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Abstract
When it comes to solving optimization problems with evolutionary algorithms (EAs)
in a reliable and scalable manner, detecting and exploiting linkage information, that is,
dependencies between variables, can be key. In this paper, we present the latest version
of, and propose substantial enhancements to, the gene-pool optimal mixing evolution-
ary algorithm (GOMEA): an EA explicitly designed to estimate and exploit linkage in-
formation. We begin by performing a large-scale search over several GOMEA design
choices to understand what matters most and obtain a generally best-performing ver-
sion of the algorithm. Next, we introduce a novel version of GOMEA, called CGOMEA,
where linkage-based variation is further improved by filtering solution mating based
on conditional dependencies. We compare our latest version of GOMEA, the newly
introduced CGOMEA, and another contending linkage-aware EA, DSMGA-II, in an
extensive experimental evaluation, involving a benchmark set of nine black-box prob-
lems that can be solved efficiently only if their inherent dependency structure is un-
veiled and exploited. Finally, in an attempt to make EAs more usable and resilient to
parameter choices, we investigate the performance of different automatic population
management schemes for GOMEA and CGOMEA, de facto making the EAs parameter-
less. Our results show that GOMEA and CGOMEA significantly outperform the orig-
inal GOMEA and DSMGA-II on most problems, setting a new state of the art for the
field.

Keywords
Model-based evolutionary algorithms, linkage learning, optimal mixing, estimation-
of-distribution algorithms, genetic algorithms.

1 Introduction

Key to the success of any optimization algorithm, in terms of search effectiveness and
efficiency, is the ability to exploit structural features of the problem being solved. To
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this, evolutionary algorithms (EAs) are no exception. For EAs, it is predominantly the
variation operators that need to be favorably configured to exploit structural features.
One structural feature that is of particular importance is variable dependence. Not only
does variable dependence have a direct influence on the inherent difficulty of a problem,
but not being able to exploit such dependency information may lead to very inefficient
optimization performance. If two variables are completely independent in a problem,
this problem can be solved by considering the variables separately. Conversely, if two
variables are strongly dependent, joint settings of these variables need to be considered
in order to find the optimal solution. In EAs, such dependencies (between the variables
that are directly manipulated by the EA, i.e., the genes), are also known as linkages. It
has long been known that groups of variables that exhibit such strong linkages need to
be treated, with high probability, in a joint fashion by the variation operator in order
for an EA to be an efficient solver (Thierens, 1999; Pelikan et al., 1999). Especially in the
domain of discrete variables that constitute a Cartesian search space, which is also the
domain that this paper pertains to, many EAs employ a mixing operator that exchanges
parts of solutions. Ensuring this mixing operator is linkage-friendly, that is, has a high
probability of exchanging groups of genes that are highly dependent, can make the
difference between obtaining efficient (low-polynomial) and inefficient (exponential)
scale-up of the required running time to solve the problem (Thierens, 1999; Pelikan et al.,
1999).

The relevance and importance of linkage processing is even more prominent when
taking a black-box perspective on optimization. In black-box optimization (BBO), there
is very little to no information available on the problem being solved. Metaheuristics,
including EAs, are commonly formulated and studied in this context, with the notion
of designing a powerful general problem solver in mind. Certainly, the no-free-lunch
theorem assures us that, considering all possible optimization problems, no such solver
exists (Wolpert and Macready, 1997). However, a generally valid assumption can be
made that the types of optimization problems we are interested in are not completely
random, but have some sort of exploitable structure. It is the exploitation of this struc-
ture that governs whether optimization will proceed effectively and efficiently. This
then brings us back to the linkage problem, for it is assumed that the structure of the
typical optimization problems we are interested in is nontrivial; that is, its variables
are not all fully independent. For this reason, we have no guarantee that a simple ge-
netic algorithm with uniform crossover, or any static crossover operator for that matter,
will effectively exploit the structure of the problem. Thus, their use comes with the risk
of exponential scale-up of the required runtime on problems that are polynomial-time
solvable (Thierens, 1999). To avoid this, linkage information needs to be exploited prop-
erly. In a BBO setting, however, such information is not readily available, and thus must
be determined otherwise, using previously performed solution-quality, that is, fitness,
evaluations. This process is commonly known as linkage learning, which is a key concept
in this paper.

An argument can be made at this point that the added complexity and effort of per-
forming linkage learning is superfluous because a true BBO scenario is not frequently
encountered when solving real-world problems. A need for BBO may still very well sur-
face, however, even when efficient local search heuristics are available for a particular
problem. It is well-known that combining EAs and local search is highly effective for
many problems (Hart et al., 2005). The reason for this is that by applying local search to
every solution, a second search problem can be seen to exist in the space of local optima
of the optimization problem. Running a local search heuristic multiple times, that is, a
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random restart heuristic, then can effectively be seen as random search in the space of
local optima. This space may be searched more efficiently using an EA, which can be
obtained by applying local search to every solution that the EA generates. Even when
we understand very well the problem being solved to the point where we can design
efficient local search algorithms, the nature of the search space composed of the local
optima may still be extremely hard to analyze. In that space then, there is again a need
for powerful BBO algorithms.

The linkage problem has already been identified a long time ago, and much work
on tackling this problem has previously been done, often presented simultaneously
with a new EA (see, e.g., Pelikan and Goldberg, 2006; Bosman and Thierens, 2012a).
Much of this work has been toward building more complex models that are capable
of capturing problem structure in more intricate detail, up to the relatively complex
task of estimating entire (factorized) probability distributions, as is done in estimation-
of-distribution algorithms (EDAs) (Larrañaga and Lozano, 2001). Although ultimately
capable of exploiting problem structure properly, the overhead involved with esti-
mating actual probabilities surpasses the need to determine the linkage information
that needs to be effectively exploited. Importantly, such overhead becomes more sig-
nificant on large-scale problems causing scalability issues. This paper focuses specif-
ically on the linkage hurdle on the road to powerful BBO algorithms. In particular,
we introduce the new version of the gene-pool optimal mixing evolutionary algorithm
(GOMEA) that seamlessly integrates the traditionally separate operators of selection
and variation in EAs in order to get the most out of available linkage information. More-
over, a generalized model of linkage information allows linkage information to be pro-
cessed at more than one level, for example, processing a hierarchy of weak and strong
dependencies.

The main contribution of this paper can be summarized as presentation of the pa-
rameterless EA showing state-of-the-art performance in the field of discrete BBO. This
paper joins all algorithmic information from our previous work that is needed to make
this paper self-contained and represent the current state-of-the-art in the GOMEA re-
search line.

We extend our previously published work on GOMEA by a more extensive exper-
imental analysis on more optimization problems and larger problem sizes, testing the
impact of various possible design choices such as local search operators on GOMEA,
and, importantly, we propose a novel variation operator which exploits conditional de-
pendencies between sets of variables and is called conditional GOM (CGOM). Finally,
we demonstrate the practical applicability of GOMEAby designing parameterless mod-
ifications of it. The performance of new and old versions of GOMEA are compared and
shown in comparison with other EAs, including the recent version of DSMGA-II (Chen
et al., 2017) and the parameter-less population pyramid (P3) (Goldman and Punch,
2015). The obtained GOMEA modification demonstrates better performance than pre-
viously published versions of it. Moreover, CGOM further improves GOMEA perfor-
mance on most considered problems.

