

Thus,

lim
U→∞

∫ 1

0

∫ 1

0

fU (u, v)gU (u, v) dudv = lim
U→∞

∫ 1

1−h(U)

∫ 1

1−h(U)

fU (u, v)gU (u, v) dudv

Now, we will prove that this equals g(1, 1) by looking at the di�erence and rewriting it as follows

lim
U→∞

∣∣∣∣∣
∫ 1

1−h(U)

∫ 1

1−h(U)

fU (u, v)(gU (u, v)− gU (1, 1)) dudv

∣∣∣∣∣
≤ lim
U→∞

∫ 1

1−h(U)

∫ 1

1−h(U)

fU (u, v) dudv · sup
(u,v)∈[1−h(U)]2

|gU (u, v)− gU (1, 1)|

= lim
U→∞

sup
(u,v)∈[1−h(U)]2

|gU (u, v)− gU (1, 1)| = 0

Where the last equal sign is due to the assumption on gU . Concluding,

lim
U→∞

∫ 1

0

∫ 1

0

fU (u, v)gU (u, v) dudv = lim
U→∞

gU (1, 1)

Lemma 8. De�ne

g̃U (u, v) := uv·Fbm,r(uUj)Fbm,r(vUj)Fbm,r(Uj)2
·w1
σj (u)w1

σj (v)· exp (2iUmBm)

exp (i(u+ v)UmBm)
·exp (−Dm(uUm)−Dm(vUm))

then g̃ is uniformly bounded on the unit square given Uj , Um > c for a certain c > 0. Moreover,

sup
(u,v)∈[1−U−3/2

m ,1]2

|g̃U (u, v)− g̃U (1, 1)| → 0.

Proof. For ease of notation, de�ne

g̃1(u, v) = uv,

g̃2(u, v) = Fbm,r(uUj)Fbm,r(vUj)Fbm,r(Uj)−2,

g̃3(u, v) = w1
σj (u)w1

σj (v),

g̃4(u, v) = exp (i(2− u− v)UmBm) and

g̃5(u, v) = exp (−Dm(uUm)−Dm(vUm)) .

Note that g̃1, g̃3 and g̃4 are uniformly bounded (in U) on the unit square. Also note that Fµj(x) → 0

for x→∞. Hence, Dm is a bounded function, which implies that g̃5 is bounded uniformly in U . Proving

boundedness of g̃2, recall (C.2), which states that

Fbm,r(u) = ∆m exp(iuxr) sinc2(u∆m).

Hence,

g̃2(u, v) = exp(i(u+ v − 2)Ujxr) ·
sinc2(uUj∆m) sinc2(vUj∆m)

sinc2(Uj∆m)
(B.1)

77



Since Uj∆m → 0, we can �nd a c > 0, such that for all Uj > c, we have sinc2(Uj∆m) ≥ 1/2, which leads

to the bound

|g̃2(u, v)| =
∣∣∣∣ sinc2(uUj∆m) sinc2(vUj∆m)

sinc2(Uj∆m)

∣∣∣∣ ≤ ∣∣∣∣ 1

sinc2(Uj∆m)

∣∣∣∣ ≤ 2.

Concluding, g̃ is bounded.

We note that g̃1 · g̃3 is independent of U and continuous in (1, 1). Moreover, the second part of g̃2 also

behaves nicely. Thus these factor can be taken out of the equation. Moreover, g̃5 converges uniformly to

1 for Um → ∞ because of the smoothness of µj(x). The only problems here occur thus in the �rst part

of g̃2 as expressed in (B.1) and in g̃4.

sup
(u,v)∈[1−U−3/2

m ,1]2

|g̃4(u, v)− 1| =
∣∣∣exp

(
i(2− (1− U−3/2m )− (1− U−3/2m ))UmΣ2

)
− 1
∣∣∣

=
∣∣∣exp

(
i · U−1/2m Σ2

)
− exp(i · 0)

∣∣∣ ≤ |U−1/2m Σ2| → 0.

In a similar way, the �rst part of g̃2 can be controlled. This completes the proof.

Lemma 9. Under the assumptions of Theorem 1

lim
Uj→∞

∆−1m

N∑
r=1

δ2m,rA
2
me
−AmU2

j Iz2 = lim
U→∞

∆−1m

N∑
r=1

δ2m,re
−2Cmw1

σj (1)2Fbm,r(Uj)2e−2iBmUj .