The remainder of this paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we outline the general working scheme of GOMEA and present
design options for its most important components in more detail. Also, we present
GOMEA instances without the population size parameter and describe schemes to run
GOMEA in a population size-free fashion. Then, we present our benchmark problems
and the design of experiments in Section 4, followed by the results in Section 5. The
paper ends with a discussion in Section 6 and conclusions in Section 7.
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2 From Genetic Algorithms to Estimation of Distribution Algorithms
and Back Again

It was already hypothesized by John Holland himself that the simple genetic algorithm
succeeds at optimization if it can proliferate important building blocks (Holland et al.,
1992), that is, partially defined solutions for which it holds that, when averaging over
all the solutions that it is part of in a population, the fitness is better than the average
fitness of the population.

Key is the proper mixing of these partial solutions, which means disrupting them
as little as possible (i.e., copying them entirely from one solution to the next) and not
copying other parts of the solution that they are (semi)independent from. If these im-
portant partial solutions have a large probability of being destroyed during variation,
for instance by using uniform crossover, the population size that is required to find
the optimum may grow exponentially with the problem size. Conversely, polynomial
population size growth can be achieved if the partial solutions are properly mixed. A
well-known example of this is represented by the sum of additively decomposable, non-
overlapping, deceptive trap functions (Deb and Goldberg, 1993).

Since then, there has been a dedicated research line in the field of evolutionary com-
putation to design variation operators that are capable of automatically detecting the
presence of important building blocks, and of reconfiguring the way in which varia-
tion proceeds to ensure that building blocks are mixed well and disrupted as little as
possible. The first family of EAs along this line was the messy genetic algorithm family
(Kargupta, 1996). Algorithms in this family allowed genes to be reordered by explicitly
encoding their location. Although eventual algorithms were able to avoid exponential
scale-up, the overhead of reordering genes was still substantial and lacked explanatory
statistical underpinning.

For this reason, researchers started looking into probabilistic approaches that were
capable of explicitly computing dependencies between problem variables by estimat-
ing probability distributions over them. The population can be seen as a database that
represents the type of solutions that are desired, and, over time, through selection, gets
pushed toward the optimum. Selecting the better solutions makes dependencies stand
out, since on average the solutions that contain important building blocks will have a
better fitness than those solutions that do not. By estimating a probability distribution
from the population, these dependencies can be explicitly modeled in a probabilistic
fashion. Moreover, by sampling new solutions from the estimated distribution, these
dependencies are respected. Because the process of sampling generates a new database
that has the same statistical properties as the original database (to the extent to which
these properties were modeled in the probability distribution), this approach can be
considered as mixing solutions at a population level rather than at the two-parent level
as was typically reminiscent of genetic algorithms. This type of algorithm is known as
the estimation-of-distribution algorithm (EDA) (Larrañaga and Lozano, 2001; Lozano
et al., 2006). Effectively and efficiently estimating probability distributions that cap-
ture higher-order dependencies was still key, however, to avoid exponential scale-up
on problems with nontrivial dependency structure. Initial attempts that used either
univariately factorized probability distributions (e.g., PBIL, Baluja and Caruana, 1995,
and cGA, Harik et al., 1999) that modeled every variable to be independent from every
other variable, or bivariately factorized distributions that considered variable depen-
dencies of at most order two (e.g., MIMIC, De Bonet et al., 1997; COMIT, Baluja and
Davies, 1997; and BMDA, Pelikan and Mühlenbein, 1999) still fail to obtain polynomial
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scale-up on the additively decomposable deceptive trap functions. Low-order polyno-
mial scale-up is obtained only by EDAs that model higher-order dependencies (e.g.,
ECGA, Harik et al., 2006; LFDA, Mühlenbein and Mahnig, 1999; and BOA, Pelikan et al.,
1999).

The most advanced EDA in this line is commonly accepted to be the hierarchical
Bayesian optimization algorithm (hBOA) (Pelikan and Goldberg, 2006). Both its pre-
decessor BOA and hBOA itself estimate a Bayesian network every generation using a
greedy learning procedure. hBOA, however, has the ability to store the parameters in
this network more efficiently by storing only those combinations of values for depen-
dent variables that actually appear in the population, thereby preventing the need to
generate huge probability tables that require the explicit enumeration of all possible
value combinations of a set of dependent variables. This, combined with a mechanism
(restricted tournament selection) that promotes population diversity, allowed hBOA to
be the only EDA capable of solving problems with hierarchical dependency structures
while requiring only low-order polynomial-time scale-up of the population size and
number of function evaluations. Although to a large extent it now satisfactorily solves
the linkage problem and provides a solid, statistically sound basis for doing so, the
overhead required by hBOA is still substantial, requiring asymptotically O(n�3) time
per generation where � is the number of problem variables and n the population size.
Moreover, the number of generations required to solve a problem is typically in the same
order as a properly configured GA requires, which is typically in the order of �(

√
�)

(Pelikan, 2005). The proofs for different EDAs, for example, UMDA (Mühlenbein and
Paass, 1996), are provided by Doerr and Neumann (2019).

Although a solid approach to tackling the linkage problem, estimating entire prob-
ability distributions comes with the necessity to estimate not only a dependency struc-
ture, but also to estimate parameters (e.g., actual probabilities). Moreover, in order to
decide what underlying dependency structure is a good one, that is, not missing key de-
pendencies and not overly complex, quality-of-fit measures need to be computed that
decide when to stop the greedy learning approach that iteratively increases the com-
plexity of the underlying dependency structure. These aspects are not necessarily im-
portant for tackling the linkage problem because for that it would suffice to know which
variables are (strongly) dependent on which other variables. The joint probabilities of
entire building blocks do not need to be computed explicitly, as they are stored implicitly
in the population. Mixing the information stored in the population therefore automati-
cally follows these probabilities. These foundations form a basis of the GOMEA frame-
work. GOMEA was first introduced in 2011 (Bosman and Thierens, 2012a), posed as a
broadened scope of the idea behind the original linkage tree genetic algorithm (LTGA)
introduced in 2010 (Thierens, 2010). LTGA was one of the first algorithms to depart from
the EDA principle of estimating entire probability distributions, and thus essentially go-
ing back to the notion of genetic algorithm, but still using similar statistical concepts as
used in EDAs to detect dependencies. Ultimately this led to a model-building complex-
ity of an order of magnitude faster (O(n�2)) than hBOA, while being able to capture and
exploit both low-order dependencies as well as high-order dependencies at the same
time. Moreover, LTGA requires only a handful of generations to find the optimal solu-
tion due to much more extensive model exploitation during variation, further reducing
the overall required model-building complexity. As later versions of LTGA, including
the one presented in this paper, are seen as instances of the GOMEA framework, details
will be described in subsequent sections. Besides LTGA, which we will from now refer
to as LT-GOMEA, other non-EDA algorithms that build models to model and exploit
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Figure 1: The set diagram of the key algorithms in the OMEA family of algorithms.
ROMEA refers to the recombinative OMEA; (MO-)GOMEA refers to the (multi-
objective) discrete GOMEA; (MO-)RV-GOMEA refers to the (multiobjective) real-
valued GOMEA; (MO-)GP-GOMEA refers to (multiobjective) GOMEA for genetic
programming.

linkage information have recently been proposed (Hsu and Yu, 2015; Chen et al., 2017;
Goldman and Punch, 2015). These algorithms that can more generally be described as
model-based EAs have also been successful at outperforming hBOA.

3 The GOMEA Family of EAs

The family of GOMEAs has been proved to show impressive performance on
benchmarks and, importantly, real-world problems. For instance, Real-Valued Multi-
Objective GOMEA (RV-MO-GOMEA) (Bouter et al., 2019) is now used for brachyther-
apy treatment planning optimization. This application received a Silver Humies award
(Goodman, 2020), which highlights its practical value and outstanding, better-than-
human performance. Another example is an adaptation of GOMEA for genetic pro-
gramming (GP-GOMEA) (Virgolin et al., 2017). Beside showing better performance than
alternative GP algorithms on classical machine learning benchmarks, GP-GOMEA has
been also successfully applied to a real-world medical problem, namely, a radiotherapy
dose reconstruction (Virgolin et al., 2020). This application was noted with a Silver Hu-
mies award in 2021. These two examples show the potential of the GOMEA family of
algorithms.

The family of GOMEAs is actually a subset of the OMEA family (Bosman and
Thierens, 2012a). Another subset is the recombinative OMEA (ROMEA) (Thierens and
Bosman, 2011) family whereby mixing of solutions occurs only between two parent so-
lutions rather than between all solutions in the population as is the case for GOMEA.
When tested on various problems, however, GOMEA was found to have the best perfor-
mance as long as the models capturing linkage information were adequate (Bosman and
Thierens, 2012a). For this reason, we focus particularly on GOMEA here. The graphical
overview of the GOMEA family of algorithms is shown in Figure 1.
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The main idea behind the OMEA framework is that linkages are identified using
sets of variable indices (see Section 3.1), which we shall call linkage sets. These indi-
vidual linkage sets are then explicitly exploited, in contrast to classical GAs and EDAs.
In the latter, entire solutions are generated and subsequently evaluated. The main idea
of OMEA, however, is to take values only for a linkage subset from a donor solution,
and try these values out in another solution to see if it improves. It is this direct notion
of acceptance that makes the success of the mixing operation independent of the effect
of all other mixing events that may happen when constructing an entire new solution
first. Because this makes each mixing event an optimal decision, unhampered by poten-
tial collateral noise, and because when all linkage sets are correctly identified, mixing
essentially does not make any mistakes this way (unless unhelpful donor solutions are
selected); this approach to variation was called optimal mixing (OM).

GOMEAs are a subclass of the general class of EAs and as such are a form of
population-based search. The most traditional approach to population management
is to have a population of a fixed size. We will discuss what GOMEA looks like with
this approach as well as with different approaches to population management that no
longer require the specification of a value for the population size parameter. The latter
is especially of high practical value. In the remainder of this section, we provide more
details on the various components of GOMEA.

3.1 Family of Subsets (FOS) as a Linkage Model

The GOMEA class of EAs focuses on modeling linkage by explicitly identifying sets of
variables to be treated jointly in the variation process. Moreover, such linkage sets are
allowed to overlap. Specifically, any subset of the set of all variables may be identified
within the linkage model. This may be defined as follows. Let L = {0, 1, . . . , � − 1} be
the set of � unique identifiers of variables that the EA processes, then the linkage model
in GOMEA is a subset of the powerset of L. Such a set is commonly called a family of
subsets in mathematics. We therefore call the linkage model in GOMEA the family-of-
subsets, or FOS, model, and denote it by F , that is:

F ⊆ ℘(L). (1)

3.1.1 Linkage Tree (LT) Model
Though different ways to configure a FOS model by learning linkage from the
population were introduced, we focus here on a so-called linkage tree (LT) model
which demonstrated efficiency in solving various combinatorial optimization problems
(Thierens and Bosman, 2011). An LT is a binary tree with 2� − 1 vertices. LT leaves are
singletons of problem variables, the root of a LT is the set of all problem variables L,
and all other vertices are variables subsets F i which are unions of disjoint subsets of
children k, j of vertex i: F i = F j ∪ Fk, F j ∩ Fk = ∅.

3.1.2 Similarity Measures
An LT can be built in a bottom-up fashion using hierarchical clustering (Kraskov and
Grassberger, 2009): starting from singletons, the most similar subsets of variables are
merged until a subset containing all variables is obtained (a tree root). A similarity be-
tween two subsets of variables F i , F j is defined as average similarity measure of all
pairs of variables (X, Y ) where X ∈ F i, Y ∈ F j . Different similarity measures can be
used (Bosman and Thierens, 2012b). Here, we consider two of them that are most com-
monly used (e.g., Luong et al., 2018; den Besten et al., 2016; Goldman and Punch, 2015),
namely, standard mutual information (MI) and normalized mutual information (NMI).
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For two variables X, Y , MI and NMI are defined as

MI(X, Y ) = H(X) + H(Y ) − H(X, Y )

NMI(X, Y ) = MI(X, Y )/H(X, Y )

where H (X) is information entropy, defined as

H (X) =
∑
x∈�X

−P (X = x) log(P (X = x))

where �X is the set of X values.

3.1.3 Linkage Tree Filtering
It was shown in Bosman and Thierens (2013) that a full LT model (with 2� − 1 vertices)
may have redundant subsets that can be filtered out to increase mixing efficiency. Here
we consider one particular case of filtering that was successfully applied in Goldman
and Punch (2015). When two subsets Fj and Fk are merged into a subset F i , it may
happen that the similarity between them is maximal (one in case of MI or NMI), which
means that in a population, values of variables from one subset can perfectly predict
values of variables from another subset. We suppose that there is no merit in using
these subsets in mixing separately, as it may disrupt this pattern and use additional
unnecessary evaluations. Thus, keeping subsets F j and Fk in a FOS is not reasonable,
and it is sufficient to keep only the parent subset F i . In practice, to deal with possible
numerical errors in similarity measure calculation, the filtering rule is invoked if the
similarity measure value is above 1 − ε threshold (we use ε = 10−6). Let S(X, Y ) be the
similarity measure. After the filtering rule is applied, the subsets of an LT model satisfy
the description:

∀F i, F j , F k ∈ F such that F i = F j ∪ Fk,

S(F j , F k ) ≤ 1 − ε. (2)

3.2 Gene-Pool Optimal Mixing (GOM)

Variation in GOMEA is guided by the contents of the FOS model in order to prevent
disrupting the linkage information it represents. To do so, an operator called gene-pool
optimal mixing (GOM) is used that integrates selection and variation and has many sim-
ilarities with greedy search algorithms. The GOM operator is described in pseudocode
in Algorithm 1.

GOM is applied to a single solution and outputs a single solution that is never worse
than the input solution. To improve a solution, GOM loops over the contents of the FOS
model. We consider two ways of iterating over FOS elements: in random order (Thierens
and Bosman, 2011) and ascending order of subsets size (|F i |) (Goldman and Punch,
2015). For each linkage subset F i , GOM attempts to overwrite the values of the variables
in F i of the solution in consideration, with values from a donor solution that is chosen at
random from the population. If this overwriting action does not cause the fitness of the
solution to become worse, the copy action is accepted. Otherwise, the donor material is
rejected and the action is undone. To allow traversing of fitness plateaus, changes that
lead to the same fitness are also accepted if the solution is not the elitist one (having the
best fitness among all so far evaluated solutions). Note that a FOS subset containing all
variables, that is, the root of the LT model, is not used in GOM, as it implies replacing
an entire solution rather than changing only a part of it.