Proof. It will be shown that the di�erence

lim
Uj→∞

∆−1m

N∑
r=1

δ2m,r

(
A2
me
−AmU2

j Iz2 − e−2Cmw1
σj (1)2Fbm,r(Uj)2e−2iBmUj

)
= lim
Uj→∞

N∑
r=1

δ2m,r∆m

(
A2
me
−AmU2

j Iz2∆−2m − e−2Cmw1
σj (1)2Fbm,r(Uj)2e−2iBmUj∆−2m

)

equals 0. Since lim
∑N
r=1 δ

2
m,r∆m = ‖δm‖2L2(R) by the Riemann integrability of δm and the assumption

that δm ∈ L2(R), it is enough to show that the other part of the summation converges to 0 as Uj →∞.

If that is the case, we can bound it by any ε > 0 provided that Uj is big enough. Letting ε to converge

to 0 yields the result. Thus, it remains to show that

lim
Uj→∞

(
A2
me
−AmU2

j Iz2∆−2m − e−2Cmw1
σj (1)2Fbm,r(Uj)2e−2iBmUj∆−2m

)
= 0. (B.2)

Since, we know that the result holds without the ∆−2m factor as is shown in (10.6), it is enough to show

that the second term is bounded. Indeed, if fn/gn → 1, hn ∈ C and |gnhn| ≤ C we have

lim
n→∞

|fnhn − gnhn| = lim
n→∞

|gnhn| ·
∣∣∣∣fngn − 1

∣∣∣∣ ≤ C · lim
n→∞

∣∣∣∣fngn − 1

∣∣∣∣ = 0.

Hence, we insert Fbm,r(Uj) = ∆m exp (iUjxm,r) sinc2 (Uj∆m). This gives that (B.2) equals

lim
Uj→∞

(
A2
me
−AmU2

j Iz2∆−2m − e−2Cmw1
σj (1)2e2iUjxm,r sinc4 (Uj∆m) e−2iBmUj

)
The absolute value of the second part converges to e−2Cmw1

σj (1)2. In other words, it is bounded which

concludes the proof.
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Appendix C

Additional details of the proof of

Theorem 1 for νj(x).

In this chapter, one can �nd the relevant details of the proof of Theorem 1. for the estimator ν̂j(x) for

νj(x). In contrast with the other estimators, we de�ne

ϕν,Tj (v) = 1− v(v + i) · F(Oj(x− rTj))(v),

where we use the notation r for the risk-free interest rate, instead of r,

ψkν,j(v) := (Tj − Tj−1)−1 log (1− v(v + i)FOj−k(• − rTj−k)(v))

= (Tj − Tj−1)−1 log
(
ϕν,Tj−k(v)

)
and

ψν,j(v) := ψ0
ν,j(v)− ψ1

ν,j(v).

These functions will be used in the estimation of νj(x) because under the assumptions of the model this

function simpl�es as follows

ψν,j(v) =
1

Tj − Tj−1
log

(
ϕν,Tj (v)

ϕν,Tj−1
(v)

)
= −

σ2
j v

2

2
+ iγjv +

∫ ∞
−∞

(
eivx − 1

)
νj(x) dx

= −
σ2
j v

2

2
+ iγjv − λj + Fνj(v)

And ν̂j(x) is de�ned as

ν̂j(x) := F−1
[(

ψ̃ν,j(•) +
σ̂2
j

2
(•)2 − iγ̂j(•) + λ̂j

)
wUjνj (•)

]
(x).

We start by rewriting ν̂j(x)− νj(x),

ν̂j(x)− νj(x) = F−1
[(

ψ̃ν,j(•) +
σ̂2
j

2
(•)2 − iγ̂j(•) + λ̂j

)
wUjνj (•)

]
(x)

− F−1
[(

ψν,j(•) +
σ2
j

2
(•)2 − iγj(•) + λj

)]
(x)
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=
1

2π

∫ ∞
−∞

(
ψ̃ν,j(u) +

σ̂2
j

2
u2 − iγ̂ju+ λ̂j

)
wUjνj (u) · exp(−iux) du

− 1

2π

∫ ∞
−∞

(
ψν,j(u) +

σ2
j

2
u2 − iγju+ λj

)
· exp(−iux) du

=
1

2π

∫ Uj

−Uj

(
ψ̃ν,j(w)− ψν,j(w)

)
wUjνj (w) · exp(−iwx) dw +

σ̂2
j − σ2

j

2

∫ Uj

−Uj
w2wUjνj (w) · exp(−iwx) dw

− i(γ̂j − γj)
∫ Uj

−Uj
wwUjνj (w) · exp(−iwx) dw + (λ̂j − λj)

∫ Uj

−Uj
wUjνj (w) exp(−iwx) dw

+

∫
R\[−Uj ,Uj ]

(
ψν,j(w) +

σ2
j

2
w2 − iγjw + λj

)(
1− wUjνj (w)

)
· exp(−iwx) dw


=: Ψ + Σ + Γ + Λ +B.