378 Evolutionary Computation Volume 32, Number 4



Parameterless Gene-Pool Optimal Mixing EAs

Evolutionary Computation Volume 32, Number 4 379



A. Dushatskiy et al.

3.2.1 Exhaustive Donor Search (EDS)
When population diversity becomes low, it is likely that a randomly selected donor
has the same genes F i as the current solution; therefore, no new genotype is obtained.
To deal with this situation, we can continue trying different donors until one is found
in which genes F i are different from the current solution. This modification is called
exhaustive donor search (EDS), following Goldman and Punch (2015).

3.2.2 Forced Improvements (FI)
If no subset F i leads to changes in the solution undergoing GOM, the so-called forced im-
provements (FI) phase can (optionally) start. Originally, the FI was proposed in Bosman
and Thierens (2012a) to deal with convergence issues in MAXCUT. Namely, it can
happen that the population starts to drift in fitness plateaus; that is, solutions keep
changing without improving. This lack of convergence makes it unlikely for further im-
provements to be discovered. Therefore, FI is specifically designed to steer the search
towards converging to the elitist solution. Note that for simplicity only one elitist (i.e.,
best) solution is stored if there are multiple solutions with equally good fitness values.
The FI phase works like the normal GOM phase, except for the fact that the donor so-
lution is always set to be the elitist solution. Moreover, to further ensure convergence,
changes that lead to equal fitness are now rejected (one can no longer drift in fitness
plateaus). Only if the solution strictly improves in fitness is the overwrite action ac-
cepted. To prevent the FI phase from reducing diversity too fast, the FI phase is stopped
as soon as an improvement happens. Finally, if a solution could not be improved in the
FI phase, it is overwritten by the elitist solution. This action decreases diversity in the
population, but on the other hand might improve convergence.

3.3 Conditional Gene-Pool Optimal Mixing (CGOM)

By design, the GOM operator copies genes from a donor solution independently for
each FOS element. Therefore, dependencies between FOS elements are not taken into ac-
count; that is, when GOM is applied to a FOS element, any (weak) dependencies of vari-
ables inside the FOS element to variables outside the FOS element are not considered,
which might lead to suboptimal linkage usage because it may well be that although in-
teractions between variables are of low order, they may still not be defined in terms of
mutual exclusive subsets. That is, consider the NK-landscapes (Pelikan et al., 2009) with
random subsets of variables for the subfunctions. To alleviate this limitation, we con-
sider a new gene-pool optimal mixing operator, the conditional GOM (CGOM). CGOM
is closely related to and inspired by recently introduced conditional linkage models for
the real-valued GOMEA (RV-GOMEA) (Bouter et al., 2020). However, in RV-GOMEA
conditional dependencies were not considered together with a hierarchical model like
the LT, which we do have for the first time.

CGOM works similarly to GOM but takes into account what gene values are be-
ing processed to choose suitable donor solutions. If the variables contained in a FOS
subset F i are weakly dependent on variables not in F i , CGOM takes this into account
during mixing. Specifically, each FOS subset can be made conditionally dependent on a
group of other variables under the condition that they were already used in the current
iteration of GOM.

Suppose some genes have already been considered during mixing; that is, for the
current application of GOM to a given solution, these variables have been subjected to
GOM before (they were in a FOS element considered earlier). We store these genes in
a set U . When a new FOS element F i is considered, we compute (explained below) the
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Figure 2: A minimal CGOM working example. Fitness function f is a function of
five variables and can be decomposed into two subfunctions: f (x1, x2, x3, x4, x5) =
f1(x1, x2, x3) + f2(x3, x4, x5). This is shown by the different colors of edges. Suppose that
after filtering the LT FOS contains two elements: {x1, x2, x3} and {x4, x5}. Variables from
the current FOS element are colored in green; variables which are dependent with it are
colored in blue; variables which are dependent with it and are already used (i.e., are
taken into account by CGOM) are colored in yellow. Green-colored genes are pooled
to an offspring from only those donors which have the yellow-colored genes equal to
what is found in the current offspring.

set of variables V such that (1) V ∩ F i = ∅, (2) all variables in V depend on the variables
in F i (we refer to such set of variables as Gi), and (3) V ⊆ U (i.e., they were considered
before). Since variables from V and F i (weakly) depend on each other, we enforce that
selecting which genes configuration for F i is considered should be conditioned on V .
This is achieved by considering as donor solutions only those which have the same
genes for variables in V as the current solution undergoing CGOM has.

A minimal CGOM working example is shown in Figure 2. The CGOM differences
as compared to GOM in terms of pseudocode are highlighted in Algorithm 1.

In the BBO paradigm, we have no a priori information on the dependence structure
between variables. However, similar to FOS learning, we can estimate a notion of vari-
able dependence based on the state of the population and the similarity measure (e.g.,
MI or NMI). Broadly speaking, we say that a FOS element F i is dependent on a variable
X (X /∈ F i) if the average pairwise similarity measure S(x, y) between the variables in
F i and X ( 1

|F i |
∑

y∈F i S(X, y)) is relatively large compared to the average similarity mea-
sure between the variables only in F i on the one hand and all the variables that do not
belong to F i on the other hand, that is, all measures 1

|F i |
∑

y∈F i S(x, y) for x /∈ F i .1

Particularly, we use a threshold to detect such dependencies: a FOS element F i is
considered to have a dependency with variable j if the average pairwise similarity mea-
sure between j and variable in F i is greater than λM where M is the largest average
pairwise similarity score between variables from F i and variables not belonging to F i .

This dependencies learning procedure is described in pseudocode in the function
learnDependencies of Algorithm 2. The hyperparameter λ is tunable; its range of possible

1Minimal/maximal pairwise similarity metrics between variables in F i and a variable x not belong-
ing to it (e.g., maxy∈F i S(x, y)) are very unstable (e.g., prone to just one outlier value), and in many
cases would be just 1 in case of taking maximum or 0 in case of taking minimum. Also, then it becomes
difficult to rank different variables, as many would have the same value. The average value is intuitive,
easy to use, and less sensitive to outliers.
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values is [0, 1]. The smaller the value of λ, the larger the number of estimated depen-
dencies. In other words, small λ values will result in high recall (we are unlikely to miss
dependencies but might have many false positives), while large λ values will improve
precision (we might miss many dependencies but will have few small positives).

3.4 GOMEA with a Traditional, Single Population

The initial population of n solutions is initialized randomly. After random solutions are
generated, a local search algorithm can be applied to efficiently move them to a local
optimum.
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3.4.1 Local Search
We consider two local search algorithms here: simple single-iteration hill climber (SIHC)
and exhaustive hill climber (EHC). SIHC (also called first-improvement local search in lit-
erature, Ochoa et al., 2010) works by flipping bits of a solution in random order and
greedily accepting improving changes. EHC (also called best-improvement local search,
Ochoa et al., 2010) is SIHC repeated multiple times until no improvements are found in
a single bit-flipping iteration over all variables. Both hill climber variants were shown
to be efficient components of advanced EAs; for instance, SIHC was used in Hsu and
Yu (2015), and EHC was used in Goldman and Punch (2015). The pseudocode for con-
sidered hill climber algorithms is listed in Supplementary Algorithm 1.