From Theorem 1. it follows that Σ, Γ and Λ converge all with the same rate to 0. The bias sqaured B2

can be estimated according to the following line of reasoning

B2 ≤
∫
R\[−Uj ,Uj ]

∣∣∣∣∣
(
ψν,j(u) +

σ2
j

2
u2 − iγju+ λj

)(
1− wUjνj (u)

)
· exp(−iux)

∣∣∣∣∣
2

du

=

∫
R

∣∣∣Fνj(u)
(

1− wUjνj (u)
)∣∣∣2 du ≤

∫
R
|Fνj(u)|2 · u

2s

U2s
j

du

= U−2sj

∫
R
|Fνj(u)|2 · u2s du = U−2sj

∫
R

∣∣∣∣∣Fν
(s)
j (u)

(−iu)s

∣∣∣∣∣
2

· u2s du

= U−2sj

∫
R

∣∣∣Fν(s)j (u)
∣∣∣2 du = U−sj

∥∥∥ν(s)j

∥∥∥2
L2(R)

(C.1)

Thus the bias converges to 0 with the order U−s and thus, similarly to Proposition 5, the scaled bias

converges to 0. Hence, we are left with Ψ. We will split Ψ up into a linear term and a remainder term.

Ψ =
1

2π

∫ Uj

−Uj

(
ψ̃ν,j(u)− ψν,j(u)

)
wUjνj (u) · exp(−iux) du

=
1

2π

∫ Uj

−Uj

(
log(ϕ̃ν,Tj (u))− log(ϕν,Tj (u))

)
wUjνj (u) · exp(−iux) du

=
1

2π

∫ Uj

−Uj

(
L0
j (u)− L1

j (u)−R0
j (u) +R1

j (u)
)
wUjνj (u) · exp(−iux) du

with Lkj the linear error term en Rkj the remainder error term de�ned as

Lkj (u) =
1

Tj − Tj−1
·
ϕ̃ν,Tj−k(u)− ϕν,Tj−k(u)

ϕν,Tj−k(u)
and Rkj (u) = ψ̃kj (u)− ψkj (u)− Lkj (u)

for k = 0 and k = 1.

The remainder term can be bounded similarly to Proposition 6 and it remains to calculate the asymp-

totic variance of the linear term.

Lkj (u) =
1

Tj − Tj−1
·
ϕ̃ν,Tj−k(u)− ϕν,Tj−k(u)

ϕν,Tj−k(u)
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and

L
(k)
σ2 =

1

2π

∫ Uj

−Uj
Lkj (u)wUjνj (u) exp(−iux) du.

This simpli�es as follows

L
(k)
σ2 =

1

2π

∫ Uj

−Uj
Lkj (u)wUjνj (u) exp(−iux) dw =

Uj
2π

∫ 1

−1
Lkj (uUj)w

1
νj (u) exp(−iuUjx) du

=
Uj
2π

∫ 1

0

Lkj (uUj)w
1
νj (u) exp(−iuUjx) du+

Uj
2π

∫ 1

0

Lkj (−uUj)w1
νj (−u) exp(iuUjx) du

=
Uj
2π

∫ 1

0

Lkj (uUj)w
1
νj (u) exp(−iuUjx) du+

Uj
2π

∫ 1

0

Lkj (uUj)w
1
νj (u) exp(iuUjx) du

=
Uj
π

∫ 1

0

Re
[
Lkj (uUj)w

1
νj (u) · exp(−iuUjx)

]
du

=
Uj
π

∫ 1

0

Re

(
1

Tj − Tj−1
·
ϕ̃ν,Tj−k(uUj)− ϕν,Tj−k(uUj)

ϕν,Tj−k(uUj)
w1
νj (u) · exp(−iuUjx)

)
du

=
Uj
π

∫ 1

0

Re

−uUj(uUj + i) ·
(
F(Õj−k(x− rTj−k))(uUj)− F(Oj−k(x− rTj−k))(uUj)

)
(Tj − Tj−1)ϕν,Tj−k(uUj)

(
w1
νj (u)

)−1
eiuUjx

 du

We will now use the following formula with m = j − k

ϕν,Tm(u) = exp

−u2
2
·

(
m∑
r=1

(Tr − Tr−1)σ2
r

)
+ iu ·

(
m∑
r=1

(Tr − Tr−1)γr

)

−

(
m∑
r=1

(Tr − Tr−1)λr

)
+

(
m∑
r=1

(Tr − Tr−1)Fνr(u)

)
=: exp

(
−u

2

2
·Am + iu ·Bm + Cm +Dm(u)

)
.