3.4.2 Tournament Selection
Each iteration of the main GOMEA loop starts with linkage model learning. GOMEA
does not have a traditional selection phase because GOM already induces selection, by
discarding changes that are detrimental to a solution’s fitness. However, we consider
the option of using tournament selection to select good solutions upon which to learn
the linkage model, as done in Hsu and Yu (2015) and Chen et al. (2017). We remark that
with this option, the selection is disregarded after the linkage model is learned; that is,
it is not used to override the population.

After the linkage model is learned, the GOM variation operator is applied to every
solution in the population to generate n offspring solutions. The population is then com-
pletely replaced by the offspring solutions. This main loop runs until the termination
criterion is satisfied, which is naturally triggered when the population converges (i.e.,
all solutions have equal genotypes), but can also include other termination conditions
such as a maximum allowed runtime, a maximum number of function evaluations, or
a maximum number of generations. The pseudocode of single-population GOMEA is
provided in Algorithm 2.

3.5 Going Parameterless: Removing the Need to Set the Population Size

The population size is a crucial parameter for the success of EAs. With model-based EAs
like GOMEA, this is arguably even more so because the linkage model needs sufficient
samples to be learned to achieve a sufficient level of accuracy for the linkage to be re-
liable. However, choosing the right population size is problem-dependent, and highly
nontrivial. Methods to scale the population size automatically over time are therefore
extremely useful and convenient in practice. In this paper, we consider two well-known
population size-free schemes.

First, we consider the interleaved multistart scheme (IMS), which was heavily in-
spired from the work by Harik and Lobo (1999) on parameterless GAs. The IMS has
been shown to be easy to use and can be naturally applied to almost any EA in vari-
ous optimization domains (Luong et al., 2018; Lin and Yu, 2018; Dushatskiy et al., 2019;
Virgolin et al., 2017).

The IMS consists of evolving multiple populations simultaneously, in an inter-
leaved fashion. Its pseudocode with recursive implementation is listed in Supplemen-
tary Algorithm 2. In the beginning, a single population is initialized, typically of a very
small size (e.g., 2). After MIMS generations, a new population is initialized that is larger,
and it is advanced by one generation. This larger population will execute its next gen-
eration only after the smaller population performs MIMS generations more. When the
larger population has performed MIMS generations, an even larger population is ini-
tialized, and so on. Our implementation of the IMS uses an initial population of size 2,
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exponential growth whereby each new population is twice the size of the previous,
and MIMS = 4, as in Harik and Lobo (1999). Smaller populations are terminated if they
have converged, or their average fitness has become smaller than the average fitness of
a larger population. This is because when a larger population has caught up with the
smaller population, the latter will likely converge sooner, and can therefore be consid-
ered obsolete. Additionally, another convergence criterion such as a maximum allowed
number of generations per population can be implemented.

The other schemes that we consider are the parameterless population pyramid (P3)
(Goldman and Punch, 2015), and its further modification, multiple insertion pyramid
(P3-MI) (den Besten et al., 2016). The difference between the two is explained below and
pseudocode is provided in Algorithm 3.

P3-MI arranges the population into a pyramidal structure, whereby each level of
the pyramid is a set of solutions (duplicates are not stored). When a new population is
created and, optionally, a local search is applied, all solutions are added to the bottom
level of the pyramid. Then, by using solutions from the current pyramid level as donors,
offsprings of the current population are generated. Solutions that are improved by vari-
ation are promoted and entered into one level higher in the pyramid. If there is no next
level in the pyramid, a new one is created. This process continues until the pyramid’s
top level is reached or no solutions are improved during a generation. Every generation,
linkage models are learned for each pyramid layer independently. Sizes of populations
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are determined by a population growth function. The growth function takes the iteration
number as input and produces the population size (i.e., the number of solutions added
to the bottom level of the pyramid). In Goldman and Punch (2015), different population
growth functions were studied. In this work, we use a quadratic function (t2, where t

is the iteration, starting from 1) as a trade-off between speed and number of function
evaluations.

The P3 scheme is a special case of P3-MI with a constant growth function with value
1; in other words, one new solution is created and evolved in each iteration.

4 Experiments

4.1 Benchmark Problems

We consider various combinatorial optimization problems that are commonly consid-
ered to be particularly interesting for benchmarking GAs.

4.1.1 Concatenated Deceptive Traps
Concatenated deceptive trap is a well-known benchmark problem that was introduced
to show that with disrupting building blocks, it takes exponentially growing resources
to solve this problem. The fitness function of this problem is defined as:

fTrapS
K

(x) =
∑

i∈{0,s,2s,...},i<�

f sub
TrapK

⎛
⎝k−1∑

j=0

x(i+j )%�

⎞
⎠

f sub
TrapK (u) =

{
k if u = k

k − 1 − u otherwise.

Particularly, we consider trap functions with subfunctions size k = 5 and two different
values of subfunctions overlap: separable traps with s = 5 (further referred to as Trap5

5)
and overlapping traps with s = 4 (Trap4

5).

4.1.2 Bimodal Separable Deceptive Trap
The bimodal symmetric concatenated trap functions (Deb et al., 1993) are interesting be-
cause, in contrast to the standard concatenated trap described above, each subfunction
has two modes. We consider bimodal symmetric traps of size 6, such that the nonover-
lapping subfunctions are given by

f sub
BimodalTrapK (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6 if u = 0 or u = 6

0 if u = 1 or u = 5

2 if u = 2 or u = 4

5 otherwise.

4.1.3 NK-Landscapes
The NK-landscapes with maximum overlap (also called NK-S1 landscapes, Pelikan
et al., 2009) with subfunctions of size k = 5 are interesting because of overlapping sub-
functions which are different depending on the position in the genotype.

fNK (x) =
l−k∑
i=0

f sub
NK (x(i,i+1 ...,i+k) )

where the values of f sub
NK are tabular values, sampled from the uniform distribution in

[0; 1] interval independently for different subfunction positions.
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4.1.4 Hierarchial If-and-Only-If (HIFF)
The hierarchical if-and-only-if (HIFF) function is interesting because it includes hierar-
chically ordered dependencies of exponentially growing sizes that overlap:

fHiff (x) =
∑

k∈{1,2,4... l
2 ,l}

l/k−1∑
i=0

f sub
Hiff (xik...(i+1)k−1)

f sub
Hiff (u) =

⎧⎪⎨
⎪⎩

1 if
k−1∑
j=0

uj = k or
k−1∑
j=0

uj = 0

0 otherwise.
4.1.5 MAXCUT
We consider MAXCUT as a well-known combinatorial optimization problem. Given
a weighted undirected graph (V,E), the goal is to find a partition of the vertices in
two sets such that the sum of weights of edges running between vertices in different
partitions is maximized. The fitness function is therefore defined as:

fMAXCUT (x) =
∑

(i,j )∈E:xi 
=xj

wij

where wij is the weight of edge (i, j ) and xi, xj are solution values in the corresponding
positions; that is, each xi is associated with one node in the graph and set to either 0 or
1 depending on which set it is assigned to.

We consider two types of MAXCUT instances. The first type is 3D square torus
graphs. Each vertex is connected to four neighbors, forming a torus. Edge weights are
integer values from [1, 5] sampled uniformly. This type of instance is further referred
to as MAXCUT Sparse. The second type of instance is dense graphs with randomly
selected

√
� neighbors for each vertex. This type of MAXCUT instance is further referred

to as MAXCUT Dense, and they are known to be NP-hard problems. For MAXCUT
Dense, we use edge weights values in [0, 1000] sampled uniformly.

4.1.6 Ising Spin-Glass
2D Ising spin-glass problems have often been considered in the benchmarking of EDAs
and other model-based EAs. The spin-glass problem fitness function is defined as

fspinglass (x) =
�−1∑
i=0

�−1∑
j=0

xixjJij

where Jij defines an interaction value between two variables, Jij ∈ {−1, 1}. In the spin-
glass instances we used, each variable interacts with up to four neighbors in a 2D grid.

4.1.7 MAXSAT
Finally, we consider the MAXSAT problem. Particularly, we consider unweighted MAX-
3SAT uniform random instances (Chen et al., 2017). MAX-3SAT is NP-hard.

fMAXSAT (x) =
m−1∑
i=0

(∨pi−1
j=0 �ij xfij

)

where m is the number of subfunctions (clauses), pi is subfunction size (in the used
instances ∀i pi = 3), fi determines which variables are contained by the subfunction
with index i, and � can be either a unary negation operator (turning a binary x to an
opposite value) or an identity operator keeping the value of x intact. The number of
clauses m in the considered instances is ≈ 4.3�.
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Table 1: Considered hyperparameters of single-population GOMEA. In bold, the best
settings found by the experiment described in Section 4.3.

Hyperparameter Options

Forced Improvements on / off
Exhaustive Donor Search on / off
Hill Climber SIHC / EHC / off
Linkage Tree and similarity measure unfiltered, MI / filtered, NMI
FOS ordering random / ascending subsets size
Tournament Selection (size 2) on / off

4.2 Sizes of Problems

We frame our experiments in terms of scalability; that is, we record what the effort is
(in terms of time and function evaluations) for an EA to find the optimum, for growing
problem dimensionality. For experiments where we traditionally adopt a single pop-
ulation, the maximum dimensionality we consider is set to 640 for Trap5

5, Trap4
5, and

NK-S1, to 636 for Bimodal Trap, to 1600 for MAXCUT Sparse, to 784 for Spin-glass, to
1024 for HIFF, and to 100 for NP-hard MAXCUT Dense and MAXSAT. In experiments
with automatic population sizing schemes, the maximum problem sizes are doubled
for all problems except for MAXCUT Sparse and Spin-glass. For the experiments with
a single population, we need to use smaller maximal dimensionalities because we in-
cluded bisection to discover what the optimal population size is, but bisection quickly
becomes computationally prohibitive to run for large problems.

4.3 Finding the Best Settings for Single-Population GOMEA

We summarize different possible choices of single-population GOMEA components
in Table 1. Because we are interested in eliminating the need to choose parameters,
we attempt to define what the best GOMEA variant is across the different benchmark
problems.

In total, there are 96 (25 · 3) combinations of hyperparameters. We perform an ex-
haustive hyperparameter search by running all 96 GOMEA variants on a set of bench-
mark problems. Here, our goal is to fairly compare all GOMEA variants. In order to do
so, for the largest considered size of each problem, we carry out the comparisons among
configurations that all have a respective optimal population size. We estimate the op-
timal population size using the bisection method. The success condition in bisection is
solving (i.e., achieving a global optimum) a problem instance in each of 50 consecutive
runs. We do not put any hard constraints on runtime. Instead, we bound it by limiting
the total number of function evaluations by 108 and, additionally, the total number of
generations of each population by 200 (the same value as used in Chen et al., 2017) to
prevent convergence problems. As it might happen that the smallest population size
that allows for solution of a problem instance does not require the fewest function eval-
uations, during the bisection procedure we keep track of the population size that allows
for solution of a problem instance with the fewest function evaluations. If the popula-
tion size reaches 105 solutions and a problem instance is still not solved, the optimal
population search procedure is terminated.

We rank the variants of GOMEA based on the minimal number of evaluations taken
to find the optimal solution for each problem. The final ranking of a variant is the
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average of the rankings across the problems. If a variant is not able to solve one or
more problems, it is dropped from the comparison. The best GOMEA version is further
referred to as GOMEAbest.

4.4 Adding CGOM Operator

Once GOMEAbest is found, we look into the effect of replacing GOM with the new CGOM
operator. Since CGOM requires a detection threhsold λ to be set, we run comparisons
with λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. We determine the best performing value of λ using the
same approach as in Section 4.3. This best performing CGOMEA version is further re-
ferred to as CGOMEAbest.

4.5 Benchmarking Algorithms Using the Optimal Population Size

CGOMEAbest and GOMEAbest are compared against each other, against the best previ-
ously published version of GOMEA (Thierens and Bosman, 2011), and against the most
recent single-population DSMGA-II version (Chen et al., 2017). The optimal population
sizes for all algorithms are determined using bisection.

4.6 Finding the Best Settings for Parameterless Algorithms

Next, we find the best performing parameterless version of GOMEA. The considered
options of a parameterless scheme are IMS, P3-MI with quadratic population growth
function, and P3. The scheme is seen as another tunable hyperparameter. We com-
bine it with 96 hyperparameter combinations as described in Section 4.3 and perform
a large-scale hyperparameter search, consisting of 96 · 3 = 288 possible algorithm con-
figurations. This best performing parameterless GOMEA version is further referred to
as GOMEA-P3best.

Once GOMEA-P3best is found, we replace GOM with the new CGOM operator (with
λ value that was chosen for CGOMEAbest, i.e., 0.8). This CGOMEA version is further
referred to as CGOMEA-P3best.

Additionally, we add to the experiments the original P3 algorithm and DSMGA-
II with IMS (Lin and Yu, 2018). Note that we do not test other population manage-
ment schemes for DSMGA-II since, to the best of our knowledge, their integration with
DSMGA-II have not been studied.

To study the practical applicability of the algorithms, we remove the limit on the
number of function evaluations. Instead, in all experiments with parameterless algo-
rithms we set a time limit of 24 hours. This is needed to make experiments computa-
tionally feasible as some of the considered algorithms (especially some configurations
which use the P3 scheme and DSMGA-II with IMS) perform in a way that the number
of function evaluations is increasing very slowly.

4.7 Statistical Testing

To test the statistical significance of performance differences between algorithms, we
use the two-step approach following Derrac et al. (2011): first, we use the Friedman test
(testing that performance of multiple algorithms is different), then a post-hoc multiple-
hypothesis Holm procedure (testing pairs of hypotheses that one algorithm performs
better than another). Signficance level is set to 0.05.
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Figure 3: Scalability of single-population EAs in terms of function evaluations required
to find an optimum. Points show median values of 50 runs. Bars show 3rd and 48th or-
der statistics (92% confidence interval). If an algorithm fails to find the global optimum
of a problem instance in all 50 runs, the corresponding point is not shown. GOMEA
refers to the previously published version (Bosman and Thierens, 2012a).