Inserting this into the equation yields

L
(k)
σ2 =

Uj
π

∫ 1

0

Re

−uUj(uUj + i) ·
(
F(Õj−k(x− rTj−k))(uUj)− F(Oj−k(x− rTj−k))(uUj)

)
e−iuUjx

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) (
w1
νj (u)

)−1
 du

= −Uj
π

Re

∫ 1

0

uUj(uUj + i) ·
(∑N

r=1 δm,rF(bm,r(x− rTm))(uUj)εm,r

)
exp(−iuUjx)

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) (
w1
νj (u)

)−1 du


= −Uj

π

N∑
r=1

δm,rεm,r Re

(∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w
1
νj (u) exp(−iuUjx)

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)
.

The variance V of L
(k)
σ2 can now be calculated as

V =
U2
j

π2

N∑
r=1

δ2m,r

Re

(∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w
1
νj (u) exp(−iuUjx)

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2

Applying the identity

(Re z)
2

=
1

4
z2 +

1

2
zz +

1

4
z2
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yields

V =
U2
j

π2

N∑
r=1

δ2m,r

1

4

(∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w
1
νj (u) exp(−iuUjx)

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2

+
1

2

∣∣∣∣∣
∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w
1
νj (u) exp(−iuUjx)

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

∣∣∣∣∣
2

+
1

4

(∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w1
νj (u) exp(−iuUjx)

(Tj − Tj−1) exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2
=: V1 + V2 + V3

The three parts V1, V2, V3 above will be computed separately, where it is chosen to start with V1

V1 =
U2
j

4π2(Tj − Tj−1)2

N∑
r=1

δ2m,r

(∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w
1
νj (u) exp(−iuUjx)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2

.

The integral I1 inside the summation is simpli�ed according to the following line of reasoning

I1 :=

(∫ 1

0

uUj(uUj + i)F(bm,r(x− rTm))(uUj)w
1
νj (u) exp(−iuUjx)

exp
(
−u2U2

j Am/2 + iuUjBm + Cm +Dm(uUj)
) du

)2

= U2
j exp(−2Cm)

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (i+ uUj)(i+ vUj) · g(u, v) dudv

= U2
j exp (−2Cm) ·

(
−
∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· g(u, v) dudv

+ iUj

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (u+ v)g(u, v) dudv

+ U2
j

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· uvg(u, v) dudv

)
.

with g de�ned as

g(u, v) :=
F(bm,r(x− rTm))(uUj)w

1
νj (u) exp(−iuUjx)F(bm,r(x− rTm))(vUj)w

1
νj (v) exp(−ivUjx)

exp (i(u+ v)UjBm +Dm(uUj) +Dm(vUj))
,

where r denotes the risk-free interest rate. Similarly,

I3 = U2
j exp (−2Cm) ·

(
−
∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· g(−u,−v) dudv

− iUj
∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (u+ v)g(−u,−v) dudv

+ U2
j

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· uvg(−u,−v) dudv

)

and

I2 = U2
j exp (−2Cm) ·

(∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· g(u,−v) dudv

+ iUj

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· (v − u)g(u,−v) dudv
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+ U2
j

∫ 1

0

∫ 1

0

uv exp
(
Am

(
u2 + v2

)
U2
j /2
)
· uvg(u,−v) dudv

)

To give a precise argument, it is necessary to de�ne the following function that looks like g

g̃Uj (u, v) := uv·F(bm,r(x− rTm))(uUj)F(bm,r(x− rTm))(vUj)

F(bm,r(x− rTm))(Uj)2
· w1

νj (u)w1
νj (v)

· exp (2iUj(Bm + x))

exp (i(u+ v)Uj(Bm + x))
· exp (−Dm(uUj)−Dm(vUj))

and Lemma 7. will be applied next. Please note that, Lemma 7. was adjusted to �t in the proof of

Theorem 1., however, it is not di�cult to see that it does not need much modi�cation such that the result

also holds in this case. Hence, we need to check the conditions on g̃Uj and we need to �nd a relevant

function fUj . After normalizing uv exp(Am(u2 + v2)U2
j /2), we obtain the delta Dirac sequence

fUj (u, v) := A2
mU

4
j exp

(
−AmU2

j

)
uv exp

(
Am(u2 + v2)U2

j /2
)

=: F (u) · F (v).