4.8 Implementation Details

All GOMEA variants and the P3 algorithm are implemented in C++.2 The P33 and
DSMGA-II4 implementations are the ones used in their corresponding original articles
with modified fitness functions to make them identical for all conducted experiments.
Compiler settings for all considered algorithms are also identical.

5 Results

5.1 GOMEA Design Choices Search Results

We found that the best performance of single-population GOMEA is achieved when us-
ing single-iteration hill climber, forced improvements, exhaustive donor search, filtered linkage
tree based on normalized mutual information, FOS sorted in ascending elements size order,
and tournament selection with tournament size 2 applied before linkage model learning, as
highlighted in Table 1.

With the best hyperparameter settings, GOMEAbest has better performance than the
previously published GOMEA version on seven out of nine considered problems. These
results are shown in Table 4, and scalability plots are presented in Figure 3. On the
MAXSAT and HIFF problems the improvement is approximately of an order of mag-

2Source code is available at: https://github.com/ArkadiyD/BinaryGOMEA
3https://github.com/brianwgoldman/FastEfficientP3/
4https://github.com/tianliyu/DSMGA-II-TwoEdge
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nitude. Two problems on which performance became worse are Bimodal Concatenated
Trap and MAXCUT Dense. We notice that for the Bimodal Trap problem, all algorithms
of the GOMEA family perform worse than DSMGA-II. We believe that this is due to
pairwise mutual information-based dependency learning failing, not optimal mixing
itself (i.e., with the right FOS, scalability is excellent). Improving performance for this
type of deceptive trap is an interesting question for future research.

Importantly, the GOMEAbest algorithm was able to solve all considered problems
with the given constraints while DSMGA-II failed to solve the HIFF and MAXCUT
Dense problems. Therefore, we can say that GOMEAbest is an algorithm that can tackle
a larger class of nontrivial problems efficiently and it is less likely to fail to solve a prob-
lem. However, we see that in four out of nine problems the performance of DSMGA-II
is better.

Statistical testing of performance differences showed that there is a difference
between GOMEA, DSMGA-II, GOMEAbest, and CGOMEAbest (p value = 0.02). Post-
hoc statistical analysis showed that CGOMEAbest performs better than GOMEA
(p-value = 0.03). P-values for all comparisons are provided in Supplementary Table 1.

Although the ultimate goal of the conducted hyperparameter search is to find the
best performing combination of design choices for GOMEA, it is also interesting to an-
alyze how these choices affect the performance individually. To do so, for each design
choice, we study aggregated performance of all algorithms that use this design choice
regardless of all other options they use. These results are shown in Supplementary Fig-
ure 1. The most impactful design choices are hill climber and exhaustive donor search.
Results show that for most problems, exhaustive donor search is beneficial and substan-
tially improves the performance. Algorithms with single-iteration hill climber on most
problems outperform the ones without it, but exhaustive hill climber is, apparently, too
greedy and therefore is inferior to both a simpler hill climber and no hill climber at
all. This is in line with earlier reported results (Bosman and Thierens, 2011). Using the
filtered linkage tree built with the normalized mutual information measure slightly im-
proves the performance on some problems from the benchmark set, although it worsens
the performance on the remaining ones. We see that forced improvements, FOS order-
ing, and tournament selection do not have a strong effect on the performance. It is note-
worthy that the effects of different design choices on the performance of GOMEA on the
NK-landscapes are the opposite of their effect on the majority of other problems (e.g.,
exhaustive donor search, hill climber, and filtered LT have worse performance), which
suggests that the NK-landscapes problem has some unique properties compared to the
other problems in the benchmark set.

5.2 CGOMEA Performance

We take the best-performing GOMEA version (GOMEAbest) and replace GOM with
CGOM. First, we analyze how the performance of CGOM-based GOMEA depends on
the threshold parameter λ. Results for single-population CGOMEA with different λ val-
ues are provided in Table 3. We see that λ values between 0.6 and 0.9 provide similar
performance on most problems, though there are some outliers in performance (as on
the MAXCUT Dense problem with λ = 0.7), which are caused by the stochastic nature of
the bisection procedure. Nevertheless, using the same approach as for selecting the best
GOMEA version, we select λ = 0.8 as the value that provides the best average perfor-
mance. CGOMEA with tuned λ value is further referred to as CGOMEAbest. We see that
with λ = 0.5, performance deteriorates, as detecting too many spurious dependencies
slows down the mixing procedure. Hence, trying smaller values for λ is not necessary.
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Table 2: Considered hyperparameters of parameterless GOMEA. In bold, the best set-
tings found by the experiment described in Section 4.6.

Hyperparameter Options

Forced Improvements on / off
Exhaustive Donor Search on / off
Hill Climber SIHC / EHC / off
Linkage Tree and similarity measure unfiltered, MI / filtered, NMI
FOS ordering random / ascending subsets size
Tournament Selection (size 2) on / off
Population scheme P3 / P3-MI / IMS

Table 3: Results of single-population CGOMEA with different threshold values λ. Best
population sizes are found with bisection. Ranking per problem shown through color
gradient from green (best, i.e., the fewest median number of function evaluations) to
red (worst, i.e., largest median number of function evaluations or problem instance not
solved in all 50 runs). All results are divided by 105.

As shown in Table 4 and in scalability plots in Figure 3, CGOMEAbest outperforms
GOMEAbest on seven out of nine considered problems. On Trap5

5 CGOMEAbest perform
on par with GOMEAbest. Only on the HIFF problem does CGOM perform slightly worse.
Moreover, CGOMEAbest performs better than DSMGA-II on five problems, and there
are two problems (HIFF and MAXCUT Dense) that CGOMEA managed to solve but
DSMGA-II did not. Importantly, CGOMEA is still able to reliably solve all considered
problems. CGOMEA’s slightly inferior performance on the HIFF problem can be ex-
plained by the structure of HIFF: dependencies exist between all pairs of variables, and
CGOM tends to include many variables as dependent ones, leading to less efficient vari-
ation as the pool of appropriate donors becomes more limited.

The scalability of single-population algorithms in terms of wall-clock time required
to find an optimum is shown in Supplementary Figure 2. CGOMEA and GOMEA scale
similarly on all problems, which is better than DSMGA-II, especially on Trap5

5, Bimodal
Trap, NK-S1, HIFF, and MAXCUT Sparse. Only on Bimodal Trap is CGOMEA sub-
stantially slower than GOMEA, but it requires fewer function evaluations. This can
be explained by the more careful donor selection done in CGOMEA. On the NP-hard
MAXSAT problem, scalability deviates from polynomial as expected, though on the
NP-hard MAXCUT Dense problem it is not seen for the considered problem sizes.
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Table 4: Results of single-population (left table) and parameterless (right table) EAs.
For single-population EAs, best population sizes are found with bisection. Ranking per
problem shown through color gradient from green (best, i.e., the fewest median num-
ber of function evaluations) to red (worst, i.e., largest median number of function eval-
uations or problem instance not solved in all 50 runs). For MAXSAT, � = 200 results
are shown for 48 instances that were solved by all algorithms. All results are divided
by 105. Legend: G = GOMEA; D−II = DSMGA−II; GB = GOMEABEST; CGB =
CGOMEABEST; P3 = P3; GP3B = GOMEA−P3BEST; CGP3B = CGOMEA−P3BEST.