It remains to check the conditions of the lemma on the function fUj .∫ 1

1−U−3/2
j

F (u) du = exp
(
−AmU2

j /2
) ∫ 1

1−U−3/2
j

uAmU
2
j exp

(
Amu

2U2
j /2
)

= exp
(
−AmU2

j /2
)
·
[
exp

(
Amu

2U2
j /2
)]1
u=1−U−3/2

j

= exp
(
−AmU2

j /2
)
·
[
exp

(
AmU

2
j /2
)
− exp

(
Am

(
1− U−3/2j

)2
U2
j /2

)]
= 1− exp

(
AmU

2
j

[(
1− 2U

−3/2
j + U−3j

)
− 1
]
/2
)

= 1− exp
(
−AmU1/2

j +AmU
−1
j /2

)
Hence,

lim
Uj→∞

∫ 1

1−U−3/2
j

∫ 1

1−U−3/2
j

fUj (u, v) dudv = lim
Uj→∞

(∫ 1

1−U−3/2
j

F (u) du

)2

=

(
lim

Uj→∞
1− exp

(
−AmU1/2

j +AmU
−1
j /2

))2

= 1.

Checking the other condition of the function fUj is left to the reader and the problem simpli�es to

checking boundedness of g̃U on the unit square and

lim
Uj→∞

sup
(u,v)∈[1−U−3/2,1]2

|g̃Uj (u, v)− g̃Uj (1, 1)| = 0.

The latter is a small modi�cation to Lemma 8.

From this, it appears that all the integrals in the �nal expressions for I1, I2 and I3 converge equally

fast to 0. Hence, the dominating term is the last one by the U4
j factor in front of it. Henceforth, the �rst

two integrals will be left out of the equation.

lim
Uj→∞

I1 ·A2
m exp(−AmU2

j )F(bm,r(x− rTm))(Uj)
−2 exp(2iUj(Bm + x))

= lim
U→∞

exp(−2Cm)

∫ 1

0

∫ 1

0

fUj (u, v)g̃Uj (u, v) dudv
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= exp(−2Cm) lim
U→∞

g̃Uj (1, 1)

= exp(−2Cm) lim
U→∞

exp (−2Dm(Uj))w
1
νj (1)2

= exp(−2Cm)w1
νj (1)2

Similarly,

lim
Uj→∞

I3 ·A2
m exp(−AmU2

j )F(bm,r(x− rTm))(−Uj)−2 exp(−2iUj(Bm + x))

= exp(−2Cm)w1
νj (1)2

and
lim

Uj→∞
I2 ·A2

m exp(−AmU2
j )|F(bm,r(x− rTm))(Uj)|−2

= exp(−2Cm)w1
νj (1)2.

We can now compute the asymptotic variance where the swap of the limit and the sum is veri�ed by

Lemma 9.

lim
Uj→∞

∆−1m U−2j A2
m exp(−AmU2

j )V1

=
1

4π2(Tj − Tj−1)2
lim

Uj→∞
∆−1m

N∑
r=1

δ2m,rA
2
m exp(−AmU2

j )I1

=
1

4π2(Tj − Tj−1)2
lim

Uj→∞
∆−1m

N∑
r=1

δ2m,r exp(−2Cm)w1
νj (1)2

· F(bm,r(x− rTm))(Uj)
2 exp (−2iUj(Bm + x))

=
exp(−2Cm)w1

νj (1)2

4π2(Tj − Tj−1)2
· lim
Uj→∞

exp (−2iUj(Bm + x)) ∆−1m

N∑
r=1

δ2m,rF(bm,r(x− rTm))(Uj)
2

Similarly,

lim
U→∞

∆−1m U−2j A2
m exp(−AmU2

j )V3

=
exp(−2Cm)w1

νj (1)2

4π2(Tj − Tj−1)2
lim

Uj→∞
exp (2iUj(Bm + x)) ∆−1m

N∑
r=1

δ2m,rF(bm,r(x− rTm))(−Uj)2

and
lim
U→∞

∆−1m U4
j A

2
m exp(−AmU2

j )V2

=
exp(−2Cm)w1

νj (1)2

2π2(Tj − Tj−1)2
lim

Uj→∞
∆−1m

N∑
r=1

δ2m,r|F(bm,r(x− rTm))(Uj)|2.

To compute the limit, it is necessary to �nd F(bm,r(x−rTm)). First, we know that the Fourier transform

of the unit box function with limits −1/2 and 1/2 is equal to the sinc = sin(•)/• function. Hence the

Fourier transform of the convolution of two unit box functions is equal to sinc2, whereas the convolution

is equal to the triangular function Λ with limits −1 and 1. De�ne cm,r(x) = bm,r(x − rTm), then

bm,r(x) = cm,r(x+ rTm). Moreover,

bm,r(∆mx+ xr) = Λ (x) .

Thus

cm,r(∆mx+ xr + rTm) = Λ(x).
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Then, similarly as before (C.2)

sinc2(u) =

∫ 1

−1
exp(iux)Λ(x) dx = ∆−1m

∫ xr+1

xr−1

exp

(
iu · y − xr

∆m

)
bm,r(y) dy

= ∆−1m

∫ xr+1

xr−1

exp

(
iu · y − xr

∆m

)
cm,r(y + rTm) dy

= ∆−1m

∫ xr+1+rTm

xr−1+rTm

exp

(
iu · x− rTm − xr

∆m

)
cm,r(x) dx

= ∆−1m exp
(
−iu(xr + rTm)∆−1m

)
Fcm,r

(
u∆−1m

)
.

Thus,

Fcm,r(y) = ∆m exp (iy(xr + rTm)) sinc2 (y∆m) . (C.2)

Hence,

lim
Uj→∞

exp (−2iUj(Bm + x)) ∆−1m

N∑
r=1

δ2m,rFcm,r(Uj)2

= lim
Uj→∞

exp (−2iUj(Bm + x)) sinc4 (Uj∆m)

N∑
r=1

δ2m,r exp (2iUj(xr + rTm)) ∆m

= lim
Uj→∞

exp (−2iUj(Bm + x)) sinc4 (Uj∆m)

∫ ∞
−∞

δm(x)2 exp (2iUj(x+ rTm)) dx

= lim
Uj→∞

exp (−2iUj(Bm + x)) sinc4 (Uj∆m)

∫ ∞
−∞

δm(x− rTm)2 exp (2iUjx) dx

= lim
Uj→∞

exp (−2iUj(Bm + x)) sinc4 (Uj∆m)F
(
δ2m(x− rTm)

)
(2Uj)

We have assumed δ to be an L2 function. Thus the shifted δ is still L2 and hence F
(
δ2m(x− rTm)

)
(2Uj)→

0 as Uj → ∞ by the Riemann-Lebesgue lemma. Moreover, sinc4(Uj∆m) → 1, since Uj∆m → 0 as

Uj →∞, and the �rst term is bounded in norm with 1. So, it is concluded that this sum is equal to 0 in

the limit. Similarly,

lim
U→∞

exp (2i(Bm + x)Uj) ∆−1m

N∑
r=1

δ2m,rFcm,r(−Uj)2 = 0

and

lim
Uj→∞

∆−1m

N∑
r=1

δ2m,r|Fcm,r(Uj)|2 = lim
Uj→∞

sinc4 (Uj∆m)

N∑
r=1

δ2m,r∆m

= lim
Uj→∞

sinc4 (Uj∆m)

∫ ∞
−∞

δm(x)2 dx

= lim
Uj→∞

sinc4(Uj∆m) ‖δm‖2L2 = ‖δm‖2L2 .

Concluding, as before in (10.8), the asymptotic variance of L
(k)
σ2 is equal to

V kRe2 z = ∆mU
2
j A
−2
m exp(AmU

2) · exp(−2Cm)

2π2(Tj − Tj−1)2
‖δm‖2L2

= 2−1π−2 ‖δm‖2L2 (Tj − Tj−1)−2A−2m exp(−2Cm)w1
νj (1)2 ·∆mU

2
j exp(AmU

2
j )

If we de�ne

dj,m = 2 ‖δm‖2L2 (Tj − Tj−1)−2A−2m exp(−2Cm),
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we can write the asymptotic variance AV of σ̂2
j − σ2

j as

AV = U2
j ·
(
dj,j

(2π)2
·∆j exp

(
AjU

2
j

)
+
dj,j−1
(2π)2

·∆j−1 exp
(
Aj−1U

2
j

))
w1
νj (1)2.
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