5.3 Parameterless EAs

Results of experiments with parameterless EAs are presented in Table 4 and in scalabil-
ity plots in Figure 4. We found that the best performance of a parameterless GOMEA
is achieved when GOMEA uses single-iteration hill climber, exhaustive donor search, fil-
tered linkage tree based on normalized mutual information, randomly shuffled FOS, and P3
scheme, as highlighted in Table 2. The obtained parameterless GOMEA version is fur-
ther referred to as GOMEA-P3best. Note that when P3 and P3-MI schemes do not use
tournament selection, it makes them much more time efficient, as population statis-
tics needed for linkage learning can be efficiently updated instead of recalculated from
scratch (Goldman and Punch, 2015). Noteworthy crucial design choices, such as hill
climber, exhaustive donor search, and linkage tree type and information measure are the
same in GOMEAbest and GOMEA-P3best. Less important design choices (forced improve-
ments, FOS ordering) differ, which is most likely due to the results’ stochastic nature.
The GOMEA-P3best version, but with GOM replaced by CGOM (λ = 0.8 corresponding
to the best value found in Section 4.3), is further referred to as CGOMEA-P3best.

First, we see that DSMGA-II with IMS scheme was not capable of solving all prob-
lems in the experimental setup due to its issues with time efficiency.

CGOMEA-P3 best performs better than GOMEA-P3best on five problems out of nine.
The most substantial differences are on Bimodal Trap, NK-S1, and Trap4

5. Similar to re-
sults for single-population algorithms, CGOMEA performs worse than GOMEA on the
HIFF problem, and differences between CGOMEA and GOMEA on Trap5

5, Trap4
5, and

MAXCUT Sparse are subtle. Compared to the P3 algorithm (Goldman and Punch, 2015)
CGOMEA-P3best performs better on all problems except HIFF. GOMEA-P3best performs
better than P3 on six problems.

We note that only DSMGA-II with IMS was capable of solving all 50 instances of
the MAXSAT problem of size 200 within the given time limit. CGOMEA-P3best and P3
solved 49 problem instances, while GOMEA-P3best solved 48. As problem instances sig-
nificantly vary in complexity, we show the results for the 48 instances that were solved
by all algorithms in order to provide a fair comparison.
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Figure 4: Scalability of parameterless EAs in terms of function evaluations required to
find an optimum. Points show median values of 50 runs (48 runs for MAXSAT prob-
lem with � = 200). Bars show 3rd and 48th (46th for MAXSAT problem) order statistics
(92% confidence interval). If an algorithm fails to find the global optimum of a problem
instance in all 50 runs (48 runs for MAXSAT problem), the corresponding point is not
shown.

Statistical testing of performance differences showed that there is a difference
between GOMEA, DSMGA-II, GOMEA-P3best, and CGOMEA-P3best (p-value = 0.0005).
Post-hoc statistical analysis showed that CGOMEA-P3best performs better than DSMGA-
II (p-value = 0.002). All p-values are provided in Supplementary Table 2.

As shown in Supplementary Figure 3, P3 versions of GOMEA and CGOMEA scale
similarly to P3, though they are slower. Scalability in terms of required time to find an
optimum is almost identical for CGOMEA-P3best and GOMEA-P3best. Both CGOMEA-
P3best and GOMEA-P3best scale better than DSMGA-II IMS on most problems.

6 Discussion

We implemented the conditional GOM operator using traditional, entropy-based sim-
ilarity measures to predict dependencies between variables. Especially in early gen-
erations, this approach to detecting dependencies can be inaccurate, determining
dependencies between variables which are actually independent and missing some
truly existing ones. Potentially, a more accurate approach to learning dependencies
can further improve CGOM performance. Moreover, it may be interesting to apply the
CGOM operator in a gray-box optimization (GBO) scenario when the true dependen-
cies are known. Then, as was done for RV-GOMEA, a Bayesian network could be used
rather than the conditional variant of the LT. The latter is advantageous when learning
linkage in a BBO setting, but not as accurate and potentially more complex compared to
a direct and concise modelling of conditional dependencies. This analogy of the original
concept of CGOM is to be studied in future research. However, in that case, it should
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be compared to different forms of EAs specifically designed for GBO, such as Chicano
et al. (2017).

The considered model-based EAs relied on entropy-based information measures
to learn dependencies between variables. We notice that the performance on Bimodal
Trap can be potentially improved if alternative linkage learning methods are used, such
as fitness-based ones, as it is known that alternative methods that use comparisons
can find the right structure (Przewozniczek and Komarnicki, 2020; Dushatskiy et al.,
2021). In general, the current state-of-the-art results are achieved by entropy-based link-
age learning techniques, though replacing them or combining with other methods is a
promising question for future research.

In this paper, to determine the best design choices (hyperparameters) for GOMEA
and CGOMEA, we assessed performance on a standard benchmark set and ranked al-
gorithms based on average performance. Although this benchmark set includes well-
known combinatorial optimization problems, problems arising in practical tasks may
have properties (such as fitness landscape and dependencies structure) which are very
different from all common benchmark functions. Although practitioners are interested
in having the best performing algorithm for their specific task, we do not have a priori
knowledge of those tasks’ properties. Defining a good and comprehensive benchmark
set is an open problem and an active field of research (van der Blom et al., 2020). We hy-
pothesize, however, that the state-of-the-art benchmark problems in the field of EAs for
binary optimization that we used are a decent compromise in that we expect that obtain-
ing good average performance on these problems is a good predictor of performance
on many a priori unknown tasks. Moreover, in a BBO scenario matching a real-world
problem with a problem from a benchmark set is a hard, if even solvable, task itself.
Therefore, we did not try to specify the best possible GOMEA and CGOMEA versions
for each benchmark problem, but keep the focus on the best average performance.

By nature, GOM is a sequential variation procedure. However, for increasing the
efficiency of (C)GOMEA it would be beneficial to use parallelization techniques to per-
form variation. Parallelization capability that utilizes graphical processing units (GPUs)
has been added to the real-valued GOMEA for the GBO case (Bouter and Bosman, 2022).
We believe that parallelizing (C)GOMEA for discrete BBO optimization is an important
future work direction and can allow solving high-dimensional problems much faster.

7 Conclusion

In this paper, we have continued the research line on the GOMEA family of algorithms
with important innovations and comparisons of various ideas that have been proposed
separately in the last decade since the introduction of GOMEA. First, we did an ex-
tensive hyperparameter search and obtained a version of GOMEA that showed signifi-
cantly better performance than ever published before for GOMEA. Next, we introduced
a new variation operator called conditional gene-pool optimal mixing (CGOM), which
utilizes conditional dependencies of linkage model subsets on other variables to gener-
ate offspring solutions. GOMEA with CGOM (CGOMEA) outperformed GOMEA and
DSMGA-II on most of the nine benchmark problems considered diverse and non-trivial
in a single-population EA experimental setup where we assess scalability of the algo-
rithms of required resources to obtain the optimum. Finally, we searched for the best
performing version of GOMEA integrated with various population size–free schemes.
We found that CGOMEA with P3 scheme is a robust scalable algorithm that outper-
forms the competitors in terms of number of function evaluations required to find the
global optimum on almost all problems, setting a new state-of-the-art performance for
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most of the benchmark problems and a new GOMEA variant that can serve as a new
baseline in model-based evolutionary algorithms for binary search spaces for the next
decade.
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